+

WO2018180493A1 - ポリカーボネート樹脂組成物及び成形品 - Google Patents

ポリカーボネート樹脂組成物及び成形品 Download PDF

Info

Publication number
WO2018180493A1
WO2018180493A1 PCT/JP2018/009942 JP2018009942W WO2018180493A1 WO 2018180493 A1 WO2018180493 A1 WO 2018180493A1 JP 2018009942 W JP2018009942 W JP 2018009942W WO 2018180493 A1 WO2018180493 A1 WO 2018180493A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate resin
mass
resin composition
styrene
polycarbonate
Prior art date
Application number
PCT/JP2018/009942
Other languages
English (en)
French (fr)
Inventor
和幸 ▲高▼橋
Original Assignee
三菱エンジニアリングプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱エンジニアリングプラスチックス株式会社 filed Critical 三菱エンジニアリングプラスチックス株式会社
Priority to CN201880005576.3A priority Critical patent/CN110139899B/zh
Publication of WO2018180493A1 publication Critical patent/WO2018180493A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates

Definitions

  • the present invention relates to a polycarbonate resin composition and a molded article, and more specifically, a polycarbonate resin composition having a high impact resistance, a high pencil hardness, excellent color developability, and a good nail scratch preventing performance, and a molded article thereof. About.
  • Polycarbonate resin is excellent in mechanical strength, electrical characteristics, transparency, etc., and is widely used as an engineering plastic in various fields such as electrical and electronic equipment and automobile fields.
  • the bisphenol A type polycarbonate resin has a problem that it has a high melt viscosity and is inferior in molding processability, and a polymer alloy with acrylonitrile-butadiene-styrene resin (hereinafter also referred to as ABS resin) is a single component of the polycarbonate resin. Since the moldability is improved compared to the case, and the impact resistance and heat resistance can be improved compared to the case of the ABS resin alone, the materials having strength, heat resistance and moldability are included in the fields of automobiles, electrical and electronic equipment, etc. Widely used in various fields.
  • ABS resin polymer alloy with acrylonitrile-butadiene-styrene resin
  • the polycarbonate-ABS resin composition has inferior scratch resistance due to the low surface hardness of the molded product, and has a defect that the surface is easily scratched. For example, in applications where a high-class feeling is required, such as housings for home appliances and portable terminal devices and automobile interior parts, it has become a particularly serious problem.
  • Patent Document 1 proposes a polycarbonate resin composition containing at least a polycarbonate resin portion derived from 2,2-bis (4-hydroxy-3-methylphenyl) propane.
  • Patent Document 2 proposes a polycarbonate resin composition excellent in jetness using an organic black dye.
  • the resin composition has the same surface hardness as that of a normal polycarbonate resin and uses an organic dye, there is a problem that the light resistance is inferior to that of the pigment system.
  • An object (problem) of the present invention is to provide a polycarbonate resin composition exhibiting impact resistance, high surface hardness, color developability (particularly jet black), and good nail scratch prevention performance, and a molded product thereof.
  • the present inventor has obtained 2,2-bis (3-methyl-4) into a composition comprising a bisphenol A-type polycarbonate resin and a styrene resin not containing a butadiene skeleton. It has been found that a polycarbonate resin composition containing a specific amount of a polycarbonate resin derived from an aromatic dihydroxy compound having a specific structure such as -hydroxyphenyl) propane, that is, bisphenol C, solves the above-mentioned problems. It came to be completed.
  • the present invention relates to the following polycarbonate resin composition and molded article.
  • a polycarbonate resin composition comprising: The content ratio of the polycarbonate resin (A) and the polycarbonate resin (B) is 0 to 80/20 to 100 in terms of mass ratio of (A) / (B), The content of the styrene-based resin (C) not containing a structural unit derived from butadiene is 1 to 30 parts by mass with respect to 100 parts by mass in total of the polycarbonate resins (A) and (B). Polycarbonate resin composition.
  • R 1 is a methyl group
  • R 2 and R 3 are each independently a hydrogen atom or a methyl group
  • X is R 4 and R 5 each independently represent a hydrogen atom or a methyl group
  • Z represents an alicyclic hydrocarbon having 6 to 12 carbon atoms and optionally having a substituent bonded to C. The group to be formed is shown.
  • the graft copolymer (D) having a polyethylene-based segment and a vinyl-based polymer segment is contained in an amount of 1 to 10 parts by mass with respect to a total of 100 parts by mass of the polycarbonate resins (A) and (B).
  • the polycarbonate resin composition of the present invention has excellent impact resistance, high surface hardness, excellent scratch resistance with nails, and excellent color developability, particularly when it is colored black. Jetness can be expressed. For this reason, the polycarbonate resin composition of the present invention can be suitably used particularly for vehicle interior parts, electronic electrical equipment, OA equipment, housing members for information terminal equipment, and the like.
  • the polycarbonate resin composition of the present invention includes a bisphenol A-type polycarbonate resin (A), a polycarbonate resin (B) having a structural unit represented by the general formula (1), and a styrene-based resin that does not contain a structural unit derived from butadiene.
  • a polycarbonate resin composition containing a resin (C) The content ratio of the polycarbonate resin (A) and the polycarbonate resin (B) is 0 to 80/20 to 100 in terms of mass ratio of (A) / (B),
  • the content of the styrene-based resin (C) not containing a structural unit derived from butadiene is 1 to 30 parts by mass with respect to 100 parts by mass in total of the polycarbonate resins (A) and (B). .
  • the polycarbonate resin contained in the polycarbonate resin composition of the present invention is a bisphenol A type polycarbonate resin (A).
  • the bisphenol A type polycarbonate resin (A) is produced from bisphenol A, that is, 2,2-bis (4-hydroxyphenyl) propane, and a carbonate precursor as a raw material dihydroxy compound.
  • carbonyl halides carbonic acid diesters and the like are used as examples of the carbonate precursor.
  • 1 type may be used for a carbonate precursor and it may use 2 or more types together by arbitrary combinations and a ratio.
  • carbonyl halide examples include phosgene; haloformates such as a bischloroformate of a dihydroxy compound and a monochloroformate of a dihydroxy compound.
  • carbonic acid diester examples include diaryl carbonates such as diphenyl carbonate and ditolyl carbonate; dialkyl carbonates such as dimethyl carbonate and diethyl carbonate; biscarbonates of dihydroxy compounds, monocarbonates of dihydroxy compounds, and cyclic carbonates And carbonate bodies of dihydroxy compounds such as
  • the polycarbonate resin (A) may be a copolymer polycarbonate resin in which another dihydroxy compound other than bisphenol A is used in combination.
  • dihydroxy compounds other than bisphenol A include the following aromatic dihydroxy compounds.
  • the component derived from bisphenol A is preferably 50 mol% or more, more preferably 70 mass% or more, still more preferably 80 mass% or more, especially 90 mass% or more, particularly 95. It is preferable that it is mass% or more.
  • the polycarbonate resin (A) may be linear or branched.
  • the manufacturing method of polycarbonate resin is not specifically limited, Arbitrary methods are employable. Examples thereof include an interfacial polymerization method, a melt transesterification method, a pyridine method, a ring-opening polymerization method of a cyclic carbonate compound, and a solid phase transesterification method of a prepolymer.
  • Arbitrary methods include an interfacial polymerization method, a melt transesterification method, a pyridine method, a ring-opening polymerization method of a cyclic carbonate compound, and a solid phase transesterification method of a prepolymer.
  • a polycarbonate resin is produced by an interfacial polymerization method.
  • a dihydroxy compound and a carbonate precursor preferably phosgene
  • an organic solvent inert to the reaction and an aqueous alkaline solution, usually at a pH of 9 or higher.
  • Polycarbonate resin is obtained by interfacial polymerization in the presence.
  • a molecular weight adjusting agent may be present as necessary, or an antioxidant may be present to prevent the oxidation of the dihydroxy compound.
  • the dihydroxy compound and the carbonate precursor are as described above.
  • phosgene is preferably used, and a method using phosgene is particularly called a phosgene method.
  • organic solvent inert to the reaction examples include chlorinated hydrocarbons such as dichloromethane, 1,2-dichloroethane, chloroform, monochlorobenzene and dichlorobenzene; aromatic hydrocarbons such as benzene, toluene and xylene; It is done.
  • 1 type may be used for an organic solvent and it may use 2 or more types together by arbitrary combinations and a ratio.
  • alkali compound contained in the alkaline aqueous solution examples include alkali metal compounds and alkaline earth metal compounds such as sodium hydroxide, potassium hydroxide, lithium hydroxide, and sodium hydrogen carbonate, among which sodium hydroxide and water Potassium oxide is preferred.
  • 1 type may be used for an alkali compound and it may use 2 or more types together by arbitrary combinations and a ratio.
  • the concentration of the alkali compound in the alkaline aqueous solution is not limited, but it is usually used at 5 to 10% by mass in order to control the pH in the alkaline aqueous solution of the reaction to 10 to 12.
  • the molar ratio of the bisphenol compound to the alkali compound is usually 1: 1.9 or more in order to control the pH of the aqueous phase to be 10 to 12, preferably 10 to 11.
  • the ratio is 1: 2.0 or more, usually 1: 3.2 or less, and more preferably 1: 2.5 or less.
  • polymerization catalyst examples include aliphatic tertiary amines such as trimethylamine, triethylamine, tributylamine, tripropylamine, and trihexylamine; alicyclic rings such as N, N′-dimethylcyclohexylamine and N, N′-diethylcyclohexylamine Tertiary amines; aromatic tertiary amines such as N, N′-dimethylaniline and N, N′-diethylaniline; quaternary ammonium salts such as trimethylbenzylammonium chloride, tetramethylammonium chloride, triethylbenzylammonium chloride, etc. Pyridine; guanidine salt; and the like.
  • 1 type may be used for a polymerization catalyst and it may use 2 or more types together by arbitrary combinations and a ratio.
  • the molecular weight regulator examples include aromatic phenols having a monohydric phenolic hydroxyl group; aliphatic alcohols such as methanol and butanol; mercaptans; phthalimides and the like, among which aromatic phenols are preferred.
  • aromatic phenols include alkyl groups such as m-methylphenol, p-methylphenol, m-propylphenol, p-propylphenol, p-tert-butylphenol, and p-long chain alkyl-substituted phenol.
  • a molecular weight regulator may use 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
  • the amount used of the molecular weight regulator is usually 0.5 mol or more, preferably 1 mol or more, and usually 50 mol or less, preferably 30 mol or less, per 100 mol of the dihydroxy compound.
  • the order of mixing the reaction substrate, reaction medium, catalyst, additive and the like is arbitrary as long as a desired polycarbonate resin is obtained, and an appropriate order may be arbitrarily set.
  • the molecular weight regulator can be mixed at any time as long as it is between the reaction (phosgenation) of the dihydroxy compound and phosgene and the start of the polymerization reaction.
  • the reaction temperature is usually 0 to 40 ° C.
  • the reaction time is usually several minutes (for example, 10 minutes) to several hours (for example, 6 hours).
  • melt transesterification method for example, a transesterification reaction between a carbonic acid diester and a dihydroxy compound is performed.
  • the dihydroxy compound is as described above.
  • examples of the carbonic acid diester include dialkyl carbonate compounds such as dimethyl carbonate, diethyl carbonate, and di-tert-butyl carbonate; diphenyl carbonate; substituted diphenyl carbonate such as ditolyl carbonate, and the like. Among these, diphenyl carbonate and substituted diphenyl carbonate are preferable, and diphenyl carbonate is more preferable.
  • carbonic acid diester may use 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
  • the ratio of the dihydroxy compound and the carbonic acid diester is arbitrary as long as the desired polycarbonate resin is obtained, but it is preferable to use an equimolar amount or more of the carbonic acid diester with respect to 1 mol of the dihydroxy compound, and above all, 1.01 mol or more is used. It is more preferable.
  • the upper limit is usually 1.30 mol or less. By setting it as such a range, the amount of terminal hydroxyl groups can be adjusted to a suitable range.
  • the amount of terminal hydroxyl groups tends to have a large effect on thermal stability, hydrolysis stability, color tone, and the like. For this reason, you may adjust the amount of terminal hydroxyl groups as needed by a well-known arbitrary method.
  • a polycarbonate resin in which the amount of terminal hydroxyl groups is adjusted can be usually obtained by adjusting the mixing ratio of the carbonic diester and the aromatic dihydroxy compound; the degree of vacuum during the transesterification reaction, and the like.
  • the molecular weight of the polycarbonate resin usually obtained can also be adjusted by this operation.
  • the mixing ratio is as described above.
  • a more aggressive adjustment method there may be mentioned a method in which a terminal terminator is mixed separately during the reaction.
  • the terminal terminator at this time include monohydric phenols, monovalent carboxylic acids, carbonic acid diesters, and the like.
  • 1 type may be used for a terminal terminator and it may use 2 or more types together by arbitrary combinations and a ratio.
  • a transesterification catalyst is usually used. Any transesterification catalyst can be used. Among them, it is preferable to use, for example, an alkali metal compound and / or an alkaline earth metal compound. In addition, auxiliary compounds such as basic boron compounds, basic phosphorus compounds, basic ammonium compounds, and amine compounds may be used in combination. In addition, 1 type may be used for a transesterification catalyst and it may use 2 or more types together by arbitrary combinations and a ratio.
  • the reaction temperature is usually 100 to 320 ° C.
  • the pressure at the time of reaction is normally performed under reduced pressure below normal pressure, the reduced pressure state is adjusted according to the progress of the reaction, and finally the condition is 2 mmHg or less.
  • a melt polycondensation reaction may be performed under the above conditions while removing by-products such as aromatic hydroxy compounds.
  • the melt polycondensation reaction can be performed by either a batch method or a continuous method.
  • the order which mixes a reaction substrate, a reaction medium, a catalyst, an additive, etc. is arbitrary as long as a desired aromatic polycarbonate resin is obtained, What is necessary is just to set an appropriate order arbitrarily.
  • the melt polycondensation reaction is preferably carried out continuously.
  • a catalyst deactivator may be used as necessary.
  • a compound that neutralizes the transesterification catalyst can be arbitrarily used. Examples thereof include sulfur-containing acidic compounds and derivatives thereof.
  • 1 type may be used for a catalyst deactivator and it may use 2 or more types together by arbitrary combinations and a ratio.
  • the amount of the catalyst deactivator used is usually 0.5 equivalents or more, preferably 1 equivalent or more, and usually 10 equivalents or less, relative to the alkali metal or alkaline earth metal contained in the transesterification catalyst. Preferably it is 5 equivalents or less. Furthermore, it is 1 ppm or more normally with respect to polycarbonate resin, and is 100 ppm or less normally, Preferably it is 20 ppm or less.
  • the viscosity average molecular weight (Mv) of the polycarbonate resin (A) is preferably 12,000 to 30,000. When the viscosity average molecular weight is within this range, a molded product having good moldability and high mechanical strength can be easily obtained. When the viscosity average molecular weight is less than 12,000, the surface impact resistance is remarkably deteriorated and exceeds 30,000. The melt viscosity increases and injection molding tends to be difficult.
  • the lower limit of the molecular weight of the polycarbonate resin (A) is more preferably 15,000, still more preferably 16,000, particularly preferably 17,000, and the upper limit is more preferably 28,000.
  • the terminal hydroxyl group concentration of the polycarbonate resin (A) is arbitrary and may be appropriately selected and determined, but is usually 1,200 ppm or less, preferably 1,000 ppm or less, more preferably 800 ppm or less. Thereby, the residence heat stability and color tone of polycarbonate resin can be improved more.
  • the lower limit is usually 10 ppm or more, preferably 30 ppm or more, more preferably 40 ppm or more, particularly for polycarbonate resins produced by the melt transesterification method. Thereby, the fall of molecular weight can be suppressed and the mechanical characteristic of a resin composition can be improved more.
  • the unit of the terminal hydroxyl group concentration represents the mass of the terminal hydroxyl group with respect to the mass of the polycarbonate resin in ppm.
  • the measuring method is a colorimetric determination by the titanium tetrachloride / acetic acid method (method described in Macromol. Chem. 88 215 (1965)).
  • the polycarbonate resin (B) is a polycarbonate resin having a structural unit represented by the following general formula (1).
  • R 1 is a methyl group
  • R 2 and R 3 are each independently a hydrogen atom or a methyl group
  • X is R 4 and R 5 each independently represent a hydrogen atom or a methyl group
  • Z represents an alicyclic hydrocarbon having 6 to 12 carbon atoms and optionally having a substituent bonded to C. The group to be formed is shown.
  • R 1 is a methyl group
  • R 2 and R 3 are each independently a hydrogen atom or a methyl group, but R 2 and R 3 are particularly preferably a hydrogen atom.
  • X is Is preferably an isopropylidene group in which both R 4 and R 5 are methyl groups, and X is In this case, Z is bonded to carbon C bonded to the two phenyl groups in the above formula (1) to form a bivalent alicyclic hydrocarbon group having 6 to 12 carbon atoms.
  • Examples of the alicyclic hydrocarbon group include cycloalkylidene groups such as a cyclohexylidene group, a cycloheptylidene group, a cyclododecylidene group, an adamantylidene group, and a cyclododecylidene group.
  • Examples of the substituted ones include those having these methyl substituents and ethyl substituents.
  • a cyclohexylidene group, a methyl-substituted cyclohexylidene group (preferably 3,3,5-trimethyl-substituted), and a cyclododecylidene group are preferable.
  • polycarbonate resin (B) include the following polycarbonate resins (a) to (d).
  • polycarbonate resins are 2,2-bis (3-methyl-4-hydroxyphenyl) propane, 2,2-bis (3-methyl-4-hydroxyphenyl) cyclododecane, and 2,2-bis (3, respectively).
  • 5-Dimethyl-4-hydroxyphenyl) propane, 2,2-bis (3-methyl-4-hydroxyphenyl) cyclohexane can be prepared using the dihydroxy compound.
  • the polycarbonate resin (B) may be used alone or in combination of two or more in any combination and in any ratio.
  • the polycarbonate resin (B) can also have a carbonate structural unit other than the structural unit represented by the general formula (1).
  • the structural unit represented by the following general formula (2) It may have a structural unit derived from the dihydroxy compound.
  • the copolymerization amount of structural units other than the structural unit represented by the general formula (1) is usually less than 50 mol%, preferably 40 mol% or less, more preferably 30 mol% or less, and further 20 It is preferably at most 10 mol%, particularly at most 10 mol%. (Wherein X has the same meaning as X in formula (1)).
  • a preferred specific example of the polycarbonate structural unit represented by the general formula (2) is 2,2-bis (4-hydroxyphenyl) propane, that is, a carbonate structural unit derived from bisphenol A.
  • the polycarbonate resin (B) is a component different from the polycarbonate resin (A)
  • the component derived from bisphenol A is 50 mol. %, Preferably 30% by mass or less, more preferably 20% by mass or less, especially 10% by mass or less, and particularly preferably 5% by mass or less.
  • dihydroxy compounds other than the structural unit represented by the general formula (2) include bis (4-hydroxyphenyl) methane, 2,2-bis (4-hydroxyphenyl) butane, and 2,2-bis (4 -Hydroxyphenyl) pentane, 2,2-bis (4-hydroxyphenyl) -4-methylpentane, 1,1-bis (4-hydroxyphenyl) decane, 1,1-bis (4-hydroxyphenyl) cyclohexane, , 1-bis (4-hydroxyphenyl) -1-phenylethane, bis (4-hydroxyphenyl) phenylmethane, 1,1-bis (4-hydroxyphenyl) cyclopentane, 1,1-bis (4-hydroxyphenyl) ) Cyclooctane, 9,9-bis (4-hydroxyphenyl) fluorene, 4,4′-dihydroxybenzophenone, 4, '- dihydroxyphenyl ether.
  • the viscosity average molecular weight (Mv) of the polycarbonate resin (B) is preferably 19,000 to 35,000. When the viscosity average molecular weight is in this range, a molded product having good moldability, high mechanical strength, and good scratch resistance can be easily obtained. When the viscosity average molecular weight is less than 19,000, the pencil hardness of the resin composition is lowered. Or impact resistance decreases, which is not preferable. On the other hand, if it exceeds 35,000, the melt viscosity increases and injection molding tends to be difficult.
  • the more preferable lower limit of the molecular weight of the polycarbonate resin (B) is 19,500, 20,000, 22,000, 23,000, 24,000, more preferably 25,000, and particularly preferably 26,000. Is more preferably 33,000, still more preferably 32,000.
  • the method for producing the polycarbonate resin (B) is not particularly limited, and is as described in the method for producing the polycarbonate resin.
  • the content of the polycarbonate resin (B) is such that the content ratio of the polycarbonate resin (A) and the polycarbonate resin (B) is 0 to 80/20 to 100 in terms of the mass ratio of (A) / (B). If the mass ratio of the polycarbonate resin (B) is less than 20, it is not preferable because the pencil hardness is lowered or the nail scratch preventing performance is deteriorated.
  • the content of the polycarbonate resin (B) is preferably 1 to 80/20 to 99, more preferably 5 to 75/25 to 95, and still more preferably 10 to 70 in terms of mass ratio of (A) / (B). / 30 to 90.
  • Polycarbonate resins (A) and (B) are polycarbonate resins alone (polycarbonate resins alone are not limited to embodiments containing only one type of polycarbonate resin. For example, a plurality of types of polycarbonate resins having different monomer compositions and molecular weights are used. It may be used in the meaning including the embodiment including).
  • a polycarbonate resin is copolymerized with an oligomer or polymer having a siloxane structure; for the purpose of further improving thermal oxidation stability and flame retardancy
  • the polycarbonate resins (A) and (B) may contain a polycarbonate oligomer.
  • the viscosity average molecular weight [Mv] of this polycarbonate oligomer is usually 1,500 or more, preferably 2,000 or more, and usually 9,500 or less, preferably 9,000 or less.
  • the polycarbonate ligomer contained is 30% by mass or less of the entire polycarbonate resin (including polycarbonate oligomer).
  • the polycarbonate resin composition of the present invention contains a styrene resin (C) that does not contain a structural unit derived from butadiene.
  • a styrene resin (C) that does not contain a structural unit derived from butadiene it not only facilitates the development of color development, particularly jetness, which has been hindered by the structural unit derived from butadiene, but also improves light resistance. In addition, it is easy to achieve improvement in heat and humidity resistance.
  • Styrenic resin (C) is not a resin containing a structural unit derived from butadiene such as ABS resin, but is an aromatic vinyl monomer alone or other copolymerizable with an aromatic vinyl monomer as required. It is a resin obtained by polymerizing one or more selected from vinyl monomers and rubbery polymers.
  • Examples of the aromatic vinyl monomer (c1) used in the styrene resin (C) include styrene, ⁇ -methylstyrene, o-methylstyrene, p-methylstyrene, vinylxylene, ethylstyrene, dimethylstyrene, p-tert. -Styrene derivatives such as butyl styrene, vinyl naphthalene, methoxy styrene, monobromo styrene, dibromo styrene, fluorostyrene, tribromo styrene, etc. are mentioned, and styrene is particularly preferable. These may be used alone or in combination of two or more.
  • vinyl cyanide monomer (c2) is preferable, and examples thereof include acrylonitrile and methacrylonitrile.
  • aryl esters of acrylic acid such as phenyl acrylate and benzyl acrylate; methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, amyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, octyl acrylate
  • Alkyl esters of acrylic acid such as cyclohexyl acrylate and dodecyl acrylate
  • aryl methacrylates such as phenyl methacrylate and benzyl methacrylate; methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, amyl methacrylate, hexyl methacrylate, 2-ethylhexyl methacrylate, octyl Methacrylate, cyclohexyl methacrylate Methacrylic acid alkyl esters
  • rubbery polymer (c3) copolymerizable with the aromatic vinyl monomer (c1) rubber having a glass transition temperature of 10 ° C. or lower is suitable.
  • Specific examples of such rubbery polymers include acrylic rubber, ethylene / propylene rubber, silicone rubber, polyorganosiloxane rubber component and polyalkyl (meth) acrylate rubber component that are intertwined with each other so that they cannot be separated.
  • a composite rubber (IPN type rubber) or the like having an acid content is preferable, and an acrylic rubber or the like is preferable.
  • acrylic rubber examples include acrylic acid alkyl ester rubber, and the carbon number of the alkyl group is preferably 1-8.
  • alkyl acrylate examples include ethyl acrylate, butyl acrylate, hexyl acrylate and the like.
  • An ethylenically unsaturated monomer may optionally be used in the acrylic acid alkyl ester rubber.
  • Specific examples of such compounds include di (meth) acrylate, divinylbenzene, trivinylbenzene, triallyl cyanurate, allyl (meth) acrylate, and the like.
  • These rubbery polymers (c3) may be used alone or in combination of two or more.
  • the styrenic resin (C) is composed of the aromatic vinyl monomer component (c1) 50 to 100% by mass, the vinyl cyanide monomer component (c2) 0 to 30% by mass, the rubbery polymer component (c3). It is preferably composed of 0 to 30% by mass and other monomer component (c4) 0 to 30% by mass, aromatic vinyl monomer component (c1) 45 to 80% by mass, vinyl cyanide monomer component ( c2) 10 to 30% by mass, rubbery polymer component (c3) 10 to 25% by mass, and other monomer component (c4) 0 to 40% by mass, more preferably an aromatic vinyl monomer component (C1) 55 to 70% by mass, vinyl cyanide monomer component (c2) 15 to 25% by mass, rubbery polymer component (c3) 15 to 20% by mass, other monomer components (c4) 0 to More preferably, it consists of 5% by mass.
  • styrene resin (C) used in the present invention include, for example, a styrene homopolymer, a copolymer of styrene and (meth) acrylonitrile, and a copolymer of styrene and an alkyl (meth) acrylate.
  • Preferable examples include graft copolymers obtained by graft polymerization with acrylonitrile.
  • AS resin acrylonitrile-styrene copolymer
  • MS resin methacrylic acid alkyl ester-styrene copolymer
  • SMA resin styrene-maleic anhydride copolymer
  • ASA resin acrylonitrile- Styrene-acrylic rubber copoly
  • acrylonitrile-styrene copolymer AS resin
  • methacrylic acid alkyl ester-styrene copolymer MS resin
  • ASA resin acrylonitrile-styrene-acrylic rubber copolymer
  • AES resin acrylonitrile-ethylenepropylene rubber
  • AS resin acrylonitrile-styrene copolymer
  • AS resin acrylonitrile-styrene copolymer
  • MS resin methacrylic acid alkyl ester-styrene copolymer
  • ASA resin acrylonitrile-styrene-acrylic rubber copolymer
  • AES resin styrene copolymer
  • AS resin acrylonitrile-styrene copolymer
  • MS resin methacrylic acid alkyl ester-styrene copolymer
  • These styrene resins (C) may be used alone or in combination of two or more.
  • the content of the styrene resin (C) not containing a structural unit derived from butadiene is 1 to 30 parts by mass, preferably 3 to 100 parts by mass with respect to 100 parts by mass in total of the polycarbonate resins (A) and (B).
  • the amount is 25 parts by mass, more preferably 5 to 20 parts by mass.
  • the polycarbonate resin composition of the present invention preferably further contains a graft copolymer (D) having a polyethylene segment and a vinyl polymer segment.
  • a graft copolymer (D) having a polyethylene segment and a vinyl polymer segment.
  • a polyethylene-based segment is a main chain of the graft copolymer, and a segment obtained by polymerizing a vinyl-based monomer is a side chain of the graft copolymer.
  • the polyethylene segment may be either a homopolymer of ethylene or a copolymer with other ⁇ -olefin other than ethylene which is mainly composed of ethylene and copolymerizable therewith.
  • Other ⁇ -olefins other than ethylene are ⁇ -olefins having usually 3 to 20 carbon atoms, preferably 3 to 12, and include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1 Preferred are -pentene, 1-octene, 1-decene, 1-dodecene and the like.
  • the amount of the ⁇ -olefin unit is usually 0 to 50% by mass, preferably 0 to 30% by mass, more preferably 0 to 20% by mass, and further 0 to 10% by mass. It is preferable that
  • the molecular weight of the polyethylene segment is usually about 10,000 to 600,000 in terms of number average molecular weight (Mn).
  • Mn number average molecular weight
  • the number average molecular weight means what is calculated
  • polyethylene-based segment examples include commercially available high-density polyethylene (HDPE), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), very low-density polyethylene (VLDPE), or high pressure obtained by a high-pressure radical method.
  • HDPE high-density polyethylene
  • LDPE low-density polyethylene
  • LLDPE linear low-density polyethylene
  • VLDPE very low-density polyethylene
  • high-pressure radical method any of low-density polyethylene (HPLD) and the like may be used, but low-density polyethylene, linear low-density polyethylene, very low-density polyethylene, and high-pressure low-density polyethylene are preferable, and very low-density polyethylene (VLDPE) is particularly preferable. More preferred.
  • Low density polyethylene usually has a density of 0.91 to 0.94 g / cm 3 , preferably 0.912 to 0.935 g / cm 3 .
  • the linear low density polyethylene preferably has a density of 0.91 to 0.94 g / cm 3 .
  • Ultra-low density polyethylene is a copolymer of ethylene and ⁇ -olefin, and usually has a density in the range of 0.86 to 0.91 g / cm 3 .
  • the high-pressure low-density polyethylene by the high-pressure method preferably has a density of 0.91 to 0.94 g / cm 3 .
  • vinyl monomers for forming vinyl polymer segments include styrene monomers, ⁇ , ⁇ -unsaturated carboxylic acids, ⁇ , ⁇ -unsaturated carboxylic acid esters, unsaturated nitrile monomers A body etc. are mentioned preferably.
  • styrene monomer examples include styrene, methyl styrene, dimethyl styrene, ethyl styrene, isopropyl styrene, chlorostyrene, and the like, and styrene is particularly preferable.
  • Examples of the ⁇ , ⁇ -unsaturated carboxylic acid include (meth) acrylic acid esters such as hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 3-hydroxypropyl (meth) acrylate, acrylic acid, and methacrylic acid. Preference is given to fumaric acid, maleic anhydride, itaconic acid and the like.
  • Examples of the ⁇ , ⁇ -unsaturated carboxylic acid ester include methyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, and n methacrylate.
  • Preferred examples include -butyl and isobutyl methacrylate.
  • As the unsaturated nitrile monomer acrylonitrile is preferably exemplified.
  • styrene monomers particularly styrene, are preferred because they are highly compatible with the polycarbonate resin (A) and have excellent scratch resistance effects.
  • Styrene alone or styrene It is preferable to copolymerize with OH group-containing (meth) acrylate such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, or acrylonitrile.
  • the molecular weight of the graft copolymer (D) is preferably 5,000 to 500,000 in terms of mass average molecular weight (Mw).
  • Mw mass average molecular weight
  • a mass average molecular weight means what is calculated
  • the graft copolymer (D) preferably further contains a polyorganosiloxane.
  • the polyorganosiloxane When the polyorganosiloxane is contained, it may have as a main chain or a side chain of the graft copolymer (D), and may be one of the graft copolymers that form a core / shell type multilayer structure. It may be contained as a part.
  • the polyorganosiloxane is not particularly limited, but representative examples thereof include polydimethylsiloxane and polymethylphenylsiloxane, and examples thereof include polydimethyldiphenylsiloxane copolymer, polydimethylphenylmethylsiloxane copolymer, and polymethylphenyldiphenylsiloxane copolymer. Among them, a polymer containing a dialkylsiloxane unit, particularly a dimethylsiloxane unit as a constituent unit is preferable. Moreover, as polyorganosiloxane, what contains the siloxane containing a vinyl group as a structural component is preferable. Siloxanes containing vinyl groups are well known and contain vinyl groups to which organosiloxanes are bonded via siloxane bonds.
  • the proportion of the polyethylene polymer segment in the graft copolymer (D) is preferably 50 to 95% by mass, more preferably 60 to 90% by mass, and still more preferably 65 to 80% by mass. is there.
  • the proportion of the vinyl polymer segment is preferably 5 to 50% by mass, more preferably 10 to 40% by mass, and still more preferably 20 to 35% by mass.
  • the content is preferably 0.5 to 30% by mass, more preferably 1 to 20% by mass, and further preferably 2 to 10% by mass. .
  • the content in the case of containing a polyorganosiloxane segment is mass% based on a total of 100 mass% of the polyethylene polymer segment, the vinyl polymer segment, and the polyorganosiloxane segment.
  • the graft copolymer (D) preferably has an endothermic peak measured at 100 ° C. or lower according to JIS K7121 by a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • the graft copolymer (D) may have a plurality of endothermic peaks. Even when there are a plurality of endothermic peaks, the graft copolymer (D) preferably has an endothermic peak at 100 ° C. or lower.
  • the endothermic peak temperature is preferably 90 ° C. or lower, more preferably 80 ° C. or lower, and its lower limit is usually 60 ° C. or higher.
  • the endothermic peak of the graft copolymer (D) is measured according to JIS K7121, using a differential scanning calorimeter DSC7020 manufactured by Seiko Instruments Inc. It is performed by observing a 10 mg sample by raising the temperature from 30 ° C. to 300 ° C. at a rate of 10 ° C./min.
  • the temperature of the endothermic peak at the lowest temperature side is measured.
  • any of various known graft copolymerization methods may be used, and examples thereof include the following methods.
  • the polyethylene polymer is suspended in water, and the vinyl monomer, radical polymerizable organic peroxide (for example, t-butyl peroxymethacryloyloxyethyl carbonate, etc.), polymerization initiator (for example, a mixed solution in which 3,5,5-trimethylhexanoyl peroxide or the like is dissolved is added and then heated to copolymerize to produce a graft copolymer.
  • radical polymerizable organic peroxide for example, t-butyl peroxymethacryloyloxyethyl carbonate, etc.
  • polymerization initiator for example, a mixed solution in which 3,5,5-trimethylhexanoyl peroxide or the like is dissolved is added and then heated to copolymerize to produce a graft copolymer.
  • the graft copolymer (D) is commercially available and can be used.
  • it is sold as “Nofalloy (registered trademark) KA series” by NOF Corporation, for example, “Nofalloy KA147”. Etc. are available.
  • the preferred content of the graft copolymer (D) is 1 to 10 parts by weight, more preferably 1.5 to 9 parts by weight, based on a total of 100 parts by weight of the polycarbonate resins (A) and (B). More preferably, it is 2 to 8 parts by mass.
  • the amount is less than 1 part by mass, the scratch resistance at the nail and the effect of improving slight scratches at low hardness in the pencil hardness test tend to be small, and when the amount exceeds 10 parts by mass, the hue deteriorates, the mechanical strength and It tends to cause a decrease in heat resistance.
  • the polycarbonate resin composition of the present invention preferably contains an impact resistance improver (E).
  • the impact resistance improver (E) is preferably an elastomer, and the elastomer is preferably a graft copolymer obtained by graft copolymerizing a rubber component with a monomer component copolymerizable therewith.
  • the graft copolymer here is defined as different from the above-mentioned styrene resin (C).
  • the production method of the graft copolymer may be any production method such as bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization, and the copolymerization method may be single-stage graft or multi-stage graft.
  • the rubber component generally has a glass transition temperature of 0 ° C. or lower, preferably ⁇ 20 ° C. or lower, more preferably ⁇ 30 ° C. or lower.
  • Specific examples of the rubber component include polybutadiene rubber, polyisoprene rubber, polybutyl acrylate and poly (2-ethylhexyl acrylate), polyalkyl acrylate rubber such as butyl acrylate / 2-ethyl hexyl acrylate copolymer, and polyorganosiloxane rubber.
  • Silicone rubber butadiene-acrylic composite rubber, IPN (Interpenetrating Polymer Network) composite rubber composed of polyorganosiloxane rubber and polyalkylacrylate rubber, styrene-butadiene rubber, ethylene-propylene rubber, ethylene-butene rubber, ethylene-octene rubber, etc. And ethylene- ⁇ -olefin rubber, ethylene-acrylic rubber, fluororubber, and the like. These may be used alone or in admixture of two or more.
  • IPN Interpenetrating Polymer Network
  • polybutadiene rubber polyalkyl acrylate rubber, polyorganosiloxane rubber, IPN composite rubber composed of polyorganosiloxane rubber and polyalkyl acrylate rubber, and styrene-butadiene rubber are preferable. .
  • monomer components that can be graft copolymerized with the rubber component include aromatic vinyl compounds, vinyl cyanide compounds, (meth) acrylic acid ester compounds, (meth) acrylic acid compounds, glycidyl (meth) acrylates, and the like.
  • These monomer components may be used alone or in combination of two or more.
  • aromatic vinyl compounds, vinyl cyanide compounds, (meth) acrylic acid ester compounds, and (meth) acrylic acid compounds are preferable from the viewpoint of mechanical properties and surface appearance, and (meth) acrylic acid esters are more preferable.
  • Specific examples of the (meth) acrylate compound include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, cyclohexyl (meth) acrylate, octyl (meth) acrylate, and the like. be able to.
  • the graft copolymer obtained by copolymerizing the rubber component is preferably a core / shell type graft copolymer type from the viewpoint of impact resistance and surface appearance.
  • a rubber component selected from polybutadiene-containing rubber, polybutyl acrylate-containing rubber, polyorganosiloxane rubber, IPN type composite rubber composed of polyorganosiloxane rubber and polyalkyl acrylate rubber is used as a core layer, and around it.
  • a core / shell type graft copolymer comprising a shell layer formed by copolymerizing (meth) acrylic acid ester is particularly preferred.
  • the core / shell type graft copolymer preferably contains 40% by mass or more of a rubber component, and more preferably contains 60% by mass or more. Moreover, what contains 10 mass% or more of (meth) acrylic acid is preferable.
  • the core / shell type does not necessarily have to be clearly distinguishable between the core layer and the shell layer, and widely includes compounds obtained by graft polymerization of a rubber component around the core portion. is there.
  • these core / shell type graft copolymers include butadiene-methyl acrylate copolymer, methyl methacrylate-butadiene-styrene copolymer, methyl methacrylate-butadiene copolymer, methyl methacrylate-acrylic / butadiene rubber copolymer.
  • examples thereof include a polymer, a methyl methacrylate-acrylic butadiene rubber-styrene copolymer, and a methyl methacrylate- (acrylic silicone IPN rubber) copolymer.
  • Such rubbery polymers may be used alone or in combination of two or more.
  • the content of the impact resistance improver (E) is 7 to 7 parts per 100 parts by mass in total of the polycarbonate resins (A) and (B). 20 parts by mass is preferable, 8 to 18 parts by mass is more preferable, and 10 to 15 parts by mass is further preferable.
  • the content of the impact modifier (E) is less than 7 parts by mass, the impact resistance tends to decrease, and when the content of the impact modifier (E) exceeds 20 parts by mass, the fluidity tends to decrease.
  • the impact resistance improver (E) may contain only one type or two or more types. When two or more types are included, the total amount is preferably within the above range.
  • the polycarbonate resin composition of the present invention preferably contains a stabilizer (F).
  • a stabilizer examples include an antioxidant and a heat stabilizer.
  • an antioxidant or a heat stabilizer may be used alone, but it is preferable to use both an antioxidant and a heat stabilizer in combination.
  • antioxidant examples include hindered phenol antioxidants. Specific examples thereof include pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl).
  • the content of the antioxidant is usually from 0.001 to 1 part by weight, preferably from 0.01 to 0.000 parts per 100 parts by weight in total of the polycarbonate resins (A) and (B) and the styrene resin (C). 5 parts by mass.
  • the content of the antioxidant is less than 0.001 part by mass, the effect as an antioxidant is insufficient, and when it exceeds 1 part by mass, the effect reaches a peak and is not economical.
  • heat stabilizer examples include phosphorus compounds. Any known phosphorous compound can be used. Specific examples include phosphorus oxo acids such as phosphoric acid, phosphonic acid, phosphorous acid, phosphinic acid, and polyphosphoric acid; acidic pyrophosphate metal salts such as acidic sodium pyrophosphate, acidic potassium pyrophosphate, and acidic calcium pyrophosphate; phosphoric acid Group 1 or Group 2B metal phosphates such as potassium, sodium phosphate, cesium phosphate and zinc phosphate; organic phosphate compounds, organic phosphite compounds, organic phosphonite compounds, etc. Particularly preferred.
  • Organic phosphite compounds include triphenyl phosphite, tris (monononylphenyl) phosphite, tris (monononyl / dinonyl phenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite, monooctyl Diphenyl phosphite, dioctyl monophenyl phosphite, monodecyl diphenyl phosphite, didecyl monophenyl phosphite, tridecyl phosphite, trilauryl phosphite, tristearyl phosphite, 2,2-methylene bis (4,6-di- tert-butylphenyl) octyl phosphite, 3,9-bis ⁇ 1,1-dimethyl-2- [ ⁇ - (3-tert-butyl-4-hydroxy
  • an organic phosphite compound examples include, for example, “ADEKA STAB (registered trademark, the same applies hereinafter) PEP-36”, “ADEKA STAB 1178”, “ADEKA STAB 2112”, “ADK STAB HP-” manufactured by ADEKA Corporation. 10 ”,“ JP-351 ”,“ JP-360 ”,“ JP-3CP ”manufactured by Johoku Chemical Industry Co., Ltd.,“ Irgaphos (registered trademark) 168 ”manufactured by BASF Japan Ltd., and the like.
  • the heat stabilizer may be contained only by 1 type and 2 or more types may be contained by arbitrary combinations and ratios.
  • Content of a heat stabilizer is 0.001 mass part or more normally with respect to a total of 100 mass parts of polycarbonate resin (A), (B) and styrene resin (C), Preferably it is 0.005 mass part or more, More preferably, it is 0.01 mass part or more, and is 1 mass part or less normally, Preferably it is 0.5 mass part or less, More preferably, it is 0.3 mass part or less.
  • the content of the heat stabilizer is less than the lower limit of the above range, the heat stability effect may be insufficient, and when the content of the heat stabilizer exceeds the upper limit of the above range, the effect reaches a peak. It becomes less economical.
  • the polycarbonate resin composition of the present invention preferably contains a release agent (G).
  • the release agent include aliphatic carboxylic acids, esters of aliphatic carboxylic acids and alcohols, aliphatic hydrocarbon compounds having a number average molecular weight of 200 to 15,000, and polysiloxane silicone oils.
  • the aliphatic carboxylic acid examples include saturated or unsaturated aliphatic monovalent, divalent, or trivalent carboxylic acids.
  • the aliphatic carboxylic acid includes alicyclic carboxylic acid.
  • preferred aliphatic carboxylic acids are monovalent or divalent carboxylic acids having 6 to 36 carbon atoms, and aliphatic saturated monovalent carboxylic acids having 6 to 36 carbon atoms are more preferred.
  • aliphatic carboxylic acids include palmitic acid, stearic acid, caproic acid, capric acid, lauric acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, mellicic acid, tetrariacontanoic acid, montanic acid, adipine Examples include acids and azelaic acid.
  • an aliphatic carboxylic acid in the ester of an aliphatic carboxylic acid and an alcohol for example, the same one as the aliphatic carboxylic acid can be used.
  • the alcohol include saturated or unsaturated monohydric or polyhydric alcohols. These alcohols may have a substituent such as a fluorine atom or an aryl group. Among these, monovalent or polyvalent saturated alcohols having 30 or less carbon atoms are preferable, and aliphatic saturated monohydric alcohols or aliphatic saturated polyhydric alcohols having 30 or less carbon atoms are more preferable.
  • an aliphatic includes an alicyclic compound here.
  • alcohols include octanol, decanol, dodecanol, stearyl alcohol, behenyl alcohol, ethylene glycol, diethylene glycol, glycerin, pentaerythritol, 2,2-dihydroxyperfluoropropanol, neopentylene glycol, ditrimethylolpropane, dipentaerythritol, and the like. Is mentioned.
  • said ester may contain aliphatic carboxylic acid and / or alcohol as an impurity.
  • said ester may be a pure substance, it may be a mixture of a plurality of compounds.
  • the aliphatic carboxylic acid and alcohol which combine and comprise one ester may each be used 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
  • esters of aliphatic carboxylic acids and alcohols include beeswax (a mixture based on myricyl palmitate), stearyl stearate, behenyl behenate, stearyl behenate, glycerin monopalmitate, glycerin monostearate
  • esters of aliphatic carboxylic acids and alcohols include beeswax (a mixture based on myricyl palmitate), stearyl stearate, behenyl behenate, stearyl behenate, glycerin monopalmitate, glycerin monostearate
  • examples thereof include rate, glycerol distearate, glycerol tristearate, pentaerythritol monopalmitate, pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate, pentaerythritol tetrastea
  • Examples of the aliphatic hydrocarbon having a number average molecular weight of 200 to 15,000 include liquid paraffin, paraffin wax, microwax, polyethylene wax, Fischer-Tropsch wax, and ⁇ -olefin oligomer having 3 to 12 carbon atoms.
  • the aliphatic hydrocarbon includes alicyclic hydrocarbons. Further, these hydrocarbons may be partially oxidized. The number average molecular weight is preferably 5,000 or less.
  • the aliphatic hydrocarbon may be a single substance, but even a mixture of various constituent components and molecular weights can be used as long as the main component is within the above range.
  • paraffin wax, polyethylene wax, or a partial oxide of polyethylene wax is preferable
  • paraffin wax and polyethylene wax are more preferable
  • polyethylene wax is particularly preferable.
  • 1 type may contain the mold release agent (G) and 2 or more types may contain it by arbitrary combinations and a ratio.
  • the content of the release agent (G) is usually 0.001 parts by mass or more, preferably 0.01 parts by mass with respect to 100 parts by mass in total of the polycarbonate resins (A), (B) and the styrene resin (C). It is usually 2 parts by mass or less, preferably 1 part by mass or less.
  • the content of the release agent is less than the lower limit of the above range, the effect of releasability may not be sufficient, and when the content of the release agent exceeds the upper limit of the above range, hydrolysis resistance And mold contamination during injection molding may occur.
  • Black pigment (H) Since the polycarbonate resin composition of the present invention is excellent in color developability, particularly jet black, it is preferable to contain a black pigment (H).
  • a black pigment (H) carbon black, graphite, iron black, aniline black, cyanine black, titanium black, etc. can be used, but carbon black is preferred from the viewpoint of jet blackness and light resistance (weather), and carbon black Preferred examples of black include acetylene black, lamp black, thermal black, furnace black, channel black, and ketjen black.
  • the content of the black pigment (H) is preferably 0.5 to 1.8 parts by mass with respect to 100 parts by mass in total of the polycarbonate resins (A) and (B) and the styrene resin (C). If it is less than 0.5 parts by mass, jet blackness tends to be insufficient, and if it exceeds 1.8 parts by mass, the mechanical properties may decrease.
  • the content of the black pigment (H) is more preferably 0.7 to 1.6 parts by mass, still more preferably 0.9 to 1.4 parts by mass.
  • the polycarbonate resin composition of the present invention may contain an ultraviolet absorber.
  • ultraviolet absorbers include inorganic ultraviolet absorbers such as cerium oxide and zinc oxide; organics such as benzotriazole compounds, benzophenone compounds, salicylate compounds, cyanoacrylate compounds, triazine compounds, oxanilide compounds, malonic ester compounds, hindered amine compounds Examples include ultraviolet absorbers. Of these, organic ultraviolet absorbers are preferred, and benzotriazole compounds are more preferred. By selecting an organic ultraviolet absorber, transparency and mechanical properties are improved.
  • benzotriazole compound examples include, for example, 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- [2′-hydroxy-3 ′, 5′-bis ( ⁇ , ⁇ -dimethylbenzyl). ) Phenyl] -benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-tert-butyl-phenyl) -benzotriazole, 2- (2′-hydroxy-3′-tert-butyl-5 ′) -Methylphenyl) -5-chlorobenzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butyl-phenyl) -5-chlorobenzotriazole), 2- (2'-hydroxy-3 ', 5'-di-tert-amyl) -benzotriazole, 2- (2'-hydroxy-5'-tert-octylphenyl) benzotriazole 2,2′-methylenebis [4- (1,
  • the content in the case of containing the ultraviolet absorber is preferably 0.05 parts by mass or more, more preferably 0 with respect to 100 parts by mass in total of the polycarbonate resins (A) and (B) and the styrene resin (C).
  • the upper limit is preferably 1 part by mass or less, more preferably 0.5 part by mass or less. If the content of the ultraviolet absorber is less than the lower limit of the range, the effect of improving the weather resistance may be insufficient, and if the content of the ultraviolet absorber exceeds the upper limit of the range, the mold Debogit etc. may occur and cause mold contamination.
  • 1 type may contain the ultraviolet absorber and 2 or more types may contain it by arbitrary combinations and a ratio.
  • the polycarbonate resin composition of the present invention may contain other components other than the above, if necessary, as long as the desired physical properties are not significantly impaired.
  • examples of other components include resins other than those described above and various resin additives other than those described above.
  • 1 type may contain other components and 2 or more types may contain them by arbitrary combinations and ratios.
  • content in the case of containing other resins other than those described above should be 20 parts by mass or less with respect to a total of 100 parts by mass of the polycarbonate resins (A), (B) and the styrene resin (C). More preferably, it is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and particularly preferably 3 parts by mass or less.
  • resin additive examples include flame retardants, anti-dripping agents, fillers, dyes and pigments, antistatic agents, antifogging agents, lubricants, antiblocking agents, plasticizers, dispersants, antibacterial agents, and the like.
  • 1 type may contain resin additive and 2 or more types may contain it by arbitrary combinations and a ratio.
  • various mixers such as a tumbler and Henschel mixer, after pre-mixing, such as Banbury mixer, roll, Brabender, single-screw kneading extruder, twin-screw kneading extruder, kneader
  • the method of melt-kneading with a mixer is mentioned.
  • the temperature for melt kneading is not particularly limited, but is preferably in the range of 240 to 320 ° C, particularly preferably 240 to 300 ° C.
  • the above-mentioned polycarbonate resin composition (pellet) is molded by various molding methods into a molded product.
  • the shape of the molded product is not particularly limited and can be appropriately selected according to the use and purpose of the molded product.
  • a plate shape, a plate shape, a rod shape, a sheet shape, a film shape, a cylindrical shape, an annular shape examples include a circular shape, an elliptical shape, a polygonal shape, an irregular shape, a hollow shape, a frame shape, a box shape, and a panel shape.
  • the method for molding a molded product is not particularly limited, and a conventionally known molding method can be employed.
  • a conventionally known molding method can be employed.
  • the molding is preferably performed by an injection molding method.
  • the molding is performed using a known injection molding machine such as an injection molding machine, an ultra-high speed injection molding machine, or an injection compression molding machine.
  • the cylinder temperature of the injection molding machine at the time of injection molding is preferably 240 to 320 ° C, more preferably 250 to 300 ° C, and further preferably 260 to 280 ° C.
  • the injection speed during injection molding is preferably 10 to 1,000 mm / sec, more preferably 10 to 500 mm / sec.
  • the pencil hardness of the molded body made of the polycarbonate resin composition of the present invention is preferably HB or higher, more preferably F or higher, and still more preferably H or higher. If the pencil hardness is less than HB, the surface of the resin molding tends to be damaged.
  • the pencil hardness of HB or higher can be achieved by blending the polycarbonate resin (A), the polycarbonate resin (B), and the styrene resin (C) at a specific ratio.
  • the pencil hardness is measured under a load of 750 g using a pencil hardness tester (manufactured by Toyo Seiki Seisakusho Co., Ltd.) in accordance with ISO 15184.
  • the polycarbonate resin composition of the present invention preferably conforms to ISO 6603-2, has a striker diameter of 10 mm, a sample support diameter of 40 mm, a punching speed of 4.4 m / sec, a collision energy of 50.1 J, and a sample thickness of 3 mm.
  • the fracture mode shows YD.
  • FIG. 1 there are YD, YS, YU, and NY as fracture modes, and the fracture mode YD refers to the yield caused by deep drawing, and the polycarbonate resin composition of the present invention can achieve the fracture mode YD.
  • the impact fracture mode is YS (yield caused by stable crack growth), YU (yield caused by unstable crack growth), and NY (non-breaking).
  • the characteristics of puncture impact are achieved by adjusting the blending ratio of polycarbonate resin (A), polycarbonate resin (B), and styrene resin (C), and adding impact modifier (D) as necessary. Is done.
  • the polycarbonate resin composition of the present invention has a notched Charpy impact value measured in accordance with ISO 179-2 at room temperature (23 ° C.), preferably 20 kJ / m 2 or more, more preferably 23 kJ / m 2 or more. More preferably, it is 25 kJ / m 2 .
  • the room temperature impact resistance value is obtained by adjusting the blending ratio of the polycarbonate resin (A), the polycarbonate resin (B), and the styrene resin (C), and adding an impact resistance improver (E) as necessary. Achieved.
  • nylon scratched In order to confirm the damage property by the nail
  • the nylon scratch test in the present invention is based on ISO 15184, using a pencil hardness tester (manufactured by Toyo Seiki Seisakusho Co., Ltd.), attaching a nylon round bar instead of a pencil, and applying a load of 50, 100, 300, While changing to 500 and 750 g, the load that damages the molded bag is obtained.
  • the damage property of the molded body made of the polycarbonate resin composition of the present invention is preferably 300 g load or more, more preferably 500 g load or more, and particularly preferably 750 g load.
  • the L * value measured with a D65 / 10 ° light source in a molded product having a thickness of 3 mm is preferably 5.5 or less, more preferably 5. 2 or less, more preferably 5.1 or less, particularly preferably 5.0 or less can be achieved.
  • the molded article of the polycarbonate resin composition of the present invention can be used in a wide range of fields, such as electronic and electrical equipment and parts thereof, OA equipment, information terminal equipment, mechanical parts, home appliances, vehicle parts, building members, and various types. It is useful for various applications such as containers, leisure goods / miscellaneous goods, and lighting equipment, and is expected to be applied particularly to housing parts and vehicle interior parts of electronic and electrical equipment, OA equipment, and information terminal equipment.
  • housing members for electronic electrical equipment, office automation equipment, and information terminal equipment display devices such as personal computers, game machines, and televisions, printers, copiers, scanners, fax machines, electronic notebooks and PDAs, cameras, video cameras, mobile phones, recordings
  • Examples of the housing member include a medium drive and a reading device.
  • Examples of vehicle interior parts include a center panel, an instrument panel, a console box, a luggage floor board, a door pocket, and a display housing such as a car navigation system.
  • polycarbonate resins (B1) and (B2) used as the polycarbonate resin (B) were produced by the following production examples.
  • the reaction solution in the reactor is stirred, and cesium carbonate (Cs 2 CO 3 ) is used as a transesterification catalyst in the molten reaction solution so that the amount becomes 1.5 ⁇ 10 ⁇ 6 mol per 1 mol of BPC.
  • the reaction solution was stirred and brewed at 220 ° C. for 30 minutes in a nitrogen gas atmosphere.
  • the pressure in the reactor was reduced to 100 Torr over 40 minutes, and the reaction was further performed for 100 minutes to distill phenol.
  • the temperature in the reactor was raised to 284 ° C. over 60 minutes and the pressure was reduced to 3 Torr, and phenol corresponding to almost the entire distillation amount was distilled.
  • the pressure in the reactor was kept below 1 Torr at the same temperature, and the reaction was further continued for 60 minutes to complete the polycondensation reaction.
  • the stirring rotation speed of the stirrer was 38 rotations / minute
  • the reaction liquid temperature just before the completion of the reaction was 289 ° C.
  • the stirring power was 1.00 kW.
  • the molten reaction solution was fed into a twin screw extruder, and 4-fold molar amount of butyl p-toluenesulfonate with respect to cesium carbonate was supplied from the first supply port of the twin screw extruder. After kneading with the reaction solution, the reaction solution was extruded in a strand shape through a die of a twin screw extruder and cut with a cutter to obtain carbonate resin pellets.
  • the physical properties of the obtained polycarbonate resin (B1) were as follows. Pencil hardness: 2H Viscosity average molecular weight (Mv): 26,000
  • reaction solution was stirred and brewed at 220 ° C. for 30 minutes in a nitrogen gas atmosphere.
  • pressure in the reactor was reduced to 100 Torr over 40 minutes, and the reaction was further performed for 100 minutes to distill phenol.
  • the temperature in the reactor was raised to 284 ° C. over 60 minutes and the pressure was reduced to 3 Torr, and phenol corresponding to almost the entire distillation amount was distilled.
  • the pressure in the reactor was kept below 1 Torr at the same temperature, and the reaction was further continued for 60 minutes to complete the polycondensation reaction.
  • the stirring rotation speed of the stirrer was 38 rotations / minute, the reaction liquid temperature immediately before the completion of the reaction was 289 ° C., and the stirring power was 0.60 kW.
  • the molten reaction solution was fed into a twin screw extruder, and 4-fold molar amount of butyl p-toluenesulfonate with respect to cesium carbonate was supplied from the first supply port of the twin screw extruder. After kneading with the reaction solution, the reaction solution was extruded into a strand shape through a die of a twin screw extruder and cut with a cutter to obtain polycarbonate resin pellets.
  • the physical properties of the obtained polycarbonate resin (B2) were as follows. Pencil hardness: 2H Viscosity average molecular weight (Mv): 20,000
  • Examples 1 to 17, Comparative Examples 1 to 10 The respective components listed in Table 1 above are shown in the following Tables 2 to 5 (expressed in parts by mass. However, the amounts of the stabilizer, the release agent and the black pigment are the polycarbonate resins A and B and the styrene resin C.
  • Fracture form YD is a yield caused by deep drawing
  • Fracture form YS is a yield caused by stable crack growth
  • Fracture form YU is a yield caused by unstable crack growth
  • Fracture form NY is caused by unstable crack growth Indicates destruction that does not yield.
  • the polycarbonate resin composition of the present invention is excellent in impact resistance, has high surface hardness, excellent scratch resistance on nails, and excellent color developability (particularly jet blackness). It can be suitably used for parts such as a housing member of an information terminal device and application to a vehicle interior part, and there is a very high industrial utility.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

ビスフェノールA型ポリカーボネート樹脂(A)、下記一般式(1)で表される構造単位を有するポリカーボネート樹脂(B)、及びブタジエンに由来する構成単位を含まないスチレン系樹脂(C)を含むポリカーボネート樹脂組成物であって、 ポリカーボネート樹脂(A)とポリカーボネート樹脂(B)の含有割合が、(A)/(B)の質量比で0~80/20~100であり、 ブタジエンに由来する構成単位スチレン系樹脂(C)の含有量が、ポリカーボネート樹脂(A)及び(B)の合計100質量部に対して、1~30質量部であることを特徴とするポリカーボネート樹脂組成物。

Description

ポリカーボネート樹脂組成物及び成形品
 本発明はポリカーボネート樹脂組成物及び成形品に関し、詳しくは、耐衝撃性、並びに高い鉛筆硬度を有し、発色性に優れ、さらには良好な爪傷防止性能を有するポリカーボネート樹脂組成物及びその成形品に関する。
 ポリカーボネート樹脂は、機械的強度、電気的特性、透明性などに優れ、エンジニアリングプラスチックとして、電気電子機器分野、自動車分野等様々な分野において幅広く利用されている。
 しかしながら、ビスフェノールA型のポリカーボネート樹脂は、溶融粘度が高く、成形加工性に劣るという問題があり、アクリロニトリル-ブタジエン-スチレン樹脂(以下、ABS樹脂ともいう。)とのポリマーアロイが、ポリカーボネート樹脂単独の場合に比べ成形性を改良し、ABS樹脂単独の場合に比べ耐衝撃性と耐熱性を改良できるため、強度や耐熱性と成形性を兼ね備えた材料として、自動車分野、電気電子機器分野等を含む各種分野で広く使われている。
 近年、製品の薄肉化や軽量化が急速に進行し、且つ製造プロセス簡略化を目指して、塗装工程の省略化の要求が高まってきた。それに伴い成形素材のさらなる性能向上が要求され、特に高発色性があり、且つ高硬度であることも望まれるようになってきている。
 しかし、ポリカーボネート-ABS樹脂組成物は、成形品の表面硬度が低いため耐擦傷性に劣り、表面に傷が付き易い欠点を有しているうえ、黒色の着色を施した際には、漆黒性に欠ける問題を有しており、例えば家電機器、携帯端末機器の筐体や自動車内装部品などの高級感が求められる用途では、特に大きな問題となっていた。
 本発明者は、ポリカーボネート-ABS樹脂組成物における表面硬度の低さを改良するため、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパンに由来するポリカーボネート樹脂部位を少なくとも含有するポリカーボネート樹脂を用いた、ポリカーボネート-ABS樹脂組成物を提案(特許文献1)しているが、当該樹脂組成物は、高い表面硬度を有しているものの、発色性については、従来のポリカーボネート-ABS樹脂組成物と差異が見られなかった。
 一方、特許文献2及び3では、有機系黒色染料を用いた漆黒性に優れたポリカーボネート樹脂組成物が提案されている。しかしながら、当該樹脂組成物は表面硬度が通常のポリカーボネート樹脂と同等であり、且つ有機染料を用いている為、耐光性が顔料系と比べて劣るという問題点があった。
特開2017-71675号公報 特開2011-111589号公報 特開2012-126776号公報
 本発明の目的(課題)は、耐衝撃性と高い表面硬度、発色性(特に漆黒性)、並びに、良好な爪傷防止性能を示すポリカーボネート樹脂組成物及びその成形品を提供することにある。
 本発明者は、上記課題を達成すべく、鋭意検討を重ねた結果、ビスフェノールA型ポリカーボネート樹脂とブタジエン骨格を含まないスチレン系樹脂からなる組成物に、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン、即ちビスフェノールC等の特定構造を有する芳香族ジヒドロキシ化合物由来のポリカーボネート樹脂を、それぞれ特定の量で含有するポリカーボネート樹脂組成物が、上記課題を解決することを見出し、本発明を完成するに至った。
 本発明は、以下のポリカーボネート樹脂組成物および成形品に関する。
[1]ビスフェノールA型ポリカーボネート樹脂(A)、下記一般式(1)で表される構造単位を有するポリカーボネート樹脂(B)、及びブタジエンに由来する構成単位を含まないスチレン系樹脂(C)を含むポリカーボネート樹脂組成物であって、
 ポリカーボネート樹脂(A)とポリカーボネート樹脂(B)の含有割合が、(A)/(B)の質量比で0~80/20~100であり、
 ブタジエンに由来する構成単位を含まないスチレン系樹脂(C)の含有量が、ポリカーボネート樹脂(A)及び(B)の合計100質量部に対して、1~30質量部であることを特徴とするポリカーボネート樹脂組成物。
Figure JPOXMLDOC01-appb-C000003
(一般式(1)中、Rはメチル基、R及びRはそれぞれ独立して水素原子またはメチル基を、Xは、
Figure JPOXMLDOC01-appb-C000004
を示し、R及びRはそれぞれ独立に水素原子またはメチル基を示し、Zは、Cと結合して炭素数6~12の、置換基を有していてもよい脂環式炭化水素を形成する基を示す。)
[2]さらに、ポリエチレン系セグメント及びビニル系重合体セグメントを有するグラフト共重合体(D)を、ポリカーボネート樹脂(A)及び(B)の合計100質量部に対して、1~10質量部含む上記[1]に記載のポリカーボネート樹脂組成物。
[3]さらに、耐衝撃改良剤(E)を、ポリカーボネート樹脂(A)及び(B)の合計100質量部に対して、7~20質量部含む上記[1]又は[2]に記載のポリカーボネート樹脂組成物。
[4]ISO 15184に準拠し、750g荷重にて測定した鉛筆硬度がHB以上である上記[1]~[3]のいずれかに記載のポリカーボネート樹脂組成物。
[5]ISO 6603-2に準拠し、ストライカー直径が10mm、サンプルサポート直径が40mm、打ち抜き速度が4.4m/sec、衝突エネルギーが50.1J、サンプル厚み3mmにて実施したパンクチャー衝撃試験において、破壊形態がYDである上記[1]~[4]のいずれかに記載のポリカーボネート樹脂組成物。
[6]ブタジエン骨格を含まないスチレン系樹脂(C)がアクリロニトリル-スチレン樹脂又はメタクリル酸メチル-スチレン樹脂である上記[1]~[5]のいずれかに記載のポリカーボネート樹脂組成物。
[7]さらに、黒色顔料を含む上記[1]~[6]のいずれかに記載のポリカーボネート樹脂組成物。
[8]上記[1]~[7]のいずれかに記載のポリカーボネート樹脂組成物の成形品。
 本発明のポリカーボネート樹脂組成物は、耐衝撃性に優れ、高い表面硬度を有し、爪での耐傷付き性に優れ、さらに発色性に優れ、特に黒色の着色を施した際には、優れた漆黒性を発現することができる。
 このため、本発明のポリカーボネート樹脂組成物は、特に車輌内装部品、電子電気機器やOA機器、情報端末機器のハウジング部材等に好適に使用できる。
パンクチャー衝撃試験における破壊形態YD、YS、YU及びNYを説明するための図である。
 以下、本発明について実施形態及び例示物等を示して詳細に説明するが、本発明は、以下に示す実施形態及び例示物等に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更して実施できる。
 本発明のポリカーボネート樹脂組成物は、ビスフェノールA型ポリカーボネート樹脂(A)、前記一般式(1)で表される構造単位を有するポリカーボネート樹脂(B)、及びブタジエンに由来する構成単位を含まないスチレン系樹脂(C)を含むポリカーボネート樹脂組成物であって、
 ポリカーボネート樹脂(A)とポリカーボネート樹脂(B)の含有割合が、(A)/(B)の質量比で0~80/20~100であり、
 ブタジエンに由来する構成単位を含まないスチレン系樹脂(C)の含有量が、ポリカーボネート樹脂(A)及び(B)の合計100質量部に対して、1~30質量部であることを特徴とする。
[ポリカーボネート樹脂(A)]
 本発明のポリカーボネート樹脂組成物が含有するポリカーボネート樹脂はビスフェノールA型ポリカーボネート樹脂(A)である。
 ビスフェノールA型ポリカーボネート樹脂(A)は、原料のジヒドロキシ化合物として、ビスフェノールA、すなわち2,2-ビス(4-ヒドロキシフェニル)プロパンとカーボネート前駆体とから製造されるものである。
 ポリカーボネート樹脂(A)の原料となるモノマーのうち、カーボネート前駆体の例を挙げると、カルボニルハライド、炭酸ジエステル等が使用される。なお、カーボネート前駆体は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 カルボニルハライドとしては、具体的には例えば、ホスゲン;ジヒドロキシ化合物のビスクロロホルメート体、ジヒドロキシ化合物のモノクロロホルメート体等のハロホルメート等が挙げられる。
 炭酸ジエステルとしては、具体的には例えば、ジフェニルカーボネート、ジトリルカーボネート等のジアリールカーボネート類;ジメチルカーボネート、ジエチルカーボネート等のジアルキルカーボネート類;ジヒドロキシ化合物のビスカーボネート体、ジヒドロキシ化合物のモノカーボネート体、環状カーボネート等のジヒドロキシ化合物のカーボネート体等が挙げられる。
 ポリカーボネート樹脂(A)は、ビスフェノールA以外の他のジヒドロキシ化合物を併用した共重合ポリカーボネート樹脂であってもよい。ビスフェノールA以外の他のジヒドロキシ化合物としては、例えば、以下のような芳香族ジヒドロキシ化合物を挙げることができる。
 ビス(4-ヒドロキシフェニル)メタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン、1,1-ビス(4-ヒドロキシフェニル)デカン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、ビス(4-ヒドロキシフェニル)フェニルメタン、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロオクタン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、4,4’-ジヒドロキシベンゾフェノン、4,4’-ジヒドロキシフェニルエーテル等が挙げられる。
 共重合ポリカーボネート樹脂とする場合は、ビスフェノールA由来の成分が50モル%以上であることが好ましく、より好ましくは70質量%以上、さらに好ましくは80質量%以上、中でも90質量%以上、特には95質量%以上であることが好ましい。
 またポリカーボネート樹脂(A)は、直鎖状でもよく、分岐鎖状でもよい。
ポリカーボネート樹脂の製造方法
 ポリカーボネート樹脂の製造方法は、特に限定されるものではなく、任意の方法を採用できる。その例を挙げると、界面重合法、溶融エステル交換法、ピリジン法、環状カーボネート化合物の開環重合法、プレポリマーの固相エステル交換法などを挙げることができる。
 以下、これらの方法のうち、特に好適なものについて具体的に説明する。
界面重合法
 まず、ポリカーボネート樹脂を界面重合法で製造する場合について説明する。
 界面重合法では、反応に不活性な有機溶媒及びアルカリ水溶液の存在下で、通常pHを9以上に保ち、ジヒドロキシ化合物とカーボネート前駆体(好ましくは、ホスゲン)とを反応させた後、重合触媒の存在下で界面重合を行うことによってポリカーボネート樹脂を得る。なお、反応系には、必要に応じて分子量調整剤(末端停止剤)を存在させるようにしてもよく、ジヒドロキシ化合物の酸化防止のために酸化防止剤を存在させるようにしてもよい。
 ジヒドロキシ化合物及びカーボネート前駆体は、前述の通りである。なお、カーボネート前駆体の中でもホスゲンを用いることが好ましく、ホスゲンを用いた場合の方法は特にホスゲン法と呼ばれる。
 反応に不活性な有機溶媒としては、例えば、ジクロロメタン、1,2-ジクロロエタン、クロロホルム、モノクロロベンゼン、ジクロロベンゼン等の塩素化炭化水素等;ベンゼン、トルエン、キシレン等の芳香族炭化水素;などが挙げられる。なお、有機溶媒は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 アルカリ水溶液に含有されるアルカリ化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸水素ナトリウム等のアルカリ金属化合物やアルカリ土類金属化合物が挙げられるが、中でも水酸化ナトリウム及び水酸化カリウムが好ましい。なお、アルカリ化合物は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 アルカリ水溶液中のアルカリ化合物の濃度に制限はないが、通常、反応のアルカリ水溶液中のpHを10~12にコントロールするために、5~10質量%で使用される。また、例えばホスゲンを吹き込むに際しては、水相のpHが10~12、好ましくは10~11になる様にコントロールするために、ビスフェノール化合物とアルカリ化合物とのモル比を、通常1:1.9以上、中でも1:2.0以上、また、通常1:3.2以下、中でも1:2.5以下とすることが好ましい。
 重合触媒としては、例えば、トリメチルアミン、トリエチルアミン、トリブチルアミン、トリプロピルアミン、トリヘキシルアミン等の脂肪族三級アミン;N,N’-ジメチルシクロヘキシルアミン、N,N’-ジエチルシクロヘキシルアミン等の脂環式三級アミン;N,N’-ジメチルアニリン、N,N’-ジエチルアニリン等の芳香族三級アミン;トリメチルベンジルアンモニウムクロライド、テトラメチルアンモニウムクロライド、トリエチルベンジルアンモニウムクロライド等の第四級アンモニウム塩等;ピリジン;グアニジンの塩;等が挙げられる。なお、重合触媒は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 分子量調節剤としては、例えば、一価のフェノール性水酸基を有する芳香族フェノール;メタノール、ブタノールなどの脂肪族アルコール;メルカプタン;フタル酸イミド等が挙げられるが、中でも芳香族フェノールが好ましい。このような芳香族フェノールとしては、具体的に、m-メチルフェノール、p-メチルフェノール、m-プロピルフェノール、p-プロピルフェノール、p-tert-ブチルフェノール、p-長鎖アルキル置換フェノール等のアルキル基置換フェノール;イソプロぺニルフェノール等のビニル基含有フェノール;エポキシ基含有フェノール;o-ヒドロキシ安息香酸、2-メチル-6-ヒドロキシフェニル酢酸等のカルボキシル基含有フェノール;等が挙げられる。なお、分子量調整剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 分子量調節剤の使用量は、ジヒドロキシ化合物100モルに対して、通常0.5モル以上、好ましくは1モル以上であり、また、通常50モル以下、好ましくは30モル以下である。分子量調整剤の使用量をこの範囲とすることで、樹脂組成物の熱安定性及び耐加水分解性を向上させることができる。
 反応の際に、反応基質、反応媒、触媒、添加剤等を混合する順番は、所望のポリカーボネート樹脂が得られる限り任意であり、適切な順番を任意に設定すればよい。例えば、カーボネート前駆体としてホスゲンを用いた場合には、分子量調節剤はジヒドロキシ化合物とホスゲンとの反応(ホスゲン化)の時から重合反応開始時までの間であれば任意の時期に混合できる。
 なお、反応温度は通常0~40℃であり、反応時間は通常は数分(例えば、10分)~数時間(例えば、6時間)である。
溶融エステル交換法
 次に、ポリカーボネート樹脂を溶融エステル交換法で製造する場合について説明する。
 溶融エステル交換法では、例えば、炭酸ジエステルとジヒドロキシ化合物とのエステル交換反応を行う。
 ジヒドロキシ化合物は、前述の通りである。
 一方、炭酸ジエステルとしては、例えば、ジメチルカーボネート、ジエチルカーボネート、ジ-tert-ブチルカーボネート等の炭酸ジアルキル化合物;ジフェニルカーボネート;ジトリルカーボネート等の置換ジフェニルカーボネートなどが挙げられる。中でも、ジフェニルカーボネート及び置換ジフェニルカーボネートが好ましく、特にジフェニルカーボネートがより好ましい。なお、炭酸ジエステルは1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 ジヒドロキシ化合物と炭酸ジエステルとの比率は、所望のポリカーボネート樹脂が得られる限り任意であるが、ジヒドロキシ化合物1モルに対して、炭酸ジエステルを等モル量以上用いることが好ましく、中でも1.01モル以上用いることがより好ましい。なお、上限は通常1.30モル以下である。このような範囲にすることで、末端水酸基量を好適な範囲に調整できる。
 ポリカーボネート樹脂では、その末端水酸基量が熱安定性、加水分解安定性、色調等に大きな影響を及ぼす傾向がある。このため、公知の任意の方法によって末端水酸基量を必要に応じて調整してもよい。エステル交換反応においては、通常、炭酸ジエステルと芳香族ジヒドロキシ化合物との混合比率;エステル交換反応時の減圧度などを調整することにより、末端水酸基量を調整したポリカーボネート樹脂を得ることができる。なお、この操作により、通常は得られるポリカーボネート樹脂の分子量を調整することもできる。
 炭酸ジエステルとジヒドロキシ化合物との混合比率を調整して末端水酸基量を調整する場合、その混合比率は前記の通りである。
 また、より積極的な調整方法としては、反応時に別途、末端停止剤を混合する方法が挙げられる。この際の末端停止剤としては、例えば、一価フェノール類、一価カルボン酸類、炭酸ジエステル類などが挙げられる。なお、末端停止剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 溶融エステル交換法によりポリカーボネート樹脂を製造する際には、通常、エステル交換触媒が使用される。エステル交換触媒は任意のものを使用できる。なかでも、例えばアルカリ金属化合物及び/又はアルカリ土類金属化合物を用いることが好ましい。また補助的に、例えば塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物、アミン系化合物などの塩基性化合物を併用してもよい。なお、エステル交換触媒は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 溶融エステル交換法において、反応温度は通常100~320℃である。また、反応時の圧力は、通常常圧未満の減圧下で行われ、反応の進行に応じて減圧の状態を調整し、最終的には2mmHg以下の条件とする。具体的操作としては、前記の条件で、芳香族ヒドロキシ化合物等の副生成物を除去しながら、溶融重縮合反応を行えばよい。
 溶融重縮合反応は、バッチ式、連続式の何れの方法でも行うことができる。バッチ式で行う場合、反応基質、反応媒、触媒、添加剤等を混合する順番は、所望の芳香族ポリカーボネート樹脂が得られる限り任意であり、適切な順番を任意に設定すればよい。ただし、ポリカーボネート樹脂の安定性等を考慮すると、溶融重縮合反応は連続式で行うことが好ましい。
 溶融エステル交換法においては、必要に応じて、触媒失活剤を用いてもよい。触媒失活剤としてはエステル交換触媒を中和する化合物を任意に用いることができる。その例を挙げると、イオウ含有酸性化合物及びその誘導体などが挙げられる。なお、触媒失活剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 触媒失活剤の使用量は、前記のエステル交換触媒が含有するアルカリ金属又はアルカリ土類金属に対して、通常0.5当量以上、好ましくは1当量以上であり、また、通常10当量以下、好ましくは5当量以下である。更には、ポリカーボネート樹脂に対して、通常1ppm以上であり、また、通常100ppm以下、好ましくは20ppm以下である。
 ポリカーボネート樹脂(A)の粘度平均分子量(Mv)は、12,000~30,000であることが好ましい。粘度平均分子量がこの範囲であると、成形性が良く、且つ機械的強度の大きい成形品が得られやすく、12,000を下回ると、耐面衝撃性が著しく低下しやすく、30,000を超えると溶融粘度が増大し射出成形が困難となりやすい。ポリカーボネート樹脂(A)の分子量の下限は、より好ましくは15,000、更に好ましくは16,000、特に好ましくは17,000であり、その上限はより好ましくは28,000である。
 なお、本発明において、ポリカーボネート樹脂の粘度平均分子量[Mv]は、溶媒としてメチレンクロライドを使用し、ウベローデ粘度計を用いて温度20℃での極限粘度[η](単位dl/g)を求め、以下のSchnellの粘度式から算出される値である。
  [η]=1.23×10-4Mv0.83
 ポリカーボネート樹脂(A)の末端水酸基濃度は任意であり、適宜選択して決定すればよいが、通常1,200ppm以下、好ましくは1,000ppm以下、より好ましくは800ppm以下である。これによりポリカーボネート樹脂の滞留熱安定性及び色調をより向上させることができる。また、その下限は、特に溶融エステル交換法で製造されたポリカーボネート樹脂では、通常10ppm以上、好ましくは30ppm以上、より好ましくは40ppm以上である。これにより、分子量の低下を抑制し、樹脂組成物の機械的特性をより向上させることができる。
 なお、末端水酸基濃度の単位は、ポリカーボネート樹脂の質量に対する、末端水酸基の質量をppmで表示したものである。その測定方法は、四塩化チタン/酢酸法による比色定量(Macromol.Chem.88 215(1965)に記載の方法)である。
[ポリカーボネート樹脂(B)]
 ポリカーボネート樹脂(B)は、下記一般式(1)で表される構造単位を有するポリカーボネート樹脂である。
Figure JPOXMLDOC01-appb-C000005
(一般式(1)中、Rはメチル基、R及びRはそれぞれ独立して水素原子またはメチル基を、Xは、
Figure JPOXMLDOC01-appb-C000006
を示し、R及びRはそれぞれ独立に水素原子またはメチル基を示し、Zは、Cと結合して炭素数6~12の、置換基を有していてもよい脂環式炭化水素を形成する基を示す。)
 上記一般式(1)において、Rはメチル基であり、R及びRはそれぞれ独立に水素原子またはメチル基であるが、R及びRは特には水素原子であることが好ましい。
 また、Xは、
Figure JPOXMLDOC01-appb-C000007
である場合、R4及びR5の両方がメチル基であるイソプロピリデン基であることが好ましく、また、Xが、
Figure JPOXMLDOC01-appb-C000008
の場合、Zは、上記式(1)中の2個のフェニル基と結合する炭素Cと結合して、炭素数6~12の二価の脂環式炭化水素基を形成するが、二価の脂環式炭化水素基としては、例えば、シキロヘキシリデン基、シクロヘプチリデン基、シクロドデシリデン基、アダマンチリデン基、シクロドデシリデン基等のシクロアルキリデン基が挙げられる。置換されたものとしては、これらのメチル置換基、エチル置換基を有するもの等が挙げられる。これらの中でも、シクロヘキシリデン基、シキロヘキシリデン基のメチル置換体(好ましくは3,3,5-トリメチル置換体)、シクロドデシリデン基が好ましい。
 ポリカーボネート樹脂(B)としての好ましい具体例としては、以下のイ)~ニ)のポリカーボネート樹脂が挙げられる。
 イ)2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン構造単位を有するもの、即ちRがメチル基、Rが水素原子、Xがイソプロピリデン基である構造単位を有するもの、
 ロ)2,2-ビス(3-メチル-4-ヒドロキシフェニル)シクロドデカン構造単位、即ちRがメチル基、Rが水素原子、Xがシクロドデシリデン基である構造単位を有するもの。
 ハ)2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン構造単位、即ちRがメチル基、Rがメチル基、Xがイソプロピリデン基である構造単位を有するもの、
 ニ)2,2-ビス(3-メチル-4-ヒドロキシフェニル)シクロヘキサン構造単位、即ちRがメチル基、Rが水素原子、Xがシクロヘキシリデン基である構造単位を有するもの、
 これらの中で、より好ましくは上記イ)、ロ)またはハ)、さらに好ましくは上記イ)またはロ)、特には上記イ)のポリカーボネート樹脂が好ましい。
 これらポリカーボネート樹脂は、それぞれ、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)シクロドデカン、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)シクロヘキサンを、ジヒドロキシ化合物として使用して製造することができる。
 ポリカーボネート樹脂(B)は、1種類を用いてもよく、2種類以上を任意の組み合わせ及び任意の比率で併用してもよい。
 ポリカーボネート樹脂(B)は、一般式(1)で表される構造単位以外のカーボネート構造単位を有することもでき、例えば、下記一般式(2)で表される構造単位、あるいは後記するような他のジヒドロキシ化合物に由来する構造単位を有していてもよい。この際の一般式(1)で表される構造単位以外の構造単位の共重合量は、通常50モル%未満であり、40モル%以下が好ましく、より好ましくは30モル%以下、さらには20モル%以下、特には10モル%以下であることが好ましい。
Figure JPOXMLDOC01-appb-C000009
(式中、Xは前記一般式(1)におけるXと同義である。)
 上記一般式(2)で表されるポリカーボネート構造単位の好ましい具体例としては、2,2-ビス(4-ヒドロキシフェニル)プロパン、即ち、ビスフェノールA由来のカーボネート構造単位である。
 ポリカーボネート樹脂(B)はポリカーボネート樹脂(A)とは異なる成分であるので、ポリカーボネート樹脂(B)がビスフェノールA由来のカーボネート構造単位を共重合成分と含有する場合、そのビスフェノールA由来の成分は50モル%未満であることが好ましく、より好ましくは30質量%以下、さらに好ましくは20質量%以下、中でも10質量%以下、特には5質量%以下であることが好ましい。
 一般式(2)で表される構造単位以外の他のジヒドロキシ化合物の例は、ビス(4-ヒドロキシフェニル)メタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン、1,1-ビス(4-ヒドロキシフェニル)デカン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、ビス(4-ヒドロキシフェニル)フェニルメタン、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロオクタン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、4,4’-ジヒドロキシベンゾフェノン、4,4’-ジヒドロキシフェニルエーテル等が挙げられる。
 ポリカーボネート樹脂(B)の粘度平均分子量(Mv)は、19,000~35,000であることが好ましい。粘度平均分子量がこの範囲にあることで、成形性が良く、機械的強度が大きく、耐擦傷性のよい成形品が得られやすく、19,000を下回ると、樹脂組成物の鉛筆硬度が低くなったり、耐衝撃性が低下したりするため好ましくない。一方、35,000を超えると溶融粘度が増大し射出成形が困難となりやすい。ポリカーボネート樹脂(B)の分子量のより好ましい下限は、19,500、20,000、22,000、23,000、24,000、さらに好ましくは25,000、特には26,000が好ましく、その上限はより好ましくは33,000、さらに好ましくは32,000である。
 ポリカーボネート樹脂(B)を製造する方法は、特に限定されるものではなく、前記ポリカーボネート樹脂の製造方法で説明したとおりである。
 ポリカーボネート樹脂(B)の含有量は、ポリカーボネート樹脂(A)とポリカーボネート樹脂(B)の含有割合が、(A)/(B)の質量比で0~80/20~100である。ポリカーボネート樹脂(B)の質量比が、20を下回ると鉛筆硬度が低くなったり、爪傷防止性能が悪くなったりするため好ましくない。ポリカーボネート樹脂(B)の好ましい含有量は、(A)/(B)の質量比で、1~80/20~99であり、より好ましくは5~75/25~95、さらに好ましくは10~70/30~90である。
 ポリカーボネート樹脂(A)、(B)は、ポリカーボネート樹脂単独(ポリカーボネート樹脂単独とは、ポリカーボネート樹脂の1種のみを含む態様に限定されず、例えば、モノマー組成や分子量が互いに異なる複数種のポリカーボネート樹脂を含む態様を含む意味で用いる。)で用いてもよい。さらに、例えば、難燃性や耐衝撃性をさらに高める目的で、ポリカーボネート樹脂を、シロキサン構造を有するオリゴマーまたはポリマーとの共重合体;熱酸化安定性や難燃性をさらに向上させる目的でリン原子を有するモノマー、オリゴマーまたはポリマーとの共重合体;熱酸化安定性を向上させる目的で、ジヒドロキシアントラキノン構造を有するモノマー、オリゴマーまたはポリマーとの共重合体;光学的性質を改良するためにポリスチレン等のオレフィン系構造を有するオリゴマーまたはポリマーとの共重合体;耐薬品性を向上させる目的でポリエステル樹脂オリゴマーまたはポリマーとの共重合体;等の、ポリカーボネート樹脂を主体とする共重合体として構成してもよい。
 また、成形品の外観の向上や流動性の向上を図るため、ポリカーボネート樹脂(A)、(B)は、ポリカーボネートオリゴマーを含有していてもよい。このポリカーボネートオリゴマーの粘度平均分子量[Mv]は、通常1,500以上、好ましくは2,000以上であり、また、通常9,500以下、好ましくは9,000以下である。さらに、含有されるポリカーボネートリゴマーは、それぞれのポリカーボネート樹脂(ポリカーボネートオリゴマーを含む)全体の30質量%以下とすることが好ましい。
[ブタジエンに由来する構成単位を含まないスチレン系樹脂(C)]
 本発明のポリカーボネート樹脂組成物はブタジエンに由来する構成単位を含まないスチレン系樹脂(C)を含有する。ブタジエンに由来する構成単位を含まないスチレン系樹脂(C)を含有することで、ブタジエン由来の構成単位により阻害されていた発色性、特に漆黒性を発現させやすくなるだけでなく、耐光性の向上や、耐湿熱性の向上についても達成させやすくなる。スチレン系樹脂(C)は、ABS樹脂等のブタジエンに由来する構成単位を含む樹脂ではなく、芳香族ビニル単量体単独、または芳香族ビニル単量体と必要に応じて共重合可能な他のビニル単量体及びゴム質重合体より選ばれる1種以上を重合して得られる樹脂である。
 スチレン系樹脂(C)に用いられる芳香族ビニル単量体(c1)としては、スチレン、α-メチルスチレン、o-メチルスチレン、p-メチルスチレン、ビニルキシレン、エチルスチレン、ジメチルスチレン、p-tert-ブチルスチレン、ビニルナフタレン、メトキシスチレン、モノブロムスチレン、ジブロムスチレン、フルオロスチレン、トリブロムスチレン等のスチレン誘導体が挙げられ、特にスチレンが好ましい。これらは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 これらの芳香族ビニル単量体(c1)と共重合可能な他のビニル単量体としては、シアン化ビニル単量体(c2)が好ましく、例えばアクリロニトリル、メタクリロニトリル等を挙げることができる。
 また、その他の単量体(c4)として、フェニルアクリレート、ベンジルアクリレート等のアクリル酸のアリールエステル;メチルアクリレート、エチルアクリレート、プロピルアクリレート、ブチルアクリレート、アミルアクリレート、ヘキシルアクリレート、2-エチルヘキシルアクリレート、オクチルアクリレート、シクロヘキシルアクリレート、ドデシルアクリレート等のアクリル酸のアルキルエステル;フェニルメタクリレート、ベンジルメタクリレート等のメタクリル酸アリールエステル;メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、ブチルメタクリレート、アミルメタクリレート、ヘキシルメタクリレート、2-エチルヘキシルメタクリレート、オクチルメタクリレート、シクロヘキシルメタクリレート、ドデシルメタクリレート等のメタクリル酸アルキルエステル;グリシジルメタクリレート等のエポキシ基含有メタクリル酸エステル;マレイミド、N-メチルマレイミド、N-フェニルマレイミド等のマレイミド系単量体;アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フタル酸、イタコン酸等のα,β-不飽和カルボン酸及びその無水物が挙げられる。好ましくは、アクリル酸アルキルエステル、メタクリル酸アルキルエステルである。
 これらのその他単量体(c4)は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 また、芳香族ビニル単量体(c1)と共重合可能なゴム質重合体(c3)としては、ガラス転移温度が10℃以下のゴムが適当である。このようなゴム質重合体の具体例としては、アクリル系ゴム、エチレン・プロピレンゴム、シリコンゴム、ポリオルガノシロキサンゴム成分とポリアルキル(メタ)アクリレートゴム成分とが分離できないように相互に絡み合った構造を有している複合ゴム(IPN型ゴム)等が挙げられ、好ましくは、アクリル系ゴム等が挙げられる。
 アクリル系ゴムとしては、例えば、アクリル酸アルキルエステルゴムが挙げられ、ここで、アルキル基の炭素数は好ましくは1~8である。アクリル酸アルキルエステルの具体例としては、アクリル酸エチル、アクリル酸ブチル、アクリル酸ヘキシル等が挙げられる。アクリル酸アルキルエステルゴムには、任意に、エチレン性不飽和単量体が用いられていてもよい。そのような化合物の具体例としては、ジ(メタ)アクリレート、ジビニルベンゼン、トリビニルベンゼン、シアヌル酸トリアリル、(メタ)アクリル酸アリル等が挙げられる。
 これらのゴム質重合体(c3)は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 スチレン系樹脂(C)は、上記した芳香族ビニル単量体成分(c1)50~100質量%、シアン化ビニル単量体成分(c2)0~30質量%、ゴム質重合体成分(c3)0~30質量%、その他の単量体成分(c4)0~30質量%からなることが好ましく、芳香族ビニル単量体成分(c1)45~80質量%、シアン化ビニル単量体成分(c2)10~30質量%、ゴム質重合体成分(c3)10~25質量%、その他の単量体成分(c4)0~40質量%からなることがより好ましく、芳香族ビニル単量体成分(c1)55~70質量%、シアン化ビニル単量体成分(c2)15~25質量%、ゴム質重合体成分(c3)15~20質量%、その他の単量体成分(c4)0~5質量%からなることがさらに好ましい。
 本発明で用いられるスチレン系樹脂(C)の具体例としては、例えば、スチレンの単独重合体、スチレンと(メタ)アクリロニトリルとの共重合体、スチレンと(メタ)アクリル酸アルキルエステルとの共重合体、スチレンと(メタ)アクリロニトリルと他の共重合可能な単量体との共重合体、また、ゴムの存在下スチレンを重合してなるグラフト共重合体、ゴムの存在下スチレンと(メタ)アクリロニトリルとをグラフト重合してなるグラフト共重合体等が好ましく挙げられる。
 さらに、具体的には、ポリスチレン、アクリロニトリル-スチレン共重合体(AS樹脂)、メタアクリル酸アルキルエステル-スチレン共重合体(MS樹脂)、スチレン-無水マレイン酸共重合体(SMA樹脂)、アクリロニトリル-スチレン-アクリルゴム共重合体(ASA樹脂)、アクリロニトリル-アクリルゴム-スチレン共重合体(AAS樹脂)、アクリロニトリル-エチレンプロピレン系ゴム-スチレン共重合体(AES樹脂)及びスチレン-IPN型ゴム共重合体等の樹脂、又は、これらの混合物が挙げられる。
 これらの中でも、アクリロニトリル-スチレン共重合体(AS樹脂)、メタアクリル酸アルキルエステル-スチレン共重合体(MS樹脂)、アクリロニトリル-スチレン-アクリルゴム共重合体(ASA樹脂)、アクリロニトリル-エチレンプロピレン系ゴム-スチレン共重合体(AES樹脂)が好ましく、特にアクリロニトリル-スチレン共重合体(AS樹脂)、メタアクリル酸アルキルエステル-スチレン共重合体(MS樹脂)が好ましい。
 これらのスチレン系樹脂(C)は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 ブタジエンに由来する構成単位を含まないスチレン系樹脂(C)の含有量は、ポリカーボネート樹脂(A)及び(B)の合計100質量部に対して、1~30質量部であり、好ましくは3~25質量部、より好ましくは5~20質量部である。スチレン系樹脂(C)の含有量が1質量部未満の場合、流動性や耐光性が低下しやすく、スチレン系樹脂(C)の含有量が30質量部を超える場合には、耐衝撃性が低下したり、表面硬度が低下したりする。
[グラフト共重合体(D)]
 本発明のポリカーボネート樹脂組成物は、さらにポリエチレン系セグメント及びビニル系重合体セグメントを有するグラフト共重合体(D)を含有することも好ましい。このグラフト共重合体(D)は、好ましくは、ポリエチレン系セグメントがグラフト共重合体の主鎖となり、ビニル系単量体を重合したセグメントはグラフト共重合体の側鎖となる。
 ポリエチレン系セグメントは、エチレンの単独重合体、又はエチレンを主成分としそれと共重合可能なエチレン以外の他のα-オレフィンとの共重合体のいずれであってもよい。
 エチレン以外の他のα-オレフィンとしては炭素原子数が通常3~20、好ましくは3から12のα-オレフィンであり、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、1-デセン、1-ドデセン等が好ましく挙げられる。
 ポリエチレン系セグメントが共重合体である場合のα-オレフィン単位の量は、通常0~50質量%、好ましくは0~30質量%、より好ましくは0~20質量%、さらには0~10質量%であることが好ましい。
 ポリエチレン系セグメントの分子量は、数平均分子量(Mn)で通常10,000~600,000程度である。ここで、数平均分子量は、ゲルパーミエーションクロマトグラフ(GPC)でポリスチレン換算として求められるものを意味する。
 ポリエチレン系セグメントとしては、例えば、市販の高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、超低密度ポリエチレン(VLDPE)、あるいは高圧ラジカル法によって得られる高圧法低密度エチレン(HPLD)等のいずれであってもよいが、低密度ポリエチレン、直鎖状低密度ポリエチレン、超低密度ポリエチレン、高圧法低密度ポリエチレンが好ましく、中でも超低密度ポリエチレン(VLDPE)がより好ましい。
 低密度ポリエチレンは、密度が通常0.91~0.94g/cm、好ましくは0.912~0.935g/cmである。直鎖状低密度ポリエチレンは、密度が0.91~0.94g/cmであるのが、好ましい。超低密度ポリエチレンは、エチレンとα―オレフィンとの共重合体であって、通常密度が0.86~0.91g/cmの範囲である。高圧法による高圧法低密度ポリエチレンは、密度が0.91~0.94g/cmのものが好ましく挙げられる。
 ビニル系重合体セグメントを形成するためのビニル系単量体としては、例えばスチレン系単量体、α,β-不飽和カルボン酸、α,β-不飽和カルボン酸エステル、不飽和ニトリル系単量体等が好ましく挙げられる。
 スチレン系単量体としては、例えばスチレン、メチルスチレン、ジメチルスチレン、エチルスチレン、イソプロピルスチレン、クロルスチレン等が挙げられ、特にスチレンが好ましい。
 α,β-不飽和カルボン酸としては、例えばヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート等の(メタ)アクリル酸エステル、アクリル酸、メタクリル酸、フマル酸、無水マレイン酸、イタコン酸等が好ましく挙げられる。
 α,β-不飽和カルボン酸エステルとしては、例えばアクリル酸メチル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸t-ブチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、メタクリル酸イソブチル等が好ましく挙げられる。
 不飽和ニトリル系単量体としては、アクリロニトリルが好ましく挙げられる。
 これらのビニル系単量体の中では、ポリカーボネート樹脂(A)との相溶性が高く、耐擦傷性効果に優れる点で、スチレン系単量体、特にスチレンが好ましく、スチレン単独、あるいはスチレンと、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート等のOH基含有(メタ)アクリレート、あるいはアクリロニトリルと共重合することが好ましい。
 また、グラフト共重合体(D)の分子量は、質量平均分子量(Mw)で5,000~500,000であることが好ましい。ここで、質量平均分子量はゲルパーミエーションクロマトグラフ(GPC)でポリスチレン換算として求められるものを意味する。
 グラフト共重合体(D)は、さらにポリオルガノシロキサンを含有することも好ましい。ポリオルガノシロキサンを含有する場合は、グラフト共重合体(D)の主鎖あるいは側鎖として有していてもよく、またコア/シェル型等の多層構造を形成するようなグラフト共重合体の一部として含有されていてもよい。
 ポリオルガノシロキサンは、特に限定されないが、例えばポリジメチルシロキサン、ポリメチルフェニルシロキサンが代表的であり、ポリジメチルジフェニルシロキサンコポリマー、ポリジメチルフェニルメチルシロキサンコポリマー、ポリメチルフェニルジフェニルシロキサンコポリマー等が挙げられる。中でも、ジアルキルシロキサン単位、特にはジメチルシロキサン単位を構成単位として含有する重合体が好ましい。
 また、ポリオルガノシロキサンとしては、ビニル基を含有するシロキサンを構成成分として含有するものが好ましい。ビニル基を含有するシロキサンは、よく知られており、ビニル基を含有し、これにオルガノシロキサンがシロキサン結合を介して結合したものである。
 グラフト共重合体(D)中に占めるポリエチレン系重合体セグメントの割合は、50~95質量%であることが好ましく、より好ましくは60~90質量%であり、さらに好ましくは65~80質量%である。ビニル系重合体セグメントの割合は好ましくは、5~50質量%であることが好ましく、より好ましくは10~40質量%であり、さらに好ましくは20~35質量%である。
 また、さらにポリオルガノシロキサンセグメントを含有する場合の含有量は、0.5~30質量%であることが好ましく、より好ましくは1~20質量%であり、さらに好ましくは2~10質量%である。但し、ポリオルガノシロキサンセグメントを含有する場合の含有量は、ポリエチレン系重合体セグメント、ビニル系重合体セグメント及びポリオルガノシロキサンセグメントの合計100質量%基準としての質量%である。
 グラフト共重合体(D)は、JIS K7121に準拠し示差走査熱量計(DSC)により測定される吸熱ピークを100℃以下に有することが好ましい。吸熱ピーク温度が100℃以下であることにより、ポリカーボネート樹脂に配合した際の爪での耐傷付き性、鉛筆硬度試験における低硬度での僅かな傷付き性が良好となり、黒色の着色を施した場合には、漆黒性も向上するため好ましい。この理由は吸熱ピーク温度が100℃以下にあることにより、ポリカーボネート樹脂との親和性の低いポリエチレン系重合体主鎖がポリカーボネート樹脂分子間に入りやすくなり、ポリカーボネート樹脂との親和性が向上し、ポリカーボネート樹脂層へのグラフト共重合体(D)相の分散良好になるためと推定される。
 なお、グラフト共重合体(D)の吸熱ピークは複数あってもよく、複数ある場合でも100℃以下に吸熱ピークを有することが好ましい。吸熱ピーク温度は好ましくは90℃以下、より好ましくは80℃以下であり、その下限は通常60℃以上である。
 なお、本発明において、グラフト共重合体(D)の吸熱ピークの測定は、JIS K7121に準拠し、セイコーインスツルメント社製の示差型走査熱量計DSC7020を用い、グラフト共重合体(D)のサンプル10mgを、30℃から300℃まで10℃/分で昇温することによる観察することにより行われる。グラフト共重合体(D)の吸熱ピークが複数ある場合は、最も低温側の吸熱ピークの温度を測定する。
 グラフト共重合体(D)を製造するには、各種の公知のグラフト共重合法のいずれの方法でもよいが、例えば、以下に示す方法による方法が挙げられる。
 すなわち、前記ポリエチレン系重合体を水に懸濁させ、そこへ前記ビニル系単量体、ラジカル重合性有機過酸化物(例えば、t-ブチルペーオキシメタクリロイロキシエチルカーボネート等)、重合開始剤(例えば、3,5,5-トリメチルヘキサノイルペーオキシド等)を溶解した混合溶液を加え、次いで、加熱して共重合してグラフト共重合体を製造する方法である。
 また、グラフト共重合体(D)は市販されておりこれらを使用することでも可能であり、例えば日油株式会社より「ノフアロイ(登録商標)KAシリーズ」として販売されており、例えば「ノフアロイ KA147」等が利用できる。
 グラフト共重合体(D)の好ましい含有量は、ポリカーボネート樹脂(A)及び(B)の合計100質量部に対して、1~10質量部であり、より好ましくは1.5~9質量部、さらに好ましくは2~8質量部である。1質量部未満の場合、爪での耐傷付き性や、鉛筆硬度試験における低硬度での僅かな傷付きの改良効果が小さくなりやすく、10質量部を超えると、色相の悪化、機械的強度及び耐熱性の低下を招きやすい。
[耐衝撃改良剤(E)]
 本発明のポリカーボネート樹脂組成物は、耐衝撃改良剤(E)を含有することが好ましい。耐衝撃改良剤(E)としては、エラストマーが好ましく、エラストマーとしては、ゴム成分にこれと共重合可能な単量体成分とをグラフト共重合したグラフト共重合体が好ましい。ただし、ここでのグラフト共重合体は上記したスチレン系樹脂(C)とは異なるものとして定義される。
 グラフト共重合体の製造方法としては、塊状重合、溶液重合、懸濁重合、乳化重合などのいずれの製造方法であってもよく、共重合の方式は一段グラフトでも多段グラフトであってもよい。
 ゴム成分は、ガラス転移温度が通常0℃以下、中でも-20℃以下が好ましく、更には-30℃以下が好ましい。ゴム成分の具体例としては、ポリブタジエンゴム、ポリイソプレンゴム、ポリブチルアクリレートやポリ(2-エチルヘキシルアクリレート)、ブチルアクリレート・2-エチルヘキシルアクリレート共重合体などのポリアルキルアクリレートゴム、ポリオルガノシロキサンゴムなどのシリコーン系ゴム、ブタジエン-アクリル複合ゴム、ポリオルガノシロキサンゴムとポリアルキルアクリレートゴムとからなるIPN(Interpenetrating Polymer Network)型複合ゴム、スチレン-ブタジエンゴム、エチレン-プロピレンゴムやエチレン-ブテンゴム、エチレン-オクテンゴムなどのエチレン-α-オレフィン系ゴム、エチレン-アクリルゴム、フッ素ゴムなど挙げることができる。これらは、単独でも2種以上を混合して使用してもよい。これらの中でも、機械的特性や表面外観の面から、ポリブタジエンゴム、ポリアルキルアクリレートゴム、ポリオルガノシロキサンゴム、ポリオルガノシロキサンゴムとポリアルキルアクリレートゴムとからなるIPN型複合ゴム、スチレン-ブタジエンゴムが好ましい。
 ゴム成分とグラフト共重合可能な単量体成分の具体例としては、芳香族ビニル化合物、シアン化ビニル化合物、(メタ)アクリル酸エステル化合物、(メタ)アクリル酸化合物、グリシジル(メタ)アクリレート等のエポキシ基含有(メタ)アクリル酸エステル化合物;マレイミド、N-メチルマレイミド、N-フェニルマレイミド等のマレイミド化合物;マレイン酸、フタル酸、イタコン酸等のα,β-不飽和カルボン酸化合物やそれらの無水物(例えば無水マレイン酸等)などが挙げられる。これらの単量体成分は1種を単独で用いても2種以上を併用してもよい。これらの中でも、機械的特性や表面外観の面から、芳香族ビニル化合物、シアン化ビニル化合物、(メタ)アクリル酸エステル化合物、(メタ)アクリル酸化合物が好ましく、より好ましくは(メタ)アクリル酸エステル化合物である。(メタ)アクリル酸エステル化合物の具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸オクチル等を挙げることができる。
 ゴム成分を共重合したグラフト共重合体は、耐衝撃性や表面外観の点からコア/シェル型グラフト共重合体タイプのものが好ましい。なかでもポリブタジエン含有ゴム、ポリブチルアクリレート含有ゴム、ポリオルガノシロキサンゴム、ポリオルガノシロキサンゴムとポリアルキルアクリレートゴムとからなるIPN型複合ゴムから選ばれる少なくとも1種のゴム成分をコア層とし、その周囲に(メタ)アクリル酸エステルを共重合して形成されたシェル層からなる、コア/シェル型グラフト共重合体が特に好ましい。上記コア/シェル型グラフト共重合体において、ゴム成分を40質量%以上含有するものが好ましく、60質量%以上含有するものがさらに好ましい。また、(メタ)アクリル酸は、10質量%以上含有するものが好ましい。尚、ここでコア/シェル型とは必ずしもコア層とシェル層が明確に区別できるものでなくてもよく、コアとなる部分の周囲にゴム成分をグラフト重合して得られる化合物を広く含む趣旨である。
 これらコア/シェル型グラフト共重合体の好ましい具体例としては、ブタジエン-メチルアクリレート共重合体、メチルメタクリレート-ブタジエン-スチレン共重合体、メチルメタクリレート-ブタジエン共重合体、メチルメタクリレート-アクリル・ブタジエンゴム共重合体、メチルメタクリレート-アクリル・ブタジエンゴム-スチレン共重合体、メチルメタクリレート-(アクリル・シリコーンIPNゴム)共重合体等が挙げられる。このようなゴム性重合体は、1種を単独で用いても2種以上を併用してもよい。
 本発明の樹脂組成物が耐衝撃改良剤(E)を含む場合、耐衝撃改良剤(E)の含有量は、ポリカーボネート樹脂(A)及び(B)の合計100質量部に対して、7~20質量部が好ましく、8~18質量部がより好ましく、10~15質量部がさらに好ましい。衝撃改良剤(E)の含有量が7質量部未満の場合、耐衝撃性が低下しやすく、衝撃改良剤(E)の含有量が20質量部を超える場合には、流動性が低下する傾向がある。
 耐衝撃改良剤(E)は1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。2種類以上含む場合は、合計量が上記範囲となることが好ましい。
[安定剤(F)]
 本発明のポリカーボネート樹脂組成物は、安定剤(F)を含有することが好ましい。安定剤(F)としては、酸化防止剤、熱安定剤が上げられる。本発明においては、酸化防止剤または熱安定剤の単独での使用でも構わないが、酸化防止剤と熱安定剤の両方を併用することが好ましい。
(酸化防止剤)
 本発明のポリカーボネート樹脂組成物に適用可能な酸化防止剤としては、ヒンダードフェノール系酸化防止剤が挙げられる。その具体例としては、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、チオジエチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N’-ヘキサン-1,6-ジイルビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナミド]、2,4-ジメチル-6-(1-メチルペンタデシル)フェノール、ジエチル[[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル]ホスフォエート、3,3’,3”,5,5’,5”-ヘキサ-tert-ブチル-a,a’,a”-(メシチレン-2,4,6-トリイル)トリ-p-クレゾール、4,6-ビス(オクチルチオメチル)-o-クレゾール、エチレンビス(オキシエチレン)ビス[3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート]、ヘキサメチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン,2,6-ジ-tert-ブチル-4-(4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イルアミノ)フェノール等が挙げられる。
 これらは1種のみで含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていてもよい。
 上記の中では、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネートが好ましい。
 これらのフェノール系酸化防止剤の市販品としては、BASFジャパン株式会社製の「イルガノックス(登録商標、以下同じ)1010」及び「イルガノックス1076」、株式会社ADEKA製の「アデカスタブ(登録商標、以下同じ)AO-50」、「アデカスタブAO-60」等が挙げられる。
 酸化防止剤の含有量は、ポリカーボネート樹脂(A)、(B)及びスチレン系樹脂(C)の合計100質量部に対して、通常0.001~1質量部、好ましくは0.01~0.5質量部である。酸化防止剤の含有量が0.001質量部未満の場合は抗酸化剤としての効果が不十分であり、1質量部を超える場合は効果が頭打ちとなり経済的ではない。
(熱安定剤)
 本発明のポリカーボネート樹脂組成物に適用可能な熱安定剤としては、例えばリン系化合物が挙げられる。リン系化合物としては、公知の任意のものを使用できる。具体例を挙げると、リン酸、ホスホン酸、亜燐酸、ホスフィン酸、ポリリン酸などのリンのオキソ酸;酸性ピロリン酸ナトリウム、酸性ピロリン酸カリウム、酸性ピロリン酸カルシウムなどの酸性ピロリン酸金属塩;リン酸カリウム、リン酸ナトリウム、リン酸セシウム、リン酸亜鉛など第1族または第2B族金属のリン酸塩;有機ホスフェート化合物、有機ホスファイト化合物、有機ホスホナイト化合物などが挙げられるが、有機ホスファイト化合物が特に好ましい。
 有機ホスファイト化合物としては、トリフェニルホスファイト、トリス(モノノニルフェニル)ホスファイト、トリス(モノノニル/ジノニル・フェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、モノオクチルジフェニルホスファイト、ジオクチルモノフェニルホスファイト、モノデシルジフェニルホスファイト、ジデシルモノフェニルホスファイト、トリデシルホスファイト、トリラウリルホスファイト、トリステアリルホスファイト、2,2-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト、3,9-ビス{1,1-ジメチル-2-[β-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]エチル}-2,4,8,10-テトラオキサスピロ(5,5)ウンデカン等が挙げられる。
 このような、有機ホスファイト化合物としては、具体的には、例えば、株式会社ADEKA製「アデカスタブ(登録商標、以下同じ)PEP-36」、「アデカスタブ1178」、「アデカスタブ2112」、「アデカスタブHP-10」、城北化学工業株式会社製「JP-351」、「JP-360」、「JP-3CP」、BASFジャパン株式会社製「イルガフォス(登録商標)168」等が挙げられる。
 なお、熱安定剤は、1種のみで含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていてもよい。
 熱安定剤の含有量は、ポリカーボネート樹脂(A)、(B)及びスチレン系樹脂(C)の合計100質量部に対して、通常0.001質量部以上、好ましくは0.005質量部以上、より好ましくは0.01質量部以上であり、また、通常1質量部以下、好ましくは0.5質量部以下、より好ましくは0.3質量部以下である。熱安定剤の含有量が上記範囲の下限値未満の場合は、熱安定効果が不十分となる可能性があり、熱安定剤の含有量が前記範囲の上限値を超える場合は、効果が頭打ちとなり経済的でなくなる。
[離型剤(G)]
 本発明のポリカーボネート樹脂組成物は、離型剤(G)を含有することが好ましい。離型剤としては、例えば、脂肪族カルボン酸、脂肪族カルボン酸とアルコールとのエステル、数平均分子量200~15,000の脂肪族炭化水素化合物、ポリシロキサン系シリコーンオイルなどが挙げられる。
 脂肪族カルボン酸としては、例えば、飽和または不飽和の脂肪族一価、二価または三価カルボン酸を挙げることができる。ここで脂肪族カルボン酸とは、脂環式のカルボン酸も包含する。これらの中で好ましい脂肪族カルボン酸は炭素数6~36の一価または二価カルボン酸であり、炭素数6~36の脂肪族飽和一価カルボン酸がさらに好ましい。かかる脂肪族カルボン酸の具体例としては、パルミチン酸、ステアリン酸、カプロン酸、カプリン酸、ラウリン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、メリシン酸、テトラリアコンタン酸、モンタン酸、アジピン酸、アゼライン酸などが挙げられる。
 脂肪族カルボン酸とアルコールとのエステルにおける脂肪族カルボン酸としては、例えば、前記脂肪族カルボン酸と同じものが使用できる。一方、アルコールとしては、例えば、飽和または不飽和の一価または多価アルコールが挙げられる。これらのアルコールは、フッ素原子、アリール基などの置換基を有していてもよい。これらの中では、炭素数30以下の一価または多価の飽和アルコールが好ましく、炭素数30以下の脂肪族飽和一価アルコールまたは脂肪族飽和多価アルコールがさらに好ましい。なお、ここで脂肪族とは、脂環式化合物も含有する。
 かかるアルコールの具体例としては、オクタノール、デカノール、ドデカノール、ステアリルアルコール、ベヘニルアルコール、エチレングリコール、ジエチレングリコール、グリセリン、ペンタエリスリトール、2,2-ジヒドロキシペルフルオロプロパノール、ネオペンチレングリコール、ジトリメチロールプロパン、ジペンタエリスリトール等が挙げられる。
 なお、上記のエステルは、不純物として脂肪族カルボン酸及び/またはアルコールを含有していてもよい。また、上記のエステルは、純物質であってもよいが、複数の化合物の混合物であってもよい。さらに、結合して一つのエステルを構成する脂肪族カルボン酸及びアルコールは、それぞれ、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 脂肪族カルボン酸とアルコールとのエステルの具体例としては、蜜ロウ(ミリシルパルミテートを主成分とする混合物)、ステアリン酸ステアリル、ベヘン酸ベヘニル、ベヘン酸ステアリル、グリセリンモノパルミテート、グリセリンモノステアレート、グリセリンジステアレート、グリセリントリステアレート、ペンタエリスリトールモノパルミテート、ペンタエリスリトールモノステアレート、ペンタエリスリトールジステアレート、ペンタエリスリトールトリステアレート、ペンタエリスリトールテトラステアレート等が挙げられる。
 数平均分子量200~15,000の脂肪族炭化水素としては、例えば、流動パラフィン、パラフィンワックス、マイクロワックス、ポリエチレンワックス、フィッシャ-トロプシュワックス、炭素数3~12のα-オレフィンオリゴマー等が挙げられる。なお、ここで脂肪族炭化水素としては、脂環式炭化水素も含まれる。また、これらの炭化水素は部分酸化されていてもよい。また、数平均分子量は、好ましくは5,000以下である。脂肪族炭化水素は単一物質であってもよいが、構成成分や分子量が様々なものの混合物であっても、主成分が上記の範囲内であれば使用できる。
 これらの中では、パラフィンワックス、ポリエチレンワックスまたはポリエチレンワックスの部分酸化物が好ましく、パラフィンワックス、ポリエチレンワックスがさらに好ましく、ポリエチレンワックスが特に好ましい。
 なお、離型剤(G)は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていてもよい。
 離型剤(G)の含有量は、ポリカーボネート樹脂(A)、(B)及びスチレン系樹脂(C)の合計100質量部に対して、通常0.001質量部以上、好ましくは0.01質量部以上であり、また、通常2質量部以下、好ましくは1質量部以下である。離型剤の含有量が上記範囲の下限値未満の場合は、離型性の効果が十分でない場合があり、離型剤の含有量が上記範囲の上限値を超える場合は、耐加水分解性の低下、射出成形時の金型汚染などが生じる可能性がある。
[黒色顔料(H)]
 本発明のポリカーボネート樹脂組成物は、発色性、特に漆黒の発現性に優れるので、黒色顔料(H)を含有することが好ましい。黒色顔料(H)としては、カーボンブラック、黒鉛、鉄黒、アニリンブラック、シアニンブラック、チタンブラック等が使用可能であるが、漆黒性や耐光(候)性の点から、カーボンブラックが好ましく、カーボンブラックとしてはアセチレンブラック、ランプブラック、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラック等を好ましく挙げることができる。
 黒色顔料(H)の含有量は、ポリカーボネート樹脂(A)、(B)及びスチレン系樹脂(C)の合計100質量部に対して、好ましくは、0.5~1.8質量部である。0.5質量部未満であると、漆黒性が不十分となりやすく、1.8量部を超えると機械的物性が低下する場合がある。黒色顔料(H)の含有量は、より好ましくは0.7~1.6質量部、さらに好ましくは0.9~1.4質量部である。
[紫外線吸収剤]
 本発明のポリカーボネート樹脂組成物は、紫外線吸収剤を含有していてもよい。紫外線吸収剤としては、例えば、酸化セリウム、酸化亜鉛などの無機紫外線吸収剤;ベンゾトリアゾール化合物、ベンゾフェノン化合物、サリシレート化合物、シアノアクリレート化合物、トリアジン化合物、オキサニリド化合物、マロン酸エステル化合物、ヒンダードアミン化合物などの有機紫外線吸収剤などが挙げられる。これらのうち、有機紫外線吸収剤が好ましく、中でもベンゾトリアゾール化合物がより好ましい。有機紫外線吸収剤を選択することで、透明性や機械物性が良好なものになる。
 ベンゾトリアゾール化合物の具体例としては、例えば、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-[2’-ヒドロキシ-3’,5’-ビス(α,α-ジメチルベンジル)フェニル]-ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-tert-ブチル-フェニル)-ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-tert-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-tert-ブチル-フェニル)-5-クロロベンゾトリアゾール)、2-(2’-ヒドロキシ-3’,5’-ジ-tert-アミル)-ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-tert-オクチルフェニル)ベンゾトリアゾール、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]等が挙げられ、中でも2-(2’-ヒドロキシ-5’-tert-オクチルフェニル)ベンゾトリアゾール、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]が好ましく、特に2-(2’-ヒドロキシ-5’-tert-オクチルフェニル)ベンゾトリアゾールが好ましい。
 紫外線吸収剤を含有する場合の含有量は、ポリカーボネート樹脂(A)、(B)及びスチレン系樹脂(C)の合計100質量部に対して、好ましくは0.05質量部以上、より好ましくは0.1質量部以上であり、また、その上限は好ましくは1質量部以下、より好ましくは0.5質量部以下である。紫外線吸収剤の含有量が前記範囲の下限値未満の場合は、耐候性の改良効果が不十分となる可能性があり、紫外線吸収剤の含有量が前記範囲の上限値を超える場合は、モールドデボジット等が生じ、金型汚染を引き起こす可能性がある。なお、紫外線吸収剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていてもよい。
[その他の成分]
 本発明のポリカーボネート樹脂組成物は、所望の諸物性を著しく損なわない限り、必要に応じて、上記以外のその他成分を含有していてもよい。その他の成分の例を挙げると、上記した樹脂以外の樹脂、上記した以外の各種樹脂添加剤などが挙げられる。なお、その他の成分は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていてもよい。
 なお、上記した以外のその他の樹脂を含有する場合の含有量は、ポリカーボネート樹脂(A)、(B)及びスチレン系樹脂(C)の合計100質量部に対し、20質量部以下とすることが好ましく、より好ましくは10質量部以下、さらには5質量部以下、特には3質量部以下とすることが好ましい。
 樹脂添加剤としては、例えば、難燃剤、滴下防止剤、充填材、染顔料、帯電防止剤、防曇剤、滑剤、アンチブロッキング剤、可塑剤、分散剤、抗菌剤などが挙げられる。なお、樹脂添加剤は1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていてもよい。
[ポリカーボネート樹脂組成物の製造方法]
 本発明のポリカーボネート樹脂組成物の製造方法に制限はなく、公知のポリカーボネート樹脂組成物の製造方法を広く採用でき、ポリカーボネート樹脂(A)、(B)、スチレン系樹脂(C)、並びに、必要に応じて配合されるその他の成分を、例えばタンブラーやヘンシェルミキサーなどの各種混合機を用い予め混合した後、バンバリーミキサー、ロール、ブラベンダー、単軸混練押出機、二軸混練押出機、ニーダーなどの混合機で溶融混練する方法が挙げられる。
 溶融混練の温度は特に制限されないが、240~320℃の範囲であることが好ましく、特に240~300℃が好ましい。
[成形品]
 上記したポリカーボネート樹脂組成物(ペレット)は、各種の成形法で成形して成形品とされる。
 成形品の形状としては、特に制限はなく、成形品の用途、目的に応じて適宜選択することができ、例えば、板状、プレート状、ロッド状、シート状、フィルム状、円筒状、環状、円形状、楕円形状、多角形形状、異形品、中空品、枠状、箱状、パネル状のもの等が挙げられる。
 成形品を成形する方法としては、特に制限されず、従来公知の成形法を採用でき、例えば、射出成形法、射出圧縮成形法、押出成形法、異形押出法、トランスファー成形法、中空成形法、ガスアシスト中空成形法、ブロー成形法、押出ブロー成形、IMC(インモールドコ-ティング成形)成形法、回転成形法、多層成形法、2色成形法、インサート成形法、サンドイッチ成形法、発泡成形法、加圧成形法等が挙げられる。
 中でも、成形は射出成形法により行われることが好ましく、例えば、射出成形機、超高速射出成形機、射出圧縮成形機等の公知の射出成形機を用いて射出成形される。射出成形時における射出成形機のシリンダー温度は、好ましくは240~320℃であり、より好ましくは、250~300℃、さらに好ましくは260~280℃である。また、射出成形時の射出速度は、好ましくは10~1,000mm/秒であり、より好ましくは10~500mm/秒である。
[鉛筆硬度]
 本発明のポリカーボネート樹脂組成物からなる成形体の鉛筆硬度は、好ましくはHB以上、より好ましくはF以上、更に好ましくはH以上である。鉛筆硬度がHB未満では、樹脂成形体の表面が傷つきやすい傾向がある。本発明において、HB以上の鉛筆硬度は、ポリカーボネート樹脂(A)、ポリカーボネート樹脂(B)、並びにスチレン系樹脂(C)を特定の割合で配合することによって達成し得る。
 なお、本発明において鉛筆硬度は、ISO 15184に準拠し、鉛筆硬度試験機(株式会社東洋精機製作所製)を用いて、750g荷重にて測定される。
[パンクチャー衝撃試験]
 本発明のポリカーボネート樹脂組成物は、好ましくは、ISO 6603-2に準拠し、ストライカー直径が10mm、サンプルサポート直径が40mm、打ち抜き速度が4.4m/sec、衝突エネルギーが50.1J、サンプル厚み3mmにて実施するパンクチャー衝撃試験において、破壊形態がYDを示す。破壊形態は、図1に示すように、YD、YS、YU及びNYがあり、破壊形態YDとは深絞りによって起こる降伏をいい、本発明のポリカーボネート樹脂組成物は破壊形態YDを達成可能であり、後記するように、面衝撃強度が低い比較例のものでは、衝撃破壊の形態がYS(安定き裂成長によって起こる降伏)、またはYU(不安定き裂成長によって起こる降伏)、及びNY(不安定き裂成長によって起こる降伏しない破壊)になりやすい。
 パンクチャー衝撃の特性は、ポリカーボネート樹脂(A)、ポリカーボネート樹脂(B)、並びにスチレン系樹脂(C)の配合比率を調整し、必要に応じて耐衝撃改良剤(D)を添加することにより達成される。
[シャルピー衝撃試験]
 本発明のポリカーボネート樹脂組成物は、室温(23℃)におけるISO 179-2に準拠して測定されるノッチ付きシャルピー衝撃値が、好ましくは20kJ/m以上、より好ましくは23kJ/m以上、さらに好ましくは25kJ/mである。
 室温耐衝撃性の値は、ポリカーボネート樹脂(A)、ポリカーボネート樹脂(B)、並びにスチレン系樹脂(C)の配合比率を調整し、必要に応じて耐衝撃改良剤(E)を添加することにより達成される。
[ナイロン傷つき]
 本発明のポリカーボネート樹脂組成物からなる成形体の爪による傷つき性について確認するために、ナイロン棒による傷つき試験を用いて代用することができる。
 本発明におけるナイロン傷つき試験は、ISO 15184に準拠し、鉛筆硬度試験機(株式会社東洋精機製作所製)を用いて、鉛筆の代わりにナイロン製の丸棒を取り付け、荷重を50、100、300、500、750gと可変させながら、成形袋が傷つく荷重を求める。
 本発明のポリカーボネート樹脂組成物からなる成形体の傷つき性は、好ましくは300g荷重以上、より好ましくは500g荷重以上、特に好ましくは750g荷重である。
[漆黒性(L値)]
 本発明のポリカーボネート樹脂組成物は、漆黒性に優れるので、厚さ3mmの成形品にて、D65/10°光源にて測定したL値が、好ましくは5.5以下、より好ましくは5.2以下、さらに好ましくは5.1以下、特に好ましくは5.0以下を達成することができる。L値は小さいほど黒色性(漆黒性)が高いことを意味する。
 本発明のポリカーボネート樹脂組成物の成形品は、幅広い分野に使用することが可能であり、電子電気機器やその部品、OA機器、情報端末機器、機械部品、家電製品、車輌部品、建築部材、各種容器、レジャー用品・雑貨類、照明機器などの各種用途に有用であり、特に電子電気機器やOA機器、情報端末機器のハウジング部材、車輌内装部品への適用が期待できる。
 電子電気機器やOA機器、情報端末機器のハウジング部材としては、パソコン、ゲーム機、テレビなどのディスプレイ装置、プリンター、コピー機、スキャナー、ファックス、電子手帳やPDA、カメラ、ビデオカメラ、携帯電話、記録媒体のドライブや読み取り装置などのハウジング部材が挙げられる。
 車輌内装部品としては、センターパネル、インストルメンタルパネル、コンソールボックス、ラゲッジフロアボード、ドアポケット、カーナビゲーションなどのディスプレイハウジングなどが挙げられる。
 以下、実施例を示して本発明について更に具体的に説明する。ただし、本発明は以下の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更して実施できる。
 以下の実施例及び比較例に使用した各原料成分は、以下の表1の通りである。
Figure JPOXMLDOC01-appb-T000010
 上記表1において、ポリカーボネート樹脂(B)として使用したポリカーボネート樹脂(B1)及び(B2)は、以下の製造例により製造した。
<製造例1:ポリカーボネート樹脂(B1)の製造>
 2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン(以下、「BPC」と記す。)26.14モル(6.75kg)と、ジフェニルカーボネート26.79モル(5.74kg)を、撹拌機及び溜出凝縮装置付きのSUS製反応器(内容積10リットル)内に入れ、反応器内を窒素ガスで置換後、窒素ガス雰囲気下で220℃まで30分間かけて昇温した。
 次いで、反応器内の反応液を撹拌し、溶融状態下の反応液にエステル交換反応触媒として炭酸セシウム(CsCO)を、BPC1モルに対し1.5×10-6モルとなるように加え、窒素ガス雰囲気下、220℃で30分、反応液を撹拌醸成した。次に、同温度下で反応器内の圧力を40分かけて100Torrに減圧し、さらに、100分間反応させ、フェノールを溜出させた。
 次に、反応器内を60分かけて温度を284℃まで上げるとともに3Torrまで減圧し、留出理論量のほぼ全量に相当するフェノールを留出させた。次に、同温度下で反応器内の圧力を1Torr未満に保ち、さらに60分間反応を続け重縮合反応を終了させた。このとき、撹拌機の攪拌回転数は38回転/分であり、反応終了直前の反応液温度は289℃、攪拌動力は1.00kWであった。
 次に、溶融状態のままの反応液を2軸押出機に送入し、炭酸セシウムに対して4倍モル量のp-トルエンスルホン酸ブチルを2軸押出機の第1供給口から供給し、反応液と混練し、その後、反応液を2軸押出機のダイを通してストランド状に押し出し、カッターで切断してカーボネート樹脂のペレットを得た。
 得られたポリカーボネート樹脂(B1)の物性は以下の通りであった。
  鉛筆硬度:2H
  粘度平均分子量(Mv):26,000
<製造例2:ポリカーボネート樹脂(B2)の製造>
 BPC26.14モル(6.75kg)と、ジフェニルカーボネート26.79モル(5.74kg)を、撹拌機および溜出凝縮装置付きのSUS製反応器(内容積10リットル)内に入れ、反応器内を窒素ガスで置換後、窒素ガス雰囲気下で220℃まで30分間かけて昇温した。
 次いで、反応器内の反応液を撹拌し、溶融状態下の反応液にエステル交換反応触媒として炭酸セシウム(CsCO)を、BPC1モルに対し1.5×10-6モルとなるように加え、窒素ガス雰囲気下、220℃で30分、反応液を撹拌醸成した。次に、同温度下で反応器内の圧力を40分かけて100Torrに減圧し、さらに、100分間反応させ、フェノールを溜出させた。
 次に、反応器内を60分かけて温度を284℃まで上げるとともに3Torrまで減圧し、留出理論量のほぼ全量に相当するフェノールを留出させた。次に、同温度下で反応器内の圧力を1Torr未満に保ち、さらに60分間反応を続け重縮合反応を終了させた。このとき、撹拌機の攪拌回転数は38回転/分であり、反応終了直前の反応液温度は289℃、攪拌動力は0.60kWであった。
 次に、溶融状態のままの反応液を2軸押出機に送入し、炭酸セシウムに対して4倍モル量のp-トルエンスルホン酸ブチルを2軸押出機の第1供給口から供給し、反応液と混練し、その後、反応液を2軸押出機のダイを通してストランド状に押し出し、カッターで切断してポリカーボネート樹脂のペレットを得た。
 得られたポリカーボネート樹脂(B2)の物性は以下の通りであった。
  鉛筆硬度:2H
  粘度平均分子量(Mv):20,000
(実施例1~17、比較例1~10)
 上記表1に記載した各成分を、下記の表2~5に示す割合(質量部にて表示。但し安定剤、離型剤及び黒色顔料の量は、ポリカーボネート樹脂A、B及びスチレン系樹脂Cの合計100質量部に対する量として記載した。)にて配合し、タンブラーミキサーにて均一に混合した後、二軸押出機(株式会社日本製鋼所製TEX30α)を用いて、シリンダー温度260℃、スクリュー回転数200rpm、吐出量40kg/hrにて押出機上流部のバレルより押出機にフィードし、溶融混練してポリカーボネート樹脂組成物のペレットを得た。
[ノッチ付きシャルピー衝撃値(単位:kJ/m)]
 上記で得られたペレットを100℃で5時間乾燥した後、日精樹脂工業株式会社製のNEX80III型射出成形機を用いて、シリンダー温度260℃、金型温度80℃、成形サイクル50秒の条件で射出成形を行い、ISO多目的試験片(4mm厚)を作製した。
 得られた試験片をISO 179-1規格に基づき切削加工により所定の形状に切削し、室温(23℃)条件下でISO 179-2規格に基づき、シャルピー衝撃試験(ノッチ付き)を行い、ノッチ付きシャルピー衝撃値(単位:kJ/m)を求めた。
[パンクチャー衝撃試験]
 上記で得られたペレットを100℃で5時間乾燥した後、日精樹脂工業株式会社製のNEX80型射出成形機を用いて、シリンダー温度260℃、金型温度80℃にて、60mm×60mm×3mmtの平板とした。該平板を、ISO 6603-2に準拠し、CEAST9350 落錘式衝撃試験機(インストロン社製)により、試験温度23℃において、ストライカー直径:10mm、サンプルサポート直径:40mm、打ち抜き速度:4.4m/sec、衝突エネルギー:50.1Jの条件で、パンクチャー衝撃試験を行い、破壊形態を評価した。
 破壊形態YDは深絞りによって起こる降伏、破壊形態YSは安定き裂成長によって起こる降伏であり、破壊形態YUは不安定き裂成長によって起こる降伏であり、破壊形態NYは不安定き裂成長によって起こる降伏しない破壊であることを示す。
[鉛筆硬度]
 射出成形機(日精樹脂工業株式会社製NEX80III)を用い、シリンダー温度260℃、金型温度80℃、成形サイクル50秒の条件で射出成形を行い、ISO多目的試験片(4mm厚)を作製した。この成形品について、ISO 15184に準拠し、鉛筆硬度試験機(東洋精機株式会社製)を用いて、750g荷重にて測定した鉛筆硬度を求めた。
[ナイロン傷つき試験]
 上記で得られたISO多目的試験片(4mm厚)について、ISO 15184に準拠し、鉛筆硬度試験機(株式会社東洋精機製作所製)を用いて、鉛筆の代わりにナイロン製の丸棒を取り付け、荷重を50、100、300、500、750gと可変させながら、成形袋が傷つく荷重を測定した。
 以下の表中、○は傷がつかなかったこと、×は傷がついたことを示す。
[漆黒性(L値)]
 漆黒性の評価として、パンクチャー衝撃試験用に作成した前記3mm厚の平板を用いて、JIS K7105に準じ、日本電色工業株式会社製のSE6000型分光色彩計を用いて、D65/10°光源にて反射法により、Lを求めた。
 以上の評価結果を、以下の表2~5に示す。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 本発明のポリカーボネート樹脂組成物は耐衝撃性に優れ、高い表面硬度を有し、爪での耐傷付き性に優れ、さらに発色性(特に漆黒性)に優れるので、特に電子電気機器やOA機器、情報端末機器のハウジング部材、車輌内装部品への適用等の部品に好適に利用でき、産業上の利用性は非常に高いものがある。

Claims (8)

  1.  ビスフェノールA型ポリカーボネート樹脂(A)、下記一般式(1)で表される構造単位を有するポリカーボネート樹脂(B)、及びブタジエンに由来する構成単位を含まないスチレン系樹脂(C)を含むポリカーボネート樹脂組成物であって、
     ポリカーボネート樹脂(A)とポリカーボネート樹脂(B)の含有割合が、(A)/(B)の質量比で0~80/20~100であり、
     ブタジエンに由来する構成単位を含まないスチレン系樹脂(C)の含有量が、ポリカーボネート樹脂(A)及び(B)の合計100質量部に対して、1~30質量部であることを特徴とするポリカーボネート樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、Rはメチル基、R及びRはそれぞれ独立して水素原子またはメチル基を、Xは、
    Figure JPOXMLDOC01-appb-C000002
    を示し、R及びRはそれぞれ独立に水素原子またはメチル基を示し、Zは、Cと結合して炭素数6~12の、置換基を有していてもよい脂環式炭化水素を形成する基を示す。)
  2.  さらに、ポリエチレン系セグメント及びビニル系重合体セグメントを有するグラフト共重合体(D)を、ポリカーボネート樹脂(A)及び(B)の合計100質量部に対して、1~10質量部含む請求項1に記載のポリカーボネート樹脂組成物。
  3.  さらに、耐衝撃改良剤(E)を、ポリカーボネート樹脂(A)及び(B)の合計100質量部に対して、7~20質量部含む請求項1又は2に記載のポリカーボネート樹脂組成物。
  4.  ISO 15184に準拠し、750g荷重にて測定した鉛筆硬度がHB以上である請求項1~3のいずれかに記載のポリカーボネート樹脂組成物。
  5.  ISO 6603-2に準拠し、ストライカー直径が10mm、サンプルサポート直径が40mm、打ち抜き速度が4.4m/sec、衝突エネルギーが50.1J、サンプル厚み3mmにて実施したパンクチャー衝撃試験において、破壊形態がYDである請求項1~4のいずれかに記載のポリカーボネート樹脂組成物。
  6.  ブタジエン骨格を含まないスチレン系樹脂(C)がアクリロニトリル-スチレン樹脂又はメタクリル酸メチル-スチレン樹脂である請求項1~5のいずれかに記載のポリカーボネート樹脂組成物。
  7.  さらに、黒色顔料を含む請求項1~6のいずれかに記載のポリカーボネート樹脂組成物。
  8.  請求項1~7のいずれかに記載のポリカーボネート樹脂組成物の成形品。
PCT/JP2018/009942 2017-03-31 2018-03-14 ポリカーボネート樹脂組成物及び成形品 WO2018180493A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880005576.3A CN110139899B (zh) 2017-03-31 2018-03-14 聚碳酸酯树脂组合物和成型品

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2017072142 2017-03-31
JP2017-072142 2017-03-31
JP2017107786 2017-05-31
JP2017-107786 2017-05-31
JP2018-019205 2018-02-06
JP2018019204 2018-02-06
JP2018019205 2018-02-06
JP2018-019204 2018-02-06

Publications (1)

Publication Number Publication Date
WO2018180493A1 true WO2018180493A1 (ja) 2018-10-04

Family

ID=63675415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009942 WO2018180493A1 (ja) 2017-03-31 2018-03-14 ポリカーボネート樹脂組成物及び成形品

Country Status (2)

Country Link
CN (1) CN110139899B (ja)
WO (1) WO2018180493A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021039895A1 (ja) * 2019-08-30 2021-03-04 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物及びその成形品
WO2024038853A1 (ja) * 2022-08-18 2024-02-22 三菱ケミカル株式会社 樹脂組成物、ペレット、および、成形品

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115516036B (zh) * 2021-04-23 2024-01-16 株式会社Lg化学 用于汽车内饰材料的复合树脂组合物及使用该组合物制造的汽车内饰材料

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5634751A (en) * 1979-08-27 1981-04-07 Bayer Ag Polycarbonateepolyolefin composition
JPS591564A (ja) * 1982-06-08 1984-01-06 バイエル・アクチエンゲゼルシヤフト 単一相重合体混合物
JP2007197695A (ja) * 2005-12-27 2007-08-09 Toray Ind Inc スチレン系樹脂組成物の製造方法および成形品
JP2013112780A (ja) * 2011-11-30 2013-06-10 Teijin Chem Ltd 共重合ポリカーボネート樹脂組成物および成形品
JP2013112781A (ja) * 2011-11-30 2013-06-10 Teijin Chem Ltd 黒色樹脂組成物および樹脂成形体
JP2015143985A (ja) * 2013-12-27 2015-08-06 三菱化学株式会社 静電容量型タッチパネル
JP2016216686A (ja) * 2015-05-26 2016-12-22 三菱化学株式会社 ポリカーボネート樹脂組成物
JP2017002263A (ja) * 2015-06-16 2017-01-05 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物及び成形品
JP2018044128A (ja) * 2016-09-16 2018-03-22 三菱エンジニアリングプラスチックス株式会社 ディスプレイ用成形品及びその製造方法
JP2018048258A (ja) * 2016-09-21 2018-03-29 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0096301A2 (de) * 1982-06-08 1983-12-21 Bayer Ag Einphasige Polymermischungen

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5634751A (en) * 1979-08-27 1981-04-07 Bayer Ag Polycarbonateepolyolefin composition
JPS591564A (ja) * 1982-06-08 1984-01-06 バイエル・アクチエンゲゼルシヤフト 単一相重合体混合物
JP2007197695A (ja) * 2005-12-27 2007-08-09 Toray Ind Inc スチレン系樹脂組成物の製造方法および成形品
JP2013112780A (ja) * 2011-11-30 2013-06-10 Teijin Chem Ltd 共重合ポリカーボネート樹脂組成物および成形品
JP2013112781A (ja) * 2011-11-30 2013-06-10 Teijin Chem Ltd 黒色樹脂組成物および樹脂成形体
JP2015143985A (ja) * 2013-12-27 2015-08-06 三菱化学株式会社 静電容量型タッチパネル
JP2016216686A (ja) * 2015-05-26 2016-12-22 三菱化学株式会社 ポリカーボネート樹脂組成物
JP2017002263A (ja) * 2015-06-16 2017-01-05 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物及び成形品
JP2018044128A (ja) * 2016-09-16 2018-03-22 三菱エンジニアリングプラスチックス株式会社 ディスプレイ用成形品及びその製造方法
JP2018048258A (ja) * 2016-09-21 2018-03-29 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BELARIBI, C ET AL.: "VISCOELASTIC AND THERMAL BEHAVIOUR OF TERNARY BLENDS POLYSTYRENE/POLYCARBONATE/TETRAMETHYLPOLYCARBONATE", EUROPEAN POLYMER JOURNAL, vol. 22, no. 6, 1986, pages 487 - 490, XP024054625, DOI: doi:10.1016/0014-3057(86)90010-8 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021039895A1 (ja) * 2019-08-30 2021-03-04 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物及びその成形品
JPWO2021039895A1 (ja) * 2019-08-30 2021-03-04
EP4023715A4 (en) * 2019-08-30 2023-09-13 Mitsubishi Engineering-Plastics Corporation POLYCARBONATE RESIN COMPOSITION AND MOLDED PRODUCT BASED THEREON
JP7455134B2 (ja) 2019-08-30 2024-03-25 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物及びその成形品
WO2024038853A1 (ja) * 2022-08-18 2024-02-22 三菱ケミカル株式会社 樹脂組成物、ペレット、および、成形品

Also Published As

Publication number Publication date
CN110139899A (zh) 2019-08-16
CN110139899B (zh) 2021-11-19

Similar Documents

Publication Publication Date Title
JP6853005B2 (ja) ポリカーボネート樹脂組成物及び成形品
JP2017179331A (ja) ポリカーボネート樹脂組成物及び成形品
JP6147595B2 (ja) ポリカーボネート樹脂組成物、それからなる成形体およびその製造方法
WO2018180493A1 (ja) ポリカーボネート樹脂組成物及び成形品
JP6787731B2 (ja) ポリカーボネート樹脂組成物及び成形品
JP2018044128A (ja) ディスプレイ用成形品及びその製造方法
JP7139124B2 (ja) ポリカーボネート樹脂組成物及び成形品
JP2013043908A (ja) 芳香族ポリカーボネート樹脂組成物及びそれからなる成形品
JP5427767B2 (ja) 芳香族ポリカーボネート樹脂組成物、それからなる成形品および成形品の製造方法
JP6367039B2 (ja) ポリカーボネート樹脂組成物および成形品
JP2013133362A (ja) 芳香族ポリカーボネート樹脂組成物および成形品
JP6466265B2 (ja) ポリカーボネート樹脂組成物及び成形品
JP7062471B2 (ja) ポリカーボネート樹脂組成物及び成形品
JP5875945B2 (ja) 芳香族ポリカーボネート樹脂組成物および成形品
JP6553474B2 (ja) ポリカーボネート樹脂組成物及び成形品
JP6356050B2 (ja) ポリカーボネート樹脂組成物および成形品
JP6723783B2 (ja) ポリカーボネート樹脂組成物及び成形品
JP5973333B2 (ja) ポリカーボネート樹脂組成物
JP5770487B2 (ja) ポリカーボネート樹脂組成物
JP6810565B2 (ja) ポリカーボネート樹脂組成物
JP2013133361A (ja) 芳香族ポリカーボネート樹脂組成物および成形品
JP6710613B2 (ja) ポリカーボネート樹脂組成物の製造方法
JP6151615B2 (ja) ポリカーボネート樹脂組成物及び成形品
JP6466264B2 (ja) ポリカーボネート樹脂組成物及び成形品
JP6454038B2 (ja) ポリカーボネート樹脂組成物および成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18776096

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载