+

WO2018180319A1 - Thermally conductive foam sheet - Google Patents

Thermally conductive foam sheet Download PDF

Info

Publication number
WO2018180319A1
WO2018180319A1 PCT/JP2018/008858 JP2018008858W WO2018180319A1 WO 2018180319 A1 WO2018180319 A1 WO 2018180319A1 JP 2018008858 W JP2018008858 W JP 2018008858W WO 2018180319 A1 WO2018180319 A1 WO 2018180319A1
Authority
WO
WIPO (PCT)
Prior art keywords
foam sheet
thermally conductive
conductive foam
mass
process oil
Prior art date
Application number
PCT/JP2018/008858
Other languages
French (fr)
Japanese (ja)
Inventor
梨絵 松井
一平 藤本
典男 神保
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2018513893A priority Critical patent/JPWO2018180319A1/en
Publication of WO2018180319A1 publication Critical patent/WO2018180319A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/01Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Ethene-propene or ethene-propene-diene copolymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a thermally conductive foam sheet.
  • the heat generated from the components and devices is significantly increased due to the downsizing of the devices.
  • the device In addition to lowering the temperature, the device itself has heat, which may cause low-temperature burns or ignition.
  • a heat countermeasure for these members a heat path is created by bringing the heat generating member mounted inside the device into contact with a metal member that also serves as a heat sink, such as a sheet metal or shield material, inside the device, thereby reducing the temperature of the heat generating member. It is common to plan.
  • a silicone resin foam sheet containing a heat conductive filler can be used.
  • the heat conductive foam sheet for electronic devices containing an elastomer resin and heat conductors, such as magnesium oxide or aluminum oxide is also known (patent document 1).
  • the conventional thermally conductive foam sheet containing the thermally conductive filler contains a relatively large amount of thermally conductive filler in order to improve heat dissipation. In the case of contact between the member and the metal member, the adhesion tends to deteriorate. In addition, a thermally conductive foam sheet containing a thermally conductive filler tends to generate a large number of coarse bubbles, and thus there is a problem that the reliability of the product is not sufficient, such as insufficient thermal performance. It was.
  • the present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a thermally conductive foam sheet that is excellent in thermal conductivity and foamability, has few coarse bubbles, and is highly reliable as a product. And
  • the inventors of the present invention have made extensive studies in order to achieve the above object. As a result, it contains 100 parts by mass of a main agent composed of an elastomer resin and process oil and 150 to 550 parts by mass of a heat conductive filler, and the content of process oil in 100 parts by mass of the main ingredient is 18 to 75 parts by mass.
  • the present invention was completed by finding that a heat conductive foam sheet having a weight average molecular weight of 6500 or less can solve the above problems. That is, the present invention relates to the following [1] to [11].
  • the thermally conductive filler is aluminum oxide, magnesium oxide, zinc oxide, boron nitride, talc, aluminum nitride, graphite, graphene, crystalline silica, silicon carbide, silicon nitride, beryllia, diamond, graphite, carbon nanotube, and
  • thermally conductive foam sheet according to any one of [1] to [8] above, wherein the content of the elastomer resin is 80% by mass or more based on the total amount of the resin components.
  • An adhesive sheet comprising the thermally conductive foam sheet according to any one of [1] to [10] above and an adhesive material provided on one or both surfaces of the thermally conductive foam sheet.
  • thermoly conductive foam sheet that has good thermal conductivity and foamability, has few coarse bubbles, and is highly reliable as a product.
  • the thermally conductive foam sheet of the present invention contains 100 parts by mass of a main agent composed of an elastomer resin and a process oil, and 150 to 550 parts by mass of a heat conductive filler, and the content of process oil in 100 parts by mass of the main agent.
  • the thermally conductive foam sheet is 18 to 75 parts by mass, and the process oil has a weight average molecular weight of 6500 or less.
  • the main agent in the present invention is composed of an elastomer resin and a process oil.
  • the content of process oil in 100 parts by mass of the main agent is 18 to 75 parts by mass, preferably 25 to 70 parts by mass, and more preferably 35 to 60 parts by mass.
  • the process oil content is less than 18 parts by mass, coarse bubbles are likely to be generated.
  • the process oil content is more than 75 parts by mass, the generation of coarse bubbles is reduced, but the foaming property is deteriorated and the expansion ratio is lowered. Tend to.
  • the elastomer resin is not particularly limited, but acrylonitrile butadiene rubber, ethylene propylene diene rubber, ethylene propylene rubber, natural rubber, polybutadiene rubber, polyisoprene rubber, styrene-butadiene block copolymer, hydrogenated styrene-butadiene block copolymer. And hydrogenated styrene-butadiene-styrene block copolymer, hydrogenated styrene-isoprene block copolymer, hydrogenated styrene-isoprene-styrene block copolymer, and the like.
  • acrylonitrile butadiene rubber and ethylene propylene diene rubber are preferable, and ethylene propylene diene rubber is more preferable from the viewpoint of improving foamability even if a relatively large amount of thermally conductive filler is blended.
  • These elastomer resins may be used alone or in combination of two or more.
  • these elastomers may be liquid elastomers that are liquid at room temperature (23 ° C.) and normal pressure (1 atm), may be solid, or may be a mixture thereof. .
  • the amount of the solid elastomer resin is preferably larger than the amount of the liquid elastomer resin, and the total amount of the solid elastomer resin and the liquid elastomer resin is based on the total amount.
  • the solid elastomer resin is preferably 80% by mass or more, more preferably 95% by mass or more, and further preferably 100% by mass. That is, from the viewpoint of suppressing the generation of coarse bubbles, it is preferable to use a solid elastomer resin alone as the elastomer resin.
  • the Mooney viscosity (ML 1 + 4 , 100 ° C.) of the solid elastomer is preferably 10 to 100, more preferably 10 to 70, and more preferably 20 to 50.
  • Mooney viscosity (ML 1 + 4 , 100 ° C.) is a value measured in accordance with JIS K6300-1.
  • Process oil is used for the thermally conductive foam sheet of the present invention.
  • the affinity with the elastomer resin is increased, the foamability is improved, and the generation of coarse bubbles is suppressed.
  • limit especially as process oil, Vegetable oil, animal oil, mineral oil, synthetic oil etc. are mentioned.
  • at least one selected from the group consisting of mineral oil and synthetic oil is preferable.
  • the mineral oil include paraffinic process oil, naphthenic process oil, aromatic process oil, and the like, and paraffinic process oil is preferable from the viewpoint of increasing affinity with the elastomer resin and suppressing the generation of coarse bubbles. .
  • paraffinic process oil when ethylene propylene diene rubber is used as the elastomer resin, the use of paraffinic process oil as the process oil makes it easy to suppress the generation of coarse bubbles.
  • Products that are commercially available as paraffinic process oil include Diana Process Oil PW-32, PW-90, PW-380 manufactured by Idemitsu Kosan Co., Ltd., Super Oil M-10, M- manufactured by JX Energy Co., Ltd. 12, M-22, M-32, M-46, M-68, M-100, M-150, M-460, Nippon San Oil Co., Ltd. Thamper 107, 110, 115, 150, 2100, 2280 And Stanol LP40 manufactured by Esso Petroleum Corporation.
  • a hydrocarbon-type oligomer is preferable.
  • the hydrocarbon oligomer a homopolymer oligomer obtained by polymerizing a single monomer selected from ethylene and ⁇ -olefin such as propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, or the like, or Any of the copolymerization type oligomers which copolymerized 2 or more types of monomers may be sufficient. From the viewpoint of increasing the affinity with the elastomer resin and suppressing the generation of coarse bubbles, a copolymer oligomer is preferred.
  • an ethylene ⁇ -olefin oligomer obtained by copolymerizing ethylene and an ⁇ -olefin is preferable, and an ethylene-propylene oligomer is more preferable.
  • the ethylene content is preferably 20 to 80% by mass, more preferably 30 to 70% by mass, further preferably 40 to 60% by mass,
  • the structure is preferably amorphous.
  • ethylene propylene diene rubber is used as the elastomer resin, the use of ethylene propylene oligomer as the process oil makes it easy to suppress the generation of coarse bubbles.
  • Examples of products that are commercially available as ethylene propylene oligomers include Lucant HC-40, HC-100, HC-600, and HC-2000 manufactured by Mitsui Chemicals. Process oils may be used alone or in combination of two or more.
  • the weight average molecular weight of the process oil of the present invention is 6500 or less. When the weight average molecular weight is larger than 6500, the number of coarse bubbles tends to increase.
  • the weight average molecular weight of the process oil is preferably 300 to 5000, more preferably 450 to 4000, and still more preferably from the viewpoint of improving the foamability of the thermally conductive foam sheet and suppressing the generation of coarse bubbles. Is 500-2000.
  • the weight average molecular weight can be measured using gel permeation chromatography (GPC), and can be measured in detail by the method described in the Examples.
  • the kinematic viscosity at 40 ° C. of the process oil is preferably 30000 mm 2 / s or less, more preferably 20 to 10000 mm 2 / s, and further preferably 70 to 3000 mm 2 / s. More preferably, it is 80 to 500 mm 2 / s.
  • the kinematic viscosity can be measured by the method described in the examples.
  • the thermally conductive foam sheet of the present invention contains 150 to 550 parts by mass of a thermally conductive filler with respect to 100 parts by mass of the main agent composed of an elastomer resin and process oil.
  • the thermal conductive filler is less than 150 parts by mass, the thermal conductivity of the thermal conductive foam sheet is low, and when it exceeds 550 parts by mass, the foamability tends to be poor.
  • thermally conductive filler examples include aluminum oxide, magnesium oxide, zinc oxide, boron nitride, talc, aluminum nitride, graphite, graphene, crystalline silica, silicon carbide, silicon nitride, beryllia, diamond, graphite, and carbon nanotube ( CNT), carbon fiber, and the like, and besides these, copper powder, nickel filler, and the like can be given.
  • magnesium oxide, aluminum oxide, zinc oxide, and boron nitride are preferable, and magnesium oxide is more preferable.
  • a heat conductive filler may be used individually by 1 type, and 2 or more types may be mixed and used for it. These fillers may be surface-treated in order to improve adhesion to the resin and workability.
  • the blending amount of the heat conductive filler is preferably 200 to 500 parts by mass, more preferably 230 to 400 parts by mass, and further preferably 250 to 350 parts by mass with respect to 100 parts by mass of the main agent. .
  • the particle size of the heat conductive filler is preferably 0.1 to 200 ⁇ m, more preferably 5 to 150 ⁇ m, and still more preferably 8 to 50 ⁇ m.
  • a laser diffraction / scattering particle size distribution measuring device (HELOS / BFM, manufactured by Sympatec GmbH) is used.
  • the thermal conductivity of the thermally conductive filler is preferably 5 W / m ⁇ K or more, more preferably 20 W / m ⁇ K or more, and preferably 2000 W / m ⁇ K or less.
  • the shape of the heat conductive filler is not particularly limited, and may be any shape such as a spherical shape, a hollow shape, a plate shape, a scaly shape, a needle shape, and a fiber shape.
  • the filler volume% is preferably 25 to 60 volume%, more preferably 30 to 50 volume%, and still more preferably 35 to 50 volume%. It is preferable to mix.
  • the volume% of the heat conductive filler is calculated on the basis of the total volume of the heat conductive foam sheet, but the volume of the heat conductive foam sheet is, for example, that of the foamable resin composition described later. It is possible to calculate by subtracting the volume of the additive (foaming agent) that decomposes and disappears during foaming from the total volume.
  • the volume of the above-described heat conductive filler can be calculated from the mass of each component to be blended, and can be calculated, for example, by multiplying the mass of each component by the density at 23 ° C. of each component.
  • the heat conductive foam sheet may contain other resins other than the elastomer resin as long as the effects of the present invention are not hindered.
  • the content of the elastomer resin is preferably 80% by mass or more, more preferably 95% by mass or more, and 97% by mass or more with respect to the resin component total amount standard (total amount of the elastomer resin and other resins). More preferably, it is more preferably 100% by mass.
  • other resins other than the elastomer resin include thermoplastic resins such as polypropylene, polyethylene, polymethylpentene, ethylene-propylene copolymer, and polystyrene.
  • blended as needed are mutually compatible in a heat conductive foam sheet.
  • being compatible means that a phase separation structure such as a sea-island structure is not formed.
  • the thermally conductive foam sheet may be composed of a main agent and a thermally conductive filler, but in addition to these, various additive components are contained as necessary within the range in which the object of the present invention is not impaired. be able to. Specifically, these additive components are contained in an amount of, for example, 50 parts by mass or less, preferably 20 parts by mass or less, more preferably 10 parts by mass or less, and further preferably 5 parts by mass or less, with respect to 100 parts by mass of the main agent.
  • the kind of the additive component is not particularly limited, and various additives usually used for foam molding can be used.
  • additives examples include lubricants, shrinkage inhibitors, cell nucleating agents, crystal nucleating agents, plasticizers, colorants (pigments, dyes, etc.), ultraviolet absorbers, antioxidants, anti-aging agents, and copper damage prevention.
  • Agents fillers excluding the above-mentioned conductivity-imparting materials, reinforcing agents, flame retardants, flame retardant aids, antistatic agents, surfactants, vulcanizing agents, surface treatment agents and the like.
  • the addition amount of the additive can be appropriately selected within a range that does not impair the formation of bubbles and the like, and the addition amount used for normal resin foaming and molding can be adopted.
  • Such additives can be used alone or in combination of two or more.
  • the expansion ratio of the thermally conductive foam sheet is preferably 2 to 10 times, more preferably 3 to 8 times, still more preferably 4 to 8 times, and further preferably 4.5 to 7 times.
  • the expansion ratio is 2 times or more, the thermally conductive foam sheet becomes light.
  • flexibility is increased, and for example, adhesion to a member inside the electronic device is increased.
  • the expansion ratio is 10 times or less, the thermal conductivity is good.
  • the thickness of the thermally conductive foam sheet is appropriately selected depending on the intended use and is not particularly limited, but is preferably 0.05 to 2 mm, more preferably 0.1 to 1.5 mm, and still more preferably 0.2. ⁇ 1 mm.
  • the thermal conductivity at 50% compression of the thermally conductive foam sheet is preferably 0.3 to 5.0 W / m ⁇ K, and more preferably 0.4 to 3.0 W / m ⁇ K.
  • the number of coarse bubbles having a maximum diameter of 2.0 mm or more in the thermally conductive foam sheet is preferably 3 or less per 1 m 3 , and more preferably 2 or less. The number of coarse bubbles can be measured by the method described in Examples.
  • the heat conductive foam sheet of the present invention is suitably used inside an electronic device. That is, the thermally conductive foam sheet of the present invention is, for example, a mobile phone such as a smartphone, a camera, a game machine, an electronic notebook, a tablet terminal, a notebook personal computer or the like, preferably a mobile phone such as a smartphone. Is preferably used as a heat dissipation sheet. More specifically, for example, it is appropriately compressed between the heat source and the heat radiating member, and is arranged without a gap. Moreover, when it falls, it also becomes possible to absorb the impact provided to an electronic component etc.
  • the thermally conductive foam sheet is formed from a foamable resin composition obtained by blending and kneading the above-mentioned main agent, thermally conductive filler, foaming agent, and other additives as necessary. It is preferable to prepare a foamable resin sheet by the above method, then cross-link with ionizing radiation or the like, and then heat and foam in a heating apparatus such as a heating furnace or an oven.
  • a thermal decomposition type foaming agent is preferable as the foaming agent.
  • Specific examples of the pyrolytic foaming agent include organic or inorganic chemical foaming agents having a decomposition temperature of about 140 ° C. to 270 ° C.
  • Organic foaming agents include azodicarbonamide, azodicarboxylic acid metal salts (such as barium azodicarboxylate), azo compounds such as azobisisobutyronitrile, nitroso compounds such as N, N′-dinitrosopentamethylenetetramine, And hydrazine derivatives such as hydrazodicarbonamide, 4,4′-oxybis (benzenesulfonylhydrazide) and toluenesulfonylhydrazide, and semicarbazide compounds such as toluenesulfonyl semicarbazide.
  • azodicarbonamide azodicarboxylic acid metal salts (such as barium azodicarboxylate)
  • azo compounds such as azobisisobutyronitrile
  • nitroso compounds such as N, N′-dinitrosopentamethylenetetramine
  • hydrazine derivatives such as hydrazodicarbonamide, 4,4′
  • the inorganic foaming agent examples include ammonium acid, sodium carbonate, ammonium hydrogen carbonate, sodium hydrogen carbonate, ammonium nitrite, sodium borohydride, anhydrous monosodium citrate, and the like.
  • azo compounds and nitroso compounds are preferable from the viewpoint of obtaining fine bubbles, and from the viewpoints of economy and safety, and azodicarbonamide, azobisisobutyronitrile, N, N′-dinitrosopentamethylene. Tetramine is more preferred, and azodicarbonamide is particularly preferred.
  • These pyrolytic foaming agents can be used alone or in combination of two or more.
  • the blending amount of the pyrolytic foaming agent is preferably 1 to 30 parts by mass with respect to 100 parts by mass of the main agent. By setting it as such a compounding quantity, it can foam appropriately, without the bubble of a sheet
  • the foamable resin composition is kneaded using a kneader such as a Banbury mixer or a pressure kneader, and then continuously extruded by an extruder, calendar, conveyor belt casting or the like.
  • a kneader such as a Banbury mixer or a pressure kneader
  • examples of the crosslinking method of the foamable resin sheet include crosslinking by ionizing radiation, crosslinking by organic peroxide, and the like, and crosslinking by ionizing radiation is preferable.
  • examples of the ionizing radiation include light, ⁇ -rays, and electron beams.
  • the irradiation dose of ionizing radiation is preferably 0.5 to 10 Mrad, more preferably 0.7 to 5.0 Mrad.
  • examples of the organic peroxide include diisopropylbenzene hydroperoxide, 2,4-dichlorobenzoyl peroxide, benzoyl peroxide, t-butyl perbenzoate, cumyl hydroperoxide, tyl -Butyl hydroperoxide, 1,1-di (t-butylperoxy) -3,3,5-trimethylhexane, n-butyl-4,4-di (t-butylperoxy) valerate, ⁇ , ⁇ ' -Bis (t-butylperoxyisopropyl) benzene, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3, t-butylperoxycumene and the like.
  • the compounding amount of the organic peroxide is preferably 0.05 to 10 parts by mass, more preferably 0.1 to 7 parts by mass with respect to 100 parts by mass of the
  • Foaming method of foamable resin sheet examples include a batch system such as an oven and a continuous foaming system in which the foamable resin sheet is formed into a long sheet shape and continuously passed through a heating furnace.
  • the heating temperature is preferably 200 to 320 ° C, more preferably 250 to 300 ° C.
  • a pressure-sensitive adhesive sheet may be provided by providing a pressure-sensitive adhesive on one side or both sides of the thermally conductive foam sheet.
  • the pressure-sensitive adhesive sheet is a pressure-sensitive adhesive sheet comprising a heat conductive foam sheet and a pressure-sensitive adhesive material provided on one or both sides of the heat conductive foam sheet.
  • the pressure-sensitive adhesive material includes at least a pressure-sensitive adhesive layer, and the thermally conductive foam sheet is adhered to another member by the pressure-sensitive adhesive layer. More specifically, the pressure-sensitive adhesive material may be a single pressure-sensitive adhesive layer directly laminated on the surface of the heat conductive foam sheet, or a double-sided pressure-sensitive adhesive tape attached to the surface of the heat conductive foam sheet. There may be.
  • the double-sided pressure-sensitive adhesive tape includes a base material and a pressure-sensitive adhesive layer provided on both surfaces of the base material.
  • one pressure-sensitive adhesive layer is bonded to the thermally conductive foam sheet, and the other pressure-sensitive adhesive layer is bonded to another member.
  • the adhesive layer is composed of an adhesive.
  • an adhesive For example, an acrylic adhesive, a urethane type adhesive, a rubber-type adhesive, etc. are mentioned, Among these, an acrylic adhesive is preferable.
  • a resin film is used, for example.
  • the pressure-sensitive adhesive may have different specifications on both sides, and a silicon-based pressure-sensitive adhesive can be used on the surface that does not contact the foam.
  • Ethylene-propylene oligomer Ethylene / propylene composition ratio 50/50 Crystal structure: amorphous Weight average molecular weight (Mw): 2400 Kinematic viscosity (40 °C): 1300mm 2 / s (Hydrocarbon oligomer (c)) Product name "Lucant HC-600” manufactured by Mitsui Chemicals, Inc.
  • the measurement methods of average molecular weight, Mooney viscosity, viscosity, and kinematic viscosity are as follows. [Average molecular weight] The weight average molecular weight of the process oil was calculated as a polystyrene equivalent value using gel permeation chromatography (GPC). The GPC measurement was performed at the apparatus name (2690 Separations Model manufactured by Waters), the column used KF-806L (manufactured by Showa Denko), the measurement solvent THF, and the temperature of 40 ° C.
  • Mooney viscosity (100 ° C), viscosity (25 ° C) The Mooney viscosity (ML 1 + 4 , 100 ° C.) of ethylene propylene diene rubber at 100 ° C. is a value measured according to JIS K6300-1.
  • the viscosity at 20 ° C. or 25 ° C. of the liquid ethylene propylene diene rubber is a value measured with a B-type rotational viscometer at a rotational speed of 1 rpm.
  • Kinematic viscosity The kinematic viscosity of the process oil is measured at 40 ° C. using an Ubbelohde viscometer.
  • Example 1 80 parts by mass of ethylene propylene diene rubber, 20 parts by mass of paraffinic process oil (c), 300 parts by mass of magnesium oxide, 17.5 parts by mass of azodicarbonamide, and 3 parts by mass of antioxidant are melt-kneaded and then thickened by pressing. A foamable resin sheet having a thickness of 0.5 mm was obtained. Both surfaces of the obtained foamable resin sheet were irradiated with an electron beam of 1.2 Mrad at an acceleration voltage of 500 keV to crosslink the foamable resin sheet. Next, the foamable resin sheet was foamed by heating the sheet to 250 ° C. to obtain a thermally conductive foam sheet. About the said heat conductive foam sheet, the expansion ratio, the thermal conductivity, and the number of coarse bubbles were evaluated as shown below. The results are shown in Table 1.
  • the physical properties of the obtained heat conductive foam sheet were measured as follows. The measurement results are shown in Tables 1 and 2.
  • the specific volume (unit: cm 3 / g) of the foamable resin sheet before foaming and the heat conductive foam sheet is measured, and the specific volume of the heat conductive foam sheet / the specific volume of the foamable resin sheet before foaming Calculated.
  • Thermal conductivity The thermal conductivity of the conductive foam sheet is 10 mm or more from a 25 mm ⁇ 25 mm thermal conductive foam sheet using a hot disk thermophysical property measuring apparatus (manufactured by Kyoto Electronics Industry Co., Ltd., model name “TPS1500”).
  • the test piece was compressed by 50% to be a test piece, the sensor was sandwiched between the two test pieces, the sensor was heated, and the thermal conductivity was measured from the temperature rise. (Number of coarse bubbles)
  • a thermally conductive foam sheet was passed over the light box, and the presence of bubbles was confirmed visually.
  • the maximum diameter of the bubbles was measured with a microgauge, and the number of coarse bubbles present in the thermally conductive foam sheet 1 m 3 was confirmed with the bubbles having a length of 2 mm or more as coarse bubbles.
  • the thermally conductive foam sheet of the present invention in which a certain amount of process oil having a specific range of weight average molecular weight is blended has high thermal conductivity, good foamability, and coarse bubbles. It turns out that there are few. On the other hand, in the comparative example which does not use the process oil specified by the present invention shown in Table 2, it was found that coarse bubbles increase or foamability is not good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

The thermally conductive foam sheet of the present invention comprises 100 parts by mass of a main ingredient comprising an elastomer resin and a process oil and 150-550 parts by mass of a thermally conductive filler, the content of the process oil being 18-75 parts by mass per 100 parts by mass of the main ingredient, the process oil having a weight-average molecular weight of 6,500 or less. The present invention can provide a thermally conductive foam sheet which is excellent in terms of thermal conductivity and foaming property, has few coarse cells, and has high product reliability.

Description

熱伝導性発泡体シートThermally conductive foam sheet
 本発明は、熱伝導性発泡体シートに関する。 The present invention relates to a thermally conductive foam sheet.
 スマートフォン等の小型電子機器内の部品の高性能化、集積化、機器の小型化により部品及び機器から発生する熱の増大が著しく、熱対策を行わない場合、部材の機能および性能の低下や寿命の低下を招くだけでなく、機器自体が熱を持ち、低温火傷や発火の原因となるおそれもある。これらの部材の熱対策として、機器内部に搭載された発熱部材と機器内部の板金やシールド材といったヒートシンクを兼ねた金属部材とを放熱材料で接触させて熱パスをつくり、発熱部材の温度の低下を図っているのが一般的である。従来の放熱材料として、熱伝導性フィラーを配合したシリコーン樹脂発泡シートが挙げられる。また、エラストマー樹脂と酸化マグネシウム又は酸化アルミニウムなどの熱伝導体とを含む電子機器用熱伝導性発泡体シートも知られている(特許文献1)。 Due to the high performance and integration of components in small electronic devices such as smartphones, the heat generated from the components and devices is significantly increased due to the downsizing of the devices. In addition to lowering the temperature, the device itself has heat, which may cause low-temperature burns or ignition. As a heat countermeasure for these members, a heat path is created by bringing the heat generating member mounted inside the device into contact with a metal member that also serves as a heat sink, such as a sheet metal or shield material, inside the device, thereby reducing the temperature of the heat generating member. It is common to plan. As a conventional heat dissipating material, a silicone resin foam sheet containing a heat conductive filler can be used. Moreover, the heat conductive foam sheet for electronic devices containing an elastomer resin and heat conductors, such as magnesium oxide or aluminum oxide, is also known (patent document 1).
国際公開第2014/083890号International Publication No. 2014/083890
 しかしながら、前記熱伝導性フィラーを含有する従来の熱伝導性発泡体シートは、放熱性を良好とするため比較的多くの熱伝導性フィラーを配合しており、そのため、発泡性が悪くなり、発熱部材と金属部材との間に接触させる場合に、密着性が悪くなる傾向にあった。また、熱伝導性フィラーを含む熱伝導性発泡体シートは、粗大気泡が多く発生する傾向があり、そのため、熱性能が十分に得られないなど、製品の信頼性が十分ではないという課題があった。
 本発明は、上記従来の課題に鑑みてなされたものであって、熱伝導性、発泡性に優れ、粗大気泡の少なく、製品として信頼性の高い熱伝導性発泡体シートを提供することを目的とする。
However, the conventional thermally conductive foam sheet containing the thermally conductive filler contains a relatively large amount of thermally conductive filler in order to improve heat dissipation. In the case of contact between the member and the metal member, the adhesion tends to deteriorate. In addition, a thermally conductive foam sheet containing a thermally conductive filler tends to generate a large number of coarse bubbles, and thus there is a problem that the reliability of the product is not sufficient, such as insufficient thermal performance. It was.
The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a thermally conductive foam sheet that is excellent in thermal conductivity and foamability, has few coarse bubbles, and is highly reliable as a product. And
 本発明者らは、前記目的を達成するために鋭意研究を重ねた。その結果、エラストマー樹脂及びプロセスオイルからなる主剤100質量部と、熱伝導性フィラー150~550質量部を含有し、主剤100質量部におけるプロセスオイルの含有量が18~75質量部であり、プロセスオイルの重量平均分子量が6500以下である、熱伝導性発泡体シートが、前記課題を解決できることを見出し本発明を完成させた。
 すなわち、本発明は、下記[1]~[11]に関する。
[1]エラストマー樹脂及びプロセスオイルからなる主剤100質量部と、熱伝導性フィラー150~550質量部とを含有し、前記主剤100質量部におけるプロセスオイルの含有量が18~75質量部であり、前記プロセスオイルの重量平均分子量が6500以下である、熱伝導性発泡体シート。
[2]前記プロセスオイルが、鉱物油及び合成油からなる群から選択される少なくとも1種である、上記[1]に記載の熱伝導性発泡体シート。
[3]前記プロセスオイルが、パラフィン系プロセスオイルである、上記[1]に記載の熱伝導性発泡体シート。
[4]前記プロセスオイルが、炭化水素系オリゴマーである、上記[1]に記載の熱伝導性発泡体シート。
[5]前記プロセスオイルの40℃における動粘度が30000mm/s以下である、上記[1]~[4]のいずれかに記載の熱伝導性発泡体シート。
[6]前記エラストマー樹脂がエチレンプロピレンジエンゴムである、上記[1]~[5]のいずれかに記載の熱伝導性発泡体シート。
[7]前記熱伝導性フィラーが、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、窒化ホウ素、タルク、窒化アルミニウム、グラファイト、グラフェン、結晶シリカ、炭化珪素、窒化珪素、ベリリア、ダイアモンド、黒鉛、カーボンナノチューブ、及び炭素繊維からなる群から選ばれる少なくとも1種である、上記[1]~[6]のいずれかに記載の熱伝導性発泡体シート。
[8]発泡倍率が2~10倍である、上記[1]~[7]のいずれかに記載の熱伝導性発泡体シート。
[9]エラストマー樹脂の含有量が樹脂成分全量基準で80質量%以上である、上記[1]~[8]のいずれかに記載の熱伝導性発泡体シート。
[10]熱伝導性発泡体シートが、主剤及び熱伝導性フィラーからなる、上記[1]~[9]のいずれかに記載の熱伝導性発泡体シート。
[11]上記[1]~[10]のいずれかに記載の熱伝導性発泡体シートと、該熱伝導性発泡体シートの片面又は両面に設けられる粘着材とを備える、粘着シート。
The inventors of the present invention have made extensive studies in order to achieve the above object. As a result, it contains 100 parts by mass of a main agent composed of an elastomer resin and process oil and 150 to 550 parts by mass of a heat conductive filler, and the content of process oil in 100 parts by mass of the main ingredient is 18 to 75 parts by mass. The present invention was completed by finding that a heat conductive foam sheet having a weight average molecular weight of 6500 or less can solve the above problems.
That is, the present invention relates to the following [1] to [11].
[1] containing 100 parts by mass of a main agent composed of an elastomer resin and a process oil, and 150 to 550 parts by mass of a heat conductive filler, and the content of process oil in 100 parts by mass of the main agent is 18 to 75 parts by mass; The heat conductive foam sheet whose weight average molecular weight of the said process oil is 6500 or less.
[2] The thermally conductive foam sheet according to [1], wherein the process oil is at least one selected from the group consisting of mineral oil and synthetic oil.
[3] The thermally conductive foam sheet according to [1], wherein the process oil is a paraffinic process oil.
[4] The thermally conductive foam sheet according to the above [1], wherein the process oil is a hydrocarbon oligomer.
[5] The thermally conductive foam sheet according to any one of [1] to [4] above, wherein the process oil has a kinematic viscosity at 40 ° C. of 30000 mm 2 / s or less.
[6] The thermally conductive foam sheet according to any one of the above [1] to [5], wherein the elastomer resin is ethylene propylene diene rubber.
[7] The thermally conductive filler is aluminum oxide, magnesium oxide, zinc oxide, boron nitride, talc, aluminum nitride, graphite, graphene, crystalline silica, silicon carbide, silicon nitride, beryllia, diamond, graphite, carbon nanotube, and The thermally conductive foam sheet according to any one of the above [1] to [6], which is at least one selected from the group consisting of carbon fibers.
[8] The thermally conductive foam sheet according to any one of [1] to [7], wherein the expansion ratio is 2 to 10 times.
[9] The thermally conductive foam sheet according to any one of [1] to [8] above, wherein the content of the elastomer resin is 80% by mass or more based on the total amount of the resin components.
[10] The thermally conductive foam sheet according to any one of [1] to [9] above, wherein the thermally conductive foam sheet comprises a main agent and a thermally conductive filler.
[11] An adhesive sheet comprising the thermally conductive foam sheet according to any one of [1] to [10] above and an adhesive material provided on one or both surfaces of the thermally conductive foam sheet.
 本発明によれば、熱伝導性及び発泡性が良好で、かつ粗大気泡の少なく、製品として信頼性の高い熱伝導性発泡シートを提供することができる。 According to the present invention, it is possible to provide a thermally conductive foam sheet that has good thermal conductivity and foamability, has few coarse bubbles, and is highly reliable as a product.
[熱伝導性発泡体シート]
 本発明の熱伝導性発泡体シートは、エラストマー樹脂及びプロセスオイルからなる主剤100質量部と、熱伝導性フィラー150~550質量部とを含有し、前記主剤100質量部におけるプロセスオイルの含有量が18~75質量部であり、前記プロセスオイルの重量平均分子量が6500以下である熱伝導性発泡体シートである。
[Thermal conductive foam sheet]
The thermally conductive foam sheet of the present invention contains 100 parts by mass of a main agent composed of an elastomer resin and a process oil, and 150 to 550 parts by mass of a heat conductive filler, and the content of process oil in 100 parts by mass of the main agent. The thermally conductive foam sheet is 18 to 75 parts by mass, and the process oil has a weight average molecular weight of 6500 or less.
<主剤>
 本発明における主剤は、エラストマー樹脂及びプロセスオイルから構成される。主剤100質量部におけるプロセスオイルの含有量は18~75質量部であり、好ましくは25~70質量部であり、より好ましくは35~60質量部である。プロセスオイルの含有量が18質量部より少ないと粗大気泡が発生し易く、プロセスオイルの含有量が75質量部より多いと粗大気泡の発生は低減されるものの、発泡性が悪くなり発泡倍率が低下する傾向にある。
<Main agent>
The main agent in the present invention is composed of an elastomer resin and a process oil. The content of process oil in 100 parts by mass of the main agent is 18 to 75 parts by mass, preferably 25 to 70 parts by mass, and more preferably 35 to 60 parts by mass. When the process oil content is less than 18 parts by mass, coarse bubbles are likely to be generated. When the process oil content is more than 75 parts by mass, the generation of coarse bubbles is reduced, but the foaming property is deteriorated and the expansion ratio is lowered. Tend to.
(エラストマー樹脂)
 エラストマー樹脂としては、特に限定されないが、アクリロニトリルブタジエンゴム、エチレンプロピレンジエンゴム、エチレンプロピレンゴム、天然ゴム、ポリブタジエンゴム、ポリイソプレンゴム、スチレン-ブタジエンブロック共重合体、水素添加スチレン-ブタジエンブロック共重合体、水素添加スチレン-ブタジエン-スチレンブロック共重合体、水素添加スチレン-イソプレンブロック共重合体、水素添加スチレン-イソプレン-スチレンブロック共重合体等が挙げられる。これらの中では、熱伝導性フィラーを比較的多く配合しても発泡性を良好とする観点から、アクリロニトリルブタジエンゴム、エチレンプロピレンジエンゴムが好ましく、エチレンプロピレンジエンゴムがより好ましい。これらエラストマー樹脂は、1種単独で使用してもよいし、2種以上を選択して使用してもよい。
 また、これらエラストマーは、室温(23℃)、常圧(1気圧)で液状となる液状エラストマーであってもよいし、固体状のものであってもよいし、これらの混合物であってもよい。粗大気泡の発生を抑制する観点から、混合物を使用する場合は、液状のエラストマー樹脂の配合量よりも固体状エラストマー樹脂の配合量のほうが多いほうが好ましく、固体状エラストマー樹脂と液状エラストマー樹脂の全量基準で、固体状エラストマー樹脂が80質量%以上が好ましく、95質量%以上がより好ましく、100質量%がさらに好ましい。すなわち、粗大気泡の発生を抑制する観点からは、エラストマー樹脂としては、固体状のエラストマー樹脂を単独で用いることが好ましい。
(Elastomer resin)
The elastomer resin is not particularly limited, but acrylonitrile butadiene rubber, ethylene propylene diene rubber, ethylene propylene rubber, natural rubber, polybutadiene rubber, polyisoprene rubber, styrene-butadiene block copolymer, hydrogenated styrene-butadiene block copolymer. And hydrogenated styrene-butadiene-styrene block copolymer, hydrogenated styrene-isoprene block copolymer, hydrogenated styrene-isoprene-styrene block copolymer, and the like. Among these, acrylonitrile butadiene rubber and ethylene propylene diene rubber are preferable, and ethylene propylene diene rubber is more preferable from the viewpoint of improving foamability even if a relatively large amount of thermally conductive filler is blended. These elastomer resins may be used alone or in combination of two or more.
In addition, these elastomers may be liquid elastomers that are liquid at room temperature (23 ° C.) and normal pressure (1 atm), may be solid, or may be a mixture thereof. . From the viewpoint of suppressing the generation of coarse bubbles, when using a mixture, the amount of the solid elastomer resin is preferably larger than the amount of the liquid elastomer resin, and the total amount of the solid elastomer resin and the liquid elastomer resin is based on the total amount. The solid elastomer resin is preferably 80% by mass or more, more preferably 95% by mass or more, and further preferably 100% by mass. That is, from the viewpoint of suppressing the generation of coarse bubbles, it is preferable to use a solid elastomer resin alone as the elastomer resin.
 固体状のエラストマーのムーニー粘度(ML1+4、100℃)は10~100であることが好ましく、10~70であることがより好ましく、20~50であることがより好ましい。ここで、ムーニー粘度(ML1+4、100℃)は、JIS K6300-1に準拠して測定した値である。固体状のエラストマーのムーニー粘度をこれらの範囲内とすることにより、発泡性を良好にしやすくなる。 The Mooney viscosity (ML 1 + 4 , 100 ° C.) of the solid elastomer is preferably 10 to 100, more preferably 10 to 70, and more preferably 20 to 50. Here, Mooney viscosity (ML 1 + 4 , 100 ° C.) is a value measured in accordance with JIS K6300-1. By setting the Mooney viscosity of the solid elastomer within these ranges, it becomes easy to improve foamability.
(プロセスオイル)
 本発明の熱伝導性発泡体シートには、プロセスオイルが用いられる。プロセスオイルを配合することにより、エラストマー樹脂との親和性を高め、発泡性が良好となり、粗大気泡の発生が抑制される。
 プロセスオイルとしては、特に制限されないが、植物油、動物油、鉱物油、合成油等が挙げられる。このなかでも、鉱物油及び合成油からなる群から選択される少なくとも1種が好ましい。鉱物油としては、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイル等が挙げられ、エラストマー樹脂との親和性を高め、粗大気泡の発生を抑制する観点から、パラフィン系プロセスオイルが好ましい。特に、エラストマー樹脂として、エチレンプロピレンジエンゴムを用いる場合は、プロセスオイルとしてパラフィン系プロセスオイルを用いることで、粗大気泡の発生が抑制されやすい。パラフィン系プロセスオイルとして市販されている製品としては、出光興産(株)製のダイアナプロセスオイルPW-32、PW-90、PW-380、JXエネルギー(株)製のスーパーオイルM-10、M-12、M-22、M-32、M-46、M-68、M-100、M-150、M-460、日本サン石油(株)製のサンパー107、110、115、150、2100、2280、エッソ石油(株)製のスタノールLP40などが挙げられる。
(Process oil)
Process oil is used for the thermally conductive foam sheet of the present invention. By blending the process oil, the affinity with the elastomer resin is increased, the foamability is improved, and the generation of coarse bubbles is suppressed.
Although it does not restrict | limit especially as process oil, Vegetable oil, animal oil, mineral oil, synthetic oil etc. are mentioned. Among these, at least one selected from the group consisting of mineral oil and synthetic oil is preferable. Examples of the mineral oil include paraffinic process oil, naphthenic process oil, aromatic process oil, and the like, and paraffinic process oil is preferable from the viewpoint of increasing affinity with the elastomer resin and suppressing the generation of coarse bubbles. . In particular, when ethylene propylene diene rubber is used as the elastomer resin, the use of paraffinic process oil as the process oil makes it easy to suppress the generation of coarse bubbles. Products that are commercially available as paraffinic process oil include Diana Process Oil PW-32, PW-90, PW-380 manufactured by Idemitsu Kosan Co., Ltd., Super Oil M-10, M- manufactured by JX Energy Co., Ltd. 12, M-22, M-32, M-46, M-68, M-100, M-150, M-460, Nippon San Oil Co., Ltd. Thamper 107, 110, 115, 150, 2100, 2280 And Stanol LP40 manufactured by Esso Petroleum Corporation.
 プロセスオイルである合成油としては、特に制限されないが、炭化水素系オリゴマーが好ましい。炭化水素系オリゴマーとしては、エチレン、及びプロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテンなどのαオレフィンから選択される1種のモノマーを単独で重合した単独重合系オリゴマー、又は2種以上のモノマーを共重合した共重合系オリゴマーのいずれでもよい。エラストマー樹脂とのとの親和性を高め、粗大気泡の発生を抑制する観点から、共重合系オリゴマーのほうが好ましい。共重合系オリゴマーのなかでも、エチレンとαオレフィンとを共重合したエチレンαオレフィンオリゴマーが好ましく、エチレンプロピレンオリゴマーがより好ましい。エチレンプロピレンオリゴマーの共重合組成としては、エチレン含有量が20~80質量%であることが好ましく、30~70質量%であることがより好ましく、40~60質量%であることがさらに好ましく、結晶構造としては、非晶質であることが好ましい。特に、エラストマー樹脂としてエチレンプロピレンジエンゴムを用いる場合には、プロセスオイルとしてエチレンプロピレンオリゴマーを用いることで、粗大気泡の発生が抑制されやすい。エチレンプロピレンオリゴマーとして市販されている製品としては、三井化学製のルーカントHC-40、HC-100、HC-600、HC-2000、などが挙げられる。
 プロセスオイルは、1種単独で使用してもよいし、2種以上併用してもよい。
Although it does not restrict | limit especially as a synthetic oil which is a process oil, A hydrocarbon-type oligomer is preferable. As the hydrocarbon oligomer, a homopolymer oligomer obtained by polymerizing a single monomer selected from ethylene and α-olefin such as propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, or the like, or Any of the copolymerization type oligomers which copolymerized 2 or more types of monomers may be sufficient. From the viewpoint of increasing the affinity with the elastomer resin and suppressing the generation of coarse bubbles, a copolymer oligomer is preferred. Among the copolymer oligomers, an ethylene α-olefin oligomer obtained by copolymerizing ethylene and an α-olefin is preferable, and an ethylene-propylene oligomer is more preferable. As a copolymer composition of the ethylene propylene oligomer, the ethylene content is preferably 20 to 80% by mass, more preferably 30 to 70% by mass, further preferably 40 to 60% by mass, The structure is preferably amorphous. In particular, when ethylene propylene diene rubber is used as the elastomer resin, the use of ethylene propylene oligomer as the process oil makes it easy to suppress the generation of coarse bubbles. Examples of products that are commercially available as ethylene propylene oligomers include Lucant HC-40, HC-100, HC-600, and HC-2000 manufactured by Mitsui Chemicals.
Process oils may be used alone or in combination of two or more.
 本発明のプロセスオイルの重量平均分子量は6500以下である。重量平均分子量が6500より大きい場合は、粗大気泡の数が増加する傾向にある。プロセスオイルの重量平均分子量は、熱伝導性発泡体シートの発泡性を良好にし、粗大気泡の発生を抑制する観点から、好ましくは300~5000であり、より好ましくは450~4000であり、さらに好ましくは500~2000である。重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定することができ、詳細には実施例の記載の方法で測定することができる。 The weight average molecular weight of the process oil of the present invention is 6500 or less. When the weight average molecular weight is larger than 6500, the number of coarse bubbles tends to increase. The weight average molecular weight of the process oil is preferably 300 to 5000, more preferably 450 to 4000, and still more preferably from the viewpoint of improving the foamability of the thermally conductive foam sheet and suppressing the generation of coarse bubbles. Is 500-2000. The weight average molecular weight can be measured using gel permeation chromatography (GPC), and can be measured in detail by the method described in the Examples.
 また、同様の観点から、プロセスオイルの40℃における動粘度は、好ましくは30000mm/s以下であり、より好ましくは20~10000mm/sであり、さらに好ましくは70~3000mm/sであり、さらに好ましくは80~500mm/sである。動粘度は実施例で記載する方法で測定することができる。 From the same viewpoint, the kinematic viscosity at 40 ° C. of the process oil is preferably 30000 mm 2 / s or less, more preferably 20 to 10000 mm 2 / s, and further preferably 70 to 3000 mm 2 / s. More preferably, it is 80 to 500 mm 2 / s. The kinematic viscosity can be measured by the method described in the examples.
<熱伝導性フィラー>
 本発明の熱伝導性発泡体シートは、エラストマー樹脂及びプロセスオイルからなる主剤100質量部に対して熱伝導性フィラーを150~550質量部含有する。熱伝導性フィラーが150質量部未満であると、熱伝導性発泡体シートの熱伝導率が低くなり、550質量部を超える場合は、発泡性が悪くなる傾向がある。熱伝導性フィラーの種類としては、例えば、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、窒化ホウ素、タルク、窒化アルミニウム、グラファイト、グラフェン、結晶シリカ、炭化珪素、窒化珪素、ベリリア、ダイアモンド、黒鉛、カーボンナノチューブ(CNT)、炭素繊維等が挙げられ、これら以外にも銅粉、ニッケルフィラー等が挙げられる。これらの中では、酸化マグネシウム、酸化アルミニウム、酸化亜鉛、窒化ホウ素が好ましく、酸化マグネシウムがより好ましい。熱伝導性フィラーは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。これらのフィラーは樹脂への密着性及び加工性向上のために表面処理がされていてもよい。
<Thermal conductive filler>
The thermally conductive foam sheet of the present invention contains 150 to 550 parts by mass of a thermally conductive filler with respect to 100 parts by mass of the main agent composed of an elastomer resin and process oil. When the thermal conductive filler is less than 150 parts by mass, the thermal conductivity of the thermal conductive foam sheet is low, and when it exceeds 550 parts by mass, the foamability tends to be poor. Examples of the thermally conductive filler include aluminum oxide, magnesium oxide, zinc oxide, boron nitride, talc, aluminum nitride, graphite, graphene, crystalline silica, silicon carbide, silicon nitride, beryllia, diamond, graphite, and carbon nanotube ( CNT), carbon fiber, and the like, and besides these, copper powder, nickel filler, and the like can be given. Among these, magnesium oxide, aluminum oxide, zinc oxide, and boron nitride are preferable, and magnesium oxide is more preferable. A heat conductive filler may be used individually by 1 type, and 2 or more types may be mixed and used for it. These fillers may be surface-treated in order to improve adhesion to the resin and workability.
 熱伝導性フィラーの配合量は、主剤100質量部に対して200~500質量部であることが好ましく、230~400質量部であることがより好ましく、250~350質量部であることがさらに好ましい。熱伝導性フィラーをこのような範囲の配合量とすることにより、熱伝導性発泡体シートの熱伝導性を良好にしつつ、発泡性も優れたものとなりやすい。
 熱伝導性フィラーの粒径は、0.1~200μmが好ましく、5~150μmがより好ましく、8~50μmが更に好ましい。
 平均粒径の測定方法については、レーザー回折/散乱式粒度分布測定装置(HELOS/BFM,Sympatec GmbH社製)を用いる。本装置により、常法により粒度分布を測定して平均粒径を求め、5回測定値した際の平均値を平均粒径とする。
 熱伝導性フィラーの熱伝導率は、5W/m・K以上が好ましく、20W/m・K以上であることがより好ましく、そして、2000W/m・K以下であることが好ましい。
 熱伝導性フィラーの形状は特に限定されず、球状、中空状、板状、麟片状、針状、繊維状等いずれの形状でもよい。
The blending amount of the heat conductive filler is preferably 200 to 500 parts by mass, more preferably 230 to 400 parts by mass, and further preferably 250 to 350 parts by mass with respect to 100 parts by mass of the main agent. . By setting the thermal conductive filler in such a range, the thermal conductivity of the thermal conductive foam sheet is improved, and the foaming property is likely to be excellent.
The particle size of the heat conductive filler is preferably 0.1 to 200 μm, more preferably 5 to 150 μm, and still more preferably 8 to 50 μm.
For the measurement method of the average particle size, a laser diffraction / scattering particle size distribution measuring device (HELOS / BFM, manufactured by Sympatec GmbH) is used. With this apparatus, the particle size distribution is measured by a conventional method to determine the average particle size, and the average value when five measurements are taken is taken as the average particle size.
The thermal conductivity of the thermally conductive filler is preferably 5 W / m · K or more, more preferably 20 W / m · K or more, and preferably 2000 W / m · K or less.
The shape of the heat conductive filler is not particularly limited, and may be any shape such as a spherical shape, a hollow shape, a plate shape, a scaly shape, a needle shape, and a fiber shape.
 熱伝導性発泡体シートにおいては、軽量化の観点から、フィラーの体積%が、好ましくは25~60体積%、より好ましくは30~50体積%、更に好ましくは35~50体積%となるように配合されることが好ましい。
 なお、熱伝導性フィラーの体積%は、熱伝導性発泡体シートの全体積基準で算出されるものであるが、熱伝導性発泡体シートの体積は、例えば、後述する発泡性樹脂組成物の全体積から発泡時に分解して、消失される添加剤(発泡剤)の体積を差し引いて算出することが可能である。また、上記した熱伝導性フィラーの体積は、配合される各成分の質量から算出可能なものであり、例えば、各成分の質量に各成分の23℃における密度を乗じることによって算出可能である。
In the thermally conductive foam sheet, from the viewpoint of weight reduction, the filler volume% is preferably 25 to 60 volume%, more preferably 30 to 50 volume%, and still more preferably 35 to 50 volume%. It is preferable to mix.
The volume% of the heat conductive filler is calculated on the basis of the total volume of the heat conductive foam sheet, but the volume of the heat conductive foam sheet is, for example, that of the foamable resin composition described later. It is possible to calculate by subtracting the volume of the additive (foaming agent) that decomposes and disappears during foaming from the total volume. Moreover, the volume of the above-described heat conductive filler can be calculated from the mass of each component to be blended, and can be calculated, for example, by multiplying the mass of each component by the density at 23 ° C. of each component.
<その他の樹脂>
 熱伝導性発泡体シートは、本発明の効果を妨げない範囲において、エラストマー樹脂以外のその他の樹脂を含有してもよい。エラストマー樹脂の含有量は、樹脂成分全量基準(エラストマー樹脂及びその他の樹脂の総量)に対して80質量%以上であることが好ましく、95質量%以上であることがより好ましく、97質量%以上であることが更に好ましく、100質量%であることが更に好ましい。
 エラストマー樹脂以外のその他の樹脂としては、例えば、ポリプロピレン、ポリエチレン、ポリメチルペンテン、エチレン-プロピレン共重合体、ポリスチレン等の熱可塑性樹脂が挙げられる。
 なお、本発明の主剤を構成するエラストマー樹脂及びプロセスオイル、並びに必要に応じて配合されるその他の樹脂は、熱伝導性発泡体シート中において、相互に相溶していることが好ましい。なお、相溶しているとは、海島構造などの相分離構造を形成していないことを意味する。
<Other resins>
The heat conductive foam sheet may contain other resins other than the elastomer resin as long as the effects of the present invention are not hindered. The content of the elastomer resin is preferably 80% by mass or more, more preferably 95% by mass or more, and 97% by mass or more with respect to the resin component total amount standard (total amount of the elastomer resin and other resins). More preferably, it is more preferably 100% by mass.
Examples of other resins other than the elastomer resin include thermoplastic resins such as polypropylene, polyethylene, polymethylpentene, ethylene-propylene copolymer, and polystyrene.
In addition, it is preferable that the elastomer resin and process oil which comprise the main ingredient of this invention, and other resin mix | blended as needed are mutually compatible in a heat conductive foam sheet. In addition, being compatible means that a phase separation structure such as a sea-island structure is not formed.
<任意成分>
 熱伝導性発泡体シートは、主剤及び熱伝導性フィラーからなるものであってよいが、これらに加えて、本発明の目的が損なわれない範囲で、必要に応じて各種の添加成分を含有させることができる。具体的には、これらの添加成分は、主剤100質量部に対して、例えば、50質量部以下、好ましくは20質量部以下、より好ましくは10質量部以下、さらに好ましくは5質量部以下含有される。
 この添加成分の種類は特に限定されず、発泡成形に通常使用される各種添加剤を用いることができる。このような添加剤として、例えば、滑剤、収縮防止剤、気泡核剤、結晶核剤、可塑剤、着色剤(顔料、染料等)、紫外線吸収剤、酸化防止剤、老化防止剤、銅害防止剤、上記導電付与材を除いた充填剤、補強剤、難燃剤、難燃助剤、帯電防止剤、界面活性剤、加硫剤、表面処理剤等が挙げられる。添加剤の添加量は、気泡の形成等を損なわない範囲で適宜選択でき、通常の樹脂の発泡、成形に用いられる添加量を採用できる。かかる添加剤は、単独で又は二種以上組み合わせて用いることができる。
<Optional component>
The thermally conductive foam sheet may be composed of a main agent and a thermally conductive filler, but in addition to these, various additive components are contained as necessary within the range in which the object of the present invention is not impaired. be able to. Specifically, these additive components are contained in an amount of, for example, 50 parts by mass or less, preferably 20 parts by mass or less, more preferably 10 parts by mass or less, and further preferably 5 parts by mass or less, with respect to 100 parts by mass of the main agent. The
The kind of the additive component is not particularly limited, and various additives usually used for foam molding can be used. Examples of such additives include lubricants, shrinkage inhibitors, cell nucleating agents, crystal nucleating agents, plasticizers, colorants (pigments, dyes, etc.), ultraviolet absorbers, antioxidants, anti-aging agents, and copper damage prevention. Agents, fillers excluding the above-mentioned conductivity-imparting materials, reinforcing agents, flame retardants, flame retardant aids, antistatic agents, surfactants, vulcanizing agents, surface treatment agents and the like. The addition amount of the additive can be appropriately selected within a range that does not impair the formation of bubbles and the like, and the addition amount used for normal resin foaming and molding can be adopted. Such additives can be used alone or in combination of two or more.
<熱伝導性発泡体シートの物性>
 熱伝導性発泡体シートの発泡倍率は好ましくは2~10倍、より好ましくは3~8倍、さらに好ましくは4~8倍、さらに好ましくは4.5~7倍である。発泡倍率が2倍以上であると熱伝導性発泡体シートが軽くなる。また、柔軟性が高くなり、例えば電子機器内部の部材に対する密着性が高まる。発泡倍率が10倍以下であると熱伝導性が良好となる。
 熱伝導性発泡体シートの厚さは、使用用途によって適宜選択され、特に限定されないが、好ましくは0.05~2mm、より好ましくは0.1~1.5mmであり、更に好ましくは0.2~1mmである。
 熱伝導性発泡体シートの50%圧縮時の熱伝導率は、0.3~5.0W/m・Kが好ましく、0.4~3.0W/m・Kがより好ましい。
 熱伝導性発泡体シート中の最大径が2.0mm以上の粗大気泡の数は、1mあたり3個以下であることが好ましく、2個以下であることがより好ましい。粗大気泡の数は、実施例に記載の方法で測定することができる。
<Physical properties of thermally conductive foam sheet>
The expansion ratio of the thermally conductive foam sheet is preferably 2 to 10 times, more preferably 3 to 8 times, still more preferably 4 to 8 times, and further preferably 4.5 to 7 times. When the expansion ratio is 2 times or more, the thermally conductive foam sheet becomes light. In addition, flexibility is increased, and for example, adhesion to a member inside the electronic device is increased. When the expansion ratio is 10 times or less, the thermal conductivity is good.
The thickness of the thermally conductive foam sheet is appropriately selected depending on the intended use and is not particularly limited, but is preferably 0.05 to 2 mm, more preferably 0.1 to 1.5 mm, and still more preferably 0.2. ~ 1 mm.
The thermal conductivity at 50% compression of the thermally conductive foam sheet is preferably 0.3 to 5.0 W / m · K, and more preferably 0.4 to 3.0 W / m · K.
The number of coarse bubbles having a maximum diameter of 2.0 mm or more in the thermally conductive foam sheet is preferably 3 or less per 1 m 3 , and more preferably 2 or less. The number of coarse bubbles can be measured by the method described in Examples.
 本発明の熱伝導性発泡体シートは、電子機器の内部に好適に使用される。すなわち、本発明の熱伝導性発泡体シートは、例えば、スマートフォン等の携帯電話、カメラ、ゲーム機器、電子手帳、タブレット端末、ノート型パーソナルコンピューター等の電子機器の内部、好ましくはスマートフォン等の携帯電話の内部において放熱シートとして好適に使用されるものである。より詳細には、例えば、発熱源と放熱部材との間で適度に圧縮され、隙間なく配置されるものとなる。また、落下した場合には、電子部品等に付与される衝撃を吸収することも可能になる。 The heat conductive foam sheet of the present invention is suitably used inside an electronic device. That is, the thermally conductive foam sheet of the present invention is, for example, a mobile phone such as a smartphone, a camera, a game machine, an electronic notebook, a tablet terminal, a notebook personal computer or the like, preferably a mobile phone such as a smartphone. Is preferably used as a heat dissipation sheet. More specifically, for example, it is appropriately compressed between the heat source and the heat radiating member, and is arranged without a gap. Moreover, when it falls, it also becomes possible to absorb the impact provided to an electronic component etc.
<熱伝導性発泡体シートの製造方法>
 熱伝導性発泡体シートは、上記した主剤、熱伝導性フィラー、発泡剤、及び必要に応じてその他添加剤を配合し、混練することで得られた発泡性樹脂組成物をシート状に成形することにより発泡性樹脂シートを準備し、次いで電離放射線等により架橋した後、加熱炉、オーブン等の加熱装置内にて加熱して発泡させる方法により製造することが好ましい。
 発泡剤としては熱分解型発泡剤が好ましい。熱分解型発泡剤の具体例としては、分解温度が140℃~270℃程度の有機系又は無機系の化学発泡剤が挙げられる。
 有機系発泡剤としては、アゾジカルボンアミド、アゾジカルボン酸金属塩(アゾジカルボン酸バリウム等)、アゾビスイソブチロニトリル等のアゾ化合物、N,N’-ジニトロソペンタメチレンテトラミン等のニトロソ化合物、ヒドラゾジカルボンアミド、4,4’-オキシビス(ベンゼンスルホニルヒドラジド)、トルエンスルホニルヒドラジド等のヒドラジン誘導体、トルエンスルホニルセミカルバジド等のセミカルバジド化合物等が挙げられる。
 無機系発泡剤としては、酸アンモニウム、炭酸ナトリウム、炭酸水素アンモニウム、炭酸水素ナトリウム、亜硝酸アンモニウム、水素化ホウ素ナトリウム、無水クエン酸モノソーダ等が挙げられる。
 これらの中では、微細な気泡を得る観点、及び経済性、安全面の観点から、アゾ化合物、ニトロソ化合物が好ましく、アゾジカルボンアミド、アゾビスイソブチロニトリル、N,N’-ジニトロソペンタメチレンテトラミンがより好ましく、アゾジカルボンアミドが特に好ましい。これらの熱分解型発泡剤は、単独で又は2以上を組み合わせて使用することができる。
 熱分解型発泡剤の配合量は、主剤100質量部に対して1~30質量部が好ましい。このような配合量とすることで、シートの気泡が破裂せずに適切に発泡ができる。また、熱分解型発泡剤の配合量を多くすると、発泡倍率が高くなり、柔軟性を向上させることが可能である。そのため、熱分解型発泡剤の配合量は、5~25質量部がより好ましく、10~25質量部がさらに好ましい。
<The manufacturing method of a heat conductive foam sheet>
The thermally conductive foam sheet is formed from a foamable resin composition obtained by blending and kneading the above-mentioned main agent, thermally conductive filler, foaming agent, and other additives as necessary. It is preferable to prepare a foamable resin sheet by the above method, then cross-link with ionizing radiation or the like, and then heat and foam in a heating apparatus such as a heating furnace or an oven.
A thermal decomposition type foaming agent is preferable as the foaming agent. Specific examples of the pyrolytic foaming agent include organic or inorganic chemical foaming agents having a decomposition temperature of about 140 ° C. to 270 ° C.
Organic foaming agents include azodicarbonamide, azodicarboxylic acid metal salts (such as barium azodicarboxylate), azo compounds such as azobisisobutyronitrile, nitroso compounds such as N, N′-dinitrosopentamethylenetetramine, And hydrazine derivatives such as hydrazodicarbonamide, 4,4′-oxybis (benzenesulfonylhydrazide) and toluenesulfonylhydrazide, and semicarbazide compounds such as toluenesulfonyl semicarbazide.
Examples of the inorganic foaming agent include ammonium acid, sodium carbonate, ammonium hydrogen carbonate, sodium hydrogen carbonate, ammonium nitrite, sodium borohydride, anhydrous monosodium citrate, and the like.
Among these, azo compounds and nitroso compounds are preferable from the viewpoint of obtaining fine bubbles, and from the viewpoints of economy and safety, and azodicarbonamide, azobisisobutyronitrile, N, N′-dinitrosopentamethylene. Tetramine is more preferred, and azodicarbonamide is particularly preferred. These pyrolytic foaming agents can be used alone or in combination of two or more.
The blending amount of the pyrolytic foaming agent is preferably 1 to 30 parts by mass with respect to 100 parts by mass of the main agent. By setting it as such a compounding quantity, it can foam appropriately, without the bubble of a sheet | seat exploding. Moreover, if the compounding quantity of a thermal decomposition type foaming agent is increased, a foaming ratio will become high and it is possible to improve a softness | flexibility. Therefore, the blending amount of the pyrolytic foaming agent is more preferably 5 to 25 parts by mass, and further preferably 10 to 25 parts by mass.
(発泡性樹脂シートの製造方法)
 発泡性樹脂シートの製造方法としては、例えば、発泡性樹脂組成物をバンバリーミキサーや加圧ニーダ等の混練り機を用いて混練した後、押出機、カレンダ、コンベアベルトキャスティング等により連続的に押し出すことにより発泡性樹脂シートを製造する方法が挙げられる。
(Method for producing foamed resin sheet)
As a method for producing the foamable resin sheet, for example, the foamable resin composition is kneaded using a kneader such as a Banbury mixer or a pressure kneader, and then continuously extruded by an extruder, calendar, conveyor belt casting or the like. The method of manufacturing a foamable resin sheet by this is mentioned.
(発泡性樹脂シートの架橋方法)
 次に、発泡性樹脂シートの架橋方法としては、電離性放射線による架橋、有機過酸化物による架橋等が挙げられるが、電離性放射線による架橋が好ましい。
 電離性放射線により架橋する場合、電離性放射線としては、例えば、光、γ線、電子線等が挙げられる。電離性放射線の照射量は、0.5~10Mradが好ましく、0.7~5.0Mradがより好ましい。
 電離性放射線により架橋を行った場合、径が小さく均一な気泡を有する熱伝導性発泡体シートを得ることができる。このような径が小さく均一な気泡を有する熱伝導性発泡体シートは、その表面が平滑であって被着面に対する接触面積が大きくなり密着性が向上する。
(Method for crosslinking foamable resin sheet)
Next, examples of the crosslinking method of the foamable resin sheet include crosslinking by ionizing radiation, crosslinking by organic peroxide, and the like, and crosslinking by ionizing radiation is preferable.
In the case of crosslinking with ionizing radiation, examples of the ionizing radiation include light, γ-rays, and electron beams. The irradiation dose of ionizing radiation is preferably 0.5 to 10 Mrad, more preferably 0.7 to 5.0 Mrad.
When cross-linking is performed by ionizing radiation, a thermally conductive foam sheet having uniform bubbles with a small diameter can be obtained. Such a thermally conductive foam sheet having small diameters and uniform bubbles has a smooth surface, a large contact area with respect to the adherend surface, and improved adhesion.
 有機過酸化物により架橋する場合、有機過酸化物としては、例えば、ジイソプロピルベンゼンヒドロパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、ベンゾイルパーオキサイド、t-ブチルパーベンゾエート、クミルハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、1,1-ジ(t-ブチルパーオキシ)-3,3,5-トリメチルヘキサン、n-ブチル-4,4-ジ(t-ブチルパーオキシ)バレレート、α,α'-ビス(t-ブチルパーオキシイソプロピル)ベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、t-ブチルパーオキシクメン等が挙げられる。
 有機過酸化物の配合量は、主剤100質量部に対して0.05~10質量部が好ましく、0.1~7質量部がより好ましい。
When crosslinking with an organic peroxide, examples of the organic peroxide include diisopropylbenzene hydroperoxide, 2,4-dichlorobenzoyl peroxide, benzoyl peroxide, t-butyl perbenzoate, cumyl hydroperoxide, tyl -Butyl hydroperoxide, 1,1-di (t-butylperoxy) -3,3,5-trimethylhexane, n-butyl-4,4-di (t-butylperoxy) valerate, α, α ' -Bis (t-butylperoxyisopropyl) benzene, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3, t-butylperoxycumene and the like.
The compounding amount of the organic peroxide is preferably 0.05 to 10 parts by mass, more preferably 0.1 to 7 parts by mass with respect to 100 parts by mass of the main agent.
〔発泡性樹脂シートの発泡方法〕
 発泡性樹脂シートを発泡させる方法としては、オーブンのようなバッチ方式や、発泡性樹脂シートを長尺のシート状とし、連続的に加熱炉内を通す連続発泡方式を挙げることができる。加熱温度は、好ましくは200~320℃、より好ましくは250~300℃である。
[Foaming method of foamable resin sheet]
Examples of the method for foaming the foamable resin sheet include a batch system such as an oven and a continuous foaming system in which the foamable resin sheet is formed into a long sheet shape and continuously passed through a heating furnace. The heating temperature is preferably 200 to 320 ° C, more preferably 250 to 300 ° C.
[粘着シート]
 本発明では、熱伝導性発泡体シートの片面、又は両面に粘着材を設けて粘着シートとしてもよい。該粘着シートは、熱伝導性発泡体シートと、該熱伝導性発泡体シートの片面又は両面に設けられる粘着材とを備える粘着シートである。粘着材は、少なくとも粘着剤層を備え、その粘着剤層により、熱伝導性発泡体シートを他の部材に接着させる。粘着材は、より具体的には、熱伝導性発泡体シートの表面に直接積層された粘着剤層単体であってもよいし、熱伝導性発泡体シートの表面に貼付された両面粘着テープであってもよい。
 両面粘着テープは、基材と、基材の両面に設けられた粘着剤層とを備えるものである。両面粘着テープは、一方の粘着剤層を熱伝導性発泡体シートに接着させるとともに、他方の粘着剤層を他の部材に接着させる。
[Adhesive sheet]
In the present invention, a pressure-sensitive adhesive sheet may be provided by providing a pressure-sensitive adhesive on one side or both sides of the thermally conductive foam sheet. The pressure-sensitive adhesive sheet is a pressure-sensitive adhesive sheet comprising a heat conductive foam sheet and a pressure-sensitive adhesive material provided on one or both sides of the heat conductive foam sheet. The pressure-sensitive adhesive material includes at least a pressure-sensitive adhesive layer, and the thermally conductive foam sheet is adhered to another member by the pressure-sensitive adhesive layer. More specifically, the pressure-sensitive adhesive material may be a single pressure-sensitive adhesive layer directly laminated on the surface of the heat conductive foam sheet, or a double-sided pressure-sensitive adhesive tape attached to the surface of the heat conductive foam sheet. There may be.
The double-sided pressure-sensitive adhesive tape includes a base material and a pressure-sensitive adhesive layer provided on both surfaces of the base material. In the double-sided pressure-sensitive adhesive tape, one pressure-sensitive adhesive layer is bonded to the thermally conductive foam sheet, and the other pressure-sensitive adhesive layer is bonded to another member.
 粘着剤層は粘着剤により構成される。粘着剤としては、特に制限はなく、例えば、アクリル系粘着剤、ウレタン系粘着剤、ゴム系粘着剤等が挙げられるが、これらの中では、アクリル系粘着剤が好ましい。また、両面粘着テープの基材としては、例えば樹脂フィルムが使用される。粘着剤は両面異なる仕様になっていてもよく、発泡体に接さない面にはシリコン系粘着剤の使用も可能である。 The adhesive layer is composed of an adhesive. There is no restriction | limiting in particular as an adhesive, For example, an acrylic adhesive, a urethane type adhesive, a rubber-type adhesive, etc. are mentioned, Among these, an acrylic adhesive is preferable. Moreover, as a base material of a double-sided adhesive tape, a resin film is used, for example. The pressure-sensitive adhesive may have different specifications on both sides, and a silicon-based pressure-sensitive adhesive can be used on the surface that does not contact the foam.
 本発明を実施例により更に詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。
 以下の実施例及び比較例で使用した材料は以下のとおりである。
Examples The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
The materials used in the following examples and comparative examples are as follows.
[エラストマー樹脂]
(エチレン-プロピレン-ジエンゴム(固体状))
   JSR(株)製、商品名「EP21」
   エチレン含量:61質量%、ジエン含量:5.8質量%
   ムーニー粘度:35(ML1+4、100℃)
(液状エチレン-プロピレン-ジエンゴム(a))
   三井化学(株)製、商品名「PX-068」
   数平均分子量:920
   23℃における粘度:10Pa・s
   エチレン含有量50質量%、ジエン含有量11質量%
(液状エチレン-プロピレン-ジエンゴム(b))
   ライオンエラストマー社製、商品名「T-65」
   数平均分子量:7000
   20℃における粘度:11000Pa・s
   ジエン含有量10.5質量%
[Elastomer resin]
(Ethylene-propylene-diene rubber (solid))
Product name “EP21” manufactured by JSR Corporation
Ethylene content: 61% by mass, diene content: 5.8% by mass
Mooney viscosity: 35 (ML 1 + 4 , 100 ° C.)
(Liquid ethylene-propylene-diene rubber (a))
Product name “PX-068” manufactured by Mitsui Chemicals, Inc.
Number average molecular weight: 920
Viscosity at 23 ° C .: 10 Pa · s
Ethylene content 50% by mass, diene content 11% by mass
(Liquid ethylene-propylene-diene rubber (b))
Product name “T-65” manufactured by Lion Elastomer Co., Ltd.
Number average molecular weight: 7000
Viscosity at 20 ° C .: 11000 Pa · s
Diene content 10.5% by mass
[プロセスオイル]
(パラフィン系プロセスオイル(a))
   出光興産(株)製、商品名「ダイアナプロセスオイルPW-32」
   重量平均分子量(Mw):400
   動粘度(40℃):31mm/s
(パラフィン系プロセスオイル(b))
   出光興産(株)製、商品名「ダイアナプロセスオイルPW-90」
   重量平均分子量(Mw):530
   動粘度(40℃):91mm/s
(パラフィン系プロセスオイル(c))
   出光興産(株)製、商品名「ダイアナプロセスオイルPW-380」
   重量平均分子量(Mw):750
   動粘度(40℃):409mm/s
(炭化水素系オリゴマー(a))
   三井化学(株)製、商品名「ルーカントHC-40」
   エチレンープロピレンオリゴマー
   エチレン/プロピレン組成比 50/50
   結晶構造:非晶質
   重量平均分子量(Mw):1030
   動粘度(40℃):400mm/s
(炭化水素系オリゴマー(b))
   三井化学(株)製、商品名「ルーカントHC-100」
   エチレンープロピレンオリゴマー
   エチレン/プロピレン組成比 50/50
   結晶構造:非晶質
   重量平均分子量(Mw):2400
   動粘度(40℃):1300mm/s
(炭化水素系オリゴマー(c))
   三井化学(株)製、商品名「ルーカントHC-600」
   エチレンープロピレンオリゴマー
   エチレン/プロピレン組成比 50/50
   結晶構造:非晶質
   重量平均分子量(Mw):4700
   動粘度(40℃):10000mm/s
(炭化水素系オリゴマー(d))
   三井化学(株)製、商品名「ルーカントHC-2000」
   エチレンープロピレンオリゴマー
   エチレン/プロピレン組成比 50/50
   結晶構造:非晶質
   重量平均分子量(Mw):7000
   動粘度(40℃):37500mm/s
[Process oil]
(Paraffinic process oil (a))
Product name “Diana Process Oil PW-32” manufactured by Idemitsu Kosan Co., Ltd.
Weight average molecular weight (Mw): 400
Kinematic viscosity (40 ° C.): 31 mm 2 / s
(Paraffinic process oil (b))
Product name "Diana Process Oil PW-90" manufactured by Idemitsu Kosan Co., Ltd.
Weight average molecular weight (Mw): 530
Kinematic viscosity (40 ° C.): 91 mm 2 / s
(Paraffinic process oil (c))
Product name “Diana Process Oil PW-380”, manufactured by Idemitsu Kosan Co., Ltd.
Weight average molecular weight (Mw): 750
Kinematic viscosity (40 ° C.): 409 mm 2 / s
(Hydrocarbon oligomer (a))
Product name "Lucanto HC-40" manufactured by Mitsui Chemicals, Inc.
Ethylene-propylene oligomer Ethylene / propylene composition ratio 50/50
Crystal structure: amorphous Weight average molecular weight (Mw): 1030
Kinematic viscosity (40 ° C.): 400 mm 2 / s
(Hydrocarbon oligomer (b))
Product name "Lucant HC-100" manufactured by Mitsui Chemicals, Inc.
Ethylene-propylene oligomer Ethylene / propylene composition ratio 50/50
Crystal structure: amorphous Weight average molecular weight (Mw): 2400
Kinematic viscosity (40 ℃): 1300mm 2 / s
(Hydrocarbon oligomer (c))
Product name "Lucant HC-600" manufactured by Mitsui Chemicals, Inc.
Ethylene-propylene oligomer Ethylene / propylene composition ratio 50/50
Crystal structure: amorphous Weight average molecular weight (Mw): 4700
Kinematic viscosity (40 ° C.): 10,000 mm 2 / s
(Hydrocarbon oligomer (d))
Product name "Lucant HC-2000" manufactured by Mitsui Chemicals, Inc.
Ethylene-propylene oligomer Ethylene / propylene composition ratio 50/50
Crystal structure: amorphous Weight average molecular weight (Mw): 7000
Kinematic viscosity (40 ° C.): 37500 mm 2 / s
[熱伝導性フィラー]
(酸化マグネシウム)
   宇部マテリアル(株)製、商品名「RF-10C」
   粒径:10μm
   密度:3.65g/cm
   熱伝導率(λ):42~60W/m・K
   形状:球状
(窒化ホウ素)
   モメンティブ製、商品名「PT131」
   粒径:10μm
   密度:2.2g/cm
   熱伝導率(λ):30~150W/m・K
   形状:麟片状
[Thermal conductive filler]
(Magnesium oxide)
Product name “RF-10C” manufactured by Ube Material Co., Ltd.
Particle size: 10 μm
Density: 3.65 g / cm 3
Thermal conductivity (λ): 42-60W / m · K
Shape: Spherical (boron nitride)
Product name “PT131” manufactured by Momentive
Particle size: 10 μm
Density: 2.2 g / cm 3
Thermal conductivity (λ): 30 to 150 W / m · K
Shape: scaly
[発泡剤]
   アゾジカルボンアミド
   永和化成工業(株)製商品名「ビニホールAC-K3-TA」、分解温度:210℃
[フェノール系酸化防止剤]
   フェノール系酸化防止剤
   BASF(株)製、商品名「イルガノックス1010」
[Foaming agent]
Azodicarbonamide Ebina Kasei Kogyo Co., Ltd. trade name “Vinole Hall AC-K3-TA”, decomposition temperature: 210 ° C.
[Phenolic antioxidant]
Product name "Irganox 1010", manufactured by BASF Corporation
 平均分子量、ムーニー粘度、粘度、及び動粘度の測定法は以下のとおりである。
[平均分子量]
 プロセスオイルの重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて、ポリスチレン換算値として算出した。GPC測定は、装置名(Waters社製2690Separations Model)、使用カラムKF-806L(昭和電工社製)、測定溶媒THF、温度40℃で行った。
 [ムーニー粘度(100℃)、粘度(25℃)]
 エチレンプロピレンジエンゴムの100℃のムーニー粘度(ML1+4、100℃)は、JIS K6300-1に準拠して測定した値である。液状エチレンプロピレンジエンゴムの20℃又は25℃における粘度は、B型回転粘度計により回転速度1rpmにて測定した値である。
 [動粘度]
プロセスオイルの動粘度は、ウベローデ型粘度計を用いて40℃で測定されたものである。
The measurement methods of average molecular weight, Mooney viscosity, viscosity, and kinematic viscosity are as follows.
[Average molecular weight]
The weight average molecular weight of the process oil was calculated as a polystyrene equivalent value using gel permeation chromatography (GPC). The GPC measurement was performed at the apparatus name (2690 Separations Model manufactured by Waters), the column used KF-806L (manufactured by Showa Denko), the measurement solvent THF, and the temperature of 40 ° C.
[Mooney viscosity (100 ° C), viscosity (25 ° C)]
The Mooney viscosity (ML 1 + 4 , 100 ° C.) of ethylene propylene diene rubber at 100 ° C. is a value measured according to JIS K6300-1. The viscosity at 20 ° C. or 25 ° C. of the liquid ethylene propylene diene rubber is a value measured with a B-type rotational viscometer at a rotational speed of 1 rpm.
[Kinematic viscosity]
The kinematic viscosity of the process oil is measured at 40 ° C. using an Ubbelohde viscometer.
実施例1
 エチレンプロピレンジエンゴム80質量部、パラフィン系プロセスオイル(c)20質量部、酸化マグネシウム300質量部、アゾジカルボンアミド17.5質量部、酸化防止剤3質量部を溶融混練後、プレスすることにより厚さが0.5mmの発泡性樹脂シートを得た。
 得られた発泡性樹脂シートの両面に加速電圧500keVにて電子線を1.2Mrad照射して発泡性樹脂シートを架橋させた。次にシートを250℃に加熱することによって発泡性樹脂シートを発泡させて、熱伝導性発泡体シートを得た。
 上記熱伝導性発泡体シートについて、発泡倍率、熱伝導率、粗大気泡の数を以下に示すとおり評価した。結果を表1に示す。
Example 1
80 parts by mass of ethylene propylene diene rubber, 20 parts by mass of paraffinic process oil (c), 300 parts by mass of magnesium oxide, 17.5 parts by mass of azodicarbonamide, and 3 parts by mass of antioxidant are melt-kneaded and then thickened by pressing. A foamable resin sheet having a thickness of 0.5 mm was obtained.
Both surfaces of the obtained foamable resin sheet were irradiated with an electron beam of 1.2 Mrad at an acceleration voltage of 500 keV to crosslink the foamable resin sheet. Next, the foamable resin sheet was foamed by heating the sheet to 250 ° C. to obtain a thermally conductive foam sheet.
About the said heat conductive foam sheet, the expansion ratio, the thermal conductivity, and the number of coarse bubbles were evaluated as shown below. The results are shown in Table 1.
実施例2~16、比較例1~7
 配合を表1及び2に記載のとおり変更したこと以外は、実施例1と同様に熱伝導性発泡体シートを製造し、下記評価を行った。結果を表1及び2に示す。
Examples 2 to 16, Comparative Examples 1 to 7
Except that the formulation was changed as described in Tables 1 and 2, a thermally conductive foam sheet was produced in the same manner as in Example 1, and the following evaluation was performed. The results are shown in Tables 1 and 2.
[物性評価]
 得られた熱伝導性発泡体シートの物性は以下のように測定した。各測定結果は表1及び2に示す。
(発泡倍率)
 発泡前の発泡性樹脂シートと熱伝導性発泡体シートの比容積(単位:cm/g)を測定し、熱伝導性発泡体シートの比容積/発泡前の発泡性樹脂シートの比容積によって算出した。
(熱伝導率)
 伝導性発泡体シートの熱伝導率は、ホットディスク熱物性測定装置(京都電子工業社製、型名「TPS1500」)を用い、25mm×25mmの熱伝導性発泡体シートを厚さ10mm以上になるように重ねて、50%圧縮して試験片とし、二つの試験片でセンサーを挟み、センサーを発熱させ、温度上昇から熱伝導率を測定した。
(粗大気泡の数)
 ライトボックスの上に熱伝導性発泡体シートを通過させ、目視にて気泡の存在を確認した。気泡の最大径をマイクロゲージにより測定し、その長さが2mm以上となる気泡を粗大気泡として、熱伝導性発泡体シート1m中に存在する粗大気泡の数を確認した。
[Evaluation of the physical properties]
The physical properties of the obtained heat conductive foam sheet were measured as follows. The measurement results are shown in Tables 1 and 2.
(Foaming ratio)
The specific volume (unit: cm 3 / g) of the foamable resin sheet before foaming and the heat conductive foam sheet is measured, and the specific volume of the heat conductive foam sheet / the specific volume of the foamable resin sheet before foaming Calculated.
(Thermal conductivity)
The thermal conductivity of the conductive foam sheet is 10 mm or more from a 25 mm × 25 mm thermal conductive foam sheet using a hot disk thermophysical property measuring apparatus (manufactured by Kyoto Electronics Industry Co., Ltd., model name “TPS1500”). Thus, the test piece was compressed by 50% to be a test piece, the sensor was sandwiched between the two test pieces, the sensor was heated, and the thermal conductivity was measured from the temperature rise.
(Number of coarse bubbles)
A thermally conductive foam sheet was passed over the light box, and the presence of bubbles was confirmed visually. The maximum diameter of the bubbles was measured with a microgauge, and the number of coarse bubbles present in the thermally conductive foam sheet 1 m 3 was confirmed with the bubbles having a length of 2 mm or more as coarse bubbles.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1の結果から明らかなように、特定範囲の重量平均分子量のプロセスオイルを一定量配合した本発明の熱伝導性発泡体シートは、熱伝導性が高く、発泡性が良好であり、粗大気泡が少ないことが分かった。一方で、表2に示す本発明で特定するプロセスオイルを用いない比較例では、粗大気泡が多くなるか又は発泡性が良好ではないことが分かった。 As is clear from the results in Table 1, the thermally conductive foam sheet of the present invention in which a certain amount of process oil having a specific range of weight average molecular weight is blended has high thermal conductivity, good foamability, and coarse bubbles. It turns out that there are few. On the other hand, in the comparative example which does not use the process oil specified by the present invention shown in Table 2, it was found that coarse bubbles increase or foamability is not good.

Claims (11)

  1.  エラストマー樹脂及びプロセスオイルからなる主剤100質量部と、熱伝導性フィラー150~550質量部とを含有し、前記主剤100質量部におけるプロセスオイルの含有量が18~75質量部であり、前記プロセスオイルの重量平均分子量が6500以下である、熱伝導性発泡体シート。 100 parts by mass of a main agent composed of an elastomer resin and a process oil and 150 to 550 parts by mass of a heat conductive filler, and the content of the process oil in 100 parts by mass of the main agent is 18 to 75 parts by mass. The heat conductive foam sheet whose weight average molecular weight is 6500 or less.
  2.  前記プロセスオイルが、鉱物油及び合成油からなる群から選択される少なくとも1種である、請求項1に記載の熱伝導性発泡体シート。 The heat conductive foam sheet according to claim 1, wherein the process oil is at least one selected from the group consisting of mineral oil and synthetic oil.
  3.  前記プロセスオイルが、パラフィン系プロセスオイルである、請求項1に記載の熱伝導性発泡体シート。 The heat conductive foam sheet according to claim 1, wherein the process oil is a paraffinic process oil.
  4.  前記プロセスオイルが、炭化水素系オリゴマーである、請求項1に記載の熱伝導性発泡体シート。 The heat conductive foam sheet according to claim 1, wherein the process oil is a hydrocarbon oligomer.
  5.  前記プロセスオイルの40℃における動粘度が30000mm/s以下である、請求項1~4のいずれかに記載の熱伝導性発泡体シート。 The thermally conductive foam sheet according to any one of claims 1 to 4, wherein the process oil has a kinematic viscosity at 40 ° C of 30000 mm 2 / s or less.
  6.  前記エラストマー樹脂がエチレンプロピレンジエンゴムである、請求項1~5のいずれかに記載の熱伝導性発泡体シート。 The thermally conductive foam sheet according to any one of claims 1 to 5, wherein the elastomer resin is ethylene propylene diene rubber.
  7.  前記熱伝導性フィラーが、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、窒化ホウ素、タルク、窒化アルミニウム、グラファイト、グラフェン、結晶シリカ、炭化珪素、窒化珪素、ベリリア、ダイアモンド、黒鉛、カーボンナノチューブ、及び炭素繊維からなる群から選ばれる少なくとも1種である、請求項1~6のいずれかに記載の熱伝導性発泡体シート。 The thermally conductive filler is made of aluminum oxide, magnesium oxide, zinc oxide, boron nitride, talc, aluminum nitride, graphite, graphene, crystalline silica, silicon carbide, silicon nitride, beryllia, diamond, graphite, carbon nanotube, and carbon fiber. The thermally conductive foam sheet according to any one of claims 1 to 6, which is at least one selected from the group consisting of:
  8.  発泡倍率が2~10倍である、請求項1~7のいずれかに記載の熱伝導性発泡体シート。 The thermally conductive foam sheet according to any one of claims 1 to 7, wherein the expansion ratio is 2 to 10 times.
  9.  エラストマー樹脂の含有量が樹脂成分全量基準で80質量%以上である、請求項1~8のいずれかに記載の熱伝導性発泡体シート。 The thermally conductive foam sheet according to any one of claims 1 to 8, wherein the content of the elastomer resin is 80% by mass or more based on the total amount of the resin components.
  10.  熱伝導性発泡体シートが主剤及び熱伝導性フィラーからなる、請求項1~9のいずれかに記載の熱伝導性発泡体シート。 The thermally conductive foam sheet according to any one of claims 1 to 9, wherein the thermally conductive foam sheet comprises a main agent and a thermally conductive filler.
  11.  請求項1~10のいずれかに記載の熱伝導性発泡体シートと、該熱伝導性発泡体シートの片面又は両面に設けられる粘着材とを備える、粘着シート。 An adhesive sheet comprising the thermally conductive foam sheet according to any one of claims 1 to 10 and an adhesive material provided on one side or both sides of the thermally conductive foam sheet.
PCT/JP2018/008858 2017-03-30 2018-03-07 Thermally conductive foam sheet WO2018180319A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018513893A JPWO2018180319A1 (en) 2017-03-30 2018-03-07 Thermal conductive foam sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017067733 2017-03-30
JP2017-067733 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018180319A1 true WO2018180319A1 (en) 2018-10-04

Family

ID=63675486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008858 WO2018180319A1 (en) 2017-03-30 2018-03-07 Thermally conductive foam sheet

Country Status (2)

Country Link
JP (1) JPWO2018180319A1 (en)
WO (1) WO2018180319A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020196839A (en) * 2019-06-05 2020-12-10 三井化学株式会社 Thermoplastic resin composition and use thereof
CN113045817A (en) * 2019-12-27 2021-06-29 株式会社爱世克私 Buffer body and shoes

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008084512A1 (en) * 2006-12-26 2008-07-17 Asahi Kasei E-Materials Corporation Radiating material and radiating sheet molded from radiating material
JP2010171350A (en) * 2009-01-26 2010-08-05 Inoac Corp Heat dissipation structure
JP2011236365A (en) * 2010-05-12 2011-11-24 Jsr Corp Thermoplastic elastomer composition and heat-conductive sheet
JP2012140509A (en) * 2010-12-28 2012-07-26 Jsr Corp Foam-molded article, heat-conductive molded article and method of producing the same, and heat-conductive sheet laminate
JP2014024958A (en) * 2012-07-26 2014-02-06 Kaneka Corp Curable composition
JP2014031454A (en) * 2012-08-03 2014-02-20 Asahi Kasei E-Materials Corp Resin composition and sheet
JP2015021080A (en) * 2013-07-19 2015-02-02 アロン化成株式会社 Thermoplastic elastomer composition
JP2017043673A (en) * 2015-08-25 2017-03-02 旭化成株式会社 Resin composition and sheet thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008084512A1 (en) * 2006-12-26 2008-07-17 Asahi Kasei E-Materials Corporation Radiating material and radiating sheet molded from radiating material
JP2010171350A (en) * 2009-01-26 2010-08-05 Inoac Corp Heat dissipation structure
JP2011236365A (en) * 2010-05-12 2011-11-24 Jsr Corp Thermoplastic elastomer composition and heat-conductive sheet
JP2012140509A (en) * 2010-12-28 2012-07-26 Jsr Corp Foam-molded article, heat-conductive molded article and method of producing the same, and heat-conductive sheet laminate
JP2014024958A (en) * 2012-07-26 2014-02-06 Kaneka Corp Curable composition
JP2014031454A (en) * 2012-08-03 2014-02-20 Asahi Kasei E-Materials Corp Resin composition and sheet
JP2015021080A (en) * 2013-07-19 2015-02-02 アロン化成株式会社 Thermoplastic elastomer composition
JP2017043673A (en) * 2015-08-25 2017-03-02 旭化成株式会社 Resin composition and sheet thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020196839A (en) * 2019-06-05 2020-12-10 三井化学株式会社 Thermoplastic resin composition and use thereof
JP7296786B2 (en) 2019-06-05 2023-06-23 三井化学株式会社 THERMOPLASTIC RESIN COMPOSITION AND USES THEREOF
CN113045817A (en) * 2019-12-27 2021-06-29 株式会社爱世克私 Buffer body and shoes
JP2021105153A (en) * 2019-12-27 2021-07-26 株式会社アシックス Cushion and shoe
JP7075921B2 (en) 2019-12-27 2022-05-26 株式会社アシックス Buffer and shoes
CN113045817B (en) * 2019-12-27 2024-02-09 株式会社爱世克私 Cushioning body and shoe
US12171297B2 (en) 2019-12-27 2024-12-24 Asics Corporation Cushion and shoe

Also Published As

Publication number Publication date
JPWO2018180319A1 (en) 2020-02-06

Similar Documents

Publication Publication Date Title
JP6773817B2 (en) Polyolefin resin foam sheet and adhesive tape
JP2019065162A (en) Thermally conductive foam
JP7295623B2 (en) Polyolefin resin foam sheet and adhesive tape using the same
JP2020139062A (en) Cushion material for battery
JP7000310B2 (en) Shock absorbing sheet
JP5951159B1 (en) Foam composite sheet
JP2019065170A (en) Thermally conductive foam sheet
WO2018180319A1 (en) Thermally conductive foam sheet
JP6133257B2 (en) Highly heat conductive insulating crosslinkable composition, high heat conductive insulating crosslinkable composition, high heat conductive insulating crosslinkable molded body, and method for producing the same
JP2018127616A (en) Thermally conductive foam sheet
JP2019038912A (en) Thermally conductive foam sheet
JP2018127617A (en) Thermally conductive foam sheet
JP2018053018A (en) Heat-radiation foamed sheet and adhesive tape
JP2019172907A (en) Thermally conductive foam and thermally conductive foam adhesive sheet
JP6491641B2 (en) Thermally conductive laminate for electronic equipment
JP2019172903A (en) Thermally conductive foam and thermally conductive foam adhesive sheet
JP6346384B1 (en) Porous material
JP2021055043A (en) Conductive foam sheet
JP2020033519A (en) Flame-retardant foam
JP7071857B2 (en) Foam composite sheet
JP2019143073A (en) Thermally conductive foam sheet
JP7221735B2 (en) Polyolefin resin foam sheet and adhesive tape using the same
JP2017186548A (en) Thermally conductive foam sheet for electronic equipment
JP2019172792A (en) Thermally conductive foam and adhesive tape
JP2019065176A (en) Thermally conductive foam sheet

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018513893

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18777679

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载