WO2018179714A1 - 電力変換装置、電力変換システム - Google Patents
電力変換装置、電力変換システム Download PDFInfo
- Publication number
- WO2018179714A1 WO2018179714A1 PCT/JP2018/001804 JP2018001804W WO2018179714A1 WO 2018179714 A1 WO2018179714 A1 WO 2018179714A1 JP 2018001804 W JP2018001804 W JP 2018001804W WO 2018179714 A1 WO2018179714 A1 WO 2018179714A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- inverter
- converter
- bus
- control circuit
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 63
- 238000004891 communication Methods 0.000 claims description 27
- 230000007423 decrease Effects 0.000 claims description 11
- 230000004044 response Effects 0.000 claims description 4
- 230000001629 suppression Effects 0.000 description 54
- 238000000034 method Methods 0.000 description 13
- 238000010248 power generation Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 239000003990 capacitor Substances 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 230000033228 biological regulation Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 230000002457 bidirectional effect Effects 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910000652 nickel hydride Inorganic materials 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other DC sources, e.g. providing buffering
- H02J7/35—Parallel operation in networks using both storage and other DC sources, e.g. providing buffering with light sensitive cells
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/42—Conversion of DC power input into AC power output without possibility of reversal
- H02M7/44—Conversion of DC power input into AC power output without possibility of reversal by static converters
- H02M7/48—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
Definitions
- the present invention relates to a power conversion device and a power conversion system that convert DC power into AC power.
- a typical configuration of a distributed power supply system connected to a system is a configuration in which a single distributed power supply is used to connect the system via a DC-DC converter, a DC bus and an inverter, and a plurality of distributed power supplies. Are connected to each other via each DC-DC converter, a common DC bus and one inverter.
- the DC-DC converter and the inverter are physically installed in a single housing, the DC-DC converter and the inverter are controlled independently by separate control devices (for example, a microcomputer). Sometimes it is done. In such a distributed power supply system in which the DC-DC converter and the inverter are physically or controlly separated, it is necessary to make adjustments between the respective power conversion units.
- the inverter discharge power in response to events such as system voltage rise, inverter component temperature rise, remote output command reception, and reverse power flow detection
- a control method for suppressing the above is used.
- the voltage of the DC bus rises immediately after starting the inverter output suppression.
- the DC-DC converter determines from the rise in the voltage of the DC bus that the inverter is suppressing the output, and suppresses the discharge power to the DC bus so that the voltage of the DC bus does not rise above a predetermined voltage.
- the voltage of the DC bus is controlled to be maintained at the set voltage by the DC-DC converter while the output suppression function of the inverter is working.
- the voltage of the DC bus set in this DC-DC converter is higher than the voltage of the DC bus in the steady state, which causes a reduction in the power conversion efficiency of the inverter.
- the present invention has been made in view of such a situation, and an object thereof is to provide a power conversion device and a power conversion system that realize high-efficiency power conversion even while the output suppression function of the inverter is working.
- a power converter includes a DC-DC converter that converts a voltage of DC power output from a DC power source and outputs the converted DC power to a DC bus, and the DC bus. And an inverter that converts the DC power of the DC bus into AC power, supplies the converted AC power to a load or a power system, and a control circuit that controls the inverter.
- the control circuit controls the inverter to lower the output of the inverter to a first target value when the output from the inverter to the power system should be suppressed, and a second lower than the first target value.
- the target value is notified to another control circuit that controls the DC-DC converter.
- FIGS. 2A and 2B are diagrams schematically showing the voltage state of the DC bus (part 1).
- FIGS. 3A and 3B are diagrams schematically showing the voltage state of the DC bus (part 2).
- FIG. 1 is a diagram for explaining a power conversion system 1 according to an embodiment of the present invention.
- the power conversion system 1 includes a first power conversion device 10 and a second power conversion device 20.
- the first power conversion device 10 is a power conditioner system for the solar cell 2
- the second power conversion device 20 is a power conditioner system for the power storage unit 3.
- FIG. 1 the example which retrofitted the power conditioner system for the electrical storage part 3 to the power conditioner system for the solar cells 2 is shown.
- the solar cell 2 is a power generation device that directly converts light energy into electric power using the photovoltaic effect.
- a silicon solar cell, a solar cell made of a compound semiconductor or the like, a dye-sensitized type (organic solar cell), or the like is used as the solar cell 2.
- the solar cell 2 is connected to the first power conversion device 10 and outputs the generated power to the first power conversion device 10.
- the first power converter 10 includes a DC-DC converter 11, a converter control circuit 12, an inverter 13, an inverter control circuit 14, and a system control circuit 15.
- the system control circuit 15 includes a reverse flow power measurement unit 15a, a command value generation unit 15b, and a communication control unit 15c.
- the DC-DC converter 11 and the inverter 13 are connected by a DC bus 40.
- the converter control circuit 12 and the system control circuit 15 are connected by a communication line 41, and communication conforming to a predetermined serial communication standard (for example, RS-485 standard, TCP-IP standard) is performed between the two.
- a predetermined serial communication standard for example, RS-485 standard, TCP-IP standard
- the DC-DC converter 11 converts the DC power output from the solar cell 2 into DC power having a desired voltage value, and outputs the converted DC power to the DC bus 40.
- the DC-DC converter 11 can be constituted by a step-up chopper, for example.
- the converter control circuit 12 controls the DC-DC converter 11. As a basic control, the converter control circuit 12 performs MPPT (Maximum Power Point Tracking) control of the DC-DC converter 11 so that the output power of the solar cell 2 is maximized. Specifically, converter control circuit 12 measures the input voltage and input current of DC-DC converter 11, which are the output voltage and output current of solar cell 2, and estimates the generated power of solar cell 2. The converter control circuit 12 generates a command value for setting the generated power of the solar battery 2 to the maximum power point (optimum operating point) based on the measured output voltage of the solar battery 2 and the estimated generated power.
- MPPT Maximum Power Point Tracking
- the maximum power point is searched by changing the operating point voltage with a predetermined step width according to the hill-climbing method, and the command value is generated so as to maintain the maximum power point.
- the DC-DC converter 11 performs a switching operation according to a drive signal based on the generated command value.
- the inverter 13 is a bidirectional inverter that converts DC power input from the DC bus 40 into AC power and outputs the converted AC power to a distribution line 50 connected to a commercial power system (hereinafter simply referred to as system 4). To do. A load 5 is connected to the distribution line 50. Further, the inverter 13 converts AC power supplied from the system 4 into DC power, and outputs the converted DC power to the DC bus 40. A smoothing electrolytic capacitor (not shown) is connected to the DC bus 40.
- the inverter control circuit 14 controls the inverter 13. As a basic control, the inverter control circuit 14 controls the inverter 13 so that the voltage of the DC bus 40 maintains the first threshold voltage. Specifically, the inverter control circuit 14 detects the voltage of the DC bus 40 and generates a command value for making the detected bus voltage coincide with the first threshold voltage. The inverter control circuit 14 generates a command value for increasing the duty ratio of the inverter 13 when the voltage of the DC bus 40 is higher than the first threshold voltage, and the inverter control circuit 14 when the voltage of the DC bus 40 is lower than the first threshold voltage. A command value for lowering the duty ratio of 13 is generated. The inverter 13 performs a switching operation according to a drive signal based on the generated command value.
- the power storage unit 3 can charge and discharge electric power, and includes a lithium ion storage battery, a nickel hydride storage battery, a lead storage battery, an electric double layer capacitor, a lithium ion capacitor, and the like.
- the power storage unit 3 is connected to the second power conversion device 20.
- the second power conversion device 20 includes a DC-DC converter 21 and a converter control circuit 22.
- the converter control circuit 22 and the system control circuit 15 of the first power conversion device 10 are connected by a communication line 42, and communication based on a predetermined serial communication standard is performed between them.
- the DC-DC converter 21 is a bidirectional converter that is connected between the power storage unit 3 and the DC bus 40 and charges and discharges the power storage unit 3.
- the converter control circuit 22 controls the DC-DC converter 21.
- the converter control circuit 22 controls the DC-DC converter 21 based on the command value transmitted from the system control circuit 15 to control the power storage unit 3 at a constant current (CC) / constant voltage (CV).
- CC constant current
- CV constant voltage
- Charge / discharge For example, the converter control circuit 22 receives a power command value from the system control circuit 15 at the time of discharging, and uses a value obtained by dividing the power command value by the voltage of the power storage unit 3 as a current command value. Discharge.
- the operation display device 30 is a user interface of the first power conversion device 10 and is installed at a predetermined position in the room.
- the operation display device 30 can be constituted by a touch panel display, for example, and provides predetermined information to the user and accepts an operation from the user.
- the operation display device 30 and the system control circuit 15 are connected by a communication line 43, and communication based on a predetermined serial communication standard is performed between them.
- the operation display device 30 and the system control circuit 15 may be connected wirelessly.
- the output power of the inverter 13 needs to be suppressed.
- the main output suppression reasons include the occurrence of reverse power flow from the inverter 13 to the grid 4, the rise of the grid voltage exceeding the set voltage, the reception of the remote output command, the temperature rise exceeding the set temperature of the components in the inverter 13, the inverter 13 An increase in power exceeding the rated power and an increase in current exceeding the rated current of the inverter 13 can be mentioned.
- the system control circuit 15 receives an instruction related to the output power amount and output timing to the grid 4 from a grid operating organization such as a power company via an external network (for example, the Internet or a dedicated line).
- a grid operating organization such as a power company
- an external network for example, the Internet or a dedicated line
- the reverse power flow measurement unit 15 a of the first power conversion device 10 detects the occurrence of reverse power flow based on the measurement value of a CT sensor (not shown) installed on the distribution line 50. .
- the converter control circuit 22 of the second power conversion device 20 receives reverse flow detection information from the system control circuit 15 via the communication line 42.
- the communication line 42 is often installed over the DC bus 40 that connects the first power conversion device 10 and the second power conversion device 20, and in this configuration, the communication line 42 is affected by noise from the DC bus 40. .
- the shorter the unit period representing one bit the weaker it becomes to noise. Basically, the bit error is more likely to occur as the communication speed is increased.
- the first power conversion device 10 detects reverse power flow, generates communication data instructing output suppression, and transmits the communication data to the second power conversion device 20 via the communication line 42, it is defined in the grid interconnection regulations.
- the time limit 500 ms
- the content of communication data may change during the process due to noise.
- the inverter control circuit 14 controls the inverter 13 so that the voltage of the DC bus 40 maintains the first threshold voltage as basic control.
- the inverter control circuit 14 executes output suppression control as priority control. Specifically, the inverter control circuit 14 controls the inverter 13 so that the output of the inverter 13 does not exceed the command value (specifically, the upper limit current value or the upper limit power value) generated by the command value generation unit 15b.
- the bus voltage stabilization control for controlling the voltage of the DC bus 40 to be maintained at the first threshold voltage is stopped.
- the converter control circuit 22 receives, as basic control, the amount of discharge from the power storage unit 3 to the DC-DC converter 21 or the amount of charge from the DC-DC converter 21 to the power storage unit 3 transmitted from the system control circuit 15.
- the DC-DC converter 21 is controlled so that the command value comes.
- the converter control circuit 22 controls the DC-DC converter 21 as priority control so that the voltage of the DC bus 40 does not exceed the second threshold voltage. This control has priority over the control for adjusting the output to the command value transmitted from the system control circuit 15.
- the second threshold voltage is set to a value higher than the first threshold voltage.
- the converter control circuit 12 performs MPPT control on the DC-DC converter 11 so that the output power of the solar cell 2 is maximized as basic control. Further, the converter control circuit 12 controls the DC-DC converter 11 as priority control so that the voltage of the DC bus 40 does not exceed the third threshold voltage. This control has priority over MPPT control.
- the third threshold voltage is set to a value higher than the second threshold voltage.
- the first threshold voltage is set to a steady voltage of the DC bus 40.
- the first threshold voltage is set in the range of DC 280 V to 360 V, for example.
- the second threshold voltage is set to 390V
- the third threshold voltage is set to 410V, for example.
- FIGS. 2A and 2B are diagrams schematically showing the voltage state of the DC bus 40 (part 1).
- FIG. 2A shows the voltage state of the DC bus 40 in a steady state. The constant voltage of the DC bus 40 is maintained at the first threshold voltage by the inverter 13.
- FIG. 2B shows the voltage state of the DC bus 40 immediately after the output of the inverter 13 is suppressed. Normally, immediately after the output is suppressed, the voltage of the DC bus 40 increases, and the DC-DC converter 21 of the power storage unit 3 controls the voltage of the DC bus 40 so as not to exceed the second threshold voltage.
- the power conversion efficiency of the inverter 13 increases as the voltage of the DC bus 40 is closer to the voltage of the system 4. Conversely, at the time of discharging, the conversion efficiency of the inverter 13 decreases as the voltage of the DC bus 40 becomes higher than the voltage of the system 4. As shown in FIG. 2B, in a state where the voltage of the DC bus 40 is higher than that in the steady state, the conversion efficiency of the inverter 13 is lower than that in the steady state.
- FIGS. 3A and 3B are diagrams schematically showing the voltage state of the DC bus 40 (part 2).
- a mechanism is introduced to reduce the voltage of the DC bus 40 from the second threshold voltage to the first threshold voltage during output suppression in order to avoid a decrease in the conversion efficiency of the inverter 13.
- FIG. 4 is a diagram illustrating a first example of power control of the inverter 13 and power control of the DC-DC converter 21 of the power storage unit 3 when the output of the inverter 13 is suppressed.
- the limit value (upper limit value) of the suppression power of the inverter 13 is set to the rated output power value of the inverter 13 in a steady state. That is, even if the voltage of the DC bus 40 increases due to a sudden event during normal operation, the output power of the inverter 13 is set to stop increasing at the rated output power value.
- the limit value (upper limit value) of the DC-DC converter 21 of the power storage unit 3 is also set to the rated output power value of the DC-DC converter 21 in a steady state.
- the inverter control circuit 14 decreases the output of the inverter 13 with a first slope.
- the first slope is defined by a suppression amount [W / ms] per unit time.
- the first slope is set so that the time from when the inverter 13 starts suppression during discharging at the rated output value to when suppression is completed is within 500 ms.
- the power storage unit 3 discharges 2.0 kW, and the inverter 13 supplies 5.5 kW to the load 5.
- the load 5 is disconnected from this state and the power consumption of the load 5 becomes 0.0 W, the 5.5 kW output power of the inverter 13 flows backward to the grid 4.
- the reverse power flow is not stopped within 500 ms, the inverter 13 must be disconnected from the system 4, and the power generation of the solar cell 2 is stopped during the disconnection, resulting in an economic loss.
- the command value generation unit 15b of the system control circuit 15 decreases the power command value of the inverter 13 from 5.5 kW to (0.0 ⁇ ) kW (first target value) according to the first inclination.
- the command value generating unit 15b notifies the inverter control circuit 14 of the updated power command value for each first period.
- Command value generation unit 15b reduces the power command value of DC-DC converter 21 of power storage unit 3 from 2.0 kW to (0.0 ⁇ ) kW (second target value) according to the first inclination. I will let you.
- the command value generation unit 15b notifies the converter control circuit 22 of the updated power command value via the communication line 42 every second period.
- the margin ⁇ is set to 0.05 kW, and the margin ⁇ is also set to 0.05 kW.
- the second period is longer than the first period. That is, the power command value of the inverter 13 is updated more frequently. This is a limitation due to the use of the communication line 42.
- the output suppression of the inverter 13 and the output suppression of the DC-DC converter 21 of the power storage unit 3 are started at the same timing, but actually, the DC-DC converter 21 of the power storage unit 3 is affected by the communication delay. Suppression of output starts later.
- the first target value of the power command value of the inverter 13 is set to a negative value.
- the first target value may be set to 0.0 kW. In this case, neither power purchase nor power sale occurs, and the most economical reverse power flow suppression control is achieved.
- the first target value is set to a negative value, there is a slight power purchase state. In this case, the reverse power flow defined in the grid connection regulations can be more reliably prevented.
- the first target value of the power command value of the inverter 13 is (reverse power flow ⁇ power consumption of the load ⁇ ) kW
- the DC-DC converter of the power storage unit 3 The second target value of the power command value 21 is (reverse power flow-power consumption of the load 5- ⁇ - ⁇ ) kW.
- the output of the inverter 13 may be suppressed by a current value or may be suppressed by a power value.
- the current value it is possible to suppress overcurrent due to excessive output at the time of release of suppression.
- the power value the output can be accurately suppressed even when the system voltage changes.
- the output of the inverter 13 may be suppressed by both the current value and the power value. The same applies to the output suppression of the DC-DC converter 21 of the power storage unit 3.
- the inverter control circuit 14 increases the output of the inverter 13 with the second slope.
- the second slope is defined by the suppression release amount [W / ms] per unit time.
- the second inclination is set more gently than the first inclination.
- the second slope is determined based on the rated output value of the inverter 13 and the rated output value of the DC-DC converter 21, for example.
- FIG. 5 is a diagram illustrating a second example of power control of the inverter 13 and power control of the DC-DC converter 21 of the power storage unit 3 when the output of the inverter 13 is suppressed.
- the first example the example in which the first slope of the inverter 13 and the first slope of the DC-DC converter 21 of the power storage unit 3 are set to be the same has been described, but the first slope of the DC-DC converter 21 of the power storage unit 3 is described.
- the inclination of 1 may be made gentler than the first inclination of the inverter 13. The same applies to the second inclination.
- the first slope of the DC-DC converter 21 of the power storage unit 3 is set to be gentler than the first slope of the inverter 13 (see S1 and S1a).
- the second slope of the DC-DC converter 21 of the power storage unit 3 is set to be gentler than the second slope of the inverter 13 (see S2 and S2a).
- FIG. 6 is a diagram illustrating a third example of power control of the inverter 13 and power control of the DC-DC converter 21 of the power storage unit 3 when the output of the inverter 13 is suppressed.
- the third example is an example in which the voltage of the DC bus 40 is reduced to the first threshold voltage during output suppression.
- the voltage of the DC bus 40 decreases to the first threshold voltage, it is not necessary to increase the output suppression amount of the DC-DC converter 21 of the power storage unit 3 with respect to the output suppression amount of the inverter 13, so that both output suppression amounts Are controlled in the same way.
- the DC-DC converter 21 of the power storage unit 3 suppresses the voltage rise of the DC bus 40 in preference to the suppression of the reverse flow power. To control. Thereby, power balance can be secured by suppressing the voltage of the DC bus 40 while eliminating the continuity of the reverse flow power. Therefore, the operation stop of the power conversion system 1 can be prevented.
- the voltage of the DC bus 40 is increased by suppressing the output of the inverter 13. Can be prevented, and the voltage of the DC bus 40 can be lowered to a steady value. Therefore, a decrease in power conversion efficiency of the inverter 13 can be suppressed.
- the temperature in the first power converter 10 rises, and output suppression due to the temperature rise is likely to be activated. In this case, an increase in the amount of electricity purchased and a reduction in the amount of power generated by the solar cell 2 lead to a decrease in economy.
- the temperature rise in the 1st power converter device 10 leads to the temperature rise of the components (for example, electrolytic capacitor) in the 1st power converter device 10, and leads to shortening of a product life.
- the temperature rise in the 1st power converter device 10 can be suppressed by suppressing the voltage rise of the DC bus 40.
- the DC-DC converter 11 does not have to suppress the power generation of the solar cell 2.
- the opportunity for selling the power generated by the solar cell 2 can be secured to the maximum, so that the economic merit is not impaired.
- the inverter control circuit 14 and the system control circuit 15 are depicted separately, but each may be realized by a separate microcomputer or may be realized by a single microcomputer.
- the example in which the first power conversion device 10 and the second power conversion device 20 are installed in different cases has been described.
- a configuration example in which the system control circuit 15 and the converter control circuit 22 are connected by the communication line 42 while the first power conversion device 10 and the second power conversion device 20 are installed in one housing is also an example of the present invention. It is included in the embodiment.
- the solar cell 2 is connected to the first power conversion device 10 .
- another power generation device using renewable energy such as a wind power generation device or a micro hydraulic power generation device, may be connected.
- a DC-DC converter (21) that converts the voltage of the DC power output from the DC power source (3) and outputs the converted DC power to the DC bus (40) is connected via the DC bus (40),
- the control circuit (14, 15) is configured to reduce the output of the inverter (13) to a first target value when the output from the inverter (13) to the power system (4) is to be suppressed. (13) and a second target value lower than the first target value is notified to another control circuit (22) for controlling the DC-DC converter (21).
- the DC power source (3) is the power storage unit (3), The power converter according to item 1, wherein the time when the output from the inverter (13) to the power system (4) should be suppressed is when a reverse power flow to the power system (4) occurs. (10). According to this, the voltage of the DC bus (40) can be reduced while the reverse power flow is suppressed.
- the control circuit (14, 15) sets the first target value so that the reverse flow power to the power system (4) becomes a negative value.
- the power conversion device (10) according to item 1 or 2, wherein the power conversion device (10) generates the second target value at a value lower than the first target value. According to this, it is possible to reduce the voltage of the DC bus (40) while more reliably suppressing the reverse power flow.
- a DC-DC converter (21) for converting the voltage of the DC power output from the DC power supply (3) and outputting the converted DC power to the DC bus (40);
- An inverter (13) connected via the DC bus (40), converting DC power of the DC bus (40) into AC power, and supplying the converted AC power to the load (5) or the power system (4)
- a second control circuit (14, 15) for controlling the inverter (13) When the output from the inverter (13) to the power system (14) is to be suppressed, the second control circuit (14, 15) reduces the output of the inverter (13) to a first target value.
- the power conversion system (1) characterized by controlling the inverter (13) and notifying the first control circuit (22) of a second target value lower than the first target value. According to this, the voltage of the DC bus (40) can be reduced during output suppression, and the reduction in conversion efficiency of the inverter (13) can be suppressed.
- the first control circuit (22) and the second control circuit (14, 15) are connected by a communication line (42), The second control circuit (14, 15) maintains the voltage of the DC bus (40) at the first threshold voltage when it is not necessary to suppress the output from the inverter (13) to the power system (4).
- the first control circuit (22) receives the DC-DC converter (21) based on a command value generated from the second target value received from the second control circuit (14, 15). And controlling the voltage of the DC bus (40) so as not to exceed a second threshold voltage higher than the first threshold voltage. According to this, it is possible to stabilize the voltage of the DC bus (40) during suppression and after cancellation of suppression while suppressing a voltage increase immediately after the start of suppression of the DC bus (40).
- a DC-DC converter for the power generator (2) that converts the voltage of the DC power output from the power generator (2) that generates power based on renewable energy and outputs the converted DC power to the DC bus (40).
- the power generator (2) is controlled so that the output power is maximized, and the voltage of the DC bus (40) is controlled so as not to exceed a third threshold voltage higher than the second threshold voltage.
- the second control circuit (14, 15) receives the amount of power input to the inverter (13).
- a DC-DC converter (21) for converting the voltage of the DC power output from the DC power supply (3) and outputting the converted DC power to the DC bus (40);
- the DC-DC converter (21) converts the DC power of the DC bus (40) into AC power via the DC bus (40), and converts the converted AC power into a load (5) or a power system (4).
- the first control circuit (22) reduces the output of the inverter (13) to a first target value.
- control is performed so that the DC-DC converter (21) is lowered to the second target value.
- the power converter device (20) characterized by performing. According to this, the voltage of the DC bus (40) can be reduced during output suppression, and the reduction in conversion efficiency of the inverter (13) can be suppressed.
- the present invention can be used for a distributed power supply system in which a solar battery and a stationary storage battery are combined.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
電力変換装置10において、インバータ13は、直流電源の出力する直流電力の電圧を変換し、変換した直流電力を直流バス40に出力するDC-DCコンバータ21と直流バス40を介して接続され、直流バス40の直流電力を交流電力に変換し、変換した交流電力を負荷5または系統4に供給する。制御回路14、15は、インバータ13を制御する。制御回路14、15は、インバータ13から系統4への出力を抑制すべきとき、インバータ13の出力を第1目標値に低下させるようにインバータ13を制御するとともに、第1目標値より低い第2目標値を、DC-DCコンバータ21を制御するコンバータ制御回路22に通知する。
Description
本発明は、直流電力を交流電力に変換する電力変換装置、電力変換システムに関する。
現在、系統連系される分散型電源には、電源ソースとして太陽電池、燃料電池、定置型蓄電池、車載蓄電池などがある。系統に連系する分散型電源システムの代表的な構成として、単一の分散型電源を使用してDC-DCコンバータ、直流バス及びインバータを介して系統連系する構成と、複数の分散型電源を使用してそれぞれのDC-DCコンバータ、共通の直流バス及び1つのインバータを介して系統連系する構成がある。
後者において、複数のDC-DCコンバータと1つのインバータが1つの筐体内に設置される構成と、少なくとも1つのDC-DCコンバータと1つのインバータが分離された筐体内に設置される構成がある(例えば、特許文献1参照)。
また、物理的に1つの筐体内にDC-DCコンバータとインバータが設置される構成であっても、制御的にはDC-DCコンバータとインバータが別々の制御装置(例えば、マイコン)により独立に制御されることもある。このようなDC-DCコンバータとインバータが物理的もしくは制御的に分離された分散型電源システムでは、それぞれの電力変換部間の調整を行う必要がある。
例えば、太陽電池と定置型蓄電池を組み合わせた分散型電源システムにおいて、系統電圧の上昇、インバータ部品温度の上昇、遠隔出力指令の受信、逆潮流電力の検出などの事象に対して、インバータの放電電力を抑制する制御方式が用いられる場合がある。この制御方式では、インバータの出力抑制を開始した直後、直流バスの電圧が上昇する。DC-DCコンバータは直流バスの電圧上昇から、インバータが出力抑制中であると判断し、直流バスの電圧が所定の電圧以上に上昇しないように、直流バスへの放電電力を抑制する。
上記の制御方式では、インバータの出力抑制機能が働いている間、直流バスの電圧は、DC-DCコンバータにより、設定された電圧に維持されるように制御される。このDC-DCコンバータに設定された直流バスの電圧は、定常時の直流バスの電圧より高い値であり、インバータの電力変換効率の低下を招く。
本発明はこうした状況に鑑みなされたものであり、その目的は、インバータの出力抑制機能が働いている間も高効率な電力変換を実現する電力変換装置、電力変換システムを提供することにある。
上記課題を解決するために、本発明のある態様の電力変換装置は、直流電源の出力する直流電力の電圧を変換し、変換した直流電力を直流バスに出力するDC-DCコンバータと前記直流バスを介して接続され、前記直流バスの直流電力を交流電力に変換し、変換した交流電力を負荷または電力系統に供給するインバータと、前記インバータを制御する制御回路と、を備える。前記制御回路は、前記インバータから前記電力系統への出力を抑制すべきとき、前記インバータの出力を第1目標値に低下させるように前記インバータを制御するとともに、前記第1目標値より低い第2目標値を、前記DC-DCコンバータを制御する別の制御回路に通知する。
本発明によれば、インバータの出力抑制機能が働いている間も高効率な電力変換を実現することができる。
図1は、本発明の実施の形態に係る電力変換システム1を説明するための図である。電力変換システム1は、第1電力変換装置10及び第2電力変換装置20を備える。第1電力変換装置10は太陽電池2用のパワーコンディショナシステムであり、第2電力変換装置20は蓄電部3用のパワーコンディショナシステムである。図1では、太陽電池2用のパワーコンディショナシステムに、蓄電部3用のパワーコンディショナシステムを後付けした例を示している。
太陽電池2は、光起電力効果を利用し、光エネルギーを直接電力に変換する発電装置である。太陽電池2として、シリコン太陽電池、化合物半導体などを素材にした太陽電池、色素増感型(有機太陽電池)等が使用される。太陽電池2は第1電力変換装置10と接続され、発電した電力を第1電力変換装置10に出力する。
第1電力変換装置10は、DC-DCコンバータ11、コンバータ制御回路12、インバータ13、インバータ制御回路14、及びシステム制御回路15を備える。システム制御回路15は、逆潮流電力計測部15a、指令値生成部15b、及び通信制御部15cを含む。DC-DCコンバータ11とインバータ13間は直流バス40で接続される。コンバータ制御回路12とシステム制御回路15間は通信線41で接続され、両者の間で所定のシリアル通信規格(例えば、例えばRS-485規格、TCP-IP規格)に準拠した通信が行われる。
DC-DCコンバータ11は、太陽電池2から出力される直流電力を、所望の電圧値の直流電力に変換し、変換した直流電力を直流バス40に出力する。DC-DCコンバータ11は例えば、昇圧チョッパで構成することができる。
コンバータ制御回路12はDC-DCコンバータ11を制御する。コンバータ制御回路12は基本制御として、太陽電池2の出力電力が最大になるようDC-DCコンバータ11をMPPT(Maximum Power Point Tracking) 制御する。具体的にはコンバータ制御回路12は、太陽電池2の出力電圧および出力電流である、DC-DCコンバータ11の入力電圧および入力電流を計測して太陽電池2の発電電力を推定する。コンバータ制御回路12は、計測した太陽電池2の出力電圧と推定した発電電力をもとに、太陽電池2の発電電力を最大電力点(最適動作点)にするための指令値を生成する。例えば、山登り法に従い動作点電圧を所定のステップ幅で変化させて最大電力点を探索し、最大電力点を維持するように指令値を生成する。DC-DCコンバータ11は、生成された指令値に基づく駆動信号に応じてスイッチング動作する。
インバータ13は双方向インバータであり、直流バス40から入力される直流電力を交流電力に変換し、変換した交流電力を商用電力系統(以下、単に系統4という)に接続された配電線50に出力する。当該配電線50には負荷5が接続される。またインバータ13は、系統4から供給される交流電力を直流電力に変換し、変換した直流電力を直流バス40に出力する。直流バス40には、平滑用の電解コンデンサ(不図示)が接続されている。
インバータ制御回路14はインバータ13を制御する。インバータ制御回路14は基本制御として、直流バス40の電圧が第1閾値電圧を維持するようにインバータ13を制御する。具体的にはインバータ制御回路14は、直流バス40の電圧を検出し、検出したバス電圧を第1閾値電圧に一致させるための指令値を生成する。インバータ制御回路14は、直流バス40の電圧が第1閾値電圧より高い場合はインバータ13のデューティ比を上げるための指令値を生成し、直流バス40の電圧が第1閾値電圧より低い場合はインバータ13のデューティ比を下げるための指令値を生成する。インバータ13は、生成された指令値に基づく駆動信号に応じてスイッチング動作する。
蓄電部3は、電力を充放電可能であり、リチウムイオン蓄電池、ニッケル水素蓄電池、鉛蓄電池、電気二重層キャパシタ、リチウムイオンキャパシタ等を含む。蓄電部3は第2電力変換装置20と接続される。
第2電力変換装置20は、DC-DCコンバータ21及びコンバータ制御回路22を備える。コンバータ制御回路22と、第1電力変換装置10のシステム制御回路15は通信線42で接続され、両者の間で所定のシリアル通信規格に準拠した通信が行われる。
DC-DCコンバータ21は、蓄電部3と直流バス40の間に接続され、蓄電部3を充放電する双方向コンバータである。コンバータ制御回路22はDC-DCコンバータ21を制御する。コンバータ制御回路22は基本制御として、システム制御回路15から送信されてくる指令値をもとにDC-DCコンバータ21を制御して、蓄電部3を定電流(CC)/定電圧(CV)で充電/放電する。例えばコンバータ制御回路22は、放電時においてシステム制御回路15から電力指令値を受信し、当該電力指令値を蓄電部3の電圧で割った値を電流指令値として、DC-DCコンバータ21に定電流放電させる。
操作表示装置30は、第1電力変換装置10のユーザインターフェイスであり、室内の所定の位置に設置される。操作表示装置30は例えば、タッチパネルディスプレイで構成することができ、ユーザに所定の情報を提供すると共に、ユーザからの操作を受け付ける。操作表示装置30とシステム制御回路15は通信線43で接続され、両者の間で所定のシリアル通信規格に準拠した通信が行われる。なお操作表示装置30とシステム制御回路15の間は無線で接続されてもよい。
以上の回路構成において、インバータ13の出力電力を抑制する必要がある場合が発生する。主な出力抑制事由として、インバータ13から系統4への逆潮流の発生、系統電圧の設定電圧を超える上昇、遠隔出力指令の受信、インバータ13内の部品の設定温度を超える温度上昇、インバータ13の定格電力を超える電力上昇、インバータ13の定格電流を超える電流上昇が挙げられる。
蓄電部3からの放電中に、日射変動により太陽電池2の発電量が増加した場合、又は負荷5の消費電力が低下した場合、系統4への逆潮流電力が発生し、売電状態になることがある。日本では系統連系規程により蓄電システムから、蓄電池の定格容量の5%以上の電力を500msを超えて系統4へ逆潮流することが禁止されている。従って、蓄電部3が接続された電力変換システム1において逆潮流が検出された場合、500ms以内に逆潮流を抑える必要がある。
また日本では2015年1月の再生可能エネルギー固定価格買取制度の改正により、新たに系統に連系する太陽光発電と風力発電の設備に遠隔出力制御システムの導入が義務付けられている。システム制御回路15は、電力会社などの系統運用機関から外部ネットワーク(例えば、インターネット又は専用線)を介して、系統4への出力電力量と出力タイミングに関する指示を受信する。
インバータ13の出力電力を抑制する方法として、太陽電池2のDC-DCコンバータ11の出力電力を抑制する方法、蓄電部3のDC-DCコンバータ21の出力電力を抑制する方法、インバータ13の出力電力を抑制する方法がある。太陽電池2のDC-DCコンバータ11の出力電力を抑制する方法は、太陽電池2の発電量を無駄にすることに繋がる。従って太陽電池2のDC-DCコンバータ11の出力抑制は最後に実行すべき制御である。
逆潮流が検出された場合、蓄電部3からの放電を停止すればよいため、蓄電部3のDC-DCコンバータ21の出力電力を抑制する方法が最も直截的な制御である。しかしながら、第2電力変換装置20が第1電力変換装置10から分離され、系統4から離れた位置に設置されている場合、逆潮流の検出から蓄電部3のDC-DCコンバータ21の出力抑制までにタイムラグが発生しやすくなる。
図1に示した構成では、第1電力変換装置10の逆潮流電力計測部15aが、配電線50に設置されたCTセンサ(不図示)の計測値をもとに逆潮流の発生を検出する。第2電力変換装置20のコンバータ制御回路22は、システム制御回路15から通信線42を介して逆潮流の検出情報を受信する。通信線42は、第1電力変換装置10と第2電力変換装置20を繋ぐ直流バス40に這わせて設置されることが多く、この構成では通信線42は直流バス40からノイズの影響を受ける。また二値の電圧を使用したデジタル通信では、1ビットを表す単位期間を短くするほどノイズに弱くなる性質があり、基本的に通信速度を上げるほどビット誤りが発生しやすくなる。
従って第1電力変換装置10が逆潮流を検出し、出力抑制を指示する通信データを生成し、通信線42を介して第2電力変換装置20に送信する方法では、系統連系規程に定められる時限(500ms)を遵守できない可能性がある。またノイズにより通信データの内容が途中で変わってしまう可能性もある。
そこで先にインバータ13の出力電力を抑制し、後から蓄電部3のDC-DCコンバータ21の出力電力を抑制する方法が考えられる。上述のようにインバータ制御回路14は基本制御として、直流バス40の電圧が第1閾値電圧を維持するようにインバータ13を制御する。出力抑制をすべき場合は、インバータ制御回路14は優先制御として、出力抑制制御を実行する。具体的にはインバータ制御回路14は、インバータ13の出力が指令値生成部15bにより生成された指令値(具体的には上限電流値または上限電力値)を超えないようにインバータ13を制御する。出力抑制中は、直流バス40の電圧を第1閾値電圧に維持するように制御するバス電圧の安定化制御は停止する。
インバータ13の出力抑制が開始した時点では、太陽電池2のDC-DCコンバータ11及び/又は蓄電部3のDC-DCコンバータ21の出力抑制は開始していない。従ってインバータ13の出力電力に対してインバータ13の入力電力が過多となり、直流バス40の電圧が上昇する。より具体的には直流バス40に接続された電解コンデンサに電荷が蓄積されていく。
上述のようにコンバータ制御回路22は基本制御として、蓄電部3からDC-DCコンバータ21への放電量またはDC-DCコンバータ21から蓄電部3への充電量が、システム制御回路15から送信されてくる指令値になるようにDC-DCコンバータ21を制御する。さらにコンバータ制御回路22は優先制御として、直流バス40の電圧が第2閾値電圧を超えないようにDC-DCコンバータ21を制御する。この制御は、システム制御回路15から送信されてくる指令値に出力を合わせる制御に対して優先する。第2閾値電圧は第1閾値電圧より高い値に設定される。
上述のようにコンバータ制御回路12は基本制御として、太陽電池2の出力電力が最大になるようDC-DCコンバータ11をMPPT制御する。さらにコンバータ制御回路12は優先制御として、直流バス40の電圧が第3閾値電圧を超えないようにDC-DCコンバータ11を制御する。この制御は、MPPT制御に対して優先する。第3閾値電圧は第2閾値電圧より高い値に設定される。
第1閾値電圧は、直流バス40の定常時の電圧に設定される。系統電圧がAC200Vの場合、第1閾値電圧は例えば、DC280V~360Vの範囲に設定される。第2閾値電圧は例えば390V、第3閾値電圧は例えば410Vに設定される。インバータ13の出力抑制により直流バス40の電圧が上昇し、直流バス40の電圧が第2閾値電圧に到達すると蓄電部3のDC-DCコンバータ21によるバス電圧の上昇抑制制御が発動する。直流バス40の電圧上昇のエネルギーが、蓄電部3のDC-DCコンバータ21による上昇抑制エネルギーより大きい場合は、直流バス40の電圧がさらに上昇する。直流バス40の電圧が第3閾値電圧に到達すると太陽電池2のDC-DCコンバータ11によるバス電圧の上昇抑制制御が発動する。
図2(a)、(b)は、直流バス40の電圧の状態を模式的に描いた図である(その1)。図2(a)は、定常時の直流バス40の電圧の状態を示している。定常時の直流バス40の電圧は、インバータ13により第1閾値電圧に維持される。図2(b)は、インバータ13の出力抑制直後の直流バス40の電圧の状態を示している。通常、出力抑制直後は直流バス40の電圧が上昇し、蓄電部3のDC-DCコンバータ21が直流バス40の電圧を、第2閾値電圧を超えないように抑え込む制御となる。
直流バス40の電圧と系統4の電圧が近いほどインバータ13の電力変換効率が高くなる。逆に言えば放電時においては、直流バス40の電圧が系統4の電圧に対して高くなるほど、インバータ13の変換効率が低下する。図2(b)に示すように直流バス40の電圧が定常時より高い状態では、インバータ13の変換効率が定常時より低下することになる。
図3(a)、(b)は、直流バス40の電圧の状態を模式的に描いた図である(その2)。本実施の形態では、インバータ13の変換効率の低下を回避するために出力抑制中に、直流バス40の電圧を第2閾値電圧から第1閾値電圧まで低下させる仕組みを導入する。
次の説明では簡略化のため、太陽電池2のDC-DCコンバータ11の出力と負荷5の消費電力を無視して考える。定常時は、(蓄電部3のDC-DCコンバータ21の放電量)=(インバータ13の放電量)の関係になり、直流バス40の電圧は第1閾値電圧で安定する。出力抑制開始直後は、(蓄電部3のDC-DCコンバータ21の放電量)>(インバータ13の放電量)-(抑制量)の関係になる。この関係ではインバータ13の入力が過多となり、直流バス40の電圧が上昇する。
直流バス40の電圧が第1閾値電圧を上回ると、蓄電部3のDC-DCコンバータ21の抑制制御が開始する。これにより、(蓄電部3のDC-DCコンバータ21の放電量)-(抑制量)=(インバータ13の放電量)-(抑制量)の関係になる。このとき、電力は平衡するため直流バス40の電圧は第2閾値電圧で安定する。ただし、この状態ではインバータ13の変換効率が定常時より低下している。
そこで本実施の形態では蓄電部3のDC-DCコンバータ21の抑制量を増加させる。即ち、(蓄電部3のDC-DCコンバータ21の放電量)-(抑制量+α)=(インバータ13の放電量)-(抑制量)の関係になる。この関係ではインバータ13の入力が不足し、直流バス40の電圧が下降する。直流バス40の電圧が第1閾値電圧まで低下すると、インバータ13は直流バス40の電圧を第1閾値電圧に維持するように動作する。以上の流れで、インバータ13の出力抑制中の直流バス40の電圧が、定常時と同じとなり、電力変換効率の低下を回避できる。
図4は、インバータ13の出力抑制時の、インバータ13の電力制御および蓄電部3のDC-DCコンバータ21の電力制御の第1例を示す図である。インバータ13の抑制電力のリミット値(上限値)は定常時において、インバータ13の定格出力電力値に設定されている。即ち、定常時に突発的な事由により直流バス40の電圧が上昇しても、インバータ13の出力電力は定格出力電力値で上昇が止まるように設定されている。同様に蓄電部3のDC-DCコンバータ21のリミット値(上限値)も定常時において、DC-DCコンバータ21の定格出力電力値に設定されている。
系統4への逆潮流が検出されると、インバータ制御回路14はインバータ13の出力を第1の傾きで低下させる。第1の傾きは、単位時間あたりの抑制量[W/ms]で規定される。第1の傾きは例えば、インバータ13が定格出力値で放電中に抑制を開始してから抑制が完了するまでの時間が500msに収まるように設定される。
例えば、太陽電池2が3.5kWを発電し、蓄電部3が2.0kWを放電し、インバータ13が5.5kWを負荷5に供給している状態を考える。この状態から負荷5が解列され、負荷5の消費電力が0.0Wになった場合、インバータ13の5.5kWの出力電力が系統4に逆潮流される。この場合、500ms以内に逆潮流を止めなければ、インバータ13を系統4から解列しなければならず、解列中は太陽電池2の発電が停止するため経済的損失となる。
システム制御回路15の指令値生成部15bは、第1の傾きに応じてインバータ13の電力指令値を5.5kwから(0.0-β)kW(第1目標値)まで低下させていく。指令値生成部15bは第1の期間毎に、更新された電力指令値をインバータ制御回路14に通知する。指令値生成部15bは、第1の傾きに応じて蓄電部3のDC-DCコンバータ21の電力指令値を2.0kwから(0.0-β-α)kW(第2目標値)まで低下させていく。指令値生成部15bは通信線42を介して第2の期間毎に、更新された電力指令値をコンバータ制御回路22に通知する。例えば、マージンβは0.05kWに設定され、マージンαも0.05kWに設定される。
なお、第2の期間は第1の期間より長くなる。即ち、インバータ13の電力指令値の方が更新頻度が高くなる。これは通信線42を用いることによる制約である。なお図4では、インバータ13の出力抑制と蓄電部3のDC-DCコンバータ21の出力抑制が同じタイミングで開始しているが、実際には通信遅延の影響により蓄電部3のDC-DCコンバータ21の出力抑制の方が遅れて開始する。
なお上記の例では、インバータ13の電力指令値の第1目標値を負の値に設定する例を説明したが、第1目標値を0.0kWに設定してもよい。この場合、買電も売電も発生しない状態であり、最も経済的な逆潮流の抑制制御となる。これに対して、第1の目標値を負の値に設定する場合、若干の買電状態になる。この場合、系統連系規程に定められる逆潮流をより確実に防止することができる。なお、負荷5が電力消費している場合、インバータ13の電力指令値の第1目標値は、(逆潮流電力-負荷5の消費電力-β)kWになり、蓄電部3のDC-DCコンバータ21の電力指令値の第2目標値は、(逆潮流電力-負荷5の消費電力-β-α)kWになる。
なお、インバータ13の出力は電流値で抑制してもよいし、電力値で抑制してもよい。電流値を使用する場合、抑制解除時の出力過多による過電流を抑制することができる。電力値を使用する場合、系統電圧が変化した場合でも正確に出力抑制を行うことができる。なお、インバータ13の出力を電流値と電力値の両方で抑制してもよい。蓄電部3のDC-DCコンバータ21の出力抑制も同様である。
逆潮流が解消すると、インバータ制御回路14はインバータ13の出力を第2の傾きで上昇させる。第2の傾きは、単位時間あたりの抑制解除量[W/ms]で規定される。第2の傾きは、第1の傾きより緩やかに設定される。第2の傾きは例えば、インバータ13の定格出力値及びDC-DCコンバータ21の定格出力値にもとづき決定される。
図5は、インバータ13の出力抑制時の、インバータ13の電力制御および蓄電部3のDC-DCコンバータ21の電力制御の第2例を示す図である。第1例ではインバータ13の第1の傾きと蓄電部3のDC-DCコンバータ21の第1の傾きを同じに設定している例を説明したが、蓄電部3のDC-DCコンバータ21の第1の傾きを、インバータ13の第1の傾きより緩くしてもよい。第2の傾きも同様である。
蓄電池の放電電流が急峻に変化すると蓄電池の負担が大きくなり、蓄電池の寿命短縮につながる。また高速応答を実現するにはコンバータ制御回路22に使用されるマイクロコンピュータを高スペックにする必要があり、コスト増につながる。そこで第2例では、図5に示すように蓄電部3のDC-DCコンバータ21の第1の傾きを、インバータ13の第1の傾きより緩く設定している(S1、S1a参照)。同様に蓄電部3のDC-DCコンバータ21の第2の傾きを、インバータ13の第2の傾きより緩く設定している(S2、S2a参照)。
図6は、インバータ13の出力抑制時の、インバータ13の電力制御および蓄電部3のDC-DCコンバータ21の電力制御の第3例を示す図である。第3例は、出力抑制中に直流バス40の電圧が第1閾値電圧まで低下した例である。直流バス40の電圧が第1閾値電圧まで低下すると、インバータ13の出力抑制量に対して、蓄電部3のDC-DCコンバータ21の出力抑制量を大きくする必要がなくなるため、両者の出力抑制量を同じに制御する。
以上説明したように本実施の形態によれば、インバータ13による逆潮流電力の抑制中、蓄電部3のDC-DCコンバータ21は逆潮流電力の抑制に優先して直流バス40の電圧上昇を抑えるように制御する。これにより逆潮流電力の継続を解消しつつ、直流バス40の電圧を抑制することで電力平衡を担保することができる。従って電力変換システム1の運転停止を防止することができる。
蓄電部3のDC-DCコンバータ21の電力指令値の第2目標値を、インバータ13の電力指令値の第1目標値より低く制御することにより、インバータ13の出力抑制により直流バス40の電圧上昇が継続することを防止するだけでなく、直流バス40の電圧を定常値まで低下させることができる。従って、インバータ13の電力変換効率の低下を抑えることができる。
直流バス40の電圧が定常時より高い場合、第1電力変換装置10内の温度が上昇し、温度上昇による出力抑制が発動しやすくなる。この場合、買電量の増加や太陽電池2の発電量の抑制につながり経済性の低下につながる。また第1電力変換装置10内の温度上昇は、第1電力変換装置10内の部品(例えば、電解コンデンサ)の温度上昇につながり、商品寿命の短縮につながる。これに対して本実施の形態では、直流バス40の電圧上昇を抑えることにより、第1電力変換装置10内の温度上昇を抑えることができる。
また太陽電池2のDC-DCコンバータ11のバス抑制電圧である第3閾値電圧を、蓄電部3のDC-DCコンバータ21のバス抑制電圧である第2閾値電圧より高く設定することにより、DC-DCコンバータ21で直流バス40の電圧上昇を抑制できる場合は、DC-DCコンバータ11は太陽電池2の発電を抑制せずに済む。これにより、太陽電池2の発電電力の売電機会を最大限に確保できるため経済的メリットを損なわずに済む。
以上、本発明を実施の形態をもとに説明した。実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
図1では、インバータ制御回路14とシステム制御回路15を分離して描いているが、それぞれが別のマイクロコンピュータで実現されてもよいし、1つのマイクロコンピュータで実現されてもよい。また上述の実施の形態では、第1電力変換装置10と第2電力変換装置20が別の筐体に設置される例を説明した。この点、第1電力変換装置10と第2電力変換装置20が1つの筐体に設置されつつ、システム制御回路15とコンバータ制御回路22が通信線42で接続される構成例も本発明の一実施の形態に含まれる。
また上記実施の形態では、第1電力変換装置10に太陽電池2が接続される例を説明した。この点、太陽電池2の代わりに、風力発電装置、マイクロ水力発電装置など、再生可能エネルギーを用いた他の発電装置が接続されてもよい。
なお、実施の形態は、以下の項目によって特定されてもよい。
[項目1]
直流電源(3)の出力する直流電力の電圧を変換し、変換した直流電力を直流バス(40)に出力するDC-DCコンバータ(21)と前記直流バス(40)を介して接続され、前記直流バス(40)の直流電力を交流電力に変換し、変換した交流電力を負荷(5)または電力系統(4)に供給するインバータ(13)と、
前記インバータ(13)を制御する制御回路(14、15)と、を備え、
前記制御回路(14、15)は、前記インバータ(13)から前記電力系統(4)への出力を抑制すべきとき、前記インバータ(13)の出力を第1目標値に低下させるように前記インバータ(13)を制御するとともに、前記第1目標値より低い第2目標値を、前記DC-DCコンバータ(21)を制御する別の制御回路(22)に通知することを特徴とする電力変換装置(10)。
これによれば、出力抑制中に直流バス(40)の電圧を低下させることができ、インバータ(13)の変換効率の低下を抑えることができる。
[項目2]
前記直流電源(3)は、前記蓄電部(3)であり、
前記インバータ(13)から前記電力系統(4)への出力を抑制すべきときとは、前記電力系統(4)への逆潮流が発生したときであることを特徴とする項目1に記載の電力変換装置(10)。
これによれば、逆潮流の抑制中に直流バス(40)の電圧を低下させることができる。
[項目3]
前記制御回路(14、15)は、前記電力系統(4)への出力を抑制すべきとき、前記電力系統(4)への逆潮流電力が負の値になるように前記第1目標値を生成し、前記第2目標値を第1目標値より低い値で生成することを特徴とする項目1または2に記載の電力変換装置(10)。
これによれば、逆潮流をより確実に抑制しつつ、直流バス(40)の電圧を低下させることができる。
[項目4]
直流電源(3)の出力する直流電力の電圧を変換し、変換した直流電力を直流バス(40)に出力するDC-DCコンバータ(21)と、
前記DC-DCコンバータ(21)を制御する第1制御回路(22)と、
前記直流バス(40)を介して接続され、前記直流バス(40)の直流電力を交流電力に変換し、変換した交流電力を負荷(5)または電力系統(4)に供給するインバータ(13)と、
前記インバータ(13)を制御する第2制御回路(14、15)と、を備え、
前記第2制御回路(14、15)は、前記インバータ(13)から前記電力系統(14)への出力を抑制すべきとき、前記インバータ(13)の出力を第1目標値に低下させるように前記インバータ(13)を制御するとともに、前記第1目標値より低い第2目標値を、前記第1制御回路(22)に通知することを特徴とする電力変換システム(1)。
これによれば、出力抑制中に直流バス(40)の電圧を低下させることができ、インバータ(13)の変換効率の低下を抑えることができる。
[項目5]
前記第1制御回路(22)と前記第2制御回路(14、15)は通信線(42)で接続されており、
前記第2制御回路(14、15)は、前記インバータ(13)から前記電力系統(4)への出力を抑制する必要がないとき、前記直流バス(40)の電圧を第1閾値電圧に維持するよう前記インバータ(13)を制御し、
前記第1制御回路(22)は、前記第2制御回路(14、15)から受信する、前記第2目標値をもとに生成される指令値をもとに前記DC-DCコンバータ(21)を制御するとともに、前記直流バス(40)の電圧を、第1閾値電圧より高い第2閾値電圧を超えないように制御することを特徴とする項目4に記載の電力変換システム(1)。
これによれば、直流バス(40)の抑制開始直後の電圧上昇を抑えつつ、抑制中および抑制解除後の直流バス(40)の電圧を安定化させることができる。
[項目6]
再生可能エネルギーをもとに発電する発電装置(2)の出力する直流電力の電圧を変換し、変換した直流電力を前記直流バス(40)に出力する発電装置(2)用のDC-DCコンバータ(11)と、
前記発電装置(2)の出力電力が最大になるように制御するとともに、前記直流バス(40)の電圧を、前記第2閾値電圧より高い第3閾値電圧を超えないように、前記発電装置(2)用のDC-DCコンバータ(11)を制御する第3制御回路(12)と、
をさらに備えることを特徴とする項目5に記載の電力変換システム(1)。
これによれば、出力抑制により、発電装置(2)の発電が抑制される事態を最小限に抑えることができる。
[項目7]
前記第2制御回路(14、15)は、前記直流バス(40)の電圧が前記第1閾値電圧より高い状態から前記第1閾値電圧まで低下すると、前記インバータ(13)に入力される電力量と、前記インバータ(13)から出力される電力量が等しくなるように、前記1目標値および/または前記第2目標値の少なくとも一方を変更することを特徴とする項目5または6に記載の電力変換システム(1)。
これによれば、インバータ(13)の電力が平衡するように制御することができる。
[項目8]
直流電源(3)の出力する直流電力の電圧を変換し、変換した直流電力を直流バス(40)に出力するDC-DCコンバータ(21)と、
前記DC-DCコンバータ(21)を制御する第1制御回路(22)と、を備え、
前記DC-DCコンバータ(21)は、前記直流バス(40)を介して、前記直流バス(40)の直流電力を交流電力に変換し、変換した交流電力を負荷(5)または電力系統(4)に供給するインバータ(13)と接続され、
前記第1制御回路(22)は、前記インバータ(13)から前記電力系統(4)への出力を抑制すべきとき、前記インバータ(13)の出力を第1目標値に低下させるように前記インバータ(13)を制御する第2制御回路から、前記第1目標値より低い第2目標値を含む通知を受けて、前記DC-DCコンバータ(21)を前記第2目標値に低下させるように制御することを特徴とする電力変換装置(20)。
これによれば、出力抑制中に直流バス(40)の電圧を低下させることができ、インバータ(13)の変換効率の低下を抑えることができる。
直流電源(3)の出力する直流電力の電圧を変換し、変換した直流電力を直流バス(40)に出力するDC-DCコンバータ(21)と前記直流バス(40)を介して接続され、前記直流バス(40)の直流電力を交流電力に変換し、変換した交流電力を負荷(5)または電力系統(4)に供給するインバータ(13)と、
前記インバータ(13)を制御する制御回路(14、15)と、を備え、
前記制御回路(14、15)は、前記インバータ(13)から前記電力系統(4)への出力を抑制すべきとき、前記インバータ(13)の出力を第1目標値に低下させるように前記インバータ(13)を制御するとともに、前記第1目標値より低い第2目標値を、前記DC-DCコンバータ(21)を制御する別の制御回路(22)に通知することを特徴とする電力変換装置(10)。
これによれば、出力抑制中に直流バス(40)の電圧を低下させることができ、インバータ(13)の変換効率の低下を抑えることができる。
[項目2]
前記直流電源(3)は、前記蓄電部(3)であり、
前記インバータ(13)から前記電力系統(4)への出力を抑制すべきときとは、前記電力系統(4)への逆潮流が発生したときであることを特徴とする項目1に記載の電力変換装置(10)。
これによれば、逆潮流の抑制中に直流バス(40)の電圧を低下させることができる。
[項目3]
前記制御回路(14、15)は、前記電力系統(4)への出力を抑制すべきとき、前記電力系統(4)への逆潮流電力が負の値になるように前記第1目標値を生成し、前記第2目標値を第1目標値より低い値で生成することを特徴とする項目1または2に記載の電力変換装置(10)。
これによれば、逆潮流をより確実に抑制しつつ、直流バス(40)の電圧を低下させることができる。
[項目4]
直流電源(3)の出力する直流電力の電圧を変換し、変換した直流電力を直流バス(40)に出力するDC-DCコンバータ(21)と、
前記DC-DCコンバータ(21)を制御する第1制御回路(22)と、
前記直流バス(40)を介して接続され、前記直流バス(40)の直流電力を交流電力に変換し、変換した交流電力を負荷(5)または電力系統(4)に供給するインバータ(13)と、
前記インバータ(13)を制御する第2制御回路(14、15)と、を備え、
前記第2制御回路(14、15)は、前記インバータ(13)から前記電力系統(14)への出力を抑制すべきとき、前記インバータ(13)の出力を第1目標値に低下させるように前記インバータ(13)を制御するとともに、前記第1目標値より低い第2目標値を、前記第1制御回路(22)に通知することを特徴とする電力変換システム(1)。
これによれば、出力抑制中に直流バス(40)の電圧を低下させることができ、インバータ(13)の変換効率の低下を抑えることができる。
[項目5]
前記第1制御回路(22)と前記第2制御回路(14、15)は通信線(42)で接続されており、
前記第2制御回路(14、15)は、前記インバータ(13)から前記電力系統(4)への出力を抑制する必要がないとき、前記直流バス(40)の電圧を第1閾値電圧に維持するよう前記インバータ(13)を制御し、
前記第1制御回路(22)は、前記第2制御回路(14、15)から受信する、前記第2目標値をもとに生成される指令値をもとに前記DC-DCコンバータ(21)を制御するとともに、前記直流バス(40)の電圧を、第1閾値電圧より高い第2閾値電圧を超えないように制御することを特徴とする項目4に記載の電力変換システム(1)。
これによれば、直流バス(40)の抑制開始直後の電圧上昇を抑えつつ、抑制中および抑制解除後の直流バス(40)の電圧を安定化させることができる。
[項目6]
再生可能エネルギーをもとに発電する発電装置(2)の出力する直流電力の電圧を変換し、変換した直流電力を前記直流バス(40)に出力する発電装置(2)用のDC-DCコンバータ(11)と、
前記発電装置(2)の出力電力が最大になるように制御するとともに、前記直流バス(40)の電圧を、前記第2閾値電圧より高い第3閾値電圧を超えないように、前記発電装置(2)用のDC-DCコンバータ(11)を制御する第3制御回路(12)と、
をさらに備えることを特徴とする項目5に記載の電力変換システム(1)。
これによれば、出力抑制により、発電装置(2)の発電が抑制される事態を最小限に抑えることができる。
[項目7]
前記第2制御回路(14、15)は、前記直流バス(40)の電圧が前記第1閾値電圧より高い状態から前記第1閾値電圧まで低下すると、前記インバータ(13)に入力される電力量と、前記インバータ(13)から出力される電力量が等しくなるように、前記1目標値および/または前記第2目標値の少なくとも一方を変更することを特徴とする項目5または6に記載の電力変換システム(1)。
これによれば、インバータ(13)の電力が平衡するように制御することができる。
[項目8]
直流電源(3)の出力する直流電力の電圧を変換し、変換した直流電力を直流バス(40)に出力するDC-DCコンバータ(21)と、
前記DC-DCコンバータ(21)を制御する第1制御回路(22)と、を備え、
前記DC-DCコンバータ(21)は、前記直流バス(40)を介して、前記直流バス(40)の直流電力を交流電力に変換し、変換した交流電力を負荷(5)または電力系統(4)に供給するインバータ(13)と接続され、
前記第1制御回路(22)は、前記インバータ(13)から前記電力系統(4)への出力を抑制すべきとき、前記インバータ(13)の出力を第1目標値に低下させるように前記インバータ(13)を制御する第2制御回路から、前記第1目標値より低い第2目標値を含む通知を受けて、前記DC-DCコンバータ(21)を前記第2目標値に低下させるように制御することを特徴とする電力変換装置(20)。
これによれば、出力抑制中に直流バス(40)の電圧を低下させることができ、インバータ(13)の変換効率の低下を抑えることができる。
1 電力変換システム、 2 太陽電池、 3 蓄電部、 4 系統、 5 負荷、 10 第1電力変換装置、 11 DC-DCコンバータ、 12 コンバータ制御回路、 13 インバータ、 14 インバータ制御回路、 15 システム制御回路、 15a 逆潮流電力計測部、 15b 指令値生成部、 15c 通信制御部、 20 第2電力変換装置、 21 DC-DCコンバータ、 22 コンバータ制御回路、 30 操作表示装置、 40 直流バス、 41,42,43 通信線、 50 配電線。
本発明は、太陽電池と定置型蓄電池を組み合わせた分散型電源システムに利用可能である。
Claims (8)
- 直流電源の出力する直流電力の電圧を変換し、変換した直流電力を直流バスに出力するDC-DCコンバータと前記直流バスを介して接続され、前記直流バスの直流電力を交流電力に変換し、変換した交流電力を負荷または電力系統に供給するインバータと、
前記インバータを制御する制御回路と、を備え、
前記制御回路は、前記インバータから前記電力系統への出力を抑制すべきとき、前記インバータの出力を第1目標値に低下させるように前記インバータを制御するとともに、前記第1目標値より低い第2目標値を、前記DC-DCコンバータを制御する別の制御回路に通知することを特徴とする電力変換装置。 - 前記直流電源は、蓄電部であり、
前記インバータから前記電力系統への出力を抑制すべきときとは、前記電力系統への逆潮流が発生したときであることを特徴とする請求項1に記載の電力変換装置。 - 前記制御回路は、前記電力系統への出力を抑制すべきとき、前記電力系統への逆潮流電力が負の値になるように前記第1目標値を生成し、前記第2目標値を第1目標値より低い値で生成することを特徴とする請求項1または2に記載の電力変換装置。
- 直流電源の出力する直流電力の電圧を変換し、変換した直流電力を直流バスに出力するDC-DCコンバータと、
前記DC-DCコンバータを制御する第1制御回路と、
前記直流バスを介して接続され、前記直流バスの直流電力を交流電力に変換し、変換した交流電力を負荷または電力系統に供給するインバータと、
前記インバータを制御する第2制御回路と、を備え、
前記第2制御回路は、前記インバータから前記電力系統への出力を抑制すべきとき、前記インバータの出力を第1目標値に低下させるように前記インバータを制御するとともに、前記第1目標値より低い第2目標値を、前記第1制御回路に通知することを特徴とする電力変換システム。 - 前記第1制御回路と前記第2制御回路は通信線で接続されており、
前記第2制御回路は、前記インバータから前記電力系統への出力を抑制する必要がないとき、前記直流バスの電圧を第1閾値電圧に維持するよう前記インバータを制御し、
前記第1制御回路は、前記第2制御回路から受信する、前記第2目標値をもとに生成される指令値をもとに前記DC-DCコンバータを制御するとともに、前記直流バスの電圧を、第1閾値電圧より高い第2閾値電圧を超えないように制御することを特徴とする請求項4に記載の電力変換システム。 - 再生可能エネルギーをもとに発電する発電装置の出力する直流電力の電圧を変換し、変換した直流電力を前記直流バスに出力する発電装置用のDC-DCコンバータと、
前記発電装置の出力電力が最大になるように制御するとともに、前記直流バスの電圧を、前記第2閾値電圧より高い第3閾値電圧を超えないように、前記発電装置用のDC-DCコンバータを制御する第3制御回路と、
をさらに備えることを特徴とする請求項5に記載の電力変換システム。 - 前記第2制御回路は、前記直流バスの電圧が前記第1閾値電圧より高い状態から前記第1閾値電圧まで低下すると、前記インバータに入力される電力量と、前記インバータから出力される電力量が等しくなるように、前記1目標値および/または前記第2目標値の少なくとも一方を変更することを特徴とする請求項5または6に記載の電力変換システム。
- 直流電源の出力する直流電力の電圧を変換し、変換した直流電力を直流バスに出力するDC-DCコンバータと、
前記DC-DCコンバータを制御する第1制御回路と、を備え、
前記DC-DCコンバータは、前記直流バスを介して、前記直流バスの直流電力を交流電力に変換し、変換した交流電力を負荷または電力系統に供給するインバータと接続され、
前記第1制御回路は、前記インバータから前記電力系統への出力を抑制すべきとき、
前記インバータの出力を第1目標値に低下させるように前記インバータを制御する第2制御回路から、前記第1目標値より低い第2目標値を含む通知を受けて、前記DC-DCコンバータを前記第2目標値に低下させるように制御することを特徴とする電力変換装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-068995 | 2017-03-30 | ||
JP2017068995A JP6832511B2 (ja) | 2017-03-30 | 2017-03-30 | 電力変換装置、電力変換システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018179714A1 true WO2018179714A1 (ja) | 2018-10-04 |
Family
ID=63674727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/001804 WO2018179714A1 (ja) | 2017-03-30 | 2018-01-22 | 電力変換装置、電力変換システム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6832511B2 (ja) |
WO (1) | WO2018179714A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6832510B2 (ja) * | 2017-03-30 | 2021-02-24 | パナソニックIpマネジメント株式会社 | 電力変換装置、電力変換システム |
KR102277455B1 (ko) * | 2020-01-30 | 2021-07-14 | 데스틴파워 주식회사 | 저전압 에너지원의 계통 연계 시스템 및 DCbus 전압 제어 방법 |
JP7491270B2 (ja) * | 2021-06-17 | 2024-05-28 | 株式会社村田製作所 | パワーコンディショナ |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011109784A (ja) * | 2009-11-16 | 2011-06-02 | Panasonic Electric Works Co Ltd | 配電システム |
WO2011162025A1 (ja) * | 2010-06-22 | 2011-12-29 | シャープ株式会社 | 直流配電システム |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6832510B2 (ja) * | 2017-03-30 | 2021-02-24 | パナソニックIpマネジメント株式会社 | 電力変換装置、電力変換システム |
-
2017
- 2017-03-30 JP JP2017068995A patent/JP6832511B2/ja active Active
-
2018
- 2018-01-22 WO PCT/JP2018/001804 patent/WO2018179714A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011109784A (ja) * | 2009-11-16 | 2011-06-02 | Panasonic Electric Works Co Ltd | 配電システム |
WO2011162025A1 (ja) * | 2010-06-22 | 2011-12-29 | シャープ株式会社 | 直流配電システム |
Also Published As
Publication number | Publication date |
---|---|
JP6832511B2 (ja) | 2021-02-24 |
JP2018170934A (ja) | 2018-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6872702B2 (ja) | 電力変換装置、電力変換システムおよび電力変換装置の制御方法 | |
EP3823152A1 (en) | Power conversion system, conversion circuit control method and program | |
JP2008099527A (ja) | 電力系統に接続された自家発電設備における蓄電池設備および蓄電池設備の運転方法 | |
AU2013206703A1 (en) | Power converter module, photovoltaic system with power converter module, and method for operating a photovoltaic system | |
US11329488B2 (en) | Power conversion system, method for controlling converter circuit, and program | |
WO2018179714A1 (ja) | 電力変換装置、電力変換システム | |
WO2018179715A1 (ja) | 電力変換装置、電力変換システム | |
WO2018179713A1 (ja) | 電力変換装置、電力変換システム | |
JP2022097728A (ja) | パワーコンディショナおよび蓄電システム | |
Schonberger et al. | Autonomous load shedding in a nanogrid using DC bus signalling | |
JP2004260913A (ja) | 太陽光発電システム | |
JP2017123747A (ja) | 電力管理装置 | |
JP2015233403A (ja) | 電力充電供給装置 | |
WO2022219872A1 (ja) | 電力変換システム、電力変換装置 | |
WO2018179716A1 (ja) | 電力変換装置、電力変換システム | |
JP2017099235A (ja) | 電力変換システム及び制御装置 | |
JP6817565B2 (ja) | 電力変換装置、電力変換システム | |
JP7022942B2 (ja) | 電力変換システム、電力変換装置 | |
WO2018179712A1 (ja) | 電力変換装置、電力変換システム | |
JP2022095563A (ja) | 電力供給システム | |
JP2005328656A (ja) | 電源システム | |
JP6907796B2 (ja) | 発電システム | |
AU2010358881B2 (en) | Management system for variable-resource energy generation systems | |
AU2023376548A1 (en) | Inverter system and method for operating said inverter system | |
WO2023243072A1 (ja) | 直流配電システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18776189 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18776189 Country of ref document: EP Kind code of ref document: A1 |