+

WO2018180483A1 - Resin composition, sheet, solar cell sealing material, solar cell module, and method for producing sheet for solar cell sealing material - Google Patents

Resin composition, sheet, solar cell sealing material, solar cell module, and method for producing sheet for solar cell sealing material Download PDF

Info

Publication number
WO2018180483A1
WO2018180483A1 PCT/JP2018/009877 JP2018009877W WO2018180483A1 WO 2018180483 A1 WO2018180483 A1 WO 2018180483A1 JP 2018009877 W JP2018009877 W JP 2018009877W WO 2018180483 A1 WO2018180483 A1 WO 2018180483A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
sheet
copolymer
ethylene
propylene
Prior art date
Application number
PCT/JP2018/009877
Other languages
French (fr)
Japanese (ja)
Inventor
洸哉 吉本
野田 公憲
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2019509219A priority Critical patent/JP6898426B2/en
Publication of WO2018180483A1 publication Critical patent/WO2018180483A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F19/00Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
    • H10F19/80Encapsulations or containers for integrated devices, or assemblies of multiple devices, having photovoltaic cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a resin composition and a sheet, and particularly to a resin composition and a sheet suitable for a solar cell encapsulant.
  • Solar cells are attracting attention as an energy source that is clean and has no risk of exhaustion.
  • a solar cell When a solar cell is used outdoors such as a roof portion of a building, it is generally used in the form of a solar cell module.
  • a solar cell module generally protects both sides of a solar cell element such as silicon, gallium-arsenic, copper-indium-selenium with a solar cell encapsulant, and the encapsulant is composed of an upper transparent protective material and a lower substrate protective material. Protected and packaged. For this reason, as a solar cell sealing material, high transparency is calculated
  • Patent Document 1 discusses the use of a resin composition containing an ethylene / ⁇ -olefin copolymer as a solar cell sealing material.
  • a resin composition containing an ethylene / ⁇ -olefin copolymer as a solar cell sealing material.
  • an ethylene / 1-butene copolymer and an ethylene / 1-octene copolymer are described.
  • Patent Document 1 a low-density ethylene / ⁇ -olefin copolymer is used to improve transparency.
  • Patent Document 2 discusses the use of a resin composition containing an ethylene / ⁇ -olefin copolymer and an ethylene-functional group-containing monomer copolymer as a solar cell encapsulant.
  • a resin composition containing an ethylene / ⁇ -olefin copolymer and an ethylene-functional group-containing monomer copolymer as a solar cell encapsulant.
  • an ethylene / propylene / 1-hexene terpolymer is described.
  • an object of the present invention is to provide a resin composition capable of suitably obtaining a solar cell encapsulant having high transparency, excellent impact resistance (low density), and high strength, and the composition
  • the present invention relates to a film or sheet containing an ethylene / propylene / ⁇ -olefin copolymer [X] that satisfies the following requirement (x-1).
  • (X-1) an ⁇ -olefin having 74 to 92 mol% of the structural unit (i) derived from ethylene, 5 to 16 mol% of the structural unit (ii) derived from propylene, and having 5 to 20 carbon atoms.
  • the derived structural unit (iii) is contained in an amount of 3 to 10 mol% [provided that the total of the structural units (i), (ii) and (iii) is 100 mol%. ].
  • the film or sheet containing the ethylene / propylene / ⁇ -olefin copolymer [X] of the present invention has high transparency, excellent heat-resistant mechanical strength, and good flexibility, a solar cell encapsulant, And the solar cell module containing this solar cell sealing material can be obtained suitably.
  • the resin composition of the present invention contains an ethylene / propylene / ⁇ -olefin copolymer [X] that satisfies specific requirements.
  • the resin composition preferably contains the copolymer [X] and the organic peroxide [Y] in specific amounts.
  • (X-1) 74 to 92 mol%, preferably 76 to 90 mol% of the structural unit (i) derived from ethylene, and 5 to 16 mol%, preferably 7 to 16 mol of the structural unit (ii) derived from propylene.
  • the ethylene / propylene / ⁇ -olefin copolymer [X] includes a structural unit derived from ethylene, a structural unit derived from propylene, and a structural unit derived from an ⁇ -olefin having 5 to 20 carbon atoms. By including in a range, a film or sheet having high transparency, excellent mechanical strength, and good flexibility can be obtained.
  • Examples of the ⁇ -olefin having 5 to 20 carbon atoms constituting the ethylene / propylene / ⁇ -olefin copolymer [X] according to the present invention include 1-pentene, 3-methyl-1-butene, 1-hexene, 4 -Methyl-1-pentene, 3-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-eicosene and the like. Of these, 1-hexene, 4-methyl-1-pentene and 1-octene are preferred.
  • the type of ⁇ -olefin constituting the copolymer [X] according to the present invention is clear depending on the type of ⁇ -olefin used in the production of the copolymer [X].
  • the ⁇ -olefin content can be quantified using the method described in the Examples.
  • the ethylene / propylene / ⁇ -olefin copolymer [X] according to the present invention preferably has the following requirements (x-2) and (x-3).
  • the lower limit of the density of the (x-2) according to the density present invention copolymer [X] is, 850kg / m 3, preferably 855kg / m 3.
  • the upper limit of the density is 900 kg / m 3 , preferably 895 kg / m 3 , more preferably 890 kg / m 3 .
  • the density of the copolymer [X] is a value measured at 23 ° C. according to ASTM D1505. The density value can be adjusted by selecting the type and content of the comonomer in the copolymer [X].
  • the MFR of the copolymer [X] according to the present invention has a melt flow rate (MFR, ASTM D1238) at 190 ° C. and a load of 2.16 kg, preferably 0.1 to 50 g / 10 min, more preferably 0. .1 to 40 g / 10 min, more preferably 0.1 to 30 g / 10 min.
  • the ethylene / propylene / ⁇ -olefin copolymer [X] according to the present invention preferably further has the following requirement (x-4) and requirement (x-5).
  • the copolymer [X] according to the present invention has a molecular weight distribution (Mw / Mn) represented by a ratio of the weight average molecular weight (Mw) and the number average molecular weight (Mn), preferably 3.0 or less, More preferably, it is 2.5 or less.
  • Mw and Mn are EPR converted values measured by gel permeation chromatography (GPC). The EPR conversion is as described in the examples.
  • the copolymer [X] having Mw / Mn in the above range is preferable in terms of blocking resistance.
  • the weight average molecular weight (Mw) (EPR conversion) of the copolymer [X] is not particularly limited as long as the effect of the present invention is exhibited, but is preferably 10,000 or more, more preferably 20000 or more, and further preferably 30000 or more.
  • the ethylene / propylene / ⁇ -olefin copolymer [X] according to the present invention more preferably has the following requirement (x-6).
  • Unsaturated bond amount Unsaturated bonds that can be included in the copolymer [X] include the following vinyl type double bonds, vinylidene type double bonds, disubstituted olefin type double bonds and A trisubstituted olefin type double bond is mentioned. The content of these unsaturated bonds can be determined by 1 H-NMR.
  • the copolymer [X] has a vinyl type double bond (vinyl group) and a vinylidene type double bond (vinylidene group) per 1000 carbon atoms determined by 1 H-NMR measurement.
  • a double bond is also referred to as a molecular terminal double bond), a disubstituted olefin type double bond, and a trisubstituted olefin type double bond (in the present invention, these double bonds are also referred to as internal molecular double bonds).
  • the total content of is usually less than 0.40, preferably less than 0.38, and more preferably less than 0.35.
  • the content of the molecular terminal double bond and the internal double bond in the copolymer [X] is in the above range, the generation of fish eyes during film / sheet formation can be reduced, and the yield is high.
  • the copolymer [X] a sheet having excellent mechanical strength or a sheet for solar cell encapsulating material can be suitably obtained.
  • the copolymer [X] having Mw in the above range has a good balance between film / sheet moldability and mechanical strength.
  • High transparency and good film / sheet moldability can be obtained by using the copolymer [X] having a density and Mw within the above ranges.
  • ⁇ Method for producing ethylene / propylene / ⁇ -olefin copolymer [X] is not limited as long as it has the above-described properties.
  • copolymer [X] is obtained by copolymerizing ethylene, propylene and an ⁇ -olefin having 5 to 20 carbon atoms in the presence of an olefin polymerization catalyst containing catalyst components [A] and [B]. Can be manufactured.
  • the catalyst component [A] is a metallocene compound represented by the general formula [I].
  • M is a transition metal
  • p represents the valence of the transition metal
  • X may be the same or different, and each independently represents a hydrogen atom, a halogen atom or a hydrocarbon group
  • R 1 and R 2 are each independently a ⁇ -electron conjugated ligand coordinated to M.
  • transition metal represented by M examples include Zr, Ti, Hf, V, Nb, Ta, and Cr. Preferred transition metals are Zr, Ti, or Hf, and more preferred transition metals are Zr or Hf. is there.
  • Examples of the ⁇ -electron conjugated ligand represented by R 1 and R 2 include a ⁇ -cyclopentadienyl structure, ⁇ -benzene structure, ⁇ -cycloheptatrienyl structure, and ⁇ -cyclooctatetraene structure.
  • a particularly preferred ligand is a ligand having a ⁇ -cyclopentadienyl structure.
  • Examples of the ligand having an ⁇ -cyclopentadienyl structure include a cyclopentadienyl group, an indenyl group, a hydrogenated indenyl group, and a fluorenyl group.
  • These groups are further substituted with halogen atoms; hydrocarbon groups such as alkyl, aryl and aralkyl; oxygen atom-containing groups such as alkoxy groups and aryloxy groups; hydrocarbon-containing silyl groups such as trialkylsilyl groups, and the like. May be.
  • Examples of the catalyst component [A] include bis (1,3-dimethylcyclopentadienyl) zirconium dichloride, but are not limited to the above compounds. Such a catalyst component [A] is preferably used as a catalyst for olefin polymerization together with the catalyst component [B].
  • the catalyst component [B] is selected from (b-1) an organoaluminum oxy compound, (b-2) a compound that reacts with the catalyst component [A] to form an ion pair, and (b-3) an organoaluminum compound. At least one compound.
  • the catalyst component [B] [1] Only organoaluminum oxy compound (b-1), [2] Organoaluminum oxy compound (b-1) and organoaluminum compound (b-3), [3] Compound (b-2) and organoaluminum compound (b-3), [4] It is preferably used in any embodiment of the organoaluminum oxy compound (b-1) and the compound (b-2).
  • Organic aluminum oxy compound (b-1) As the organoaluminum oxy compound (b-1), a conventionally known aluminoxane can be used as it is. Specifically, the compound represented by general formula [II] and / or general formula [III] is mentioned.
  • R is a hydrocarbon group having 1 to 10 carbon atoms, and n is an integer of 2 or more.
  • methylaluminoxane in which R is a methyl group and n is 3 or more, preferably 10 or more, is suitably used.
  • the organoaluminum oxy compound in which R is a methyl group may be hereinafter referred to as “methylaluminoxane”.
  • organoaluminum oxy compound (b-1) it is also preferable to use a methylaluminoxane analogue that dissolves in a saturated hydrocarbon, and examples thereof include a modified methylaluminoxane represented by the general formula [IV].
  • R is a hydrocarbon group having 2 to 20 carbon atoms, and m and n are integers of 2 or more.
  • the modified methylaluminoxane represented by the formula [IV] is prepared using, for example, trimethylaluminum and an alkylaluminum other than trimethylaluminum, and prepared using a trimethylaluminum and triisobutylaluminum from a manufacturer such as Tosoh Finechem, Those in which R is an isobutyl group are commercially produced under trade names such as MMAO and TMAO.
  • organoaluminum oxy compound (b-1) a benzene insoluble organoaluminum oxy compound exemplified in JP-A-2-78687 may be used, which contains boron represented by the general formula [V].
  • An organoaluminum oxy compound may be used.
  • R c is a hydrocarbon group having 1 to 10 carbon atoms
  • R d may be the same or different from each other, and is a hydrogen atom, a halogen atom or a hydrocarbon having 1 to 10 carbon atoms. It is a group.
  • the organoaluminum oxy compound (b-1) may be used alone or in combination of two or more. Note that a slight amount of organoaluminum compound may be mixed in the organoaluminum oxy compound (b-1).
  • JP-A-1-501950 discloses a compound (b-2) that reacts with the catalyst component [A] to form an ion pair (hereinafter sometimes abbreviated as “ionic compound (b-2)”).
  • ionic compound (b-2) Lewis acids described in JP-A-1-502036, JP-A-3-17905, JP-A-3-179006, JP-A-3-207703, JP-A-3-207704, USP5321106, etc.
  • Ionic compounds, borane compounds and carborane compounds examples of the ionic compound (b-2) include heteropoly compounds and isopoly compounds.
  • the ionic compound (b-2) is preferably a compound represented by the general formula [VI].
  • examples of R e + include H + , carbenium cation, oxonium cation, ammonium cation, phosphonium cation, cycloheptyltrienyl cation, and ferrocenium cation having a transition metal.
  • R f to R i may be the same as or different from each other, and are organic groups, preferably aryl groups.
  • carbenium cation examples include trisubstituted carbenium cations such as triphenylcarbenium cation, tris (methylphenyl) carbenium cation, and tris (dimethylphenyl) carbenium cation.
  • ammonium cations include trialkylammonium cations, triethylammonium cations, tri (n-propyl) ammonium cations, triisopropylammonium cations, tri (n-butyl) ammonium cations, triisobutylammonium cations, and the like, N, N-dimethylanilinium cation, N, N-diethylanilinium cation, N, N-2,4,6-pentamethylanilinium cation, N, N-dialkylanilinium cation, diisopropylammonium cation, dicyclohexylammonium Examples thereof include dialkylammonium cations such as cations.
  • phosphonium cation examples include triarylphosphonium cations such as triphenylphosphonium cation, tris (methylphenyl) phosphonium cation, and tris (dimethylphenyl) phosphonium cation.
  • R e + a carbenium cation and an ammonium cation are preferable, and a triphenylcarbenium cation, an N, N-dimethylanilinium cation, and an N, N-diethylanilinium cation are particularly preferable.
  • ionic compound (b-2) which is a carbenium salt examples include triphenylcarbenium tetraphenylborate, triphenylcarbeniumtetrakis (pentafluorophenyl) borate, triphenylcarbeniumtetrakis (3,5-ditrifluoro).
  • Examples thereof include methylphenyl) borate, tris (4-methylphenyl) carbenium tetrakis (pentafluorophenyl) borate, and tris (3,5-dimethylphenyl) carbeniumtetrakis (pentafluorophenyl) borate.
  • ionic compound (b-2) that is an ammonium salt examples include trialkyl-substituted ammonium salts, N, N-dialkylanilinium salts, and dialkylammonium salts.
  • ionic compound (b-2) which is a trialkyl-substituted ammonium salt include triethylammonium tetraphenylborate, tripropylammonium tetraphenylborate, tri (n-butyl) ammonium tetraphenylborate, trimethylammonium tetrakis (p -Tolyl) borate, trimethylammonium tetrakis (o-tolyl) borate, tri (n-butyl) ammonium tetrakis (pentafluorophenyl) borate, triethylammonium tetrakis (pentafluorophenyl) borate, tripropylammonium tetrakis (pentafluorophenyl) borate , Tripropylammonium tetrakis (2,4-dimethylphenyl) borate, tri (n-butyl) ammonium tetra
  • ionic compound (b-2) that is an N, N-dialkylanilinium salt include N, N-dimethylanilinium tetraphenylborate, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, N, N-dimethylanilinium tetrakis (3,5-ditrifluoromethylphenyl) borate, N, N-diethylanilinium tetraphenylborate, N, N-diethylanilinium tetrakis (pentafluorophenyl) borate, N, N- Diethylanilinium tetrakis (3,5-ditrifluoromethylphenyl) borate, N, N-2,4,6-pentamethylanilinium tetraphenylborate, N, N-2,4,6-pentamethylanilinium tetrakis ( Pentafluorophenyl)
  • dialkylammonium salt examples include di (1-propyl) ammonium tetrakis (pentafluorophenyl) borate and dicyclohexylammonium tetraphenylborate.
  • an ionic compound disclosed by the present applicant Japanese Patent Laid-Open No. 2004-516766 can also be used without limitation.
  • the ionic compound (b-2) may be used alone or in combination of two or more.
  • Organoaluminum compound (b-3) examples include an organoaluminum compound represented by the general formula [VII] and a complex alkylated product of a group 1 metal of the periodic table represented by the general formula [VIII] and aluminum. It is done.
  • organoaluminum compound represented by the formula [VII] include tri-n-alkylaluminums such as trimethylaluminum, triethylaluminum, tri-n-butylaluminum, trihexylaluminum and trioctylaluminum; triisopropylaluminum, triisobutyl Tri-branched alkyl aluminums such as aluminum, tri-sec-butylaluminum, tri-tert-butylaluminum, tri-2-methylbutylaluminum, tri-3-methylhexylaluminum, tri-2-ethylhexylaluminum; tricyclohexylaluminum, tricyclooctylaluminum, etc.
  • tri-n-alkylaluminums such as trimethylaluminum, triethylaluminum, tri-n-butylaluminum, trihexylaluminum and trioctylaluminum
  • Tricycloalkylaluminum Triarylaluminum such as triphenylaluminum and tolylylaluminum; diisopropylaluminum hydra Id, dialkylaluminum hydride such as diisobutylaluminum hydride; formula (iC 4 H 9) x Al y (C 5 H 10) z ( wherein, x, y, z are each a positive number, is z ⁇ 2x ) Alkenyl aluminum such as isoprenyl aluminum, etc .; Alkyl aluminum alkoxide such as isobutylaluminum methoxide and isobutylaluminum ethoxide; Dialkylaluminum alkoxide such as dimethylaluminum methoxide, diethylaluminum ethoxide and dibutylaluminum butoxide; formula R a 2.5 Al (OR b) partially alkoxylated alkyl aluminum having an average composition represented by 0.5
  • Dialkylaluminum halides alkylaluminum sesquihalides such as ethylaluminum sesquichloride, butylaluminum sesquichloride, ethylaluminum sesquibromide; partially halogenated alkylaluminums such as alkylaluminum dihalides such as ethylaluminum dichloride; diethylaluminum hydride Dialkylaluminum hydrides such as dibutylaluminum hydride; Other partially hydrogenated alkylaluminums such as alkylaluminum dihydrides such as aluminum dihydride, propylaluminum dihydride; partially alkoxylated such as ethylaluminum ethoxychloride, butylaluminum butoxycycloride, ethylaluminum ethoxybromide and the like A halogenated alkylaluminum is mentioned.
  • M 2 is Li, Na or K
  • R a is a hydrocarbon group having 1 to 15 carbon atoms, preferably 1 to 4 carbon atoms. Examples of such a compound include LiAl (C 2 H 5 ) 4 and LiAl (C 7 H 15 ) 4 .
  • a compound similar to the compound represented by the general formula [VII] can also be used, and examples thereof include an organoaluminum compound in which two or more aluminum compounds are bonded through a nitrogen atom.
  • organoaluminum compound in which two or more aluminum compounds are bonded through a nitrogen atom.
  • Specific examples of such a compound include (C 2 H 5 ) 2 AlN (C 2 H 5 ) Al (C 2 H 5 ) 2 .
  • organoaluminum compound (b-3) trimethylaluminum and triisobutylaluminum are preferably used from the viewpoint of easy availability.
  • the organoaluminum compound (b-3) may be used alone or in combination of two or more.
  • the copolymer [X] can be suitably produced by copolymerizing ethylene, propylene and an ⁇ -olefin having 5 to 20 carbon atoms in the presence of the above-mentioned olefin polymerization catalyst.
  • the copolymerization is not particularly limited, but it is preferably performed by solution polymerization in the presence of an olefin polymerization catalyst at a temperature of 50 to 180 ° C. in the presence of a solvent.
  • the method of using each component and the order of addition are arbitrarily selected.
  • a method of adding the catalyst component [A] and the catalyst component [B] to the polymerization vessel in an arbitrary order can be exemplified.
  • two or more of each catalyst component may be contacted previously.
  • the catalyst component [A] is usually 10 ⁇ 9 to 1 liter of reaction volume. It can be used in an amount of 10 ⁇ 1 mol, preferably 10 ⁇ 8 to 10 ⁇ 2 mol.
  • the component (b-1) has a molar ratio [(b-1) / M] of the component (b-1) to all transition metal atoms (M) in the component [A] of usually 1 to 10,000, preferably 10 It can be used in an amount of ⁇ 5000.
  • Component (b-2) has a molar ratio [(b-2) / M] of component (b-2) to all transition metal atoms (M) in component [A], usually 0.5 to 50, The amount can be preferably 1 to 20.
  • Component (b-3) can be used in an amount of usually 0 to 5 mmol, preferably about 0 to 2 mmol, per liter of polymerization volume.
  • the charged molar ratio of ethylene, propylene and ⁇ -olefin may be appropriately selected according to the characteristics of the target copolymer [X], and is not particularly limited.
  • Solution polymerization preferably employed in the production of the copolymer [X] is a general term for a method of performing polymerization in a state where the polymer is dissolved in a hydrocarbon solvent inert to the copolymerization reaction.
  • the polymerization temperature in the solution polymerization is usually 50 to 180 ° C., preferably 70 to 150 ° C., more preferably 90 to 130 ° C.
  • the polymerization temperature is preferably in the above range from the viewpoint of polymerization activity and heat removal from the polymerization heat. Specifically, it is preferable from the viewpoint of productivity when it is at least the lower limit of the above range; it is preferable from the viewpoint of blocking resistance that it is difficult to form a branch in the polymer when it is not more than the upper limit of the above range.
  • the polymerization pressure is usually from normal pressure to 10 MPa gauge pressure, preferably from normal pressure to 8 MPa gauge pressure, and the copolymerization can be carried out by any of batch, semi-continuous and continuous methods.
  • the reaction time (average residence time when the copolymerization reaction is carried out in a continuous manner) varies depending on conditions such as the catalyst concentration and polymerization temperature, and can be appropriately selected, but is usually 1 minute to 3 hours, preferably 10 minutes to 2.5 hours.
  • Polymerization can be performed in two or more stages with different reaction conditions.
  • the molecular weight of the obtained copolymer [X] can also be adjusted by changing the hydrogen concentration or polymerization temperature in the polymerization system. Furthermore, it can also adjust with the quantity of the catalyst component [B] to be used. When hydrogen is added to the polymerization system, the amount is suitably about 0.001 to 5,000 NL per 1 kg of the produced copolymer [X]. Further, the density of the obtained copolymer [X] can be adjusted by the feed amount of propylene and ⁇ -olefin.
  • the solvent used in the solution polymerization is usually an inert hydrocarbon solvent, preferably a saturated hydrocarbon having a boiling point of 50 to 200 ° C. under normal pressure.
  • an inert hydrocarbon solvent preferably a saturated hydrocarbon having a boiling point of 50 to 200 ° C. under normal pressure.
  • Specific examples include aliphatic hydrocarbons such as pentane, hexane, heptane, octane, decane, dodecane, and kerosene; and alicyclic hydrocarbons such as cyclopentane, cyclohexane, and methylcyclopentane.
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • halogenated hydrocarbons such as ethylene chloride, chlorobenzene and dichloromethane are also included in the category of “inert hydrocarbon solvents” and their use is not limited.
  • the copolymer [X] obtained by the polymerization reaction and other components added as desired may be melted by any method, kneaded, granulated, etc. preferable.
  • the resin composition according to the present invention is a composition containing the ethylene / propylene / ⁇ -olefin copolymer [X], and preferably contains a specific amount of the organic peroxide [Y].
  • the organic peroxide [Y] used in the present invention is a film or sheet made of the copolymer [X], or a solar cell encapsulant sheet, and a crosslinking reaction during solar cell module laminate molding. Used as a radical initiator.
  • a film or sheet having high transparency, excellent heat resistance, high mechanical strength, and good flexibility by crosslinking the copolymer [X] with an organic peroxide [Y] or a sheet for solar cell encapsulant Preferably obtained.
  • the organic peroxide [Y] is not particularly limited as long as it can crosslink the copolymer [X].
  • the organic peroxide (Y) having a half-life temperature of 1 minute of the organic peroxide (Y) in the range of 100 to 190 ° C. is preferable from the balance of the crosslinking rate at the time of module lamination molding. More preferably, the 1-minute half-life temperature is 100 to 180 ° C.
  • the one-minute half-life temperature of the organic peroxide [Y] is less than 100 ° C.
  • gel is generated in the sheet for solar cell encapsulant obtained from the resin composition at the time of extrusion sheet molding, and the torque of the extruder increases.
  • sheet forming may be difficult. Even if a sheet is obtained, unevenness may occur on the surface of the sheet due to the gel generated in the extruder, and the appearance may deteriorate.
  • a voltage is applied, cracks are generated around the gel within the sheet, and the dielectric breakdown resistance is reduced. Furthermore, moisture permeation at the gel object interface is likely to occur and moisture permeability is reduced.
  • the amount of the organic peroxide [Y] is usually 0.1 to 3 parts by weight, preferably 0.2 to 3 parts by weight, and more preferably 0.2 parts by weight with respect to 100 parts by weight of the copolymer [X]. ⁇ 2.5 parts by weight.
  • the organic peroxide [Y] is less than 0.1 part by weight, the crosslinking characteristics at the time of laminate molding of the solar cell module become insufficient, and the heat resistance and the glass adhesiveness are lowered.
  • the organic peroxide [Y] is more than 3 parts by weight, gelation occurs when a sheet or a solar cell encapsulant sheet is obtained from the resin composition with an extruder or the like, and the torque of the extruder is increased. Molding may be difficult.
  • the organic peroxide [Y] described above preferably has a one-minute half-life temperature in the range of 100 to 180 ° C.
  • dilauroyl peroxide 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, dibenzoyl peroxide, cyclohexanone peroxide, di-t-butyl perphthalate, t- Butyl hydroperoxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, t-amylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate , T-butylperoxyisobutyrate, t-butylperoxymaleic acid, 1,1-di (t-amylperoxy) -3,3,5-trimethylcyclohexane, 1,1-di (t-amylper) Oxy) cyclohexane, t-amyl peroxy isononanoate, t-amyl peroxy normal octo
  • dilauroyl peroxide 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, t-butylperoxyisopropyl carbonate, t-butylperoxybenzoate, t-butylperoxyacetate
  • examples thereof include t-butyl peroxyisononanoate, t-butyl peroxy-2-ethylhexyl carbonate, t-butyl peroxybenzoate and the like.
  • the organic peroxide [Y] may be used singly or in appropriate combination of two or more.
  • the resin composition of the present invention contains an ethylenically unsaturated silane compound (C), which has good crosslinkability and excellent heat resistance, or a sheet for solar cell encapsulant. It is preferable from the point which can be obtained.
  • ethylenically unsaturated silane compound (C) conventionally known compounds can be used, and there is no particular limitation. Specifically, vinyltriethoxysilane, vinyltrimethoxysilane, vinyltris ( ⁇ -methoxyethoxysilane), ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane Etc. can be used.
  • Preferred examples include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, and ⁇ -methacryloxypropyltrimethoxysilane, which have good adhesion.
  • the ethylenically unsaturated silane compound (C) may be used alone or in a suitable mixture of two or more.
  • the resin composition of the present invention comprises 0.1 to 3 parts by weight of organic peroxide [Y] and 0.1 to 3 parts of ethylenically unsaturated silane compound (C) with respect to 100 parts by weight of copolymer [X].
  • a preferred embodiment contains 5 parts by weight. More preferably, the organic peroxide [Y] is 0.2 to 3 parts by weight and the ethylenically unsaturated silane compound (C) is 0.1 to 4 parts by weight with respect to 100 parts by weight of the copolymer [X]. More preferably, the organic peroxide [Y] is 0.2 to 2.5 parts by weight and the ethylenically unsaturated silane compound (C) is 0 with respect to 100 parts by weight of the copolymer [X].
  • the resin composition in the above range has good adhesion to glass and a good balance between the cost and performance of the resin composition. Further, when the sheet is formed, the surface of the sheet is not uneven due to the gel material generated in the extruder, and the appearance is improved. Moreover, even when a voltage is applied, no cracks occur and the dielectric breakdown resistance is improved. Furthermore, moisture permeability is less likely to occur. In addition, adhesion and adhesion to the glass, thin film electrode, and back sheet are also improved when the solar cell module is laminated.
  • the organic peroxide [Y] When the organic peroxide [Y] is less than 0.1 parts by weight, the crosslinking characteristics at the time of laminate molding of the solar cell module become insufficient, and the heat resistance and the glass adhesiveness are lowered.
  • the organic peroxide [Y] When the organic peroxide [Y] is more than 3 parts by weight, gelation occurs when a sheet or a solar cell encapsulant sheet is obtained from the resin composition with an extruder or the like, and the torque of the extruder is increased. Molding may be difficult. Even if a sheet is obtained, the gel material generated in the extruder may cause unevenness on the surface of the sheet, which may deteriorate the appearance. In addition, when a voltage is applied, cracks are generated around the gel within the sheet, and the dielectric breakdown resistance is reduced.
  • the resin composition of the present invention preferably contains at least one additive selected from an ultraviolet absorber (D), a light stabilizer (E) and a heat resistance stabilizer (F).
  • the amount of the additive is preferably 0.005 to 5 parts by weight with respect to 100 parts by weight of the copolymer [X].
  • the amount of the additive is within the above range, the effect of improving the resistance to high temperature and humidity, heat cycle resistance, weather resistance stability and heat stability is sufficiently ensured, and the transparency of the resin composition is ensured. And glass, a back sheet, a thin film electrode, and a decrease in adhesiveness with aluminum can be prevented, which is preferable.
  • ultraviolet absorber (D) examples include 2-hydroxy-4-normal-octyloxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2--2-dihydroxy-4-methoxybenzophenone, 2-hydroxy- Benzophenone series such as 4-methoxy-4-carboxybenzophenone, 2-hydroxy-4-n-octoxybenzophenone, 2- (2-hydroxy-3,5-di-t-butylphenyl) benzotriazole, 2- (2 Benzotrializoles such as -hydroxy-5-methylphenyl) benzotriazole and salicylic acid esters such as phenylsulcylate and p-octylphenylsulcylate are used.
  • Examples of the light stabilizer (E) include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, poly [ ⁇ 6- (1,1,3,3-tetramethylbutyl) amino-1 , 3,5-triazine-2,4-diyl ⁇ ⁇ (2,2,6,6-tetramethyl-4-piperidyl) imino ⁇ hexamethylene ⁇ (2,2,6,6-tetramethyl-4-piperidyl) ) Imino ⁇ ] and other hindered amine-based and hindered piperidine-based compounds are preferably used.
  • heat stabilizer (F) examples include tris (2,4-di-tert-butylphenyl) phosphite and bis [2,4-bis (1,1-dimethylethyl) -6-methylphenyl. ] Ethyl ester phosphorous acid, tetrakis (2,4-di-tert-butylphenyl) [1,1-biphenyl] -4,4'-diylbisphosphonite, and bis (2,4-di-tert -Butylphenyl) pentaerythritol diphosphite and other phosphite heat stabilizers, lactones such as the reaction product of 3-hydroxy-5,7-di-tert-butyl-furan-2-one and o-xylene Heat-resistant stabilizer, 3,3 ′, 3 ′′, 5,5 ′, 5 ′′ -hexa-tert-butyl-a, a ′, a ′′-
  • phosphite heat stabilizers and hindered phenol heat stabilizers are preferred.
  • the resin composition of the present invention can appropriately contain various components other than the components detailed above in a range not impairing the object of the present invention.
  • various polyolefins other than the copolymer [X] for example, ethylene / ⁇ -olefin copolymers having a density lower than 850 kg / m 3 , styrene or ethylene block copolymers, propylene (co) polymers
  • Examples include coalescence. These are not particularly limited as long as the effects of the present invention are exerted with respect to 100 parts by weight of the copolymer [X], but are usually 0.0001 to 50 parts by weight, preferably 0.001 to 40 parts by weight. Part.
  • various rubbers other than polyolefin, various rubbers, antioxidants, plasticizers, fillers, pigments, dyes, antistatic agents, antibacterial agents, antifungal agents, flame retardants, crosslinking aids (G), dispersants, etc.
  • One kind or two or more kinds of additives selected can be appropriately contained, but are not limited thereto.
  • the blending amount is 0.01 to 5 parts by weight with respect to 100 parts by weight of the copolymer [X], so that an appropriate crosslinking structure can be obtained. It is preferable because heat resistance, mechanical properties, and adhesiveness can be improved.
  • crosslinking aid (G) conventionally known ones generally used for olefin resins can be used.
  • Such a crosslinking aid (G) is a compound having two or more double bonds in the molecule, and specifically includes t-butyl acrylate, lauryl acrylate, cetyl acrylate, stearyl acrylate, 2-methoxyethyl.
  • Monoacrylate such as acrylate, ethyl carbitol acrylate, methoxytripropylene glycol acrylate, t-butyl methacrylate, lauryl methacrylate, cetyl methacrylate, stearyl methacrylate, methoxyethylene glycol methacrylate, monomethacrylate such as methoxypolyethylene glycol methacrylate, 1,4-butane Diol diacrylate, 1,6-hexanediol diacrylate, 1,9-nonanediol diacrylate, neopentyl glycol diacrylate Diacrylate, diethylene glycol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol diacrylate, tripropylene glycol diacrylate, polypropylene glycol diacrylate, etc., 1,3-butanediol dimethacrylate, 1,6-hexanediol dimethacrylate 1,9-nonanediol
  • the resin composition of the present invention can be produced by employing any known method. For example, a predetermined amount of copolymer [X] and, if necessary, a predetermined amount of organic peroxide [Y], an ethylenically unsaturated silane compound (C), an ultraviolet absorber (D), a light stabilizer. (E), heat stabilizer (F), etc.
  • a Henschel mixer, V-blender, ribbon blender, tumbler blender, or the like or after mixing, a single-screw extruder or a twin-screw extruder It can be produced by a method of granulating or pulverizing after melt-kneading usually at 60 to 140 ° C., preferably 80 to 120 ° C. with a kneader, Banbury mixer or the like.
  • Film or sheet comprising the resin composition according to the present invention [hereinafter sometimes referred to as “sheet”. ] Can be obtained by a known method, for example, melt extrusion molding or press molding of powders, granules and pellets obtained from the resin composition of the present invention.
  • the resin composition of the present invention a sheet comprising the resin composition, and a film or sheet obtained by crosslinking the sheet comprising the resin composition (hereinafter sometimes abbreviated as “crosslinked sheet”) are glass, back.
  • seat for solar cell sealing materials whose resin composition of this invention is a sheet form is also one of preferable embodiment of this invention.
  • seat containing the resin composition of this invention can also be used suitably for a solar cell sealing material.
  • the thickness of the layer of the film or sheet according to the present invention and the sheet for solar cell encapsulant is usually 0.01 to 2 mm, preferably 0.01 to 1.5 mm, more preferably 0.1 to 1.2 mm.
  • the thickness is 01 to 1 mm, more preferably 0.01 to 0.5 mm, more preferably 0.01 to 0.3 mm, and most preferably m 0.01 to 0.2 mm.
  • the thickness is within this range, damage to the glass, solar battery cell, thin film electrode, etc. in the laminating step can be suppressed, and a high amount of photovoltaic power can be obtained by ensuring sufficient light transmittance, And since it can laminate-mold the solar cell module at low temperature, it is preferable.
  • the extrusion temperature is usually 100 to 150 ° C.
  • the productivity of the sheet decreases.
  • the extrusion temperature exceeds 150 ° C.
  • gelation may occur when a sheet is obtained from the resin composition with an extruder or the like, and the torque of the extruder may increase to make sheet molding difficult. Even if a sheet is obtained, unevenness may occur on the surface of the sheet due to the gel generated in the extruder, and the appearance may deteriorate.
  • a voltage when a voltage is applied, cracks are generated around the gel within the sheet, and the dielectric breakdown resistance is reduced. Furthermore, moisture permeability at the gel object interface is likely to occur, and moisture permeability is reduced.
  • the surface of the sheet can be embossed, and the surface of this layer can be decorated by embossing to prevent blocking between the sealing sheets or between the sealing sheet and other sheets.
  • the embossing is preferable because it becomes a cushion for the solar cell element or the like at the time of laminating and prevents the breakage.
  • the sheet can be used as a solar cell encapsulant in a single wafer form cut to fit the solar cell module size or a roll form that can be cut to fit the size just before producing the solar cell module. .
  • the solar cell encapsulant which is a preferred embodiment of the present invention may have at least one layer composed of the solar cell encapsulant sheet of the present invention. Therefore, the number of layers of the solar cell encapsulant sheet of the present invention may be one, or two or more. From the viewpoint of simplifying the structure and reducing the cost, and from the viewpoint of effectively utilizing light by minimizing interface reflection between layers, a single layer is preferable.
  • the solar cell encapsulant which is a preferred embodiment of the present invention may be composed of only a layer composed of the sheet for solar cell encapsulant of the present invention, and contains the sheet for solar cell encapsulant of the present invention.
  • a layer other than the layer hereinafter also referred to as “other layer” may be included.
  • a hard coat layer As examples of other layers, if classified according to the purpose, a hard coat layer, an adhesive layer, an antireflection layer, a gas barrier layer, an antifouling layer and the like for protecting the front surface or the back surface can be provided.
  • layer made of UV curable resin layer made of thermosetting resin, layer made of polyolefin resin, layer made of carboxylic acid modified polyolefin resin, layer made of fluorine-containing resin, cyclic olefin (co)
  • a layer made of a polymer, a layer made of an inorganic compound, or the like can be provided.
  • the positional relationship between the layer made of the solar cell encapsulant sheet of the present invention and the other layers is not particularly limited, and a preferable layer configuration is appropriately selected depending on the purpose of the invention. That is, the other layer may be provided between two or more layers made of the solar cell encapsulant sheet of the present invention, or may be provided in the outermost layer of the solar cell encapsulant sheet. , It may be provided at other locations. Other layers may be provided only on one side of the layer made of the solar cell encapsulant sheet of the present invention, or other layers may be provided on both sides. There is no restriction
  • melt extrusion such as cast molding machine, extrusion sheet molding machine, etc.
  • a method of obtaining a laminate by co-extrusion using a machine, or a method of obtaining a laminate by melting or heating and laminating the other layer on one previously formed layer is preferred.
  • suitable adhesives for example, maleic anhydride-modified polyolefin resin (for example, Admer (registered trademark) manufactured by Mitsui Chemicals, Inc., Modic (registered trademark) manufactured by Mitsubishi Chemical), unsaturated polyolefin, etc.
  • Acrylic adhesives such as low (non-) crystalline soft polymers, ethylene / acrylic acid ester / maleic anhydride terpolymers (for example, Bondine (registered trademark) manufactured by Sumika Sea-Dief Chemical), ethylene / Vinyl acetate copolymer or adhesive resin composition containing these) may be laminated by a dry laminating method or a heat laminating method.
  • the adhesive one having a heat resistance of usually about 120 ° C.
  • a polyester-based or polyurethane-based adhesive is exemplified as a suitable one.
  • a silane coupling treatment, a titanium coupling treatment, a corona treatment, a plasma treatment, or the like may be used.
  • the sheet for solar cell encapsulant (non-crosslinked sheet) of the present invention has an internal haze of usually 60% or less when measured with a 0.5 mm thick sample obtained by extrusion sheet molding of the resin composition of the present invention. Preferably, it is desirable to be in the range of 50% or less.
  • the solar cell encapsulant sheet (non-crosslinked sheet) of the present invention has a light transmittance (wavelength of 400 to 700 nm) measured with a 0.3 mm thick sample obtained by extrusion sheet molding of the resin composition of the present invention. Is usually in the range of 85% or more, preferably in the range of 88% to 100%, more preferably in the range of 90 to 100%.
  • the solar cell encapsulant comprising the solar cell encapsulant sheet made of the resin composition of the present invention as a part thereof is obtained, for example, by taking 1 g of the encapsulant sheet sample from the solar cell module, and boiling xylene. Soxhlet extraction is performed for 10 hours, filtered through a 30 mesh stainless steel mesh, the mesh is dried under reduced pressure at 110 ° C. for 8 hours, and calculated from the residual amount on the mesh, the gel fraction is 70 to 95%, preferably Is in the range of 70-90%. When the gel fraction is less than 70%, the heat resistance of the solar cell encapsulant is insufficient, a constant temperature and humidity test at 85 ° C.
  • the solar cell encapsulant of the present invention and the solar cell encapsulant sheet which is a preferred embodiment of the present invention have excellent characteristics as described above. Therefore, the solar cell module obtained by using such a solar cell encapsulant or solar cell encapsulant sheet can utilize the effects of the present invention, and is one of the preferred embodiments of the present invention. is there.
  • the solar cell module examples include a crystalline solar cell module in which solar cell elements usually formed of polycrystalline silicon or the like are sandwiched and stacked between solar cell encapsulant sheets, and both front and back surfaces are covered with protective sheets. . That is, a typical solar cell module includes a solar cell module protective sheet (surface protective sheet) / solar cell encapsulant sheet / solar cell element / solar cell encapsulant sheet / solar cell module protective sheet (back surface protection). Sheet).
  • the solar cell module which is one of the preferred embodiments of the present invention is not limited to the above-described configuration, and a part of each of the above layers is appropriately omitted as long as the object of the present invention is not impaired. Layers other than the above can be provided as appropriate.
  • an adhesive layer a shock absorbing layer, a coating layer, an antireflection layer, a back surface rereflection layer, a light diffusion layer, and the like can be provided, but not limited thereto.
  • the layers can be provided at appropriate positions in consideration of the purpose of providing such layers and the characteristics of such layers.
  • a solar cell in which amorphous silicon formed by chemical vapor deposition (CVD) from silane gas is formed on a glass or film substrate with a thin silicon film of several ⁇ m, and an electrode such as silver is sputtered as necessary.
  • CVD chemical vapor deposition
  • a thin film (amorphous) solar cell module in which elements are covered in the order of a solar cell encapsulant sheet and a solar cell module protective sheet (back surface protective sheet) is also a preferred embodiment of the present invention.
  • solar cell modules using silicon for solar cells hybrid type (HIT type) solar cell modules in which crystalline silicon and amorphous silicon are laminated, and multiple silicon layers having different absorption wavelength ranges are laminated.
  • conventional pin Examples include a field effect solar cell module having a structure in which the role of an amorphous silicon p-type window layer having a junction structure is replaced with an inversion layer induced by a field effect from an insulated transparent electrode.
  • a GaAs-based solar battery module using single-crystal GaAs for solar cells and a light-absorbing layer material called a chalcopyrite system made of Cu, In, Ga, Al, Se, S, etc. instead of silicon CIS or CIGS (chalcopyrite) solar cell module using I-III-VI group compound as a solar cell, CdTe-CdS solar cell using a Cd compound thin film as a solar cell, Cu 2 ZnSnS 4 (CZTS) ) Solar cell module and the like.
  • the solar cell encapsulant or solar cell encapsulant sheet of the present invention can be suitably used for all these solar cell modules.
  • the solar cell module of the present invention is excellent in hygroscopicity, it can be suitably used as a thin-film solar cell module that is vulnerable to moisture penetration.
  • the surface protective sheet preferably used in the solar cell module which is a preferred embodiment of the present invention is not particularly limited, but is located on the outermost layer of the solar cell module, so that it has weather resistance, water repellency, stain resistance, and mechanical strength.
  • the solar cell module has performance for ensuring long-term reliability in outdoor exposure.
  • Examples of the material for the surface protective sheet suitably used for the solar cell module include a resin film made of a polyester resin, a fluorine resin, an acrylic resin, a cyclic olefin (co) polymer, an ethylene-vinyl acetate copolymer, glass, and the like. Examples include substrates.
  • the resin film is a polyester resin excellent in transparency, strength, cost, etc., particularly a polyethylene terephthalate resin.
  • a fluorine resin having particularly good weather resistance is also preferably used.
  • ethylene tetrafluoride-ethylene copolymer ETFE
  • polyvinyl fluoride resin PVDF
  • PVDF polyvinylidene fluoride resin
  • TFE polytetrafluoroethylene resin
  • FEP fluorinated propylene copolymer
  • CTFE poly (trifluorotrifluoroethylene resin)
  • Polyvinylidene fluoride resin is excellent from the viewpoint of weather resistance, but tetrafluoroethylene-ethylene copolymer is excellent from the viewpoint of both weather resistance and mechanical strength.
  • a corona treatment and a plasma treatment on the surface protective sheet in order to improve the adhesiveness with a material constituting another layer such as a layer made of a solar cell encapsulant sheet. It is also possible to use a sheet that has been subjected to stretching treatment for improving mechanical strength, for example, a biaxially stretched polypropylene sheet.
  • the total light transmittance of light having a wavelength of 350 to 1400 nm is preferably 80% or more, more preferably 90% or more.
  • a glass substrate it is common to use white plate glass with little absorption in the infrared part, but even blue plate glass has little influence on the output characteristics of the solar cell module if the thickness is 3 mm or less.
  • tempered glass can be obtained by heat treatment to increase the mechanical strength of the glass substrate, but float plate glass without heat treatment may be used.
  • an antireflection coating may be provided on the light receiving surface side of the glass substrate in order to suppress reflection.
  • a reinforcing plate may be attached to increase the mechanical strength of the solar cell module or to prevent distortion and warpage due to temperature change.
  • a steel plate, a plastic plate, an FRP (glass fiber reinforced plastic) plate or the like can be preferably used.
  • the solar cell element in the solar cell module which is a preferred embodiment of the present invention is not particularly limited as long as it can generate power using the photovoltaic effect of a semiconductor.
  • silicon single crystal system, polycrystalline system, Amorphous solar cells, compound semiconductor (Group 3-5, 2-6, etc.) solar cells, wet solar cells, organic semiconductor solar cells and the like can be used.
  • a polycrystalline silicon solar cell is preferable from the viewpoint of balance between power generation performance and cost.
  • both silicon and compound semiconductors have excellent characteristics as solar cell elements, but are known to be easily damaged by external stress, impact, and the like. Since the solar cell encapsulant sheet of the present invention is excellent in flexibility, it has a great effect of absorbing stress, impact, etc. on the solar cell element and preventing damage to the solar cell element. Therefore, in the solar cell module which is a preferred embodiment of the present invention, it is desirable that the layer made of the sheet for solar cell sealing material of the present invention is directly joined to the solar cell element.
  • the solar cell encapsulant sheet has thermoplasticity, it is possible to take out the solar cell element relatively easily even after the solar cell module is once manufactured. Are better. Since the essential component of the sheet
  • the sheet for solar cell encapsulant of the present invention is prepared in advance, and the laminating temperature is usually 120 to 170 ° C. by a conventional laminating method in which the sheet is pressure-bonded at a melting temperature.
  • the laminating temperature is usually 120 to 170 ° C. by a conventional laminating method in which the sheet is pressure-bonded at a melting temperature.
  • a module having the configuration described above can be formed.
  • the solar cell encapsulant sheet has excellent cross-linking properties by containing the organic peroxide [Y], and it is not necessary to go through a two-step bonding process in forming the module. It can be completed in a short time, and the module productivity can be remarkably improved.
  • the solar cell module which is a preferred embodiment of the present invention is excellent in productivity, power generation efficiency, life and the like. For this reason, the power generation equipment using such a solar cell module is excellent in cost, power generation efficiency, life, etc., and has a high practical value.
  • the power generation equipment described above is suitable for long-term use, whether outdoors or indoors, such as being installed on the roof of a house, used as a mobile power source for outdoor activities such as camping, or used as an auxiliary power source for automobile batteries.
  • i-PSt 0.686
  • [ ⁇ ] i-EPR 7.2 ⁇ 10 ⁇ 4 M i-EPR 0.667
  • Mw / Mn The molecular weight distribution
  • the gel permeation chromatography (GPC) method was measured as follows using a gel permeation chromatograph Alliance GPC-2000 manufactured by Waters.
  • the separation column has two TSKgel GNH6-HT and two TSKgel GNH6-HTL.
  • the column size is 7.5 mm in diameter and 300 mm in length, the column temperature is 140 ° C., and the mobile phase is Using o-dichlorobenzene (Wako Pure Chemical Industries, Ltd.) and 0.025% by weight of BHT (Takeda Pharmaceutical Co., Ltd.) as an antioxidant, the sample was transferred at 1.0 ml / min.
  • the amount of sample injection was 500 ⁇ l, and a differential refractometer was used as a detector.
  • Standard polystyrene used was made by Tosoh Corporation for molecular weights of Mw ⁇ 1000 and Mw> 4 ⁇ 10 6 , and that of Pressure Chemical Co. for 1000 ⁇ Mw ⁇ 4 ⁇ 10 6 .
  • ⁇ Double bond amount (unsaturated bond amount)> The amount of double bonds was determined by 1 H-NMR measurement of an ethylene / propylene / ⁇ -olefin copolymer (manufactured by JEOL Ltd., “ECX400P type nuclear magnetic resonance apparatus”).
  • vinyl type double bond (vinyl group), vinylidene type double bond (vinylidene group), disubstituted olefin type double bond and trisubstituted olefin type double bond are observed as signals derived from the double bond.
  • the amount of double bonds was quantified from the integrated intensity of each signal.
  • the main chain methylene signal of the ethylene / ⁇ -olefin copolymer was defined as a chemical shift standard (1.2 ppm).
  • the total amount of vinyl groups and vinylidene groups is determined as the amount of molecular terminal double bonds, and the total amount of disubstituted olefin type double bonds and trisubstituted olefin type double bonds is determined as the amount of internal unsaturated bonds. (Total unsaturated bond amount) was determined as the sum of each double bond. An analysis with 0.1 / 1000 C as the limit of quantification was performed, and when a signal was confirmed even in the case of less than 0.1 / 1000 C, a calibration curve was extrapolated to calculate the double bond amount.
  • the sample was cooled to ⁇ 40 ° C. and then increased to 200 ° C. at a temperature rising rate of 10 ° C./min.
  • ⁇ MFR> MFR was measured at 190 ° C. and 2.16 kg load according to ASTM D1238.
  • ⁇ Comonomer content (composition)> A JNM GX-400 NMR measuring apparatus manufactured by JEOL Ltd. was used. A 0.35 g sample is dissolved by heating in 2.0 ml of hexachlorobutadiene. This solution is filtered through a glass filter (G2), 0.5 ml of deuterated benzene is added, and the solution is placed in an NMR tube having an inner diameter of 10 mm, and 13 C-NMR measurement is performed at 120 ° C. The number of integration is 8000 times or more. From the obtained 13 C-NMR spectrum, the ethylene content (mol%), propylene content (mol%) and ⁇ -olefin content (mol%) in the copolymer were quantified.
  • Production Examples 1 to 5 which are production examples of the ethylene / propylene / ⁇ -olefin copolymer according to the present invention are shown below.
  • the opening degree of the liquid level control valve is adjusted so that the produced hexane solution of ethylene / propylene / 1-octene copolymer maintains the amount of solution in the polymerization vessel of 20 L through the outlet provided in the side wall of the polymerization vessel. It discharged continuously while adjusting.
  • the obtained hexane solution of ethylene / propylene / 1-octene copolymer was introduced into a heater and heated to 180 ° C., and 3 mL of methanol was added every hour as a catalyst deactivator to stop the polymerization, and the pressure was reduced.
  • An ethylene / propylene / 1-octene copolymer (copolymer A) was obtained by continuously transferring to a devolatilization step and drying. The physical properties are shown in Table 1.
  • Production Examples 6 to 14 are shown below as production examples of the ethylene / propylene / ⁇ -olefin copolymer used as a comparative example of the present invention.
  • Exact (registered trademark) 5361 (manufactured by ExxonMobil Chemical Co., Ltd.) was used as the ethylene / 1-octene copolymer.
  • the physical properties are shown in Table 2-2.
  • Examples 2 and 5 and Comparative Examples 1 to 10 Except that the ethylene / propylene / 1-octene copolymer (copolymer A) described in Example 1 was changed to the copolymers described in Tables 1 and 2, the thickness was the same as in Example 1. A 0.5 mm sheet and a 0.05 mm thick film were prepared.
  • Example 4 The ethylene / propylene / 1-octene copolymer (copolymer A) described in Example 1 was replaced with the copolymer described in Table 1 in the same manner as in Example 1 except that the thickness was 0.5 mm. A sheet and a film having a thickness of 0.05 mm were prepared.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Photovoltaic Devices (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

The purpose of the present invention is to obtain: a film or sheet which has high transparency, excellent impact resistance (low density) and high strength and is suitable for a solar cell sealing material; a solar cell sealing material comprising the sheet; and a solar cell module comprising the solar cell sealing material. The present invention pertains to a film or sheet containing an ethylene-propylene-α-olefin copolymer [X] which comprises ethylene, propylene and a C5-C20 α-olefin and satisfies the requirement (x-1): a constituent unit (i) derived from ethylene is contained in an amount of 74-92 mol%, a constituent unit (ii) derived from propylene is contained in an amount of 5-16 mol%, and a constituent unit (iii) derived from the C5-C20 α-olefin is contained in an amount of 3-10 mol% (the total amount of the constituent units (i), (ii) and (iii) is 100 mol%.)

Description

樹脂組成物、シート、太陽電池封止材、太陽電池モジュール、太陽電池封止材用シートの製造方法Resin composition, sheet, solar cell encapsulant, solar cell module, method for producing solar cell encapsulant sheet

 本発明は、樹脂組成物、シート、特に太陽電池封止材に好適な樹脂組成物およびシートに関する。 The present invention relates to a resin composition and a sheet, and particularly to a resin composition and a sheet suitable for a solar cell encapsulant.

 クリーンでかつ枯渇のおそれが無いエネルギー源として、太陽電池が注目されている。太陽電池を建物の屋根部分等の屋外で使用する場合、太陽電池モジュールの形で使用することが一般的である。 Solar cells are attracting attention as an energy source that is clean and has no risk of exhaustion. When a solar cell is used outdoors such as a roof portion of a building, it is generally used in the form of a solar cell module.

 太陽電池モジュールは、一般にシリコン、ガリウム-砒素、銅-インジウム-セレンなどの太陽電池素子の両面を太陽電池封止材で保護し、該封止材を上部透明保護材と下部基板保護材とで保護し、パッケージ化したものである。このため太陽電池封止材としては、発電効率を高めるためにも、高い透明性が求められている。さらに、太陽電池モジュールは、使用時の温度上昇に伴い、封止材の流動や変形を生じることがあるため耐熱性を有することも要求され、近年では、太陽電池素子の薄肉化に伴い、一層の柔軟性に優れた封止材も求められている。 A solar cell module generally protects both sides of a solar cell element such as silicon, gallium-arsenic, copper-indium-selenium with a solar cell encapsulant, and the encapsulant is composed of an upper transparent protective material and a lower substrate protective material. Protected and packaged. For this reason, as a solar cell sealing material, high transparency is calculated | required also in order to improve electric power generation efficiency. Furthermore, the solar cell module is also required to have heat resistance because the encapsulant may flow and deform as the temperature rises during use. In recent years, as the solar cell element becomes thinner, There is also a need for a sealing material with excellent flexibility.

 特許文献1では、太陽電池封止材として、エチレン・α-オレフィン系共重合体を含む樹脂組成物の使用が検討されている。そして、特許文献1の実施例では、エチレン・1-ブテン共重合体およびエチレン・1-オクテン共重合体が記載されている。 Patent Document 1 discusses the use of a resin composition containing an ethylene / α-olefin copolymer as a solar cell sealing material. In Examples of Patent Document 1, an ethylene / 1-butene copolymer and an ethylene / 1-octene copolymer are described.

 なお、特許文献1では、透明性を向上させるため、低密度のエチレン・α-オレフィン系共重合体が使用されている。 In Patent Document 1, a low-density ethylene / α-olefin copolymer is used to improve transparency.

 特許文献2では、太陽電池封止材として、エチレン・α-オレフィン系共重合体とエチレン-官能基含有モノマー共重合体とを含む樹脂組成物の使用が検討されている。特許文献2の実施例にはエチレン・プロピレン・1-ヘキセン三元共重合体が記載されている。 Patent Document 2 discusses the use of a resin composition containing an ethylene / α-olefin copolymer and an ethylene-functional group-containing monomer copolymer as a solar cell encapsulant. In the example of Patent Document 2, an ethylene / propylene / 1-hexene terpolymer is described.

特開2011-12246号公報JP 2011-12246 A WO2012/002264号公報WO2012 / 002264

 近年、太陽電池モジュールでは高い耐久性がより求められるようになり、そのためにより高いガラス密着強度の向上が求められている。しかしながら、特許文献1に記載されている低密度のエチレン・α-オレフィン系共重合体は機械強度が低いため、良好なガラス密着強度が得られないことが判明した。 In recent years, high durability has been increasingly demanded for solar cell modules, and therefore, higher glass adhesion strength has been demanded. However, it has been found that the low-density ethylene / α-olefin copolymer described in Patent Document 1 has a low mechanical strength, so that a good glass adhesion strength cannot be obtained.

 また、特許文献2に記載の組成物では、重合体の分子中の二重結合量が多いため、成形時にフィッシュアイが多くなり、成形品の歩留りが低下する。高圧法で得られたエチレン・α-オレフィン系共重合体は二重結合を多く含むため、成形時にフィッシュアイが多くなり、歩留り低下を起こすことが判明した。 Further, in the composition described in Patent Document 2, since the amount of double bonds in the polymer molecule is large, fish eyes increase during molding, and the yield of the molded product decreases. It has been found that the ethylene / α-olefin copolymer obtained by the high-pressure method contains a lot of double bonds, so that the fish eye increases during molding and the yield decreases.

 本発明の課題は、上記問題点に鑑みて、高い透明性、優れた耐衝撃性(低密度)および高強度を有する太陽電池封止材を好適に得ることができる樹脂組成物、該組成物を含むシート、該シートを含む太陽電池封止材および該太陽電池封止材を含む太陽電池モジュールを提供することである。また、太陽電池封止材に好適なシートの製造方法を提供することである。 In view of the above problems, an object of the present invention is to provide a resin composition capable of suitably obtaining a solar cell encapsulant having high transparency, excellent impact resistance (low density), and high strength, and the composition The sheet | seat containing this, the solar cell sealing material containing this sheet | seat, and the solar cell module containing this solar cell sealing material. Moreover, it is providing the manufacturing method of a sheet | seat suitable for a solar cell sealing material.

 本発明者らは上記課題を解決するために鋭意検討を重ねた結果、特定の組成を満たすエチレン・プロピレン・α-オレフィン系共重合体[X]が高い機械強度を有し、該共重合体[X]を含む樹脂組成物を用いることで、高い透明性、優れた耐衝撃性および高強度を有する太陽電池封止材を好適に得ることができることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have found that an ethylene / propylene / α-olefin copolymer [X] satisfying a specific composition has high mechanical strength, and the copolymer It has been found that by using a resin composition containing [X], a solar cell encapsulant having high transparency, excellent impact resistance and high strength can be suitably obtained, and the present invention has been completed. .

 本発明は、下記の要件(x-1)を満たすエチレン・プロピレン・α-オレフィン系共重合体[X]を含有する、フィルムまたはシートに係る。 The present invention relates to a film or sheet containing an ethylene / propylene / α-olefin copolymer [X] that satisfies the following requirement (x-1).

 (x-1)エチレンに由来する構成単位(i)を74~92モル%、プロピレンに由来する構造単位(ii)を5~16モル%、かつ、炭素数5以上20以下のα-オレフィンに由来する構造単位(iii)を3~10モル%含む〔ただし、構成単位(i)、(ii)および(iii)の合計を100モル%とする。〕。 (X-1) an α-olefin having 74 to 92 mol% of the structural unit (i) derived from ethylene, 5 to 16 mol% of the structural unit (ii) derived from propylene, and having 5 to 20 carbon atoms. The derived structural unit (iii) is contained in an amount of 3 to 10 mol% [provided that the total of the structural units (i), (ii) and (iii) is 100 mol%. ].

 本発明のエチレン・プロピレン・α-オレフィン系共重合体[X]を含有するフィルムまたはシートは高い透明性、優れた耐熱性機械強度および良好な柔軟性を有するので、特に太陽電池封止材、および該太陽電池封止材を含んでなる太陽電池モジュールを好適に得ることができる。 Since the film or sheet containing the ethylene / propylene / α-olefin copolymer [X] of the present invention has high transparency, excellent heat-resistant mechanical strength, and good flexibility, a solar cell encapsulant, And the solar cell module containing this solar cell sealing material can be obtained suitably.

 〔樹脂組成物〕
 本発明の樹脂組成物は、特定の要件を満たすエチレン・プロピレン・α-オレフィン系共重合体[X]を含む。該樹脂組成物は、該共重合体[X]および有機過酸化物[Y]を特定量で含むことが好ましい。
(Resin composition)
The resin composition of the present invention contains an ethylene / propylene / α-olefin copolymer [X] that satisfies specific requirements. The resin composition preferably contains the copolymer [X] and the organic peroxide [Y] in specific amounts.

 〔エチレン・プロピレン・α-オレフィン共重合体[X]〕
 本発明に係るエチレン・プロピレン・α-オレフィン共重合体[X]〔以下、「共重合体[X]」と略称する場合がある。〕は、エチレン、プロピレン、および炭素数5以上20以下のα-オレフィンとの共重合体であり、且つ、下記要件(x-1)を満たす共重合体である。
[Ethylene / propylene / α-olefin copolymer [X]]
The ethylene / propylene / α-olefin copolymer [X] [hereinafter referred to as “copolymer [X]” in some cases. ] Is a copolymer of ethylene, propylene, and an α-olefin having 5 to 20 carbon atoms and satisfying the following requirement (x-1).

 (x-1)エチレンに由来する構成単位(i)を74~92モル%、好ましくは76~90モル%、プロピレンに由来する構造単位(ii)を5~16モル%、好ましくは7~16モル%、より好ましくは7~15モル%、さらに好ましくは7~14モル%、且つ、炭素数5以上20以下のα-オレフィンに由来する構造単位(iii)を3~10モル%、好ましくは3~8モル%、より好ましくは4~8モル%、さらに好ましくは5~8モル%、含む(ただし、構成単位(i)、(ii)および(iii)の合計を100モル%とする)。 (X-1) 74 to 92 mol%, preferably 76 to 90 mol% of the structural unit (i) derived from ethylene, and 5 to 16 mol%, preferably 7 to 16 mol of the structural unit (ii) derived from propylene. 3 to 10 mol%, preferably 3 to 10 mol% of structural units (iii) derived from an α-olefin having 5 to 20 carbon atoms and more preferably 7 to 15 mol%, more preferably 7 to 14 mol% and more preferably 7 to 14 mol%, 3 to 8 mol%, more preferably 4 to 8 mol%, still more preferably 5 to 8 mol% (provided that the total of structural units (i), (ii) and (iii) is 100 mol%) .

 本発明に係るエチレン・プロピレン・α-オレフィン共重合体[X]は、エチレンに由来する構成単位、プロピレンに由来する構造単位および炭素数5以上20以下のα-オレフィンに由来する構造単位を上記範囲で含むことにより、高い透明性、優れた機械強度および良好な柔軟性を有するフィルムまたはシートを得ることができる。 The ethylene / propylene / α-olefin copolymer [X] according to the present invention includes a structural unit derived from ethylene, a structural unit derived from propylene, and a structural unit derived from an α-olefin having 5 to 20 carbon atoms. By including in a range, a film or sheet having high transparency, excellent mechanical strength, and good flexibility can be obtained.

 本発明に係るエチレン・プロピレン・α-オレフィン共重合体[X]を構成する炭素数5以上20以下のα-オレフィンとしては、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-エイコセンなどが挙げられる。これらの中でも1-ヘキセン、4-メチル-1-ペンテンおよび1-オクテンが好ましい。 Examples of the α-olefin having 5 to 20 carbon atoms constituting the ethylene / propylene / α-olefin copolymer [X] according to the present invention include 1-pentene, 3-methyl-1-butene, 1-hexene, 4 -Methyl-1-pentene, 3-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-eicosene and the like. Of these, 1-hexene, 4-methyl-1-pentene and 1-octene are preferred.

 本発明に係る共重合体[X]を構成するα-オレフィンの種類は、共重合体[X]を製造する際のα-オレフィンの種類により明確である。α-オレフィンの含有量は、実施例に記載の方法を用いて定量できる。 The type of α-olefin constituting the copolymer [X] according to the present invention is clear depending on the type of α-olefin used in the production of the copolymer [X]. The α-olefin content can be quantified using the method described in the Examples.

 本発明に係るエチレン・プロピレン・α-オレフィン共重合体[X]は、好ましくは、下記要件(x-2)および(x-3)を有する。 The ethylene / propylene / α-olefin copolymer [X] according to the present invention preferably has the following requirements (x-2) and (x-3).

 (x-2)密度
 本発明に係る共重合体[X]の密度の下限は、850kg/m3、好ましくは855kg/m3である。密度の上限は、900kg/m3、好ましくは895kg/m3、より好ましくは890kg/m3である。共重合体[X]の密度は、ASTM D1505により23℃で測定される値である。密度の値は、共重合体[X]中のコモノマーの種類や含有率を選択することにより、調整することが可能である。
The lower limit of the density of the (x-2) according to the density present invention copolymer [X] is, 850kg / m 3, preferably 855kg / m 3. The upper limit of the density is 900 kg / m 3 , preferably 895 kg / m 3 , more preferably 890 kg / m 3 . The density of the copolymer [X] is a value measured at 23 ° C. according to ASTM D1505. The density value can be adjusted by selecting the type and content of the comonomer in the copolymer [X].

 密度が前記範囲にある共重合体[X]を用いることで、より透明性に優れるフィルムまたはシートを得ることができる。 By using the copolymer [X] having a density in the above range, a film or sheet having better transparency can be obtained.

 (x-3)メルトフローレート(MFR)
 本発明に係る共重合体[X]の、MFRは、190℃、2.16kg荷重でのメルトフローレート(MFR、ASTM D1238)が、好ましくは0.1~50g/10分、より好ましくは0.1~40g/10分、さらに好ましくは0.1~30g/10分の範囲にある。MFRが上記範囲にある共重合体[X]を用いることで、成形性と機械強度のバランスに優れるフィルムまたはシートを得ることができる。
(X-3) Melt flow rate (MFR)
The MFR of the copolymer [X] according to the present invention has a melt flow rate (MFR, ASTM D1238) at 190 ° C. and a load of 2.16 kg, preferably 0.1 to 50 g / 10 min, more preferably 0. .1 to 40 g / 10 min, more preferably 0.1 to 30 g / 10 min. By using the copolymer [X] having an MFR in the above range, a film or sheet having an excellent balance between moldability and mechanical strength can be obtained.

 本発明に係るエチレン・プロピレン・α-オレフィン共重合体[X]は、好ましくは、さらに下記要件(x-4)および要件(x-5)を有する。 The ethylene / propylene / α-olefin copolymer [X] according to the present invention preferably further has the following requirement (x-4) and requirement (x-5).

 (x-4)分子量分布(Mw/Mn)
 本発明に係る共重合体[X]は、重量平均分子量(Mw)と数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)が、好ましくは3.0以下であり、より好ましくは2.5以下である。MwおよびMnは、ゲルパーミエイションクロマトグラフィー(GPC)法で測定される、EPR換算の値である。EPR換算については、実施例に記載のとおりである。Mw/Mnが前記範囲にある共重合体[X]は、耐ブロッキング性の点で好ましい。
(X-4) Molecular weight distribution (Mw / Mn)
The copolymer [X] according to the present invention has a molecular weight distribution (Mw / Mn) represented by a ratio of the weight average molecular weight (Mw) and the number average molecular weight (Mn), preferably 3.0 or less, More preferably, it is 2.5 or less. Mw and Mn are EPR converted values measured by gel permeation chromatography (GPC). The EPR conversion is as described in the examples. The copolymer [X] having Mw / Mn in the above range is preferable in terms of blocking resistance.

 (x-5)重量平均分子量(Mw)
 共重合体[X]の重量平均分子量(Mw)(EPR換算)は、本発明の効果を奏する限り特に限定されないが、好ましくは10000以上、より好ましくは20000以上、さらに好ましくは30000以上である。
(X-5) Weight average molecular weight (Mw)
The weight average molecular weight (Mw) (EPR conversion) of the copolymer [X] is not particularly limited as long as the effect of the present invention is exhibited, but is preferably 10,000 or more, more preferably 20000 or more, and further preferably 30000 or more.

 本発明に係るエチレン・プロピレン・α-オレフィン共重合体[X]はさらに好ましくは、下記要件(x-6)を有する。 The ethylene / propylene / α-olefin copolymer [X] according to the present invention more preferably has the following requirement (x-6).

 (x-6)不飽和結合量
 共重合体[X]中に含まれうる不飽和結合としては、以下に記載のビニル型二重結合、ビニリデン型二重結合、2置換オレフィン型二重結合および3置換オレフィン型二重結合が挙げられる。これらの不飽和結合の含有量は、1H-NMRにより求めることができる。
(X-6) Unsaturated bond amount Unsaturated bonds that can be included in the copolymer [X] include the following vinyl type double bonds, vinylidene type double bonds, disubstituted olefin type double bonds and A trisubstituted olefin type double bond is mentioned. The content of these unsaturated bonds can be determined by 1 H-NMR.

Figure JPOXMLDOC01-appb-C000001
 各式中、*は水素原子以外の原子との結合手を示す。
Figure JPOXMLDOC01-appb-C000001
In each formula, * indicates a bond with an atom other than a hydrogen atom.

 共重合体[X]は、1H-NMR測定により求められる炭素数1000個あたりの、ビニル型二重結合(ビニル基)およびビニリデン型二重結合(ビニリデン基)(本発明において、これらの二重結合を併せて分子末端二重結合とも称す)、2置換オレフィン型二重結合および3置換オレフィン型二重結合(本発明において、これらの二重結合を併せて分子内部二重結合とも称す)の合計含有量が、通常0.40個未満であり、好ましくは0.38個未満であり、より好ましくは0.35個未満である。共重合体[X]の分子末端二重結合および分子内部二重結合の含有量が上記範囲にあることで、フィルム・シート成膜時のフィッシュアイ生成を低減でき、高い歩留りを有する。該共重合体[X]を用いることで、優れた機械強度を有するシートまたは太陽電池封止材用シートを好適に得ることができる。 The copolymer [X] has a vinyl type double bond (vinyl group) and a vinylidene type double bond (vinylidene group) per 1000 carbon atoms determined by 1 H-NMR measurement. A double bond is also referred to as a molecular terminal double bond), a disubstituted olefin type double bond, and a trisubstituted olefin type double bond (in the present invention, these double bonds are also referred to as internal molecular double bonds). The total content of is usually less than 0.40, preferably less than 0.38, and more preferably less than 0.35. When the content of the molecular terminal double bond and the internal double bond in the copolymer [X] is in the above range, the generation of fish eyes during film / sheet formation can be reduced, and the yield is high. By using the copolymer [X], a sheet having excellent mechanical strength or a sheet for solar cell encapsulating material can be suitably obtained.

 Mwが前記範囲にある共重合体[X]は、良好なフィルム・シート成形性と機械強度のバランスを有する。 The copolymer [X] having Mw in the above range has a good balance between film / sheet moldability and mechanical strength.

 密度およびMwが前記範囲にある共重合体[X]を用いることで、高い透明性と良好なフィルム・シート成形性を得ることができる。 High transparency and good film / sheet moldability can be obtained by using the copolymer [X] having a density and Mw within the above ranges.

 〈エチレン・プロピレン・α-オレフィン共重合体[X]の製造方法〉
 本発明に係るエチレン・プロピレン・α-オレフィン共重合体[X]は、上述した特性を有する限り、その製造方法は何ら限定されるものではない。例えば、触媒成分〔A〕および〔B〕を含有するオレフィン重合用触媒の存在下に、エチレン、プロピレンおよび炭素数5以上20以下のα-オレフィンを共重合することにより、共重合体[X]を製造することができる。
<Method for producing ethylene / propylene / α-olefin copolymer [X]>
The production method of the ethylene / propylene / α-olefin copolymer [X] according to the present invention is not limited as long as it has the above-described properties. For example, copolymer [X] is obtained by copolymerizing ethylene, propylene and an α-olefin having 5 to 20 carbon atoms in the presence of an olefin polymerization catalyst containing catalyst components [A] and [B]. Can be manufactured.

 <触媒成分〔A〕>
 触媒成分〔A〕は、一般式[I]で表されるメタロセン化合物である。
<Catalyst component [A]>
The catalyst component [A] is a metallocene compound represented by the general formula [I].

Figure JPOXMLDOC01-appb-C000002
 式[I]中、Mは遷移金属であり、pは遷移金属の原子価を表し、Xは、同一でも異なっていてもよく、それぞれ独立に水素原子、ハロゲン原子または炭化水素基であり、R1およびR2はそれぞれ独立にMに配位したπ電子共役配位子である。
Figure JPOXMLDOC01-appb-C000002
In the formula [I], M is a transition metal, p represents the valence of the transition metal, X may be the same or different, and each independently represents a hydrogen atom, a halogen atom or a hydrocarbon group, and R 1 and R 2 are each independently a π-electron conjugated ligand coordinated to M.

 Mで表される遷移金属としては、例えば、Zr、Ti、Hf、V、Nb、TaおよびCrが挙げられ、好ましい遷移金属はZr、TiまたはHfであり、さらに好ましい遷移金属はZrまたはHfである。 Examples of the transition metal represented by M include Zr, Ti, Hf, V, Nb, Ta, and Cr. Preferred transition metals are Zr, Ti, or Hf, and more preferred transition metals are Zr or Hf. is there.

 R1およびR2で表されるπ電子共役配位子としては、例えば、η-シクロペンタジエニル構造、η-ベンゼン構造、η-シクロヘプタトリエニル構造、η-シクロオクタテトラエン構造を有する配位子が挙げられ、特に好ましい配位子はη-シクロペンタジエニル構造を有する配位子である。η-シクロペンタジエニル構造を有する配位子として、例えば、シクロペンタジエニル基、インデニル基、水素化インデニル基、フルオレニル基が挙げられる。これらの基は、ハロゲン原子;アルキル、アリール、アラルキル等の炭化水素基;アルコキシ基、アリールオキシ基等の酸素原子含有基;トリアルキルシリル基等の炭化水素基含有シリル基などでさらに置換されていてもよい。 Examples of the π-electron conjugated ligand represented by R 1 and R 2 include a η-cyclopentadienyl structure, η-benzene structure, η-cycloheptatrienyl structure, and η-cyclooctatetraene structure. And a particularly preferred ligand is a ligand having a η-cyclopentadienyl structure. Examples of the ligand having an η-cyclopentadienyl structure include a cyclopentadienyl group, an indenyl group, a hydrogenated indenyl group, and a fluorenyl group. These groups are further substituted with halogen atoms; hydrocarbon groups such as alkyl, aryl and aralkyl; oxygen atom-containing groups such as alkoxy groups and aryloxy groups; hydrocarbon-containing silyl groups such as trialkylsilyl groups, and the like. May be.

 触媒成分〔A〕としては、例えばビス(1,3-ジメチルシクロペンタジエニル)ジルコニウムジクロリドが挙げられるが、前記化合物に限定されるものではない。このような触媒成分〔A〕は、触媒成分〔B〕とともにオレフィン重合用触媒として用いることが好ましい。 Examples of the catalyst component [A] include bis (1,3-dimethylcyclopentadienyl) zirconium dichloride, but are not limited to the above compounds. Such a catalyst component [A] is preferably used as a catalyst for olefin polymerization together with the catalyst component [B].

 <触媒成分〔B〕>
 触媒成分〔B〕は、(b-1)有機アルミニウムオキシ化合物、(b-2)触媒成分〔A〕と反応してイオン対を形成する化合物、および(b-3)有機アルミニウム化合物から選ばれる少なくとも1種の化合物である。
<Catalyst component [B]>
The catalyst component [B] is selected from (b-1) an organoaluminum oxy compound, (b-2) a compound that reacts with the catalyst component [A] to form an ion pair, and (b-3) an organoaluminum compound. At least one compound.

 触媒成分〔B〕は、重合活性と生成オレフィン重合体との性状の視点から、
[1]有機アルミニウムオキシ化合物(b-1)のみ、
[2]有機アルミニウムオキシ化合物(b-1)と有機アルミニウム化合物(b-3)、
[3]前記化合物(b-2)と有機アルミニウム化合物(b-3)、
[4]有機アルミニウムオキシ化合物(b-1)と前記化合物(b-2)のいずれかの態様で好ましく用いられる。
From the viewpoint of the properties of the polymerization activity and the produced olefin polymer, the catalyst component [B]
[1] Only organoaluminum oxy compound (b-1),
[2] Organoaluminum oxy compound (b-1) and organoaluminum compound (b-3),
[3] Compound (b-2) and organoaluminum compound (b-3),
[4] It is preferably used in any embodiment of the organoaluminum oxy compound (b-1) and the compound (b-2).

 《有機アルミニウムオキシ化合物(b-1)》
 有機アルミニウムオキシ化合物(b-1)としては、従来公知のアルミノキサンをそのまま使用することができる。具体的には、一般式[II]および/または一般式[III]で表される化合物が挙げられる。
<< Organic aluminum oxy compound (b-1) >>
As the organoaluminum oxy compound (b-1), a conventionally known aluminoxane can be used as it is. Specifically, the compound represented by general formula [II] and / or general formula [III] is mentioned.

Figure JPOXMLDOC01-appb-C000003
 式[II]または[III]中、Rは炭素数1~10の炭化水素基であり、nは2以上の整数である。特にRがメチル基であるメチルアルミノキサンでnが3以上、好ましくは10以上のものが好適に利用される。式[II]または[III]においてRがメチル基である有機アルミニウムオキシ化合物を、以下「メチルアルミノキサン」と呼ぶ場合がある。
Figure JPOXMLDOC01-appb-C000003
In the formula [II] or [III], R is a hydrocarbon group having 1 to 10 carbon atoms, and n is an integer of 2 or more. In particular, methylaluminoxane in which R is a methyl group and n is 3 or more, preferably 10 or more, is suitably used. In the formula [II] or [III], the organoaluminum oxy compound in which R is a methyl group may be hereinafter referred to as “methylaluminoxane”.

 有機アルミニウムオキシ化合物(b-1)としては、飽和炭化水素に溶解するメチルアルミノキサン類縁体を用いることも好ましく、例えば、一般式[IV]のような修飾メチルアルミノキサンを例示することができる。 As the organoaluminum oxy compound (b-1), it is also preferable to use a methylaluminoxane analogue that dissolves in a saturated hydrocarbon, and examples thereof include a modified methylaluminoxane represented by the general formula [IV].

Figure JPOXMLDOC01-appb-C000004
 式[IV]中、Rは炭素数2~20の炭化水素基であり、m、nは2以上の整数である。
Figure JPOXMLDOC01-appb-C000004
In the formula [IV], R is a hydrocarbon group having 2 to 20 carbon atoms, and m and n are integers of 2 or more.

 式[IV]で表される修飾メチルアルミノキサンは、例えば、トリメチルアルミニウムとトリメチルアルミニウム以外のアルキルアルミニウムを用いて調製され、東ソー・ファインケム社等メーカーからトリメチルアルミニウムとトリイソブチルアルミニウムを用いて調製された、Rがイソブチル基であるものがMMAO、TMAOといった商品名で商業生産されている。 The modified methylaluminoxane represented by the formula [IV] is prepared using, for example, trimethylaluminum and an alkylaluminum other than trimethylaluminum, and prepared using a trimethylaluminum and triisobutylaluminum from a manufacturer such as Tosoh Finechem, Those in which R is an isobutyl group are commercially produced under trade names such as MMAO and TMAO.

 有機アルミニウムオキシ化合物(b-1)としては、特開平2-78687号公報に例示されているベンゼン不溶性の有機アルミニウムオキシ化合物を用いてもよく、一般式[V]で表されるボロンを含んだ有機アルミニウムオキシ化合物を用いてもよい。 As the organoaluminum oxy compound (b-1), a benzene insoluble organoaluminum oxy compound exemplified in JP-A-2-78687 may be used, which contains boron represented by the general formula [V]. An organoaluminum oxy compound may be used.

Figure JPOXMLDOC01-appb-C000005
 式[V]中、Rcは炭素数が1~10の炭化水素基であり、Rdは、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子または炭素数が1~10の炭化水素基である。
Figure JPOXMLDOC01-appb-C000005
In the formula [V], R c is a hydrocarbon group having 1 to 10 carbon atoms, R d may be the same or different from each other, and is a hydrogen atom, a halogen atom or a hydrocarbon having 1 to 10 carbon atoms. It is a group.

 有機アルミニウムオキシ化合物(b-1)は1種単独で用いてもよく、2種以上併用してもよい。なお、有機アルミニウムオキシ化合物(b-1)中には、若干の有機アルミニウム化合物が混入していても差し支えない。 The organoaluminum oxy compound (b-1) may be used alone or in combination of two or more. Note that a slight amount of organoaluminum compound may be mixed in the organoaluminum oxy compound (b-1).

 《触媒成分〔A〕と反応してイオン対を形成する化合物(b-2)》
 触媒成分〔A〕と反応してイオン対を形成する化合物(b-2)(以下「イオン性化合物(b-2)」と略称する場合がある。)としては、特開平1-501950号公報、特開平1-502036号公報、特開平3-179005号公報、特開平3-179006号公報、特開平3-207703号公報、特開平3-207704号公報、USP5321106号などに記載されたルイス酸、イオン性化合物、ボラン化合物およびカルボラン化合物などを挙げることができる。さらに、イオン性化合物(b-2)としては、ヘテロポリ化合物およびイソポリ化合物も挙げることができる。
<< Compound capable of reacting with catalyst component [A] to form ion pair (b-2) >>
JP-A-1-501950 discloses a compound (b-2) that reacts with the catalyst component [A] to form an ion pair (hereinafter sometimes abbreviated as “ionic compound (b-2)”). Lewis acids described in JP-A-1-502036, JP-A-3-17905, JP-A-3-179006, JP-A-3-207703, JP-A-3-207704, USP5321106, etc. , Ionic compounds, borane compounds and carborane compounds. Furthermore, examples of the ionic compound (b-2) include heteropoly compounds and isopoly compounds.

 イオン性化合物(b-2)は、一般式[VI]で表される化合物が好ましい。 The ionic compound (b-2) is preferably a compound represented by the general formula [VI].

Figure JPOXMLDOC01-appb-C000006
 式[VI]中、Re+としては、例えば、H+、カルベニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプチルトリエニルカチオン、遷移金属を有するフェロセニウムカチオンが挙げられる。Rf~Riは、互いに同一でも異なっていてもよく、有機基、好ましくはアリール基である。
Figure JPOXMLDOC01-appb-C000006
In the formula [VI], examples of R e + include H + , carbenium cation, oxonium cation, ammonium cation, phosphonium cation, cycloheptyltrienyl cation, and ferrocenium cation having a transition metal. R f to R i may be the same as or different from each other, and are organic groups, preferably aryl groups.

 カルベニウムカチオンとして具体的には、トリフェニルカルベニウムカチオン、トリス(メチルフェニル)カルベニウムカチオン、トリス(ジメチルフェニル)カルベニウムカチオン等の三置換カルベニウムカチオンが挙げられる。 Specific examples of the carbenium cation include trisubstituted carbenium cations such as triphenylcarbenium cation, tris (methylphenyl) carbenium cation, and tris (dimethylphenyl) carbenium cation.

 アンモニウムカチオンとして具体的には、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリ(n-プロピル)アンモニウムカチオン、トリイソプロピルアンモニウムカチオン、トリ(n-ブチル)アンモニウムカチオン、トリイソブチルアンモニウムカチオン等のトリアルキルアンモニウムカチオン、N, N-ジメチルアニリニウムカチオン、N, N-ジエチルアニリニウムカチオン、N, N-2,4,6-ペンタメチルアニリニウムカチオン等のN, N-ジアルキルアニリニウムカチオン、ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオンが挙げられる。 Specific examples of ammonium cations include trialkylammonium cations, triethylammonium cations, tri (n-propyl) ammonium cations, triisopropylammonium cations, tri (n-butyl) ammonium cations, triisobutylammonium cations, and the like, N, N-dimethylanilinium cation, N, N-diethylanilinium cation, N, N-2,4,6-pentamethylanilinium cation, N, N-dialkylanilinium cation, diisopropylammonium cation, dicyclohexylammonium Examples thereof include dialkylammonium cations such as cations.

 ホスホニウムカチオンとして具体的には、トリフェニルホスホニウムカチオン、トリス(メチルフェニル)ホスホニウムカチオン、トリス(ジメチルフェニル)ホスホニウムカチオンなどのトリアリールホスホニウムカチオンが挙げられる。 Specific examples of the phosphonium cation include triarylphosphonium cations such as triphenylphosphonium cation, tris (methylphenyl) phosphonium cation, and tris (dimethylphenyl) phosphonium cation.

 Re+としては、上記の中でも、カルベニウムカチオン、アンモニウムカチオンが好ましく、トリフェニルカルベニウムカチオン、N, N-ジメチルアニリニウムカチオン、N, N-ジエチルアニリニウムカチオンが特に好ましい。 As R e + , among them, a carbenium cation and an ammonium cation are preferable, and a triphenylcarbenium cation, an N, N-dimethylanilinium cation, and an N, N-diethylanilinium cation are particularly preferable.

 カルベニウム塩であるイオン性化合物(b-2)として具体的には、トリフェニルカルベニウムテトラフェニルボレート、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルベニウムテトラキス(3,5-ジトリフルオロメチルフェニル)ボレート、トリス(4-メチルフェニル)カルベニウムテトラキス(ペンタフルオロフェニル)ボレート、トリス(3,5-ジメチルフェニル)カルベニウムテトラキス(ペンタフルオロフェニル)ボレートが挙げられる。 Specific examples of the ionic compound (b-2) which is a carbenium salt include triphenylcarbenium tetraphenylborate, triphenylcarbeniumtetrakis (pentafluorophenyl) borate, triphenylcarbeniumtetrakis (3,5-ditrifluoro). Examples thereof include methylphenyl) borate, tris (4-methylphenyl) carbenium tetrakis (pentafluorophenyl) borate, and tris (3,5-dimethylphenyl) carbeniumtetrakis (pentafluorophenyl) borate.

 アンモニウム塩であるイオン性化合物(b-2)として具体的には、トリアルキル置換アンモニウム塩、N, N-ジアルキルアニリニウム塩、ジアルキルアンモニウム塩が挙げられる。 Specific examples of the ionic compound (b-2) that is an ammonium salt include trialkyl-substituted ammonium salts, N, N-dialkylanilinium salts, and dialkylammonium salts.

 トリアルキル置換アンモニウム塩であるイオン性化合物(b-2)として具体的には、トリエチルアンモニウムテトラフェニルボレート、トリプロピルアンモニウムテトラフェニルボレート、トリ(n-ブチル)アンモニウムテトラフェニルボレート、トリメチルアンモニウムテトラキス(p-トリル)ボレート、トリメチルアンモニウムテトラキス(o-トリル)ボレート、トリ(n-ブチル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリエチルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリプロピルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリプロピルアンモニウムテトラキス(2,4-ジメチルフェニル)ボレート、トリ(n-ブチル)アンモニウムテトラキス(3,5-ジメチルフェニル)ボレート、トリ(n-ブチル)アンモニウムテトラキス(4-トリフルオロメチルフェニル)ボレート、トリ(n-ブチル)アンモニウムテトラキス(3,5-ジトリフルオロメチルフェニル)ボレート、トリ(n-ブチル)アンモニウムテトラキス(o-トリル)ボレート、ジオクタデシルメチルアンモニウムテトラフェニルボレート、ジオクタデシルメチルアンモニウムテトラキス(p-トリル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(o-トリル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(2,4-ジメチルフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(3,5-ジメチルフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(4-トリフルオロメチルフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(3,5-ジトリフルオロメチルフェニル)ボレート、ジオクタデシルメチルアンモニウムが挙げられる。 Specific examples of the ionic compound (b-2) which is a trialkyl-substituted ammonium salt include triethylammonium tetraphenylborate, tripropylammonium tetraphenylborate, tri (n-butyl) ammonium tetraphenylborate, trimethylammonium tetrakis (p -Tolyl) borate, trimethylammonium tetrakis (o-tolyl) borate, tri (n-butyl) ammonium tetrakis (pentafluorophenyl) borate, triethylammonium tetrakis (pentafluorophenyl) borate, tripropylammonium tetrakis (pentafluorophenyl) borate , Tripropylammonium tetrakis (2,4-dimethylphenyl) borate, tri (n-butyl) ammonium tetrakis (3,5-dimethylphenyl) borate, tri (n-butyl) Ammonium tetrakis (4-trifluoromethylphenyl) borate, tri (n-butyl) ammonium tetrakis (3,5-ditrifluoromethylphenyl) borate, tri (n-butyl) ammonium tetrakis (o-tolyl) borate, dioctadecylmethyl Ammonium tetraphenylborate, dioctadecylmethylammonium tetrakis (p-tolyl) borate, dioctadecylmethylammonium tetrakis (o-tolyl) borate, dioctadecylmethylammonium tetrakis (pentafluorophenyl) borate, dioctadecylmethylammonium tetrakis (2,4 -Dimethylphenyl) borate, dioctadecylmethylammonium tetrakis (3,5-dimethylphenyl) borate, dioctadecylmethylammonium tetrakis (4-trifluoromethylphenyl) borate Dioctadecylmethylammonium tetrakis (3,5-ditrifluoromethylphenyl) borate include dioctadecyl methyl ammonium.

 N, N-ジアルキルアニリニウム塩であるイオン性化合物(b-2)として具体的には、N, N-ジメチルアニリニウムテトラフェニルボレート、N, N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N, N-ジメチルアニリニウムテトラキス(3,5-ジトリフルオロメチルフェニル)ボレート、N, N-ジエチルアニリニウムテトラフェニルボレート、N, N-ジエチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N, N-ジエチルアニリニウムテトラキス(3,5-ジトリフルオロメチルフェニル)ボレート、N, N-2,4,6-ペンタメチルアニリニウムテトラフェニルボレート、N, N-2,4,6-ペンタメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートが挙げられる。 Specific examples of the ionic compound (b-2) that is an N, N-dialkylanilinium salt include N, N-dimethylanilinium tetraphenylborate, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, N, N-dimethylanilinium tetrakis (3,5-ditrifluoromethylphenyl) borate, N, N-diethylanilinium tetraphenylborate, N, N-diethylanilinium tetrakis (pentafluorophenyl) borate, N, N- Diethylanilinium tetrakis (3,5-ditrifluoromethylphenyl) borate, N, N-2,4,6-pentamethylanilinium tetraphenylborate, N, N-2,4,6-pentamethylanilinium tetrakis ( Pentafluorophenyl) borate.

 ジアルキルアンモニウム塩として具体的には、ジ(1-プロピル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、ジシクロヘキシルアンモニウムテトラフェニルボレートが挙げられる。 Specific examples of the dialkylammonium salt include di (1-propyl) ammonium tetrakis (pentafluorophenyl) borate and dicyclohexylammonium tetraphenylborate.

 その他のイオン性化合物(b-2)としては、本出願人によって開示(特開2004-51676号公報)されているイオン性化合物も制限無く使用することが可能である。 As the other ionic compound (b-2), an ionic compound disclosed by the present applicant (Japanese Patent Laid-Open No. 2004-51676) can also be used without limitation.

 イオン性化合物(b-2)は1種単独で用いてもよく、2種以上併用してもよい。 The ionic compound (b-2) may be used alone or in combination of two or more.

 《有機アルミニウム化合物(b-3)》
 有機アルミニウム化合物(b-3)としては、例えば、一般式[VII]で表される有機アルミニウム化合物、一般式[VIII]で表される周期表第1族金属とアルミニウムとの錯アルキル化物が挙げられる。
<< Organic aluminum compound (b-3) >>
Examples of the organoaluminum compound (b-3) include an organoaluminum compound represented by the general formula [VII] and a complex alkylated product of a group 1 metal of the periodic table represented by the general formula [VIII] and aluminum. It is done.

 Ra mAl(ORbnpq … [VII]
 式[VII]中、RaおよびRbは、互いに同一でも異なっていてもよく、炭素数が1~15、好ましくは1~4の炭化水素基であり、Xはハロゲン原子であり、mは0<m≦3、nは0≦n<3、pは0≦p<3、qは0≦q<3の数であり、かつm+n+p+q=3である。
R a m Al (OR b ) n H p X q ... [VII]
In the formula [VII], R a and R b may be the same or different from each other, and are each a hydrocarbon group having 1 to 15 carbon atoms, preferably 1 to 4 carbon atoms, X is a halogen atom, m is 0 <m ≦ 3, n is 0 ≦ n <3, p is 0 ≦ p <3, q is a number of 0 ≦ q <3, and m + n + p + q = 3.

 式[VII]で表される有機アルミニウム化合物の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリn-ブチルアルミニウム、トリヘキシルアルミニウム、トリオクチルアルミニウム等のトリn-アルキルアルミニウム;トリイソプロピルアルミニウム、トリイソブチルアルミニウム、トリsec-ブチルアルミニウム、トリtert-ブチルアルミニウム、トリ2-メチルブチルアルミニウム、トリ3-メチルヘキシルアルミニウム、トリ2-エチルヘキシルアルミニウム等のトリ分岐鎖アルキルアルミニウム;トリシクロヘキシルアルミニウム、トリシクロオクチルアルミニウム等のトリシクロアルキルアルミニウム;トリフェニルアルミニウム、トリトリルアルミニウム等のトリアリールアルミニウム;ジイソプロピルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライド等のジアルキルアルミニウムハイドライド;一般式(i-C4H9)xAly(C5H10)z(式中、x、y、zは正の数であり、z≦2xである。)等で表されるイソプレニルアルミニウム等のアルケニルアルミニウム;イソブチルアルミニウムメトキシド、イソブチルアルミニウムエトキシド等のアルキルアルミニウムアルコキシド;ジメチルアルミニウムメトキシド、ジエチルアルミニウムエトキシド、ジブチルアルミニウムブトキシド等のジアルキルアルミニウムアルコキシド;エチルアルミニウムセスキエトキシド、ブチルアルミニウムセスキブトキシド等のアルキルアルミニウムセスキアルコキシド;一般式Ra 2.5Al(ORb)0.5等で表される平均組成を有する部分的にアルコキシ化されたアルキルアルミニウム;ジエチルアルミニウムフェノキシド、ジエチルアルミニウム(2,6-ジ-t-ブチル-4-メチルフェノキシド)等のアルキルアルミニウムアリーロキシド;ジメチルアルミニウムクロリド、ジエチルアルミニウムクロリド、ジブチルアルミニウムクロリド、ジエチルアルミニウムブロミド、ジイソブチルアルミニウムクロリド等のジアルキルアルミニウムハライド;エチルアルミニウムセスキクロリド、ブチルアルミニウムセスキクロリド、エチルアルミニウムセスキブロミド等のアルキルアルミニウムセスキハライド;エチルアルミニウムジクロリド等のアルキルアルミニウムジハライド等の部分的にハロゲン化されたアルキルアルミニウム;ジエチルアルミニウムヒドリド、ジブチルアルミニウムヒドリド等のジアルキルアルミニウムヒドリド;エチルアルミニウムジヒドリド、プロピルアルミニウムジヒドリド等のアルキルアルミニウムジヒドリド等のその他の部分的に水素化されたアルキルアルミニウム;エチルアルミニウムエトキシクロリド、ブチルアルミニウムブトキシクロリド、エチルアルミニウムエトキシブロミド等の部分的にアルコキシ化およびハロゲン化されたアルキルアルミニウムが挙げられる。 Specific examples of the organoaluminum compound represented by the formula [VII] include tri-n-alkylaluminums such as trimethylaluminum, triethylaluminum, tri-n-butylaluminum, trihexylaluminum and trioctylaluminum; triisopropylaluminum, triisobutyl Tri-branched alkyl aluminums such as aluminum, tri-sec-butylaluminum, tri-tert-butylaluminum, tri-2-methylbutylaluminum, tri-3-methylhexylaluminum, tri-2-ethylhexylaluminum; tricyclohexylaluminum, tricyclooctylaluminum, etc. Tricycloalkylaluminum; triarylaluminum such as triphenylaluminum and tolylylaluminum; diisopropylaluminum hydra Id, dialkylaluminum hydride such as diisobutylaluminum hydride; formula (iC 4 H 9) x Al y (C 5 H 10) z ( wherein, x, y, z are each a positive number, is z ≦ 2x ) Alkenyl aluminum such as isoprenyl aluminum, etc .; Alkyl aluminum alkoxide such as isobutylaluminum methoxide and isobutylaluminum ethoxide; Dialkylaluminum alkoxide such as dimethylaluminum methoxide, diethylaluminum ethoxide and dibutylaluminum butoxide; formula R a 2.5 Al (OR b) partially alkoxylated alkyl aluminum having an average composition represented by 0.5 or the like; aluminum sesqui ethoxide, alkyl aluminum sesqui alkoxides such as butyl sesquichloride butoxide; Alkyl aluminum aryloxides such as ethylaluminum phenoxide and diethylaluminum (2,6-di-t-butyl-4-methylphenoxide); dimethylaluminum chloride, diethylaluminum chloride, dibutylaluminum chloride, diethylaluminum bromide, diisobutylaluminum chloride, etc. Dialkylaluminum halides; alkylaluminum sesquihalides such as ethylaluminum sesquichloride, butylaluminum sesquichloride, ethylaluminum sesquibromide; partially halogenated alkylaluminums such as alkylaluminum dihalides such as ethylaluminum dichloride; diethylaluminum hydride Dialkylaluminum hydrides such as dibutylaluminum hydride; Other partially hydrogenated alkylaluminums such as alkylaluminum dihydrides such as aluminum dihydride, propylaluminum dihydride; partially alkoxylated such as ethylaluminum ethoxychloride, butylaluminum butoxycycloride, ethylaluminum ethoxybromide and the like A halogenated alkylaluminum is mentioned.

 M2AlRa 4… [VIII]
 式[VIII]中、M2はLi、NaまたはKであり、Raは炭素数が1~15、好ましくは1~4の炭化水素基である。このような化合物としては、例えば、LiAl(C2H5)4、LiAl(C7H15)4が挙げられる。
M 2 AlR a 4 … [VIII]
In the formula [VIII], M 2 is Li, Na or K, and R a is a hydrocarbon group having 1 to 15 carbon atoms, preferably 1 to 4 carbon atoms. Examples of such a compound include LiAl (C 2 H 5 ) 4 and LiAl (C 7 H 15 ) 4 .

 また、一般式[VII]で表される化合物に類似する化合物も使用することができ、例えば窒素原子を介して2以上のアルミニウム化合物が結合した有機アルミニウム化合物を挙げることができる。このような化合物として具体的には、(C2H5)2AlN(C2H5)Al(C2H5)2を挙げることができる。 A compound similar to the compound represented by the general formula [VII] can also be used, and examples thereof include an organoaluminum compound in which two or more aluminum compounds are bonded through a nitrogen atom. Specific examples of such a compound include (C 2 H 5 ) 2 AlN (C 2 H 5 ) Al (C 2 H 5 ) 2 .

 有機アルミニウム化合物(b-3)としては、入手容易性の点から、トリメチルアルミニウム、トリイソブチルアルミニウムが好ましく用いられる。 As the organoaluminum compound (b-3), trimethylaluminum and triisobutylaluminum are preferably used from the viewpoint of easy availability.

 有機アルミニウム化合物(b-3)は1種単独で用いてもよく、2種以上併用してもよい。 The organoaluminum compound (b-3) may be used alone or in combination of two or more.

 <重合条件>
 共重合体[X]は、上述のオレフィン重合用触媒の存在下に、エチレン、プロピレンおよび炭素数5~20のα-オレフィンを共重合させることにより好適に製造することができる。共重合は、特に限定されるものではないが、オレフィン重合用触媒の存在下に、50~180℃の温度で溶媒の共存下で溶液重合することによって行うことが好ましい。
<Polymerization conditions>
The copolymer [X] can be suitably produced by copolymerizing ethylene, propylene and an α-olefin having 5 to 20 carbon atoms in the presence of the above-mentioned olefin polymerization catalyst. The copolymerization is not particularly limited, but it is preferably performed by solution polymerization in the presence of an olefin polymerization catalyst at a temperature of 50 to 180 ° C. in the presence of a solvent.

 重合の際には、各成分の使用法、添加順序は任意に選ばれるが、例えば触媒成分〔A〕および触媒成分〔B〕を任意の順序で重合器に添加する方法を例示することができる。上記方法においては、各触媒成分の2つ以上が予め接触されていてもよい。 In the polymerization, the method of using each component and the order of addition are arbitrarily selected. For example, a method of adding the catalyst component [A] and the catalyst component [B] to the polymerization vessel in an arbitrary order can be exemplified. . In the said method, two or more of each catalyst component may be contacted previously.

 オレフィン重合用触媒を用いて、エチレン、プロピレンおよびα-オレフィンの共重合を行い、共重合体[X]を製造する場合、触媒成分〔A〕は、反応容積1リットル当り、通常10-9~10-1モル、好ましくは10-8~10-2モルとなるような量で用いることができる。 In the case of producing copolymer [X] by copolymerizing ethylene, propylene and α-olefin using an olefin polymerization catalyst, the catalyst component [A] is usually 10 −9 to 1 liter of reaction volume. It can be used in an amount of 10 −1 mol, preferably 10 −8 to 10 −2 mol.

 成分(b-1)は、成分(b-1)と成分〔A〕中の全遷移金属原子(M)とのモル比[(b-1)/M]が通常1~10000、好ましくは10~5000となるような量で用いることができる。成分(b-2)は、成分(b-2)と成分〔A〕中の全遷移金属原子(M)とのモル比[(b-2)/M]が、通常0.5~50、好ましくは1~20となるような量で用いることができる。成分(b-3)は、重合容積1リットル当り、通常0~5ミリモル、好ましくは約0~2ミリモルとなるような量で用いることができる。 The component (b-1) has a molar ratio [(b-1) / M] of the component (b-1) to all transition metal atoms (M) in the component [A] of usually 1 to 10,000, preferably 10 It can be used in an amount of ˜5000. Component (b-2) has a molar ratio [(b-2) / M] of component (b-2) to all transition metal atoms (M) in component [A], usually 0.5 to 50, The amount can be preferably 1 to 20. Component (b-3) can be used in an amount of usually 0 to 5 mmol, preferably about 0 to 2 mmol, per liter of polymerization volume.

 エチレンと、プロピレンおよびα-オレフィンとの仕込みモル比は、目的とする共重合体[X]の特性に応じて適宜選択すればよく、特に限定されない。通常エチレン:プロピレン+α-オレフィン=10:90~99.9:0.1、好ましくはエチレン:プロピレン+α-オレフィン=30:70~99.9:0.1、さらに好ましくはエチレン:プロピレン+α-オレフィン=50:50~95.0:5.0である。 The charged molar ratio of ethylene, propylene and α-olefin may be appropriately selected according to the characteristics of the target copolymer [X], and is not particularly limited. Usually ethylene: propylene + α-olefin = 10: 90 to 99.9: 0.1, preferably ethylene: propylene + α-olefin = 30: 70 to 99.9: 0.1, more preferably ethylene: propylene + α-olefin = 50:50 to 95.0: 5.0.

 共重合体[X]の製造に好ましく採用される「溶液重合」とは、共重合反応に不活性な炭化水素溶媒中にポリマーが溶解した状態で重合を行う方法の総称である。溶液重合における重合温度は、通常50~180℃、好ましくは70~150℃、更に好ましくは90~130℃である。 “Solution polymerization” preferably employed in the production of the copolymer [X] is a general term for a method of performing polymerization in a state where the polymer is dissolved in a hydrocarbon solvent inert to the copolymerization reaction. The polymerization temperature in the solution polymerization is usually 50 to 180 ° C., preferably 70 to 150 ° C., more preferably 90 to 130 ° C.

 溶液重合では、重合温度が上記範囲であると、重合活性および重合熱の除熱の観点から好ましい。具体的には、上記範囲の下限値以上であると、生産性の点で好ましく;上記範囲の上限値以下であると、ポリマー中に分岐が生成しにくく耐ブロッキング性の点で好ましい。 In solution polymerization, the polymerization temperature is preferably in the above range from the viewpoint of polymerization activity and heat removal from the polymerization heat. Specifically, it is preferable from the viewpoint of productivity when it is at least the lower limit of the above range; it is preferable from the viewpoint of blocking resistance that it is difficult to form a branch in the polymer when it is not more than the upper limit of the above range.

 重合圧力は、通常常圧~10MPaゲージ圧、好ましくは常圧~8MPaゲージ圧の条件下であり、共重合は、回分式、半連続式、連続式のいずれの方法においても行うことができる。反応時間(共重合反応が連続法で実施される場合には平均滞留時間)は、触媒濃度、重合温度などの条件によっても異なり適宜選択することができるが、通常1分間~3時間、好ましくは10分間~2.5時間である。 The polymerization pressure is usually from normal pressure to 10 MPa gauge pressure, preferably from normal pressure to 8 MPa gauge pressure, and the copolymerization can be carried out by any of batch, semi-continuous and continuous methods. The reaction time (average residence time when the copolymerization reaction is carried out in a continuous manner) varies depending on conditions such as the catalyst concentration and polymerization temperature, and can be appropriately selected, but is usually 1 minute to 3 hours, preferably 10 minutes to 2.5 hours.

 重合を反応条件の異なる2段以上に分けて行うことも可能である。 Polymerization can be performed in two or more stages with different reaction conditions.

 得られる共重合体[X]の分子量は、重合系中の水素濃度や重合温度を変化させることによっても調節することができる。さらに、使用する触媒成分〔B〕の量により調節することもできる。重合系に水素を添加する場合、その量は生成する共重合体[X]1kgあたり0.001~5,000NL程度が適当である。また、得られる共重合体[X]の密度は、プロピレンおよびα-オレフィンのフィード量で調製することができる。 The molecular weight of the obtained copolymer [X] can also be adjusted by changing the hydrogen concentration or polymerization temperature in the polymerization system. Furthermore, it can also adjust with the quantity of the catalyst component [B] to be used. When hydrogen is added to the polymerization system, the amount is suitably about 0.001 to 5,000 NL per 1 kg of the produced copolymer [X]. Further, the density of the obtained copolymer [X] can be adjusted by the feed amount of propylene and α-olefin.

 溶液重合で用いられる溶媒は、通常、不活性炭化水素溶媒であり、好ましくは常圧下における沸点が50~200℃の飽和炭化水素である。具体的には、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタン等の脂環族炭化水素が挙げられる。また、ベンゼン、トルエン、キシレン等の芳香族炭化水素;エチレンクロリド、クロルベンゼン、ジクロロメタン等のハロゲン化炭化水素も、「不活性炭化水素溶媒」の範疇に入り、その使用を制限するものではない。 The solvent used in the solution polymerization is usually an inert hydrocarbon solvent, preferably a saturated hydrocarbon having a boiling point of 50 to 200 ° C. under normal pressure. Specific examples include aliphatic hydrocarbons such as pentane, hexane, heptane, octane, decane, dodecane, and kerosene; and alicyclic hydrocarbons such as cyclopentane, cyclohexane, and methylcyclopentane. In addition, aromatic hydrocarbons such as benzene, toluene and xylene; halogenated hydrocarbons such as ethylene chloride, chlorobenzene and dichloromethane are also included in the category of “inert hydrocarbon solvents” and their use is not limited.

 物性値のばらつきを抑制するため、重合反応により得られた共重合体[X]および所望により添加される他の成分は、任意の方法で溶融され、混練、造粒などを施されることが好ましい。 In order to suppress variations in physical property values, the copolymer [X] obtained by the polymerization reaction and other components added as desired may be melted by any method, kneaded, granulated, etc. preferable.

 〔樹脂組成物〕
 本発明に係る樹脂組成物は、上記エチレン・プロピレン・α-オレフィン共重合体[X]を含む組成物であり、好ましくは有機過酸化物[Y]を特定量で含むことが好ましい。
(Resin composition)
The resin composition according to the present invention is a composition containing the ethylene / propylene / α-olefin copolymer [X], and preferably contains a specific amount of the organic peroxide [Y].

 (有機過酸化物[Y])
 本発明で用いられる有機過酸化物[Y]は、共重合体[X]からなるフィルムまたはシート、あるいは太陽電池封止剤用シートの作製、太陽電池モジュールのラミネート成形時の架橋反応の際のラジカル開始剤として用いられる。共重合体[X]を有機過酸化物[Y]で架橋することで高い透明性、優れた耐熱性、高い機械強度および良好な柔軟性を有するフィルムまたはシートあるいは太陽電池封止材用シートが好適に得られる。
(Organic peroxide [Y])
The organic peroxide [Y] used in the present invention is a film or sheet made of the copolymer [X], or a solar cell encapsulant sheet, and a crosslinking reaction during solar cell module laminate molding. Used as a radical initiator. A film or sheet having high transparency, excellent heat resistance, high mechanical strength, and good flexibility by crosslinking the copolymer [X] with an organic peroxide [Y] or a sheet for solar cell encapsulant Preferably obtained.

 有機過酸化物[Y]としては、共重合体[X]を架橋することが可能なものであれば特に限定されないが、例えば、フィルムまたはシートの成形性、押出成形での生産性と太陽電池モジュールのラミネート成形時の架橋速度のバランスから、有機過酸化物(Y)の1分間半減期温度が100~190℃の範囲にある有機過酸化物(Y)が好ましい。さらに好ましくは、1分間半減期温度が100~180℃である。 The organic peroxide [Y] is not particularly limited as long as it can crosslink the copolymer [X]. For example, film or sheet moldability, productivity in extrusion molding, and solar cell The organic peroxide (Y) having a half-life temperature of 1 minute of the organic peroxide (Y) in the range of 100 to 190 ° C. is preferable from the balance of the crosslinking rate at the time of module lamination molding. More preferably, the 1-minute half-life temperature is 100 to 180 ° C.

 有機過酸化物[Y]の1分間半減期温度が100℃未満であると、押出シート成形時に樹脂組成物から得られる太陽電池封止材用シートにゲルが発生し、押出機のトルクが上昇しシート成形が困難となる場合がある。シートが得られたとしても、押出機内で発生したゲル物によりシートの表面に凹凸が発生し、外観が悪くなる場合がある。また、電圧をかけるとシート内部のゲル物周辺にクラックが生じ、絶縁破壊抵抗が低下する。 さらに、ゲル物界面での透湿が起こりやすくなり、透湿性が低下する。また、シート表面に凹凸が発生するため、太陽電池モジュールのラミネート加工時にガラス、薄膜電極、バックシートとの密着性が悪化し、接着が不十分となるため接着性も低下する。押出シート成形の押出温度を90℃以下に下げると成形は可能であるが、生産性が大幅に低下する。有機過酸化物[Y]の1分間半減期温度が180℃超過であると、太陽電池モジュールのラミネート成形時の架橋速度が遅く、太陽電池モジュールの生産性が大幅に低下する。また、太陽電池封止材用シートの耐熱性、接着性が低下する。 When the one-minute half-life temperature of the organic peroxide [Y] is less than 100 ° C., gel is generated in the sheet for solar cell encapsulant obtained from the resin composition at the time of extrusion sheet molding, and the torque of the extruder increases. However, sheet forming may be difficult. Even if a sheet is obtained, unevenness may occur on the surface of the sheet due to the gel generated in the extruder, and the appearance may deteriorate. In addition, when a voltage is applied, cracks are generated around the gel within the sheet, and the dielectric breakdown resistance is reduced. Furthermore, moisture permeation at the gel object interface is likely to occur and moisture permeability is reduced. Moreover, since unevenness | corrugation generate | occur | produces on the sheet | seat surface, at the time of the lamination process of a solar cell module, adhesiveness with glass, a thin film electrode, and a back sheet deteriorates, and since adhesion becomes inadequate, adhesiveness also falls. If the extrusion temperature of extrusion sheet molding is lowered to 90 ° C. or lower, molding is possible, but productivity is greatly reduced. When the one-minute half-life temperature of the organic peroxide [Y] is over 180 ° C., the crosslinking rate at the time of laminate molding of the solar cell module is slow, and the productivity of the solar cell module is greatly reduced. Moreover, the heat resistance and adhesiveness of the solar cell encapsulant sheet are reduced.

 有機過酸化物[Y]の配合量は、共重合体[X]100重量部に対して、通常0.1~3重量部、好ましくは0.2~3重量部、さらに好ましくは0.2~2.5重量部である。有機過酸化物[Y]が0.1重量部未満であると、太陽電池モジュールのラミネート成形時の架橋特性が不十分となり、耐熱性、ガラス接着性が低下する。有機過酸化物[Y]が3重量部超過であると、樹脂組成物からシートまたは太陽電池封止材用シートを押出機等で得る際にゲル化を起こし、押出機のトルクが上昇しシート成形が困難となる場合がある。シートが得られたとしても、押出機内で発生したゲル物によりシートの表面に凹凸が発生し、外観が悪くなる場合がある。また、電圧をかけるとシート内部のゲル物周辺にクラックが生じ、絶縁破壊抵抗が低下する。さらに、ゲル物界面での透湿が起こりやすくなり、透湿性が低下する。また、シート表面に凹凸が発生するため、太陽電池モジュールのラミネート加工時にガラス、薄膜電極、バックシートとの密着性が悪化し、接着が不十分となるため接着性も低下する。 The amount of the organic peroxide [Y] is usually 0.1 to 3 parts by weight, preferably 0.2 to 3 parts by weight, and more preferably 0.2 parts by weight with respect to 100 parts by weight of the copolymer [X]. ~ 2.5 parts by weight. When the organic peroxide [Y] is less than 0.1 part by weight, the crosslinking characteristics at the time of laminate molding of the solar cell module become insufficient, and the heat resistance and the glass adhesiveness are lowered. When the organic peroxide [Y] is more than 3 parts by weight, gelation occurs when a sheet or a solar cell encapsulant sheet is obtained from the resin composition with an extruder or the like, and the torque of the extruder is increased. Molding may be difficult. Even if a sheet is obtained, unevenness may occur on the surface of the sheet due to the gel generated in the extruder, and the appearance may deteriorate. In addition, when a voltage is applied, cracks are generated around the gel within the sheet, and the dielectric breakdown resistance is reduced. Furthermore, moisture permeability at the gel object interface is likely to occur, and moisture permeability is reduced. Moreover, since unevenness | corrugation generate | occur | produces on the sheet | seat surface, at the time of the lamination process of a solar cell module, adhesiveness with glass, a thin film electrode, and a back sheet deteriorates, and since adhesion becomes inadequate, adhesiveness also falls.

 有機過酸化物としては公知のものが使用できるが、前述の有機過酸化物[Y]の1分間半減期温度が100~180℃の範囲にある好ましい。 Although known organic peroxides can be used, the organic peroxide [Y] described above preferably has a one-minute half-life temperature in the range of 100 to 180 ° C.

 具体例としては、ジラウロイルパーオキサイド、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、ジベンゾイルパーオキサイド、シクロヘキサノンパーオキサイド、ジ-t-ブチルパーフタレート、t-ブチルヒドロパーオキシド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、t-アミルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシマレイン酸、1,1-ジ(t-アミルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ジ(t-アミルパーオキシ)シクロヘキサン、t-アミルパーオキシイソノナノエート、t-アミルパーオキシノルマルオクトエート、1,1-ジ(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ジ(t-ブチルパーオキシ)シクロヘキサン、t-ブチルパーオキシイソプロピルカーボネート、t-ブチルパーオキシ-2-エチルヘキシルカーボネート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-アミル-パーオキシベンゾエート、t-ブチルパーオキシアセテート、t-ブチルパーオキシイソノナノエート、t-ブチルパーオキシベンゾエート、2,2-ジ(ブチルパーオキシ)ブタン、n-ブチル-4,4-ジ(t-ブチルパーオキシ)プチレート、メチルエチルケトンパーオキサイド、エチル3,3-ジ(t-ブチルパーオキシ)ブチレート、ジクミルパーオキサイド、t-ブチルクミルパーオキサイド、t-ブチルパーオキシベンゾエート、アセチルアセトンパーオキサイド等が挙げられる。好ましくは、ジラウロイルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、t-ブチルパーオキシイソプロピルカーボネート、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシアセテート、t-ブチルパーオキシイソノナノエート、t-ブチルパーオキシ-2-エチルヘキシルカーボネート、t-ブチルパーオキシベンゾエート等が挙げられる。 Specific examples include dilauroyl peroxide, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, dibenzoyl peroxide, cyclohexanone peroxide, di-t-butyl perphthalate, t- Butyl hydroperoxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, t-amylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate , T-butylperoxyisobutyrate, t-butylperoxymaleic acid, 1,1-di (t-amylperoxy) -3,3,5-trimethylcyclohexane, 1,1-di (t-amylper) Oxy) cyclohexane, t-amyl peroxy isononanoate, t-amyl peroxy normal octoate, 1,1-di (t-butyl pero Xyl) -3,3,5-trimethylcyclohexane, 1,1-di (t-butylperoxy) cyclohexane, t-butylperoxyisopropyl carbonate, t-butylperoxy-2-ethylhexyl carbonate, 2,5-dimethyl -2,5-di (benzoylperoxy) hexane, t-amyl-peroxybenzoate, t-butylperoxyacetate, t-butylperoxyisononanoate, t-butylperoxybenzoate, 2,2-di ( Butylperoxy) butane, n-butyl-4,4-di (t-butylperoxy) petitate, methyl ethyl ketone peroxide, ethyl 3,3-di (t-butylperoxy) butyrate, dicumyl peroxide, t- Butyl cumyl peroxide, t-butyl peroxybenzoate, acetylacetone peroxide Etc. Preferably, dilauroyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, t-butylperoxyisopropyl carbonate, t-butylperoxybenzoate, t-butylperoxyacetate, Examples thereof include t-butyl peroxyisononanoate, t-butyl peroxy-2-ethylhexyl carbonate, t-butyl peroxybenzoate and the like.

 該有機過酸化物[Y]は、1種単独で用いてもよいし、2種以上適宜混合して用いてもよい。 The organic peroxide [Y] may be used singly or in appropriate combination of two or more.

 (エチレン性不飽和シラン化合物(C))
 本発明の樹脂組成物には、必要に応じて、エチレン性不飽和シラン化合物(C)を含むことが、良好な架橋性を有し、優れ耐熱性を有するシートまたは太陽電池封止材用シートを得ることができる点から好ましい。
(Ethylenically unsaturated silane compound (C))
If necessary, the resin composition of the present invention contains an ethylenically unsaturated silane compound (C), which has good crosslinkability and excellent heat resistance, or a sheet for solar cell encapsulant. It is preferable from the point which can be obtained.

 エチレン性不飽和シラン化合物(C)としては、従来公知のものが使用でき、特に制限はない。具体的には、ビニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリス(β-メトキシエトキシシラン)、γ-グリシドキシプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γーメタクリロキシプロピルトリメトキシシランなどが使用できる。好ましくは、接着性が良好な、γ-グリシドキシプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γーメタクリロキシプロピルトリメトキシシランが挙げられる。該エチレン性不飽和シラン化合物(C)は、1種単独で用いてもよいし、2種以上適宜混合して用いてもよい。 As the ethylenically unsaturated silane compound (C), conventionally known compounds can be used, and there is no particular limitation. Specifically, vinyltriethoxysilane, vinyltrimethoxysilane, vinyltris (β-methoxyethoxysilane), γ-glycidoxypropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-methacryloxypropyltrimethoxysilane Etc. can be used. Preferred examples include γ-glycidoxypropyltrimethoxysilane, γ-aminopropyltriethoxysilane, and γ-methacryloxypropyltrimethoxysilane, which have good adhesion. The ethylenically unsaturated silane compound (C) may be used alone or in a suitable mixture of two or more.

 本発明の樹脂組成物は、共重合体[X]100重量部に対して、有機過酸化物[Y]0.1~3重量部と、エチレン性不飽和シラン化合物(C)0.1~5重量部を含むことが好ましい態様である。より好ましくは、共重合体[X]100重量部に対して、有機過酸化物[Y]が0.2~3重量部と、エチレン性不飽和シラン化合物(C)が0.1~4重量部を含み、さらに好ましくは共重合体[X]100重量部に対して、有機過酸化物[Y]が0.2~2.5重量部と、エチレン性不飽和シラン化合物(C)が0.1~3重量部を含むことである。上記範囲にある樹脂組成物は、ガラスに対する接着性が良好であり、樹脂組成物のコストと性能のバランスも良好である。また、シート成形時において、押出機内で発生したゲル物によるシート表面の凹凸の発生もなく、外観も良好となる。また、電圧をかけた場合にも、クラックなどが生じず、絶縁破壊抵抗も良好となる。さらに、透湿性も起きにくくなる。また、太陽電池モジュールのラミネート加工時にガラス、薄膜電極、バックシートとの密着性および接着性も良好となる。 The resin composition of the present invention comprises 0.1 to 3 parts by weight of organic peroxide [Y] and 0.1 to 3 parts of ethylenically unsaturated silane compound (C) with respect to 100 parts by weight of copolymer [X]. A preferred embodiment contains 5 parts by weight. More preferably, the organic peroxide [Y] is 0.2 to 3 parts by weight and the ethylenically unsaturated silane compound (C) is 0.1 to 4 parts by weight with respect to 100 parts by weight of the copolymer [X]. More preferably, the organic peroxide [Y] is 0.2 to 2.5 parts by weight and the ethylenically unsaturated silane compound (C) is 0 with respect to 100 parts by weight of the copolymer [X]. 1 to 3 parts by weight. The resin composition in the above range has good adhesion to glass and a good balance between the cost and performance of the resin composition. Further, when the sheet is formed, the surface of the sheet is not uneven due to the gel material generated in the extruder, and the appearance is improved. Moreover, even when a voltage is applied, no cracks occur and the dielectric breakdown resistance is improved. Furthermore, moisture permeability is less likely to occur. In addition, adhesion and adhesion to the glass, thin film electrode, and back sheet are also improved when the solar cell module is laminated.

 有機過酸化物[Y]が0.1重量部未満であると、太陽電池モジュールのラミネート成形時の架橋特性が不十分となり、耐熱性、ガラス接着性が低下する。有機過酸化物[Y]が3重量部超過であると、樹脂組成物からシートまたは太陽電池封止材用シートを押出機等で得る際にゲル化を起こし、押出機のトルクが上昇しシート成形が困難となる場合がある。たとえシートが得られたとしても、押出機内で発生したゲル物によりシートの表面に凹凸が発生し、外観が悪くなる場合がある。また、電圧をかけるとシート内部のゲル物周辺にクラックが生じ、絶縁破壊抵抗が低下する。さらに、ゲル物界面での透湿が起こりやすくなり、透湿性が低下する。また、シート表面に凹凸が発生するため、太陽電池モジュールのラミネート加工時にガラス、薄膜電極、バックシートとの密着性が悪化し、接着が不十分となるため接着性も低下する。 When the organic peroxide [Y] is less than 0.1 parts by weight, the crosslinking characteristics at the time of laminate molding of the solar cell module become insufficient, and the heat resistance and the glass adhesiveness are lowered. When the organic peroxide [Y] is more than 3 parts by weight, gelation occurs when a sheet or a solar cell encapsulant sheet is obtained from the resin composition with an extruder or the like, and the torque of the extruder is increased. Molding may be difficult. Even if a sheet is obtained, the gel material generated in the extruder may cause unevenness on the surface of the sheet, which may deteriorate the appearance. In addition, when a voltage is applied, cracks are generated around the gel within the sheet, and the dielectric breakdown resistance is reduced. Furthermore, moisture permeability at the gel object interface is likely to occur, and moisture permeability is reduced. Moreover, since unevenness | corrugation generate | occur | produces on the sheet | seat surface, at the time of the lamination process of a solar cell module, adhesiveness with glass, a thin film electrode, and a back sheet deteriorates, and since adhesion becomes inadequate, adhesiveness also falls.

 (紫外線吸収剤(D)、光安定化剤(E)、耐熱安定剤(F))
 本発明の樹脂組成物には、紫外線吸収剤(D)、光安定化剤(E)および耐熱安定剤(F)から選ばれる少なくとも1種の添加剤を含有することが好ましい。上記添加剤の配合量は、共重合体[X]100重量部に対して、0.005~5重量部であることが好ましい。更に、上記3種から選ばれる少なくとも2種の添加剤を含有することが好ましく、特には上記3種全てが含有されていることが好ましい。上記添加剤の配合量が上記範囲にあると、高温高湿への耐性、ヒートサイクルの耐性、耐候安定性および耐熱安定性を向上する効果を十分に確保し、かつ、樹脂組成物の透明性やガラス、バックシート、薄膜電極、アルミニウムとの接着性の低下を防ぐことができるので好ましい。
(Ultraviolet absorber (D), light stabilizer (E), heat stabilizer (F))
The resin composition of the present invention preferably contains at least one additive selected from an ultraviolet absorber (D), a light stabilizer (E) and a heat resistance stabilizer (F). The amount of the additive is preferably 0.005 to 5 parts by weight with respect to 100 parts by weight of the copolymer [X]. Furthermore, it is preferable to contain at least two types of additives selected from the above three types, and it is particularly preferable that all the three types are included. When the amount of the additive is within the above range, the effect of improving the resistance to high temperature and humidity, heat cycle resistance, weather resistance stability and heat stability is sufficiently ensured, and the transparency of the resin composition is ensured. And glass, a back sheet, a thin film electrode, and a decrease in adhesiveness with aluminum can be prevented, which is preferable.

 紫外線吸収剤(D)としては、具体的には、2-ヒドロキシ-4-ノルマル-オクチルオキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-2-ジヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-4-カルボキシベンゾフェノン、2-ヒドロキシ-4-n-オクトキシベンゾフェノンなどのベンゾフェノン系、2-(2-ヒドロキシ-3,5-ジ-t-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール等のベンゾトリアリゾール系、フェニルサルチレート、p-オクチルフェニルサルチレート等のサリチル酸エステル系のものが用いられる。 Specific examples of the ultraviolet absorber (D) include 2-hydroxy-4-normal-octyloxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2--2-dihydroxy-4-methoxybenzophenone, 2-hydroxy- Benzophenone series such as 4-methoxy-4-carboxybenzophenone, 2-hydroxy-4-n-octoxybenzophenone, 2- (2-hydroxy-3,5-di-t-butylphenyl) benzotriazole, 2- (2 Benzotrializoles such as -hydroxy-5-methylphenyl) benzotriazole and salicylic acid esters such as phenylsulcylate and p-octylphenylsulcylate are used.

 光安定化剤(E)としては、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ポリ[{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}]等のヒンダードアミン系、ヒンダードピペリジン系化合物などのものが好ましく使用される。 Examples of the light stabilizer (E) include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, poly [{6- (1,1,3,3-tetramethylbutyl) amino-1 , 3,5-triazine-2,4-diyl} {(2,2,6,6-tetramethyl-4-piperidyl) imino} hexamethylene {(2,2,6,6-tetramethyl-4-piperidyl) ) Imino}] and other hindered amine-based and hindered piperidine-based compounds are preferably used.

 耐熱安定剤(F)としては、具体的には、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、ビス[2,4-ビス(1,1-ジメチルエチル)-6-メチルフェニル]エチルエステル亜リン酸、テトラキス(2,4-ジ-tert-ブチルフェニル)[1,1-ビフェニル]-4,4´-ジイルビスホスフォナイト、および、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト等のホスファイト系耐熱安定剤、3-ヒドロキシ-5,7-ジ-tert-ブチル-フラン-2-オンとo-キシレンとの反応生成物等のラクトン系耐熱安定剤、3,3',3",5,5',5"-ヘキサ-tert-ブチル-a,a',a"-(メチレン-2,4,6-トリイル)トリ-p-クレゾール、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)ベンジルベンゼン、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、チオジエチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]等のヒンダードフェノール系耐熱安定剤、硫黄系耐熱安定剤、アミン系耐熱安定剤などを挙げることができる。また、これらを1種または2種以上を適宜組み合わせて用いることもできる。 Specific examples of the heat stabilizer (F) include tris (2,4-di-tert-butylphenyl) phosphite and bis [2,4-bis (1,1-dimethylethyl) -6-methylphenyl. ] Ethyl ester phosphorous acid, tetrakis (2,4-di-tert-butylphenyl) [1,1-biphenyl] -4,4'-diylbisphosphonite, and bis (2,4-di-tert -Butylphenyl) pentaerythritol diphosphite and other phosphite heat stabilizers, lactones such as the reaction product of 3-hydroxy-5,7-di-tert-butyl-furan-2-one and o-xylene Heat-resistant stabilizer, 3,3 ′, 3 ″, 5,5 ′, 5 ″ -hexa-tert-butyl-a, a ′, a ″-(methylene-2,4,6-triyl) tri-p-cresol 1,3,5- Limethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxyphenyl) benzylbenzene, pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) Propionate], octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, thiodiethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], etc. Hindered phenol heat stabilizers, sulfur heat stabilizers, amine heat stabilizers, etc. These may be used alone or in combination of two or more.

 中でも、ホスファイト系耐熱安定剤およびヒンダードフェノール系耐熱安定剤が好ましい。 Of these, phosphite heat stabilizers and hindered phenol heat stabilizers are preferred.

 (その他の添加剤)
 本発明の樹脂組成物は、以上詳述した諸成分以外の各種成分を、本発明の目的を損なわない範囲において、適宜含有することができる。
(Other additives)
The resin composition of the present invention can appropriately contain various components other than the components detailed above in a range not impairing the object of the present invention.

 例えば、共重合体[X]以外の各種ポリオレフィン、例えば、密度が850kg/m3より低いエチレン・α-オレフィン系共重合体、スチレン系やエチレン系のブロック共重合体、プロピレン系(共)重合体などが挙げられる。これらは、上記共重合体[X]100重量部に対して、本発明の効果を奏する限り特に限定されないが、通常0.0001重量部~50重量部、好ましくは0.001重量部~40重量部である。またポリオレフィン以外の各種樹脂、各種ゴム、酸化防止剤、可塑剤、充填剤、顔料、染料、帯電防止剤、抗菌剤、防黴剤、難燃剤、架橋助剤(G)、及び分散剤等から選ばれる1種類または2種類以上の添加剤を適宜含有することができるが、これらに限定されるものではない。 For example, various polyolefins other than the copolymer [X], for example, ethylene / α-olefin copolymers having a density lower than 850 kg / m 3 , styrene or ethylene block copolymers, propylene (co) polymers Examples include coalescence. These are not particularly limited as long as the effects of the present invention are exerted with respect to 100 parts by weight of the copolymer [X], but are usually 0.0001 to 50 parts by weight, preferably 0.001 to 40 parts by weight. Part. Also, from various resins other than polyolefin, various rubbers, antioxidants, plasticizers, fillers, pigments, dyes, antistatic agents, antibacterial agents, antifungal agents, flame retardants, crosslinking aids (G), dispersants, etc. One kind or two or more kinds of additives selected can be appropriately contained, but are not limited thereto.

 特に、架橋助剤(G)においては、その配合量は、共重合体[X]100重量部に対して、0.01~5重量部であると、適度な架橋構造を有することができ、耐熱性、機械物性、接着性を向上できるため好ましい。 In particular, in the crosslinking aid (G), the blending amount is 0.01 to 5 parts by weight with respect to 100 parts by weight of the copolymer [X], so that an appropriate crosslinking structure can be obtained. It is preferable because heat resistance, mechanical properties, and adhesiveness can be improved.

 架橋助剤(G)としては、オレフィン系樹脂で一般に使用される従来公知のものが使用できる。このような架橋助剤(G)としては、分子内に二重結合を2個以上有する化合物であり、具体的には、t-ブチルアクリレート、ラウリルアクリレート、セチルアクリレート、ステアリルアクリレート、2-メトキシエチルアクリレート、エチルカルビトールアクリレート、メトキシトリプロピレングリコールアクリレート等のモノアクリレート、t-ブチルメタクリレート、ラウリルメタクリレート、セチルメタクリレート、ステアリルメタクリレート、メトキシエチレングリコールメタクリレート、メトキシポリエチレングリコールメタクリレート等のモノメタクリレート、1,4-ブタンジオールジアクリレート、1,6-ヘキサンジオールジアクリレート、1,9-ノナンジオールジアクリレート、ネオペンチルグリコールジアクリレート、ジエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、トリプロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート等のジアクリレート、1,3-ブタンジオールジメタクリレート、1,6-ヘキサンジオールジメタクリレート、1,9-ノナンジオールジメタクリレートネオペンチルグリコールジメタクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート等のジメタクリレート、トリメチロールプロパントリアクリレート、テトラメチロールメタントリアクリレート、ペンタエリスリトールトリアクリレート等のトリアクリレート、トリメチロールプロパントリメタクリレート、トリメチロールエタントリメタクリレート等のトリメタクリレート、ペンタエリスリトールテトラアクリレート、テトラメチロールメタンテトラアクリレート等のテトラアクリレート、ジビニルベンゼン、ジ-i-プロペニルベンゼン等のジビニル芳香族化合物、トリアリルシアヌレート、トリアリルイソシアヌレート等のシアヌレート、ジアリルフタレート等のトリアリル化合物やジアリル化合物、p-キノンジオキシム、p-p'-ジベンゾイルキノンジオキシム等のオキシム、フェニルマレイミド等のマレイミドが挙げられる。これらの架橋助剤(G)の中でより好ましいのは、ジアクリレート、ジメタクリレート、ジビニル芳香族化合物である。 As the crosslinking aid (G), conventionally known ones generally used for olefin resins can be used. Such a crosslinking aid (G) is a compound having two or more double bonds in the molecule, and specifically includes t-butyl acrylate, lauryl acrylate, cetyl acrylate, stearyl acrylate, 2-methoxyethyl. Monoacrylate such as acrylate, ethyl carbitol acrylate, methoxytripropylene glycol acrylate, t-butyl methacrylate, lauryl methacrylate, cetyl methacrylate, stearyl methacrylate, methoxyethylene glycol methacrylate, monomethacrylate such as methoxypolyethylene glycol methacrylate, 1,4-butane Diol diacrylate, 1,6-hexanediol diacrylate, 1,9-nonanediol diacrylate, neopentyl glycol diacrylate Diacrylate, diethylene glycol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol diacrylate, tripropylene glycol diacrylate, polypropylene glycol diacrylate, etc., 1,3-butanediol dimethacrylate, 1,6-hexanediol dimethacrylate 1,9-nonanediol dimethacrylate neopentyl glycol dimethacrylate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, polyethylene glycol dimethacrylate and other dimethacrylates, trimethylolpropane triacrylate, tetramethylolmethane triacrylate , Pentaerythritol triacryl Triacrylates such as trimethol, trimethacrylates such as trimethylolpropane trimethacrylate, trimethylolethane trimethacrylate, tetraacrylates such as pentaerythritol tetraacrylate and tetramethylolmethane tetraacrylate, divinyl aromatics such as divinylbenzene and di-i-propenylbenzene Family compounds, cyanurates such as triallyl cyanurate and triallyl isocyanurate, triallyl compounds such as diallyl phthalate and diallyl compounds, oximes such as p-quinonedioxime, pp'-dibenzoylquinonedioxime, phenylmaleimide, etc. Maleimide is mentioned. Of these crosslinking aids (G), diacrylate, dimethacrylate, and divinyl aromatic compounds are more preferable.

 〔樹脂組成物およびフィルムまたはシートの製造方法〕
 本発明の樹脂組成物は、公知の任意の方法を採用して製造することができる。たとえば、所定量の共重合体[X]と、必要に応じて、所定量の有機過酸化物[Y]、エチレン性不飽和シラン化合物(C)、紫外線吸収剤(D)、光安定化剤(E)、耐熱安定剤(F)などを、種々公知の方法、たとえば、ヘンシェルミキサー、V-ブレンダー、リボンブレンダー、タンブラブレンダー等で混合する方法、あるいは混合後、一軸押出機、二軸押出機、ニーダー、バンバリーミキサー等で通常60~140℃、好ましくは80~120℃で溶融混練した後、造粒あるいは粉砕する方法を採用して製造することができる。
[Production method of resin composition and film or sheet]
The resin composition of the present invention can be produced by employing any known method. For example, a predetermined amount of copolymer [X] and, if necessary, a predetermined amount of organic peroxide [Y], an ethylenically unsaturated silane compound (C), an ultraviolet absorber (D), a light stabilizer. (E), heat stabilizer (F), etc. are mixed by various known methods, for example, a Henschel mixer, V-blender, ribbon blender, tumbler blender, or the like, or after mixing, a single-screw extruder or a twin-screw extruder It can be produced by a method of granulating or pulverizing after melt-kneading usually at 60 to 140 ° C., preferably 80 to 120 ° C. with a kneader, Banbury mixer or the like.

 本発明に係る樹脂組成物からなるフィルムまたはシート〔以下、「シート」と略称する場合がある。〕は、公知の方法、たとえば、本発明の樹脂組成物から得られる、粉末、顆粒、ペレットを溶融押出し成形、またはプレス成形することで得られる。 Film or sheet comprising the resin composition according to the present invention [hereinafter sometimes referred to as “sheet”. ] Can be obtained by a known method, for example, melt extrusion molding or press molding of powders, granules and pellets obtained from the resin composition of the present invention.

 〔太陽電池封止材〕
 本発明の樹脂組成物、該樹脂組成物からなるシートおよび該樹脂組成物からなるシートを架橋してなるフィルムまたはシート(以下、「架橋シート」と略称する場合がある。)は、ガラス、バックシート、薄膜電極、アルミニウムとの接着性、耐熱性、成形性および架橋特性のバランスに優れ、さらに、耐候性、体積固有抵抗、電気絶縁性、透湿性、電極腐食性、プロセス安定性に優れており、従来公知の太陽電池モジュールの太陽電池封止材として好適に用いられる。
[Solar cell encapsulant]
The resin composition of the present invention, a sheet comprising the resin composition, and a film or sheet obtained by crosslinking the sheet comprising the resin composition (hereinafter sometimes abbreviated as “crosslinked sheet”) are glass, back. Excellent balance of adhesion with sheet, thin film electrode, aluminum, heat resistance, moldability and cross-linking properties, and also excellent weather resistance, volume resistivity, electrical insulation, moisture permeability, electrode corrosion, and process stability Therefore, it is suitably used as a solar cell sealing material for a conventionally known solar cell module.

 〔シートおよび太陽電池封止材用シート〕
 本発明の樹脂組成物がシート状である太陽電池封止材用シートも、本発明の好ましい実施形態の1つである。また、本発明の樹脂組成物を含むシートを、少なくとも1層有する複合化された太陽電池封止材用シートも太陽電池封止材に好適に用いることができる。
[Sheet and sheet for solar cell encapsulant]
The sheet | seat for solar cell sealing materials whose resin composition of this invention is a sheet form is also one of preferable embodiment of this invention. Moreover, the composite sheet | seat for solar cell sealing materials which has at least 1 layer of the sheet | seat containing the resin composition of this invention can also be used suitably for a solar cell sealing material.

 本発明に係るフィルムまたはシートおよび太陽電池封止材用シートの層の厚みは、通常0.01~2mm、好ましくは、0.01~1.5mm、さらに好ましくは0.1~1.2mm0.01~1mm、さらに好ましくは0.01~0.5mm、さらに好ましくは、0.01~0.3mm、最も好ましくはm0.01~0.2mmである。厚みがこの範囲内であると、ラミネート工程における、ガラス、太陽電池セル、薄膜電極等の破損が抑制でき、かつ、十分な光線透過率を確保することにより高い光発電量を得ることができ、かつ、低温での太陽電池モジュールのラミネート成形ができるので好ましい。 The thickness of the layer of the film or sheet according to the present invention and the sheet for solar cell encapsulant is usually 0.01 to 2 mm, preferably 0.01 to 1.5 mm, more preferably 0.1 to 1.2 mm. The thickness is 01 to 1 mm, more preferably 0.01 to 0.5 mm, more preferably 0.01 to 0.3 mm, and most preferably m 0.01 to 0.2 mm. When the thickness is within this range, damage to the glass, solar battery cell, thin film electrode, etc. in the laminating step can be suppressed, and a high amount of photovoltaic power can be obtained by ensuring sufficient light transmittance, And since it can laminate-mold the solar cell module at low temperature, it is preferable.

 本発明に係るシートおよび太陽電池封止材のシートの成形方法には特に制限は無いが、公知の各種の成形方法(キャスト成形、押出シート成形、インフレーション成形、射出成形、圧縮成形、カレンダー成形等)を採用することが可能である。例えば、押出機中で共重合体[X]と、必要に応じて、有機過酸化物[Y]、エチレン性不飽和シラン化合物(C)、紫外線吸収剤(D)、光安定化剤(E)、耐熱安定剤(F)、その他添加剤との溶融混練を行いつつ押出シート成形を行い、シート状で太陽電池封止材を得ることができる。押出温度範囲としては、押出温度が通常100~150℃である。押出温度を100℃未満にすると、シートの生産性が低下する。押出温度を150℃超過にすると、樹脂組成物からシートを押出機等で得る際にゲル化を起こし、押出機のトルクが上昇しシート成形が困難となる場合がある。シートが得られたとしても、押出機内で発生したゲル物によりシートの表面に凹凸が発生し、外観が悪くなる場合がある。また、電圧をかけるとシート内部のゲル物周辺にクラックが生じ、絶縁破壊抵抗が低下する。さらに、ゲル物界面での透湿が起こりやすくなり、透湿性が低下する。また、シート表面に凹凸が発生するため、太陽電池モジュールのラミネート加工時にガラス、薄膜電極、バックシートとの密着性が悪化し、接着が不十分となるため接着性も低下する。 There are no particular restrictions on the method of forming the sheet according to the present invention and the sheet of the solar cell encapsulant, but various known forming methods (cast molding, extrusion sheet molding, inflation molding, injection molding, compression molding, calendar molding, etc. ) Can be adopted. For example, copolymer [X] and, if necessary, organic peroxide [Y], ethylenically unsaturated silane compound (C), ultraviolet absorber (D), light stabilizer (E) in an extruder. ), Heat-stabilizing agent (F), and other additives are melt kneaded, and extrusion sheet molding is performed to obtain a solar cell encapsulant in the form of a sheet. As the extrusion temperature range, the extrusion temperature is usually 100 to 150 ° C. When the extrusion temperature is less than 100 ° C., the productivity of the sheet decreases. If the extrusion temperature exceeds 150 ° C., gelation may occur when a sheet is obtained from the resin composition with an extruder or the like, and the torque of the extruder may increase to make sheet molding difficult. Even if a sheet is obtained, unevenness may occur on the surface of the sheet due to the gel generated in the extruder, and the appearance may deteriorate. In addition, when a voltage is applied, cracks are generated around the gel within the sheet, and the dielectric breakdown resistance is reduced. Furthermore, moisture permeability at the gel object interface is likely to occur, and moisture permeability is reduced. Moreover, since unevenness | corrugation generate | occur | produces on the sheet | seat surface, at the time of the lamination process of a solar cell module, adhesiveness with glass, a thin film electrode, and a back sheet deteriorates, and since adhesion becomes inadequate, adhesiveness also falls.

 また、そのシート表面にはエンボス加工を施すことが可能であり、エンボス加工によりこの層の表面を装飾することで封止シート同士、または、封止シートと他のシート等とのブロッキングを防止し、さらに、エンボスが、ラミネート時の太陽電池素子等に対するクッションとなって、これらの破損を防止するので好ましい。 In addition, the surface of the sheet can be embossed, and the surface of this layer can be decorated by embossing to prevent blocking between the sealing sheets or between the sealing sheet and other sheets. Furthermore, the embossing is preferable because it becomes a cushion for the solar cell element or the like at the time of laminating and prevents the breakage.

 さらに、そのシートは、太陽電池モジュールサイズに合わせて裁断された枚葉形式、または太陽電池モジュールを作製する直前にサイズに合わせて裁断可能なロール形式にて太陽電池封止材として用いることができる。 Further, the sheet can be used as a solar cell encapsulant in a single wafer form cut to fit the solar cell module size or a roll form that can be cut to fit the size just before producing the solar cell module. .

 本発明の好ましい実施形態である太陽電池用封止材は、本発明の太陽電池封止材用シートからなる層を少なくとも1層有していれば良い。従って、本発明の太陽電池封止材用シートからなる層の層数は、1層であっても良いし、2層以上であっても良い。構造を単純にしてコストを下げる観点、および、層間での界面反射を極力小さくし光を有効に活用する観点等からは、1層であることが好ましい。 The solar cell encapsulant which is a preferred embodiment of the present invention may have at least one layer composed of the solar cell encapsulant sheet of the present invention. Therefore, the number of layers of the solar cell encapsulant sheet of the present invention may be one, or two or more. From the viewpoint of simplifying the structure and reducing the cost, and from the viewpoint of effectively utilizing light by minimizing interface reflection between layers, a single layer is preferable.

 本発明の好ましい実施形態である太陽電池封止材は、本発明の太陽電池封止材用シートからなる層のみで構成されていても良いし、本発明の太陽電池封止材用シートを含有する層以外の層(以下、「その他の層」とも言う。)を有していても良い。 The solar cell encapsulant which is a preferred embodiment of the present invention may be composed of only a layer composed of the sheet for solar cell encapsulant of the present invention, and contains the sheet for solar cell encapsulant of the present invention. A layer other than the layer (hereinafter also referred to as “other layer”) may be included.

 その他の層の例としては、目的で分類するならば、表面または裏面保護のためのハードコート層、接着層、反射防止層、ガスバリア層、防汚層等を設けることができる。材質で分類するならば、紫外線硬化性樹脂からなる層、熱硬化性樹脂からなる層、ポリオレフィン樹脂からなる層、カルボン酸変性ポリオレフィン樹脂からなる層、フッ素含有樹脂からなる層、環状オレフィン(共)重合体からなる層、無機化合物からなる層等を設けることができる。 As examples of other layers, if classified according to the purpose, a hard coat layer, an adhesive layer, an antireflection layer, a gas barrier layer, an antifouling layer and the like for protecting the front surface or the back surface can be provided. If classified by material, layer made of UV curable resin, layer made of thermosetting resin, layer made of polyolefin resin, layer made of carboxylic acid modified polyolefin resin, layer made of fluorine-containing resin, cyclic olefin (co) A layer made of a polymer, a layer made of an inorganic compound, or the like can be provided.

 本発明の太陽電池封止材用シートからなる層と、その他の層との位置関係には特に制限はなく、発明の目的との関係で好ましい層構成が適宜選択される。すなわち、その他の層は、2以上の本発明の太陽電池封止材用シートからなる層の間に設けられても良いし、太陽電池封止剤用シートの最外層に設けられても良いし、それ以外の箇所に設けられても良い。本発明の太陽電池封止材用シートからなる層の片面にのみその他の層が設けられても良いし、両面にその他の層が設けられても良い。その他の層の層数に特に制限はなく、任意の数のその他の層を設けることができるし、その他の層を設けなくともよい。 The positional relationship between the layer made of the solar cell encapsulant sheet of the present invention and the other layers is not particularly limited, and a preferable layer configuration is appropriately selected depending on the purpose of the invention. That is, the other layer may be provided between two or more layers made of the solar cell encapsulant sheet of the present invention, or may be provided in the outermost layer of the solar cell encapsulant sheet. , It may be provided at other locations. Other layers may be provided only on one side of the layer made of the solar cell encapsulant sheet of the present invention, or other layers may be provided on both sides. There is no restriction | limiting in particular in the number of layers of another layer, Arbitrary number of other layers can be provided and it is not necessary to provide another layer.

 構造を単純にしてコストを下げる観点、および、界面反射を極力小さくし光を有効に活用する観点等からは、その他の層を設けず、本発明の太陽電池封止材用シートからなる層のみで、太陽電池用封止材を作製すればよいし、目的との関係で必要又は有用なその他の層があれば、適宜そのようなその他の層を設ければよい。 From the viewpoint of simplifying the structure and reducing the cost, and from the viewpoint of effectively utilizing light by minimizing interface reflection, no other layers are provided, and only the layer made of the sheet for solar cell encapsulant of the present invention. Thus, a solar cell encapsulant may be produced, and if there are other layers necessary or useful in relation to the purpose, such other layers may be provided as appropriate.

 他の層を設ける場合の本発明の太陽電池封止材用シートからなる層と他の層との積層方法については特に制限はないが、キャスト成形機、押出シート成形機等の公知の溶融押出機を用いて共押出して積層体を得る方法、あるいはあらかじめ成形された一方の層上に他方の層を溶融あるいは加熱ラミネートして積層体を得る方法が好ましい。また、適当な接着剤(たとえば、無水マレイン酸変性ポリオレフィン樹脂(たとえば、三井化学(株)社製のアドマー(登録商標)、三菱化学社製のモディック(登録商標)など)、不飽和ポリオレフィンなどの低(非)結晶性軟質重合体、エチレン/アクリル酸エステル/無水マレイン酸3元共重合体(たとえば、住化シーディエフ化学製のボンダイン(登録商標)など)をはじめとするアクリル系接着剤、エチレン/酢酸ビニル系共重合体またはこれらを含む接着性樹脂組成物など)を用いたドライラミネート法あるいはヒートラミネート法などにより積層してもよい。接着剤としては、通常120℃~150℃程度の耐熱性があるものが好ましく使用され、ポリエステル系あるいはポリウレタン系接着剤などが好適なものとして例示される。また、両層の接着性を改良するために、たとえば、シラン系カップリング処理、チタン系カップリング処理、コロナ処理、プラズマ処理等を用いても良い。 There is no particular limitation on the method of laminating the layer composed of the sheet for solar cell encapsulant of the present invention and the other layer when other layers are provided, but known melt extrusion such as cast molding machine, extrusion sheet molding machine, etc. A method of obtaining a laminate by co-extrusion using a machine, or a method of obtaining a laminate by melting or heating and laminating the other layer on one previously formed layer is preferred. In addition, suitable adhesives (for example, maleic anhydride-modified polyolefin resin (for example, Admer (registered trademark) manufactured by Mitsui Chemicals, Inc., Modic (registered trademark) manufactured by Mitsubishi Chemical), unsaturated polyolefin, etc.) Acrylic adhesives such as low (non-) crystalline soft polymers, ethylene / acrylic acid ester / maleic anhydride terpolymers (for example, Bondine (registered trademark) manufactured by Sumika Sea-Dief Chemical), ethylene / Vinyl acetate copolymer or adhesive resin composition containing these) may be laminated by a dry laminating method or a heat laminating method. As the adhesive, one having a heat resistance of usually about 120 ° C. to 150 ° C. is preferably used, and a polyester-based or polyurethane-based adhesive is exemplified as a suitable one. Moreover, in order to improve the adhesiveness of both layers, for example, a silane coupling treatment, a titanium coupling treatment, a corona treatment, a plasma treatment, or the like may be used.

 本発明の太陽電池封止材用シート(非架橋シート)は、本発明の樹脂組成物を押出シート成形して得られる厚み0.5mmの試料で測定したときの内部ヘイズが、通常60%以下、好ましくは50%以下の範囲にあることが望ましい。 The sheet for solar cell encapsulant (non-crosslinked sheet) of the present invention has an internal haze of usually 60% or less when measured with a 0.5 mm thick sample obtained by extrusion sheet molding of the resin composition of the present invention. Preferably, it is desirable to be in the range of 50% or less.

 本発明の太陽電池封止材用シート(非架橋シート)は、本発明の樹脂組成物を押出シート成形して得られる厚み0.3mmの試料で測定したときの光線透過率(波長400~700nmの平均値)が、通常85%以上、好ましくは88%~100%の範囲、より好ましくは90~100%にある。 The solar cell encapsulant sheet (non-crosslinked sheet) of the present invention has a light transmittance (wavelength of 400 to 700 nm) measured with a 0.3 mm thick sample obtained by extrusion sheet molding of the resin composition of the present invention. Is usually in the range of 85% or more, preferably in the range of 88% to 100%, more preferably in the range of 90 to 100%.

 本発明の樹脂組成物からなる太陽電池封止材用シートをその一部として含む太陽電池封止材は、例えば、太陽電池モジュールより該封止材用シートサンプル1gを採取し、沸騰キシレンでのソックスレー抽出を10時間行い、30メッシュでのステンレスメッシュでろ過後、メッシュを110℃にて8時間減圧乾燥を行い、メッシュ上の残存量より算出した場合、ゲル分率が70~95%、好ましくは、70~90%の範囲にある。ゲル分率が70%未満であると、太陽電池封止材の耐熱性が不十分であり、85℃×85%Rhでの恒温恒湿試験、ブラックパネル温度83℃での高強度キセノン照射試験、-40℃~90℃でのヒートサイクル試験または耐熱試験での、接着性が低下する傾向にある。ゲル分率が95%超過であると、太陽電池封止材の柔軟性が低下し、-40℃~90℃でのヒートサイクル試験での温度追従性が低下するため、剥離等が発生する場合がある。 The solar cell encapsulant comprising the solar cell encapsulant sheet made of the resin composition of the present invention as a part thereof is obtained, for example, by taking 1 g of the encapsulant sheet sample from the solar cell module, and boiling xylene. Soxhlet extraction is performed for 10 hours, filtered through a 30 mesh stainless steel mesh, the mesh is dried under reduced pressure at 110 ° C. for 8 hours, and calculated from the residual amount on the mesh, the gel fraction is 70 to 95%, preferably Is in the range of 70-90%. When the gel fraction is less than 70%, the heat resistance of the solar cell encapsulant is insufficient, a constant temperature and humidity test at 85 ° C. × 85% Rh, and a high intensity xenon irradiation test at a black panel temperature of 83 ° C. , The adhesiveness tends to decrease in a heat cycle test or a heat resistance test at −40 ° C. to 90 ° C. When the gel fraction is over 95%, the flexibility of the solar cell encapsulant is reduced, and the temperature followability in the heat cycle test at −40 ° C. to 90 ° C. is reduced. There is.

 〔太陽電池モジュール〕
 本発明の太陽電池封止材および、本発明の好ましい実施形態である太陽電池封止材用シートは、上述のような優れた特性を有する。従って、かかる太陽電池封止材や太陽電池封止材用シートを用いて得られた太陽電池モジュールは、本発明の効果を活用することが可能であり、本発明の好ましい実施形態の1つである。
[Solar cell module]
The solar cell encapsulant of the present invention and the solar cell encapsulant sheet which is a preferred embodiment of the present invention have excellent characteristics as described above. Therefore, the solar cell module obtained by using such a solar cell encapsulant or solar cell encapsulant sheet can utilize the effects of the present invention, and is one of the preferred embodiments of the present invention. is there.

 太陽電池モジュールは、例えば、通常、多結晶シリコン等により形成された太陽電池素子を太陽電池封止材用シートで挟み積層し、さらに表裏両面を保護シートでカバーした結晶系太陽電池モジュールが挙げられる。すなわち典型的な太陽電池モジュールは、太陽電池モジュール用保護シート(表面保護シート)/太陽電池封止材用シート/太陽電池素子/太陽電池封止材用シート/太陽電池モジュール用保護シート(裏面保護シート)という構成になっている。もっとも、本発明の好ましい実施形態の1つである太陽電池モジュールは、上記の構成には限定されず、本発明の目的を損なわない範囲で、上記の各層の一部を適宜省略し、又は、上記以外の層を適宜設けることができる。典型的には、接着層、衝撃吸収層、コーティング層、反射防止層、裏面再反射層、光拡散層等を設けることができるがこれらに限定されない。これらの層を設ける位置には特に限定はなく、そのような層を設ける目的、および、そのような層の特性を考慮のうえ、適切な位置に設けることができる。 Examples of the solar cell module include a crystalline solar cell module in which solar cell elements usually formed of polycrystalline silicon or the like are sandwiched and stacked between solar cell encapsulant sheets, and both front and back surfaces are covered with protective sheets. . That is, a typical solar cell module includes a solar cell module protective sheet (surface protective sheet) / solar cell encapsulant sheet / solar cell element / solar cell encapsulant sheet / solar cell module protective sheet (back surface protection). Sheet). However, the solar cell module which is one of the preferred embodiments of the present invention is not limited to the above-described configuration, and a part of each of the above layers is appropriately omitted as long as the object of the present invention is not impaired. Layers other than the above can be provided as appropriate. Typically, an adhesive layer, a shock absorbing layer, a coating layer, an antireflection layer, a back surface rereflection layer, a light diffusion layer, and the like can be provided, but not limited thereto. There is no particular limitation on the positions where these layers are provided, and the layers can be provided at appropriate positions in consideration of the purpose of providing such layers and the characteristics of such layers.

 さらに、例えば、シランガスから化学気相成長(CVD)させてできるアモルファスシリコンをガラスやフィルムの基板上に数μmの薄いシリコン膜を形成し、必要に応じてさらに銀等の電極をスパッタした太陽電池素子を太陽電池封止材用シート、太陽電池モジュール用保護シート(裏面保護シート)の順でカバーした薄膜系(アモルファス系)太陽電池モジュールも本発明の好ましい実施形態の1つである。 Furthermore, for example, a solar cell in which amorphous silicon formed by chemical vapor deposition (CVD) from silane gas is formed on a glass or film substrate with a thin silicon film of several μm, and an electrode such as silver is sputtered as necessary. A thin film (amorphous) solar cell module in which elements are covered in the order of a solar cell encapsulant sheet and a solar cell module protective sheet (back surface protective sheet) is also a preferred embodiment of the present invention.

 また、その他太陽電池モジュールとして、太陽電池セルにシリコンを用いた太陽電池モジュールとして、結晶シリコンとアモルファスシリコンを積層したハイブリッド型(HIT型)太陽電池モジュール、吸収波長域の異なるシリコン層を積層した多接合型(タンデム型)太陽電池モジュール、無数の球状シリコン粒子(直径1mm程度)と集光能力を上げる直径2~3mmの凹面鏡(電極を兼ねる)を組み合わせた球状シリコン型太陽電池モジュール、従来のpin接合構造を持つアモルファスシリコン型のp型窓層の役割を絶縁された透明電極から電界効果によって誘起される反転層に置き換えた構造を持つ電界効果型太陽電池モジュール等が挙げられる。また、単結晶のGaAsを太陽電池セルに用いたGaAs系太陽電池モジュール、光吸収層の材料として、シリコンの代わりに、Cu、In、Ga、Al、Se、Sなどから成るカルコパイライト系と呼ばれるI-III-VI族化合物を太陽電池セルとして用いたCISまたはCIGS系(カルコパイライト系)太陽電池モジュール、Cd化合物薄膜を太陽電池セルとして用いたCdTe-CdS系太陽電池、Cu2ZnSnS4(CZTS)太陽電池モジュール等が挙げられる。本発明の太陽電池封止材または太陽電池封止材用シートは、これら全ての太陽電池モジュールに好適に用いることができる。特に、本発明の太陽電池モジュールは、吸湿性に優れるため、水分浸透に弱い薄膜系太陽電池のモジュールとして好適に用いることができる。 In addition, as other solar cell modules, solar cell modules using silicon for solar cells, hybrid type (HIT type) solar cell modules in which crystalline silicon and amorphous silicon are laminated, and multiple silicon layers having different absorption wavelength ranges are laminated. Junction type (tandem type) solar cell module, spherical silicon type solar cell module combining innumerable spherical silicon particles (diameter about 1mm) and concave mirror of 2 to 3mm in diameter (also serving as electrode) to increase the light collecting ability, conventional pin Examples include a field effect solar cell module having a structure in which the role of an amorphous silicon p-type window layer having a junction structure is replaced with an inversion layer induced by a field effect from an insulated transparent electrode. Also, a GaAs-based solar battery module using single-crystal GaAs for solar cells, and a light-absorbing layer material called a chalcopyrite system made of Cu, In, Ga, Al, Se, S, etc. instead of silicon CIS or CIGS (chalcopyrite) solar cell module using I-III-VI group compound as a solar cell, CdTe-CdS solar cell using a Cd compound thin film as a solar cell, Cu 2 ZnSnS 4 (CZTS) ) Solar cell module and the like. The solar cell encapsulant or solar cell encapsulant sheet of the present invention can be suitably used for all these solar cell modules. In particular, since the solar cell module of the present invention is excellent in hygroscopicity, it can be suitably used as a thin-film solar cell module that is vulnerable to moisture penetration.

 (太陽電池モジュール用保護シート(表面保護シート))
 本発明の好ましい実施形態である太陽電池モジュールにおいて好ましく用いられる表面保護シートには特に制限はないが、太陽電池モジュールの最表層に位置するため、耐候性、撥水性、耐汚染性、機械強度をはじめとして、太陽電池モジュールの屋外暴露における長期信頼性を確保するための性能を具備することが好ましい。また、太陽光を有効に活用するために、光学ロスの小さい、透明性の高いシートであることが好ましい。
(Protective sheet for solar cell module (surface protective sheet))
The surface protective sheet preferably used in the solar cell module which is a preferred embodiment of the present invention is not particularly limited, but is located on the outermost layer of the solar cell module, so that it has weather resistance, water repellency, stain resistance, and mechanical strength. First, it is preferable that the solar cell module has performance for ensuring long-term reliability in outdoor exposure. Moreover, in order to utilize sunlight effectively, it is preferable that it is a highly transparent sheet | seat with a small optical loss.

 太陽電池モジュールに好適に用いられる表面保護シートの材料としては、ポリエステル樹脂、フッ素系樹脂、アクリル樹脂、環状オレフィン(共)重合体、エチレン-酢酸ビニル共重合体等からなる樹脂フィルムの他、ガラス基板などが挙げられる。 Examples of the material for the surface protective sheet suitably used for the solar cell module include a resin film made of a polyester resin, a fluorine resin, an acrylic resin, a cyclic olefin (co) polymer, an ethylene-vinyl acetate copolymer, glass, and the like. Examples include substrates.

 樹脂フィルムとして特に好適なのは、透明性、強度、コスト等の点で優れたポリエステル樹脂、とりわけポリエチレンテレフタレート樹脂である。 Particularly suitable as the resin film is a polyester resin excellent in transparency, strength, cost, etc., particularly a polyethylene terephthalate resin.

 また、特に耐侯性の良いフッ素系樹脂も好適に用いられる。具体的には、四フッ化エチレン-エチレン共重合体(ETFE)、ポリフッ化ビニル樹脂(PVF)、ポリフッ化ビニリデン樹脂(PVDF)、ポリ四フッ化エチレン樹脂(TFE)、四フッ化エチレン-六フッ化プロピレン共重合体(FEP)、ポリ三フッ化塩化エチレン樹脂(CTFE)がある。耐候性の観点ではポリフッ化ビニリデン樹脂が優れているが、耐候性および機械的強度の両立では四フッ化エチレン-エチレン共重合体が優れている。また、太陽電池封止材用シートからなる層等の他の層を構成する材料との接着性の改良のために、コロナ処理、プラズマ処理を表面保護シートに行うことが望ましい。また、機械的強度向上のために延伸処理が施してあるシート、例えば2軸延伸のポリプロピレンシートを用いることも可能である。 In addition, a fluorine resin having particularly good weather resistance is also preferably used. Specifically, ethylene tetrafluoride-ethylene copolymer (ETFE), polyvinyl fluoride resin (PVF), polyvinylidene fluoride resin (PVDF), polytetrafluoroethylene resin (TFE), ethylene tetrafluoride-6 There are fluorinated propylene copolymer (FEP) and poly (trifluorotrifluoroethylene resin) (CTFE). Polyvinylidene fluoride resin is excellent from the viewpoint of weather resistance, but tetrafluoroethylene-ethylene copolymer is excellent from the viewpoint of both weather resistance and mechanical strength. Moreover, it is desirable to perform a corona treatment and a plasma treatment on the surface protective sheet in order to improve the adhesiveness with a material constituting another layer such as a layer made of a solar cell encapsulant sheet. It is also possible to use a sheet that has been subjected to stretching treatment for improving mechanical strength, for example, a biaxially stretched polypropylene sheet.

 表面保護シートとしてガラスを用いる場合には、波長350~1400nmの光の全光線透過率が80%以上であることが好ましく、より好ましくは90%以上である。かかるガラス基板としては赤外部の吸収の少ない白板ガラスを使用することが一般的であるが、青板ガラスであっても厚さが3mm以下であれば太陽電池モジュールの出力特性への影響は少ない。また、ガラス基板の機械的強度を高めるために熱処理により強化ガラスを得ることができるが、熱処理無しのフロート板ガラスを用いてもよい。また、ガラス基板の受光面側に反射を抑えるために反射防止のコーティングをしても良い。 When glass is used as the surface protective sheet, the total light transmittance of light having a wavelength of 350 to 1400 nm is preferably 80% or more, more preferably 90% or more. As such a glass substrate, it is common to use white plate glass with little absorption in the infrared part, but even blue plate glass has little influence on the output characteristics of the solar cell module if the thickness is 3 mm or less. Further, tempered glass can be obtained by heat treatment to increase the mechanical strength of the glass substrate, but float plate glass without heat treatment may be used. Further, an antireflection coating may be provided on the light receiving surface side of the glass substrate in order to suppress reflection.

 (太陽電池モジュール用保護シート(裏面保護シート))
 本発明の好ましい実施形態である太陽電池モジュールにおいて用いられる裏面保護シートには特に制限はないが、太陽電池モジュールの最表層に位置するため、上述の表面保護シートと同様に、耐候性、機械強度等の諸特性を求められる。従って、表面保護シートと同様の材質で裏面保護シートを構成しても良い。すなわち、表面保護シートにおいて用いることができる上述の各種材料を、裏面保護シートにおいても、用いることができる。特に、ポリエステル樹脂、およびガラスを好ましく用いることができる。
(Protective sheet for solar cell module (back protective sheet))
Although there is no restriction | limiting in particular in the back surface protection sheet used in the solar cell module which is preferable embodiment of this invention, Since it is located in the outermost layer of a solar cell module, it is weather resistance and mechanical strength similarly to the above-mentioned surface protection sheet. Etc. are required. Therefore, you may comprise a back surface protection sheet with the material similar to a surface protection sheet. That is, the above-mentioned various materials that can be used in the surface protective sheet can also be used in the back surface protective sheet. In particular, a polyester resin and glass can be preferably used.

 また、裏面保護シートは、太陽光の通過を前提としないため、表面保護シートで求められていた透明性は必ずしも要求されない。そこで、太陽電池モジュールの機械的強度を増すために、あるいは、温度変化による歪、反りを防止するために、補強板を張り付けても良い。例えば、鋼板、プラスチック板、FRP(ガラス繊維強化プラスチック)板等を好ましく使用することができる。 Moreover, since the back surface protection sheet does not assume the passage of sunlight, the transparency required for the surface protection sheet is not necessarily required. Therefore, a reinforcing plate may be attached to increase the mechanical strength of the solar cell module or to prevent distortion and warpage due to temperature change. For example, a steel plate, a plastic plate, an FRP (glass fiber reinforced plastic) plate or the like can be preferably used.

 (太陽電池素子)
 本発明の好ましい実施形態である太陽電池モジュールにおける太陽電池素子は、半導体の光起電力効果を利用して発電できるものであれば特に制限はなく、たとえば、シリコン(単結晶系、多結晶系、非結晶(アモルファス)系)太陽電池、化合物半導体(3-5族、2-6族、その他)太陽電池、湿式太陽電池、有機半導体太陽電池などを用いることができる。この中では発電性能とコストとのバランスなどの観点から、多結晶シリコン太陽電池が好ましい。
(Solar cell element)
The solar cell element in the solar cell module which is a preferred embodiment of the present invention is not particularly limited as long as it can generate power using the photovoltaic effect of a semiconductor. For example, silicon (single crystal system, polycrystalline system, Amorphous solar cells, compound semiconductor (Group 3-5, 2-6, etc.) solar cells, wet solar cells, organic semiconductor solar cells and the like can be used. Among these, a polycrystalline silicon solar cell is preferable from the viewpoint of balance between power generation performance and cost.

 シリコン、化合物半導体とも、太陽電池素子として優れた特性を有しているが、外部からの応力、衝撃等により破損しやすいことで知られている。本発明の太陽電池封止材用シートは、柔軟性に優れているので、太陽電池素子への応力、衝撃等を吸収して、太陽電池素子の破損を防ぐ効果が大きい。従って、本発明の好ましい実施形態である太陽電池モジュールにおいては、本発明の太陽電池封止材用シートからなる層が、直接太陽電池素子と接合されていることが望ましい。 Both silicon and compound semiconductors have excellent characteristics as solar cell elements, but are known to be easily damaged by external stress, impact, and the like. Since the solar cell encapsulant sheet of the present invention is excellent in flexibility, it has a great effect of absorbing stress, impact, etc. on the solar cell element and preventing damage to the solar cell element. Therefore, in the solar cell module which is a preferred embodiment of the present invention, it is desirable that the layer made of the sheet for solar cell sealing material of the present invention is directly joined to the solar cell element.

 また、太陽電池封止材用シートが熱可塑性を有していると、一旦太陽電池モジュールを作製した後であっても、比較的容易に太陽電池素子を取り出すことが可能であり、リサイクル性に優れている。本発明の太陽電池封止材用シートの必須成分は熱可塑性を有しているので、太陽電池封止材全体としても熱可塑性を付与することが容易であり、リサイクル性の観点からも好ましい。 In addition, when the solar cell encapsulant sheet has thermoplasticity, it is possible to take out the solar cell element relatively easily even after the solar cell module is once manufactured. Are better. Since the essential component of the sheet | seat for solar cell sealing materials of this invention has thermoplasticity, it is easy to provide thermoplasticity also as the whole solar cell sealing material, and it is preferable also from a recyclable viewpoint.

 (太陽電池モジュールの製造方法)
 太陽電池モジュールの製造に当たっては、本発明の太陽電池封止材用シートを予め作っておき、該シートが溶融する温度で圧着するという従来同様のラミネート方法によって、ラミネート温度が通常120~170℃の範囲で、すでに述べたような構成のモジュールを形成することができる。この場合、太陽電池封止材用シートは、有機過酸化物[Y]を含有することで優れた架橋特性を有し、モジュールの形成において2段階の接着工程を経る必要はなく、高温度で短時間に完結することができ、モジュールの生産性を格段に改良することができる。
(Method for manufacturing solar cell module)
In the production of the solar cell module, the sheet for solar cell encapsulant of the present invention is prepared in advance, and the laminating temperature is usually 120 to 170 ° C. by a conventional laminating method in which the sheet is pressure-bonded at a melting temperature. In scope, a module having the configuration described above can be formed. In this case, the solar cell encapsulant sheet has excellent cross-linking properties by containing the organic peroxide [Y], and it is not necessary to go through a two-step bonding process in forming the module. It can be completed in a short time, and the module productivity can be remarkably improved.

 〔発電設備〕
 本発明の好ましい実施形態である太陽電池モジュールは、生産性、発電効率、寿命等に優れている。このため、この様な太陽電池モジュールを用いた発電設備は、コスト、発電効率、寿命等に優れ、実用上高い価値を有する。
〔Power generation equipment〕
The solar cell module which is a preferred embodiment of the present invention is excellent in productivity, power generation efficiency, life and the like. For this reason, the power generation equipment using such a solar cell module is excellent in cost, power generation efficiency, life, etc., and has a high practical value.

 上記の発電設備は、家屋の屋根に設置する、キャンプなどアウトドア向けの移動電源として利用する、自動車バッテリーの補助電源として利用する等の、屋外、屋内を問わず長期間の使用に好適である。 The power generation equipment described above is suitable for long-term use, whether outdoors or indoors, such as being installed on the roof of a house, used as a mobile power source for outdoor activities such as camping, or used as an auxiliary power source for automobile batteries.

 以下、本発明を実施例に基づいて更に具体的に説明するが、本発明はこれら実施例に限定されない。以下の実施例等の記載において、特に言及しない限り、「部」は「重量部」を示す。 Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited to these examples. In the following description of Examples and the like, “parts” means “parts by weight” unless otherwise specified.

 各種物性の測定方法は、以下のとおりである。 Measure methods for various physical properties are as follows.

 〔エチレン・プロピレン・α-オレフィン系共重合体等〕
 〈重量平均分子量(Mw)および分子量分布(Mw/Mn)〉
 エチレン・プロピレン・α-オレフィン系共重合体等のゲルパーミエイションクロマトグラフィー(GPC)測定を行い、各フラクションのポリスチレン換算分子量Mi-PStを得た。次に、Mi-PStを、式[η]i-PSt・Mi-PSt=[η]i-EPR・Mi-EPR、および[η]i-PSt=1.37×10-4i-PSt 0.686、[η]i-EPR=7.2×10-4i-EPR 0.667の式を用いて、EPR換算分子量Mi-EPRに変換した。該EPR換算分子量を用いて、分子量分布(Mw/Mn)を算出した。
[Ethylene / propylene / α-olefin copolymers, etc.]
<Weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn)>
Gel permeation chromatography (GPC) measurement of an ethylene / propylene / α-olefin copolymer or the like was performed to obtain a polystyrene-equivalent molecular weight M i-PSt of each fraction. Next, M i-PSt is expressed by the formula [η] i-PSt · M i-PSt = [η] i-EPR · M i-EPR and [η] i-PSt = 1.37 × 10 −4 M Using the formula of i-PSt 0.686 , [η] i-EPR = 7.2 × 10 −4 M i-EPR 0.667 , it was converted to EPR converted molecular weight M i-EPR . The molecular weight distribution (Mw / Mn) was calculated using the EPR converted molecular weight.

 なお、ゲルパーミエイションクロマトグラフィー(GPC)法は、Waters社製ゲル浸透クロマトグラフAllianceGPC-2000型を用いて、以下のようにして測定した。分離カラムは、TSKgel GNH6-HTを2本、およびTSKgel GNH6-HTLを2本であり、カラムサイズはいずれも直径7.5mm、長さ300mmであり、カラム温度は140℃とし、移動相にはo-ジクロロベンゼン(和光純薬工業(株))および酸化防止剤としてBHT(武田薬品工業(株))0.025重量%を用いて、1.0ml/分で移動させ、試料濃度は15mg/10mlとし、試料注入量は500μlとし、検出器として示差屈折計を用いた。標準ポリスチレンは、分子量がMw<1000、およびMw>4×106については東ソー社製を用いて、1000≦Mw≦4×106についてはプレッシャーケミカル社製を用いた。 The gel permeation chromatography (GPC) method was measured as follows using a gel permeation chromatograph Alliance GPC-2000 manufactured by Waters. The separation column has two TSKgel GNH6-HT and two TSKgel GNH6-HTL. The column size is 7.5 mm in diameter and 300 mm in length, the column temperature is 140 ° C., and the mobile phase is Using o-dichlorobenzene (Wako Pure Chemical Industries, Ltd.) and 0.025% by weight of BHT (Takeda Pharmaceutical Co., Ltd.) as an antioxidant, the sample was transferred at 1.0 ml / min. The amount of sample injection was 500 μl, and a differential refractometer was used as a detector. Standard polystyrene used was made by Tosoh Corporation for molecular weights of Mw <1000 and Mw> 4 × 10 6 , and that of Pressure Chemical Co. for 1000 ≦ Mw ≦ 4 × 10 6 .

 〈密度〉
 密度は、ASTM D1505に従い、23℃にて測定した。
<density>
The density was measured at 23 ° C. according to ASTM D1505.

 〈二重結合量(不飽和結合量)〉
 二重結合量の定量は、エチレン・プロピレン・α-オレフィン系共重合体の1H-NMR測定(日本電子(株)製、「ECX400P型核磁気共鳴装置」)により行った。ここで、二重結合に由来するシグナルとして、ビニル型二重結合(ビニル基)、ビニリデン型二重結合(ビニリデン基)、2置換オレフィン型二重結合および3置換オレフィン型二重結合が観測される。各シグナルの積分強度から二重結合量を定量した。なお、エチレン・α-オレフィン系共重合体の主鎖メチレンシグナルをケミカルシフト基準(1.2ppm)とした。ビニル基とビニリデン基の合計量を分子末端二重結合量として求め、2置換オレフィン型二重結合と3置換オレフィン型二重結合の合計量を内部不飽和結合量として求め、二重結合の総量(トータル不飽和結合量)は、各二重結合の総和として求めた。0.1個/1000Cを定量限界とする分析を行い、0.1個/1000C未満の場合についてもシグナルが確認された場合は検量線を外挿して、二重結合量を計算した。
<Double bond amount (unsaturated bond amount)>
The amount of double bonds was determined by 1 H-NMR measurement of an ethylene / propylene / α-olefin copolymer (manufactured by JEOL Ltd., “ECX400P type nuclear magnetic resonance apparatus”). Here, vinyl type double bond (vinyl group), vinylidene type double bond (vinylidene group), disubstituted olefin type double bond and trisubstituted olefin type double bond are observed as signals derived from the double bond. The The amount of double bonds was quantified from the integrated intensity of each signal. The main chain methylene signal of the ethylene / α-olefin copolymer was defined as a chemical shift standard (1.2 ppm). The total amount of vinyl groups and vinylidene groups is determined as the amount of molecular terminal double bonds, and the total amount of disubstituted olefin type double bonds and trisubstituted olefin type double bonds is determined as the amount of internal unsaturated bonds. (Total unsaturated bond amount) was determined as the sum of each double bond. An analysis with 0.1 / 1000 C as the limit of quantification was performed, and when a signal was confirmed even in the case of less than 0.1 / 1000 C, a calibration curve was extrapolated to calculate the double bond amount.

Figure JPOXMLDOC01-appb-C000007
 各式中、*は水素原子以外の原子との結合手を示す。
Figure JPOXMLDOC01-appb-C000007
In each formula, * indicates a bond with an atom other than a hydrogen atom.

 各水素原子a~eのピークは、下記付近に観測される。 The peak of each hydrogen atom ae is observed near the following.

 ・水素原子aのピーク:4.60ppm
 ・水素原子bのピーク:4.85ppm
 ・水素原子cのピーク:5.10ppm
 ・水素原子dのピーク:5.25ppm
 ・水素原子eのピーク:5.70ppm
 二重結合量の定量式は、以下のとおりである。
-Peak of hydrogen atom a: 4.60 ppm
-Peak of hydrogen atom b: 4.85 ppm
-Peak of hydrogen atom c: 5.10 ppm
-Peak of hydrogen atom d: 5.25 ppm
-Peak of hydrogen atom e: 5.70 ppm
The quantitative formula for the amount of double bonds is as follows.

 ・ビニル型二重結合量={(シグナルbの積分強度)+(シグナルeの積分強度)}/3
 ・ビニリデン型二重結合量=(シグナルaの積分強度)/2
 ・2置換オレフィン型二重結合量=(シグナルdの積分強度)/2
 ・3置換オレフィン型二重結合量=(シグナルcの積分強度)
 〈融点Tm〉
 DSC測定装置内で、23℃±2℃で72時間以上の状態調節を実施した後の試験体にて、-40℃まで冷却してから昇温速度10℃/minで200℃まで上昇させ、200℃で10分間保持した後、降温速度10℃/minで-20℃まで冷却し、-20℃で1分間保持した後、再度昇温速度10℃/minで測定したときに得られるDSC曲線を作成した。このときに得られた融点をTmとした。
Vinyl-type double bond amount = {(integral intensity of signal b) + (integral intensity of signal e)} / 3
-Vinylidene type double bond amount = (integral intensity of signal a) / 2
・ 2 substituted olefin type double bond amount = (integrated intensity of signal d) / 2
・ 3-substituted olefin type double bond amount = (integrated intensity of signal c)
<Melting point Tm>
In the DSC measuring device, after the condition was adjusted for 72 hours or more at 23 ° C. ± 2 ° C., the sample was cooled to −40 ° C. and then increased to 200 ° C. at a temperature rising rate of 10 ° C./min. DSC curve obtained when held at 200 ° C. for 10 minutes, cooled to −20 ° C. at a cooling rate of 10 ° C./min, held at −20 ° C. for 1 minute, and then measured again at a heating rate of 10 ° C./min It was created. The melting point obtained at this time was defined as Tm.

 〈MFR〉
 MFRは、ASTM D1238に従い、190℃、2.16kg荷重にて測定した。
<MFR>
MFR was measured at 190 ° C. and 2.16 kg load according to ASTM D1238.

 〈コモノマー含有量(組成)〉
 日本電子製JNM GX-400型NMR測定装置を用いた。試料0.35gをヘキサクロロブタジエン2.0mlに加熱溶解させる。この溶液をグラスフィルター(G2)濾過した後、重水素化ベンゼン0.5mlを加え内径10mmのNMRチューブに装入して、120℃で13C-NMR測定を行う。積算回数は8000回以上とする。得られた13C-NMRスペクトルにより、共重合体中のエチレン含量(モル%)、プロピレン含量(モル%)およびα-オレフィン含量(モル%)を定量した。
<Comonomer content (composition)>
A JNM GX-400 NMR measuring apparatus manufactured by JEOL Ltd. was used. A 0.35 g sample is dissolved by heating in 2.0 ml of hexachlorobutadiene. This solution is filtered through a glass filter (G2), 0.5 ml of deuterated benzene is added, and the solution is placed in an NMR tube having an inner diameter of 10 mm, and 13 C-NMR measurement is performed at 120 ° C. The number of integration is 8000 times or more. From the obtained 13 C-NMR spectrum, the ethylene content (mol%), propylene content (mol%) and α-olefin content (mol%) in the copolymer were quantified.

 本発明に係わるエチレン・プロピレン・α-オレフィン系共重合体の製造例である製造例1~5を以下に示す。 Production Examples 1 to 5 which are production examples of the ethylene / propylene / α-olefin copolymer according to the present invention are shown below.

 [製造例1]
 攪拌羽根を備えた内容積30Lのステンレス製重合器(攪拌回転数=250rpm)を用いて、重合温度100℃、重合圧力2.0MPaGで、連続的にエチレン、プロピレンおよび1-オクテンとの共重合を行った。重合器側部より毎時、脱水精製したヘキサンを35L、エチレンを5.5kg、プロピレンを6.2kg、1-オクテンを8.4kgの速度で、また水素を5NL、ビス(1,3-ジメチルシクロペンタジエニル)ジルコニウムジクロリドを0.1mmol、メチルアルミノキサンをアルミニウム換算で10mmol、トリイソブチルアルミニウムを50mmolの速度で連続的に供給し、共重合反応を行った。生成したエチレン・プロピレン・1-オクテン共重合体のヘキサン溶液を、重合器側壁部に設けられた排出口を介して、重合器内溶液量20Lを維持するように液面制御弁の開度を調節しながら連続的に排出した。得られたエチレン・プロピレン・1-オクテン共重合体のヘキサン溶液を加熱器に導いて180℃に昇温し、触媒失活剤として、毎時、メタノールを3Lで添加し重合を停止させ、減圧した脱揮工程に連続的に移送して乾燥することにより、エチレン・プロピレン・1-オクテン共重合体(共重合体A)を得た。物性を表1に示す。
[Production Example 1]
Copolymerization with ethylene, propylene and 1-octene continuously at a polymerization temperature of 100 ° C. and a polymerization pressure of 2.0 MPaG using a 30 L stainless steel polymerization vessel equipped with stirring blades (stirring rotation speed = 250 rpm). Went. Hourly dehydrated and purified hexane 35 L, ethylene 5.5 kg, propylene 6.2 kg, 1-octene 8.4 kg, hydrogen 5 NL, bis (1,3-dimethylcyclohexane) Pentadienyl) zirconium dichloride was continuously supplied at a rate of 0.1 mmol, methylaluminoxane was converted to aluminum at a rate of 10 mmol, and triisobutylaluminum was continuously supplied at a rate of 50 mmol to carry out a copolymerization reaction. The opening degree of the liquid level control valve is adjusted so that the produced hexane solution of ethylene / propylene / 1-octene copolymer maintains the amount of solution in the polymerization vessel of 20 L through the outlet provided in the side wall of the polymerization vessel. It discharged continuously while adjusting. The obtained hexane solution of ethylene / propylene / 1-octene copolymer was introduced into a heater and heated to 180 ° C., and 3 mL of methanol was added every hour as a catalyst deactivator to stop the polymerization, and the pressure was reduced. An ethylene / propylene / 1-octene copolymer (copolymer A) was obtained by continuously transferring to a devolatilization step and drying. The physical properties are shown in Table 1.

 [製造例2]
 製造例1において、プロピレンフィード量、1-オクテンフィード量および水素フィード量を適宜変更したこと以外は製造例1と同様にして、エチレン・プロピレン・1-オクテン共重合体(共重合体B)を得た。物性を表1に示す。
[Production Example 2]
In Production Example 1, an ethylene / propylene / 1-octene copolymer (Copolymer B) was prepared in the same manner as in Production Example 1 except that the propylene feed amount, 1-octene feed amount and hydrogen feed amount were appropriately changed. Obtained. The physical properties are shown in Table 1.

 [製造例3]
 製造例1において、プロピレンフィード量、1-オクテンフィード量および水素フィード量を適宜変更したこと以外は製造例1と同様にして、エチレン・プロピレン・1-オクテン共重合体(共重合体C)を得た。物性を表1に示す。
[Production Example 3]
In Production Example 1, an ethylene / propylene / 1-octene copolymer (Copolymer C) was prepared in the same manner as in Production Example 1 except that the propylene feed amount, 1-octene feed amount and hydrogen feed amount were appropriately changed. Obtained. The physical properties are shown in Table 1.

 [製造例4]
 製造例1において、プロピレンフィード量、1-オクテンフィード量および水素フィード量を適宜変更したこと以外は製造例1と同様にして、エチレン・プロピレン・1-オクテン共重合体(共重合体D)を得た。物性を表1に示す。
[Production Example 4]
In Production Example 1, an ethylene / propylene / 1-octene copolymer (Copolymer D) was prepared in the same manner as in Production Example 1 except that the propylene feed amount, 1-octene feed amount and hydrogen feed amount were appropriately changed. Obtained. The physical properties are shown in Table 1.

 [製造例5]
 製造例1において、プロピレンフィード量、1-オクテンフィード量および水素フィード量を適宜変更したこと以外は製造例1と同様にして、エチレン・プロピレン・1-オクテン共重合体(共重合体E)を得た。物性を表1に示す。
[Production Example 5]
In Production Example 1, an ethylene / propylene / 1-octene copolymer (Copolymer E) was prepared in the same manner as in Production Example 1 except that the propylene feed amount, 1-octene feed amount and hydrogen feed amount were appropriately changed. Obtained. The physical properties are shown in Table 1.

 本発明の比較例として用いたエチレン・プロピレン・α-オレフィン系共重合体の製造例として、製造例6~14を以下に示す。 Production Examples 6 to 14 are shown below as production examples of the ethylene / propylene / α-olefin copolymer used as a comparative example of the present invention.

 [製造例6]
 製造例1において、プロピレンフィード量、1-オクテンフィード量および水素フィード量を適宜変更したこと以外は製造例1と同様にして、エチレン・プロピレン・1-オクテン共重合体(共重合体F)を得た。物性を表2-1に示す。
[Production Example 6]
In Production Example 1, an ethylene / propylene / 1-octene copolymer (copolymer F) was prepared in the same manner as in Production Example 1 except that the propylene feed amount, 1-octene feed amount and hydrogen feed amount were appropriately changed. Obtained. Physical properties are shown in Table 2-1.

 [製造例7]
 製造例1において、1-オクテンフィードを停止し、プロピレンフィード量、および水素フィード量を適宜変更したこと以外は製造例1と同様にして、エチレン・プロピレン共重合体(共重合体G)を得た。物性を表2-1に示す。
[Production Example 7]
In Production Example 1, an ethylene / propylene copolymer (Copolymer G) was obtained in the same manner as in Production Example 1 except that 1-octene feed was stopped and the propylene feed amount and hydrogen feed amount were appropriately changed. It was. Physical properties are shown in Table 2-1.

 [製造例8]
 製造例7において、プロピレンを1-ブテンに変更し、1-ブテンフィード量、および水素フィード量を適宜変更したこと以外は製造例1と同様にして、エチレン・1-ブテン共重合体(共重合体H)を得た。物性を表2-1に示す。
[Production Example 8]
In Production Example 7, ethylene / 1-butene copolymer (copolymer) was prepared in the same manner as in Production Example 1 except that propylene was changed to 1-butene and the 1-butene feed amount and the hydrogen feed amount were appropriately changed. Combined H) was obtained. Physical properties are shown in Table 2-1.

 [製造例9]
 製造例1において、1-オクテンフィードを停止し、プロピレンフィード量、および水素フィード量を適宜変更したこと以外は製造例1と同様にして、エチレン・プロピレン共重合体(共重合体I)を得た。物性を表2-1に示す。
[Production Example 9]
In Production Example 1, an ethylene / propylene copolymer (Copolymer I) was obtained in the same manner as in Production Example 1, except that 1-octene feed was stopped and the propylene feed amount and hydrogen feed amount were appropriately changed. It was. Physical properties are shown in Table 2-1.

 [製造例10] 
 製造例9において、プロピレンを1-ブテンに変更し、1-ブテンフィード量および水素フィード量を適宜変更したこと以外は製造例1と同様にして、エチレン・1-ブテン共重合体(共重合体J)を得た。物性を表2-1に示す。
[Production Example 10]
An ethylene / 1-butene copolymer (copolymer) was prepared in the same manner as in Production Example 1 except that propylene was changed to 1-butene and the 1-butene feed amount and the hydrogen feed amount were appropriately changed in Production Example 9. J) was obtained. Physical properties are shown in Table 2-1.

 [製造例11]
 製造例1において、プロピレンフィード量、1-オクテンフィード量、水素フィード量および重合圧力を適宜変更したこと以外は製造例1と同様にして、エチレン・プロピレン・1-オクテン共重合体(共重合体K)を得た。物性を表2-2に示す。
[Production Example 11]
An ethylene / propylene / 1-octene copolymer (copolymer) was prepared in the same manner as in Production Example 1 except that the propylene feed amount, 1-octene feed amount, hydrogen feed amount and polymerization pressure were appropriately changed. K) was obtained. The physical properties are shown in Table 2-2.

 [製造例12]
 製造例1において、1-オクテンを1-ブテンに変更し、プロピレンフィード量、1-ブテンフィード量、水素フィード量および重合圧力を適宜変更したこと以外は製造例1と同様にして、エチレン・プロピレン・1-ブテン共重合体(共重合体L)を得た。物性を表2-2に示す。
[Production Example 12]
Ethylene / propylene was prepared in the same manner as in Production Example 1 except that 1-octene was changed to 1-butene in Production Example 1 and the propylene feed amount, 1-butene feed amount, hydrogen feed amount and polymerization pressure were appropriately changed. A 1-butene copolymer (Copolymer L) was obtained. The physical properties are shown in Table 2-2.

 [製造例13]
 製造例7において、1-ブテンフィード量、および水素フィード量を適宜変更したこと以外は製造例1と同様にして、エチレン・1-ブテン共重合体(共重合体M)を得た。物性を表2-2に示す。
[Production Example 13]
An ethylene / 1-butene copolymer (copolymer M) was obtained in the same manner as in Production Example 1 except that the 1-butene feed amount and the hydrogen feed amount were appropriately changed in Production Example 7. The physical properties are shown in Table 2-2.

 [製造例14]
 製造例7において、1-ブテンフィード量、および水素フィード量を適宜変更したこと以外は製造例1と同様にして、エチレン・1-ブテン共重合体(共重合体N)を得た。物性を表2-2に示す。
[Production Example 14]
In Production Example 7, an ethylene / 1-butene copolymer (Copolymer N) was obtained in the same manner as in Production Example 1, except that the 1-butene feed amount and the hydrogen feed amount were appropriately changed. The physical properties are shown in Table 2-2.

 比較例10では、下記市販品を用いた。 In Comparative Example 10, the following commercially available products were used.

 エチレン・1-オクテン共重合体として、Exact(登録商標)5361(エクソンモービルケミカル社製)を用いた。物性を表2-2に示す。 Exact (registered trademark) 5361 (manufactured by ExxonMobil Chemical Co., Ltd.) was used as the ethylene / 1-octene copolymer. The physical properties are shown in Table 2-2.

 [実施例1]
 サーモ・プラスチック(株)社製単軸押出機(スクリュー径20mmφ・L/D=28)にコートハンガー式T型ダイス(リップ形状;270×0.8mm)を装着したシート成形機で、製造例1のエチレン・プロピレン・1-オクテン共重合体(共重合体A)を、ダイス温度=190℃条件、ロール温度30℃、巻き取り速度1.0m/minで成形し、厚み=0.5mmのシートを得た。該シートを用いて引張破壊応力,引張破壊ひずみを評価した。
[Example 1]
A sheet molding machine with a coat hanger type T die (lip shape; 270 x 0.8 mm) mounted on a single screw extruder (screw diameter: 20 mmφ · L / D = 28) manufactured by Thermo Plastic Co., Ltd. 1 ethylene / propylene / 1-octene copolymer (copolymer A) was molded under the conditions of a die temperature = 190 ° C., a roll temperature of 30 ° C., and a winding speed of 1.0 m / min, and a thickness = 0.5 mm. A sheet was obtained. Using this sheet, tensile fracture stress and tensile fracture strain were evaluated.

 モダンマシナリー(株)社製3種3層キャスト成形機の押出機1台を稼働し、プライムポリマー(株)社製プライムポリプロF107とエチレン・プロピレン・1-オクテン共重合体(共重合体A)を重量比50:50でドライブレンドしたサンプルを、押出機温度=240℃、ダイス温度=240℃、アダプター温度=240℃、スクリュー回転数100rpmで成形し、厚み0.05mmのフィルムを5kg作製した。該フィルムを用いてフィッシュアイを目視観測し、フィッシュアイが殆ど無いものを「○」、フィッシュアイが僅かに有るものを「△」、フィッシュアイが多数確認されたものを「×」と判定した。 Operated one extruder of 3 types, 3 layers cast molding machine manufactured by Modern Machinery Co., Ltd. Prime Polymer Pro 107 manufactured by Prime Polymer Co., Ltd. and ethylene / propylene / 1-octene copolymer (Copolymer A) A sample obtained by dry blending with a weight ratio of 50:50 was molded at an extruder temperature = 240 ° C., a die temperature = 240 ° C., an adapter temperature = 240 ° C., and a screw rotation speed of 100 rpm, and 5 kg of a 0.05 mm-thick film was produced. . The fish eyes were visually observed using the film, and “◯” indicates that there is almost no fish eye, “△” indicates that there are few fish eyes, and “×” indicates that many fish eyes have been confirmed. .

 各評価結果を表1に示す。 Each evaluation result is shown in Table 1.

 [実施例2、5および比較例1~10]
 実施例1に記載のエチレン・プロピレン・1-オクテン共重合体(共重合体A)を、表1および表2に記載の共重合体等に変更した以外は、実施例1と同様にして厚み0.5mmのシートおよび厚み0.05mmのフィルムを作製した。
[Examples 2 and 5 and Comparative Examples 1 to 10]
Except that the ethylene / propylene / 1-octene copolymer (copolymer A) described in Example 1 was changed to the copolymers described in Tables 1 and 2, the thickness was the same as in Example 1. A 0.5 mm sheet and a 0.05 mm thick film were prepared.

 各評価結果を表1、表2-1および表2-2に示す。 The evaluation results are shown in Table 1, Table 2-1, and Table 2-2.

 [実施例3]
 サーモ・プラスチック(株)社製単軸押出機(スクリュー径20mmφ・L/D=28)にコートハンガー式T型ダイス(リップ形状;270×0.8mm)を装着したシート成形機で、製造例1のエチレン・プロピレン・1-オクテン共重合体(共重合体C)を、ダイス温度=120℃、ロール温度30℃、巻き取り速度1.0m/minで成形し、厚み=0.5mmのシートを得た。該シートを用いて引張破壊応力,引張破壊ひずみを評価した。
[Example 3]
A sheet molding machine with a coat hanger type T die (lip shape; 270 x 0.8 mm) mounted on a single screw extruder (screw diameter: 20 mmφ · L / D = 28) manufactured by Thermo Plastic Co., Ltd. No. 1 ethylene / propylene / 1-octene copolymer (copolymer C) was molded at a die temperature of 120 ° C., a roll temperature of 30 ° C., a winding speed of 1.0 m / min, and a sheet having a thickness of 0.5 mm. Got. Using this sheet, tensile fracture stress and tensile fracture strain were evaluated.

 モダンマシナリー(株)社製3種3層キャスト成形機の押出機1台を稼働し、プライムポリマー(株)社製プライムポリプロF107とエチレン・プロピレン・1-オクテン共重合体(共重合体C)を重量比50:50でドライブレンドしたサンプルを、押出機温度=240℃、ダイス温度=240℃、アダプター温度=240℃、スクリュー回転数100rpmで成形し、厚み0.05mmのフィルムを5kg作製した。該フィルムを用いてフィッシュアイを目視観測し、フィッシュアイが殆ど無いものを「○」、フィッシュアイが僅かに有るものを「△」、フィッシュアイが多数確認されたものを「×」と判定した。 Operated one extruder of 3 types, 3 layers cast molding machine manufactured by Modern Machinery Co., Ltd. Prime Polymer Pro 107 manufactured by Prime Polymer Co., Ltd. and ethylene / propylene / 1-octene copolymer (Copolymer C) A sample obtained by dry blending with a weight ratio of 50:50 was molded at an extruder temperature = 240 ° C., a die temperature = 240 ° C., an adapter temperature = 240 ° C., and a screw rotation speed of 100 rpm, and 5 kg of a film having a thickness of 0.05 mm was produced. . The fish eyes were visually observed using the film, and “◯” indicates that there is almost no fish eye, “△” indicates that there are few fish eyes, and “×” indicates that many fish eyes have been confirmed. .

 各評価結果を表1に示す。 Each evaluation result is shown in Table 1.

 [実施例4]
 実施例1に記載のエチレン・プロピレン・1-オクテン共重合体(共重合体A)を、表1に記載の共重合体に変更した以外は、実施例1と同様にして厚み0.5mmのシートおよび厚み0.05mmのフィルムを作製した。
[Example 4]
The ethylene / propylene / 1-octene copolymer (copolymer A) described in Example 1 was replaced with the copolymer described in Table 1 in the same manner as in Example 1 except that the thickness was 0.5 mm. A sheet and a film having a thickness of 0.05 mm were prepared.

 各評価結果を表1に示す。 Each evaluation result is shown in Table 1.

Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008

Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009

Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010

Claims (8)

 下記の要件(x-1)を満たすエチレン・プロピレン・α-オレフィン系共重合体[X]を含有する、フィルムまたはシート。
 (x-1)エチレンに由来する構成単位(i)を74~92モル%、プロピレンに由来する構造単位(ii)を5~16モル%、かつ、炭素数5以上20以下のα-オレフィンに由来する構造単位(iii)を3~10モル%含む(ただし、構成単位(i)、(ii)および(iii)の合計を100モル%とする)。
A film or sheet containing an ethylene / propylene / α-olefin copolymer [X] that satisfies the following requirement (x-1).
(X-1) an α-olefin having 74 to 92 mol% of the structural unit (i) derived from ethylene, 5 to 16 mol% of the structural unit (ii) derived from propylene, and having 5 to 20 carbon atoms. 3 to 10 mol% of the derived structural unit (iii) (provided that the total of the structural units (i), (ii) and (iii) is 100 mol%).
 前記共重合体[X]が、さらに下記の要件(x-2)、(x-3)のいずれか1つ以上を満たすことを特徴とする、請求項1に記載のフィルムまたはシート。
 (x-2)密度が850~900kg/m3である。
 (x-3)ASTM D1238に準拠して、190℃、2.16kg荷重で測定したMFRが0.1~50g/10分である。
The film or sheet according to claim 1, wherein the copolymer [X] further satisfies any one or more of the following requirements (x-2) and (x-3).
(X-2) The density is 850 to 900 kg / m 3 .
(X-3) According to ASTM D1238, MFR measured at 190 ° C. and a load of 2.16 kg is 0.1 to 50 g / 10 min.
 上記炭素数5以上20以下のα-オレフィンに由来する構造単位(iii)が1-オクテンに由来する構成単位であることを特徴とする、請求項1または2に記載のフィルムまたはシート。 3. The film or sheet according to claim 1, wherein the structural unit (iii) derived from an α-olefin having 5 to 20 carbon atoms is a structural unit derived from 1-octene.  厚さが0.01mm~2mmである、請求項1~3のいずれかに記載のフィルムまたはシート。 The film or sheet according to any one of claims 1 to 3, having a thickness of 0.01 mm to 2 mm.  請求項1~4のいずれかに記載のフィルムまたはシートを含む、太陽電池封止材。 A solar cell encapsulant comprising the film or sheet according to any one of claims 1 to 4.  請求項5に記載の太陽電池封止材を含んでなる、太陽電池モジュール。 A solar cell module comprising the solar cell encapsulant according to claim 5.  下記の要件(x-1)を満たす、エチレン・プロピレン・α-オレフィン系共重合体[X]を含む樹脂組成物からシートを得る工程を含む、太陽電池封止材用シートの製造方法。
 (x-1)エチレンに由来する構成単位(i)を74~92モル%、プロピレンに由来する構造単位(ii)を5~16モル%、かつ、炭素数5以上20以下のα-オレフィンに由来する構造単位(iii)を3~10モル%含む(ただし、構成単位(i)、(ii)および(iii)の合計を100モル%とする)。
A method for producing a sheet for a solar cell encapsulant, comprising a step of obtaining a sheet from a resin composition containing an ethylene / propylene / α-olefin copolymer [X] that satisfies the following requirement (x-1).
(X-1) an α-olefin having 74 to 92 mol% of the structural unit (i) derived from ethylene, 5 to 16 mol% of the structural unit (ii) derived from propylene, and having 5 to 20 carbon atoms. 3 to 10 mol% of the derived structural unit (iii) (provided that the total of the structural units (i), (ii) and (iii) is 100 mol%).
 下記の要件(x-1)を満たす、エチレン・プロピレン・α-オレフィン系共重合体[X]を含む樹脂組成物。
 (x-1)エチレンに由来する構成単位(i)を74~92モル%、プロピレンに由来する構造単位(ii)を5~16モル%、かつ、炭素数5以上20以下のα-オレフィンに由来する構造単位(iii)を3~10モル%含む(ただし、構成単位(i)、(ii)および(iii)の合計を100モル%とする)。
A resin composition comprising an ethylene / propylene / α-olefin copolymer [X] that satisfies the following requirement (x-1).
(X-1) an α-olefin having 74 to 92 mol% of the structural unit (i) derived from ethylene, 5 to 16 mol% of the structural unit (ii) derived from propylene, and having 5 to 20 carbon atoms. 3 to 10 mol% of the derived structural unit (iii) (provided that the total of the structural units (i), (ii) and (iii) is 100 mol%).
PCT/JP2018/009877 2017-03-28 2018-03-14 Resin composition, sheet, solar cell sealing material, solar cell module, and method for producing sheet for solar cell sealing material WO2018180483A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019509219A JP6898426B2 (en) 2017-03-28 2018-03-14 Method for manufacturing resin composition, sheet, solar cell encapsulant, solar cell module, sheet for solar cell encapsulant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-063077 2017-03-28
JP2017063077 2017-03-28

Publications (1)

Publication Number Publication Date
WO2018180483A1 true WO2018180483A1 (en) 2018-10-04

Family

ID=63677866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009877 WO2018180483A1 (en) 2017-03-28 2018-03-14 Resin composition, sheet, solar cell sealing material, solar cell module, and method for producing sheet for solar cell sealing material

Country Status (2)

Country Link
JP (1) JP6898426B2 (en)
WO (1) WO2018180483A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021024953A (en) * 2019-08-05 2021-02-22 三井化学株式会社 Copolymer, composition, sheet, and sealing material for solar cell
JP2021070793A (en) * 2019-11-01 2021-05-06 三井化学株式会社 adhesive
WO2024190872A1 (en) * 2023-03-15 2024-09-19 デンカ株式会社 Compound, copolymer, composition, varnish and cured products of those

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0931131A (en) * 1995-07-21 1997-02-04 Japan Synthetic Rubber Co Ltd Low-crystalline ethylene random copolymer and its composition
JP2005120308A (en) * 2003-10-20 2005-05-12 Mitsui Chemicals Inc Viscosity adjusting agent for lubricating oil and lubricating oil composition
JP2005194506A (en) * 2003-12-12 2005-07-21 Mitsui Chemicals Inc Ethylene terpolymer and propylene resin composition
JP2012049467A (en) * 2010-08-30 2012-03-08 Mitsubishi Plastics Inc Solar cell sealing material and solar cell module produced using the same
JP2012074686A (en) * 2010-08-31 2012-04-12 Mitsubishi Plastics Inc Front surface protective sheet for solar battery and solar battery module produced using same
JP2012164962A (en) * 2011-01-18 2012-08-30 Mitsubishi Plastics Inc Solar cell sealing material and solar cell module produced by using the same
JP2013021082A (en) * 2011-07-08 2013-01-31 Japan Polyethylene Corp Resin composition for solar cell sealing material, and solar cell sealing material, and solar cell module using the same
JP2013229618A (en) * 2010-11-02 2013-11-07 Mitsui Chemicals Inc Solar cell sealing material and solar cell module
JP2014208774A (en) * 2013-03-29 2014-11-06 日本ポリエチレン株式会社 Ethylenic copolymer, and solar cell encapsulation material and solar cell module using the same
JP2015199930A (en) * 2014-03-31 2015-11-12 日本ポリエチレン株式会社 Method for producing resin composition for solar cell encapsulant, solar cell encapsulant and solar cell module using the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0931131A (en) * 1995-07-21 1997-02-04 Japan Synthetic Rubber Co Ltd Low-crystalline ethylene random copolymer and its composition
JP2005120308A (en) * 2003-10-20 2005-05-12 Mitsui Chemicals Inc Viscosity adjusting agent for lubricating oil and lubricating oil composition
JP2005194506A (en) * 2003-12-12 2005-07-21 Mitsui Chemicals Inc Ethylene terpolymer and propylene resin composition
JP2012049467A (en) * 2010-08-30 2012-03-08 Mitsubishi Plastics Inc Solar cell sealing material and solar cell module produced using the same
JP2012074686A (en) * 2010-08-31 2012-04-12 Mitsubishi Plastics Inc Front surface protective sheet for solar battery and solar battery module produced using same
JP2013229618A (en) * 2010-11-02 2013-11-07 Mitsui Chemicals Inc Solar cell sealing material and solar cell module
JP2012164962A (en) * 2011-01-18 2012-08-30 Mitsubishi Plastics Inc Solar cell sealing material and solar cell module produced by using the same
JP2013021082A (en) * 2011-07-08 2013-01-31 Japan Polyethylene Corp Resin composition for solar cell sealing material, and solar cell sealing material, and solar cell module using the same
JP2014208774A (en) * 2013-03-29 2014-11-06 日本ポリエチレン株式会社 Ethylenic copolymer, and solar cell encapsulation material and solar cell module using the same
JP2015199930A (en) * 2014-03-31 2015-11-12 日本ポリエチレン株式会社 Method for producing resin composition for solar cell encapsulant, solar cell encapsulant and solar cell module using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021024953A (en) * 2019-08-05 2021-02-22 三井化学株式会社 Copolymer, composition, sheet, and sealing material for solar cell
JP7452957B2 (en) 2019-08-05 2024-03-19 三井化学株式会社 Copolymers, compositions, sheets, and encapsulants for solar cells
JP2021070793A (en) * 2019-11-01 2021-05-06 三井化学株式会社 adhesive
JP7423262B2 (en) 2019-11-01 2024-01-29 三井化学株式会社 glue
WO2024190872A1 (en) * 2023-03-15 2024-09-19 デンカ株式会社 Compound, copolymer, composition, varnish and cured products of those

Also Published As

Publication number Publication date
JP6898426B2 (en) 2021-07-07
JPWO2018180483A1 (en) 2019-12-12

Similar Documents

Publication Publication Date Title
JP5016153B2 (en) Solar cell encapsulant and solar cell module
JP5444039B2 (en) Resin composition, solar cell sealing material, and solar cell module using the same
US8945701B2 (en) Ethylene resin composition, sealing material for solar cell, and solar cell module utilizing the sealing material
JP5483646B2 (en) Solar cell encapsulant and solar cell module
JP5405699B1 (en) Solar cell encapsulant and solar cell module
JP5859633B2 (en) Solar cell encapsulant and solar cell module
JP6001087B2 (en) Solar cell encapsulant and solar cell module
US20150171247A1 (en) Solar cell module
WO2013128861A1 (en) Sheet set for solar cell sealing
JP5854473B2 (en) Solar cell encapsulant and solar cell module
JP5830600B2 (en) Solar cell encapsulant and solar cell module
JP5801733B2 (en) Solar cell encapsulant and solar cell module
JP2011012243A (en) Ethylene-based resin composition, solar cell sealing material and solar cell module using the same
JP6898426B2 (en) Method for manufacturing resin composition, sheet, solar cell encapsulant, solar cell module, sheet for solar cell encapsulant
JP2016136628A (en) Solar cell module and manufacturing method thereof
JP2012207144A (en) Ethylene-based resin composition, solar cell sealing material and solar cell module using the same
JP7452957B2 (en) Copolymers, compositions, sheets, and encapsulants for solar cells
WO2013190940A1 (en) Solar cell sealing material and solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774434

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509219

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18774434

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载