+

WO2018180788A1 - 溶接性に優れた水素用高Mnオーステナイト系ステンレス鋼、それを用いた溶接継手および水素用機器、並びに溶接継手の製造方法 - Google Patents

溶接性に優れた水素用高Mnオーステナイト系ステンレス鋼、それを用いた溶接継手および水素用機器、並びに溶接継手の製造方法 Download PDF

Info

Publication number
WO2018180788A1
WO2018180788A1 PCT/JP2018/011084 JP2018011084W WO2018180788A1 WO 2018180788 A1 WO2018180788 A1 WO 2018180788A1 JP 2018011084 W JP2018011084 W JP 2018011084W WO 2018180788 A1 WO2018180788 A1 WO 2018180788A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
less
stainless steel
austenitic stainless
mass
Prior art date
Application number
PCT/JP2018/011084
Other languages
English (en)
French (fr)
Inventor
松本 和久
秦野 正治
潤 中村
Original Assignee
新日鐵住金ステンレス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金ステンレス株式会社 filed Critical 新日鐵住金ステンレス株式会社
Priority to US16/493,265 priority Critical patent/US11225705B2/en
Priority to ES18776105T priority patent/ES2987598T3/es
Priority to EP18776105.1A priority patent/EP3604595B1/en
Priority to JP2019509603A priority patent/JP6741860B2/ja
Priority to KR1020197027404A priority patent/KR102265769B1/ko
Priority to CN201880019978.9A priority patent/CN110462082B/zh
Publication of WO2018180788A1 publication Critical patent/WO2018180788A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present invention relates to an austenitic stainless steel that is used in a high-pressure hydrogen gas and liquid hydrogen environment and has excellent weldability and hydrogen embrittlement resistance, a welded joint using the same, a hydrogen device, and a method for producing a welded joint.
  • This application claims priority based on Japanese Patent Application No. 2017-069239 filed in Japan on March 30, 2017, the contents of which are incorporated herein by reference.
  • cost reduction of fuel cell vehicles and hydrogen stations is indispensable for the dissemination and autonomous development of hydrogen energy society centering on future fuel cell vehicles.
  • metal materials used in a hydrogen embrittlement environment are required to have higher strength in order to reduce the amount of steel used by reducing the size and thickness of various devices.
  • cost reduction can be expected by reducing the number of joint parts such as piping. In addition to these, if the piping can be changed from the current seamless pipe to the TIG welded pipe, further cost reduction can be expected.
  • SUS316 austenitic stainless steel described in the example standard is expensive because it contains a large amount of rare metals Ni and Mo. Furthermore, since the solution treatment material does not satisfy the tensile strength required for the use of high-pressure hydrogen piping, it is used after being cold worked. However, the welded portion cannot be cold worked.
  • Patent Document 1 International Publication No. 2013/005570
  • the stainless steel disclosed in Patent Document 1 is a stainless steel for high-pressure hydrogen gas aimed at increasing strength by solid solution strengthening of N. While ensuring good weldability and hydrogen embrittlement resistance, it has a strength superior to that of SUS316 stainless steel.
  • the substantial Ni content of the stainless steel described in Patent Document 1 is 10% or more and the Cr content is 20% or more, it is expensive.
  • Patent Document 2 Japanese Patent Laid-Open No. 2009-133001 discloses stainless steel having improved hydrogen embrittlement resistance by utilizing Ti and Nb carbonitride having a size of 1 ⁇ m or more. Moreover, since the stainless steel described in Patent Document 2 omits the addition of Mo to SUS316 stainless steel, it is excellent in economic efficiency. However, the tensile strength is the same level as SUS316 stainless steel.
  • Patent Document 3 Japanese Unexamined Patent Application Publication No. 2014-47409 discloses a stainless steel for hydrogen using precipitation strengthening by an ⁇ phase intermetallic compound.
  • an additional heat treatment is required, and application to a welded structure is difficult.
  • the stainless steel described in Patent Document 3 requires a high alloying cost because it requires addition of 20% or more of Ni.
  • Patent Document 4 Japanese Patent Laid-Open No. 2015-171729 discloses an austenitic stainless steel welded joint.
  • the existence state of the ⁇ ferrite phase in the weld zone is controlled by adjusting the components and limiting the heat input during welding, thereby enhancing the hydrogen embrittlement resistance.
  • this knowledge assumes welding in the presence of a welding material, and does not assume non-filler welding without a welding material.
  • the present invention is an austenitic stainless steel for hydrogen that has excellent weldability that combines hydrogen resistance and economy in addition to non-filler weldability, which is a new problem, and a welded joint and hydrogen equipment using the same, and welding.
  • a method for manufacturing a joint is provided.
  • a hydrogen device comprising the austenitic stainless steel according to any one of [1] to [5], and used in a high-pressure hydrogen gas and liquid hydrogen environment.
  • a hydrogen device comprising the welded joint according to [6] above and used in a high-pressure hydrogen gas and liquid hydrogen environment.
  • the hydrogen device according to [9] wherein the hydrogen device is any one of a tank body, a liner, a pipe, a valve, a steel plate, and a heat exchanger.
  • a high-Mn austenitic stainless steel for hydrogen that has excellent non-filler weldability and has both hydrogen resistance and economy.
  • a weld joint and hydrogen equipment having excellent hydrogen resistance can be provided using this austenitic stainless steel.
  • As a device for hydrogen it can be applied to a tank body, a liner, piping, a valve, a steel plate, a heat exchanger, etc., and contributes to improvement of hydrogen resistance.
  • (A) S, P, O, Sn, Zn, and Pb contained in the austenitic stainless steel increase the penetration depth of the steel material during welding. That is, it has the effect of improving weldability.
  • Ca, Al and Si contained in austenitic stainless steel are indispensable elements for deoxidation of the steel material, but reduce the penetration depth of the steel material during welding. When the penetration depth of the steel material is excessive, the steel material melts down. On the other hand, when the penetration depth of the steel material is insufficient, a gap is generated between the base materials to be welded, and the strength of the welded joint is insufficient.
  • the high Mn austenitic stainless steel for hydrogen is C: 0.3% or less, Si: 0.1 to 1.5%, Mn: 5.5 to 20% by mass%.
  • P 0.050% or less, S: 0.005% or less, Cr: 10-20%, Ni: 4.0-12%, N: 0.40% or less, Cu: 4.0% or less, O : A basic composition containing 0.02% or less, Ca: 0.01% or less, and Al: 0.3% or less is preferred.
  • (D) Moreover, hydrogen penetrates into steel by exposing the steel material to high-pressure hydrogen for a long time at a hydrogen station or the like. Since the crystal grain size is larger in the welded part than in the base material part, hydrogen easily enters the grain boundary.
  • the inventor of the present invention can suppress the segregation of hydrogen by preliminarily segregating Cu, which easily segregates at grain boundaries, and Mn, which has strong interaction with Cu and segregates at the grain boundaries together with Cu, at the grain boundaries of the weld. Have newly found out. That is, since Mn and Cu segregate and fill sites where hydrogen existing at the grain boundary of the welded portion can enter, hydrogen can be prevented from entering.
  • the chemical composition at the grain boundary of the welded part includes [Mn]: 8.0 to 25.0% and [Cu]: 2.0 to 8.0% in mass%.
  • Mn and Cu contained in the grain boundary can be grasped by observing the fracture surface of the grain boundary with an analyzer such as AES (Auger Electron Spectroscopy) and specifying the mass% of Mn and Cu contained in the fracture surface. .
  • the upper limit of the heat treatment time is preferably 10 minutes or less. Therefore, in order to obtain a welded joint made of high-Mn austenitic stainless steel having excellent non-filler weldability and excellent in hydrogen resistance and economy in the present embodiment, a desirable composition described below It is preferable to heat-treat the stainless steel satisfying the above conditions at 900 to 980 ° C. for 1 to 10 minutes after welding.
  • % display of the content of each element means “mass%”. Further, when the content range of each element is expressed using “to”, the upper limit and the lower limit thereof are included unless otherwise specified. Therefore, when described as 0.1 to 1.5%, the range means 0.1% or more and 1.5% or less.
  • C is an element effective for stabilizing the austenite phase and contributes to improvement of hydrogen embrittlement resistance.
  • solid solution strengthening contributes to an increase in the strength of the steel material.
  • the C content is preferably 0.01% or more.
  • excessive C content promotes grain boundary precipitation of Cr-based carbides during welding, and reduces the corrosion resistance and toughness of the welded portion. For this reason, the upper limit of C content needs to be 0.3%. A more preferable upper limit of the C content is 0.2%.
  • Si is an element effective for stabilizing the austenite phase, and contributes to the improvement of hydrogen embrittlement resistance. Moreover, it has a deoxidation effect at the time of smelting. In order to obtain these effects, the Si content needs to be 0.1% or more. More preferably, it is 0.3% or more. On the other hand, when an excessive amount of Si is contained, generation of intermetallic compounds such as ⁇ phase is promoted, and hot workability and toughness are reduced. Further, during welding, the residual temperature of the liquid phase is lowered to promote the generation of cracks. For this reason, the upper limit of Si content needs to be 1.5%. A more preferable upper limit of the Si content is 1.1%.
  • Mn is an effective element for stabilizing the austenite phase and contributes to the improvement of hydrogen embrittlement resistance. Moreover, in order to enlarge the solid solubility limit of N, it contributes indirectly to high intensity
  • P is an element that increases the penetration depth at the time of welding.
  • P is preferably contained in an amount of 0.010% or more.
  • the upper limit of the P content needs to be 0.050%.
  • a more preferable upper limit of the P content is 0.030%.
  • S is an element that increases the penetration depth during welding. To obtain this effect, S is preferably contained in an amount of 0.0002% or more. On the other hand, the addition of an excessive amount of S promotes crack formation during welding. In addition to this, in order to reduce hot workability, the upper limit of the S content must be 0.005% or less, and more preferably 0.004% or less.
  • Cr is an element indispensable for obtaining the corrosion resistance required for stainless steel. Moreover, it contributes to high strength of austenitic stainless steel. In order to obtain these effects, the Cr content needs to be 10% or more. More preferably, it is 13% or more. On the other hand, when an excessive amount of Cr is contained, grain boundary precipitation of Cr-based carbonitride during welding is promoted, and the corrosion resistance and toughness of the welded portion are reduced. For this reason, the upper limit of Cr content needs to be 20% or less. A more preferred upper limit is 18% or less.
  • Ni is an element having a large effect of improving the hydrogen embrittlement resistance of austenitic stainless steel. In order to obtain this effect sufficiently, the Ni content needs to be 4.0% or more. The Ni content is preferably 5.0% or more. On the other hand, the addition of an excessive amount of Ni causes an increase in material cost, so the upper limit of the Ni content is 12%. A more preferable upper limit is 8.0% or less.
  • N is an element effective for stabilizing the austenite phase and improving the corrosion resistance.
  • solid solution strengthening contributes to an increase in strength.
  • the N content is preferably 0.01% or more.
  • the N content is preferably 0.03% or more.
  • the addition of an excessive amount of N promotes excessive formation of Cr-based nitrides, and deteriorates the hydrogen embrittlement resistance, corrosion resistance, and toughness of the austenite phase. For this reason, the upper limit of N content needs to be 0.40%.
  • the N content is more preferably 0.30% or less.
  • Cu is an element effective for stabilizing the austenite phase.
  • the Cu content is preferably 0.2% or more.
  • the addition of an excessive amount of Cu leads to a decrease in strength and the hot workability is also impaired, so the upper limit of the Cu content needs to be 4.0%.
  • the Cu content is more preferably 3.0% or less.
  • O is an element that increases the penetration depth of the steel material during welding. For this reason, it is necessary to contain 0.0010% or more. Preferably it is 0.0015% or more.
  • O forms an oxide in steel, thereby reducing the hot workability and toughness of the austenite phase. For this reason, it is necessary to restrict the upper limit of the O (oxygen) content to 0.02% or less.
  • the O content is preferably 0.010% or less.
  • ⁇ Ca 0.01% or less> Ca is an element effective for deoxidation and improving hot workability. For this reason, it is preferable to make the minimum of content into 0.0001% or more.
  • the upper limit of Ca needs to be 0.01% or less. A more preferable upper limit is 0.008% or less.
  • ⁇ Al: 0.3% or less> Al is an element effective for deoxidation and improvement of hot workability. For this reason, it is preferable to make the minimum of content into 0.001% or more.
  • the upper limit of Al needs to be 0.3% or less.
  • a more preferable upper limit is 0.2% or less. It is preferable that one or both of Ca and Al is included in the content.
  • Formula (1) formulates the contributions of various elements to the resistance to hydrogen embrittlement in high Mn austenitic stainless steel.
  • the value of the formula (1) is 29.3 or more, good hydrogen resistance is exhibited.
  • a more preferred lower limit is 30.0.
  • the value in [] indicates the numerical value of the content (mass%) of each element, but 0 is not included for elements not contained.
  • Mo is an element contributing to an increase in strength and corrosion resistance of austenitic stainless steel.
  • the addition of Mo causes an increase in alloy cost.
  • Mo promotes the formation of ⁇ ferrite phase, leading to a decrease in hydrogen embrittlement resistance. Therefore, Mo can be added as necessary, and the Mo content in that case is preferably 2.0% or less.
  • Mo is an element inevitably mixed from scrap raw materials. Excessive reduction of the Mo content invites restrictions on the melting raw material and leads to an increase in manufacturing cost. Therefore, the lower limit when Mo is not intentionally added is 0%, and the upper limit is preferably 0.05%.
  • the value in [] indicates the value of the content (% by mass) of each element, but 0 for elements not contained.
  • preferred upper limits are Sn: 0.01% or less, Pb: 0.001% or less, and Zn: 0.002% or less.
  • Sn, Pb, Zn it is preferable to contain one or more selected from Sn, Pb, Zn, and the Sn, Pb, Zn content is Sn: 0.001 A range of -0.01%, Pb: 0.0001-0.001%, and Zn: 0.0003-0.002% are preferable.
  • the penetration depth is sufficient when welding the steel material, and a weld bead is confirmed on the back side of the steel material.
  • the value of the formula (2) exceeds the upper limit of 1.2 shown in the above formula, the penetration during welding becomes excessive, and the steel material may be burned out.
  • the value of the expression (2) is below the lower limit of 0.18 shown by the above expression, the penetration during welding becomes insufficient, and no weld bead is confirmed on the back side of the steel material.
  • Ti, Nb, V, W 1.0% or less> Ti, Nb, V, and W are effective elements for increasing the strength by precipitating as solid solution or carbonitride in steel. As needed, you may contain 1 type, or 2 or more types of elements chosen from these. However, if the content of each of Ti, Nb, V, and W is more than 1.0%, the produced carbonitride decreases the manufacturability during hot working. Therefore, when Ti, Nb, V, and W are contained, the upper limit of each content of Ti, Nb, V, and W needs to be 1.0% or less. The upper limit of these preferable contents is 0.5% or less, respectively.
  • Co is an element effective for improving the corrosion resistance, and may be contained if necessary. In order to acquire this effect, it is preferable to contain 0.04% or more of Co. On the other hand, containing Co in an excessive amount promotes the formation of a work-induced martensite phase and reduces the resistance to hydrogen embrittlement. For this reason, the upper limit of the amount of Co needs to be 1.0% or less. The upper limit of the preferable amount of Co is 0.8% or less.
  • Sb is an element effective for improving the oxidation resistance, and may be contained as necessary. In order to obtain this effect, Sb is preferably contained in an amount of 0.0005% or more. On the other hand, containing Sb in an excessive amount reduces hot workability. For this reason, it is necessary to make the upper limit of the Sb amount 0.01% or less. A preferable upper limit of the amount of Sb is 0.008% or less.
  • the welding method at the time of manufacturing the welded joint is not particularly limited, but non-filler welding such as TIG (Tungsten Inert Gas) welding or laser welding is preferable.
  • the grain boundary segregation peak of Mn and Cu is 950 ° C. at the grain boundary of the weld zone of the high Mn austenitic stainless steel.
  • the upper limit of the heat treatment time is preferably 10 minutes or less.
  • the heat treatment temperature a range of 900 to 980 ° C. can be selected, and it is preferable that the heat treatment time is set to a range of 1 to 10 minutes after selecting the range of 900 to 980 ° C.
  • the heat treatment temperature is less than 900 ° C., a heat treatment time exceeding 10 minutes is required, and the grain boundary segregation concentration becomes too low.
  • the heat treatment temperature exceeds 980 ° C. there arises a problem that sufficient segregation of Mn and Cu does not occur at the crystal grain boundary of the weld.
  • the chemical composition at the grain boundary of the weld zone preferably includes [Mn]: 8.0 to 25.0% and [Cu]: 2.0 to 8.0% by mass%. That is, in the chemical composition of the grain boundary of the weld zone, the Mn content is preferably 8.0 to 25.0% and the Cu content is preferably 2.0 to 8.0%.
  • the amount of Mn and the amount of Cu at the grain boundary of the welded portion can be surely brought into the above-described ranges.
  • Mn and Cu are segregated at the grain boundaries in an amount within this range, hydrogen is difficult to be trapped even if hydrogen tries to enter the grain boundaries from the environment, as described above, and hydrogen-induced breakdown starting from the grain boundaries. Can be suppressed.
  • the amount of Mn is 10.0-25.0% in the above range, and the amount of Cu is 3.0-8.0% in the above range, so that the hydrogen resistance can be particularly improved. .
  • the solidification crack at the time of welding can be prevented, the welding depth of the steel material at the time of welding can be made into an appropriate depth, and the excellent weldability can be ensured, and the outstanding weld strength can be obtained.
  • the austenitic stainless steel and welded joint which have said effect can be provided.
  • liquid hydrogen tank main bodies such as a hydrogen station, a liner, piping, a valve, a steel plate, a heat exchanger, etc.
  • a hydrogen device such as a liquid hydrogen tank main body such as a hydrogen station, liner, piping, valve, steel plate, and heat exchanger, a hydrogen device that is unlikely to cause hydrogen-induced cracks can be provided.
  • the obtained cold-rolled annealed plate was used as a test material, and the weldability was evaluated.
  • the heat input of welding was 5 kJ / cm, and a welded joint was produced by butt TIG welding.
  • the back side of the welded joint was visually observed, and those having a back beat width of 1.0 mm or more were judged as “A” (excellent) because the weldability was extremely good.
  • the back beat width was 0.5 mm or more, it was judged as “B” (good, fair, pass).
  • a case where the back beat width was less than 0.5 mm or a case where burnout occurred was judged as “C” (poor, fail) as a failure.
  • Hydrogen resistance was evaluated for the test materials that passed the weldability.
  • a JIS No. 13 B tensile test piece was sampled so that the welded part was located at the center of the parallel part of the test piece.
  • Tensile specimens were exposed in 95 MPa hydrogen at 300 ° C. for 72 hours to allow hydrogen to penetrate into the steel. After completion of the exposure test, the test piece was stored frozen until just before the tensile test.
  • a comparative material comparative material
  • a JIS No. 13 B tensile test piece was collected from the same test material so that the welded portion was located at the center of the parallel portion of the test piece. This comparison material was not exposed to hydrogen.
  • the tensile test was performed under the conditions of a test temperature of ⁇ 40 ° C., a test environment: air, and a strain rate of 5 ⁇ 10 ⁇ 5 / s.
  • the value of “(breaking elongation of test piece exposed to hydrogen / breaking elongation of test piece not exposed to hydrogen) ⁇ 100 (%)” was calculated. Those having a value of 80% or more were evaluated as “B” (good, fair, pass) as good resistance to hydrogen embrittlement. The value of 90% or more was evaluated as “A” (excellent) as extremely good. Those with this value less than 80% were evaluated as “C” (poor, fail) with a failure.
  • Table 5 shows the test results of weldability and hydrogen resistance. “-” Means that the test is not performed. In Tables 2 and 4, the calculated values of the above formula (1) and the calculated values of the formula (2) are shown together.
  • concentrations of Mn and Cu in this analysis mean mass% in all detected elements.
  • Table 6 to be described later shows the results of measurement of Mn content and Cu content at grain boundaries and water resistance when heat treatment was performed at 950 ° C. for 10 seconds to 10 minutes, 900 ° C. for 10 minutes, or 980 ° C. for 1 minute. The result of a feature test is shown. The conditions for the hydrogen resistance test performed here were the same as those for the hydrogen resistance test described above.
  • Steel types 1 to 18 having the compositions shown in Tables 1 to 4 are samples that satisfy the component ranges defined in this embodiment. Samples of steel types 1 to 18 had good or very good both weldability and hydrogen embrittlement resistance. Steel types 1 to 18 shown in Tables 1 to 4 have a Cr content of 20% or less, and suppress the amount of expensive Mo to 1.5% or less (2.0% or less). Is suppressed to about 4 to 11% (4.0 to 12%). For this reason, it has the characteristics that it is more economical than the stainless steels of the prior art including the SUS316 series containing a large amount of Ni, Cr, and Mo, and was able to exhibit excellent weldability and hydrogen resistance.
  • the amount of Mn of steel type 19 exceeds the desirable range of this embodiment. As a result, hydrogen-induced brittle fracture starting from the ⁇ phase generated during the tensile test occurred and the hydrogen embrittlement resistance was rejected.
  • the amount of Cr in steel type 21 exceeds the desirable range of this embodiment.
  • a Cr-deficient layer was formed by the formation of Cr-based precipitates during welding. Then, the hydrogen-induced cracks that originated from the Cr-deficient layer part resulted in a decrease in ductility, which was rejected.
  • the amount of Ni in the steel type 23 is below the desirable range of this embodiment. As a result, the deformed structure form of the austenite phase is easily affected by hydrogen, resulting in a decrease in ductility due to hydrogen and failure of hydrogen embrittlement resistance.
  • N amount of steel type 25 exceeds the desirable range of this embodiment.
  • the deformed structure was easily affected by hydrogen.
  • the hydrogen resistance was better when the heat treatment time was 1 to 10 minutes than when the heat treatment time was 10 s (seconds). .
  • the amount of Mn present at the grain boundary of the weld was 8% or more.
  • the amount of Mn present at the grain boundary of the welded portion is 10% or more, and it can be seen that hydrogen resistance can be improved by segregating a large amount of Mn at the grain boundary.
  • the amount of Cu existing at the grain boundary of the welded portion is 3% or more, and it can be seen that hydrogen resistance can be improved by segregating a large amount of Cu at the grain boundary. From this, it was found that by segregating a large amount of Mn and Cu at the grain boundary of the welded portion, the segregation of hydrogen can be suppressed and the hydrogen resistance as a welded joint can be improved.
  • an austenitic stainless steel excellent in weldability and hydrogen embrittlement resistance that can be applied to a tank body and liner of high-pressure hydrogen gas and liquid hydrogen, piping, valves, steel plates, heat exchangers, etc. It is possible to provide a welded joint used, a method for manufacturing the welded joint, and an apparatus for hydrogen using the stainless steel. Therefore, the present embodiment can be suitably applied to welded joints and devices used in high-pressure hydrogen gas and liquid hydrogen environments and manufacturing processes thereof.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Arc Welding In General (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

このオーステナイト系ステンレス鋼は、質量%にて、C:0.3%以下、Si:0.1~1.5%、Mn:5.5~20%、P:0.050%以下、S:0.005%以下、Cr:10~20%、Ni:4.0~12%、N:0.40%以下、Cu:4.0%以下、O:0.02%以下を含み、Ca:0.01%以下、Al:0.3%以下をいずれか一方または両方を含み、残部がFeおよび不可避的不純物からなり、以下の(1)式を満たす。 [Ni]+[Cu]+12.93[C]+1.11[Mn]+0.72[Cr]+0.88[Mo]-0.27[Si]+7.55[N]≧29.3 ・・・(1)式

Description

溶接性に優れた水素用高Mnオーステナイト系ステンレス鋼、それを用いた溶接継手および水素用機器、並びに溶接継手の製造方法
 本発明は、高圧水素ガスおよび液体水素環境下で使用され、優れた溶接性および耐水素脆化特性を有するオーステナイト系ステンレス鋼とそれを用いた溶接継手および水素用機器と溶接継手の製造方法に関する。
 本願は、2017年3月30日に、日本に出願された特願2017-069239号に基づき優先権を主張し、その内容をここに援用する。
 近年、地球温暖化防止の観点から、温室効果ガス(CO、NO、SO)の排出を抑制するため、水素をエネルギーとして利用する技術開発が進んでいる。このような背景から、水素の貯蔵・輸送に用いる金属材料の開発が期待されている。
 国内では燃料電池自動車の市販が開始され、水素ステーションの建設が進行中である。
 また、現在では水素を高圧ガスとして貯蔵することが一般的であるが、多量の水素を液体水素として貯蔵しておき、必要な際に液体水素を昇圧して70MPa以上の高圧水素ガスとして供給可能な水素ステーションも実証段階にある。
 一方、将来の燃料電池自動車を中心とした水素エネルギー社会の普及および自律的発展のためには、燃料電池自動車や水素ステーションのコスト削減が必要不可欠である。つまり、水素脆化環境下で用いる金属材料に対しては、各種機器の小型化・薄肉化による鋼材の使用量の削減のため、より一層高い強度が求められている。また、水素ステーションの各器機に溶接構造を採用することで、配管などの継手部品数の削減による低コスト化が期待できる。これらに加え、配管などを現行のシームレス管からTIG溶接管へ変更できれば、より一層のコストダウンが期待できる。
 例示基準に記載のSUS316系オーステナイト系ステンレス鋼はレアメタルであるNiとMoを多量に含んでいるため高価である。さらに、高圧水素配管の用途で要求される引張強さを溶体化処理材では満足しないため、冷間加工を施して使用される。しかしながら、溶接部には冷間加工を施すことができない。
 特許文献1(国際公開第2013/005570号)で開示されたステンレス鋼は、Nの固溶強化による高強度化を指向した高圧水素ガス用ステンレス鋼である。良好な溶接性および耐水素脆化特性を確保しつつ、SUS316系ステンレス鋼を上回る強度を有している。しかしながら、特許文献1に記載のステンレス鋼の実質のNi量は10%以上、Cr量は20%以上であるため、高価である。
 特許文献2(特開2009-133001号公報)では、1μm以上の大きさのTiおよびNb炭窒化物の活用により耐水素脆化特性を向上させたステンレス鋼が開示されている。また、特許文献2に記載のステンレス鋼はSUS316系ステンレス鋼に対してMo添加を省略しているため、経済性に優れている。しかしながら、引張強さはSUS316系ステンレス鋼と同等レベルである。
 特許文献3(特開2014-47409号公報)では、η相金属間化合物による析出強化を活用した水素用ステンレス鋼が開示されている。しかしながら、η相金属間化合物を析出させるためには追加の熱処理が必要であり、溶接構造物への適用は困難である。また、特許文献3に記載されているステンレス鋼は20%以上のNiの添加が必要となるため合金コストが大きい。
 特許文献4(特開2015-171729号公報)では、オーステナイト系ステンレス鋼の溶接継手が開示されている。特許文献4に記載の技術では、成分調整および溶接時の入熱制限により、溶接部におけるδフェライト相の存在状態を制御し、耐水素脆化特性を高めている。しかしながら、この知見は溶接材料有りの場合の溶接を想定したものであり、溶接材料無しのノンフィラー溶接を想定したものではない。
 したがって、水素用途に鋼板を溶接して使用する場合、新たな課題としてノンフィラー溶接性が必要となる。
国際公開第2013/005570号 特開2009-133001号公報 特開2014-047409号公報 特開2015-171729号公報
 本発明は、新たな課題であるノンフィラー溶接性に加えて耐水素性、経済性を兼備する溶接性に優れた水素用オーステナイト系ステンレス鋼と、それを用いた溶接継手および水素用機器と、溶接継手の製造方法を提供するものである。
 本発明は、以上の知見に基づいて完成したものであり、上記課題を解決する本発明の一態様の要旨は、以下の通りである。
[1]質量%にて、C:0.3%以下、Si:0.1~1.5%、Mn:5.5~20%、P:0.050%以下、S:0.005%以下、Cr:10~20%、Ni:4.0~12%、N:0.40%以下、Cu:4.0%以下、O:0.02%以下を含み、Ca:0.01%以下、Al:0.3%以下をどちらか一方または両方を含み、残部がFeおよび不可避的不純物からなり、以下の(1)式を満たすことを特徴とする溶接性に優れた水素用高Mnオーステナイト系ステンレス鋼。
 [Ni]+[Cu]+12.93[C]+1.11[Mn]+0.72[Cr]+0.88[Mo]-0.27[Si]+7.55[N]≧29.3 ・・・(1)式
 ここで、[Si]、[Ni]、[Cu]、[C]、[Mn]、[Cr]、[Mo]、[N]はそれぞれの元素の含有量(質量%)を示し、含有しない元素は0とする。
[2]質量%にて、Mo:2.0%以下を含む上記[1]に記載の溶接性に優れた水素用高Mnオーステナイト系ステンレス鋼。
[3]Sn、Zn、Pbから成る群から選択される1種または2種以上を以下の(2)式を満たす含有量で含有する上記[1]また[2]に記載の溶接性に優れた水素用高Mnオーステナイト系ステンレス鋼。
 1.2≧29([S]+[P])+4[O]-18[Ca]-0.4[Al]-0.02[Si]+5([Sn]+[Zn]+[Pb])≧0.18 ・・・(2)式
 ここで、[S]、[P]、[O]、[Ca]、[Al]、[Si]、[Sn]、[Zn]、[Pb]はそれぞれの元素の含有量(質量%)を示し、含有しない元素は0とする。
[4]以下の群から選択される1種または2種以上を含むことを特徴とする上記[1]~[3]のいずれかに記載の溶接性に優れた水素用高Mnオーステナイト系ステンレス鋼。
 第1群:質量%にて、Ti:1.0%以下、Nb:1.0%以下、V:1.0%以下、W:1.0%以下のうち1種または2種以上、
 第2群:質量%にて、Co:1.0%以下、
 第3群:質量%にて、Sb:0.01%以下。
[5]高圧水素ガスおよび液体水素環境中で用いられることを特徴とする上記[1]~[4]のいずれかに記載の溶接性に優れた水素用高Mnオーステナイト系ステンレス鋼。
[6]上記[1]~[5]のいずれかに記載のオーステナイト系ステンレス鋼からなる溶接継手であって、溶接部の粒界に化学組成として、質量%にて、[Mn]:8.0~25.0%、[Cu]:2.0~8.0%を含むことを特徴とする溶接継手。
[7]上記[1]~[5]のいずれかに記載のオーステナイト系ステンレス鋼からなり、高圧水素ガスおよび液体水素環境中で用いられることを特徴とする水素用機器。
[8]前記水素用機器がタンク本体、ライナー、配管、バルブ、鋼板および熱交換器のいずれかであることを特徴とする上記[7]に記載の水素用機器。
[9]上記[6]に記載の溶接継手を備え、高圧水素ガスおよび液体水素環境中で用いられることを特徴とする水素用機器。
[10]前記水素用機器がタンク本体、ライナー、配管、バルブ、鋼板および熱交換器のいずれかであることを特徴とする上記[9]に記載の水素用機器。
[11]上記[1]~[5]のいずれかに記載のオーステナイト系ステンレス鋼を溶接する工程と、次いで900~980℃で1~10分の熱処理を行う工程を有し、前記熱処理により、溶接部の粒界に化学組成として、質量%にて、[Mn]:8.0~25.0%、[Cu]:2.0~8.0%を含有する粒界を得ることを特徴とする溶接継手の製造方法。
 本発明の一態様によれば、優れたノンフィラー溶接性を有し、耐水素性、経済性を兼備する水素用高Mnオーステナイト系スレンレス鋼を提供できる。また、このオーステナイト系ステンレス鋼を用いて耐水素性に優れた溶接継手、水素用機器を提供できる。
 水素用機器として、タンク本体、ライナー、配管、バルブ、鋼板、熱交換器などに適用することができ、これらの耐水素性の向上に寄与する。
 以下、本発明の実施形態について、詳細に説明する。
 本発明者らは、前記した課題を解決するため、オーステナイト系ステンレス鋼の溶接性および耐水素脆化特性におよぼす各種合金元素の影響について実験と検討を重ね、本発明を完成させた。以下に本実施形態で得られた知見について説明する。
(a)オーステナイト系ステンレス鋼に含まれるS、P、O、Sn、Zn、Pbは溶接時の鋼材の溶け込み深さを増加させる。すなわち、溶接性を高める効果を有する。
 一方、オーステナイト系ステンレス鋼に含まれるCa、Al、Siは鋼材の脱酸に不可欠な元素であるが、溶接時の鋼材の溶け込み深さを減少させる。鋼材の溶け込み深さが過大である場合、鋼材の溶け落ちが生じる。一方、鋼材の溶け込み深さが不十分である場合、溶接しようとする母材同士に隙間が生じ、溶接継手の強度が不足する。
 このため、本実施形態に係る水素用高Mnオーステナイト系スレンレス鋼は、質量%にて、C:0.3%以下、Si:0.1~1.5%、Mn:5.5~20%、P:0.050%以下、S:0.005%以下、Cr:10~20%、Ni:4.0~12%、N:0.40%以下、Cu:4.0%以下、O:0.02%以下を含み、Ca:0.01%以下、Al:0.3%以下をどちらか一方または両方を含む基本組成であることが好ましい。
(b)さらに、オーステナイト系ステンレス鋼に対しS、P、O、Sn、Zn、Pbを過剰な量で添加すると、溶接時の凝固割れを招く。したがって、優れた溶接性を発現できる成分範囲を求めた結果、オーステナイト系ステンレス鋼において上述の基本組成範囲を満足させた上で、以下の(2)式を満たすことが重要であることを新たに知見した。
 1.2≧29([S]+[P])+4[O]-18[Ca]-0.4[Al]-0.02[Si]+5([Sn]+[Zn]+[Pb])≧0.18 ・・・(2)式
 ここで、[S]、[P]、[O]、[Ca]、[Al]、[Si]、[Sn]、[Zn]、[Pb]はそれぞれの元素の含有量(質量%)を示し、含有しない元素は0とする。
(c)オーステナイト系ステンレス鋼における耐水素性については、各種の合金元素の影響について、耐水素性を発現できる成分範囲を求めた結果、上述の基本組成範囲を満足させた上で、以下の(1)式を満たすことが重要であることを新たに知見した。
 [Ni]+[Cu]+12.93[C]+1.11[Mn]+0.72[Cr]+0.88[Mo]-0.27[Si]+7.55[N]≧29.3 ・・・(1)式
 ここで、[Ni]、[Cu]、[C]、[Mn]、[Cr]、[Mo]、[Si]、[N]はそれぞれの元素の含有量(質量%)を示し、含有しない元素は0とする。
(d)また、水素ステーション等で鋼材が長期間高圧水素に曝されることで鋼中に水素が侵入する。溶接部においては母材部と比較して結晶粒径が大きいため、粒界に水素が侵入しやすい。しかし粒界に偏析しやすいCuと、Cuとの相互作用が強く、Cuと共に粒界に偏析するMnとを溶接部の粒界に予め偏析させることで、水素の偏析を抑制できることを本発明者らは新たに知見した。即ち、溶接部の粒界に存在する水素が侵入可能なサイトをMnやCuが偏析して埋めるので、水素の侵入を抑制できる。
 一方、これら元素(Mn、Cu)の過剰な粒界偏析は粒界強度を弱め、かえって粒界破壊を助長する。したがって、溶接部の粒界における化学組成として、質量%にて、[Mn]:8.0~25.0%、[Cu]:2.0~8.0%を含むことが好ましい。
 粒界に含まれるMnやCuは粒界の破断面をAES(Auger Electron Spectroscopy)などの分析装置で観察し、破断面に含まれるMnやCuの質量%を特定することで把握することができる。
(e)また、本発明者の研究により、前記溶接部の粒界において上述したMnとCuを特定量含む化学組成を得るためには、溶接部に対して熱処理を実施する必要があることが分かった。高Mnオーステナイト系ステンレス鋼において、Mn、Cuの粒界偏析のピークは950℃である。粒界に予めMn、Cuを偏析させることで、鋼中に侵入した水素が粒界にトラップされるのを防ぎ、粒界を起点とした水素起因の破壊を抑制することができる。したがって、本実施形態の温度(900~980℃)で1分以上の熱処理を行うことが好ましい。一方、Mn、Cuは3分以上の熱処理で粒界偏析濃度が飽和する。したがって、過剰な時間の熱処理は生産性を低下させるため、熱処理時間の上限は10分以下とすることが好ましい。
 従って、本実施形態で目的とする優れたノンフィラー溶接性を有し、耐水素性に優れ経済性に優れた高Mnオーステナイト系ステンレス鋼からなる溶接継手を得るためには、以下に説明する望ましい組成を満足するステンレス鋼に対し、溶接後、900~980℃で1~10分の熱処理を施すことが好ましい。
 以下、本実施形態の各要件について詳しく説明する。なお、各元素の含有量の「%」表示は「質量%」を意味する。また、各元素の含有量の範囲を「~」を用いて表記した場合、特に記載の無い限り、その上限と下限を含むこととする。従って、0.1~1.5%と記載した場合、その範囲は0.1%以上、1.5%以下を意味する。
<C:0.3%以下>
 Cはオーステナイト相の安定化に有効な元素であり、耐水素脆化特性の向上に寄与する。また、固溶強化により鋼材の強度上昇にも寄与する。これら効果を得るため、C含有量は0.01%以上であることが好ましい。一方、過剰なCの含有は溶接時のCr系炭化物の粒界析出を助長し、溶接部の耐食性や靭性を低下させる。このため、C含有量の上限を0.3%とする必要がある。より好ましいC含有量の上限は0.2%である。
<Si:0.1~1.5%>
 Siはオーステナイト相の安定化に有効な元素であり、耐水素脆化特性の向上に寄与する。また、製錬時の脱酸効果を有する。これら効果を得るため、Si含有量は0.1%以上とする必要がある。より好ましくは0.3%以上である。一方、過剰な量のSiを含有すると、σ相などの金属間化合物の生成を助長し、熱間加工性や靭性を低下させる。また、溶接時は液相の残存温度を低下させ、割れの生成を助長させる。このため、Si含有量の上限を1.5%とする必要がある。より好ましいSi含有量の上限は1.1%である。
<Mn:5.5~20%>
 Mnはオーステナイト相の安定化に有効な元素であり、耐水素脆化特性の向上に寄与する。また、Nの固溶限を大きくするため、高強度化に間接的に寄与する。これら効果を得るため、Mn含有量は5.5%以上とする必要がある。より好ましくは7.5%以上である。一方、過剰な量のMnを含有すると、水素脆化感受性の高いε相の生成を助長し、耐水素脆化特性を低下させる。このため、Mn含有量の上限を20%とする必要がある。より好ましいMn含有量の上限は16%である。
<P:0.050%以下>
 Pは溶接時の溶け込み深さを増加させる元素であり、本効果を得るためには0.010%以上含有することが好ましい。一方、過剰な量のPの添加は、溶接時の割れ生成を助長するため、P含有量の上限は0.050%とする必要がある。より好ましいP含有量の上限は0.030%である。
<S:0.005%以下>
 Sは溶接時の溶け込み深さを増加させる元素であり、この効果を得るためには0.0002%以上含有することが好ましい。一方、過剰な量のSの添加は、溶接時の割れ生成を助長する。これに加え、熱間加工性を低下させるため、S含有量の上限は0.005%以下とする必要があり、0.004%以下とすることがより好ましい。
<Cr:10~20%>
 Crはステンレス鋼に要求される耐食性を得るために欠くことのできない元素である。また、オーステナイト系ステンレス鋼の高強度化に寄与する。これら効果を得るため、Cr含有量は10%以上とする必要がある。より好ましくは13%以上である。一方、過剰な量のCrを含有すると、溶接時のCr系炭窒化物の粒界析出を助長し、溶接部の耐食性や靭性を低下させる。このため、Cr含有量の上限を20%以下とする必要がある。より好ましい上限は18%以下である。
<Ni:4.0~12%>
 Niは、オーステナイト系ステンレス鋼の耐水素脆化特性を向上させる効果が大きい元素である。この効果を十分に得るため、Ni含有量を4.0%以上とする必要がある。Ni含有量は5.0%以上であることが好ましい。一方、過剰な量のNiの添加は、材料コストの増加を招くため、Ni含有量の上限を12%とする。より好ましい上限は8.0%以下である。
<N:0.40%以下>
 Nは、オーステナイト相の安定化と耐食性向上に有効な元素である。また、固溶強化により、強度の上昇に寄与する。これら効果を得るため、N含有量は0.01%以上とすることが好ましい。N含有量は、好ましくは0.03%以上である。一方、過剰な量のNの添加は、Cr系窒化物の過剰な生成を促進し、オーステナイト相の耐水素脆化特性や耐食性、靭性を低下させる。このため、N含有量の上限を0.40%とする必要がある。N含有量は、より好ましくは0.30%以下である。
<Cu:4.0%以下>
 Cuは、オーステナイト相の安定化に有効な元素である。オーステナイト相の安定化により耐水素脆化特性を向上させるため、Cu含有量は0.2%以上含有することが好ましい。一方、過剰な量のCuの添加は、強度の低下につながり、熱間加工性も損なわれるため、Cu含有量の上限を4.0%とする必要がある。Cu含有量は、より好ましくは3.0%以下である。
<O:0.02%以下>
 Oは、溶接時の鋼材の溶け込み深さを増大させる元素である。このため、0.0010%以上含有させる必要がある。好ましくは0.0015%以上である。一方、Oは鋼中で酸化物を形成することで、オーステナイト相の熱間加工性および靭性を低下させる。このため、O(酸素)含有量の上限を0.02%以下に制限する必要がある。O含有量は、好ましくは、0.010%以下である。
<Ca:0.01%以下>
 Caは、脱酸および熱間加工性の向上に有効な元素である。このため、含有量の下限を0.0001%以上とすることが好ましい。一方、Caの過剰な量の添加は、溶接時の鋼材の溶け込み深さの減少および製造コストの著しい増加を招く。したがって、Caの上限を0.01%以下にする必要がある。より好ましい上限は0.008%以下である。
<Al:0.3%以下>
 Alは、脱酸および熱間加工性の向上に有効な元素である。このため、含有量の下限を0.001%以上とすることが好ましい。一方、Alの過剰な量の添加は、溶接時の鋼材の溶け込み深さの減少および製造コストの著しい増加を招く。したがって、Alの上限を0.3%以下にする必要がある。より好ましい上限は0.2%以下である。
 前記含有量にてCa及びAlのいずれか一方又は両方を含むことが好ましい。
<[Ni]+[Cu]+12.93[C]+1.11[Mn]+0.72[Cr]+0.88[Mo]-0.27[Si]+7.55[N]≧29.3 ・・・(1)式>
 (1)式は、高Mnオーステナイト系ステンレス鋼における各種元素の耐水素脆化特性に対する寄与度を数式化したものである。(1)式の値が29.3以上となった場合、良好な耐水素性を発揮する。より好ましい下限は30.0である。(1)式において[ ]の中は各元素の含有量(質量%)の数値を示すが、含有しない元素は0とする。
 必要に応じて、以下の元素を含有してもよい。
<Mo:2.0%以下>
 Moは、オーステナイト系ステンレス鋼の強度の上昇と耐食性の向上に寄与する元素である。しかしながら、Moの添加は合金コストの増加を招く。さらにMoはδフェライト相の生成を促進させ、耐水素脆化特性の低下に繋がる。したがって、必要に応じてMoを添加することができ、その場合のMo含有量は2.0%以下とすることが好ましい。一方、Moはスクラップ原料から不可避的に混入する元素である。Mo含有量の過度な低減は、溶解原料の制約を招き、製造コストの増加に繋がる。したがって、意図的にMoを添加しない場合の下限は0%であり、上限を0.05%とすることが好ましい。
<1.2≧29([S]+[P])+4[O]-18[Ca]-0.4[Al]-0.02[Si]+5([Sn]+[Zn]+[Pb])≧0.18 ・・・(2)式>
 Sn、Zn、Pbからなる群から選択される1種以上を(2)式を満たす含有量で含有してもよい。
 (2)式は各種元素の溶接性に対する寄与度を数式化したものである。Sn、Zn、Pbはいずれも溶接時に溶融部から蒸発してアークの電流密度を増加させることで鋼材の溶け込み深さを増加させる。したがって、Snは0.001%以上、Pbは0.0001%以上、Znは0.0003%以上の量で含有することが好ましい。(2)式において[ ]の中は各元素の含有量(質量%)の数値を示すが、含有しない元素については0とする。
 一方、これら元素の過剰な添加は溶接部の粒界強度を低下させ、水素含有時の粒界破壊を助長する。したがって、好ましい上限は、Sn:0.01%以下、Pb:0.001%以下、Zn:0.002%以下である。
 このため、本実施形態に係る高Mnオーステナイト系ステンレス鋼において、Sn,Pb,Znから選択される1種以上を含有することが好ましく、Sn、Pb、Znの含有量について、Sn:0.001~0.01%、Pb:0.0001~0.001%、Zn:0.0003~0.002%の範囲が好ましい。
 さらに、前記(2)式が0.18以上1.2以下の場合、鋼材の溶接時に溶け込み深さが十分となり、鋼材裏側に溶接ビードが確認される。(2)式の値が上式で示す上限の1.2を上回った場合、溶接時の溶け込みが過剰となり、鋼材の溶け落ちが生じる可能性がある。一方、(2)式の値が上式で示す下限の0.18を下回った場合、溶接時の溶け込みが不十分となり、鋼材裏側に溶接ビードが確認されなくなる。
<Ti、Nb、V、W:1.0%以下>
 Ti、Nb、V、Wは、鋼中に固溶または炭窒化物として析出し、強度を増加させるために有効な元素である。必要に応じて、これらのうちから選択される1種または2種以上の元素を含有してもよい。ただし、Ti、Nb、V、Wのそれぞれの含有量が1.0%より多くなると、生成した炭窒化物が熱間加工時の製造性を低下させる。したがって、Ti、Nb、V、Wを含有させる場合には、Ti、Nb、V、Wのそれぞれの含有量の上限を1.0%以下とする必要がある。これらの好ましい含有量の上限はそれぞれ0.5%以下である。
<Co:1.0%以下>
 Coは、耐食性の向上に有効な元素であり、必要に応じて含有してもよい。この効果を得るためには、0.04%以上のCoを含有することが好ましい。一方、Coを過剰の量で含有することは、加工誘起マルテンサイト相の生成を助長し、耐水素脆化特性を低下させる。このため、Co量の上限を1.0%以下とする必要がある。好ましいCo量の上限は0.8%以下である。
<Sb:0.01%以下>
 Sbは、耐酸化性の向上に有効な元素であり、必要に応じて含有してもよい。この効果を得るためには、Sbは0.0005%以上の量で含有することが好ましい。一方、Sbを過剰の量で含有することは、熱間加工性を低下させる。このため、Sb量の上限を0.01%以下とする必要がある。好ましいSb量の上限は0.008%以下である。
 次に前述の組成の高Mnオーステナイト系ステンレス鋼からなる溶接継手の製造方法について以下に説明する。
 溶接継手の製造時の溶接手法については特に限定されるものではないが、TIG(Tungsten Inert Gas)溶接あるいはレーザー溶接などのノンフィラー溶接であることが好ましい。高Mnオーステナイト系ステンレス鋼の溶接部の粒界において、Mn、Cuの粒界偏析のピークは950℃である。粒界に予めMn、Cuを偏析させることで、鋼中に侵入した水素が粒界にトラップされるのを防ぎ、粒界を起点とした水素起因の破壊を抑制することができる。
 したがって、溶接後、本実施形態の温度(900~980℃)で1分以上の熱処理を行うことが好ましい。一方、Mn、Cuは3分以上の熱処理で粒界偏析濃度が飽和する。したがって、過剰な時間の熱処理は生産性を低下させるため、熱処理時間の上限は10分以下とすることが好ましい。
 熱処理温度については、900~980℃の範囲を選択することができ、900~980℃の範囲を選択した上で熱処理時間を1~10分の範囲とすることが好ましい。
 熱処理温度が900℃未満の場合は、10分を超える熱処理時間が必要となり、また粒界偏析濃度が低くなりすぎる。熱処理温度が980℃を超える場合は、溶接部の結晶粒界に十分なMnおよびCuの偏析が生じないという問題を生じる。
 溶接部の粒界における化学組成として、質量%にて、[Mn]:8.0~25.0%、[Cu]:2.0~8.0%を含むことが好ましい。すなわち、溶接部の粒界の化学組成において、Mn量が8.0~25.0%であり、Cu量が2.0~8.0%であることが好ましい。上述の熱処理を施すと、溶接部の粒界のMn量、Cu量を確実に前述の範囲にすることができる。
 この範囲の量でMn、Cuを粒界に偏析させていると、上述のように環境から粒界に水素が侵入しようとしても水素がトラップされ難くなり、粒界を起点とした水素起因の破壊を抑制できる。
 Mn量については前述の範囲の中でも10.0~25.0%とし、Cu量については前述の範囲の中でも3.0~8.0%の範囲とすることで、耐水素性を特に良好にできる。
 以上の説明の高Mnオーステナイト系ステンレス鋼によれば、C、Si、Mn、P、S、Cr、Ni、Mo、N、Cuなどの基本元素をそれぞれ規定範囲の量で含有し、高価なNi、Crの含有量を従来の合金より低くしているので、経済性に優れた特徴を有する。
 また、Ni、Cu、C、Mn、Cr、Mo、Si、Nの含有量を(1)式に合うようにバランスを取りつつ含有させている。これにより耐水素性を発現できる組成としているため、耐水素性に優れたステンレス鋼を実現できる。
 また、S、P、O、Ca、Al、Si、Sn、Zn、Pbの含有量を(2)式に合うようにバランスを取りつつ含有させている。このため、溶接時の凝固割れを防ぎ、溶接時の鋼材の溶け込み深さを適正な深さにして優れた溶接性を確保でき、優れた溶接強度を得ることができる。以上により、上記の作用効果を有するオーステナイト系ステンレス鋼と溶接継手を提供できる。
 更に、溶接部において粒界に適切な量のCuとMnを偏析させた組成とすることができるならば、水素ステーションなどの液体水素タンク本体、ライナー、配管、バルブ、鋼板および熱交換器などの水素機器として用いられた場合、溶接部の粒界に水素が侵入しようとしても水素が粒界にトラップされる確率が低くなり、耐水素脆化特性が向上する。
 従って、水素ステーションなどの液体水素タンク本体、ライナー、配管、バルブ、鋼板および熱交換器などの水素機器として用いた場合に、水素誘起のき裂を生じ難い、水素機器を提供できる。
 以下、実施例に基づいて、本発明をより詳細に説明する。
 表1~表4の化学成分を有するステンレス鋼供試材を実験室にて溶製し、厚さ50mmの鋳片を製造した。その後、鋳片を1200℃で加熱して、熱間圧延を行うことにより、厚さ6mmの熱延板を作製した。この熱延板を1180℃で熱処理し、次いで厚さ2mmまで冷間圧延を行った。さらに1050℃で30s(秒)の熱処理を行い、次いで、空冷して冷延焼鈍板を得た。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 得られた冷延焼鈍板を供試材とし、溶接性の評価を行った。溶接の入熱は5kJ/cmとし、突き合わせTIG溶接により溶接継手を作製した。溶接継手に対して裏面を目視で観察し、裏ビート幅が1.0mm以上のものを溶接性が極めて良好として「A」(excellent)と判定した。裏ビート幅が0.5mm以上のものを合格として「B」(good、fair、pass)と判定した。裏ビート幅が0.5mm未満のもの、あるいは溶け落ちが生じたものを不合格として「C」(poor、fail)と判定した。
 溶接性が合格した供試材に対して耐水素性の評価を行った。溶接部が試験片の平行部の中央に位置するようにJIS13号B引張試験片を採取した。引張試験片を95MPa水素中、300℃の環境で72時間曝露して鋼中に水素を侵入させた。曝露試験の終了後、引張試験の直前まで試験片を冷凍保管した。
 また、比較材(比較の試験片)として、溶接部が試験片の平行部の中央に位置するように、同一の供試材からJIS13号B引張試験片を採取した。この比較材は、水素に曝露しなかった。
 引張試験は、試験温度-40℃、試験環境:大気、歪速度:5×10-5/sの条件で実施した。
 「(水素に暴露した試験片の破断伸び/水素に暴露していない試験片の破断伸び)×100(%)」の値を算出した。この値が80%以上のものを、耐水素脆化特性が良好として「B」(good、fair、pass)と評価した。この値が90%以上のものを極めて良好として「A」(excellent)と評価した。この値が80%未満のものを不合格で「C」(poor、fail)と評価した。
 表5に溶接性と耐水素性の試験結果を併記した。「-」は試験を実施していないことを意味している。また、表2,4に上述の(1)式の計算値と(2)式の計算値を併せて記載した。
 次に、溶接性が合格した鋼種2、7、8からなる溶接継手に対して950℃で10秒~10分、900℃で10min、又は980℃で1minの条件で熱処理を行った。熱処理後、Vノッチを溶接金属部に導入した長さ20mm、幅5mmの小型試験片を切り出した。液体窒素で冷却した小型試験片をAES(Auger Electron Spectroscopy)分析装置内でハンマーにより衝撃を加え、粒界を現出させた。次いで、AES分析により粒界のMn、Cuの濃度を分析した。なお、本分析におけるMn、Cuの濃度とは、検出された全元素における質量%のことを意味する。
 後記する表6に、950℃で10秒~10分、900℃で10min、又は980℃で1minの条件で熱処理を行った場合について、粒界におけるMn含有量、Cu含有量の測定結果と耐水素性試験の結果を示す。ここで行った耐水素性試験の条件は、上述の耐水素性試験と同等の条件とした。
Figure JPOXMLDOC01-appb-T000005
 表1~表4に示す組成を有する鋼種1~18は本実施形態で規定する成分範囲を満足する試料である。鋼種1~18の試料は、溶接性と耐水素脆化特性の両方ともに良好あるいは極めて良好であった。
 また、表1~表4に示す鋼種1~18は、Cr含有量が20%以下であり、高価なMoの量を1.5%以下(2.0%以下)に抑制し、高価なNiの量を4~11%程度(4.0~12%)に抑えている。このため、Ni、Cr、Moを多く含んでいたSUS316系を初めとする従来技術のステンレス鋼より経済性が高いという特徴を有し、かつ優れた溶接性と耐水素性を発揮できた。
 鋼種19のMn量は本実施形態の望ましい範囲を上回る。その結果、引張試験時に生成したε相を起点とした水素誘起の脆性的な破壊が生じ、耐水素脆化特性が不合格となった。
 鋼種20の(1)式の値「[Ni]+[Cu]+12.93[C]+1.11[Mn]+0.72[Cr]+0.88[Mo]-0.27[Si]+7.55[N]」は、本実施形態の望ましい範囲を下回る。その結果、オーステナイト相の変形組織形態が水素の影響を受けやすい形態となることで、水素による延性の低下が生じ、耐水素脆化特性が不合格となった。
 鋼種21のCr量は本実施形態の望ましい範囲を上回る。その結果、溶接時にCr系析出物の生成によるCr欠乏層が形成された。そしてCr欠乏層部を起点とした水素誘起のき裂が生じることで延性の低下が生じ、不合格となった。
 鋼種22の(2)式の値「29([S]+[P])+4[O]-18[Ca]-0.4[Al]-0.02[Si]+5([Sn]+[Zn]+[Pb])」は、本実施形態の範囲を上回る。その結果、溶接中に溶金部の溶け落ちが生じ、溶接性が不合格となった。
 鋼種23のNi量は本実施形態の望ましい範囲を下回る。その結果、オーステナイト相の変形組織形態が水素の影響を受けやすい形態となることで、水素による延性の低下が生じ、耐水素脆化特性が不合格となった。
 鋼種24の(2)式の値「29([S]+[P])+4[O]-18[Ca]-0.4[Al]-0.02[Si]+5([Sn]+[Zn]+[Pb])」は、本実施形態の範囲を下回る。その結果、鋼材の溶け込み深さが不足して裏ビード幅が1mm未満となり、溶接性が不合格となった。
 鋼種25のN量は本実施形態の望ましい範囲を上回る。その結果、オーステナイト相で形成されるNクラスターの影響で、変形組織形態が水素の影響を受けやすい形態となった。そして、水素による延性低下が生じ、耐水素脆化特性が不合格となった。
 鋼種26のP量および(2)式の値「29([S]+[P])+4[O]-18[Ca]-0.4[Al]-0.02[Si]+5([Sn]+[Zn]+[Pb])」は、本実施形態の望ましい範囲を上回る。その結果、溶接中に溶接部の溶け落ちが生じ、溶接性が不合格となった。
 鋼種27のCa量は本実施形態の望ましい範囲を上回る。その結果、溶接部に生成したCa系介在物とオーステナイト相の界面に水素が局所的に濃化した。そして、水素濃化部にて、き裂が生成することで延性の低下が生じ、耐水素脆化特性が不合格となった。
 これらの結果から鑑み、質量%にて、C:0.3%以下、Si:0.1~1.5%以下、Mn:5.5~20%以下、P:0.050%以下、S:0.005%以下、Cr:10~20%、Ni:4.0~12%、N:0.40%以下、Cu:4.0%以下、O:0.02%以下を含み、Ca:0.01%以下、Al:0.3%以下のどちらか一方または両方を含み、(1)式を満たす高Mnオーステナイト系ステンレス鋼であることが重要であるとわかる。
 また、高Mnオーステナイト系ステンレス鋼において、S、P、O、Ca、Al、Siに加え、Sn、Zn、Pbから成る群から選択される1種または2種以上を(2)式を満たす含有量で含有することが重要であることもわかった。
Figure JPOXMLDOC01-appb-T000006
 表6に示す結果が示すように、鋼種2、7、8のいずれの試料においても熱処理時間10s(秒)の場合より熱処理時間1分~10分の場合の方が優れた耐水素性を発揮した。
 表6に示すいずれの試料においても溶接部の粒界に存在するMn量は8%以上であった。熱処理時間1~10分の試料では、溶接部の粒界に存在するMn量は10%以上となっており、粒界に多くのMnを偏析させることで耐水素性を向上できることがわかる。また、熱処理時間1~10分の試料では、溶接部の粒界に存在するCu量は3%以上となっており、粒界に多くのCuを偏析させることで耐水素性を向上できることがわかる。
 このことから、溶接部の粒界にMnとCuを多く偏析させることで水素の偏析を抑制し、溶接継手としての耐水素性を向上できることがわかった。
 本実施形態によれば、高圧水素ガスおよび液体水素のタンク本体およびライナー、配管、バルブ、鋼板、熱交換器などに適用できる溶接性と耐水素脆化特性に優れたオーステナイト系ステンレス鋼とそれを用いた溶接継手及び溶接継手の製造方法と前記ステンレス鋼を用いた水素用機器を提供することができる。
 従って、本実施形態は、高圧水素ガスおよび液体水素環境下で使用される溶接継手や機器及びその製造工程に好適に適用できる。

Claims (11)

  1.  質量%にて、C:0.3%以下、Si:0.1~1.5%、Mn:5.5~20%、P:0.050%以下、S:0.005%以下、Cr:10~20%、Ni:4.0~12%、N:0.40%以下、Cu:4.0%以下、O:0.02%以下を含み、Ca:0.01%以下、Al:0.3%以下をどちらか一方または両方を含み、残部がFeおよび不可避的不純物からなり、
     以下の(1)式を満たすことを特徴とする溶接性に優れた水素用高Mnオーステナイト系ステンレス鋼。
     [Ni]+[Cu]+12.93[C]+1.11[Mn]+0.72[Cr]+0.88[Mo]-0.27[Si]+7.55[N]≧29.3 ・・・(1)式
     ここで、[Si]、[Ni]、[Cu]、[C]、[Mn]、[Cr]、[Mo]、[N]はそれぞれの元素の含有量(質量%)を示し、含有しない元素は0とする。
  2.  質量%にて、Mo:2.0%以下を含む請求項1に記載の溶接性に優れた水素用高Mnオーステナイト系ステンレス鋼。
  3.  Sn、Zn、Pbから成る群から選択される1種または2種以上を以下の(2)式を満たす含有量で含有する請求項1または請求項2に記載の溶接性に優れた水素用高Mnオーステナイト系ステンレス鋼。
     1.2≧29([S]+[P])+4[O]-18[Ca]-0.4[Al]-0.02[Si]+5([Sn]+[Zn]+[Pb])≧0.18 ・・・(2)式
     ここで、[S]、[P]、[O]、[Ca]、[Al]、[Si]、[Sn]、[Zn]、[Pb]はそれぞれの元素の含有量(質量%)を示し、含有しない元素は0とする。
  4.  以下の群から選択される1種または2種以上を含むことを特徴とする請求項1~3のいずれか一項に記載の溶接性に優れた水素用高Mnオーステナイト系ステンレス鋼。
     第1群:質量%にて、Ti:1.0%以下、Nb:1.0%以下、V:1.0%以下、W:1.0%以下のうち1種または2種以上、
     第2群:質量%にて、Co:1.0%以下、
     第3群:質量%にて、Sb:0.01%以下。
  5.  高圧水素ガスおよび液体水素環境中で用いられることを特徴とする請求項1~請求項4のいずれか一項に記載の溶接性に優れた水素用高Mnオーステナイト系ステンレス鋼。
  6.  請求項1~請求項5のいずれか一項に記載のオーステナイト系ステンレス鋼からなる溶接継手であって、溶接部の粒界に化学組成として、質量%にて、[Mn]:8.0~25.0%、[Cu]:2.0~8.0%を含むことを特徴とする溶接継手。
  7.  請求項1~請求項5のいずれか一項に記載のオーステナイト系ステンレス鋼からなり、高圧水素ガスおよび液体水素環境中で用いられることを特徴とする水素用機器。
  8.  前記水素用機器がタンク本体、ライナー、配管、バルブ、鋼板および熱交換器のいずれかであることを特徴とする請求項7に記載の水素用機器。
  9.  請求項6に記載の溶接継手を備え、高圧水素ガスおよび液体水素環境中で用いられることを特徴とする水素用機器。
  10.  前記水素用機器がタンク本体、ライナー、配管、バルブ、鋼板および熱交換器のいずれかであることを特徴とする請求項9に記載の水素用機器。
  11.  請求項1~請求項5のいずれか一項に記載のオーステナイト系ステンレス鋼を溶接する工程と、次いで900~980℃で1~10分の熱処理を行う工程を有し、前記熱処理により、溶接部の粒界に化学組成として、質量%にて、[Mn]:8.0~25.0%、[Cu]:2.0~8.0%を含有する粒界を得ることを特徴とする溶接継手の製造方法。
PCT/JP2018/011084 2017-03-30 2018-03-20 溶接性に優れた水素用高Mnオーステナイト系ステンレス鋼、それを用いた溶接継手および水素用機器、並びに溶接継手の製造方法 WO2018180788A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/493,265 US11225705B2 (en) 2017-03-30 2018-03-20 High-Mn austenitic stainless steel for hydrogen having excellent weldability, welded joint using same, device for hydrogen using same, and method for producing welded joint
ES18776105T ES2987598T3 (es) 2017-03-30 2018-03-20 Acero inoxidable austenítico de alto contenido de Mn para hidrógeno que tiene excelente soldabilidad, junta soldada que usa el mismo, dispositivo para hidrógeno que usa el mismo y método para producir una junta soldada
EP18776105.1A EP3604595B1 (en) 2017-03-30 2018-03-20 High-mn austenitic stainless steel for hydrogen having excellent weldability, welded joint using same, device for hydrogen using same, and method for producing welded joint
JP2019509603A JP6741860B2 (ja) 2017-03-30 2018-03-20 溶接性に優れた水素用高Mnオーステナイト系ステンレス鋼、それを用いた溶接継手および水素用機器、並びに溶接継手の製造方法
KR1020197027404A KR102265769B1 (ko) 2017-03-30 2018-03-20 용접성이 우수한 수소용 고Mn 오스테나이트계 스테인리스 강, 그것을 사용한 용접 조인트 및 수소용 기기, 그리고 용접 조인트의 제조 방법
CN201880019978.9A CN110462082B (zh) 2017-03-30 2018-03-20 焊接性优良的氢用高Mn奥氏体系不锈钢、使用该不锈钢的焊接接头和氢用设备、以及焊接接头的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017069239 2017-03-30
JP2017-069239 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018180788A1 true WO2018180788A1 (ja) 2018-10-04

Family

ID=63677846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011084 WO2018180788A1 (ja) 2017-03-30 2018-03-20 溶接性に優れた水素用高Mnオーステナイト系ステンレス鋼、それを用いた溶接継手および水素用機器、並びに溶接継手の製造方法

Country Status (7)

Country Link
US (1) US11225705B2 (ja)
EP (1) EP3604595B1 (ja)
JP (1) JP6741860B2 (ja)
KR (1) KR102265769B1 (ja)
CN (1) CN110462082B (ja)
ES (1) ES2987598T3 (ja)
WO (1) WO2018180788A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021141099A1 (ja) 2020-01-09 2021-07-15 日鉄ステンレス株式会社 オーステナイト系ステンレス鋼材
JP2021109998A (ja) * 2020-01-09 2021-08-02 日鉄ステンレス株式会社 オーステナイト系ステンレス鋼鋳片、ならびにそれを用いた鋼管、棒鋼、および厚板
JP7546804B1 (ja) 2024-02-19 2024-09-06 日本冶金工業株式会社 オーステナイト系ステンレス鋼帯または鋼板およびそれらの製造方法、ならびに、高圧水素ガス用機器または液体水素用機器
JP7550625B2 (ja) 2020-12-04 2024-09-13 日鉄ステンレス株式会社 オーステナイト系ステンレス鋼板および鋼管ならびにこれらの製造方法
JP7564696B2 (ja) 2020-12-04 2024-10-09 日鉄ステンレス株式会社 オーステナイト系ステンレス鋼溶接用溶加材
JP7636164B2 (ja) 2020-12-04 2025-02-26 日鉄ステンレス株式会社 オーステナイト系ステンレス鋼溶接継手、溶接構造物、および母鋼材、ならびにオーステナイト系ステンレス鋼溶接継手の製造方法。

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112475532B (zh) * 2020-10-10 2022-03-25 东方电气集团东方锅炉股份有限公司 用于高压氢环境奥氏体不锈钢316l材料的焊接工艺
KR20230073482A (ko) * 2021-11-19 2023-05-26 한국재료연구원 고강도 고인성 중엔트로피 합금 및 그 제조 방법
CN114717475B (zh) * 2022-03-09 2023-07-25 苏州匀晶金属科技有限公司 一种基于层错能设计的含Nb高强塑性高锰钢及制备方法
CN118357579B (zh) * 2024-06-19 2024-10-22 中国科学院上海光学精密机械研究所 一种焊料、激光焊接接头及其制造方法
CN118357583B (zh) * 2024-06-19 2024-10-22 中国科学院上海光学精密机械研究所 一种焊料、激光焊接接头及其制造方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004083477A1 (ja) * 2003-03-20 2004-09-30 Sumitomo Metal Industries, Ltd. 高圧水素ガス用ステンレス鋼、その鋼からなる容器および機器
JP2009133001A (ja) 2007-10-29 2009-06-18 Sanyo Special Steel Co Ltd 耐水素脆化特性に優れたオーステナイト系ステンレス鋼
WO2012043877A1 (ja) * 2010-09-29 2012-04-05 新日鐵住金ステンレス株式会社 オーステナイト系高Mnステンレス鋼およびその製造方法と、その鋼を用いた部材
WO2012132992A1 (ja) * 2011-03-28 2012-10-04 住友金属工業株式会社 高圧水素ガス用高強度オーステナイトステンレス鋼
WO2013005570A1 (ja) 2011-07-06 2013-01-10 新日鐵住金株式会社 オーステナイト鋼溶接継手
JP2014047409A (ja) 2012-09-03 2014-03-17 Nippon Steel & Sumitomo Metal 高圧水素ガス用高強度オーステナイトステンレス鋼
JP2015171729A (ja) 2014-02-21 2015-10-01 新日鐵住金株式会社 高圧水素ガスおよび液体水素用オーステナイト系高Mnステンレス鋼溶接継手およびその製造方法
JP2015196837A (ja) * 2014-03-31 2015-11-09 新日鐵住金ステンレス株式会社 非磁性遊技球用オーステナイト系ステンレス鋼線材及び鋼線
JP2016000414A (ja) * 2014-06-11 2016-01-07 新日鐵住金株式会社 Ni基耐熱合金溶接継手の製造方法およびその方法により製造された溶接継手
WO2016143486A1 (ja) * 2015-03-06 2016-09-15 新日鐵住金ステンレス株式会社 耐水素脆化特性に優れた高強度オーステナイト系ステンレス鋼およびその製造方法
JP2016199776A (ja) * 2015-04-07 2016-12-01 新日鐵住金株式会社 オーステナイト系ステンレス鋼
JP2017008413A (ja) * 2015-06-16 2017-01-12 新日鐵住金株式会社 低温水素用オーステナイト系ステンレス鋼及びその製造方法
JP2017069239A (ja) 2015-09-28 2017-04-06 新日鐵住金株式会社 炭化珪素のエピタキシャル成長方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4178670B2 (ja) * 1999-06-28 2008-11-12 セイコーエプソン株式会社 マンガン合金鋼と軸、ネジ部材
EP1645355B1 (en) 2003-06-10 2009-01-14 Sumitomo Metal Industries, Ltd. Austenitic steel weld joint
DE102012104260A1 (de) 2012-05-16 2013-11-21 Bayerische Motoren Werke Aktiengesellschaft Kostenreduzierter Stahl für die Wasserstofftechnik mit hoher Beständigkeit gegen wasserstoffinduzierte Versprödung
CN103741066B (zh) * 2013-12-25 2018-04-20 宝钢不锈钢有限公司 一种精密电子用无磁硬态奥氏体不锈钢及其制造方法
JP6627343B2 (ja) 2014-10-07 2020-01-08 日本製鉄株式会社 オーステナイト系ステンレス鋼、及び、高圧水素ガス用機器又は液体水素用機器
BR112017000121B1 (pt) * 2014-10-29 2021-06-08 Nippon Steel Corporation aço inoxidável austenítico e método de fabricação para o mesmo
JP6519009B2 (ja) 2015-04-08 2019-05-29 日本製鉄株式会社 オーステナイト系ステンレス鋼
CN106319391A (zh) * 2015-06-24 2017-01-11 宝钢不锈钢有限公司 一种耐酸雨腐蚀的奥氏体不锈钢及其制造方法
JP6606947B2 (ja) 2015-09-24 2019-11-20 日本製鉄株式会社 溶接継手の製造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004083477A1 (ja) * 2003-03-20 2004-09-30 Sumitomo Metal Industries, Ltd. 高圧水素ガス用ステンレス鋼、その鋼からなる容器および機器
JP2009133001A (ja) 2007-10-29 2009-06-18 Sanyo Special Steel Co Ltd 耐水素脆化特性に優れたオーステナイト系ステンレス鋼
WO2012043877A1 (ja) * 2010-09-29 2012-04-05 新日鐵住金ステンレス株式会社 オーステナイト系高Mnステンレス鋼およびその製造方法と、その鋼を用いた部材
WO2012132992A1 (ja) * 2011-03-28 2012-10-04 住友金属工業株式会社 高圧水素ガス用高強度オーステナイトステンレス鋼
WO2013005570A1 (ja) 2011-07-06 2013-01-10 新日鐵住金株式会社 オーステナイト鋼溶接継手
JP2014047409A (ja) 2012-09-03 2014-03-17 Nippon Steel & Sumitomo Metal 高圧水素ガス用高強度オーステナイトステンレス鋼
JP2015171729A (ja) 2014-02-21 2015-10-01 新日鐵住金株式会社 高圧水素ガスおよび液体水素用オーステナイト系高Mnステンレス鋼溶接継手およびその製造方法
JP2015196837A (ja) * 2014-03-31 2015-11-09 新日鐵住金ステンレス株式会社 非磁性遊技球用オーステナイト系ステンレス鋼線材及び鋼線
JP2016000414A (ja) * 2014-06-11 2016-01-07 新日鐵住金株式会社 Ni基耐熱合金溶接継手の製造方法およびその方法により製造された溶接継手
WO2016143486A1 (ja) * 2015-03-06 2016-09-15 新日鐵住金ステンレス株式会社 耐水素脆化特性に優れた高強度オーステナイト系ステンレス鋼およびその製造方法
JP2016199776A (ja) * 2015-04-07 2016-12-01 新日鐵住金株式会社 オーステナイト系ステンレス鋼
JP2017008413A (ja) * 2015-06-16 2017-01-12 新日鐵住金株式会社 低温水素用オーステナイト系ステンレス鋼及びその製造方法
JP2017069239A (ja) 2015-09-28 2017-04-06 新日鐵住金株式会社 炭化珪素のエピタキシャル成長方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021141099A1 (ja) 2020-01-09 2021-07-15 日鉄ステンレス株式会社 オーステナイト系ステンレス鋼材
JPWO2021141099A1 (ja) * 2020-01-09 2021-07-15
JP2021109998A (ja) * 2020-01-09 2021-08-02 日鉄ステンレス株式会社 オーステナイト系ステンレス鋼鋳片、ならびにそれを用いた鋼管、棒鋼、および厚板
JP7270777B2 (ja) 2020-01-09 2023-05-10 日鉄ステンレス株式会社 オーステナイト系ステンレス鋼材
EP4089186A4 (en) * 2020-01-09 2023-06-28 NIPPON STEEL Stainless Steel Corporation Austenitic stainless steel material
JP7550517B2 (ja) 2020-01-09 2024-09-13 日鉄ステンレス株式会社 オーステナイト系ステンレス鋼鋼片、ならびにそれを用いた鋼管、棒鋼、および厚板
JP7550625B2 (ja) 2020-12-04 2024-09-13 日鉄ステンレス株式会社 オーステナイト系ステンレス鋼板および鋼管ならびにこれらの製造方法
JP7564696B2 (ja) 2020-12-04 2024-10-09 日鉄ステンレス株式会社 オーステナイト系ステンレス鋼溶接用溶加材
JP7636164B2 (ja) 2020-12-04 2025-02-26 日鉄ステンレス株式会社 オーステナイト系ステンレス鋼溶接継手、溶接構造物、および母鋼材、ならびにオーステナイト系ステンレス鋼溶接継手の製造方法。
JP7546804B1 (ja) 2024-02-19 2024-09-06 日本冶金工業株式会社 オーステナイト系ステンレス鋼帯または鋼板およびそれらの製造方法、ならびに、高圧水素ガス用機器または液体水素用機器

Also Published As

Publication number Publication date
KR102265769B1 (ko) 2021-06-15
EP3604595B1 (en) 2024-04-24
ES2987598T3 (es) 2024-11-15
EP3604595A4 (en) 2020-03-18
EP3604595A1 (en) 2020-02-05
CN110462082A (zh) 2019-11-15
CN110462082B (zh) 2021-04-30
US11225705B2 (en) 2022-01-18
US20200131610A1 (en) 2020-04-30
KR20190121800A (ko) 2019-10-28
JP6741860B2 (ja) 2020-08-19
JPWO2018180788A1 (ja) 2020-03-26

Similar Documents

Publication Publication Date Title
JP6741860B2 (ja) 溶接性に優れた水素用高Mnオーステナイト系ステンレス鋼、それを用いた溶接継手および水素用機器、並びに溶接継手の製造方法
EP2130937B1 (en) High-strength welded steel pipe and process for manufacturing it
KR101846759B1 (ko) 강판 및 그 제조 방법
TWI598451B (zh) 沃斯田系不銹鋼及沃斯田系不銹鋼之製造方法
CN113631321A (zh) 极低温用高强度焊接接头的制造方法
JP6384610B2 (ja) オーステナイト系耐熱合金及び溶接構造物
KR102048482B1 (ko) 오스테나이트계 내열합금 및 용접 구조물
WO2019070000A1 (ja) オーステナイト系ステンレス鋼溶接金属および溶接構造物
EP2128294A1 (en) Base metal for clad steel plate having high strength and excellent toughness in welding heat-affected zone, and method of producing the same
WO2020004410A1 (ja) クラッド鋼板およびその製造方法
EP3693127A1 (en) Welding material for austenitic heat-resistant steel, weld metal and weld structure, and method for manufacturing weld metal and weld structure
EP3686306A1 (en) Steel plate and method for manufacturing same
JP2017213588A (ja) オーステナイト系ステンレス鋼溶接継手の製造方法
KR102458203B1 (ko) 오스테나이트계 스테인리스강
JP6627373B2 (ja) オーステナイト系ステンレス鋼
JP6477181B2 (ja) オーステナイト系ステンレス鋼
JP2017014576A (ja) オーステナイト系耐熱合金及び溶接構造物
JP2013142197A (ja) −196℃におけるシャルピー試験値が母材、溶接継手共に100J以上である靭性と生産性に優れたNi添加鋼板およびその製造方法
JP2005232515A (ja) 大入熱溶接継手靭性に優れた厚鋼板
JP2017014575A (ja) オーステナイト系耐熱合金及び溶接構造物
JP7564696B2 (ja) オーステナイト系ステンレス鋼溶接用溶加材
KR20250047201A (ko) 오스테나이트계 스테인레스강 및 내수소성 부재
JP2024119331A (ja) 鋼板及び鋼板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776105

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509603

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197027404

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018776105

Country of ref document: EP

Effective date: 20191030

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载