WO2018181084A1 - Impeller and rotation machine - Google Patents
Impeller and rotation machine Download PDFInfo
- Publication number
- WO2018181084A1 WO2018181084A1 PCT/JP2018/011963 JP2018011963W WO2018181084A1 WO 2018181084 A1 WO2018181084 A1 WO 2018181084A1 JP 2018011963 W JP2018011963 W JP 2018011963W WO 2018181084 A1 WO2018181084 A1 WO 2018181084A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- segment
- impeller
- disk
- disk portion
- axis
- Prior art date
Links
- 239000000853 adhesive Substances 0.000 claims abstract description 32
- 230000001070 adhesive effect Effects 0.000 claims abstract description 32
- 239000007769 metal material Substances 0.000 claims description 25
- 239000000835 fiber Substances 0.000 claims description 23
- 229920005989 resin Polymers 0.000 claims description 23
- 239000011347 resin Substances 0.000 claims description 23
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 150000003839 salts Chemical class 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 description 13
- 238000005304 joining Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 7
- 230000002093 peripheral effect Effects 0.000 description 5
- 238000005219 brazing Methods 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 3
- 229910000165 zinc phosphate Inorganic materials 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000010526 radical polymerization reaction Methods 0.000 description 2
- 239000012783 reinforcing fiber Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910000398 iron phosphate Inorganic materials 0.000 description 1
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/28—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
- F04D29/284—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/28—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/02—Selection of particular materials
- F04D29/023—Selection of particular materials especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/266—Rotors specially for elastic fluids mounting compressor rotors on shafts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/20—Manufacture essentially without removing material
- F05D2230/23—Manufacture essentially without removing material by permanently joining parts together
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/60—Properties or characteristics given to material by treatment or manufacturing
- F05D2300/603—Composites; e.g. fibre-reinforced
Definitions
- the present invention relates to an impeller used for a rotating machine.
- rotating machines such as industrial compressors, turbo refrigerators, and small gas turbines include an impeller in which a plurality of blades are attached to a disk fixed to a rotating shaft. This rotating machine gives pressure energy and velocity energy to the gas by rotating the impeller.
- Patent Document 1 proposes making the impeller into one piece.
- Patent Document 1 discloses an impeller that includes a disk part, a blade part, and a cover part.
- the disk part is divided into two parts by a dividing surface perpendicular to the axis on the inner side in the radial direction of the blade part.
- a first segment and a second member (second segment).
- Patent document 1 proposes joining a 1st segment and a 2nd segment by a split surface. According to the proposal of patent document 1, while being able to improve the quality of a flow-path shape, it is supposed that an impeller can be easily attached or detached with respect to a rotating shaft.
- Patent Document 1 the first segment and the second segment are joined to each other by brazing or friction stir welding (Friction Stir Welding) on the dividing surface.
- This joining method is based on the premise that the first segment and the second segment in Patent Document 1 are made of a metal material. That is, in Patent Document 1, the choices of materials applied to the first segment and the second segment are limited.
- an object of the present invention is to provide an impeller and a rotating machine that can expand the choice of materials applied to the first segment and the second segment.
- the impeller of the present invention includes a disk portion fixed to a rotating shaft that rotates about an axis, a cover portion that is disposed to face the disk portion, and a plurality of blade portions that are provided between the disk portion and the cover portion, Is provided.
- the impeller in the present invention includes a first segment composed of a first disk portion that is a portion on one side of the axis of the disk portion, a second disk portion that is a portion on the other side of the axis of the disk portion, and a cover portion. And a second segment in which the blade part is integrally formed, and a joining layer that joins the first disk part of the first segment and the second disk part of the second segment with an adhesive. .
- the material choices for the first segment and the second segment are limited to metal materials. It spreads to fiber reinforced resin. That is, the impeller of this invention can comprise a 1st segment from a metal material or fiber reinforced resin, and can comprise a 2nd segment from a metal material or fiber reinforced resin.
- the impeller of the present invention can be configured such that the first segment is made of a metal material and the second segment is made of a fiber reinforced resin. Moreover, the impeller of this invention can comprise both a 1st segment and a 2nd segment from fiber reinforced resin. Furthermore, the impeller of this invention can comprise both a 1st segment and a 2nd segment from a metal material.
- the impeller of the present invention can be fixed to the rotating shaft via the first disk portion of the first segment.
- the first segment can be fitted to the rotary shaft with a margin.
- the first segment is made of a fiber reinforced resin, the first segment can be fitted to the rotating shaft via an adhesive.
- the first segment and the second segment are made of a metal material
- the present invention also provides a rotating machine including the impeller described above.
- the first segment and the second segment are joined via the adhesive layer.
- the material which comprises a 1st segment and a 2nd segment can be selected without being limited to a metal material, the choice of material spreads. Therefore, since the fiber reinforced resin that is lighter than, for example, a metal material can be formed in the first segment or the second segment, according to the present invention, the effect that the impeller can be reduced in weight compared to the case where the whole is made of a metal material. Bring.
- the centrifugal compressor 100 includes a casing 102 and a rotating shaft 101 that is pivotally supported on the casing 102 via a journal bearing 103 and a thrust bearing 104.
- the rotating shaft 101 is supported so as to be rotatable around the axis O, and a plurality of impellers 1 are attached to the rotating shaft 101 side by side in the direction of the axis O.
- the impeller 1 compresses the gas G sucked from the suction port 3 opened on one side in the direction of the axis O while passing through the flow path 105 formed inside the impeller 1.
- the impeller 1 is configured to discharge the compressed gas G from the discharge port 4 toward the outside in the radial direction.
- Each impeller 1 compresses the gas G supplied from the upstream flow path 105 formed in the casing 102 into the downstream flow path 105 in a stepwise manner using centrifugal force generated by the rotation of the rotary shaft 101. Shed.
- the casing 102 is formed with a suction port 106 for allowing the gas G to flow in from the outside on the front side (F) in the direction of the axis O of the rotary shaft 101. Further, the casing 102 is formed with a discharge port 107 for allowing the gas G to flow out to the outside on the rear side (R) in the direction of the axis O.
- FIG. 1 shows an example in which six impellers 1 are provided in series on the rotating shaft 101, it is sufficient that at least one impeller 1 is provided on the rotating shaft 101.
- FIG. 1 shows an example in which six impellers 1 are provided in series on the rotating shaft 101, it is sufficient that at least one impeller 1 is provided on the rotating shaft 101.
- FIG. 1 shows an example in which six impellers 1 are provided in series on the rotating shaft 101, it is sufficient that at least one impeller 1 is provided on the rotating shaft 101.
- a case where only one impeller 1 is provided on the rotating shaft 101 will be described as an example.
- the impeller 1 includes a disk unit 30, a blade unit 40, and a cover unit 50.
- the disk part 30 is attached to the rotating shaft 101 by being fitted from the outside in the radial direction.
- the disk unit 30 includes a first disk unit 31 and a second disk unit 35 that are divided into two in the direction of the axis O by a bonding layer BL orthogonal to the axis O.
- the first disk part 31 and the second disk part 35 are joined by a joining layer BL.
- the first disk portion 31 has a substantially cylindrical shape with the axis O as the center.
- the first disk portion 31 includes a grip portion A that is fitted to the rotating shaft 101 with a tightening margin on the front end portion 33 side on the front side (F) of the axis O.
- cold fitting or shrink fitting can be applied.
- the impeller 1 in this embodiment is fixed to the rotating shaft 101 only by the grip portion A.
- the first disk portion 31 includes an outer peripheral surface 34 that gradually increases in diameter toward the rear side (R) of the axis O. This outer peripheral surface 34 is a concave curved surface toward the outside in a cross section including the axis O.
- the rear end surface 32 on the rear side (R) of the axis O is bonded to the second disk portion 35 via a bonding layer BL made of an adhesive.
- the second disk portion 35 is formed in a disk shape extending from the rear end portion 36 side opposite to the front end portion 33 side in the direction of the axis O toward the radially outer side.
- the inner diameter side region 38 of the front end surface 37 is bonded via the rear end surface 32 bonding layer BL of the first disk portion 31.
- the rear end face 32 and the inner diameter side region 38 of the front end face 37 constitute a bonding layer BL orthogonal to the axis O.
- an epoxy resin adhesive, an anaerobic strong sealant or the like is applied for the bonding layer BL. If the impeller 1 is exposed to a temperature of about 200 ° C. as an example, the applied adhesive must have heat resistance at 200 ° C.
- a plurality of blade parts 40 are arranged at predetermined intervals in the circumferential direction of the disk part 30.
- the blade portion 40 is formed with a substantially constant plate thickness and protrudes from the front end surface 37 of the disk portion 30 toward the front side (F) in the direction of the axis O. Further, the blade portion 40 has a slightly tapered shape toward the outside in the radial direction in a side view.
- each blade portion 40 is formed so as to go to the rear side in the rotation direction R of the impeller 1 as it goes to the outer side in the radial direction of the disk portion 30 when viewed from the direction of the axis O.
- Each blade portion 40 is formed to be concavely curved toward the rear side in the rotational direction R when viewed from the direction of the axis O.
- the blade portion 40 only needs to extend to the rear side in the rotational direction R toward the outer side in the radial direction.
- the blade portion 40 may be formed linearly when viewed from the direction of the axis O.
- the cover portion 50 is disposed to face the disk portion 30 and covers the blade portion 40 from the front end portion 33 side in the direction of the axis O.
- the cover portion 50 has a rear end surface 52 in the direction of the axis O formed integrally with the front edge 41 of the blade portion 40.
- the thickness dimension of the cover part 50 is formed in a plate shape in which the thickness dimension on the outer side in the radial direction is slightly thin, similarly to the thickness dimension of the disk part 30.
- the cover part 50 has a bent part 51 bent toward the front side in the direction of the axis O at the position of the inner end 42 of the blade part 40.
- the bonding layer BL is disposed inside the blade portion 40 in the radial direction. Further, the front end portion 33 of the first disk portion 31 is disposed so as to protrude forward (F) in the direction of the axis O from the front end edge 53 of the bent portion 51. Further, the impeller 1 has a flow path 105 through which the gas G flows by the outer peripheral surface 34 of the first disk portion 31, the front end surface 37 of the second disk portion 35, the side surface 43 of the blade portion 40, and the rear end surface 52 of the cover portion 50. Is formed.
- the impeller 1 includes a first segment SG1 and a second segment SG2.
- the first segment SG1 is composed of a first disk portion 31 that is a portion on one side of the axis O of the disk portion 30.
- the second segment SG ⁇ b> 2 includes a second disk part 35, which is a part on the other side of the axis O of the disk part 30, a blade part 40, and a cover part 50.
- the first segment SG1 is made of a metal material, for example, precipitation hardening stainless steel, while the second segment SG2 is made of fiber reinforced resin (FRP).
- FRP fiber reinforced resin
- carbon fiber or glass fiber is used as the reinforcing fiber.
- CFRP Carbon Fiber Reinforced Plastics
- CFRP Carbon Fiber Reinforced Plastics
- the manufacturing method of the impeller 1 mentioned above is demonstrated, referring FIG.4 and FIG.5.
- the first segment SG1 is manufactured by casting, cutting, or the like (FIG. 4A, FIG. 5 Step S101).
- the second segment SG2 in which the second disk portion 35, the blade portion 40, and the cover portion 50 are integrated is produced (FIG. 4A, FIG. 5, step S103).
- the second segment SG2 made of fiber reinforced resin is integrally manufactured by injection molding.
- the first segment SG1 and the second segment SG2 are manufactured in this order, but this manufacturing order may be reversed.
- the first segment SG1 (first disk portion 31) is fitted and fixed to the rotating shaft 101 (FIG. 4B, FIG. 5, step S105).
- This fitting can be performed by shrink fitting.
- the shrink fitting is performed by thermally expanding the first segment SG1 in the radial direction and then fitting the rotary shaft 101.
- the first segment SG1 is cooled to room temperature, the first segment SG1 and the rotary shaft 101 are fitted with a margin.
- the rear end surface 32 of the first segment SG1 (first disk portion 31) fitted to the rotary shaft 101 and the front end surface 37 (inner diameter side) of the second segment SG2 (second disk portion 35) separately manufactured.
- the adhesive B is applied to the region 38) (FIG. 4B, FIG. 5, step S107). Note that the adhesive B may be applied to either the rear end surface 32 or the front end surface 37.
- the second segment SG2 After applying the adhesive B to the rear end face 32 and the front end face 37, the second segment SG2 is fitted to the rotary shaft 101, and then pushed in until the rear end face 32 and the front end face 37 of the first segment SG1 abut. If the load is applied and held between the rear end face 32 and the front end face 37 until the adhesive B is cured, the joining of the first segment SG1 and the second segment SG2 is completed (FIG. 4 (c), FIG. 5 steps) S109).
- the impeller 1 since the first segment SG1 and the second segment SG2 are joined with an adhesive, the range of selection of materials applied to the second segment SG2 is widened, and the second segment SG2 is lighter than a metal material. It can be made of any fiber reinforced resin. Therefore, since the weight of the impeller 1 can be reduced as compared with the case where the whole is made of a metal material, the highly efficient centrifugal compressor 100 can be obtained according to this embodiment.
- the impeller 1 can be fitted to the rotary shaft 101 with a required strength simply by fitting it with a tightening margin, for example, by shrink fitting. Therefore, according to the impeller 1, since it is not necessary to provide a mechanical fitting structure such as a key and a key groove, the impeller 1 can be easily manufactured.
- the bonding layer BL made of the adhesive of the first segment SG1 and the second segment SG2 may be maintained by bonding the rear end face 32 and the front end face 37 coated with the adhesive in the atmosphere. Therefore, according to the first embodiment, the joining operation is easier than using a heat treatment furnace whose temperature is controlled in a vacuum like brazing.
- the impeller 1 can be manufactured in a short time.
- the impeller 1 since bonding with an adhesive can be performed at room temperature without heating, the impeller 1 is not deformed by the application of heat. Therefore, according to the present embodiment, it is possible to obtain the impeller 1 with high shape and dimensional accuracy. In addition, since the bonding with the adhesive can be performed in the atmosphere, since the bonding state can be finely corrected before curing, the impeller 1 according to the present embodiment has more accurate shape and dimensions. high.
- the impeller 2 according to the second embodiment differs from the impeller 1 of the first embodiment in that the first disk portion 31 that constitutes the first segment SG1 in addition to the second segment SG2 is also composed of fiber reinforced resin.
- the impeller 2 will be described with a focus on differences from the impeller 1 with reference to FIG. 6.
- the same components and elements as those of the impeller 1 are denoted by the same reference numerals as those of the impeller 1 in FIG.
- the first disk portion 31 made of fiber reinforced resin is fixed to the rotary shaft 101 with an adhesive.
- the impeller 2 is provided with key grooves S1 and S2 in the rotary shaft 101 and the first disk portion 31, respectively, and a key K is inserted into the key grooves S1 and S2.
- the key grooves S1, S2 and the key K can be provided in a portion corresponding to the grip portion A, for example.
- the rotary shaft 101 and the first disk portion 31 other than the key grooves S1, S2 and the key K are joined by an adhesive B.
- the first disk portion 31 is joined to the rotary shaft 101 with an adhesive at the grip portion A portion.
- the second segment SG2 is joined to the first segment SG1 including the first disk portion 31 fixed to the rotating shaft 101 with an adhesive via the joining layer BL. This joining is the same as that of the impeller 1 of the first embodiment.
- the 1st disc part 31 which makes 1st segment SG1 is produced by injection molding using fiber reinforced resin (Drawing 8 Step S201).
- a key groove S2 is formed in the inner periphery of the first disk portion 31.
- the second segment SG2 in which the second disk portion 35, the blade portion 40 and the cover portion 50 are integrated is integrally manufactured by injection molding using a fiber reinforced resin (step S203 in FIG. 8).
- the first segment SG1 (first disk portion 31) is fitted to the rotating shaft 101 (FIG. 7A, step S205 in FIG. 8).
- a key groove S1 is formed in advance on the rotary shaft 101, and a key K is inserted into the key groove S1.
- An adhesive B is applied to the outer peripheral surface of the first disk portion 31 corresponding to the grip portion A.
- the key shaft S is fitted to the rotary shaft 101 so that the key groove S2 is inserted into the key K.
- the key K is pushed in until it hits the back of the keyway S2 (right side in the figure), the fitting operation of the first disk portion 31 and the rotary shaft 101 is completed.
- the key K can be fixed in advance to the key groove S1 of the rotary shaft 101 with an adhesive. Further, the fixing of the first disk portion 31 and the rotary shaft 101 with the adhesive can be performed only in the key grooves S1 and S2 and the key K portion as long as the bonding strength is allowed.
- the impeller 2 according to the second embodiment uses a first segment SG1 (first disk portion 31) made of fiber reinforced resin. Therefore, according to 2nd Embodiment, since the weight reduction of the impeller 2 is implement
- the impeller 2 can be manufactured in a shorter time than the first embodiment.
- the present invention is not limited to this, and both the first segment SG1 and the second segment SG2 can be made of a metal material. That is, the present invention has the option of configuring the first segment SG1 from a metal material or fiber reinforced resin and configuring the second segment SG2 from a metal material or fiber reinforced resin.
- the present invention can be applied to a means for increasing the strength of the bonding through the bonding layer BL of the first segment SG1 and the second segment SG2.
- the rear end surface 32 and the front end surface 37 to which the adhesive is applied can be subjected to phosphate treatment.
- Phosphate treatment forms a thin micron-order film of a metal salt such as zinc phosphate on the metal surface, but this film has a columnar form, which roughens the surface, thereby increasing the bonding strength of the adhesive.
- phosphate treatment zinc phosphate treatment, calcium phosphate treatment and iron phosphate treatment are known, but zinc phosphate treatment which can be treated even at room temperature is preferred.
- a mechanical fit is provided between the first disk part 31 and the second disk part 35.
- a combined structure can also be provided.
- the fitting structure 39 is provided on the recess 39 ⁇ / b> A provided on the rear end surface 32 of the first disk portion 31 and the front end surface 37 of the second disk portion 35. It is comprised from the convex part 39B.
- the convex portion 39B is inserted into the concave portion 39A to constitute the fitting structure 39.
- the fitting structures 39 are provided at four locations at intervals of 90 ° in the circumferential direction of the first disk portion 31 and the second disk portion 35.
- the boundary surface between the first disk portion 31 and the second disk portion 35 is along the direction orthogonal to the axis O, but the present invention is not limited to this, and the boundary surface May be inclined with respect to the axis O.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
This impeller 1 is provided with: a disc part 30 which is fixed to a rotation shaft 101 which rotates around an axis O, a cover part 50 which is arranged facing the disc part 30, and multiple blade parts 40 which are provided between the disc part 30 and the cover part 50. The impeller 1 is characterized by being provided with: a first segment SG1 formed from a first disc part 31, which is a part of the disc part 30 located on one side of the axis O; a second disc part 35, which a part of the disc part 30 located on the other side of the axis O; a cover part 50; a second segment SG2 which is configured integrally with the blade parts 40; and a bonding layer BL which bonds the first segment SG1 and the second segment SG2 with an adhesive.
Description
本発明は、回転機械に用いられるインペラに関するものである。
The present invention relates to an impeller used for a rotating machine.
例えば、産業用圧縮機やターボ冷凍機、小型ガスタービンなどの回転機械は、回転軸に固定されたディスクに複数のブレードを取り付けたインペラを備えている。この回転機械は、インペラを回転させることで、ガスに圧力エネルギー及び速度エネルギーを与える。
For example, rotating machines such as industrial compressors, turbo refrigerators, and small gas turbines include an impeller in which a plurality of blades are attached to a disk fixed to a rotating shaft. This rotating machine gives pressure energy and velocity energy to the gas by rotating the impeller.
インペラとしては、ブレードにカバーを一体的に取り付けたいわゆるクローズドインペラが知られている。このクローズドインペラにおいては、複数の部材を接合して組み立てたものがある。このような接合構造を有するインペラは、流路形状の品質が低いために、インペラの性能が低下する傾向にある。この課題に対して、インペラを1ピース化することが特許文献1に提案されている。
A so-called closed impeller in which a cover is integrally attached to a blade is known as an impeller. Some closed impellers are assembled by joining a plurality of members. The impeller having such a joint structure tends to deteriorate the performance of the impeller because the quality of the flow path shape is low. For this problem, Patent Document 1 proposes making the impeller into one piece.
特許文献1は、ディスク部と、ブレード部と、カバー部と、を備えるインペラにおいて、ディスク部は、ブレード部の径方向の内側で、軸線に直交する分割面により二分割された第一部材(第一セグメント)と第二部材(第二セグメント)とを備える。特許文献1は、第一セグメントと第二セグメントとを分割面で接合することを提案する。
特許文献1の提案によれば、流路形状の品質を向上することができるとともに、回転軸に対してインペラを容易に着脱できる、とされている。Patent Document 1 discloses an impeller that includes a disk part, a blade part, and a cover part. The disk part is divided into two parts by a dividing surface perpendicular to the axis on the inner side in the radial direction of the blade part. A first segment) and a second member (second segment). Patent document 1 proposes joining a 1st segment and a 2nd segment by a split surface.
According to the proposal ofpatent document 1, while being able to improve the quality of a flow-path shape, it is supposed that an impeller can be easily attached or detached with respect to a rotating shaft.
特許文献1の提案によれば、流路形状の品質を向上することができるとともに、回転軸に対してインペラを容易に着脱できる、とされている。
According to the proposal of
特許文献1は、分割面において第一セグメントと第二セグメントを、ろう付け、又は、摩擦撹拌接合(Friction Stir Welding)により接合することとしている。この接合方法は、特許文献1における第一セグメントと第二セグメントが金属材料で構成されることを前提とする。つまり、特許文献1は、第一セグメントと第二セグメントに適用される材料の選択肢が限られる。
In Patent Document 1, the first segment and the second segment are joined to each other by brazing or friction stir welding (Friction Stir Welding) on the dividing surface. This joining method is based on the premise that the first segment and the second segment in Patent Document 1 are made of a metal material. That is, in Patent Document 1, the choices of materials applied to the first segment and the second segment are limited.
以上より、本発明は、第一セグメントと第二セグメントに適用される材料の選択肢を広げることのできるインペラ及び回転機械を提供することを目的とする。
Accordingly, an object of the present invention is to provide an impeller and a rotating machine that can expand the choice of materials applied to the first segment and the second segment.
本発明のインペラは、軸線の回りに回転する回転軸に固定されるディスク部と、ディスク部に対向配置されるカバー部と、ディスク部とカバー部との間に設けられる複数のブレード部と、を備える。
本発明におけるインペラは、ディスク部の軸線の一方側の部位である第一ディスク部から構成される第一セグメントと、ディスク部の軸線の他方側の部位である第二ディスク部と、カバー部と、ブレード部が一体的に構成される第二セグメントと、第一セグメントの第一ディスク部と第二セグメントの第二ディスク部とを接着剤により接合する接合層と、を備えることを特徴とする。 The impeller of the present invention includes a disk portion fixed to a rotating shaft that rotates about an axis, a cover portion that is disposed to face the disk portion, and a plurality of blade portions that are provided between the disk portion and the cover portion, Is provided.
The impeller in the present invention includes a first segment composed of a first disk portion that is a portion on one side of the axis of the disk portion, a second disk portion that is a portion on the other side of the axis of the disk portion, and a cover portion. And a second segment in which the blade part is integrally formed, and a joining layer that joins the first disk part of the first segment and the second disk part of the second segment with an adhesive. .
本発明におけるインペラは、ディスク部の軸線の一方側の部位である第一ディスク部から構成される第一セグメントと、ディスク部の軸線の他方側の部位である第二ディスク部と、カバー部と、ブレード部が一体的に構成される第二セグメントと、第一セグメントの第一ディスク部と第二セグメントの第二ディスク部とを接着剤により接合する接合層と、を備えることを特徴とする。 The impeller of the present invention includes a disk portion fixed to a rotating shaft that rotates about an axis, a cover portion that is disposed to face the disk portion, and a plurality of blade portions that are provided between the disk portion and the cover portion, Is provided.
The impeller in the present invention includes a first segment composed of a first disk portion that is a portion on one side of the axis of the disk portion, a second disk portion that is a portion on the other side of the axis of the disk portion, and a cover portion. And a second segment in which the blade part is integrally formed, and a joining layer that joins the first disk part of the first segment and the second disk part of the second segment with an adhesive. .
本発明におけるインペラは、第一セグメントの第一ディスク部と第二セグメントの第二ディスク部との接合を接着剤により行うので、第一セグメントと第二セグメントの材料の選択肢が、金属材料に限らず、繊維強化樹脂に広がる。つまり、本発明のインペラは、第一セグメントを、金属材料又は繊維強化樹脂から構成し、第二セグメントを、金属材料又は繊維強化樹脂から構成できる。
In the impeller according to the present invention, since the first disk portion of the first segment and the second disk portion of the second segment are joined by an adhesive, the material choices for the first segment and the second segment are limited to metal materials. It spreads to fiber reinforced resin. That is, the impeller of this invention can comprise a 1st segment from a metal material or fiber reinforced resin, and can comprise a 2nd segment from a metal material or fiber reinforced resin.
具体的な材料の選択肢として、本発明のインペラは、第一セグメントを金属材料から構成し、第二セグメントを繊維強化樹脂から構成できる。
また、本発明のインペラは、第一セグメント、及び、第二セグメントの両方を繊維強化樹脂から構成できる。
さらに、本発明のインペラは、第一セグメント、及び、第二セグメントの両方を金属材料から構成できる。 As a specific material option, the impeller of the present invention can be configured such that the first segment is made of a metal material and the second segment is made of a fiber reinforced resin.
Moreover, the impeller of this invention can comprise both a 1st segment and a 2nd segment from fiber reinforced resin.
Furthermore, the impeller of this invention can comprise both a 1st segment and a 2nd segment from a metal material.
また、本発明のインペラは、第一セグメント、及び、第二セグメントの両方を繊維強化樹脂から構成できる。
さらに、本発明のインペラは、第一セグメント、及び、第二セグメントの両方を金属材料から構成できる。 As a specific material option, the impeller of the present invention can be configured such that the first segment is made of a metal material and the second segment is made of a fiber reinforced resin.
Moreover, the impeller of this invention can comprise both a 1st segment and a 2nd segment from fiber reinforced resin.
Furthermore, the impeller of this invention can comprise both a 1st segment and a 2nd segment from a metal material.
本発明のインペラは、第一セグメントの第一ディスク部を介して回転軸に固定することができる。
第一セグメントが金属材料からなる場合には、第一セグメントを回転軸に締め代を有して嵌合できる。
第一セグメントが繊維強化樹脂からなる場合には、第一セグメントを回転軸に接着剤を介して嵌合できる。 The impeller of the present invention can be fixed to the rotating shaft via the first disk portion of the first segment.
When the first segment is made of a metal material, the first segment can be fitted to the rotary shaft with a margin.
When the first segment is made of a fiber reinforced resin, the first segment can be fitted to the rotating shaft via an adhesive.
第一セグメントが金属材料からなる場合には、第一セグメントを回転軸に締め代を有して嵌合できる。
第一セグメントが繊維強化樹脂からなる場合には、第一セグメントを回転軸に接着剤を介して嵌合できる。 The impeller of the present invention can be fixed to the rotating shaft via the first disk portion of the first segment.
When the first segment is made of a metal material, the first segment can be fitted to the rotary shaft with a margin.
When the first segment is made of a fiber reinforced resin, the first segment can be fitted to the rotating shaft via an adhesive.
本発明のインペラにおいて、第一セグメント及び第二セグメントが金属材料からなる場合には、接合層が設けられる面に金属塩からなる被膜を設けることが好ましい。
また、本発明のインペラにおいて、第一セグメントの第一ディスク部と第二セグメントの第二ディスク部の間に機械的な嵌合構造を設けることが好ましい。 In the impeller of the present invention, when the first segment and the second segment are made of a metal material, it is preferable to provide a film made of a metal salt on the surface on which the bonding layer is provided.
In the impeller of the present invention, it is preferable to provide a mechanical fitting structure between the first disk portion of the first segment and the second disk portion of the second segment.
また、本発明のインペラにおいて、第一セグメントの第一ディスク部と第二セグメントの第二ディスク部の間に機械的な嵌合構造を設けることが好ましい。 In the impeller of the present invention, when the first segment and the second segment are made of a metal material, it is preferable to provide a film made of a metal salt on the surface on which the bonding layer is provided.
In the impeller of the present invention, it is preferable to provide a mechanical fitting structure between the first disk portion of the first segment and the second disk portion of the second segment.
本発明は、以上説明したインペラを備える回転機械をも提供する。
The present invention also provides a rotating machine including the impeller described above.
本発明のインペラによれば、第一セグメントと第二セグメントとを接着剤層を介して接合することにした。これにより、本発明によれば、金属材料に限定されることなく第一セグメントと第二セグメントを構成する材料を選択できるので、材料の選択肢が広がる。したがって、第一セグメント又は第二セグメントに、例えば金属材料に比べて軽量な繊維強化樹脂をできるので、本発明によれば全体を金属材料で作製するのに比べてインペラを軽量化できる、といった効果をもたらす。
According to the impeller of the present invention, the first segment and the second segment are joined via the adhesive layer. Thereby, according to this invention, since the material which comprises a 1st segment and a 2nd segment can be selected without being limited to a metal material, the choice of material spreads. Therefore, since the fiber reinforced resin that is lighter than, for example, a metal material can be formed in the first segment or the second segment, according to the present invention, the effect that the impeller can be reduced in weight compared to the case where the whole is made of a metal material. Bring.
〔第1実施形態〕
以下、添付図面を参照しながら、本発明の第1実施形態にかかる回転機械について、遠心圧縮機100を例にして説明する。
[遠心圧縮機100の構成]
図1に示すように、第1実施形態に係る遠心圧縮機100は、ケーシング102と、ケーシング102にジャーナル軸受103及びスラスト軸受104を介して軸支される回転軸101と、を備えている。回転軸101は、軸線O回りに回転可能に支持されており、回転軸101には、軸線Oの方向に複数のインペラ1が並んで取り付けられている。 [First Embodiment]
Hereinafter, a rotary machine according to a first embodiment of the present invention will be described using thecentrifugal compressor 100 as an example with reference to the accompanying drawings.
[Configuration of Centrifugal Compressor 100]
As shown in FIG. 1, thecentrifugal compressor 100 according to the first embodiment includes a casing 102 and a rotating shaft 101 that is pivotally supported on the casing 102 via a journal bearing 103 and a thrust bearing 104. The rotating shaft 101 is supported so as to be rotatable around the axis O, and a plurality of impellers 1 are attached to the rotating shaft 101 side by side in the direction of the axis O.
以下、添付図面を参照しながら、本発明の第1実施形態にかかる回転機械について、遠心圧縮機100を例にして説明する。
[遠心圧縮機100の構成]
図1に示すように、第1実施形態に係る遠心圧縮機100は、ケーシング102と、ケーシング102にジャーナル軸受103及びスラスト軸受104を介して軸支される回転軸101と、を備えている。回転軸101は、軸線O回りに回転可能に支持されており、回転軸101には、軸線Oの方向に複数のインペラ1が並んで取り付けられている。 [First Embodiment]
Hereinafter, a rotary machine according to a first embodiment of the present invention will be described using the
[Configuration of Centrifugal Compressor 100]
As shown in FIG. 1, the
図2に示すように、インペラ1は、その軸線Oの方向の一方側に開口された吸込口3より吸入されたガスGを、インペラ1の内部に形成された流路105を通る間に圧縮する。インペラ1は、圧縮されたガスGを、排出口4から径方向の外側に向かって排出するように構成されている。
各インペラ1は、回転軸101の回転による遠心力を利用してケーシング102に形成された上流側の流路105から供給されるガスGを下流側の流路105へと段階的に圧縮して流す。 As shown in FIG. 2, theimpeller 1 compresses the gas G sucked from the suction port 3 opened on one side in the direction of the axis O while passing through the flow path 105 formed inside the impeller 1. To do. The impeller 1 is configured to discharge the compressed gas G from the discharge port 4 toward the outside in the radial direction.
Eachimpeller 1 compresses the gas G supplied from the upstream flow path 105 formed in the casing 102 into the downstream flow path 105 in a stepwise manner using centrifugal force generated by the rotation of the rotary shaft 101. Shed.
各インペラ1は、回転軸101の回転による遠心力を利用してケーシング102に形成された上流側の流路105から供給されるガスGを下流側の流路105へと段階的に圧縮して流す。 As shown in FIG. 2, the
Each
図1に示すように、ケーシング102には、回転軸101の軸線Oの方向の前方側(F)に、外部からガスGを流入させるための吸込口106が形成されている。また、ケーシング102には、軸線Oの方向の後方側(R)に、外部へガスGを流出させるための排出口107が形成されている。
As shown in FIG. 1, the casing 102 is formed with a suction port 106 for allowing the gas G to flow in from the outside on the front side (F) in the direction of the axis O of the rotary shaft 101. Further, the casing 102 is formed with a discharge port 107 for allowing the gas G to flow out to the outside on the rear side (R) in the direction of the axis O.
遠心圧縮機100によれば、回転軸101が回転すると、吸込口106からガスGが流路105に流入して、このガスGがインペラ1によって段階的に圧縮されて排出口107から排出される。図1においては、回転軸101に6個のインペラ1が直列に設けられた一例を示しているが、回転軸101に対して少なくとも1個のインペラ1が設けられていればよい。なお、以下の説明では、説明を簡単化するため、回転軸101にインペラ1が1つだけ設けられている場合を一例にして説明する。
According to the centrifugal compressor 100, when the rotary shaft 101 rotates, the gas G flows into the flow path 105 from the suction port 106, and the gas G is compressed stepwise by the impeller 1 and discharged from the discharge port 107. . Although FIG. 1 shows an example in which six impellers 1 are provided in series on the rotating shaft 101, it is sufficient that at least one impeller 1 is provided on the rotating shaft 101. In the following description, in order to simplify the description, a case where only one impeller 1 is provided on the rotating shaft 101 will be described as an example.
[インペラ1の構成]
図2、図3に示すように、インペラ1は、ディスク部30と、ブレード部40と、カバー部50と、を備えている。
ディスク部30は、径方向の外側から嵌合されることで回転軸101に取り付けられている。ディスク部30は、図3に示すように、軸線Oに直交する接合層BLにより軸線Oの方向に二分割された第一ディスク部31と第二ディスク部35とを備えている。第一ディスク部31と第二ディスク部35とは、接合層BLで接合されている。 [Configuration of Impeller 1]
As shown in FIGS. 2 and 3, theimpeller 1 includes a disk unit 30, a blade unit 40, and a cover unit 50.
Thedisk part 30 is attached to the rotating shaft 101 by being fitted from the outside in the radial direction. As shown in FIG. 3, the disk unit 30 includes a first disk unit 31 and a second disk unit 35 that are divided into two in the direction of the axis O by a bonding layer BL orthogonal to the axis O. The first disk part 31 and the second disk part 35 are joined by a joining layer BL.
図2、図3に示すように、インペラ1は、ディスク部30と、ブレード部40と、カバー部50と、を備えている。
ディスク部30は、径方向の外側から嵌合されることで回転軸101に取り付けられている。ディスク部30は、図3に示すように、軸線Oに直交する接合層BLにより軸線Oの方向に二分割された第一ディスク部31と第二ディスク部35とを備えている。第一ディスク部31と第二ディスク部35とは、接合層BLで接合されている。 [Configuration of Impeller 1]
As shown in FIGS. 2 and 3, the
The
第一ディスク部31は、軸線Oを中心とした略円筒状をなしている。第一ディスク部31は、軸線Oの前方側(F)の前端部33の側に、回転軸101に締め代をもって嵌合されるグリップ部Aを備えている。ここで、グリップ部Aにおいて第一ディスク部31を回転軸101に締め代をもって嵌合させるには、冷やし嵌めや、焼き嵌めを適用できる。この実施形態におけるインペラ1は、グリップ部Aのみで回転軸101に固定されている。
第一ディスク部31は、軸線Oの後方側(R)に向かって漸次拡径する外周面34を備えている。この外周面34は、軸線Oを含む断面において、外側に向かって凹状の曲面となっている。
第一ディスク部31は、軸線Oの後方側(R)の後端面32が接着剤による接合層BLを介して第二ディスク部35に接合されている。 Thefirst disk portion 31 has a substantially cylindrical shape with the axis O as the center. The first disk portion 31 includes a grip portion A that is fitted to the rotating shaft 101 with a tightening margin on the front end portion 33 side on the front side (F) of the axis O. Here, in order to fit the first disk portion 31 to the rotating shaft 101 with the allowance in the grip portion A, cold fitting or shrink fitting can be applied. The impeller 1 in this embodiment is fixed to the rotating shaft 101 only by the grip portion A.
Thefirst disk portion 31 includes an outer peripheral surface 34 that gradually increases in diameter toward the rear side (R) of the axis O. This outer peripheral surface 34 is a concave curved surface toward the outside in a cross section including the axis O.
In thefirst disk portion 31, the rear end surface 32 on the rear side (R) of the axis O is bonded to the second disk portion 35 via a bonding layer BL made of an adhesive.
第一ディスク部31は、軸線Oの後方側(R)に向かって漸次拡径する外周面34を備えている。この外周面34は、軸線Oを含む断面において、外側に向かって凹状の曲面となっている。
第一ディスク部31は、軸線Oの後方側(R)の後端面32が接着剤による接合層BLを介して第二ディスク部35に接合されている。 The
The
In the
第二ディスク部35は、軸線Oの方向で前端部33の側とは反対側となる後端部36の側から径方向の外側に向かって延びる円盤状に形成されている。
第二ディスク部35は、その前端面37の内径側領域38が、第一ディスク部31の後端面32接合層BLを介して接合されている。これら後端面32と前端面37の内径側領域38とは、軸線Oに直交する接合層BLを構成している。 Thesecond disk portion 35 is formed in a disk shape extending from the rear end portion 36 side opposite to the front end portion 33 side in the direction of the axis O toward the radially outer side.
In thesecond disk portion 35, the inner diameter side region 38 of the front end surface 37 is bonded via the rear end surface 32 bonding layer BL of the first disk portion 31. The rear end face 32 and the inner diameter side region 38 of the front end face 37 constitute a bonding layer BL orthogonal to the axis O.
第二ディスク部35は、その前端面37の内径側領域38が、第一ディスク部31の後端面32接合層BLを介して接合されている。これら後端面32と前端面37の内径側領域38とは、軸線Oに直交する接合層BLを構成している。 The
In the
接合層BLには、エポキシ樹脂系接着剤、嫌気性強力封着剤などが適用される。なお、インペラ1は一例として200℃程度の温度にさらされるとすると、適用される接着剤は200℃における耐熱性を備えている必要がある。
For the bonding layer BL, an epoxy resin adhesive, an anaerobic strong sealant or the like is applied. If the impeller 1 is exposed to a temperature of about 200 ° C. as an example, the applied adhesive must have heat resistance at 200 ° C.
ブレード部40は、図2に示すように、ディスク部30の周方向に所定間隔をあけて複数配列されている。
ブレード部40は、図3に示すように、略一定の板厚で形成されてディスク部30の前端面37から軸線Oの方向の前方側(F)に向かって突出して形成されている。また、ブレード部40は、側面視で径方向の外側に向かってやや先細り形状とされている。 As shown in FIG. 2, a plurality ofblade parts 40 are arranged at predetermined intervals in the circumferential direction of the disk part 30.
As shown in FIG. 3, theblade portion 40 is formed with a substantially constant plate thickness and protrudes from the front end surface 37 of the disk portion 30 toward the front side (F) in the direction of the axis O. Further, the blade portion 40 has a slightly tapered shape toward the outside in the radial direction in a side view.
ブレード部40は、図3に示すように、略一定の板厚で形成されてディスク部30の前端面37から軸線Oの方向の前方側(F)に向かって突出して形成されている。また、ブレード部40は、側面視で径方向の外側に向かってやや先細り形状とされている。 As shown in FIG. 2, a plurality of
As shown in FIG. 3, the
図2に示すように、各ブレード部40は、軸線Oの方向から見て、ディスク部30の径方向の外側に向かうにつれてインペラ1の回転方向Rの後側に向かうように形成されている。また、各ブレード部40は、軸線Oの方向から見て回転方向Rの後側に向かって凹状に湾曲して形成されている。ここでは、ブレード部40が軸線Oの方向から見て湾曲して形成される一例について説明したが、ブレード部40は、径方向の外側ほど回転方向Rの後方側に延在されていればよい。例えばブレード部40は軸線Oの方向から見て直線的に形成されていてもよい。
As shown in FIG. 2, each blade portion 40 is formed so as to go to the rear side in the rotation direction R of the impeller 1 as it goes to the outer side in the radial direction of the disk portion 30 when viewed from the direction of the axis O. Each blade portion 40 is formed to be concavely curved toward the rear side in the rotational direction R when viewed from the direction of the axis O. Here, an example in which the blade portion 40 is formed to be curved as viewed from the direction of the axis O has been described. However, the blade portion 40 only needs to extend to the rear side in the rotational direction R toward the outer side in the radial direction. . For example, the blade portion 40 may be formed linearly when viewed from the direction of the axis O.
カバー部50は、図3に示すように、ディスク部30と対向して配置され、軸線Oの方向における前端部33の側からブレード部40を覆っている。
カバー部50は、軸線Oの方向における後端面52がブレード部40の前側縁41に一体的に形成されている。カバー部50の厚さ寸法は、ディスク部30の厚さ寸法と同様に、径方向の外側の厚さ寸法がやや薄い板状に形成されている。このカバー部50は、ブレード部40の内側端42の位置において軸線Oの方向における前側に向かって屈曲された屈曲部51を有している。 As shown in FIG. 3, thecover portion 50 is disposed to face the disk portion 30 and covers the blade portion 40 from the front end portion 33 side in the direction of the axis O.
Thecover portion 50 has a rear end surface 52 in the direction of the axis O formed integrally with the front edge 41 of the blade portion 40. The thickness dimension of the cover part 50 is formed in a plate shape in which the thickness dimension on the outer side in the radial direction is slightly thin, similarly to the thickness dimension of the disk part 30. The cover part 50 has a bent part 51 bent toward the front side in the direction of the axis O at the position of the inner end 42 of the blade part 40.
カバー部50は、軸線Oの方向における後端面52がブレード部40の前側縁41に一体的に形成されている。カバー部50の厚さ寸法は、ディスク部30の厚さ寸法と同様に、径方向の外側の厚さ寸法がやや薄い板状に形成されている。このカバー部50は、ブレード部40の内側端42の位置において軸線Oの方向における前側に向かって屈曲された屈曲部51を有している。 As shown in FIG. 3, the
The
以上のように構成されたインペラ1は、ブレード部40の径方向の内側に、接合層BLが配置されている。また、第一ディスク部31の前端部33は、屈曲部51の前端縁53よりも軸線Oの方向の前方側(F)に突出して配置されている。さらに、インペラ1は、第一ディスク部31の外周面34、第二ディスク部35の前端面37、ブレード部40の側面43、及び、カバー部50の後端面52によってガスGが流れる流路105が形成されている。
In the impeller 1 configured as described above, the bonding layer BL is disposed inside the blade portion 40 in the radial direction. Further, the front end portion 33 of the first disk portion 31 is disposed so as to protrude forward (F) in the direction of the axis O from the front end edge 53 of the bent portion 51. Further, the impeller 1 has a flow path 105 through which the gas G flows by the outer peripheral surface 34 of the first disk portion 31, the front end surface 37 of the second disk portion 35, the side surface 43 of the blade portion 40, and the rear end surface 52 of the cover portion 50. Is formed.
インペラ1は、第一セグメントSG1と第二セグメントSG2を備えている。第一セグメントSG1はディスク部30の軸線Oの一方側の部位である第一ディスク部31から構成される。また、第二セグメントSG2は、ディスク部30の軸線Oの他方側の部位である第二ディスク部35と、ブレード部40と、カバー部50と、から構成される。
The impeller 1 includes a first segment SG1 and a second segment SG2. The first segment SG1 is composed of a first disk portion 31 that is a portion on one side of the axis O of the disk portion 30. The second segment SG <b> 2 includes a second disk part 35, which is a part on the other side of the axis O of the disk part 30, a blade part 40, and a cover part 50.
第1実施形態のインペラ1において、第一セグメントSG1は、金属材料、例えば析出硬化型ステンレス鋼により構成されるが、第二セグメントSG2は繊維強化樹脂(Fiber Reinforced Plastics:FRP)から構成される。強化繊維としては、例えば炭素繊維やガラス繊維などが用いられ、特に炭素繊維を強化繊維とするCFRP(Carbon Fiber Reinforced Plastics)は、その他のFRPと比べて強度と弾性率が高く、かつ耐食性に優れる。
In the impeller 1 of the first embodiment, the first segment SG1 is made of a metal material, for example, precipitation hardening stainless steel, while the second segment SG2 is made of fiber reinforced resin (FRP). For example, carbon fiber or glass fiber is used as the reinforcing fiber. In particular, CFRP (Carbon Fiber Reinforced Plastics) using carbon fiber as a reinforcing fiber has higher strength and elastic modulus than other FRPs and is excellent in corrosion resistance. .
[インペラ1の製造方法]
次に、上述したインペラ1の製造方法について図4及び図5を参照しながら説明する。
まず、第一セグメントSG1を、鋳造や切削等により作製する(図4(a),図5 ステップS101)。
また、第二ディスク部35、ブレード部40及びカバー部50が一体となった第二セグメントSG2を作製する(図4(a),図5 ステップS103)。繊維強化樹脂からなる第二セグメントSG2は、射出成形により一体的に作製される。
なお、ここでは便宜上第一セグメントSG1、第二セグメントSG2の順で作製することにしているが、この作製順は逆であってもよい。 [Manufacturing method of impeller 1]
Next, the manufacturing method of theimpeller 1 mentioned above is demonstrated, referring FIG.4 and FIG.5.
First, the first segment SG1 is manufactured by casting, cutting, or the like (FIG. 4A, FIG. 5 Step S101).
Further, the second segment SG2 in which thesecond disk portion 35, the blade portion 40, and the cover portion 50 are integrated is produced (FIG. 4A, FIG. 5, step S103). The second segment SG2 made of fiber reinforced resin is integrally manufactured by injection molding.
Here, for convenience, the first segment SG1 and the second segment SG2 are manufactured in this order, but this manufacturing order may be reversed.
次に、上述したインペラ1の製造方法について図4及び図5を参照しながら説明する。
まず、第一セグメントSG1を、鋳造や切削等により作製する(図4(a),図5 ステップS101)。
また、第二ディスク部35、ブレード部40及びカバー部50が一体となった第二セグメントSG2を作製する(図4(a),図5 ステップS103)。繊維強化樹脂からなる第二セグメントSG2は、射出成形により一体的に作製される。
なお、ここでは便宜上第一セグメントSG1、第二セグメントSG2の順で作製することにしているが、この作製順は逆であってもよい。 [Manufacturing method of impeller 1]
Next, the manufacturing method of the
First, the first segment SG1 is manufactured by casting, cutting, or the like (FIG. 4A, FIG. 5 Step S101).
Further, the second segment SG2 in which the
Here, for convenience, the first segment SG1 and the second segment SG2 are manufactured in this order, but this manufacturing order may be reversed.
次に、第一セグメントSG1(第一ディスク部31)を回転軸101に嵌合しかつ固定する(図4(b),図5 ステップS105)。この嵌合は、焼嵌めにより行うことができる。焼嵌めは、第一セグメントSG1を加熱することで径方向に熱膨張させてから回転軸101に嵌合する。第一セグメントSG1が室温まで冷却されると、第一セグメントSG1と回転軸101は締め代をもって嵌合される。
Next, the first segment SG1 (first disk portion 31) is fitted and fixed to the rotating shaft 101 (FIG. 4B, FIG. 5, step S105). This fitting can be performed by shrink fitting. The shrink fitting is performed by thermally expanding the first segment SG1 in the radial direction and then fitting the rotary shaft 101. When the first segment SG1 is cooled to room temperature, the first segment SG1 and the rotary shaft 101 are fitted with a margin.
次に、回転軸101に嵌合された第一セグメントSG1(第一ディスク部31)の後端面32と、別途作製された第二セグメントSG2(第二ディスク部35)の前端面37(内径側領域38)と、に接着剤Bを塗布する(図4(b),図5 ステップS107)。なお、接着剤Bの塗布は、後端面32と前端面37の何れか一方であってもよい。
Next, the rear end surface 32 of the first segment SG1 (first disk portion 31) fitted to the rotary shaft 101 and the front end surface 37 (inner diameter side) of the second segment SG2 (second disk portion 35) separately manufactured. The adhesive B is applied to the region 38) (FIG. 4B, FIG. 5, step S107). Note that the adhesive B may be applied to either the rear end surface 32 or the front end surface 37.
後端面32と前端面37に接着剤Bを塗布した後に、第二セグメントSG2を回転軸101に嵌合してから、第一セグメントSG1の後端面32と前端面37が突き当たるまで押し込む。接着剤Bが硬化するまで、後端面32と前端面37の間に荷重を加えて保持すれば、第一セグメントSG1と第二セグメントSG2の接合が完了する(図4(c),図5 ステップS109)。
After applying the adhesive B to the rear end face 32 and the front end face 37, the second segment SG2 is fitted to the rotary shaft 101, and then pushed in until the rear end face 32 and the front end face 37 of the first segment SG1 abut. If the load is applied and held between the rear end face 32 and the front end face 37 until the adhesive B is cured, the joining of the first segment SG1 and the second segment SG2 is completed (FIG. 4 (c), FIG. 5 steps) S109).
[第1実施形態の効果]
インペラ1によれば、第一セグメントSG1と第二セグメントSG2を接着剤で接合するので、第二セグメントSG2に適用される材料の選択の幅が広がり、第二セグメントSG2を金属材料に比べて軽量な繊維強化樹脂で作製できる。したがって、全体を金属材料で作製するのに比べてインペラ1の軽量化が実現されるので、本実施形態によれば高効率な遠心圧縮機100が得られる。 [Effect of the first embodiment]
According to theimpeller 1, since the first segment SG1 and the second segment SG2 are joined with an adhesive, the range of selection of materials applied to the second segment SG2 is widened, and the second segment SG2 is lighter than a metal material. It can be made of any fiber reinforced resin. Therefore, since the weight of the impeller 1 can be reduced as compared with the case where the whole is made of a metal material, the highly efficient centrifugal compressor 100 can be obtained according to this embodiment.
インペラ1によれば、第一セグメントSG1と第二セグメントSG2を接着剤で接合するので、第二セグメントSG2に適用される材料の選択の幅が広がり、第二セグメントSG2を金属材料に比べて軽量な繊維強化樹脂で作製できる。したがって、全体を金属材料で作製するのに比べてインペラ1の軽量化が実現されるので、本実施形態によれば高効率な遠心圧縮機100が得られる。 [Effect of the first embodiment]
According to the
また、インペラ1は、第一セグメントSG1である第一ディスク部31が金属材料であるから、締め代をもって嵌合させる例えば焼き嵌めするだけで、必要な強度で回転軸101に嵌合できる。したがって、インペラ1によれば、例えばキー及びキー溝のような機械的な嵌合構造を設ける必要がないので、インペラ1の製造が容易である。
Further, since the first disk portion 31 that is the first segment SG1 is made of a metal material, the impeller 1 can be fitted to the rotary shaft 101 with a required strength simply by fitting it with a tightening margin, for example, by shrink fitting. Therefore, according to the impeller 1, since it is not necessary to provide a mechanical fitting structure such as a key and a key groove, the impeller 1 can be easily manufactured.
また、第一セグメントSG1と第二セグメントSG2の接着剤による接合層BLは、大気中において接着剤が塗布された後端面32と前端面37を貼り合わせてその状態を維持すればよい。したがって、第1実施形態によれば、ろう付けのように真空中で温度が制御された熱処理炉を用いるのに比べて、接合作業が容易である。
Further, the bonding layer BL made of the adhesive of the first segment SG1 and the second segment SG2 may be maintained by bonding the rear end face 32 and the front end face 37 coated with the adhesive in the atmosphere. Therefore, according to the first embodiment, the joining operation is easier than using a heat treatment furnace whose temperature is controlled in a vacuum like brazing.
また、ろう付けの場合、インペラを熱処理炉に投入してからろう付けが完了するまでの作業が複数日を要するのに比べて、接着剤で接合するには塗布から硬化まで1日で足りる。したがって、本実施形態によれば、インペラ1を短時間で製造できる。
Also, in the case of brazing, it takes one day from application to curing to join with an adhesive, compared to the time required for brazing to be completed after the impeller is put into the heat treatment furnace. Therefore, according to this embodiment, the impeller 1 can be manufactured in a short time.
また、接着剤による接合は、加熱を伴うことなく常温で作業を行うことができるので、インペラ1は熱が加わることによる変形が生じない。したがって、本実施形態によれば、形状及び寸法の精度が高いインペラ1を得ることができる。
加えて、接着剤による接合は大気中で行うことができるので、硬化する前であれば接合状態の微修正を行うことができるので、本実施形態によるインペラ1は、より形状及び寸法の精度が高い。 In addition, since bonding with an adhesive can be performed at room temperature without heating, theimpeller 1 is not deformed by the application of heat. Therefore, according to the present embodiment, it is possible to obtain the impeller 1 with high shape and dimensional accuracy.
In addition, since the bonding with the adhesive can be performed in the atmosphere, since the bonding state can be finely corrected before curing, theimpeller 1 according to the present embodiment has more accurate shape and dimensions. high.
加えて、接着剤による接合は大気中で行うことができるので、硬化する前であれば接合状態の微修正を行うことができるので、本実施形態によるインペラ1は、より形状及び寸法の精度が高い。 In addition, since bonding with an adhesive can be performed at room temperature without heating, the
In addition, since the bonding with the adhesive can be performed in the atmosphere, since the bonding state can be finely corrected before curing, the
[第2実施形態]
次に、本発明の第2実施形態について説明する。
第2実施形態に係るインペラ2は、第二セグメントSG2に加えて第一セグメントSG1を構成する第一ディスク部31も繊維強化樹脂から構成される点で第1実施形態のインペラ1と異なる。以下、図6を参照して、インペラ2をインペラ1との相違点を中心にして説明する。なお、インペラ1と同様の構成・要素については、図6にインペラ1と同じ符号を付している。 [Second Embodiment]
Next, a second embodiment of the present invention will be described.
Theimpeller 2 according to the second embodiment differs from the impeller 1 of the first embodiment in that the first disk portion 31 that constitutes the first segment SG1 in addition to the second segment SG2 is also composed of fiber reinforced resin. Hereinafter, the impeller 2 will be described with a focus on differences from the impeller 1 with reference to FIG. 6. The same components and elements as those of the impeller 1 are denoted by the same reference numerals as those of the impeller 1 in FIG.
次に、本発明の第2実施形態について説明する。
第2実施形態に係るインペラ2は、第二セグメントSG2に加えて第一セグメントSG1を構成する第一ディスク部31も繊維強化樹脂から構成される点で第1実施形態のインペラ1と異なる。以下、図6を参照して、インペラ2をインペラ1との相違点を中心にして説明する。なお、インペラ1と同様の構成・要素については、図6にインペラ1と同じ符号を付している。 [Second Embodiment]
Next, a second embodiment of the present invention will be described.
The
インペラ2は、繊維強化樹脂からなる第一ディスク部31が回転軸101に接着剤により固定される。接着剤による固定強度を補完するために、インペラ2は、回転軸101と第一ディスク部31のそれぞれにキー溝S1,S2を設けるとともに、キー溝S1,S2にキーKを挿入する。キー溝S1,S2及びキーKは、例えばグリップ部Aに相当する部位に設けることができる。キー溝S1,S2及びキーKが設けられる以外の回転軸101と第一ディスク部31の間は、接着剤Bにより接合される。
In the impeller 2, the first disk portion 31 made of fiber reinforced resin is fixed to the rotary shaft 101 with an adhesive. In order to supplement the fixing strength by the adhesive, the impeller 2 is provided with key grooves S1 and S2 in the rotary shaft 101 and the first disk portion 31, respectively, and a key K is inserted into the key grooves S1 and S2. The key grooves S1, S2 and the key K can be provided in a portion corresponding to the grip portion A, for example. The rotary shaft 101 and the first disk portion 31 other than the key grooves S1, S2 and the key K are joined by an adhesive B.
インペラ2は、第一ディスク部31がグリップ部Aの部分で回転軸101と接着剤により接合される。接着剤により回転軸101に固定された第一ディスク部31からなる第一セグメントSG1に、接合層BLを介して第二セグメントSG2を接合する。この接合は、第1実施形態のインペラ1と同様である。
In the impeller 2, the first disk portion 31 is joined to the rotary shaft 101 with an adhesive at the grip portion A portion. The second segment SG2 is joined to the first segment SG1 including the first disk portion 31 fixed to the rotating shaft 101 with an adhesive via the joining layer BL. This joining is the same as that of the impeller 1 of the first embodiment.
[インペラ2の製造方法]
次に、インペラ2の製造方法について図7及び図8を参照しながら説明する。
まず、第一セグメントSG1をなす第一ディスク部31を、繊維強化樹脂を用いて射出成形により作製する(図8 ステップS201)。ただし、第一ディスク部31の内周にキー溝S2を形成しておく。
また、第二ディスク部35、ブレード部40及びカバー部50が一体となった第二セグメントSG2を、繊維強化樹脂を用いて射出成形により一体的に作製する(図8 ステップS203)。 [Manufacturing method of impeller 2]
Next, a method for manufacturing theimpeller 2 will be described with reference to FIGS.
First, the1st disc part 31 which makes 1st segment SG1 is produced by injection molding using fiber reinforced resin (Drawing 8 Step S201). However, a key groove S2 is formed in the inner periphery of the first disk portion 31.
Further, the second segment SG2 in which thesecond disk portion 35, the blade portion 40 and the cover portion 50 are integrated is integrally manufactured by injection molding using a fiber reinforced resin (step S203 in FIG. 8).
次に、インペラ2の製造方法について図7及び図8を参照しながら説明する。
まず、第一セグメントSG1をなす第一ディスク部31を、繊維強化樹脂を用いて射出成形により作製する(図8 ステップS201)。ただし、第一ディスク部31の内周にキー溝S2を形成しておく。
また、第二ディスク部35、ブレード部40及びカバー部50が一体となった第二セグメントSG2を、繊維強化樹脂を用いて射出成形により一体的に作製する(図8 ステップS203)。 [Manufacturing method of impeller 2]
Next, a method for manufacturing the
First, the
Further, the second segment SG2 in which the
次に、第一セグメントSG1(第一ディスク部31)を回転軸101に嵌合する(図7(a),図8 ステップS205)。
回転軸101には予めキー溝S1が形成され、かつ、このキー溝S1にはキーKが挿入されている。また、グリップ部Aに対応する第一ディスク部31の外周面には接着剤Bが塗布されている。
第一セグメントSG1において、キーKにキー溝S2が挿入されるように回転軸101に嵌合される。キーKがキー溝S2の奥(図中の右側)に突き当たるまで押し込まれると、第一ディスク部31と回転軸101の嵌合作業が終わる。 Next, the first segment SG1 (first disk portion 31) is fitted to the rotating shaft 101 (FIG. 7A, step S205 in FIG. 8).
A key groove S1 is formed in advance on therotary shaft 101, and a key K is inserted into the key groove S1. An adhesive B is applied to the outer peripheral surface of the first disk portion 31 corresponding to the grip portion A.
In the first segment SG1, the key shaft S is fitted to therotary shaft 101 so that the key groove S2 is inserted into the key K. When the key K is pushed in until it hits the back of the keyway S2 (right side in the figure), the fitting operation of the first disk portion 31 and the rotary shaft 101 is completed.
回転軸101には予めキー溝S1が形成され、かつ、このキー溝S1にはキーKが挿入されている。また、グリップ部Aに対応する第一ディスク部31の外周面には接着剤Bが塗布されている。
第一セグメントSG1において、キーKにキー溝S2が挿入されるように回転軸101に嵌合される。キーKがキー溝S2の奥(図中の右側)に突き当たるまで押し込まれると、第一ディスク部31と回転軸101の嵌合作業が終わる。 Next, the first segment SG1 (first disk portion 31) is fitted to the rotating shaft 101 (FIG. 7A, step S205 in FIG. 8).
A key groove S1 is formed in advance on the
In the first segment SG1, the key shaft S is fitted to the
なお、キーKは回転軸101のキー溝S1に接着剤で予め固定することができる。
また、第一ディスク部31と回転軸101の接着剤による固定は、接合強度が許されるのであれば、キー溝S1,S2とキーKの部分だけで行うこともできる。 The key K can be fixed in advance to the key groove S1 of therotary shaft 101 with an adhesive.
Further, the fixing of thefirst disk portion 31 and the rotary shaft 101 with the adhesive can be performed only in the key grooves S1 and S2 and the key K portion as long as the bonding strength is allowed.
また、第一ディスク部31と回転軸101の接着剤による固定は、接合強度が許されるのであれば、キー溝S1,S2とキーKの部分だけで行うこともできる。 The key K can be fixed in advance to the key groove S1 of the
Further, the fixing of the
以降の第一セグメントSG1(第一ディスク部31)と第二セグメントSG2(第二ディスク部35)の接着剤による接合は、第1実施形態と同様である(図7(c),図8 ステップS207,ステップS209)。
Subsequent joining of the first segment SG1 (first disk portion 31) and the second segment SG2 (second disk portion 35) with the adhesive is the same as that in the first embodiment (FIG. 7C, FIG. 8 steps). S207, step S209).
[第2実施形態の効果]
第2実施形態によるインペラ2は、繊維強化樹脂からなる第一セグメントSG1(第一ディスク部31)を用いる。したがって、第2実施形態によれば、よりインペラ2の軽量化が実現されるので、高効率な遠心圧縮機100が得られる。 [Effects of Second Embodiment]
Theimpeller 2 according to the second embodiment uses a first segment SG1 (first disk portion 31) made of fiber reinforced resin. Therefore, according to 2nd Embodiment, since the weight reduction of the impeller 2 is implement | achieved more, the highly efficient centrifugal compressor 100 is obtained.
第2実施形態によるインペラ2は、繊維強化樹脂からなる第一セグメントSG1(第一ディスク部31)を用いる。したがって、第2実施形態によれば、よりインペラ2の軽量化が実現されるので、高効率な遠心圧縮機100が得られる。 [Effects of Second Embodiment]
The
また、第2実施形態は、第一セグメントSG1及び第二セグメントSG2を回転軸101に接合するのに加熱する必要がないので、第1実施形態に比べて接合作業が容易である。
In the second embodiment, since it is not necessary to heat the first segment SG1 and the second segment SG2 to join the rotating shaft 101, the joining operation is easier than in the first embodiment.
また、第一ディスク部31を回転軸101に例えば焼き嵌めするのに比べて、接着剤を介して第一ディスク部31と回転軸101を接合するのに要する時間が短くて済む。したがって、第2実施形態によれば、インペラ2を第1実施形態よりも短時間で製造できる。
Further, compared to, for example, shrink fitting the first disk portion 31 to the rotating shaft 101, the time required for joining the first disk portion 31 and the rotating shaft 101 via the adhesive can be shortened. Therefore, according to the second embodiment, the impeller 2 can be manufactured in a shorter time than the first embodiment.
以上、本発明の好ましい実施形態を説明したが、上記以外にも、本発明の主旨を逸脱しない限り、上記実施形態で挙げた構成を取捨選択したり、他の構成に適宜変更したりすることが可能である。
The preferred embodiments of the present invention have been described above. In addition to the above, the configurations described in the above embodiments may be selected or changed to other configurations as appropriate without departing from the spirit of the present invention. Is possible.
第1実施形態及び第2実施形態は、第一セグメントSG1及び第二セグメントSG2の少なくとも一方を繊維強化樹脂で作製した。ところが本発明はこれに限定されず、第一セグメントSG1及び第二セグメントSG2の両方を金属材料で作製することもできる。つまり、本発明は、第一セグメントSG1を金属材料又は繊維強化樹脂から構成し、第二セグメントSG2を金属材料又は繊維強化樹脂から構成する選択肢を有する。
In the first embodiment and the second embodiment, at least one of the first segment SG1 and the second segment SG2 was made of fiber reinforced resin. However, the present invention is not limited to this, and both the first segment SG1 and the second segment SG2 can be made of a metal material. That is, the present invention has the option of configuring the first segment SG1 from a metal material or fiber reinforced resin and configuring the second segment SG2 from a metal material or fiber reinforced resin.
本発明は、第一セグメントSG1と第二セグメントSG2の接合層BLを介する接合の強度を高めるための手段を適用できる。
例えば、第一セグメントSG1、第二セグメントSG2が鉄系の金属材料の場合には、接着剤が塗布される後端面32、前端面37にリン酸塩処理を施すことができる。リン酸塩処理により金属表面にリン酸亜鉛などの金属塩のミクロンオーダーの薄い皮膜が形成されるが、この被膜が柱状の形態を有するために表面が粗化し、これにより接着剤の接合強度が増す。
リン酸塩処理としては、リン酸亜鉛処理、リン酸カルシウム処理及びリン酸鉄処理が知られているが、常温でも処理できるリン酸亜鉛処理が好ましい。 The present invention can be applied to a means for increasing the strength of the bonding through the bonding layer BL of the first segment SG1 and the second segment SG2.
For example, when the first segment SG1 and the second segment SG2 are iron-based metal materials, therear end surface 32 and the front end surface 37 to which the adhesive is applied can be subjected to phosphate treatment. Phosphate treatment forms a thin micron-order film of a metal salt such as zinc phosphate on the metal surface, but this film has a columnar form, which roughens the surface, thereby increasing the bonding strength of the adhesive. Increase.
As the phosphate treatment, zinc phosphate treatment, calcium phosphate treatment and iron phosphate treatment are known, but zinc phosphate treatment which can be treated even at room temperature is preferred.
例えば、第一セグメントSG1、第二セグメントSG2が鉄系の金属材料の場合には、接着剤が塗布される後端面32、前端面37にリン酸塩処理を施すことができる。リン酸塩処理により金属表面にリン酸亜鉛などの金属塩のミクロンオーダーの薄い皮膜が形成されるが、この被膜が柱状の形態を有するために表面が粗化し、これにより接着剤の接合強度が増す。
リン酸塩処理としては、リン酸亜鉛処理、リン酸カルシウム処理及びリン酸鉄処理が知られているが、常温でも処理できるリン酸亜鉛処理が好ましい。 The present invention can be applied to a means for increasing the strength of the bonding through the bonding layer BL of the first segment SG1 and the second segment SG2.
For example, when the first segment SG1 and the second segment SG2 are iron-based metal materials, the
As the phosphate treatment, zinc phosphate treatment, calcium phosphate treatment and iron phosphate treatment are known, but zinc phosphate treatment which can be treated even at room temperature is preferred.
また、第一セグメントSG1の第一ディスク部31と第二セグメントSG2の第二ディスク部35の接合強度を高めるために、第一ディスク部31と第二ディスク部35の間に、機械的な嵌合の構造を設けることもできる。
この嵌合構造39は、例えば、図9(a),(b)に示すように、第一ディスク部31の後端面32に設けられる凹部39Aと第二ディスク部35の前端面37に設けられる凸部39Bとから構成される。凸部39Bは凹部39Aに挿入されることで、嵌合構造39を構成する。
嵌合構造39は、第一ディスク部31及び第二ディスク部35の周方向に90°の間隔を隔てて四カ所に設けられる。 Further, in order to increase the bonding strength between thefirst disk part 31 of the first segment SG1 and the second disk part 35 of the second segment SG2, a mechanical fit is provided between the first disk part 31 and the second disk part 35. A combined structure can also be provided.
For example, as shown in FIGS. 9A and 9B, thefitting structure 39 is provided on the recess 39 </ b> A provided on the rear end surface 32 of the first disk portion 31 and the front end surface 37 of the second disk portion 35. It is comprised from the convex part 39B. The convex portion 39B is inserted into the concave portion 39A to constitute the fitting structure 39.
Thefitting structures 39 are provided at four locations at intervals of 90 ° in the circumferential direction of the first disk portion 31 and the second disk portion 35.
この嵌合構造39は、例えば、図9(a),(b)に示すように、第一ディスク部31の後端面32に設けられる凹部39Aと第二ディスク部35の前端面37に設けられる凸部39Bとから構成される。凸部39Bは凹部39Aに挿入されることで、嵌合構造39を構成する。
嵌合構造39は、第一ディスク部31及び第二ディスク部35の周方向に90°の間隔を隔てて四カ所に設けられる。 Further, in order to increase the bonding strength between the
For example, as shown in FIGS. 9A and 9B, the
The
また、本実施形態のインペラ1,2は、第一ディスク部31と第二ディスク部35の境界面が軸線Oに直交する方向に沿っているが、本発明はこれに限らず、当該境界面が軸線Oに対して傾いていてもよい。
In the impellers 1 and 2 of the present embodiment, the boundary surface between the first disk portion 31 and the second disk portion 35 is along the direction orthogonal to the axis O, but the present invention is not limited to this, and the boundary surface May be inclined with respect to the axis O.
1,2 インペラ
3 吸込口
4 排出口
30 ディスク部
31 第一ディスク部
32 後端面
33 前端部
34 外周面
35 第二ディスク部
36 後端部
37 前端面
38 内径側領域
39 嵌合構造
39A 凹部
39B 凸部
40 ブレード部
41 前側縁
42 内側端
43 側面
50 カバー部
51 屈曲部
52 後端面
53 前端縁
100 遠心圧縮機
101 回転軸
102 ケーシング
103 ジャーナル軸受
104 スラスト軸受
105 流路
106 吸込口
107 排出口
A グリップ部
B 接着剤
BL 接合層
K キー
S1,S2 キー溝
SG1 第一セグメント
SG2 第二セグメント
O 軸線
R 回転方向
G ガス 1, 2Impeller 3 Suction port 4 Discharge port 30 Disc portion 31 First disc portion 32 Rear end surface 33 Front end portion 34 Outer peripheral surface 35 Second disc portion 36 Rear end portion 37 Front end surface 38 Inner diameter side region 39 Fitting structure 39A Recessed portion 39B Convex portion 40 Blade portion 41 Front edge 42 Inner end 43 Side surface 50 Cover portion 51 Bending portion 52 Rear end surface 53 Front end edge 100 Centrifugal compressor 101 Rotating shaft 102 Casing 103 Journal bearing 104 Thrust bearing 105 Channel 106 Suction port 107 Suction port 107 Discharge port A Grip part B Adhesive BL Bonding layer K Key S1, S2 Key groove SG1 First segment SG2 Second segment O Axis R Rotation direction G Gas
3 吸込口
4 排出口
30 ディスク部
31 第一ディスク部
32 後端面
33 前端部
34 外周面
35 第二ディスク部
36 後端部
37 前端面
38 内径側領域
39 嵌合構造
39A 凹部
39B 凸部
40 ブレード部
41 前側縁
42 内側端
43 側面
50 カバー部
51 屈曲部
52 後端面
53 前端縁
100 遠心圧縮機
101 回転軸
102 ケーシング
103 ジャーナル軸受
104 スラスト軸受
105 流路
106 吸込口
107 排出口
A グリップ部
B 接着剤
BL 接合層
K キー
S1,S2 キー溝
SG1 第一セグメント
SG2 第二セグメント
O 軸線
R 回転方向
G ガス 1, 2
Claims (11)
- 軸線の回りに回転する回転軸に固定されるディスク部と、
前記ディスク部に対向配置されるカバー部と、
前記ディスク部と前記カバー部との間に設けられる複数のブレード部と、を備えるインペラであって、
前記ディスク部の前記軸線の一方側の部位である第一ディスク部から構成される第一セグメントと、
前記ディスク部の前記軸線の他方側の部位である第二ディスク部と、前記カバー部と、前記ブレード部が一体的に構成される第二セグメントと、
前記第一セグメントの前記第一ディスク部と前記第二セグメントの第二ディスク部を接着剤により接合する接合層と、
を備えることを特徴とするインペラ。 A disk portion fixed to a rotating shaft that rotates about an axis;
A cover portion disposed opposite to the disk portion;
A plurality of blade portions provided between the disk portion and the cover portion, and an impeller comprising:
A first segment composed of a first disk part which is a part on one side of the axis of the disk part;
A second disk part which is a part on the other side of the axis of the disk part, the cover part, and a second segment in which the blade part is integrally formed;
A bonding layer for bonding the first disk portion of the first segment and the second disk portion of the second segment with an adhesive;
An impeller characterized by comprising: - 前記第一セグメントが、金属材料又は繊維強化樹脂からなり、
前記第二セグメントが、金属材料又は繊維強化樹脂からなる、
請求項1に記載のインペラ。 The first segment is made of a metal material or a fiber reinforced resin,
The second segment is made of a metal material or fiber reinforced resin,
The impeller according to claim 1. - 前記第一セグメントが金属材料からなり、前記第二セグメントが繊維強化樹脂からなる、
請求項1に記載のインペラ。 The first segment is made of a metal material, and the second segment is made of a fiber reinforced resin.
The impeller according to claim 1. - 前記第一セグメント、及び、前記第二セグメントの両方が繊維強化樹脂からなる、
請求項1に記載のインペラ。 Both the first segment and the second segment are made of fiber reinforced resin.
The impeller according to claim 1. - 前記第一セグメント、及び、前記第二セグメントの両方が金属材料からなる、
請求項1に記載のインペラ。 Both the first segment and the second segment are made of a metal material,
The impeller according to claim 1. - 前記第一セグメントの前記第一ディスク部を介して前記回転軸に固定される、
請求項1~請求項5のいずれか一項に記載のインペラ。 Fixed to the rotating shaft via the first disk portion of the first segment;
The impeller according to any one of claims 1 to 5. - 前記第一セグメントは、金属材料からなり、前記回転軸に締め代を有して嵌合される、請求項6に記載のインペラ。 The impeller according to claim 6, wherein the first segment is made of a metal material and is fitted to the rotating shaft with an allowance.
- 前記第一セグメントは、繊維強化樹脂からなり、接着剤を介して前記回転軸に嵌合される、
請求項6に記載のインペラ。 The first segment is made of a fiber reinforced resin and is fitted to the rotating shaft via an adhesive.
The impeller according to claim 6. - 金属材料からなる前記第一セグメント及び前記第二セグメントの、前記接合層が設けられる面に金属塩からなる被膜が設けられる、
請求項1~請求項8のいずれか一項に記載のインペラ。 A coating made of a metal salt is provided on the surface of the first segment made of a metal material and the second segment on which the bonding layer is provided,
The impeller according to any one of claims 1 to 8. - 前記第一セグメントの前記第一ディスク部と前記第二セグメントの前記第二ディスク部の間に機械的な嵌合構造が設けられる、
請求項1~請求項9のいずれか一項に記載のインペラ。 A mechanical fitting structure is provided between the first disk portion of the first segment and the second disk portion of the second segment;
The impeller according to any one of claims 1 to 9. - 請求項1~請求項10のいずれか一項に記載のインペラを備えることを特徴とする回転機械。 A rotary machine comprising the impeller according to any one of claims 1 to 10.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/491,325 US20200032810A1 (en) | 2017-03-27 | 2018-03-26 | Impeller and rotary machine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017060409A JP2018162720A (en) | 2017-03-27 | 2017-03-27 | Blower impeller, and rotary machine |
JP2017-060409 | 2017-03-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018181084A1 true WO2018181084A1 (en) | 2018-10-04 |
Family
ID=63675706
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/011963 WO2018181084A1 (en) | 2017-03-27 | 2018-03-26 | Impeller and rotation machine |
Country Status (3)
Country | Link |
---|---|
US (1) | US20200032810A1 (en) |
JP (1) | JP2018162720A (en) |
WO (1) | WO2018181084A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7588975B2 (en) * | 2020-06-30 | 2024-11-25 | 三菱重工コンプレッサ株式会社 | Rotary machine impeller and rotary machine |
US11982208B2 (en) | 2022-10-07 | 2024-05-14 | Hamilton Sundstrand Corporation | Two-piece impeller made of multiple materials |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62101007U (en) * | 1985-12-18 | 1987-06-27 | ||
JPH11351192A (en) * | 1998-06-12 | 1999-12-21 | Matsushita Electric Ind Co Ltd | Motor-driven blower |
US20080206520A1 (en) * | 2007-02-07 | 2008-08-28 | Nissan Motor Co., Ltd. | Surface-modified metal member and method of modifying metal surface |
US20130272895A1 (en) * | 2011-02-24 | 2013-10-17 | Akihiro Nakaniwa | Impeller, rotor comprising same, and impeller manufacturing method |
US20140341715A1 (en) * | 2011-12-14 | 2014-11-20 | Nuovo Pignone S.P.A. | Rotary machine including a machine rotor with a composite impeller portion and a metal shaft portion |
-
2017
- 2017-03-27 JP JP2017060409A patent/JP2018162720A/en active Pending
-
2018
- 2018-03-26 WO PCT/JP2018/011963 patent/WO2018181084A1/en active Application Filing
- 2018-03-26 US US16/491,325 patent/US20200032810A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62101007U (en) * | 1985-12-18 | 1987-06-27 | ||
JPH11351192A (en) * | 1998-06-12 | 1999-12-21 | Matsushita Electric Ind Co Ltd | Motor-driven blower |
US20080206520A1 (en) * | 2007-02-07 | 2008-08-28 | Nissan Motor Co., Ltd. | Surface-modified metal member and method of modifying metal surface |
US20130272895A1 (en) * | 2011-02-24 | 2013-10-17 | Akihiro Nakaniwa | Impeller, rotor comprising same, and impeller manufacturing method |
US20140341715A1 (en) * | 2011-12-14 | 2014-11-20 | Nuovo Pignone S.P.A. | Rotary machine including a machine rotor with a composite impeller portion and a metal shaft portion |
Also Published As
Publication number | Publication date |
---|---|
US20200032810A1 (en) | 2020-01-30 |
JP2018162720A (en) | 2018-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20180202451A1 (en) | Centrifugal compressor | |
US5632601A (en) | Compressor | |
US9347460B2 (en) | Rotary machine | |
US6854960B2 (en) | Segmented composite impeller/propeller arrangement and manufacturing method | |
US5800128A (en) | Fan with individual flow segments connected to a hub with a prefabricated thermoplastic strip | |
WO2018181084A1 (en) | Impeller and rotation machine | |
JP5767636B2 (en) | Vacuum pump | |
WO2020209051A1 (en) | Motor rotor | |
JP2013133735A (en) | Impeller and rotary machine with the same | |
JP6327505B2 (en) | Impeller and rotating machine | |
JP6017278B2 (en) | High-speed rotor for vacuum pump | |
US10156240B2 (en) | Motor-driven fan with trapped adhesive for minimizing vibration | |
JP2006046074A (en) | Vacuum pump | |
JP6789165B2 (en) | Impeller manufacturing method | |
JP2002031080A (en) | Cross-flow fan | |
JP6752945B2 (en) | How to assemble the rotor, vacuum pump, and vacuum pump | |
WO2013191195A1 (en) | Vane linking portion structure, and jet engine using same | |
WO2019107269A1 (en) | Centrifugal fan and air conditioning indoor unit having centrifugal fan | |
JP2024086911A (en) | Impeller and centrifugal compressor | |
JP2015165135A (en) | Stator disc | |
JPH0849559A (en) | Resin wing component and its manufacturing method as well as its repair method | |
JP2004092609A (en) | Gas turbine and spacer member used therefor | |
JP2019127871A (en) | Compressor housing | |
JP2015206346A (en) | vacuum pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18775090 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18775090 Country of ref document: EP Kind code of ref document: A1 |