+

WO2018179607A1 - Projection optical system, image projection device, and image projection system - Google Patents

Projection optical system, image projection device, and image projection system Download PDF

Info

Publication number
WO2018179607A1
WO2018179607A1 PCT/JP2017/044305 JP2017044305W WO2018179607A1 WO 2018179607 A1 WO2018179607 A1 WO 2018179607A1 JP 2017044305 W JP2017044305 W JP 2017044305W WO 2018179607 A1 WO2018179607 A1 WO 2018179607A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
projection
lens
projection optical
lenses
Prior art date
Application number
PCT/JP2017/044305
Other languages
French (fr)
Japanese (ja)
Inventor
恒夫 内田
克 山田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2018179607A1 publication Critical patent/WO2018179607A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/16Optical objectives specially designed for the purposes specified below for use in conjunction with image converters or intensifiers, or for use with projectors, e.g. objectives for projection TV
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems

Definitions

  • the present disclosure relates to a projection optical system for projecting an image generated by an image display element.
  • Patent Document 1 discloses a projection apparatus using a projection optical system including a reflecting surface.
  • the projection optical system is a projection optical system for enlarging and projecting an image formed on the light valve onto a projection surface, and includes a lens optical system, a first reflection surface, and a second reflection surface.
  • the lens optical system includes a plurality of lenses, and has a positive power for forming an intermediate image of an image between the projection surface and the light valve.
  • the first reflecting surface reflects the divergent light beam after forming the intermediate image and has a positive power to form an image on the projection surface.
  • the second reflecting surface causes the light emitted from the lens optical system to enter the first reflecting surface. As a result, a large screen with reduced chromatic aberration and distortion can be projected.
  • the present disclosure provides a projection optical system that can reduce image distortion while being small in size.
  • a projection optical system is a projection optical system that is used for projecting an image on a projection surface and has a conjugate relationship between a reduction-side image plane and a projection-side image plane.
  • An optical system and a reflective optical system are provided.
  • the transmission optical system includes an aperture stop and a plurality of lenses each having power.
  • the reflection optical system reflects the light emitted from the transmission optical system.
  • the principal ray of the reference ray is a ray that passes through the center of the aperture stop among the rays that are projected closest to the projection optical system on the projection surface.
  • the projection optical system has an intermediate image plane conjugate with the reduction-side image plane between the transmission optical system and the reflection optical system, and satisfies the following conditional expression (1).
  • Tl is the distance from the most reduced lens among the plurality of lenses to the lens closest to the projection surface among the plurality of lenses.
  • Pex is the maximum distance among the optical path lengths of the principal rays of the reference rays from the exit pupil position of the transmission optical system with reference to the principal ray of the reference rays to the lens closest to the projection surface among the plurality of lenses. .
  • An image projection apparatus includes the above-described projection optical system and an image forming element that forms an image and has an image display surface as a reduction-side image surface.
  • the image projection device can be reduced in size and image distortion can be reduced.
  • FIG. 1 is a diagram illustrating an image projection system according to the present disclosure.
  • FIG. 2 is a configuration diagram illustrating an image projection apparatus according to the present disclosure.
  • FIG. 3 is a configuration diagram of a transmission optical system in Numerical Example 1.
  • FIG. 4 is a configuration diagram of a transmission optical system in Numerical Example 2.
  • FIG. 5 is a configuration diagram of a transmission optical system in Numerical Example 3.
  • FIG. 6 is a configuration diagram of a transmission optical system in Numerical Example 4.
  • FIG. 7 is a configuration diagram of a transmission optical system in Numerical Example 5.
  • FIG. 1 is a diagram illustrating an image projection system 1 according to the present disclosure.
  • the image projection system 1 includes an image projection device 10 and a screen SC (an example of a projection surface).
  • the image projection apparatus 10 includes a projection optical system 100, an image display element 130, and a transmission element 140.
  • the projection optical system 100 includes a transmission optical system 110 and a reflection optical system 120.
  • the image projection device 10 projects the image formed by the image display element 130 onto the screen SC in a direction (diagonal direction) that does not face the image.
  • the direction in which the screen SC does not face is that the direction of the normal line at the point on the screen SC where the reference ray R reaches and the principal ray optical path of the reference ray R emitted from the final surface of the projection optical system 100. Say when the direction does not match.
  • a straight line connecting the rotationally symmetric axes of the lens elements arranged on the enlargement side is defined as an optical axis AZ.
  • the optical axis AZ may be an axis that shares the most lens centers.
  • the optical axis AZ may be set at a position eccentric with respect to the image display element 130 in a plane including the optical path of the emitted light.
  • the optical path of the emitted light means the optical path of the principal ray from the center of the image display element 130 to the center of the enlarged image on the screen SC in the optical path from the image display element 130 to the screen SC.
  • the reduction side means the image display element 130 side in the projection optical system 100.
  • the enlargement side means the screen SC side in the projection optical system 100.
  • the principal ray of the reference ray R is a ray that passes through the center of the aperture stop A among the rays that are projected closest to the projection optical system 100 of the screen SC.
  • the optical axis AZ is an extension of the optical axis of the optical system after being reflected and bent by the reflecting surface. It may be set as a line.
  • the image projection apparatus 10 projects an image on a screen SC having a curvature.
  • FIG. 2 is a configuration diagram illustrating the image projection device 10 of the present disclosure.
  • the projection optical system 100 includes a transmission optical system 110 having a positive power as a whole and a reflection optical system 120 having a positive power as a whole.
  • the principal ray of the reference ray R passing through the center of the aperture stop A does not intersect the optical axis AZ between the image plane on the reduction side and the aperture stop A.
  • the transmission optical system 110 includes a first lens group G1 having positive power, a second lens group G2 having positive power, a third lens group G3 having positive power, and a fourth lens having positive power. It consists of a group G4 and a prism PB.
  • the first lens group G1, the second lens group G2, the third lens group G3, and the fourth lens group G4 are arranged in order from the image display element 130 to the screen SC.
  • the prism PB is disposed between the image display element 130 and the first lens group G1. In the present disclosure, the prism PB has no power. Therefore, for example, in the transmission optical system 110 of FIG. 3, the plurality of lenses having power means the lens elements L1 to L14.
  • the first lens group G1 includes a first lens element L1 that is a single biconvex lens having a rotationally symmetric axis.
  • the first lens element L1 has an aspheric shape.
  • the second lens group G2 includes a second lens element L2, a third lens element L3, a fourth lens element L4, and a fifth lens element L5.
  • the second lens element L2 has a rotationally symmetric axis and has a negative meniscus shape.
  • the convex surface of the second lens element L2 faces the reduction side.
  • the third lens element L3 has a rotationally symmetric axis and has a biconvex shape.
  • the fourth lens element L4 has a rotationally symmetric axis and has a biconcave shape.
  • the fifth lens element L5 has a rotationally symmetric axis and has a biconvex shape.
  • the second lens element L2, the third lens element L3, and the fourth lens element L4 are cemented with each other.
  • the third lens group G3 includes an aperture stop A and has a positive power as a whole.
  • the third lens group G3 includes a sixth lens element L6, a seventh lens element L7, an eighth lens element L8, a ninth lens element L9, and a tenth lens element L10.
  • the sixth lens element L6 is disposed on the enlargement side with respect to the aperture stop A, has a rotationally symmetric axis, and has a positive meniscus shape.
  • the convex surface of the sixth lens element L6 faces the enlargement side.
  • the seventh lens element L7 (negative meniscus lens) has a rotationally symmetric axis and has a negative meniscus shape.
  • the convex surface of the seventh lens element L7 faces the enlargement side.
  • the eighth lens element L8 has a rotationally symmetric axis and has a positive meniscus shape.
  • the convex surface of the eighth lens element L8 faces the reduction side.
  • the ninth lens element L9 has a rotationally symmetric axis and has a biconvex shape.
  • the tenth lens element L10 has a rotationally symmetric axis and has a negative meniscus shape.
  • the convex surface of the tenth lens element L10 faces the enlargement side.
  • the fourth lens group G4 is arranged closest to the screen SC among the lens groups of the transmission optical system 110.
  • the fourth lens group G4 includes an eleventh lens element L11, a twelfth lens element L12, a thirteenth lens element L13, and a fourteenth lens element L14.
  • the eleventh lens element L11, the twelfth lens element L12, the thirteenth lens element L13, and the fourteenth lens element L14 are arranged in order from the image display element 130 to the screen SC.
  • the eleventh lens element L11 has a rotationally symmetric axis and has positive power.
  • the convex surface of the eleventh lens element L11 faces the reduction side.
  • the twelfth lens element L12 has a rotationally symmetric axis and has negative power.
  • the concave surface of the twelfth lens element L12 faces the enlargement side.
  • the thirteenth lens element L13 has a rotationally symmetric axis and has a biconcave shape.
  • the fourteenth lens element L14 has a rotationally symmetric axis and has a positive meniscus shape.
  • the convex surface of the fourteenth lens element L14 faces the enlargement side.
  • the eleventh lens element L11 and the twelfth lens element L12 are cemented with each other.
  • the thirteenth lens element L13 and the fourteenth lens element L14 are lens elements having an aspherical shape.
  • the third lens group G3 includes an aperture stop A and has a positive power as a whole.
  • the third lens group G3 includes a sixth lens element L6, a seventh lens element L7, an eighth lens element L8, a ninth lens element L9, and a tenth lens element L10.
  • the sixth lens element L6 is disposed on the enlargement side with respect to the aperture stop A, has a rotationally symmetric axis, and has a positive meniscus shape.
  • the convex surface of the sixth lens element L6 faces the enlargement side.
  • the seventh lens element L7 (negative meniscus lens) has a rotationally symmetric axis and has a negative meniscus shape.
  • the convex surface of the seventh lens element L7 faces the enlargement side.
  • the eighth lens element L8 has a rotationally symmetric axis and has positive power.
  • the convex surface of the eighth lens element L8 faces the reduction side.
  • the ninth lens element L9 has a rotationally symmetric axis and has a biconcave shape.
  • the tenth lens element L10 has a rotationally symmetric axis and has a biconvex shape.
  • the ninth lens element L9 and the tenth lens element L10 are cemented with each other.
  • the fourth lens group G4 is disposed closest to the screen SC in the transmission optical system 110.
  • the fourth lens group G4 includes an eleventh lens element L11, a twelfth lens element L12, and a thirteenth lens element L13.
  • the eleventh lens element L11, the twelfth lens element L12, and the thirteenth lens element L13 are arranged in order from the image display element 130 to the screen SC.
  • the eleventh lens element L11 has a rotationally symmetric axis and has a positive meniscus shape.
  • the convex surface of the eleventh lens element L11 faces the reduction side.
  • the twelfth lens element L12 has a rotationally symmetric axis and has a biconcave shape.
  • the thirteenth lens element L13 has a rotationally symmetric axis and has a positive meniscus shape.
  • the convex surface of the thirteenth lens element L13 faces the enlargement side.
  • the twelfth lens element L12 and the thirteenth lens element L13 are lens elements having an aspherical shape.
  • the lens adjacent to the image display element 130 side of the most projected side lens or a part of the lens elements constituting the fourth lens group G4 has a biconcave shape. It is desirable that at least one surface of the biconcave lens has an aspherical shape. Specifically, this aspherical shape is a shape in which the curvature decreases with increasing distance from the center of the lens in the radial direction. That is, this aspherical shape is a shape in which the power on the outer side of the lens is smaller than that on the lens center side.
  • the third lens element L3 (positive lens) may have the strongest positive power among the lens elements.
  • the fourth lens element L4 (negative lens) may have the strongest negative power among the lens elements. 3 to 7, the third lens element L3 and the fourth lens element L4 are joined, but they may be arranged adjacent to each other without being joined.
  • the projection optical system 100 is focused by two lens groups, the second lens group G2 and the fourth lens group G4.
  • the fourth lens group G4 includes at least one aspheric surface, and suppresses image distortion and resolution degradation that occur during focusing. Thereby, good optical performance can be satisfied even if the projection distance changes.
  • the projection optical system 100 uses a part of the lens elements or a plurality of lens elements on the enlargement side of the aperture stop A as a focus group, thereby suppressing image distortion and resolution degradation that occur during focusing. It is also possible. Thereby, good optical performance can be satisfied even if the projection distance changes.
  • the concave surface of the positive meniscus-shaped maximum magnification side lens and the concave surface on the expansion side of the negative meniscus lens or the negative lens element joined to the positive lens element face each other. Yes.
  • the fourth lens group G4 has the most projection side lens on the most screen SC side.
  • the most projection side lens has a shape with the largest thickness deviation ratio in the transmission optical system 110. As a result, the difference in refractive power between the center and the periphery of the transmitted light beam can be increased, which is effective in correcting field curvature.
  • an effect can be expected to reduce the height of the transmission optical system 110.
  • a part of the lens elements away from the aperture stop A such as a lens element arranged on the reduction side and a lens element arranged on the enlargement side, a further reduction in height can be expected. Note that the cut lens element does not have a rotationally symmetric axis.
  • An intermediate image plane I (see FIG. 2) is formed between the transmission optical system 110 and the screen SC. This makes it possible to employ a concave mirror as a part of the reflective optical system 120, which is advantageous for enlarging the projection area and reducing the size of the reflective optical system 120. Further, the intermediate image plane I formed by the transmission optical system 110 has a characteristic that an image point formed by a light ray closest to the optical axis AZ is formed at a position farthest from the transmission optical system 110. The intermediate image plane I is preferably formed at a position that does not straddle the reflection surface of the reflection optical system 120.
  • the reflection optical system 120 reflects the light beam emitted from the transmission optical system 110 and projects the reflected light beam onto the screen SC.
  • the reflective optical system 120 includes two mirrors, a first mirror 121 (an example of a concave mirror) and a second mirror 122 (an example of a plane mirror).
  • the reflecting surface of the first mirror 121 has a concave free-form surface.
  • the first mirror 121 has a positive power as a whole.
  • the reflection optical system 120 only needs to be composed of one or more mirrors, and is not limited to being composed of two mirrors.
  • the image display element 130 forms an image to be projected on the screen SC based on the image signal.
  • a spatial modulation element such as a DMD (Digital Micromirror Device) or a transmissive or reflective liquid crystal panel can be used.
  • the image display element 130 according to the present disclosure is a rectangle having a long side in the X-axis direction (perpendicular to the paper surface) in FIG. 2 and a short side in the Y-axis direction.
  • the transmissive element 140 is disposed between the reflective optical system 120 and the screen SC.
  • the light beam reflected by the reflective optical system 120 is transmitted through the transmissive element 140 and projected onto the screen SC.
  • the shape of the transmissive element 140 is a toroidal shape having different curvatures in a direction corresponding to the long side direction of the image display element 130 and a direction corresponding to the short side direction.
  • the convex surface of the transmissive element 140 faces the screen SC side. That is, the curvature in the X-axis direction (perpendicular to the paper surface in FIG. 2) corresponding to the long side direction of the image display element 130 on the incident surface of the transmission element 140 is larger than the curvature in the Y-axis direction corresponding to the short side direction.
  • the first mirror 121 on the image display element 130 side preferably has a free-form surface shape. Since the first mirror 121 has a free-form surface having a positive power, it is possible to suppress the height of light incident on the second mirror 122 while correcting image distortion. Therefore, it is advantageous for downsizing.
  • a projection optical system 100 is a projection optical system that is used for projecting an image on a screen SC and has a conjugate relationship between a reduction-side image plane and a screen SC-side image plane.
  • a transmission optical system 110 and a reflection optical system 120 are provided.
  • the transmission optical system 110 includes an aperture stop A and a plurality of lenses each having power.
  • the reflection optical system 120 reflects light emitted from the transmission optical system 110.
  • the principal ray of the reference ray R is a ray that passes through the center of the aperture stop A among the rays that are projected closest to the projection optical system 100 of the screen SC.
  • the projection optical system 100 has an intermediate image plane I conjugate with the reduction-side image plane between the transmission optical system 110 and the reflection optical system 120.
  • this configuration is referred to as a basic configuration of the embodiment.
  • the projection optical system 100 preferably satisfies the following conditional expression (1).
  • Tl is the distance from the most reduction side lens to the most screen SC side lens.
  • is the maximum distance in the optical path length of the principal ray of the reference ray R from the exit pupil position of the transmission optical system 110 with respect to the principal ray of the reference ray R to the lens closest to the screen SC.
  • Conditional expression (1) defines a preferable range between the exit pupil position and the total length with the principal ray of the reference ray R of the transmission optical system 110 as a reference (the optical axis of the ray).
  • the reference light beam R is a light beam projected by the image projection apparatus 10 including the projection optical system 100 to the foremost side of the screen SC.
  • the projection optical system 100 preferably satisfies the following conditional expression (2).
  • Conditional expression (2) defines a preferable range of the entrance pupil position and the total length with the principal ray of the reference ray R of the transmission optical system 110 as a reference (the optical axis of the ray).
  • / Tl falls below the lower limit of the conditional expression (2), the angle of light incident from the image plane increases, and the light loss when the DMD is used as the display element becomes significant. Therefore, it becomes difficult to maintain the illuminance distribution uniformity on the screen SC.
  • / Tl exceeds the upper limit of the conditional expression (2), the total length of the transmission optical system 110 with respect to the projection optical system 100 becomes short, and it becomes difficult to maintain the field curvature well.
  • the projection optical system 100 preferably satisfies the following conditional expression (3).
  • Rf is the maximum focal length of the transmission optical system 110 based on the principal ray of the reference ray R.
  • Conditional expression (3) defines a preferable range between the focal length of the transmission optical system 110 and the total length with the principal ray of the reference ray R as a reference (the optical axis of the ray).
  • Tl / Rf falls below the lower limit of the conditional expression (3), the total length of the transmission optical system 110 becomes short, and it becomes difficult to maintain sufficient optical performance as the projection optical system 100.
  • the intermediate image plane I of the transmission optical system 110 is formed at a position away from the transmission optical system 110, the reflection optical system 120 becomes large, which is disadvantageous for downsizing the projection optical system 100.
  • Tl / Rf exceeds the upper limit of the conditional expression (3), the total length of the transmission optical system 110 is increased, which is disadvantageous for downsizing of the projection optical system 100.
  • the projection optical system 100 preferably satisfies the following conditional expression (4).
  • Conditional expression (4) defines a suitable range of the exit pupil position and the total length with reference to the optical axis AZ of the transmission optical system 110.
  • / Tl satisfies the conditional expression (4), it is possible to obtain a projection optical system 100 that is small in size and reduced in image distortion.
  • / Tl exceeds the upper limit of the conditional expression (4), the projection optical system 100 has a configuration close to a telecentric optical system. However, if the curvature of field is appropriately corrected, the size of the transmission optical system 110 increases, which is disadvantageous for downsizing the projection optical system 100.
  • the projection optical system 100 preferably satisfies the following conditional expression (5).
  • Conditional expression (5) defines a suitable range of the entrance pupil position and the total length with reference to the optical axis AZ of the transmission optical system 110.
  • / Tl is less than the lower limit of the conditional expression (5), the angle of light incident from the image plane becomes large, and the light amount loss becomes significant when DMD is used as a display element. Therefore, it becomes difficult to maintain the illuminance distribution uniformity on the screen SC.
  • / Tl exceeds the upper limit of the conditional expression (5), the total length of the transmission optical system 110 with respect to the projection optical system 100 becomes short, and it becomes difficult to maintain the field curvature well.
  • Tables 1 to 5 show corresponding values of the conditional expressions obtained for the projection optical systems according to Numerical Examples 1 to 5. As shown in each table, for
  • the unit of length in the data is “mm”, and the unit of angle of view is “°”.
  • r is a radius of curvature
  • d is a surface interval
  • nd is a refractive index with respect to the d line
  • vd is an Abbe number with respect to the d line.
  • the surface marked with * is an aspherical surface or a free-form surface, and the aspherical shape is defined by the following equation.
  • z sag amount of the plane parallel to the z-axis
  • c curvature at the surface vertex
  • k conic coefficient
  • the lens constituent length is the distance from the first surface to the end surface
  • the front principal point position is the distance from the first surface
  • the rear principal point position is from the first surface. Is the distance.
  • 80 inches means a wide angle
  • 100 inches means a middle
  • 50 inches means telephoto.
  • FIG. 3 is a configuration diagram of the transmission optical system 110 in Numerical Example 1.
  • FIG. 4 is a configuration diagram of the transmission optical system 110 in Numerical Example 2.
  • FIG. 5 is a configuration diagram of the transmission optical system 110 in Numerical Example 3.
  • FIG. 6 is a configuration diagram of the transmission optical system 110 in Numerical Example 4.
  • FIG. 7 is a configuration diagram of the transmission optical system 110 in Numerical Example 5.
  • Tables 6 to 11 below show specific data of the transmission optical system 110 of Numerical Example 1.
  • the slow ratio in Numerical Example 1 is 0.175.
  • the projection magnification is 112.75 to 217.06.
  • the size of the image display element 130 to be used is 9.856 mm in the long side direction and 6.162 mm in the short side direction.
  • the image display element 130 is shifted in the +1.23 mm Y direction with respect to the R1 surface apex of the first lens element L1.
  • the zoom data is shown in Table 8 below.
  • the zoom ratio is 0.94855.
  • the single lens data is shown in Table 9 below.
  • the lens group data is shown in Table 10 below.
  • the zoom lens group magnification is shown in Table 11 below.
  • Tables 12 to 17 below show specific data of the transmission optical system 110 of Numerical Example 2.
  • the slow ratio in Numerical Example 2 is 0.177.
  • the projection magnification is 112.76 to 217.11.
  • the size of the image display element 130 to be used is 9.856 mm in the long side direction and 6.162 mm in the short side direction.
  • the image display element 130 is shifted in the +1.23 mm Y direction with respect to the R1 surface apex of the first lens element L1.
  • Table 12 below shows surface data of each optical element in Numerical Example 2.
  • the zoom data is shown in Table 14 below.
  • the zoom ratio is 0.92143.
  • the lens group data is shown in Table 16 below.
  • the zoom lens group magnification is shown in Table 17 below.
  • the zoom data is shown in Table 20 below.
  • the zoom ratio is 0.99414.
  • the lens group data is shown in Table 22 below.
  • zoom lens group magnifications are shown in Table 23.
  • Tables 24 to 29 below show specific data of the transmission optical system 110 according to Numerical Example 4.
  • the slow ratio in Numerical Example 4 is 0.194.
  • the projection magnification is 112.92 to 216.97 times.
  • the size of the image display element 130 to be used is 9.856 mm in the long side direction and 6.162 mm in the short side direction.
  • the image display element 130 is shifted in the +0.74 mm Y direction with respect to the R1 surface apex of the first lens element L1.
  • Table 25 shows the aspheric data.
  • the zoom data is shown in Table 26 below.
  • the zoom ratio is 1.003324.
  • Table 27 shows single lens data.
  • the lens group data is shown in Table 28 below.
  • zoom lens group magnifications are shown in Table 29.
  • Tables 30 to 35 below show specific data of the transmission optical system 110 of Numerical Example 5.
  • the slow ratio in Numerical Example 5 is 0.164.
  • the projection magnification is 112.85 to 217.06 times.
  • the size of the image display element 130 to be used is 9.856 mm in the long side direction and 6.162 mm in the short side direction.
  • the image display element 130 is shifted in the +1.24 mm Y direction with respect to the R1 surface apex of the first lens element L1.
  • Table 30 below shows surface data of each optical element in Numerical Example 5.
  • the zoom data is shown in Table 32 below.
  • the zoom ratio is 0.99046.
  • the lens group data is shown in Table 34 below.
  • zoom lens group magnifications are shown in Table 35.
  • the present disclosure can be applied to a projection optical system for projecting an image displayed on an image display element.
  • the present disclosure is applicable to a projector, a head-up display, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

This projection optical system (100) is a projection optical system, which is used to project an image onto a projected surface (SC) and establishes a conjugate relationship between an image plane on a reduction side and an image plane on a projected surface (SC) side, the projection optical system (100) being provided with a transmissive optical system (110) and a reflective optical system (120). The transmissive optical system (110) includes an aperture diaphragm and a plurality of lenses each having power. The reflective optical system (120) reflects a beam emitted from the transmissive optical system (110). A main beam in a reference beam is the beam that passes through the center of the aperture diaphragm among beams projected onto the portion which, on the projected surface (SC), is closest to the transmissive optical system (100). The projection optical system (100) has an intermediate image plane, which has a conjugate relationship with the image plane of the reduction side, between the transmissive optical system (110) and the reflective optical system (120), and satisfies 0.70<|Pex|/Tl<40.

Description

投写光学系、画像投写装置および画像投写システムProjection optical system, image projection apparatus, and image projection system
 本開示は、画像表示素子が生成した画像を投写するための投写光学系に関する。 The present disclosure relates to a projection optical system for projecting an image generated by an image display element.
 特許文献1は、反射面を含む投写光学系を用いた投写装置を開示する。この投写光学系は、ライトバルブに形成された画像を投影面に拡大投影するための投写光学系であって、レンズ光学系と、第1反射面と、第2反射面と、からなる。レンズ光学系は、複数のレンズからなり、投影面とライトバルブとの間に、画像の中間像を形成するために正のパワーを有する。第1反射面は、中間像を結像した後の発散する光束を反射し、投影面上に結像させるために正のパワーを有する。第2反射面は、レンズ光学系からの射出光を第1反射面に入射させる。これにより、色収差および歪みが低減された大画面を投写することができる。 Patent Document 1 discloses a projection apparatus using a projection optical system including a reflecting surface. The projection optical system is a projection optical system for enlarging and projecting an image formed on the light valve onto a projection surface, and includes a lens optical system, a first reflection surface, and a second reflection surface. The lens optical system includes a plurality of lenses, and has a positive power for forming an intermediate image of an image between the projection surface and the light valve. The first reflecting surface reflects the divergent light beam after forming the intermediate image and has a positive power to form an image on the projection surface. The second reflecting surface causes the light emitted from the lens optical system to enter the first reflecting surface. As a result, a large screen with reduced chromatic aberration and distortion can be projected.
 しかしながら、特許文献1に記載された投写装置では、第1反射面から第2反射面までの距離が大きい。そのため、投写装置の大型化(高背化)を招いている。 However, in the projection apparatus described in Patent Document 1, the distance from the first reflecting surface to the second reflecting surface is large. For this reason, an increase in the size (height) of the projection apparatus is incurred.
特開2013-174886号公報JP 2013-174886 A
 本開示は、小型でありながら画像歪みを低減することができる投写光学系を提供する。 The present disclosure provides a projection optical system that can reduce image distortion while being small in size.
 本開示に係る投写光学系は、被投写面に画像を投写するために用いられ、縮小側の像面と被投写面側の像面とを共役の関係にする投写光学系であって、透過光学系と、反射光学系とを備える。透過光学系は、開口絞りと、それぞれパワーを有する複数のレンズとを含む。反射光学系は、透過光学系からの射出光を反射する。基準光線の主光線は、被投写面の最も投写光学系側に投写される光線のうち開口絞りの中心を通る光線である。投写光学系は、縮小側の像面と共役な中間像面を透過光学系と反射光学系の間に有し、以下の条件式(1)を満足する。 A projection optical system according to the present disclosure is a projection optical system that is used for projecting an image on a projection surface and has a conjugate relationship between a reduction-side image plane and a projection-side image plane. An optical system and a reflective optical system are provided. The transmission optical system includes an aperture stop and a plurality of lenses each having power. The reflection optical system reflects the light emitted from the transmission optical system. The principal ray of the reference ray is a ray that passes through the center of the aperture stop among the rays that are projected closest to the projection optical system on the projection surface. The projection optical system has an intermediate image plane conjugate with the reduction-side image plane between the transmission optical system and the reflection optical system, and satisfies the following conditional expression (1).
 0.70<|Pex|/Tl<40・・・(1)
 ここで、Tlは、複数のレンズのうち最も縮小側のレンズから、複数のレンズのうち最も被投写面側のレンズまでの距離である。Pexは、基準光線の主光線を基準とした透過光学系の射出瞳位置から、複数のレンズのうち最も被投写面側のレンズまでの基準光線の主光線の光路長のうち最大の距離である。
0.70 <| Pex | / Tl <40 (1)
Here, Tl is the distance from the most reduced lens among the plurality of lenses to the lens closest to the projection surface among the plurality of lenses. Pex is the maximum distance among the optical path lengths of the principal rays of the reference rays from the exit pupil position of the transmission optical system with reference to the principal ray of the reference rays to the lens closest to the projection surface among the plurality of lenses. .
 本開示に係る画像投写装置は、上記の投写光学系と、画像を形成し、縮小側の像面として画像の表示面を有する画像形成素子とを備える。 An image projection apparatus according to the present disclosure includes the above-described projection optical system and an image forming element that forms an image and has an image display surface as a reduction-side image surface.
 本開示における投写光学系および画像投写装置によれば、画像投写装置を小型化できるとともに、画像歪みを低減することができる。 According to the projection optical system and the image projection device of the present disclosure, the image projection device can be reduced in size and image distortion can be reduced.
図1は、本開示の画像投写システムを説明する図である。FIG. 1 is a diagram illustrating an image projection system according to the present disclosure. 図2は、本開示の画像投写装置を説明する構成図である。FIG. 2 is a configuration diagram illustrating an image projection apparatus according to the present disclosure. 図3は、数値実施例1における透過光学系の構成図である。FIG. 3 is a configuration diagram of a transmission optical system in Numerical Example 1. 図4は、数値実施例2における透過光学系の構成図である。FIG. 4 is a configuration diagram of a transmission optical system in Numerical Example 2. 図5は、数値実施例3における透過光学系の構成図である。FIG. 5 is a configuration diagram of a transmission optical system in Numerical Example 3. 図6は、数値実施例4における透過光学系の構成図である。FIG. 6 is a configuration diagram of a transmission optical system in Numerical Example 4. 図7は、数値実施例5における透過光学系の構成図である。FIG. 7 is a configuration diagram of a transmission optical system in Numerical Example 5.
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。 Hereinafter, embodiments will be described in detail with reference to the drawings as appropriate. However, more detailed description than necessary may be omitted. For example, detailed descriptions of already well-known matters and repeated descriptions for substantially the same configuration may be omitted. This is to avoid the following description from becoming unnecessarily redundant and to facilitate understanding by those skilled in the art.
 なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために、提供されるのであって、これらにより請求の範囲に記載の主題を限定することは意図されていない。 The accompanying drawings and the following description are provided for those skilled in the art to fully understand the present disclosure, and are not intended to limit the claimed subject matter.
 (実施の形態)
 以下、本開示の画像投写装置10を図1から図7を用いて説明する。
(Embodiment)
Hereinafter, the image projection apparatus 10 of the present disclosure will be described with reference to FIGS. 1 to 7.
 図1は、本開示の画像投写システム1を説明する図である。画像投写システム1は、画像投写装置10と、スクリーンSC(被投写面の一例)とを備える。画像投写装置10は、投写光学系100と、画像表示素子130と、透過素子140とから構成される。投写光学系100は、透過光学系110と、反射光学系120とを備える。画像投写装置10は、画像表示素子130で形成された画像を正対しない方向(斜めの方向)にあるスクリーンSCに投写する。ここで、スクリーンSCが正対しない方向にあるとは、基準光線Rが到達するスクリーンSC上の点における法線の方向と、投写光学系100の最終面から出射する基準光線Rの主光線光路の方向とが一致しない場合を言う。 FIG. 1 is a diagram illustrating an image projection system 1 according to the present disclosure. The image projection system 1 includes an image projection device 10 and a screen SC (an example of a projection surface). The image projection apparatus 10 includes a projection optical system 100, an image display element 130, and a transmission element 140. The projection optical system 100 includes a transmission optical system 110 and a reflection optical system 120. The image projection device 10 projects the image formed by the image display element 130 onto the screen SC in a direction (diagonal direction) that does not face the image. Here, the direction in which the screen SC does not face is that the direction of the normal line at the point on the screen SC where the reference ray R reaches and the principal ray optical path of the reference ray R emitted from the final surface of the projection optical system 100. Say when the direction does not match.
 なお、本開示にかかる画像投写装置10において、透過光学系110の開口絞りA(図2参照)の中心と、開口絞りAの縮小側に配置されたレンズ素子の回転対称軸と、開口絞りAの拡大側に配置されたレンズ素子の回転対称軸とを結ぶ直線を光軸AZとする。しかしながら、光軸AZは、最も多くのレンズ中心を共有する軸としてもよい。また、光軸AZは、画像表示素子130に対し、出射光の光路を含む面内で偏心した位置に設定されてもよい。ここで、出射光の光路とは、画像表示素子130からスクリーンSCに至る光路における、画像表示素子130の中心からスクリーンSC上の拡大像の中心に至る主光線の光路を意味する。 In the image projection apparatus 10 according to the present disclosure, the center of the aperture stop A (see FIG. 2) of the transmission optical system 110, the rotational symmetry axis of the lens element disposed on the reduction side of the aperture stop A, and the aperture stop A A straight line connecting the rotationally symmetric axes of the lens elements arranged on the enlargement side is defined as an optical axis AZ. However, the optical axis AZ may be an axis that shares the most lens centers. Further, the optical axis AZ may be set at a position eccentric with respect to the image display element 130 in a plane including the optical path of the emitted light. Here, the optical path of the emitted light means the optical path of the principal ray from the center of the image display element 130 to the center of the enlarged image on the screen SC in the optical path from the image display element 130 to the screen SC.
 なお、本開示において、縮小側とは、投写光学系100において画像表示素子130側を意味する。また、拡大側とは、投写光学系100においてスクリーンSC側を意味する。また、基準光線Rの主光線とは、スクリーンSCの最も投写光学系100側に投写される光線のうち開口絞りAの中心を通る光線である。 In the present disclosure, the reduction side means the image display element 130 side in the projection optical system 100. Further, the enlargement side means the screen SC side in the projection optical system 100. The principal ray of the reference ray R is a ray that passes through the center of the aperture stop A among the rays that are projected closest to the projection optical system 100 of the screen SC.
 また、画像投写装置10が透過光学系110内にプリズムやミラーなどの反射面を有する場合には、光軸AZは、当該反射面で反射して曲げられた後の光学系の光軸の延長線として設定されてもよい。 When the image projection apparatus 10 has a reflecting surface such as a prism or a mirror in the transmission optical system 110, the optical axis AZ is an extension of the optical axis of the optical system after being reflected and bent by the reflecting surface. It may be set as a line.
 また、本開示にかかる画像投写装置10は曲率を有するスクリーンSCに画像を投写する。 Also, the image projection apparatus 10 according to the present disclosure projects an image on a screen SC having a curvature.
 図2は、本開示の画像投写装置10を説明する構成図である。投写光学系100は、全体として正のパワーを有する透過光学系110と、全体として正のパワーを有する反射光学系120とを備える。図2に示すように、開口絞りAの中心を通る基準光線Rの主光線は、縮小側の像面から開口絞りAまでの間で光軸AZと交わらない。 FIG. 2 is a configuration diagram illustrating the image projection device 10 of the present disclosure. The projection optical system 100 includes a transmission optical system 110 having a positive power as a whole and a reflection optical system 120 having a positive power as a whole. As shown in FIG. 2, the principal ray of the reference ray R passing through the center of the aperture stop A does not intersect the optical axis AZ between the image plane on the reduction side and the aperture stop A.
 図3~図7を参照して、透過光学系110について説明する。透過光学系110は、正のパワーを有する第1レンズ群G1と、正のパワーを有する第2レンズ群G2と、正のパワーを有する第3レンズ群G3と、正のパワーを有する第4レンズ群G4と、プリズムPBから構成されている。第1レンズ群G1、第2レンズ群G2、第3レンズ群G3および第4レンズ群G4は、画像表示素子130からスクリーンSCまでの順に配置されている。プリズムPBは、画像表示素子130と第1レンズ群G1との間に配置されている。なお、本開示において、プリズムPBはパワーを有しない。そのため、例えば図3の透過光学系110において、パワーを有する複数のレンズとは、レンズ素子L1~L14を意味する。 The transmission optical system 110 will be described with reference to FIGS. The transmission optical system 110 includes a first lens group G1 having positive power, a second lens group G2 having positive power, a third lens group G3 having positive power, and a fourth lens having positive power. It consists of a group G4 and a prism PB. The first lens group G1, the second lens group G2, the third lens group G3, and the fourth lens group G4 are arranged in order from the image display element 130 to the screen SC. The prism PB is disposed between the image display element 130 and the first lens group G1. In the present disclosure, the prism PB has no power. Therefore, for example, in the transmission optical system 110 of FIG. 3, the plurality of lenses having power means the lens elements L1 to L14.
 第1レンズ群G1は、回転対称な軸を有する1枚の両凸レンズである第1レンズ素子L1から構成されている。第1レンズ素子L1は、非球面形状を有する。 The first lens group G1 includes a first lens element L1 that is a single biconvex lens having a rotationally symmetric axis. The first lens element L1 has an aspheric shape.
 第2レンズ群G2は、第2レンズ素子L2と、第3レンズ素子L3と、第4レンズ素子L4と、第5レンズ素子L5とを備える。第2レンズ素子L2は、回転対称な軸を有し、負のメニスカス形状を有する。第2レンズ素子L2の凸面は、縮小側を向いている。第3レンズ素子L3は、回転対称な軸を有し、両凸形状を有する。第4レンズ素子L4は、回転対称な軸を有し、両凹形状を有する。第5レンズ素子L5は、回転対称な軸を有し、両凸形状を有する。第2レンズ素子L2と第3レンズ素子L3と第4レンズ素子L4は互いに接合されている。 The second lens group G2 includes a second lens element L2, a third lens element L3, a fourth lens element L4, and a fifth lens element L5. The second lens element L2 has a rotationally symmetric axis and has a negative meniscus shape. The convex surface of the second lens element L2 faces the reduction side. The third lens element L3 has a rotationally symmetric axis and has a biconvex shape. The fourth lens element L4 has a rotationally symmetric axis and has a biconcave shape. The fifth lens element L5 has a rotationally symmetric axis and has a biconvex shape. The second lens element L2, the third lens element L3, and the fourth lens element L4 are cemented with each other.
 以下、図3、4、5および7を参照して、数値実施例1、2、3および5について説明する。 Hereinafter, numerical examples 1, 2, 3, and 5 will be described with reference to FIGS.
 第3レンズ群G3は、開口絞りAを備え、全体として正のパワーを有する。また、第3レンズ群G3は、第6レンズ素子L6と、第7レンズ素子L7と、第8レンズ素子L8と、第9レンズ素子L9と、第10レンズ素子L10とを備える。第6レンズ素子L6は、開口絞りAよりも拡大側に配置され、回転対称な軸を有し、正のメニスカス形状を有する。第6レンズ素子L6の凸面は、拡大側を向いている。第7レンズ素子L7(負のメニスカスレンズ)は、回転対称な軸を有し、負のメニスカス形状を有する。第7レンズ素子L7の凸面は、拡大側を向いている。第8レンズ素子L8は、回転対称な軸を有し、正のメニスカス形状を有する。第8レンズ素子L8の凸面は、縮小側を向いている。第9レンズ素子L9は、回転対称な軸を有し、両凸形状を有する。第10レンズ素子L10は、回転対称な軸を有し、負のメニスカス形状を有する。第10レンズ素子L10の凸面は、拡大側を向いている。 The third lens group G3 includes an aperture stop A and has a positive power as a whole. The third lens group G3 includes a sixth lens element L6, a seventh lens element L7, an eighth lens element L8, a ninth lens element L9, and a tenth lens element L10. The sixth lens element L6 is disposed on the enlargement side with respect to the aperture stop A, has a rotationally symmetric axis, and has a positive meniscus shape. The convex surface of the sixth lens element L6 faces the enlargement side. The seventh lens element L7 (negative meniscus lens) has a rotationally symmetric axis and has a negative meniscus shape. The convex surface of the seventh lens element L7 faces the enlargement side. The eighth lens element L8 has a rotationally symmetric axis and has a positive meniscus shape. The convex surface of the eighth lens element L8 faces the reduction side. The ninth lens element L9 has a rotationally symmetric axis and has a biconvex shape. The tenth lens element L10 has a rotationally symmetric axis and has a negative meniscus shape. The convex surface of the tenth lens element L10 faces the enlargement side.
 第4レンズ群G4は、透過光学系110のレンズ群の内、最もスクリーンSC側に配置されている。第4レンズ群G4は、第11レンズ素子L11と、第12レンズ素子L12と、第13レンズ素子L13と、第14レンズ素子L14とを備える。第11レンズ素子L11、第12レンズ素子L12、第13レンズ素子L13および第14レンズ素子L14は、画像表示素子130からスクリーンSCまでの順に配置されている。第11レンズ素子L11は、回転対称な軸を有し、正のパワーを有する。第11レンズ素子L11の凸面は、縮小側を向いている。第12レンズ素子L12は、回転対称な軸を有し、負のパワーを有する。第12レンズ素子L12の凹面は、拡大側を向いている。第13レンズ素子L13は、回転対称な軸を有し、両凹形状を有する。第14レンズ素子L14は、回転対称な軸を有し、正のメニスカス形状を有する。第14レンズ素子L14の凸面は、拡大側を向いている。 The fourth lens group G4 is arranged closest to the screen SC among the lens groups of the transmission optical system 110. The fourth lens group G4 includes an eleventh lens element L11, a twelfth lens element L12, a thirteenth lens element L13, and a fourteenth lens element L14. The eleventh lens element L11, the twelfth lens element L12, the thirteenth lens element L13, and the fourteenth lens element L14 are arranged in order from the image display element 130 to the screen SC. The eleventh lens element L11 has a rotationally symmetric axis and has positive power. The convex surface of the eleventh lens element L11 faces the reduction side. The twelfth lens element L12 has a rotationally symmetric axis and has negative power. The concave surface of the twelfth lens element L12 faces the enlargement side. The thirteenth lens element L13 has a rotationally symmetric axis and has a biconcave shape. The fourteenth lens element L14 has a rotationally symmetric axis and has a positive meniscus shape. The convex surface of the fourteenth lens element L14 faces the enlargement side.
 第11レンズ素子L11と第12レンズ素子L12は互いに接合されている。また、第13レンズ素子L13と、第14レンズ素子L14は非球面形状を有するレンズ素子となる。 The eleventh lens element L11 and the twelfth lens element L12 are cemented with each other. The thirteenth lens element L13 and the fourteenth lens element L14 are lens elements having an aspherical shape.
 以下、図6を参照して、数値実施例4について説明する。 Hereinafter, numerical example 4 will be described with reference to FIG.
 第3レンズ群G3は、開口絞りAを備え、全体として正のパワーを有する。また、第3レンズ群G3は、第6レンズ素子L6と、第7レンズ素子L7と、第8レンズ素子L8と、第9レンズ素子L9と、第10レンズ素子L10とを備える。第6レンズ素子L6は、開口絞りAよりも拡大側に配置され、回転対称な軸を有し、正のメニスカス形状を有する。第6レンズ素子L6の凸面は、拡大側を向いている。第7レンズ素子L7(負のメニスカスレンズ)は、回転対称な軸を有し、負のメニスカス形状を有する。第7レンズ素子L7の凸面は、拡大側を向いている。第8レンズ素子L8は、回転対称な軸を有し、正のパワーを有する。第8レンズ素子L8の凸面は、縮小側を向いている。第9レンズ素子L9は、回転対称な軸を有し、両凹形状を有する。第10レンズ素子L10は、回転対称な軸を有し、両凸形状を有する。第9レンズ素子L9と第10レンズ素子L10は互いに接合されている。 The third lens group G3 includes an aperture stop A and has a positive power as a whole. The third lens group G3 includes a sixth lens element L6, a seventh lens element L7, an eighth lens element L8, a ninth lens element L9, and a tenth lens element L10. The sixth lens element L6 is disposed on the enlargement side with respect to the aperture stop A, has a rotationally symmetric axis, and has a positive meniscus shape. The convex surface of the sixth lens element L6 faces the enlargement side. The seventh lens element L7 (negative meniscus lens) has a rotationally symmetric axis and has a negative meniscus shape. The convex surface of the seventh lens element L7 faces the enlargement side. The eighth lens element L8 has a rotationally symmetric axis and has positive power. The convex surface of the eighth lens element L8 faces the reduction side. The ninth lens element L9 has a rotationally symmetric axis and has a biconcave shape. The tenth lens element L10 has a rotationally symmetric axis and has a biconvex shape. The ninth lens element L9 and the tenth lens element L10 are cemented with each other.
 第4レンズ群G4は、透過光学系110の内、最もスクリーンSC側に配置されている。第4レンズ群G4は、第11レンズ素子L11と、第12レンズ素子L12と、第13レンズ素子L13とを備える。第11レンズ素子L11、第12レンズ素子L12および第13レンズ素子L13は、画像表示素子130からスクリーンSCまでの順に配置されている。第11レンズ素子L11は、回転対称な軸を有し、正のメニスカス形状を有する。第11レンズ素子L11の凸面は、縮小側を向いている。第12レンズ素子L12は、回転対称な軸を有し、両凹形状を有する。第13レンズ素子L13は、回転対称な軸を有し、正のメニスカス形状を有する。第13レンズ素子L13の凸面は、拡大側を向いている。 The fourth lens group G4 is disposed closest to the screen SC in the transmission optical system 110. The fourth lens group G4 includes an eleventh lens element L11, a twelfth lens element L12, and a thirteenth lens element L13. The eleventh lens element L11, the twelfth lens element L12, and the thirteenth lens element L13 are arranged in order from the image display element 130 to the screen SC. The eleventh lens element L11 has a rotationally symmetric axis and has a positive meniscus shape. The convex surface of the eleventh lens element L11 faces the reduction side. The twelfth lens element L12 has a rotationally symmetric axis and has a biconcave shape. The thirteenth lens element L13 has a rotationally symmetric axis and has a positive meniscus shape. The convex surface of the thirteenth lens element L13 faces the enlargement side.
 第12レンズ素子L12と、第13レンズ素子L13は非球面形状を有するレンズ素子である。 The twelfth lens element L12 and the thirteenth lens element L13 are lens elements having an aspherical shape.
 以下、数値実施例1、2、3、4、5に共通する特徴について説明する。 Hereinafter, features common to Numerical Examples 1, 2, 3, 4, and 5 will be described.
 最投写側レンズの画像表示素子130側に隣接するレンズ、または、第4レンズ群G4を構成する一部のレンズ素子は、両凹形状を有している。この両凹形状のレンズの少なくとも一方の面が非球面形状を有することが望ましい。具体的には、この非球面形状は、レンズの中心から径方向に離れるに従って、曲率が小さくなる形状である。すなわち、この非球面形状は、レンズの中心側に比べてレンズの外側のパワーが小さい形状である。 The lens adjacent to the image display element 130 side of the most projected side lens or a part of the lens elements constituting the fourth lens group G4 has a biconcave shape. It is desirable that at least one surface of the biconcave lens has an aspherical shape. Specifically, this aspherical shape is a shape in which the curvature decreases with increasing distance from the center of the lens in the radial direction. That is, this aspherical shape is a shape in which the power on the outer side of the lens is smaller than that on the lens center side.
 第3レンズ素子L3(正レンズ)は、レンズ素子のうちで最も強い正のパワーを有していてもよい。第4レンズ素子L4(負レンズ)は、レンズ素子のうちで最も強い負のパワーを有していてもよい。図3~図7において、第3レンズ素子L3と第4レンズ素子L4とは接合されているが、接合されることなく隣接して配置されていてもよい。 The third lens element L3 (positive lens) may have the strongest positive power among the lens elements. The fourth lens element L4 (negative lens) may have the strongest negative power among the lens elements. 3 to 7, the third lens element L3 and the fourth lens element L4 are joined, but they may be arranged adjacent to each other without being joined.
 なお、投写光学系100は、第2レンズ群G2と第4レンズ群G4の2つのレンズ群でフォーカスしている。第4レンズ群G4は、非球面形状を少なくとも1面含み、フォーカス時に発生する像の歪みや解像度の劣化を抑制している。これにより、投写距離が変わっても良好な光学性能を満たせる。 Note that the projection optical system 100 is focused by two lens groups, the second lens group G2 and the fourth lens group G4. The fourth lens group G4 includes at least one aspheric surface, and suppresses image distortion and resolution degradation that occur during focusing. Thereby, good optical performance can be satisfied even if the projection distance changes.
 また、投写光学系100は、開口絞りAよりも拡大側の一部のレンズ素子、または複数のレンズ素子をフォーカス群として採用することで、フォーカス時に発生する像の歪みや解像度の劣化を抑制することも可能である。これにより、投写距離が変わっても良好な光学性能を満たせる。 In addition, the projection optical system 100 uses a part of the lens elements or a plurality of lens elements on the enlargement side of the aperture stop A as a focus group, thereby suppressing image distortion and resolution degradation that occur during focusing. It is also possible. Thereby, good optical performance can be satisfied even if the projection distance changes.
 最投写側の第4レンズ群G4において、正メニスカス形状の最拡大側レンズの凹面と、正メニスカス形状のレンズまたは正レンズ素子と接合されている負レンズ素子の拡大側の凹面は、互いに向かい合っている。 In the fourth lens group G4 on the most projection side, the concave surface of the positive meniscus-shaped maximum magnification side lens and the concave surface on the expansion side of the negative meniscus lens or the negative lens element joined to the positive lens element face each other. Yes.
 また、第4レンズ群G4は、最もスクリーンSC側に、最投写側レンズを有する。この最投写側レンズは、透過光学系110において最も偏肉比が大きい形状を有している。これにより、透過する光束の中心と周辺との屈折力差を大きくできるため、像面湾曲の補正に有効である。 The fourth lens group G4 has the most projection side lens on the most screen SC side. The most projection side lens has a shape with the largest thickness deviation ratio in the transmission optical system 110. As a result, the difference in refractive power between the center and the periphery of the transmitted light beam can be increased, which is effective in correcting field curvature.
 透過光学系110を構成する複数のレンズ素子の一部をカットすることで、透過光学系110の低背化に効果が期待できる。特に、縮小側に配置されたレンズ素子や、拡大側に配置されたレンズ素子など、開口絞りAから離れたレンズ素子の一部をカットすることで、より一層の低背化効果が期待できる。なお、カットを行ったレンズ素子は回転対称な軸を有さない。 By cutting a part of the plurality of lens elements constituting the transmission optical system 110, an effect can be expected to reduce the height of the transmission optical system 110. In particular, by cutting a part of the lens elements away from the aperture stop A, such as a lens element arranged on the reduction side and a lens element arranged on the enlargement side, a further reduction in height can be expected. Note that the cut lens element does not have a rotationally symmetric axis.
 透過光学系110とスクリーンSCとの間に中間像面I(図2参照)が結像される。こうすることで、反射光学系120の一部に凹面ミラーを採用することが可能となり、投写領域の拡大と反射光学系120の小型化に有利な構成となる。また、透過光学系110で形成される中間像面Iは、光軸AZに最も近い光線による結像点が透過光学系110から最も離れた位置に形成される特徴を有している。中間像面Iは、反射光学系120の反射面を跨がない位置に結像することが望ましい。 An intermediate image plane I (see FIG. 2) is formed between the transmission optical system 110 and the screen SC. This makes it possible to employ a concave mirror as a part of the reflective optical system 120, which is advantageous for enlarging the projection area and reducing the size of the reflective optical system 120. Further, the intermediate image plane I formed by the transmission optical system 110 has a characteristic that an image point formed by a light ray closest to the optical axis AZ is formed at a position farthest from the transmission optical system 110. The intermediate image plane I is preferably formed at a position that does not straddle the reflection surface of the reflection optical system 120.
 反射光学系120は、透過光学系110が出射する光束を反射し、反射した光束をスクリーンSCに投写する。反射光学系120は、第1ミラー121(凹面ミラーの一例)と第2ミラー122(平面ミラーの一例)の2枚のミラーから構成される。第1ミラー121の反射面は、凹面の自由曲面形状を有している。第1ミラー121は、全体として正のパワーを有する。なお、反射光学系120は、1枚以上のミラーから構成されればよく、2枚のミラーから構成されることに限定されるものではない。 The reflection optical system 120 reflects the light beam emitted from the transmission optical system 110 and projects the reflected light beam onto the screen SC. The reflective optical system 120 includes two mirrors, a first mirror 121 (an example of a concave mirror) and a second mirror 122 (an example of a plane mirror). The reflecting surface of the first mirror 121 has a concave free-form surface. The first mirror 121 has a positive power as a whole. The reflection optical system 120 only needs to be composed of one or more mirrors, and is not limited to being composed of two mirrors.
 画像表示素子130は、画像信号を基にスクリーンSCに投写する画像を形成する。画像表示素子130としては、DMD(Digital Micromirror Device)や透過型や反射型の液晶パネル等の空間変調素子を用いることができる。本開示における画像表示素子130は、図2のX軸方向(紙面垂直方向)が長辺、Y軸方向が短辺の矩形である。 The image display element 130 forms an image to be projected on the screen SC based on the image signal. As the image display element 130, a spatial modulation element such as a DMD (Digital Micromirror Device) or a transmissive or reflective liquid crystal panel can be used. The image display element 130 according to the present disclosure is a rectangle having a long side in the X-axis direction (perpendicular to the paper surface) in FIG. 2 and a short side in the Y-axis direction.
 透過素子140は、反射光学系120とスクリーンSCとの間に配置される。反射光学系120が反射した光束は、透過素子140を透過してスクリーンSCに投写される。また、透過素子140の形状は、画像表示素子130の長辺方向に対応した方向と短辺方向に対応した方向とで異なる曲率を有するトロイダル形状である。透過素子140の凸面は、スクリーンSC側を向いている。すなわち、透過素子140の入射面における画像表示素子130の長辺方向に対応するX軸方向(図2の紙面垂直方向)の曲率は、短辺方向に対応するY軸方向の曲率よりも大きい。 The transmissive element 140 is disposed between the reflective optical system 120 and the screen SC. The light beam reflected by the reflective optical system 120 is transmitted through the transmissive element 140 and projected onto the screen SC. The shape of the transmissive element 140 is a toroidal shape having different curvatures in a direction corresponding to the long side direction of the image display element 130 and a direction corresponding to the short side direction. The convex surface of the transmissive element 140 faces the screen SC side. That is, the curvature in the X-axis direction (perpendicular to the paper surface in FIG. 2) corresponding to the long side direction of the image display element 130 on the incident surface of the transmission element 140 is larger than the curvature in the Y-axis direction corresponding to the short side direction.
 また、反射光学系120において、画像表示素子130側の第1ミラー121は、自由曲面形状を有することが望ましい。第1ミラー121が正のパワーを有する自由曲面形状を有することで、像歪み補正をしつつ、第2ミラー122に入射する光線高を抑制できる。そのため、小型化に有利である。 In the reflective optical system 120, the first mirror 121 on the image display element 130 side preferably has a free-form surface shape. Since the first mirror 121 has a free-form surface having a positive power, it is possible to suppress the height of light incident on the second mirror 122 while correcting image distortion. Therefore, it is advantageous for downsizing.
 最もスクリーンSC側に配置される第13レンズ素子L13(図6参照)または第14レンズ素子L14(図3、4、5または7参照)から自由曲面の反射面を有する第1ミラー121までの距離は、第1ミラー121から第2ミラー122までの距離よりも長い。これにより、第1ミラー121と第2ミラー122の間隔を短縮でき、投写光学系100のY軸方向の低背化ができる。 Distance from the thirteenth lens element L13 (see FIG. 6) or the fourteenth lens element L14 (see FIG. 3, 4, 5 or 7) arranged closest to the screen SC to the first mirror 121 having a free-form reflecting surface Is longer than the distance from the first mirror 121 to the second mirror 122. Thereby, the space | interval of the 1st mirror 121 and the 2nd mirror 122 can be shortened, and the height of the projection optical system 100 in the Y-axis direction can be reduced.
 以下、本実施の形態に係る投写光学系が満足することが好ましい条件を説明する。なお、実施の形態に係る投写光学系に対して、複数の条件が規定されるが、これら複数の条件すべてを満足する投写光学系の構成が最も望ましい。しかしながら、個別の条件を満足することにより、それぞれ対応する効果を奏する投写光学系を得ることも可能である。 Hereinafter, conditions that are preferably satisfied by the projection optical system according to the present embodiment will be described. Although a plurality of conditions are defined for the projection optical system according to the embodiment, a configuration of the projection optical system that satisfies all of the plurality of conditions is most desirable. However, by satisfying individual conditions, it is possible to obtain a projection optical system that exhibits the corresponding effects.
 本実施の形態に係る投写光学系100は、スクリーンSCに画像を投写するために用いられ、縮小側の像面とスクリーンSC側の像面とを共役の関係にする投写光学系であって、透過光学系110と、反射光学系120とを備える。透過光学系110は、開口絞りAと、それぞれパワーを有する複数のレンズとを含む。反射光学系120は、透過光学系110からの出射光を反射する。基準光線Rの主光線は、スクリーンSCの最も投写光学系100側に投写される光線のうち開口絞りAの中心を通る光線である。投写光学系100は、縮小側の像面と共役な中間像面Iを透過光学系110と反射光学系120の間に有している。以下、この構成を実施の形態の基本構成という。 A projection optical system 100 according to the present embodiment is a projection optical system that is used for projecting an image on a screen SC and has a conjugate relationship between a reduction-side image plane and a screen SC-side image plane. A transmission optical system 110 and a reflection optical system 120 are provided. The transmission optical system 110 includes an aperture stop A and a plurality of lenses each having power. The reflection optical system 120 reflects light emitted from the transmission optical system 110. The principal ray of the reference ray R is a ray that passes through the center of the aperture stop A among the rays that are projected closest to the projection optical system 100 of the screen SC. The projection optical system 100 has an intermediate image plane I conjugate with the reduction-side image plane between the transmission optical system 110 and the reflection optical system 120. Hereinafter, this configuration is referred to as a basic configuration of the embodiment.
 投写光学系100は、以下の条件式(1)を満足することが好ましい。 The projection optical system 100 preferably satisfies the following conditional expression (1).
 0.70 < |Pex|/Tl < 40 ・・・(1)
 ここで、Tlは、最も縮小側のレンズから、最もスクリーンSC側のレンズまでの距離である。|Pex|は、基準光線Rの主光線を基準とした透過光学系110の射出瞳位置から、最もスクリーンSC側のレンズまでの基準光線Rの主光線の光路長のうち最大の距離である。
0.70 <| Pex | / Tl <40 (1)
Here, Tl is the distance from the most reduction side lens to the most screen SC side lens. | Pex | is the maximum distance in the optical path length of the principal ray of the reference ray R from the exit pupil position of the transmission optical system 110 with respect to the principal ray of the reference ray R to the lens closest to the screen SC.
 条件式(1)は、透過光学系110の基準光線Rの主光線を基準(その光線の光軸)とした射出瞳位置と全長との好適な範囲を規定している。ここで、基準光線Rは、投写光学系100を備えた画像投写装置10がスクリーンSCの最も手前側に投写する光線である。条件式(1)を満足することで、小型でありながら画像歪みの低減された投写光学系100とすることが可能である。|Pex|/Tlが条件式(1)の上限を超えると、投写光学系100はテレセントリック光学系に近い構成となる。しかし、像面湾曲を適切に補正すると透過光学系110のサイズが大きくなる。そのため、投写光学系100の小型化に不利となる。反対に、|Pex|/Tlが条件式(1)の下限を下回ると、透過光学系110からの射出光線が広がり、反射光学系120のサイズが大きくなる。そのため、投写光学系100の小型化に不利となる。 Conditional expression (1) defines a preferable range between the exit pupil position and the total length with the principal ray of the reference ray R of the transmission optical system 110 as a reference (the optical axis of the ray). Here, the reference light beam R is a light beam projected by the image projection apparatus 10 including the projection optical system 100 to the foremost side of the screen SC. By satisfying conditional expression (1), it is possible to provide a projection optical system 100 that is small in size and reduced in image distortion. When | Pex | / Tl exceeds the upper limit of the conditional expression (1), the projection optical system 100 has a configuration close to a telecentric optical system. However, when the curvature of field is appropriately corrected, the size of the transmission optical system 110 increases. This is disadvantageous for downsizing of the projection optical system 100. On the other hand, when | Pex | / Tl falls below the lower limit of the conditional expression (1), the emitted light from the transmission optical system 110 spreads and the size of the reflection optical system 120 increases. This is disadvantageous for downsizing of the projection optical system 100.
 さらに、以下の条件式(1a)を満足することで、上記した効果をより奏功することができる。 Furthermore, by satisfying the following conditional expression (1a), the above-described effects can be achieved more effectively.
 0.80 < |Pex|/Tl < 30 ・・・(1a)
 さらに、以下の条件式(1b)を満足することで、上記した効果をより奏功することができる。
0.80 <| Pex | / Tl <30 (1a)
Furthermore, when the following conditional expression (1b) is satisfied, the above-described effects can be more effectively achieved.
 0.90 < |Pex|/Tl < 20 ・・・(1b)
 さらに、以下の条件式(1c)を満足することで、上記した効果をより奏功することができる。
0.90 <| Pex | / Tl <20 (1b)
Furthermore, when the following conditional expression (1c) is satisfied, the above-described effects can be more effectively achieved.
 1.00 < |Pex|/Tl < 17 ・・・(1c)
 本開示に係る投写光学系100は、以下の条件式(2)を満足することが好ましい。
1.00 <| Pex | / Tl <17 (1c)
The projection optical system 100 according to the present disclosure preferably satisfies the following conditional expression (2).
 1.00 < |Pin|/Tl < 50 ・・・(2)
 ここで、|Pin|は、基準光線Rの主光線を基準とした透過光学系110の入射瞳位置から、最も縮小側のレンズまでの基準光線Rの主光線の光路長のうち最大の距離である。
1.00 <| Pin | / Tl <50 (2)
Here, | Pin | is the maximum distance in the optical path length of the principal ray of the reference ray R from the entrance pupil position of the transmission optical system 110 with reference to the principal ray of the reference ray R to the lens on the most reduced side. is there.
 条件式(2)は、透過光学系110の基準光線Rの主光線を基準(その光線の光軸)とした入射瞳位置と全長との好適な範囲を規定している。|Pin|/Tlが条件式(2)の下限を下回ると、像面から入射する光線角度が大きくなり、表示素子としてDMDを使用した場合の光量ロスが顕著となる。そのため、スクリーンSC上の照度分布均一性を維持することが困難となる。反対に、|Pin|/Tlが条件式(2)の上限を超えると、投写光学系100に対する透過光学系110の全長が短くなり、像面湾曲を良好に維持することが困難となる。 Conditional expression (2) defines a preferable range of the entrance pupil position and the total length with the principal ray of the reference ray R of the transmission optical system 110 as a reference (the optical axis of the ray). When | Pin | / Tl falls below the lower limit of the conditional expression (2), the angle of light incident from the image plane increases, and the light loss when the DMD is used as the display element becomes significant. Therefore, it becomes difficult to maintain the illuminance distribution uniformity on the screen SC. On the contrary, if | Pin | / Tl exceeds the upper limit of the conditional expression (2), the total length of the transmission optical system 110 with respect to the projection optical system 100 becomes short, and it becomes difficult to maintain the field curvature well.
 さらに、以下の条件式(2a)を満足することで、上記した効果をより奏功することができる。 Furthermore, by satisfying the following conditional expression (2a), the above-described effects can be achieved more effectively.
 1.25 < |Pin|/Tl < 45 ・・・(2a)
 さらに、以下の条件式(2b)を満足することで、上記した効果をより奏功することができる。
1.25 <| Pin | / Tl <45 (2a)
Furthermore, when the following conditional expression (2b) is satisfied, the above-described effects can be more effectively achieved.
 1.50 < |Pin|/Tl < 40 ・・・(2b)
 さらに、以下の条件式(2c)を満足することで、上記した効果をより奏功することができる。
1.50 <| Pin | / Tl <40 (2b)
Furthermore, when the following conditional expression (2c) is satisfied, the above-described effects can be more effectively achieved.
 1.75 < |Pin|/Tl < 35 ・・・(2c)
 さらに、以下の条件式(2d)を満足することで、上記した効果をより奏功することができる。
1.75 <| Pin | / Tl <35 (2c)
Furthermore, when the following conditional expression (2d) is satisfied, the above-described effects can be more effectively achieved.
 2.00 < |Pin|/Tl < 32 ・・・(2d)
 本開示に係る投写光学系100は、以下の条件式(3)を満足することが好ましい。
2.00 <| Pin | / Tl <32 (2d)
The projection optical system 100 according to the present disclosure preferably satisfies the following conditional expression (3).
 0.050 < Tl/Rf < 5.0 ・・・(3)
 ここで、Rfは、基準光線Rの主光線を基準とした透過光学系110の最大の焦点距離である。
0.050 <Tl / Rf <5.0 (3)
Here, Rf is the maximum focal length of the transmission optical system 110 based on the principal ray of the reference ray R.
 条件式(3)は、基準光線Rの主光線を基準(その光線の光軸)とした透過光学系110の焦点距離と、全長との好適な範囲を規定している。Tl/Rfが条件式(3)の下限を下回ると、透過光学系110の全長が短くなり、投写光学系100として十分な光学性能を維持することが困難となる。または、透過光学系110の中間像面Iが透過光学系110から離れる位置に形成されるため、反射光学系120が大きくなり投写光学系100の小型化に不利となる。反対に、Tl/Rfが条件式(3)の上限を超えると、透過光学系110の全長が大きくなり、投写光学系100の小型化に不利となる。 Conditional expression (3) defines a preferable range between the focal length of the transmission optical system 110 and the total length with the principal ray of the reference ray R as a reference (the optical axis of the ray). When Tl / Rf falls below the lower limit of the conditional expression (3), the total length of the transmission optical system 110 becomes short, and it becomes difficult to maintain sufficient optical performance as the projection optical system 100. Alternatively, since the intermediate image plane I of the transmission optical system 110 is formed at a position away from the transmission optical system 110, the reflection optical system 120 becomes large, which is disadvantageous for downsizing the projection optical system 100. On the contrary, if Tl / Rf exceeds the upper limit of the conditional expression (3), the total length of the transmission optical system 110 is increased, which is disadvantageous for downsizing of the projection optical system 100.
 さらに、以下の条件式(3a)を満足することで、上記した効果をより奏功することができる。 Furthermore, by satisfying the following conditional expression (3a), the above-described effects can be achieved more effectively.
 0.075 < Tl/Rf < 4.5 ・・・(3a)
 さらに、以下の条件式(3b)を満足することで、上記した効果をより奏功することができる。
0.075 <Tl / Rf <4.5 (3a)
Furthermore, when the following conditional expression (3b) is satisfied, the above-described effects can be more effectively achieved.
 0.100 < Tl/Rf < 4.0 ・・・(3b)
 さらに、以下の条件式(3c)を満足することで、上記した効果をより奏功することができる。
0.100 <Tl / Rf <4.0 (3b)
Furthermore, when the following conditional expression (3c) is satisfied, the above-described effects can be more effectively achieved.
 0.125 < Tl/Rf < 3.5 ・・・(3c)
 本開示にかかる投写光学系100は、以下の条件式(4)を満足することが好ましい。
0.125 <Tl / Rf <3.5 (3c)
The projection optical system 100 according to the present disclosure preferably satisfies the following conditional expression (4).
 0.80 < |Pexax|/Tl < 15 ・・・(4)
 ここで、|Pexax|は、光軸AZを基準とした透過光学系110の射出瞳位置から、最もスクリーンSC側のレンズまでの基準光線Rの主光線の光路長である。
0.80 <| Pexax | / Tl <15 (4)
Here, | Pexax | is the optical path length of the principal ray of the reference ray R from the exit pupil position of the transmission optical system 110 with respect to the optical axis AZ to the lens closest to the screen SC.
 条件式(4)は、透過光学系110の光軸AZを基準とした射出瞳位置と全長との好適な範囲を規定している。|Pexax|/Tlが条件式(4)を満足することで、小型でありながら画像歪みの低減された投写光学系100とすることが可能である。|Pexax|/Tlが条件式(4)の上限を超えると、投写光学系100はテレセントリック光学系に近い構成となる。しかし、像面湾曲を適切に補正すると透過光学系110のサイズが大きくなるため、投写光学系100の小型化に不利となる。反対に、|Pexax|/Tlが条件式(4)の下限を下回ると、透過光学系110からの射出光線が広がり、反射光学系120のサイズが大きくなる。そのため、投写光学系100の小型化に不利となる。 Conditional expression (4) defines a suitable range of the exit pupil position and the total length with reference to the optical axis AZ of the transmission optical system 110. When | Pexax | / Tl satisfies the conditional expression (4), it is possible to obtain a projection optical system 100 that is small in size and reduced in image distortion. When | Pexax | / Tl exceeds the upper limit of the conditional expression (4), the projection optical system 100 has a configuration close to a telecentric optical system. However, if the curvature of field is appropriately corrected, the size of the transmission optical system 110 increases, which is disadvantageous for downsizing the projection optical system 100. On the contrary, when | Pexax | / Tl falls below the lower limit of the conditional expression (4), the emitted light from the transmission optical system 110 spreads, and the size of the reflection optical system 120 increases. This is disadvantageous for downsizing of the projection optical system 100.
 さらに、以下の条件式(4a)を満足することで、上記した効果をより奏功することができる。 Furthermore, by satisfying the following conditional expression (4a), the above-described effects can be achieved more effectively.
 0.85 < |Pexax|/Tl < 13 ・・・(4a)
 さらに、以下の条件式(4b)を満足することで、上記した効果をより奏功することができる。
0.85 <| Pexax | / Tl <13 (4a)
Furthermore, when the following conditional expression (4b) is satisfied, the above-described effects can be more effectively achieved.
 0.90 < |Pexax|/Tl < 11 ・・・(4b)
 さらに、以下の条件式(4c)を満足することで、上記した効果をより奏功することができる。
0.90 <| Pexax | / Tl <11 (4b)
Furthermore, when the following conditional expression (4c) is satisfied, the above-described effects can be more effectively achieved.
 0.95 < |Pexax|/Tl < 9 ・・・(4c)
 本開示に係る投写光学系100は、以下の条件式(5)を満足することが好ましい。
0.95 <| Pexax | / Tl <9 (4c)
The projection optical system 100 according to the present disclosure preferably satisfies the following conditional expression (5).
 1.0 < |Pinax|/Tl < 50 ・・・(5)
 ここで、|Pinax|は、光軸AZを基準とした透過光学系110の入射瞳位置から、最も縮小側のレンズまでの基準光線Rの主光線の光路長である。
1.0 <| Pinax | / Tl <50 (5)
Here, | Pinax | is the optical path length of the principal ray of the reference ray R from the entrance pupil position of the transmission optical system 110 with respect to the optical axis AZ to the lens on the most reduction side.
 条件式(5)は、透過光学系110の光軸AZを基準とした入射瞳位置と全長との好適な範囲を規定している。|Pinax|/Tlが条件式(5)の下限を下回ると、像面から入射する光線角度が大きくなり、表示素子としてDMDを使用した場合の光量ロスが顕著となる。そのため、スクリーンSC上の照度分布均一性を維持することが困難となる。反対に、|Pinax|/Tlが条件式(5)の上限を超えると、投写光学系100に対する透過光学系110の全長が短くなり、像面湾曲を良好に維持することが困難となる。 Conditional expression (5) defines a suitable range of the entrance pupil position and the total length with reference to the optical axis AZ of the transmission optical system 110. When | Pinax | / Tl is less than the lower limit of the conditional expression (5), the angle of light incident from the image plane becomes large, and the light amount loss becomes significant when DMD is used as a display element. Therefore, it becomes difficult to maintain the illuminance distribution uniformity on the screen SC. On the other hand, if | Pinax | / Tl exceeds the upper limit of the conditional expression (5), the total length of the transmission optical system 110 with respect to the projection optical system 100 becomes short, and it becomes difficult to maintain the field curvature well.
 さらに、以下の条件式(5a)を満足することで、上記した効果をより奏功することができる。 Furthermore, by satisfying the following conditional expression (5a), the above-described effects can be achieved more effectively.
 1.2 < |Pinax|/Tl < 46 ・・・(5a)
 さらに、以下の条件式(5b)を満足することで、上記した効果をより奏功することができる。
1.2 <| Pinax | / Tl <46 (5a)
Furthermore, when the following conditional expression (5b) is satisfied, the above-described effects can be more effectively achieved.
 1.4 < |Pinax|/Tl < 42 ・・・(5b)
 さらに、以下の条件式(5c)を満足することで、上記した効果をより奏功することができる。
1.4 <| Pinax | / Tl <42 (5b)
Furthermore, when the following conditional expression (5c) is satisfied, the above-described effects can be more effectively achieved.
 1.6 < |Pinax|/Tl < 39 ・・・(5c)
 表1から表5に、数値実施例1から5に係る投射光学系について求めた各条件式の対応値を示す。なお、各表に示されるように、|Pex|、|Pin|およびRfについては、X方向に沿った距離と、Y方向に沿った距離とが異なる。例えば、数値実施例1において、|Pex|については、Y方向に沿った距離が、最大の距離である。
1.6 <| Pinax | / Tl <39 (5c)
Tables 1 to 5 show corresponding values of the conditional expressions obtained for the projection optical systems according to Numerical Examples 1 to 5. As shown in each table, for | Pex |, | Pin |, and Rf, the distance along the X direction is different from the distance along the Y direction. For example, in Numerical Example 1, for | Pex |, the distance along the Y direction is the maximum distance.
 (条件式の対応値) (Corresponding value of conditional expression)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 以下、上記実施の形態に係る投写光学系を具体的に実施した数値実施例を説明する。なお、各数値実施例において、データ中の長さの単位はすべて「mm」であり、画角の単位はすべて「°」である。また、各数値実施例において、rは曲率半径、dは面間隔、ndはd線に対する屈折率、vdはd線に対するアッベ数である。また、各数値実施例において、*印を付した面は非球面または自由曲面であり、非球面形状は次式で定義している。 Hereinafter, numerical examples in which the projection optical system according to the above embodiment is specifically implemented will be described. In each numerical example, the unit of length in the data is “mm”, and the unit of angle of view is “°”. In each numerical example, r is a radius of curvature, d is a surface interval, nd is a refractive index with respect to the d line, and vd is an Abbe number with respect to the d line. In each numerical example, the surface marked with * is an aspherical surface or a free-form surface, and the aspherical shape is defined by the following equation.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 ここで、
 z:z軸に平行な面のサグ量、
 r:半径方向の距離(=√(x+y))、
 c:面頂点における曲率、
 k:コーニック係数、
 である。
here,
z: sag amount of the plane parallel to the z-axis,
r: radial distance (= √ (x 2 + y 2 )),
c: curvature at the surface vertex,
k: conic coefficient,
It is.
 なお、非球面係数は、円錐常数K以外は0でない係数のみ記す。また、レンズ群データにおいて、レンズ構成長は、第1面から終面までの間隔であり、前側主点位置は、第1面からの距離であり、後側主点位置は、第1面からの距離である。また、ズームデータにおいて、80インチは広角を意味し、100インチは中間を意味し、50インチは望遠を意味している。 As for the aspheric coefficient, only coefficients other than the conic constant K are described. In the lens group data, the lens constituent length is the distance from the first surface to the end surface, the front principal point position is the distance from the first surface, and the rear principal point position is from the first surface. Is the distance. In the zoom data, 80 inches means a wide angle, 100 inches means a middle, and 50 inches means telephoto.
 なお、図3は、数値実施例1における透過光学系110の構成図である。図4は、数値実施例2における透過光学系110の構成図である。図5は、数値実施例3における透過光学系110の構成図である。図6は、数値実施例4における透過光学系110の構成図である。図7は、数値実施例5における透過光学系110の構成図である。 FIG. 3 is a configuration diagram of the transmission optical system 110 in Numerical Example 1. FIG. 4 is a configuration diagram of the transmission optical system 110 in Numerical Example 2. FIG. 5 is a configuration diagram of the transmission optical system 110 in Numerical Example 3. FIG. 6 is a configuration diagram of the transmission optical system 110 in Numerical Example 4. FIG. 7 is a configuration diagram of the transmission optical system 110 in Numerical Example 5.
 (数値実施例1)
 以下の表6から表11に、数値実施例1の透過光学系110の具体的なデータを示す。なお、数値実施例1におけるスローレシオは、0.175である。また、投写倍率は112.75から217.06である。また、使用する画像表示素子130のサイズは、長辺方向が9.856mm、短辺方向が6.162mmである。画像表示素子130は、第1レンズ素子L1のR1面頂に対し+1.23mmY方向へシフトしている。
(Numerical example 1)
Tables 6 to 11 below show specific data of the transmission optical system 110 of Numerical Example 1. In addition, the slow ratio in Numerical Example 1 is 0.175. The projection magnification is 112.75 to 217.06. The size of the image display element 130 to be used is 9.856 mm in the long side direction and 6.162 mm in the short side direction. The image display element 130 is shifted in the +1.23 mm Y direction with respect to the R1 surface apex of the first lens element L1.
 数値実施例1の各光学素子の面データを以下の表6に示す。 Table 6 below shows surface data of each optical element in Numerical Example 1.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 以下、非球面データを表7に示す。 The aspheric data are shown in Table 7 below.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 以下、ズームデータを表8に示す。なお、ズーム比は、0.94855である。 The zoom data is shown in Table 8 below. The zoom ratio is 0.94855.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 以下、単レンズデータを表9に示す。 The single lens data is shown in Table 9 below.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 以下、レンズ群データを表10に示す。 The lens group data is shown in Table 10 below.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 以下、ズームレンズ群倍率を表11に示す。 The zoom lens group magnification is shown in Table 11 below.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 (数値実施例2)
 以下の表12から表17に、数値実施例2の透過光学系110の具体的なデータを示す。なお、数値実施例2におけるスローレシオは、0.177である。また、投写倍率は112.76から217.11である。また、使用する画像表示素子130のサイズは、長辺方向が9.856mm、短辺方向が6.162mmである。画像表示素子130は、第1レンズ素子L1のR1面頂に対し+1.23mmY方向へシフトしている。
(Numerical example 2)
Tables 12 to 17 below show specific data of the transmission optical system 110 of Numerical Example 2. In addition, the slow ratio in Numerical Example 2 is 0.177. The projection magnification is 112.76 to 217.11. The size of the image display element 130 to be used is 9.856 mm in the long side direction and 6.162 mm in the short side direction. The image display element 130 is shifted in the +1.23 mm Y direction with respect to the R1 surface apex of the first lens element L1.
 数値実施例2の各光学素子の面データを以下の表12に示す。 Table 12 below shows surface data of each optical element in Numerical Example 2.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 以下、非球面データを表13に示す。 Hereinafter, aspherical data are shown in Table 13.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 以下、ズームデータを表14に示す。なお、ズーム比は、0.92143である。 The zoom data is shown in Table 14 below. The zoom ratio is 0.92143.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 以下、単レンズデータを表15に示す。 Hereinafter, single lens data is shown in Table 15.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 以下、レンズ群データを表16に示す。 The lens group data is shown in Table 16 below.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 以下、ズームレンズ群倍率を表17に示す。 The zoom lens group magnification is shown in Table 17 below.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 (数値実施例3)
 以下の表18から表23に、数値実施例3の透過光学系110の具体的なデータを示す。なお、数値実施例3におけるスローレシオは、0.166である。また、投写倍率は112.90から217.18倍である。また、使用する画像表示素子130のサイズは、長辺方向が9.856mm、短辺方向が6.162mmである。画像表示素子130は、第1レンズ素子L1のR1面頂に対し+1.30mmY方向へシフトしている。
(Numerical Example 3)
Tables 18 to 23 below show specific data of the transmission optical system 110 of Numerical Example 3. In addition, the slow ratio in Numerical Example 3 is 0.166. The projection magnification is 112.90 to 217.18 times. The size of the image display element 130 to be used is 9.856 mm in the long side direction and 6.162 mm in the short side direction. The image display element 130 is shifted in the +1.30 mm Y direction with respect to the top of the R1 surface of the first lens element L1.
 数値実施例3の各光学素子の面データを以下の表18に示す。 Table 18 below shows surface data of each optical element in Numerical Example 3.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 以下、非球面データを表19に示す。 Hereinafter, aspherical data are shown in Table 19.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 以下、ズームデータを表20に示す。なお、ズーム比は、0.99414である。 The zoom data is shown in Table 20 below. The zoom ratio is 0.99414.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 以下、単レンズデータを表21に示す。 Hereinafter, single lens data is shown in Table 21.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 以下、レンズ群データを表22に示す。 The lens group data is shown in Table 22 below.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 以下、ズームレンズ群倍率を表23に示す。 Hereinafter, zoom lens group magnifications are shown in Table 23.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 (数値実施例4)
 以下の表24から表29に、数値実施例4の透過光学系110の具体的なデータを示す。なお、数値実施例4におけるスローレシオは、0.194である。また、投写倍率は112.92から216.97倍である。また、使用する画像表示素子130のサイズは、長辺方向が9.856mm、短辺方向が6.162mmである。画像表示素子130は、第1レンズ素子L1のR1面頂に対し+0.74mmY方向へシフトしている。
(Numerical example 4)
Tables 24 to 29 below show specific data of the transmission optical system 110 according to Numerical Example 4. In addition, the slow ratio in Numerical Example 4 is 0.194. The projection magnification is 112.92 to 216.97 times. The size of the image display element 130 to be used is 9.856 mm in the long side direction and 6.162 mm in the short side direction. The image display element 130 is shifted in the +0.74 mm Y direction with respect to the R1 surface apex of the first lens element L1.
 数値実施例4の各光学素子の面データを以下の表24に示す。 Table 24 below shows surface data of each optical element in Numerical Example 4.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 以下、非球面データを表25に示す。 Hereinafter, Table 25 shows the aspheric data.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
 以下、ズームデータを表26に示す。なお、ズーム比は、1.00324である。 The zoom data is shown in Table 26 below. The zoom ratio is 1.003324.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 以下、単レンズデータを表27に示す。 Hereinafter, Table 27 shows single lens data.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 以下、レンズ群データを表28に示す。 The lens group data is shown in Table 28 below.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 以下、ズームレンズ群倍率を表29に示す。 Hereinafter, zoom lens group magnifications are shown in Table 29.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
 (数値実施例5)
 以下の表30から表35に、数値実施例5の透過光学系110の具体的なデータを示す。なお、数値実施例5におけるスローレシオは、0.164である。また、投写倍率は112.85から217.06倍である。また、使用する画像表示素子130のサイズは、長辺方向が9.856mm、短辺方向が6.162mmである。画像表示素子130は、第1レンズ素子L1のR1面頂に対し+1.24mmY方向へシフトしている。
(Numerical example 5)
Tables 30 to 35 below show specific data of the transmission optical system 110 of Numerical Example 5. In addition, the slow ratio in Numerical Example 5 is 0.164. The projection magnification is 112.85 to 217.06 times. The size of the image display element 130 to be used is 9.856 mm in the long side direction and 6.162 mm in the short side direction. The image display element 130 is shifted in the +1.24 mm Y direction with respect to the R1 surface apex of the first lens element L1.
 数値実施例5の各光学素子の面データを以下の表30に示す。 Table 30 below shows surface data of each optical element in Numerical Example 5.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
 以下、非球面データを表31に示す。 The aspheric data are shown in Table 31 below.
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
 以下、ズームデータを表32に示す。なお、ズーム比は、0.99046である。 The zoom data is shown in Table 32 below. The zoom ratio is 0.99046.
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
 以下、単レンズデータを表33に示す。 Hereinafter, single lens data is shown in Table 33.
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
 以下、レンズ群データを表34に示す。 The lens group data is shown in Table 34 below.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
 以下、ズームレンズ群倍率を表35に示す。 Hereinafter, zoom lens group magnifications are shown in Table 35.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
 (他の実施の形態)
 以上のように、本出願において開示する技術の例示として、実施の形態を説明した。しかしながら、本開示における技術は、これに限定されず、変更、置き換え、付加、省略などを行った実施の形態にも適用できる。また、上記実施の形態で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
(Other embodiments)
As described above, the embodiments have been described as examples of the technology disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to embodiments that have been changed, replaced, added, omitted, and the like. Moreover, it is also possible to combine each component demonstrated in the said embodiment and it can also be set as a new embodiment.
 なお、上述の実施の形態は、本開示における技術を例示するためのものであるから、請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 Note that the above-described embodiment is for illustrating the technique in the present disclosure, and therefore various modifications, replacements, additions, omissions, and the like can be made within the scope of the claims or an equivalent scope thereof.
 本開示は、画像表示素子に表示された画像を投写するための投写光学系に適用可能である。具体的には、プロジェクターやヘッドアップディスプレイなどに、本開示は適用可能である。 The present disclosure can be applied to a projection optical system for projecting an image displayed on an image display element. Specifically, the present disclosure is applicable to a projector, a head-up display, and the like.
 1 画像投写システム
 10 画像投写装置
 100 投写光学系
 110 透過光学系
 120 反射光学系
 121 第1ミラー(凹面ミラーの一例)
 122 第2ミラー(平面ミラーの一例)
 130 画像表示素子
 140 透過素子
 A 開口絞り
 PB プリズム
 SC スクリーン(被投射面の一例)
DESCRIPTION OF SYMBOLS 1 Image projection system 10 Image projection apparatus 100 Projection optical system 110 Transmission optical system 120 Reflection optical system 121 1st mirror (an example of a concave mirror)
122 Second mirror (an example of a plane mirror)
130 Image display element 140 Transmission element A Aperture stop PB Prism SC Screen (an example of a projection surface)

Claims (19)

  1.  被投写面に画像を投写するために用いられ、縮小側の像面と前記被投写面側の像面とを共役の関係にする投写光学系であって、
     開口絞りと、それぞれパワーを有する複数のレンズとを含む透過光学系と、
     前記透過光学系からの出射光を反射する反射光学系と、を備え、
     基準光線の主光線は、前記被投写面の最も前記投写光学系側に投写される光線のうち前記開口絞りの中心を通る光線であり、
     前記投写光学系は、前記縮小側の像面と共役な中間像面を前記透過光学系と前記反射光学系の間に有し、
     前記投写光学系は、以下の条件式(1)を満足する、投写光学系。
     0.70 < |Pex|/Tl < 40 ・・・(1)
     ここで、
     Tlは、前記複数のレンズのうち最も前記縮小側のレンズから、前記複数のレンズのうち最も前記被投写面側のレンズまでの距離であり、
     |Pex|は、前記基準光線の主光線を基準とした前記透過光学系の射出瞳位置から、前記複数のレンズのうち最も前記被投写面側のレンズまでの前記基準光線の主光線の光路長のうち最大の距離である。
    A projection optical system that is used to project an image on a projection surface and that has a conjugate relationship between a reduction-side image plane and the projection-plane-side image plane;
    A transmission optical system including an aperture stop and a plurality of lenses each having power;
    A reflection optical system that reflects light emitted from the transmission optical system, and
    The principal ray of the reference ray is a ray that passes through the center of the aperture stop among the rays that are projected closest to the projection optical system of the projection surface,
    The projection optical system has an intermediate image plane conjugate with the reduction-side image plane between the transmission optical system and the reflection optical system,
    The projection optical system satisfies the following conditional expression (1).
    0.70 <| Pex | / Tl <40 (1)
    here,
    Tl is a distance from the lens on the most reduced side among the plurality of lenses to the lens on the most projected surface side among the plurality of lenses;
    | Pex | is the optical path length of the principal ray of the reference ray from the exit pupil position of the transmission optical system with respect to the principal ray of the reference ray to the lens closest to the projection surface among the plurality of lenses. Is the maximum distance.
  2.  前記投写光学系は、以下の条件式(2)を満足する、請求項1に記載の投写光学系。
     1.00 < |Pin|/Tl < 50 ・・・(2)
     ここで、
     |Pin|は、前記基準光線の主光線を基準とした前記透過光学系の入射瞳位置から、前記複数のレンズのうち最も前記縮小側のレンズまでの前記基準光線の主光線の光路長のうち最大の距離である。
    The projection optical system according to claim 1, wherein the projection optical system satisfies the following conditional expression (2).
    1.00 <| Pin | / Tl <50 (2)
    here,
    | Pin | is the optical path length of the principal ray of the reference ray from the entrance pupil position of the transmission optical system with respect to the principal ray of the reference ray to the lens on the most reduced side among the plurality of lenses It is the maximum distance.
  3.  前記投写光学系は、以下の条件式(3)を満足する、請求項1または2に記載の投写光学系。
     0.050 < Tl/Rf < 5.0 ・・・(3)
     ここで、
     Rfは、前記基準光線の主光線を基準とした前記透過光学系の最大の焦点距離である。
    The projection optical system according to claim 1, wherein the projection optical system satisfies the following conditional expression (3).
    0.050 <Tl / Rf <5.0 (3)
    here,
    Rf is the maximum focal length of the transmission optical system based on the principal ray of the reference ray.
  4.  前記複数のレンズは、前記透過光学系の光軸として、同一の回転対称軸を有する、
    請求項1から3のいずれかに記載の投写光学系。
    The plurality of lenses have the same rotational symmetry axis as the optical axis of the transmission optical system.
    The projection optical system according to claim 1.
  5.  前記投写光学系は、以下の条件式(4)を満足する、請求項4に記載の投写光学系。
     0.80 < |Pexax|/Tl < 15 ・・・(4)
     ここで、
     |Pexax|は、前記光軸を基準とした前記透過光学系の射出瞳位置から、前記複数のレンズのうち最も前記被投写面側のレンズまでの前記基準光線の主光線の光路長である。
    The projection optical system according to claim 4, wherein the projection optical system satisfies the following conditional expression (4).
    0.80 <| Pexax | / Tl <15 (4)
    here,
    | Pexax | is the optical path length of the principal ray of the reference ray from the exit pupil position of the transmission optical system with respect to the optical axis to the lens closest to the projection surface among the plurality of lenses.
  6.  前記投写光学系は、以下の条件式(5)を満足する、請求項4または5に記載の投写光学系。
     1.0 < |Pinax|/Tl < 50 ・・・(5)
     ここで、
     |Pinax|は、前記光軸を基準とした前記透過光学系の入射瞳位置から、前記複数のレンズのうち最も前記縮小側のレンズまでの前記基準光線の主光線の光路長である。
    The projection optical system according to claim 4, wherein the projection optical system satisfies the following conditional expression (5).
    1.0 <| Pinax | / Tl <50 (5)
    here,
    | Pinax | is the optical path length of the principal ray of the reference ray from the entrance pupil position of the transmission optical system with respect to the optical axis to the lens on the most reduction side among the plurality of lenses.
  7.  前記基準光線の主光線は、前記縮小側の像面から前記開口絞りまでの間で前記光軸と交わらない、
    請求項4から6のいずれかに記載の投写光学系。
    The principal ray of the reference ray does not intersect the optical axis between the reduction-side image plane and the aperture stop,
    The projection optical system according to claim 4.
  8.  前記複数のレンズは、前記開口絞りと前記縮小側の像面との間に配置された正レンズを含み、
     前記正レンズは、前記複数のレンズのうちで最も強い正のパワーを有する、
    請求項1から7のいずれかに記載の投写光学系。
    The plurality of lenses includes a positive lens disposed between the aperture stop and the reduction-side image plane,
    The positive lens has the strongest positive power among the plurality of lenses.
    The projection optical system according to claim 1.
  9.  前記複数のレンズは、前記開口絞りと前記縮小側の像面との間に配置された負レンズを含み、
     前記負レンズは、前記複数のレンズのうちで最も強い負のパワーを有する、
    請求項1から8のいずれかに記載の投写光学系。
    The plurality of lenses includes a negative lens disposed between the aperture stop and the reduction-side image plane,
    The negative lens has the strongest negative power among the plurality of lenses.
    The projection optical system according to claim 1.
  10.  前記複数のレンズは、前記開口絞りと前記縮小側の像面との間に配置された正レンズと負レンズとを含み、
     前記正レンズは、前記複数のレンズのうちで最も強い正のパワーを有し、
     前記負レンズは、前記複数のレンズのうちで最も強い負のパワーを有し、
     前記正レンズと、前記負レンズとは、隣接して配置される、
    請求項1から7のいずれかに記載の投写光学系。
    The plurality of lenses includes a positive lens and a negative lens disposed between the aperture stop and the reduction-side image plane,
    The positive lens has the strongest positive power among the plurality of lenses,
    The negative lens has the strongest negative power among the plurality of lenses,
    The positive lens and the negative lens are disposed adjacent to each other.
    The projection optical system according to claim 1.
  11.  前記正レンズと、前記負レンズとは、接合されている、
    請求項10に記載の投写光学系。
    The positive lens and the negative lens are cemented,
    The projection optical system according to claim 10.
  12.  前記反射光学系は、凹面ミラーを有する、
    請求項1から11のいずれかに記載の投写光学系。
    The reflective optical system has a concave mirror,
    The projection optical system according to claim 1.
  13.  前記反射光学系は、平面ミラーを有する、
    請求項1から12のいずれかに記載の投写光学系。
    The reflective optical system has a plane mirror,
    The projection optical system according to claim 1.
  14.  前記反射光学系は、凹面ミラーと平面ミラーとを含み、
     前記凹面ミラーは、前記透過光学系からの出射光を反射し、
     前記平面ミラーは、前記凹面ミラーからが反射した光を反射する、
    請求項1から11のいずれかに記載の投写光学系。
    The reflective optical system includes a concave mirror and a plane mirror,
    The concave mirror reflects light emitted from the transmission optical system;
    The plane mirror reflects light reflected from the concave mirror;
    The projection optical system according to claim 1.
  15.  前記凹面ミラーの反射面と、前記平面ミラーの反射面とは、互いに対面する、
    請求項14に記載の投写光学系。
    The reflecting surface of the concave mirror and the reflecting surface of the flat mirror face each other,
    The projection optical system according to claim 14.
  16.  前記複数のレンズは、前記開口絞りと前記被投写面との間に配置された負のメニスカスレンズを含み、
     前記負のメニスカスレンズの凸面は、前記被投写面を向いている、
    請求項1から15のいずれかに記載の投写光学系。
    The plurality of lenses includes a negative meniscus lens disposed between the aperture stop and the projection surface,
    The convex surface of the negative meniscus lens faces the projection surface.
    The projection optical system according to claim 1.
  17.  請求項1から16のいずれかに記載の投写光学系と、
     前記画像を形成し、前記縮小側の像面として前記画像の表示面を有する画像形成素子とを備える、画像投写装置。
    A projection optical system according to any one of claims 1 to 16,
    An image projection apparatus comprising: an image forming element that forms the image and has a display surface of the image as an image surface on the reduction side.
  18.  請求項17に記載の画像投写装置と、
     前記被投写面とを備える、画像投写システム。
    An image projection device according to claim 17,
    An image projection system comprising the projection surface.
  19.  前記被投写面は、曲率を有する、
     請求項18に記載の画像投写システム。
    The projection surface has a curvature;
    The image projection system according to claim 18.
PCT/JP2017/044305 2017-03-29 2017-12-11 Projection optical system, image projection device, and image projection system WO2018179607A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017064391 2017-03-29
JP2017-064391 2017-03-29

Publications (1)

Publication Number Publication Date
WO2018179607A1 true WO2018179607A1 (en) 2018-10-04

Family

ID=63674673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044305 WO2018179607A1 (en) 2017-03-29 2017-12-11 Projection optical system, image projection device, and image projection system

Country Status (1)

Country Link
WO (1) WO2018179607A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006043666A1 (en) * 2004-10-21 2006-04-27 Sony Corporation Projection optical system and projection type image display device
JP2013064816A (en) * 2011-09-16 2013-04-11 Ricoh Co Ltd Image display device
JP2014170127A (en) * 2013-03-04 2014-09-18 Ricoh Co Ltd Projection optical system and image display device
JP2014170186A (en) * 2013-03-05 2014-09-18 Ricoh Co Ltd Projection optical system and projector
WO2018008199A1 (en) * 2016-07-04 2018-01-11 パナソニックIpマネジメント株式会社 Projection optical system and image projection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006043666A1 (en) * 2004-10-21 2006-04-27 Sony Corporation Projection optical system and projection type image display device
JP2013064816A (en) * 2011-09-16 2013-04-11 Ricoh Co Ltd Image display device
JP2014170127A (en) * 2013-03-04 2014-09-18 Ricoh Co Ltd Projection optical system and image display device
JP2014170186A (en) * 2013-03-05 2014-09-18 Ricoh Co Ltd Projection optical system and projector
WO2018008199A1 (en) * 2016-07-04 2018-01-11 パナソニックIpマネジメント株式会社 Projection optical system and image projection device

Similar Documents

Publication Publication Date Title
US10754239B2 (en) Projection optical assembly and projector device
CN107924046B (en) Projection optics and projectors
JP5069146B2 (en) Projection zoom lens and projection display device
JP5152833B2 (en) Projection zoom lens and projection display device
JP6393906B2 (en) Projection optical system and image projection apparatus
CN109073869B (en) Projection optical system and projector
JP6811412B2 (en) Projection optics, image projection device and image projection system
JP2011033737A (en) Projection optical system and projection type display using the same
CN107636511B (en) Projection optical system and projector
CN201666968U (en) Zoom lens for projection and projection type display device
JP4139606B2 (en) Projection lens
WO2020009026A1 (en) Projection optical system and projector
JP6390882B1 (en) Image projection device
JP2011053513A (en) Projection type variable focus lens and projection type display device
US9927684B2 (en) Projection optical system and image projector
JP4689147B2 (en) Projection zoom lens and enlargement projection device
JP2007219361A (en) Zoom lens and projector device
JPWO2020137884A1 (en) Projection optics and projectors
JP2004138640A (en) Zoom lens for projection
WO2018179607A1 (en) Projection optical system, image projection device, and image projection system
TW201437672A (en) Projection lens
JPH11326763A (en) Zoom lens and projection device using the zoom lens
TWI809587B (en) Projection lens
CN116203708A (en) Zoom lens and projector
JPWO2020137885A1 (en) Projection optics and projector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903393

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17903393

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载