+

WO2018180726A1 - 水酸化ナトリウム及び/又は塩素の製造方法、並びに2室法型食塩水電解槽 - Google Patents

水酸化ナトリウム及び/又は塩素の製造方法、並びに2室法型食塩水電解槽 Download PDF

Info

Publication number
WO2018180726A1
WO2018180726A1 PCT/JP2018/010870 JP2018010870W WO2018180726A1 WO 2018180726 A1 WO2018180726 A1 WO 2018180726A1 JP 2018010870 W JP2018010870 W JP 2018010870W WO 2018180726 A1 WO2018180726 A1 WO 2018180726A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
cathode
anode
cathode chamber
humidification
Prior art date
Application number
PCT/JP2018/010870
Other languages
English (en)
French (fr)
Inventor
忠義 白川
智典 井筒
刑部 次功
大助 廣田
Original Assignee
株式会社カネカ
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ, 東亞合成株式会社 filed Critical 株式会社カネカ
Priority to EP18776655.5A priority Critical patent/EP3608444B1/en
Priority to CN201880022309.7A priority patent/CN110520555B/zh
Priority to JP2019509359A priority patent/JP7061997B2/ja
Publication of WO2018180726A1 publication Critical patent/WO2018180726A1/ja
Priority to US16/587,369 priority patent/US20200024758A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded

Definitions

  • the present invention relates to a method for producing sodium hydroxide and / or chlorine, and a two-chamber saline electrolyzer.
  • Patent Document 2 also discloses supplying a moist oxygen-containing gas to the cathode compartment. Specifically, the oxygen-containing gas is provided by bubbling oxygen into water heated to 80 ° C. It is described that a gas is prepared and introduced into the cathode compartment.
  • Patent Documents 1 and 2 require energy for heating water to 80 ° C. or 90 ° C. Furthermore, in Patent Document 1, when the temperature of the electrolytic cell becomes too high, the anolyte is circulated through an external heat exchanger, and the temperature of the anolyte is lowered using cooling water or the like, and cooling water is prepared. Energy is also needed.
  • the present invention provides an oxygen cathode method in which the water is efficiently supplied by supplying moisture to the cathode chamber and suppressing overheating of the electrolytic cell without requiring extra energy other than that required for the electrolytic reaction.
  • An object is to provide a method capable of producing sodium oxide and / or chlorine.
  • a two-chamber saline electrolyzer having at least one unit cell having an anode chamber with an anode and a cathode chamber with a gas diffusion cathode sandwiched between ion exchange membranes is used in the anode chamber.
  • the unit cell further includes a humidification chamber that generates a humidified oxygen-containing gas to be supplied to the cathode chamber,
  • the humidifying chamber is adjacent to the anode chamber or cathode chamber in the unit cell or the anode chamber or cathode chamber of an adjacent unit cell so that heat can be exchanged, and water vapor is generated by heat from the anode chamber or cathode chamber.
  • the humidification chamber is adjacent to the cathode chamber, and the humidified oxygen-containing gas generated in the humidification chamber is removed from the humidification chamber through the opening provided in the partition between the humidification chamber and the cathode chamber.
  • a two-chamber type saline electrolyzer having one or more unit cells each having an anode chamber and a cathode chamber with an ion exchange membrane interposed therebetween,
  • the anode chamber has a built-in anode and is provided with a raw material salt water supply port and an electrolyzed salt water discharge port and a chlorine discharge port, and
  • the cathode chamber has a gas diffusion cathode and is a humidified oxygen-containing gas.
  • the unit cell further includes a humidification chamber that generates an oxygen-containing gas to be supplied to the cathode chamber,
  • the humidifying chamber is adjacent to the anode chamber or the cathode chamber in the unit cell, or to the anode chamber or the cathode chamber of an adjacent unit cell so that heat exchange is possible, and is provided with an oxygen-containing gas supply port.
  • Legal saline electrolyzer
  • the humidification chamber is adjacent to the anode chamber or the cathode chamber so that heat exchange is possible, the oxygen-containing gas can be humidified using the heat of the anode chamber or the cathode chamber, and the electrolytic cell is overheated. Can be prevented.
  • FIG. 1 is a schematic cross-sectional view showing an example of a unit cell.
  • FIG. 2 is a schematic cross-sectional view showing an example of the shape of the opening for supplying the humidified oxygen-containing gas.
  • FIG. 3 is a schematic cross-sectional view illustrating an example of a unit cell including a connection pipe that supplies a humidified oxygen-containing gas.
  • FIG. 4 is a schematic cross-sectional view showing an example of a monopolar electrolytic cell.
  • FIG. 5 is a schematic cross-sectional view showing an example of a bipolar electrolytic cell.
  • FIG. 1 is a diagram showing an example of a unit cell in the electrolytic cell of the present invention.
  • the unit cell 1 has an anode chamber 3 and a cathode chamber 4 with an ion exchange membrane 2 interposed therebetween.
  • This anode chamber 3 is provided with an anode 3a in close contact with the side of the anode chamber of the ion exchange membrane 2, and the anode chamber 3 is provided with a supply port 3b for the raw material saline solution at the lower part thereof. And a chlorine discharge port 3c at the top thereof.
  • the cathode chamber 4 includes a liquid holding layer 4b in close contact with the side of the cathode chamber of the ion exchange membrane 2, a gas diffusion cathode 4a, and a gas diffusion cathode support 4c and a cushioning material 4d as necessary. .
  • the unit cell 1 of the present invention includes a humidification chamber 5 separated from the cathode chamber 4 by a partition wall 6, and the humidification chamber 5 can exchange heat with the cathode chamber 4.
  • the partition wall 6 in the illustrated example has a planar shape as shown in FIG. 2A, and the upper portion of the partition wall 6 has an opening 7 throughout. For this reason, the humidified oxygen-containing gas can be supplied from the humidification chamber 5 to the cathode chamber 4.
  • the cathode chamber 4 is also provided with a pressure equalizing line 4e for making the water surface height of the humidifying chamber constant.
  • the pressure equalizing line 4e is not essential if the same function can be performed by other means.
  • the water in the humidification chamber may or may not be circulated to the outside.
  • a line for passing water from the outside to the humidification chamber and discharging hot water can be separately provided (not shown).
  • the flow rate and temperature of the water can be set as appropriate so that the temperature of the water in the humidification chamber satisfies a predetermined condition (for example, 80 ° C. or higher). Even if the water is passed through, it is preferable from the viewpoint of energy efficiency that the temperature is set to a predetermined temperature using only the heat of the electrolytic reaction.
  • raw material saline is supplied to the anode chamber 3 from the raw salt water supply port 3b, and oxygen-containing gas is bubbled from the oxygen-containing gas supply port 5a into the water stored in the humidifying chamber 5,
  • oxygen-containing gas oxygen concentration is, for example, 90% or more, preferably 93% or more
  • chlorine is generated in the anode 3a.
  • Sodium hydroxide is formed in 4a.
  • the electrolytic reaction of the saline solution proceeds and the heat generated at the cathode is transmitted to the humidification chamber 5 so that the temperature of the water stored in the humidification chamber 5 can be raised, and the vaporization of the water in the humidification chamber is promoted.
  • the oxygen-containing gas is subsequently supplied to the humidification chamber 5 by bubbling or the like, an oxygen-containing gas containing an amount of water vapor approximately equal to the amount saturated at the temperature of the water in the humidification chamber can be generated. Therefore, the humidification efficiency of the oxygen-containing gas can be increased without using extra external energy other than the energy required for the electrolytic reaction.
  • oxygen-containing gas containing high-concentration water vapor is supplied to each unit cell from a humidifier provided outside the electrolytic cell as disclosed in Patent Document 1, moisture is supplied through a pipe in the middle of supply.
  • the degree of moisture condensation may vary from unit cell to unit cell, and the water supply amount varies from unit cell to unit cell.
  • each unit cell has a humidifying chamber, a sufficient amount of water can be supplied to each unit cell without variation.
  • the heat of the cathode chamber to the humidification chamber, it is possible to prevent overheating of the unit cell, that is, overheating of the electrolytic cell, without requiring extra energy for cooling.
  • the humidification chamber 5 is adjacent to the cathode chamber 4 in the unit cell 1, but may be adjacent to the anode chamber 3 in the unit cell 1 (in this way, the humidification chamber 5).
  • the unit cell having the respective chambers in the order of the anode chamber 3 and the cathode chamber 4 is hereinafter referred to as a B-type unit cell, and the unit cell having the respective chambers in the order of the anode chamber 3, the cathode chamber 4 and the humidifying chamber 5 Hereinafter referred to as A-type unit cell).
  • the humidification chamber 5 can be heated by using the heat to increase the steam generation efficiency. It is. As will be described later, a plurality of B-type unit cells may be used side by side. In such a case, the humidifying chamber 5 may be adjacent to the cathode chamber 4 of the adjacent unit cell. In that case, the steam generation efficiency in the humidification chamber 5 can be increased by the exothermic reaction in the cathode chamber 4 of the adjacent unit cell.
  • the sodium hydroxide produced in the cathode chamber 4 is a sodium hydroxide aqueous solution having a concentration of about 32.0 to 34.0% due to electroosmotic water from the anode chamber 3 and moisture in the oxygen-containing gas sent to the cathode chamber. Thus, it flows under the cathode chamber under its own weight and is discharged together with the exhaust gas of the oxygen-containing gas from the electrolysis reaction product discharge port 4g.
  • the concentration of the sodium hydroxide aqueous solution does not become too high, and damage to the gas diffusion cathode 4a and the ion exchange membrane 2 can be prevented. .
  • the partition 6 in the unit cell 1 may have various shapes of openings 7 as long as the oxygen-containing gas humidified from the humidification chamber 5 to the cathode chamber 4 can flow through the upper part of the partition 6. .
  • a plurality of openings may be provided in the upper part of the partition wall 6.
  • the opening provided in the upper part of the partition wall 6 may extend over the entire upper surface of the partition wall 6 as shown in FIG. 2A, or may be a part of the upper surface as shown in FIG. Good.
  • the number of openings is not particularly limited, and may be one or plural, and the shape of the openings is not particularly limited.
  • the partition wall 6 may not have the opening 7 as long as the humidified oxygen-containing gas can be circulated from the humidifying chamber 5 to the cathode chamber 4.
  • a humidified oxygen-containing gas may be supplied to the cathode chamber 4 through an external flow path such as the communication pipe 8.
  • the unit cell 1 in FIG. 3 is the same as the unit cell shown in FIG. 1 except that it has a connecting pipe 8 instead of the opening 7 in FIG.
  • the humidified oxygen-containing gas is supplied from the humidifying chamber 5 to the cathode chamber 4 by connecting the humidifying chamber 5 and the cathode chamber 4 with the connecting pipe 8 as described above. This is possible.
  • an opening 7 is formed between the humidifying chamber 5 and the cathode chamber 4 of the adjacent unit cell, or connected by a connecting pipe 8 so as to be adjacent to the humidifying chamber 5.
  • the oxygen-containing gas may be supplied to the cathode chamber 4 of the unit cell.
  • the anode 3a is not particularly limited as long as it is an insoluble anode used for brine electrolysis.
  • An expanded metal composed of a metal such as titanium, or a base having a mesh structure such as fine mesh coated with a metal oxide including a ruthenium oxide, titanium oxide, iridium oxide, or platinum group metal oxide. Can be used.
  • the ion exchange membrane 2 is not particularly limited as long as it can be used for saline electrolysis, and examples thereof include a perfluorocarbon type cation exchange membrane having carboxylic acid and / or sulfonic acid as an ion exchange group.
  • the gas diffusion cathode 4a is not particularly limited as long as it is used for saline electrolysis by the oxygen cathode method.
  • a metal mesh material, carbon cloth and / or hydrophobic resin is used as a base material
  • a reaction layer on which a hydrophilic catalyst is supported can be used on one surface
  • a sheet-like electrode having a three-layer structure in which a water-repellent gas diffusion layer is bonded to the other surface can be used.
  • the catalyst include silver, platinum, gold, metal oxide, and carbon.
  • the gas diffusion cathode may be permeable to liquid or may not be permeable to liquid.
  • the cathode chamber 4 no current can flow unless there is a liquid between the ion exchange membrane 2 and the gas diffusion cathode 4 a. If the ion exchange membrane 2 and the gas diffusion cathode 4a are in close contact with each other, it is possible to hold the liquid between them by capillarity, but in order to hold the liquid more reliably, the ion exchange membrane 2 and the gas diffusion cathode It is preferable that the liquid holding layer 4b exists between 4a.
  • the liquid holding layer 4b can uniformly hold a liquid such as an aqueous sodium hydroxide solution between the ion exchange membrane 2 and the gas diffusion cathode 4a, and can prevent an increase in current density and an increase in voltage.
  • the liquid holding layer is required to have hydrophilicity and corrosion resistance because it needs to hold a sodium hydroxide aqueous solution (concentration is about 30% and temperature is about 80 to 90 ° C.) generated by an electrolytic reaction. Therefore, a porous structure made of a carbon material such as carbon fiber or a resin is preferably used.
  • the advantage of the two-chamber method is that the anode, the ion exchange membrane and the cathode are in contact with each other, and the electric resistance between the electrodes is small, so that the electrolysis voltage can be reduced.
  • the cushion material 4d is accommodated in a compressed state to generate a reaction force on the cushion material, and the reaction force is used to make the gas diffusion cathode 4a. It is preferable to adhere to the ion exchange membrane 2.
  • a liquid pressure due to a saline solution acts on the anode chamber with the ion exchange membrane as a boundary, and a gas pressure acts on the cathode chamber.
  • the reaction force of the cushion material is designed according to the differential pressure between the fluid pressure and the gas pressure, but the fluid pressure increases as the depth of the saline solution increases. By making it larger, it is possible to equalize the pressure applied to the ion exchange membrane and the anode.
  • a cushioning material 4d it is possible to use a coil material or a woven mat material.
  • the coil has elasticity in the diametrical direction, and a reaction force is generated in this direction. Therefore, the coil axis can be used in parallel with the back plate of the cathode gas chamber, and the coil diameter, coil system, and laying density can be reduced. By adjusting, the reaction force of the cushion material may be made larger in the lower part than in the upper part.
  • the woven mat material can be a demister mesh woven knitted metal wire, and the cushion material can be adjusted by adjusting the wire diameter, the number of wires to be bundled, and the number of mat layers laminated. It is sufficient to make the reaction force of the lower part larger than the upper part.
  • a gas diffusion cathode support 4c can be interposed between the cushion material 4d and the gas diffusion cathode 4a as necessary.
  • the gas diffusion cathode support 4c can receive the reaction force of the cushion material 4d, make it uniform, and transmit it to the gas diffusion cathode 4a, the liquid holding layer 4b, and the ion exchange membrane 2.
  • a mesh material such as a wire mesh may be used as the gas diffusion cathode support 4c.
  • both the cushioning material 4d and the gas diffusion cathode support 4c are accommodated in the cathode chamber, and the cathode chamber has a high corrosion environment in which high-concentration oxygen and a high-concentration sodium hydroxide aqueous solution exist at high temperatures. Therefore, it is preferable to use Ni or a Ni alloy having a Ni content of 20% by weight or more, or a silver alloy plated with Ni.
  • the wall surface constituting the anode chamber 3 As a material for the wall surface constituting the anode chamber 3, it is preferable to use Ti or a Ti alloy having a Ti content of 20% by weight or more. Moreover, as a material of the wall surface which comprises the cathode chamber 4 and the humidification chamber 5, it is preferable to use Ni or Ni alloy whose Ni content is 20 weight% or more, and also what plated this with silver.
  • the electrolytic cell may be configured by arranging a plurality of the above-described unit cells (A type unit cell or B type unit cell, preferably A type unit cell).
  • each unit cell may be a monopolar electrolytic cell electrically connected in parallel, or each unit cell may be a bipolar electrolytic cell electrically connected in series, A bipolar electrolytic cell is preferred.
  • FIG. 4 is a schematic cross-sectional view showing an example of a monopolar electrolytic cell in which three A-type unit cells 1 having openings 7 are arranged.
  • the A-type unit cells arranged in the order of the anode chamber 3, the cathode chamber 4, and the humidifying chamber 5 are arranged in the normal order (the anode chamber 3, the cathode chamber 4, and the humidifying chamber 5 in this order).
  • the normal order in order of humidification chamber 5, cathode chamber 4 and anode chamber 3
  • normal order, reverse order, etc. a plurality (three in the illustrated example) are arranged while alternately reversing the order of the chambers in the unit cell. .
  • the anode of each unit cell is connected in parallel to an external power supply, and the cathode is also connected in parallel to the external power supply.
  • 9 is a water storage tank for adjusting the water surface height of the humidification chamber. Even in such an example, the heat of the cathode chamber 4 is transmitted to the humidification chamber 5, and the oxygen-containing gas can be humidified efficiently.
  • the humidifying chamber 5 of one unit cell (1) is adjacent to the humidifying chamber 5 of the adjacent unit cell (2). Sometimes. In such a case, both unit cells (1) and (2) may share one humidification chamber 5.
  • FIG. 5 is a schematic cross-sectional view showing an example of a bipolar electrolytic cell in which four A-type unit cells having openings 7 are arranged.
  • the unit cell 1 having the anode chamber 3 and the cathode chamber 4 having the humidifying chamber 5 therein repeats the order of the anode chamber 3, the cathode chamber 4, and the humidifying chamber 5.
  • a large number (four in the illustrated example) are arranged, and the anode 3a in one unit cell (1) can be electrically connected to the cathode 4a in the adjacent unit cell (2) ( The cathode 4a at one end and the anode 3a at the other end are connected to an external power source, so that the unit cells are connected in series.
  • the raw material salt water supply ports 3b of each unit cell, the electrolyzed salt water and chlorine discharge ports 3c, the oxygen-containing gas supply ports 5a, the water supply ports 5b, and the electrolysis reaction product discharge ports 4g The pressure equalization lines 4e are connected to each other by piping, and the water supply port 5b and the pressure equalization line 4e are connected to the water storage tank 9.
  • the mechanism of the electrolytic reaction in each unit cell of the bipolar electrolytic cell 20 is the same as that of the unit cell described above. However, by arranging the unit cells, one humidifying chamber 5 can be used as a cathode chamber in the same unit cell. 4 is adjacent to the anode chamber 3 in the adjacent unit cell.
  • the humidification chamber 5 can be humidified using both the heat generated by the electrolytic reaction of the anode chamber 3 and the heat generated by the electrolytic reaction of the cathode chamber 4, and the thermal efficiency during humidification can be further increased. Further, since the heat of the anode chamber 3 is transferred to the humidification chamber 5, the anode chamber 3 can also be cooled.
  • Example 1 As shown in FIG. 5, five unit cells having the structure shown in FIG. 1 (but not having a gas diffusion cathode support) are arranged so that the anode chamber, the cathode chamber, and the humidifying chamber are repeated in this order. Specifically, it was connected in series to assemble a bipolar two-chamber saline electrolyzer.
  • the anode is DSE manufactured by Permerek Electrode Co., Ltd. (insoluble metal coated with a Pt group metal or its oxide as a main component on a metal substrate), and the cathode is a gas-liquid permeable carbon-silver electrode (GDE2013) manufactured by Permerek Electrode Co. ), 4403D manufactured by Asahi Kasei Chemicals Co., Ltd. for the ion exchange membrane, a carbon fiber woven fabric having a thickness of 0.45 mm for the liquid holding layer, and a spiral nickel wire after silver plating for the cushioning material.
  • GDE2013 gas-liquid permeable carbon-s
  • a saline solution having a concentration of 218 g / L and a temperature of 53.8 ° C. is supplied to the anode chamber at a rate of 183 L / m 2 / h, and water is stored in the humidifying chamber, and the temperature is 25 ° C. and the concentration is 93.0. %, 1.5 times the required theoretical amount of oxygen-containing gas (corresponding to “oxygen-containing gas supplied to the electrolytic cell” shown in Table 1 below) was bubbled into the water in the humidification chamber. Since the temperature of the humidification chamber is 84.0 ° C., the temperature of the humidified oxygen-containing gas is about 84.0 ° C. when supplied to the cathode chamber. Electrolysis was performed at a current density of 5.65 kA / m 2 , and various values were measured after 10 days.
  • Comparative Example 1 The unit cell does not have a humidifying chamber, but the other materials such as the anode, cathode, ion exchange membrane, etc., and the size of the cathode chamber, anode chamber, etc. are the same as in Example 1, but the anode cell, cathode Five sheets were arranged so that the order of the chambers was repeated, and electrically connected in series to assemble a bipolar type conventional two-chamber saline electrolyzer (not shown).
  • a saline solution having a concentration of 219 g / L and a temperature of 51.4 ° C. was supplied to the anode chamber at a rate of 183 L / m 2 / h.
  • the cathode chamber of each unit cell is connected to one humidifier provided outside the electrolytic cell.
  • the oxygen-containing gas having a concentration of 93.0% and 1.5 times the required theoretical amount of oxygen-containing gas is connected.
  • a humidified oxygen-containing gas was generated by bubbling in water (25 ° C.) in a humidifier, and the humidified oxygen-containing gas was supplied to the cathode chamber at the same temperature. Electrolysis was performed at a current density of 5.65 kA / m 2 , and various values were measured after 10 days.
  • Comparative Example 1 does not have a humidifying chamber in the unit cell and supplies an oxygen-containing gas humidified from an external humidifier.
  • Oxygen-containing gas and “oxygen-containing gas supplied to the cathode chamber” mean the same thing (the same applies to Comparative Examples 2 to 4 below).
  • Comparative Example 2 The water temperature of the external humidifier in Comparative Example 1 was set to 84 ° C., and the humidified oxygen-containing gas generated at 84 ° C. was supplied to the cathode chamber as it was (heat input to the humidifier was about 5.2 MJ / m 2 / h) Except that, various values at the time of 10 days were measured in the same manner as in Comparative Example 1.
  • Comparative Example 3 In the same configuration as that of Comparative Example 2, the temperature of the humidified oxygen-containing gas is prevented from decreasing by keeping the surroundings of the pipe connecting the humidifier and the cathode chamber of each unit cell intensified. The value was measured. The heat input to the humidifier was about 5.2 MJ / m 2 / h, as in Comparative Example 2.
  • Example 2 Various values after operating the same electrolytic cell as in Example 1 for 300 days were measured.
  • Comparative Example 4 Various values after operating the same electrolytic cell as Comparative Example 1 for 300 days were measured.
  • Tables 1 and 2 show the average value of the five unit cells and the difference between the value of each unit cell and the average value for the concentration of the aqueous sodium hydroxide solution and the current efficiency.
  • Example 1 the temperature of the humidification chamber is equal to the temperature of the anode chamber due to the reaction heat of the electrolytic reaction, and the concentration of the generated aqueous sodium hydroxide solution is not too high at 32.2%. It can be seen that a sufficient amount of water vapor can be supplied (Table 1). Moreover, since the dispersion
  • Example 2 in which Example 1 was operated for a long period of time, a good current efficiency of 96.3% was exhibited even after 300 days had passed, and the other results were as good as those in Example 1. Is obtained. Further, in Example 2, since a sufficient amount of water vapor can be supplied, the generated sodium hydroxide concentration can be kept low, and damage to the gas diffusion cathode is suppressed, so that the gas after 300 days has elapsed since the operation of the electrolytic cell. The change in the voltage of the diffusion cathode was as small as 45 mV as an average value of the five unit cells. In addition, the change of the voltage of the gas diffusion cathode in each unit cell was 78 mV, 15 mV, 45 mV, 33 mV, and 54 mV, respectively.
  • Comparative Example 2 is an example in which the temperature of the external humidifier is changed to 84 ° C. in order to increase the water vapor pressure in the oxygen-containing gas, and energy for increasing the water temperature in the external humidifier is required.
  • the average value of the concentration of the generated aqueous sodium hydroxide solution is 32.2%, and on average, a sufficient amount of water vapor can be supplied.
  • both the sodium hydroxide concentration and the current efficiency are obtained.
  • the variation for each unit cell is large. This is presumably because moisture was condensed during the introduction of the humidified oxygen-containing gas from the external humidifier to the cathode chamber of each unit cell, and the degree of condensation differed for each unit cell.
  • a high-temperature oxygen-containing gas is supplied from the outside of the electrolytic cell, and it is necessary to make the supply saline solution to the anode low in order to prevent overheating of the electrolytic cell (supply in Example 1)
  • the temperature of the salt solution is 53.8 ° C., which is a general temperature range in a salt electrolysis factory, whereas the temperature of the salt solution supplied in Comparative Example 2 is 47.0 ° C.) Extra energy for is needed.
  • Comparative Example 3 is an example in which heat insulation is strengthened on the pipe from the external humidifier in Comparative Example 2, and, like Comparative Example 2, energy for heating in the external humidifier is required.
  • Comparative Example 3 as a result of suppressing the condensation of water in the piping, the variation in the generated sodium hydroxide concentration and current efficiency from cell to cell was suppressed. Extra energy for is needed.
  • Comparative Example 4 is an example in which the electrolytic cell was operated for 300 days under the same conditions as Comparative Example 1, and the change in the voltage of the gas diffusion cathode after 300 days from the operation of the electrolytic cell was the average value of five unit cells. It was 108 mV, which was much higher than that of Example 2, and the current efficiency was 96.0%, which was lower than that of Example 2.
  • the sodium hydroxide aqueous solution concentration produced in Comparative Example 4 is 34.6%, which is 2% higher than the sodium hydroxide aqueous solution concentration of 32.2% in Examples 1 and 2. Therefore, it is considered that the gas diffusion cathode is damaged. Note that changes in the voltage of the gas diffusion cathode in each unit cell were 123 mV, 66 mV, 114 mV, 108 mV, and 129 mV, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

酸素陰極法の2室法において、余分なエネルギーを要することなく、陰極室に水分を供給すると共に電解槽の過熱を抑えて、水酸化ナトリウム及び/又は塩素を製造する方法を提供する。本発明は、イオン交換膜を挟んで、陽極を内蔵した陽極室と、ガス拡散陰極を内蔵した陰極室とを備える単位セルを1つ以上有する2室法型食塩水電解槽を用いて食塩水を電解して水酸化ナトリウム及び/又は塩素を製造する方法であって、前記単位セルは、前記陰極室に供給するための加湿された酸素含有ガスを生成する加湿室を更に有し、該加湿室は、該単位セル内の前記陽極室もしくは陰極室、又は隣接する単位セルの陽極室もしくは陰極室に熱交換可能に隣接し、陽極室又は陰極室からの熱によって水蒸気を発生させることで前記酸素含有ガスを加湿することを特徴とする水酸化ナトリウム及び/又は塩素の製造方法である。

Description

水酸化ナトリウム及び/又は塩素の製造方法、並びに2室法型食塩水電解槽
 本発明は、水酸化ナトリウム及び/又は塩素の製造方法、並びに2室法型食塩水電解槽に関する。
 水酸化ナトリウム及び塩素は産業の素材として重要であり、従来はイオン交換膜を用いて食塩水を電解する方法であって、陰極に金属電極を用い、下記式(1)の反応によって食塩水を電解する方法によって製造されてきた。
 2NaCl+2H2O→Cl2+2NaOH+H2   (1)
 しかし、上記式(1)による食塩水の電気分解には大きな電力が必要となるため、近年では大幅な省エネルギーを期待して、ガス拡散電極を用いた陰極で酸素を還元する方法(以下、酸素陰極法と呼ぶ)が検討されている。陽極での反応は従来の方法と同様に、塩素イオンの酸化反応であり、酸素陰極法では、全体として下記式(2)の反応が生じる。
 2NaCl+1/2O2+H2O→Cl2+2NaOH   (2)
 酸素陰極法では、電解槽が陽極室、陰極液室、陰極ガス室という3室に区画される3室法が採用されてきたが、例えば特許文献1に記載されるように最近では、陽極、イオン交換膜、ガス拡散電極を互いに密着し、陰極液室を実質的になくし、電解槽を陽極室及び陰極ガス室の2室に区画する2室法が検討されている。上記反応式に示した通り、食塩水の電解反応には、水分が必要であると共に、生成する水酸化ナトリウムが濃くなりすぎないようにするためにも水分の存在が必要である。3室法では、陰極室に水酸化ナトリウム水溶液の循環する液室があり、ここから十分な水分が供給される。一方、2室法では、陰極室に液室がないため、水分の供給は陽極室側からイオン交換膜を通して供給される電気浸透水のみになるが、これだけでは不十分であり何らかの方法で陰極に水分を供給する必要がある。前記特許文献1では、ガス室を経由して不足分の水分を供給することが記載され、具体的には90℃に加熱した水を用意しておき、これを酸素ガスの流入口から導入している。また、特許文献2においても、カソード隔室に湿った酸素含有ガスを供給することが開示され、具体的には、80℃に加熱された水中に酸素をバブリングすることによって湿度を与えた酸素含有ガスを用意しておき、これをカソード隔室に導入することが記載される。
特開2001-3188号公報 特開平11-152591号公報
 しかし、前記特許文献1及び2に記載される水分の供給方法では、水を80℃又は90℃に加熱するためのエネルギーを要している。更に、特許文献1では電解槽の温度が高くなりすぎた場合には、外部の熱交換器に陽極液を循環させ、冷却水などを用いて陽極液の温度を下げており、冷却水を用意するためのエネルギーも必要である。
 そこで、本発明は、酸素陰極法の2室法において、電解反応に必要なエネルギー以外の余分なエネルギーを要することなく、陰極室に水分を供給すると共に電解槽の過熱を抑えて、効率よく水酸化ナトリウム及び/又は塩素を製造することが可能な方法を提供することを目的とする。
 本発明は、以下の通りである。
 [1]イオン交換膜を挟んで、陽極を内蔵した陽極室と、ガス拡散陰極を内蔵した陰極室とを備える単位セルを1つ以上有する2室法型食塩水電解槽を用い、陽極室には食塩水を、陰極室には加湿された酸素含有ガスを供給して食塩水を電解して水酸化ナトリウム及び/又は塩素を製造する方法であって、
 前記単位セルは、前記陰極室に供給するための加湿された酸素含有ガスを生成する加湿室を更に有し、
 該加湿室は、該単位セル内の前記陽極室もしくは陰極室、又は隣接する単位セルの陽極室もしくは陰極室に熱交換可能に隣接しており、陽極室又は陰極室からの熱によって水蒸気を発生させることで前記酸素含有ガスを加湿する水酸化ナトリウム及び/又は塩素の製造方法。
 [2]前記加湿室は前記陰極室に隣接しており、加湿室で生成した加湿された酸素含有ガスは、加湿室と陰極室との間の隔壁に設けられた開口部を通して加湿室から陰極室に供給される[1]に記載の製造方法。
 [3]前記加湿室と陰極室との間の隔壁に設けられた開口部は、単一の開口部である[2]に記載の製造方法。
 [4]前記加湿室と陰極室との間の隔壁に設けられた開口部は、複数の開口部である[2]に記載の製造方法。
 [5]前記加湿室で生成した加湿された酸素含有ガスは、加湿室及び陰極室の外側に設けられた流路を通して加湿室から陰極室に供給される[1]に記載の製造方法。
 [6]前記加湿室及び陰極室の外側に設けられた流路は、単一の流路である[5]に記載の製造方法。
 [7]前記加湿室及び陰極室の外側に設けられた流路は、複数の流路である[5]に記載の製造方法。
 [8]前記電解槽では複数の単位セルが連結されており、複数の単位セルは、陽極室、陰極室、加湿室の順序が繰り返すように並べられている[1]~[7]のいずれかに記載の製造方法。
 [9]イオン交換膜を挟んで陽極室と陰極室とを有する単位セルを1つ以上有する2室法型食塩水電解槽であって、
 前記陽極室は、陽極を内蔵し、原料食塩水の供給口と電気分解後食塩水の排出口及び塩素排出口を備え、前記陰極室は、ガス拡散陰極を内蔵し、加湿された酸素含有ガスの供給部と電気分解反応物の排出口を備え、
 前記単位セルは、前記陰極室に供給するための酸素含有ガスを生成する加湿室を更に有し、
 該加湿室は、前記単位セル内の前記陽極室或いは陰極室、又は隣接する単位セルの陽極室或いは陰極室に熱交換可能に隣接しているとともに、酸素含有ガス供給口を備えている2室法型食塩水電解槽。
 [10]前記電解槽では複数の単位セルが連結されており、複数の単位セルは、陽極室、陰極室、加湿室の順序が繰り返すように並べられている[9]に記載の電解槽。
 本発明によれば、加湿室が陽極室或いは陰極室に熱交換可能に隣接しているため、陽極室又は陰極室の熱を用いて酸素含有ガスを加湿することができると共に、電解槽の過熱を防ぐことができる。
図1は、単位セルの一例を示した概略断面図である。 図2は、加湿された酸素含有ガスを供給するための開口部の形状の一例を示した概略断面図である。 図3は、加湿された酸素含有ガスを供給する連絡配管を備えた単位セルの一例を示した概略断面図である。 図4は、単極型電解槽の一例を示した概略断面図である。 図5は、複極型電解槽の一例を示した概略断面図である。
 以下、本発明に係る2室法型食塩水電解槽及びこれを用いた水酸化ナトリウム及び/又は塩素の製造方法について図面を用いて説明するが、本発明は下記図面に限定されるものではなく、前記および後記の趣旨に適合し得る範囲で設計変更してもよい。
 図1は、本発明の電解槽における単位セルの一例を示した図である。単位セル1は、イオン交換膜2を挟んで、陽極室3と陰極室4を有する。この陽極室3は、前記イオン交換膜2の陽極室側面に密着して陽極3aを備えており、また陽極室3は、原料食塩水の供給口3bをその下部に備え、電気分解後食塩水及び塩素の排出口3cをその上部に備えている。一方、陰極室4では、前記イオン交換膜2の陰極室側面に密着する液保持層4b、ガス拡散陰極4a、必要に応じてガス拡散陰極支持体4c及びクッション材4dをこの順で備えている。
 そして本発明の単位セル1では、隔壁6で陰極室4と隔てられた加湿室5が備えられており、この加湿室5は前記陰極室4と熱交換可能になっている。また図示例の隔壁6は、図2(a)に示した通りの平面形状を有しており、隔壁6の上部が全体に亘って開口部7になる形状を有している。このため加湿された酸素含有ガスが加湿室5から陰極室4に供給可能になっている。なお前記陰極室4には、加湿室の水面高さを一定とするための均圧ライン4eも備えている。ただし本発明において、同様の機能を他の手段で行うことができれば均圧ライン4eは必須ではない。
 なお、加湿室中の水については、外部と流通させても良いし、させなくても良い。外部と流通する場合、外部から加湿室に通水し温水を排出するラインを別途設けることが出来る(図示なし)。外部から通水する場合、その水の流量や温度は、加湿室内の水の温度が所定条件(例えば80℃以上)を満たすように適宜設定しうるが、後述するように、外部から通水することなく、あるいは通水した場合でも、電解反応の熱のみを利用して所定温度とするのがエネルギー効率の点からは好ましい。
 上記単位セル1では、陽極室3に原料食塩水の供給口3bから原料食塩水を供給し、かつ酸素含有ガス供給口5aから酸素含有ガスを加湿室5に貯められた水中にバブリングして、加湿された酸素含有ガス(酸素濃度は例えば90%以上、好ましくは93%以上)を生成し、これを陰極室4に供給しながら通電することで、陽極3aにおいて塩素が生成し、ガス拡散陰極4aにおいて水酸化ナトリウムが生成する。そして食塩水の電解反応が進行して陰極で生じた熱が加湿室5に伝わることで加湿室5に貯められた水を昇温することができ、加湿室中の水の気化が促進される。引き続き酸素含有ガスをバブリングなどによって加湿室5に供給すれば、加湿室の水の温度において飽和する量とほぼ等しい量の水蒸気を含む酸素含有ガスを生成できる。従って、電解反応に要するエネルギー以外の余分な外部エネルギーを利用しなくても酸素含有ガスの加湿効率を高めることができる。また、前記特許文献1に開示されるように電解槽の外部に設けられた加湿器から、高濃度の水蒸気を含む酸素含有ガスを各単位セルに供給する場合では、供給途中の配管等で水分が凝縮して十分な量の水蒸気が供給できない他、特に複数の単位セルを有する電解槽では、水分の凝縮の程度が単位セルごとに異なる可能性があり、単位セルごとに水分供給量にばらつきが出るおそれがあるところ、本発明では単位セルごとに加湿室を有しているため、十分な水分量を各単位セルにばらつきなく供給できる。また、陰極室の熱を、加湿室に伝達することで、冷却のための余分なエネルギーを要することなく単位セルの過熱、つまり電解槽の過熱を防止できる。
 上述した図1の例では、加湿室5は単位セル1内の陰極室4に隣接しているが、単位セル1内の陽極室3に隣接していても良い(この様に、加湿室5、陽極室3、陰極室4の順で各室を有する単位セルを、以下、B型単位セルという。また陽極室3、陰極室4、加湿室5の順で各室を有する単位セルを、以下、A型単位セルという)。この様なB型単位セルの場合であっても、陽極室3の電気分解反応が発熱反応であるため、その熱を利用することで加湿室5を加熱して水蒸気発生効率を高めることが可能である。また後述する様に、B型単位セルを複数並べて使用する場合があり、そうした場合には加湿室5が、隣の単位セルの陰極室4と隣り合わせになることがある。その場合には、隣の単位セルの陰極室4での発熱反応によって、加湿室5での水蒸気発生効率を高めることができる。
 なお陽極室3で生成した塩素は排出口3cから電気分解後食塩水と共に排出される。また陰極室4で生成した水酸化ナトリウムは、陽極室3からの電気浸透水及び陰極室に送られる酸素含有ガス中の水分により、32.0~34.0%程度の濃度の水酸化ナトリウム水溶液となって、自重で陰極室下方へ流れ、電気分解反応物の排出口4gから酸素含有ガスの排ガスと共に排出される。上述した通り、本発明では十分な量の水分を陰極に供給可能であることから、水酸化ナトリウム水溶液の濃度が濃くなりすぎることがなく、ガス拡散陰極4aやイオン交換膜2の損傷を防止できる。
 単位セル1における隔壁6は、隔壁6の上部を通って加湿室5から陰極室4へ加湿された酸素含有ガスを流通可能である限り、種々の形状の開口部7を有していてもよい。例えば、図2(b)に示す様に、隔壁6の上部に複数の開口部を有していてもよい。隔壁6の上部に設けられる開口部は、図2(a)に示すように隔壁6の上部全面に亘っていてもよいし、図2(b)のように上部面の一部であってもよい。また開口部の個数も特に限定されず、1つであっても複数であってもよく、開口部の形状も特に限定されない。
 さらに隔壁6は、加湿室5から陰極室4へ加湿された酸素含有ガスを流通可能である限り、開口部7を有さなくてもよい。例えば、図3に示す様に連絡配管8のような外部流路を通って加湿された酸素含有ガスが陰極室4へ供給されてもよい。なお、図3における単位セル1は、図1における開口部7に代えて連絡配管8を有していること以外は、図1に示した単位セルと同じである。
 なお、前記したB型単位セルを用いる場合、加湿室5から陰極室4への加湿された酸素含有ガスの供給は、加湿室5と陰極室4とを上述した様な連絡配管8で連結することで可能となる。またB型単位セルを複数並べる場合には、加湿室5と隣の単位セルの陰極室4との間に開口部7を形成したり、連絡配管8でつないだりして、加湿室5から隣の単位セルの陰極室4に酸素含有ガスを供給可能にしてもよい。
 上述した様な単位セル(A型単位セル、B型単位セルの両方を含む。以下、同様)において、陽極3aは、食塩水電解用として使用される不溶性陽極であれば特に限定されず、例えばチタンなどの金属で構成されるエクスパンドメタル、ファインメッシュなどのメッシュ構造の基体上に、酸化ルテニウム、酸化チタン、酸化イリジウム、又は白金族金属の酸化物などを含む金属の酸化物を被覆したものを用いることができる。
 イオン交換膜2は、食塩水電解用として使用できるものであれば特に限定されず、例えばカルボン酸及び/又はスルホン酸をイオン交換基とするパーフルオロカーボン型のカチオン交換膜が挙げられる。
 ガス拡散陰極4aとしては、酸素陰極法による食塩水電解に用いられるものであれば特に限定されないが、例えば金属製のメッシュ状材、カーボンクロス及び/又は疎水性樹脂等を基材とし、基材の一方の面には親水性の触媒が担持された反応層、他方の面には撥水性のガス拡散層を接合した三層構造のシート状の電極等を用いることができる。触媒としては、銀、白金、金、金属酸化物、カーボン等が挙げられる。ガス拡散陰極は、液を透過するものであってもよいし、液を透過しないものであってもよい。
 陰極室4において、イオン交換膜2とガス拡散陰極4aの間に液が存在しなければ電流を流すことができなくなる。イオン交換膜2とガス拡散陰極4aが密着していれば毛細管現象により両者の間に液を保持することが可能であるが、より確実に液を保持するため、イオン交換膜2とガス拡散陰極4aの間に液保持層4bが存在することが好ましい。液保持層4bにより、イオン交換膜2とガス拡散陰極4aとの間に均一に水酸化ナトリウム水溶液等の液を保持することができ、電流密度の上昇及び電圧の上昇を防ぐことができる。液保持層は、電解反応により生成する水酸化ナトリウム水溶液(濃度が30数%であり温度が80~90℃程度)を保持する必要性から、親水性及び耐食性が要求される。従って、炭素繊維等のカーボン材料や樹脂からなる多孔質構造体が好ましく用いられる。
 2室法が有する利点は、陽極、イオン交換膜及び陰極が互いに接触しており、極間の電気抵抗が小さいため電解電圧を小さくできるという点であり、ガス拡散陰極4aを(必要に応じて液保持層4bを介して)イオン交換膜2に密着させるためには、クッション材4dを圧縮状態で収容してクッション材に反力を生じさせ、その反力を利用してガス拡散陰極4aをイオン交換膜2に密着させることが好ましい。2室法では、イオン交換膜を境界として陽極室には食塩水による液圧が作用し、陰極室にはガス圧が作用している。クッション材の反力は、この液圧とガス圧の差圧に合わせて設計されるが、液圧は食塩水の深さが深いほど大きいため、クッション材の反力を、陰極室上部より下部の方が大きくなるようにすることで、イオン交換膜や陽極に加わる圧力の均等化を図ることができる。このようなクッション材4dとしては、コイル材又はウエーブ加工したマット材を使用することが可能である。コイルは直径方向に弾性を持ち、この方向に反力が生じるため、コイル軸を陰極ガス室背板に並行に配置して使用することができ、コイル材の線径、コイル系、敷設密度を調整することにより、クッション材の反力を上部より下部の方が大きくなるようにすればよい。またウエーブ加工されたマット材は、金属ワイヤーをメリヤス編みしたデミスターメッシュをウエーブ加工したものを用いることができ、ワイヤーの線径、束ねるワイヤー本数、マット材の積層枚数を調整することにより、クッション材の反力を上部より下部の方が大きくなるようにすればよい。
 クッション材4dとガス拡散陰極4aの間には、必要に応じてガス拡散陰極支持体4cを介在させることができる。ガス拡散陰極支持体4cは、クッション材4dの反力を受け止め、均一化してガス拡散陰極4a、液保持層4b、さらにイオン交換膜2に伝達することができる。ガス拡散陰極支持体4cとしては金網等のメッシュ材を使用すればよい。
 クッション材4d及びガス拡散陰極支持体4cのいずれも、陰極室内に収容されるものであり、陰極室は、高温で、高濃度酸素と高濃度水酸化ナトリウム水溶液が存在するという高腐食環境であることから、NiまたはNi含有量が20重量%以上であるNi合金や、さらにこれに銀メッキしたものを用いることが好ましい。
 陽極室3を構成する壁面の材料としては、TiまたはTi含有量が20重量%以上であるTi合金を用いることが好ましい。また、陰極室4、加湿室5を構成する壁面の材料としては、NiまたはNi含有量が20重量%以上であるNi合金や、さらにこれに銀メッキしたものを用いることが好ましい。
 本発明では、上述した単位セル(A型単位セル又はB型単位セル、好ましくはA型単位セル)を複数並べて電解槽を構成してもよい。単位セルを複数並べる場合、各単位セルを電気的に並列につないだ単極型電解槽にしてもよく、各単位セルを電気的に直列につないだ複極型電解槽にしてもよいが、複極型電解槽が好ましい。以下、加湿室5と陰極室4との間で酸素含有ガスを流通させるための手段として上述した開口部7を有するA型の単一セルを並べた場合を例にとって、単極型電解槽及び複極型電解槽について説明するが、以下の例は、連絡配管8を用いた例、B型単一セルを並べた場合にも適用できる。
 図4は、開口部7を有するA型単位セル1を3つ並べた単極型電解槽の一例を示す概略断面図である。図4の単極型電解槽10では、上記陽極室3、陰極室4、加湿室5の順で並ぶA型単位セルを、正順(陽極室3、陰極室4、加湿室5の順)、逆順(加湿室5、陰極室4、陽極室3の順)、正順、逆順の様に単位セル内の各室の並び順を交互に逆転させながら複数(図示例では3つ)並べられる。各単位セルの陽極は、それぞれ並列に外部電源に接続され、陰極もそれぞれ並列に外部電源に接続される。9は加湿室の水面高さを調整するための貯水タンクである。こうした例でも、陰極室4の熱が加湿室5へ伝わり、酸素含有ガスを効率よく加湿することが可能となる。なお上記の様に単位セル内の各室の並び順を交互に逆転させながら並べる例では、一の単位セル(1)の加湿室5が隣の単位セル(2)の加湿室5と隣接することがある。このような場合には、1つの加湿室5を両単位セル(1)及び(2)が共有してもよい。
 図5は、開口部7を有するA型の単位セルを4つ並べて構成した複極型電解槽の一例を示す概略断面図である。図5の複極型電解槽20では、陽極室3と、加湿室5を内部に有する陰極室4とを有する単位セル1が、陽極室3、陰極室4、加湿室5の順序が繰り返すように、多数(図示例では4つ)並べられており、一の単位セル(1)中の陽極3aは、隣の単位セル(2)中の陰極4aと電気的に導通可能になっており(図示せず)、片端の陰極4aと他端の陽極3aは、それぞれ外部電源とつながることで、各単位セルが直列につながっている。また各単位セルの原料食塩水の供給口3b同士、電気分解後食塩水及び塩素の排出口3c同士、酸素含有ガス供給口5a同士、水供給口5b同士、電気分解反応物の排出口4g同士、均圧ライン4e同士はそれぞれ配管で接続され、水供給口5b及び均圧ライン4eは貯水タンク9に接続されている。この複極型電解槽20の各単位セルでの電解反応の仕組みは、上述した単位セルと同様であるが、単位セルを並べることによって、一の加湿室5は、同じ単位セル中の陰極室4に隣接するだけでなく、隣の単位セル中の陽極室3にも隣接することになる。従って加湿室5は、陽極室3の電解反応で生じる熱と陰極室4の電解反応によって生じる熱の両方を利用して加湿可能となり、加湿時の熱効率をさらに高めることができる。また陽極室3の熱を加湿室5に移すため、陽極室3の冷却を兼ねることもできる。
 なおB型単位セル(加湿室、陽極室、陰極室の順に並ぶ単位セル)を図5の例の様に、各室の順を代えることなく複数並べて複極型電解槽を構成する場合も、加湿室5が陽極室3と陰極室4に挟まれることになる。このような場合も、陽極室3からの熱と陰極室4からの熱を加湿室5での加湿に利用可能である。
 本願は、平成29年3月30日に出願された日本国特許出願第2017-068057号に基づく優先権の利益を主張するものである。平成29年3月30日に出願された日本国特許出願第2017-068057号の明細書の全内容が、本願に参考のため援用される。
 以下、実施例を挙げて本発明をより具体的に説明する。本発明は以下の実施例によって制限を受けるものではなく、前記、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 実施例1
 図1に示した構造の単位セル(但し、ガス拡散陰極支持体は有さない)を、図5で示すように陽極室、陰極室、加湿室がこの順で繰り返すように5枚並べ、電気的には直列に接続して、複極型の2室法型食塩水電解槽を組立てた。陽極にはペルメレック電極株式会社製DSE(金属基体に、Pt族金属又はその酸化物を主成分として被覆した不溶性金属)を、陰極にはペルメレック電極株式会社製気液透過型カーボン-銀電極(GDE2013)を、イオン交換膜には旭化成ケミカルズ株式会社製4403Dを、液保持層には厚み0.45mmの炭素繊維織物、クッション材には銀メッキを施したらせん状ニッケル線を用いた。
 陽極室には、濃度218g/Lで温度53.8℃の食塩水を、183L/m2/hの割合で供給し、加湿室には水を貯めておき、温度25℃、濃度93.0%、必要理論量の1.5倍モルの酸素含有ガス(後記する表1で示す「電解槽に供給される酸素含有ガス」に相当)を加湿室の水中にバブリングして供給した。加湿室の温度が84.0℃であることから、陰極室に供給される時点では、加湿された酸素含有ガスの温度は約84.0℃となっている。電流密度5.65kA/m2で電解を行い、10日経過時の各種値を測定した。
 比較例1
 単位セル内に加湿室を有さないが、それ以外の陽極、陰極、イオン交換膜等の材質や陰極室、陽極室等の大きさは実施例1と同様の単位セルを、陽極室、陰極室の順が繰り返すように5枚並べ、電気的には直列に接続して複極型の従来型の2室法型食塩水電解槽を組立てた(図示せず)。
 陽極室には、濃度219g/Lで温度51.4℃の食塩水を、183L/m2/hの割合で供給した。各単位セルの陰極室は、電解槽の外部に設けられた1台の加湿器に接続し、前記加湿器では、濃度93.0%で必要理論量の1.5倍モルの酸素含有ガスを加湿器の水中(25℃)にバブリングして、25℃の加湿された酸素含有ガスを生成させ、当該加湿された酸素含有ガスをそのままの温度で陰極室に供給した。電流密度5.65kA/m2で電解を行い、10日経過時の各種値を測定した。なお、比較例1は実施例1とは異なり、単位セル内に加湿室を有さず外部加湿機から加湿された酸素含有ガスを供給するため、後記する表1で示す「電解槽に供給される酸素含有ガス」と「陰極室に供給される酸素含有ガス」は同じものを意味する(以下の比較例2~4についても同様)。
 比較例2
 比較例1における外部加湿器の水の温度を84℃とし、84℃で生成する加湿された酸素含有ガスをそのまま陰極室に供給した(加湿器への入熱は約5.2MJ/m2/h)こと以外は比較例1と同じにして、10日経過時の各種値を測定した。
 比較例3
 比較例2と同様の構成において、更に加湿器と各単位セルの陰極室とをつなぐ配管の周りを保温強化して加湿された酸素含有ガスの温度が下がらないようにし、10日経過時の各種値を測定した。なお、加湿器への入熱は、比較例2と同様、約5.2MJ/m2/hであった。
 実施例2
 実施例1と同様の電解槽を、300日稼働した後の各種値を測定した。
 比較例4
 比較例1と同様の電解槽を、300日稼働した後の各種値を測定した。
 実施例及び比較例の測定結果を表1、2に示す。表2は、生成した水酸化ナトリウム水溶液の濃度と、電流効率について、5つの単位セルの平均値を示すと共に、各単位セルの値と平均値との差を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例1では、電解反応の反応熱により、加湿室の温度が陽極室の温度と同等になっており、生成した水酸化ナトリウム水溶液の濃度が32.2%で濃くなりすぎていないことから、十分な量の水蒸気が供給できていることが分かる(表1)。また、生成した水酸化ナトリウム水溶液の濃度と、電流効率について、5つの単位セル同士のばらつきが小さく抑えられていることから、各単位セルの陰極室への供給水蒸気量のばらつきが小さいことが分かる(表2)。また、実施例1を長期間稼働させた実施例2では、300日経過しても96.3%という良好な電流効率を示す他、その他の値についても実施例1とほぼ同等の良好な結果が得られている。また、実施例2では十分な量の水蒸気を供給できるため、生成する水酸化ナトリウム濃度を低く維持でき、ガス拡散陰極の損傷が抑制されていることから、電解槽の稼働から300日経過後のガス拡散陰極の電圧の変化は、5つの単位セルの平均値で45mVと小さかった。なお、各単位セルにおけるガス拡散陰極の電圧の変化はそれぞれ、78mV、15mV、45mV、33mV、54mVであった。
 一方、外部加湿器から加湿された酸素含有ガスを供給した比較例1では、外部加湿器の温度が25.0℃であることから、ガス中の水蒸気圧が低く、生成した水酸化ナトリウム水溶液の濃度が34.6%と高くなっていることから、水蒸気の供給量が不十分であることが分かる(表1)。
 比較例2は、酸素含有ガス中の水蒸気圧を高くするため外部加湿器の温度を84℃に変更した例であり、外部加湿器での水温上昇のためのエネルギーを要している。生成した水酸化ナトリウム水溶液の濃度の平均値は32.2%であり、平均的には十分な量の水蒸気の供給ができているが、表2に示す通り、水酸化ナトリウム濃度及び電流効率共に、単位セルごとのばらつきが大きくなっている。これは、外部加湿器から各単位セルの陰極室へ加湿された酸素含有ガスを導入する途中で水分が凝縮し、その凝縮度合いが単位セルごとに異なったためと考えられる。また、電解槽の外部から高温の酸素含有ガスを供給しており、電解槽の過熱を防ぐため、陽極への供給食塩水を低温のものとする必要が生じており(実施例1での供給食塩水の温度が53.8℃であり、これは食塩電解工場における一般的な温度範囲であるのに対し、比較例2の供給食塩水の温度は47.0℃)、供給食塩水の冷却のための余分なエネルギーが必要となっている。
 比較例3は、比較例2における外部加湿器からの配管に保温強化をした例であり、比較例2と同様に、外部加湿器での加熱のためのエネルギーを要している。比較例3では、配管内での水の凝縮が抑制された結果、生成した水酸化ナトリウム濃度及び電流効率の、セルごとのばらつきは抑えられたものの、比較例2と同様に供給食塩水の冷却のための余分なエネルギーが必要となっている。
 比較例4は、比較例1と同条件で300日間、電解槽を稼働した例であり、電解槽の稼働から300日経過後のガス拡散陰極の電圧の変化は、5つの単位セルの平均値で108mVであり、実施例2に比べて随分と高い値となり、また電流効率も96.0%と実施例2に比べて低くなった。これは、比較例1と同様、比較例4で生成する水酸化ナトリウム水溶液濃度が34.6%であり、実施例1、2の水酸化ナトリウム水溶液濃度32.2%よりも2%以上も高いため、ガス拡散陰極が損傷したことが原因と考えられる。なお、各単位セルにおけるガス拡散陰極の電圧の変化はそれぞれ、123mV、66mV、114mV、108mV、129mVであった。
1 単位セル
2 イオン交換膜
3 陽極室
3a 陽極
4 陰極室
4a ガス拡散陰極
5 加湿室
6 隔壁
7 開口部
8 連絡配管
10 単極型電解槽
20 複極型電解槽

Claims (10)

  1.  イオン交換膜を挟んで、陽極を内蔵した陽極室と、ガス拡散陰極を内蔵した陰極室とを備える単位セルを1つ以上有する2室法型食塩水電解槽を用い、陽極室には食塩水を、陰極室には加湿された酸素含有ガスを供給して食塩水を電解して水酸化ナトリウム及び/又は塩素を製造する方法であって、
     前記単位セルは、前記陰極室に供給するための加湿された酸素含有ガスを生成する加湿室を更に有し、
     該加湿室は、該単位セル内の前記陽極室もしくは陰極室、又は隣接する単位セルの陽極室もしくは陰極室に熱交換可能に隣接しており、陽極室又は陰極室からの熱によって水蒸気を発生させることで前記酸素含有ガスを加湿することを特徴とする水酸化ナトリウム及び/又は塩素の製造方法。
  2.  前記加湿室は前記陰極室に隣接しており、加湿室で生成した加湿された酸素含有ガスは、加湿室と陰極室との間の隔壁に設けられた開口部を通して加湿室から陰極室に供給される請求項1に記載の製造方法。
  3.  前記加湿室と陰極室との間の隔壁に設けられた開口部は、単一の開口部である請求項2に記載の製造方法。
  4.  前記加湿室と陰極室との間の隔壁に設けられた開口部は、複数の開口部である請求項2に記載の製造方法。
  5.  前記加湿室で生成した加湿された酸素含有ガスは、加湿室及び陰極室の外側に設けられた流路を通して加湿室から陰極室に供給される請求項1に記載の製造方法。
  6.  前記加湿室及び陰極室の外側に設けられた流路は、単一の流路である請求項5に記載の製造方法。
  7.  前記加湿室及び陰極室の外側に設けられた流路は、複数の流路である請求項5に記載の製造方法。
  8.  前記電解槽では複数の単位セルが連結されており、複数の単位セルは、陽極室、陰極室、加湿室の順序が繰り返すように並べられている請求項1~7のいずれかに記載の製造方法。
  9.  イオン交換膜を挟んで陽極室と陰極室とを有する単位セルを1つ以上有する2室法型食塩水電解槽であって、
     前記陽極室は、陽極を内蔵し、原料食塩水の供給口と電気分解後食塩水の排出口及び塩素排出口を備え、前記陰極室は、ガス拡散陰極を内蔵し、加湿された酸素含有ガスの供給部と電気分解反応物の排出口を備え、
     前記単位セルは、前記陰極室に供給するための酸素含有ガスを生成する加湿室を更に有し、
     該加湿室は、前記単位セル内の前記陽極室或いは陰極室、又は隣接する単位セルの陽極室或いは陰極室に熱交換可能に隣接しているとともに、酸素含有ガス供給口を備えている2室法型食塩水電解槽。
  10.  前記電解槽では複数の単位セルが連結されており、複数の単位セルは、陽極室、陰極室、加湿室の順序が繰り返すように並べられている請求項9に記載の電解槽。
     
PCT/JP2018/010870 2017-03-30 2018-03-19 水酸化ナトリウム及び/又は塩素の製造方法、並びに2室法型食塩水電解槽 WO2018180726A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18776655.5A EP3608444B1 (en) 2017-03-30 2018-03-19 Method for manufacturing sodium hydroxide and/or chlorine and 2 chamber type saltwater electrolytic cell
CN201880022309.7A CN110520555B (zh) 2017-03-30 2018-03-19 氢氧化钠和/或氯的制造方法、以及二室法型食盐水电解槽
JP2019509359A JP7061997B2 (ja) 2017-03-30 2018-03-19 水酸化ナトリウム及び/又は塩素の製造方法、並びに2室法型食塩水電解槽
US16/587,369 US20200024758A1 (en) 2017-03-30 2019-09-30 Method for producing sodium hydroxide and/or chlorine, and two-chamber type electrolytic cell for saltwater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-068057 2017-03-30
JP2017068057 2017-03-30

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US16/086,495 A-371-Of-International US10750060B2 (en) 2016-03-31 2017-03-17 Camera module, method of manufacturing camera module, imaging apparatus, and electronic apparatus
US16/587,369 Continuation US20200024758A1 (en) 2017-03-30 2019-09-30 Method for producing sodium hydroxide and/or chlorine, and two-chamber type electrolytic cell for saltwater
US16/923,914 Continuation US11595551B2 (en) 2016-03-31 2020-07-08 Camera module, method of manufacturing camera module, imaging apparatus, and electronic apparatus

Publications (1)

Publication Number Publication Date
WO2018180726A1 true WO2018180726A1 (ja) 2018-10-04

Family

ID=63675501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010870 WO2018180726A1 (ja) 2017-03-30 2018-03-19 水酸化ナトリウム及び/又は塩素の製造方法、並びに2室法型食塩水電解槽

Country Status (5)

Country Link
US (1) US20200024758A1 (ja)
EP (1) EP3608444B1 (ja)
JP (1) JP7061997B2 (ja)
CN (1) CN110520555B (ja)
WO (1) WO2018180726A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7631069B2 (ja) 2021-03-29 2025-02-18 株式会社カネカ ガス拡散電極食塩電解2室法の電解槽およびその利用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102607849B1 (ko) * 2022-01-03 2023-11-30 한국세라믹기술원 마이크로파 가열을 이용한 수산화나트륨의 제조방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11152591A (ja) 1997-09-23 1999-06-08 Elf Atochem Sa 塩水電解法
JP2001003188A (ja) 1999-06-17 2001-01-09 Kanegafuchi Chem Ind Co Ltd 塩化アルカリ電解方法
JP2003041388A (ja) * 2001-07-31 2003-02-13 Association For The Progress Of New Chemistry イオン交換膜電解槽および電解方法
JP2010275579A (ja) * 2009-05-27 2010-12-09 Chlorine Eng Corp Ltd 水酸化ナトリウムの製造方法
JP2012184507A (ja) * 2011-03-04 2012-09-27 Bayer Materialscience Ag 酸素消費電極の操作法
WO2016148637A1 (en) * 2015-03-13 2016-09-22 H2Sg Energy Pte Ltd Electrolysis system
JP2017068057A (ja) 2015-09-30 2017-04-06 ブラザー工業株式会社 熱定着装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3882735B2 (ja) * 2002-10-18 2007-02-21 株式会社日立製作所 燃料電池
WO2007070047A2 (en) * 2005-12-14 2007-06-21 Utc Fuel Cells, Llc Oxygen-consuming zero-gap electrolysis cells with porous/solid plates
JP2007242433A (ja) * 2006-03-09 2007-09-20 Permelec Electrode Ltd 電気化学反応用電極触媒、その製造方法及び前記電極触媒を有する電気化学用電極
CN101290998B (zh) * 2007-04-17 2012-05-23 上海清能燃料电池技术有限公司 一种自增湿的电化学装置
FR2921390B1 (fr) * 2007-09-25 2010-12-03 Commissariat Energie Atomique Electrolyseur haute temperature a dispositif d'homogeneisation de la temperature.
DE102014100702B4 (de) * 2014-01-22 2017-06-29 Siqens Gmbh Brennstoffzellensystem zur thermisch gekoppelten Reformierung mit Reformataufbereitung und Verfahren dazu

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11152591A (ja) 1997-09-23 1999-06-08 Elf Atochem Sa 塩水電解法
JP2001003188A (ja) 1999-06-17 2001-01-09 Kanegafuchi Chem Ind Co Ltd 塩化アルカリ電解方法
JP2003041388A (ja) * 2001-07-31 2003-02-13 Association For The Progress Of New Chemistry イオン交換膜電解槽および電解方法
JP2010275579A (ja) * 2009-05-27 2010-12-09 Chlorine Eng Corp Ltd 水酸化ナトリウムの製造方法
JP2012184507A (ja) * 2011-03-04 2012-09-27 Bayer Materialscience Ag 酸素消費電極の操作法
WO2016148637A1 (en) * 2015-03-13 2016-09-22 H2Sg Energy Pte Ltd Electrolysis system
JP2017068057A (ja) 2015-09-30 2017-04-06 ブラザー工業株式会社 熱定着装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3608444A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7631069B2 (ja) 2021-03-29 2025-02-18 株式会社カネカ ガス拡散電極食塩電解2室法の電解槽およびその利用

Also Published As

Publication number Publication date
EP3608444A4 (en) 2021-01-06
US20200024758A1 (en) 2020-01-23
CN110520555A (zh) 2019-11-29
EP3608444B1 (en) 2025-01-01
CN110520555B (zh) 2021-10-15
EP3608444A1 (en) 2020-02-12
JPWO2018180726A1 (ja) 2020-02-06
JP7061997B2 (ja) 2022-05-02

Similar Documents

Publication Publication Date Title
JP6483111B2 (ja) アルカリ溶液の電解セル
JP4834329B2 (ja) イオン交換膜型電解槽
JP3553775B2 (ja) ガス拡散電極を使用する電解槽
JP2003041388A (ja) イオン交換膜電解槽および電解方法
TWI622666B (zh) 電解水生成裝置
CN103459674B (zh) 用于盐溶液去极化电渗析的槽
AU2012213033A1 (en) Electrolyser and assembly comprising same, in particular for the production of H2 and O2
JP2018511694A (ja) 電解システム
JP7061997B2 (ja) 水酸化ナトリウム及び/又は塩素の製造方法、並びに2室法型食塩水電解槽
US4332662A (en) Electrolytic cell having a depolarized cathode
JP2002275670A (ja) イオン交換膜電解槽および電解方法
CN111032919B (zh) 电解池及电解池用电极板
JP3421021B2 (ja) 塩化アルカリの電解方法
CN103880121B (zh) 水处理系统与方法
JPS5947037B2 (ja) 電解方法
JP2004027267A (ja) ガス拡散陰極を備えた食塩電解槽
JP4115686B2 (ja) 電極構造体及び該構造体を使用する電解方法
CN114481177A (zh) 一种气体扩散电极结合微通道电化学制备过氧化氢的反应装置及其应用
JP2022152820A (ja) ガス拡散電極食塩電解2室法の電解槽およびその利用
CN107001078A (zh) 电极和电解装置
KR102590805B1 (ko) 발전 잠열을 이용한 수증기 전기분해 수소 생성 장치 및 이를 이용하여 생산되는 수소의 생산량 예측 방법
JP5108043B2 (ja) イオン交換膜型電解槽
JP2004211190A (ja) 水電解装置
JPH06200393A (ja) 次亜塩素酸塩製造用電解槽
JP6021149B2 (ja) 電解装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776655

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509359

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018776655

Country of ref document: EP

Effective date: 20191030

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载