WO2018179386A1 - 冷間圧延鋼板および溶融亜鉛めっき冷間圧延鋼板 - Google Patents
冷間圧延鋼板および溶融亜鉛めっき冷間圧延鋼板 Download PDFInfo
- Publication number
- WO2018179386A1 WO2018179386A1 PCT/JP2017/013736 JP2017013736W WO2018179386A1 WO 2018179386 A1 WO2018179386 A1 WO 2018179386A1 JP 2017013736 W JP2017013736 W JP 2017013736W WO 2018179386 A1 WO2018179386 A1 WO 2018179386A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel sheet
- less
- rolled steel
- cold
- hot
- Prior art date
Links
- 239000010960 cold rolled steel Substances 0.000 title claims abstract description 38
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 55
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 51
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 39
- 230000000717 retained effect Effects 0.000 claims abstract description 32
- 229910001563 bainite Inorganic materials 0.000 claims abstract description 22
- 239000000203 mixture Substances 0.000 claims abstract description 14
- 239000000126 substance Substances 0.000 claims abstract description 13
- 229910000831 Steel Inorganic materials 0.000 claims description 73
- 239000010959 steel Substances 0.000 claims description 73
- 239000012535 impurity Substances 0.000 claims description 6
- 239000010451 perlite Substances 0.000 claims description 5
- 235000019362 perlite Nutrition 0.000 claims description 5
- 229910001562 pearlite Inorganic materials 0.000 abstract description 7
- 238000001816 cooling Methods 0.000 description 42
- 238000010438 heat treatment Methods 0.000 description 39
- 238000005096 rolling process Methods 0.000 description 25
- 238000000034 method Methods 0.000 description 20
- 230000009467 reduction Effects 0.000 description 19
- 230000000694 effects Effects 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 12
- 238000000137 annealing Methods 0.000 description 11
- 229910001567 cementite Inorganic materials 0.000 description 11
- 229910052761 rare earth metal Inorganic materials 0.000 description 11
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 10
- 230000009466 transformation Effects 0.000 description 9
- 230000008569 process Effects 0.000 description 8
- 238000011282 treatment Methods 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 230000006872 improvement Effects 0.000 description 7
- 229910052759 nickel Inorganic materials 0.000 description 7
- 238000007747 plating Methods 0.000 description 7
- 229910052791 calcium Inorganic materials 0.000 description 6
- 229910052804 chromium Inorganic materials 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 229910052749 magnesium Inorganic materials 0.000 description 6
- 229910052750 molybdenum Inorganic materials 0.000 description 6
- 229910052718 tin Inorganic materials 0.000 description 6
- 229910052726 zirconium Inorganic materials 0.000 description 6
- 229910000794 TRIP steel Inorganic materials 0.000 description 5
- 238000005275 alloying Methods 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 229910052787 antimony Inorganic materials 0.000 description 4
- 238000005097 cold rolling Methods 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 4
- 238000005098 hot rolling Methods 0.000 description 4
- 229910001335 Galvanized steel Inorganic materials 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000008397 galvanized steel Substances 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 238000005554 pickling Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 238000010583 slow cooling Methods 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000032798 delamination Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 238000005246 galvanizing Methods 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 238000009863 impact test Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229910000797 Ultra-high-strength steel Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 238000005279 austempering Methods 0.000 description 1
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000001887 electron backscatter diffraction Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 229910002066 substitutional alloy Inorganic materials 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/19—Hardening; Quenching with or without subsequent tempering by interrupted quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/19—Hardening; Quenching with or without subsequent tempering by interrupted quenching
- C21D1/20—Isothermal quenching, e.g. bainitic hardening
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/25—Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0224—Two or more thermal pretreatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/024—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/009—Pearlite
Definitions
- the present invention relates to a cold-rolled steel sheet and a hot-dip galvanized cold-rolled steel sheet.
- Steel sheets used for automotive parts are required to have not only strength but also various workability required at the time of forming parts, such as press formability and weldability. Specifically, from the viewpoint of press formability, a steel sheet is often required to have excellent elongation (total elongation in a tensile test: El) and stretch flangeability (hole expansion ratio: ⁇ ).
- Patent Documents 1 to 3 disclose techniques related to high-strength TRIP steel sheets that improve the elongation and the hole expansion rate by controlling the structural composition fraction within a predetermined range.
- Patent Document 4 and Patent Document 5 after controlling the structural fraction of the microstructure to a predetermined range, the distribution of IQ (Image Quality) values of crystal grains obtained by the EBSD method is controlled to a predetermined range, A technique relating to a high-strength TRIP steel sheet with improved low-temperature toughness is disclosed.
- Patent Document 6 discloses that the microstructure is mainly tempered martensite containing MA and residual austenite, and MA and residual austenite are in contact with tempered martensite or increase the ratio of existing in tempered martensite grains. Thus, a technique related to high-strength TRIP steel with improved hole expansibility is disclosed.
- Patent Document 7 discloses a technique for improving the toughness of a DP (Dual Phase) steel sheet.
- Patent Document 8 and Patent Document 9 relate to a high-strength steel sheet that improves the low-temperature toughness by controlling the stacking fault density of retained austenite to a predetermined range after controlling the structural fraction of the microstructure to a predetermined range.
- Technology is disclosed.
- the present invention has an object to improve workability and low temperature toughness, especially low temperature toughness after introduction of plastic strain in high strength cold rolled steel sheet and high strength hot dip galvanized cold rolled steel sheet.
- An object of the present invention is to provide a high-strength cold-rolled steel sheet and a high-strength hot-dip galvanized cold-rolled steel sheet (hereinafter referred to as “cold-rolled steel sheet”).
- the present inventors diligently examined a microstructure capable of ensuring workability and low-temperature toughness in addition to high strength when examining a method for solving the above-described problems.
- the microstructure must satisfy the following (i) to (v) at the same time in order to ensure the target strength, elongation, hole expansion rate, and low temperature toughness.
- Ferrite 1 to 29 area%
- Residual austenite 5 to 20 area%
- Martensite less than 10 area%
- Perlite less than 5 area%
- Bainite and / or tempered martensite balance
- the interface between the ferrite of the softest structure in the microstructure and the martensite or retained austenite of the hardest structure becomes the starting point of fracture, and the length of the interface where both structures are in contact is determined as follows. It was found that the low temperature toughness after processing can be further improved when the following value (vi) is satisfied.
- FIG. 1 shows the result of measuring vTrs by applying a pre-strain of 5% to a steel plate having various ⁇ MA, then performing a Charpy impact test.
- ⁇ MA the total length of the interface between the ferrite and martensite or retained austenite having an equivalent circle radius of 1 ⁇ m or more.
- the mechanism by which ⁇ MA affects the low temperature toughness after processing is considered as follows.
- the present invention has been made on the basis of the above findings, and the gist thereof is as follows.
- a hot-dip galvanized cold-rolled steel sheet provided with a hot-dip galvanized layer on the surface of the cold-rolled steel sheet of (1) or (2).
- a hot-dip galvanized cold-rolled steel sheet comprising an alloyed hot-dip galvanized layer on the surface of the cold-rolled steel sheet of (1) or (2).
- a high-strength cold-rolled steel sheet and a high-strength hot-dip galvanized cold-rolled steel sheet that are excellent in workability and low-temperature toughness, especially excellent in low-temperature toughness after introduction of plastic strain.
- Chemical composition C 0.10 to 0.30% C is an element essential for ensuring the strength of the steel sheet.
- the C content is 0.10% or more.
- they are 0.13% or more, 0.15% or more, 0.17% or more, or 0.18% or more.
- excessive content decreases workability and weldability, so the C content is 0.30% or less.
- 0.27% or less, 0.25% or less, 0.23% or 0.21% or less is preferable.
- Si 0.50 to 2.50% Si is an element that suppresses the formation of iron carbide and contributes to the improvement of strength and formability.
- the Si content is 0.50% or more.
- In order to suppress precipitation of iron-based carbides 0.65% or more, 0.80% or more, 0.90% or more, 1.00% or more, 1.10% or more, or 1.20% or more is preferable.
- the content is excessive, the cast slab breaks and the steel plate becomes brittle, so the Si content is 2.50% or less.
- the Si content is 2.25% or less, 2.00% or less, It is preferably 1.85% or less, 1.70% or less, or 1.60% or less. 1.50% or less is more preferable.
- Mn 1.50 to 3.50%
- Mn is an element that improves the hardenability of the steel sheet and contributes to the improvement of strength. If the Mn content is less than 1.50%, the hardenability of the steel sheet is insufficient, and a large amount of ferrite precipitates during cooling after annealing, making it difficult to ensure the required strength. Therefore, the Mn content is 1.50% or more. Preferably they are 1.80% or more, 2.00% or more, 2.20% or more, or 2.30% or more. On the other hand, an excessive content causes Mn segregation to manifest and deteriorates workability and toughness, so the Mn content is set to 3.50% or less. From the viewpoint of ensuring weldability, the Mn content is preferably 3.00% or less. 2.80% or less, 2.70% or less, 2.60% or less, or 2.50% or less is more preferable.
- Al 0.001 to 1.00%
- Al is a deoxidizing element.
- the Al content is set to 0.001% or more.
- it is 0.005% or more, 0.010% or more, or 0.015% or more.
- the Al content is 1.00%.
- they are 0.50% or less, 0.20% or less, 0.10% or less, 0.060% or less, or 0.040% or less.
- P 0.05% or less
- P is an element contributing to improvement in strength by solid solution strengthening. If the P content exceeds 0.05%, weldability and toughness deteriorate, so the P content is 0.05% or less. Preferably it is 0.02% or less or 0.015% or less. There is no need to particularly limit the lower limit of the P content, and the lower limit is 0%. However, if the P content is reduced to less than 0.001%, the manufacturing cost increases significantly, so 0.001% may be set as the lower limit.
- S 0.01% or less
- S is an impurity element, and is an element that forms MnS and hinders workability and weldability. Therefore, the S content is set to 0.01% or less. Preferably it is 0.005% or less or 0.003% or less, More preferably, it is 0.002% or less. There is no need to particularly limit the lower limit of the S content, and the lower limit is 0%. If the content of S is reduced to less than 0.0005%, the manufacturing cost increases significantly, so 0.0005% may be set as the lower limit.
- N is an impurity element, and is an element that forms coarse nitrides and inhibits workability and toughness. Therefore, the N content is 0.01% or less. Preferably it is 0.007% or less, 0.005% or less, or 0.004% or less. There is no need to particularly limit the lower limit of the N content, and the lower limit is 0%. If the N content is reduced to less than 0.0005%, the manufacturing cost increases significantly, so 0.0005% may be set as the lower limit.
- O 0.01% or less
- O is an impurity element and is an element that forms a coarse oxide and inhibits bendability and hole expansibility. Therefore, the O content is 0.01% or less. Preferably it is 0.005% or less or 0.003% or less. There is no need to particularly limit the lower limit of the O content, and the lower limit is 0%. If the content of O is reduced to less than 0.0001%, the manufacturing cost increases significantly, so 0.0001% may be set as the lower limit.
- the steel sheet according to the present invention may contain the following elements as necessary.
- More preferable upper limit is Cr, Mo, Ni, Sn, Cu and Ni are all 0.60%, 0.40%, 0.20%, 0.10% or 0.050%, and B is 0.0020% or 0.0030%.
- the lower limit of the content of Cr, Mo, Sn, Cu and Ni may be 0.001%, and the lower limit of the content of B may be 0.0001%.
- the more preferable lower limit is 0.010% or 0.020% for Cr, Mo, Sn, Cu and Ni, and B is 0.0005% or 0.0010%. It is not essential to obtain the above effects. For this reason, it is not necessary to restrict
- Ti, V, Nb, and W are elements that form carbides and contribute to improving the strength of the steel sheet. Therefore, one or more of these elements may be contained. However, even if these elements are contained excessively, the effect of addition is saturated and the economic efficiency is lowered, so the upper limit of the Ti content is 0.30%, the upper limit of the V content is 0.50%, The upper limit of the Nb content is 0.10%, and the upper limit of the W content is 0.50%. A more preferable upper limit of Ti is 0.15% or 0.05%. A more preferable upper limit of V is 0.30% or 0.08%.
- a more preferable upper limit of Nb is 0.05% or 0.02%.
- a more preferable upper limit of W is 0.25% or 0.05%.
- the lower limits of the contents of Ti, V, Nb and W are all 0.001% or 0.005%.
- a more preferred lower limit is 0.010% for all elements. It is not essential to obtain the above effects. For this reason, it is not necessary to restrict
- Ca, Mg, Sb, Zr and REM are elements that finely disperse inclusions and contribute to the improvement of workability, and Bi reduces the microsegregation of substitutional alloy elements such as Mn and Si. It is an element that contributes to the improvement of. Therefore, you may contain 1 or more types of these elements.
- the upper limit of the Ca and Mg content is 0.010%
- the upper limit of the Sb content is 0.200%
- Zr and Bi The upper limit of the REM content is 0.010%
- the upper limit of the REM content is 0.100%. More preferable upper limits are 0.005% or 0.003% for Ca and Mg, 0.150% or 0.05% for Sb, 0.005% or 0.002% for Zr and Bi, and 0.050 for REM. % Or 0.004%.
- the lower limit of the Ca and Mg contents is 0.0001%
- the lower limit of the Sb and Zr contents is 0.001% or 0.005%
- REM is a generic name for a total of 17 elements of Sc, Y, and lanthanoid, and the content of REM means the total amount of the above elements.
- the chemical composition of the steel sheet according to the present invention is the balance of Fe and impurities, but the elements inevitably mixed from the steel raw material and / or in the steelmaking process are the characteristics of the steel sheet according to the present invention. You may include in the range which does not impair.
- % related to the microstructure means “area%”.
- Microstructure Ferrite 1 to 29% Residual austenite: 5-20% Martensite: Less than 10% Perlite: Less than 5% Remaining: Bainite and / or tempered martensite
- the above microstructure is formed to ensure the required mechanical properties.
- the amount of ferrite should be 1% or more.
- a preferred lower limit is 3%, 5%, 7% or 9%.
- a more preferred lower limit is 10%, 11%, 12% or 13%.
- a preferred upper limit is 27%, 25%, 22% or 20%.
- a more preferable upper limit is 19% or 18%.
- Residual austenite is also an effective structure for securing sufficient elongation, so the amount of retained austenite is 5% or more.
- a preferred lower limit is 7%, 8% or 9%.
- a more preferred lower limit is 10% or 11%.
- the amount of retained austenite is excessive, it is difficult to ensure sufficient strength, so the amount of retained austenite is 20% or less.
- a preferred upper limit is 17%, 16%, 15% or 14%.
- the martensite content is less than 10% and the pearlite content is less than 5%.
- a preferable upper limit of the amount of martensite is 8%, 6%, 5% or 4%, and a preferable upper limit of the amount of pearlite is 3%, 2% or 1%. A more preferred upper limit is less than 1%.
- the lower limit of these amounts does not need to be specifically defined, and is 0%. However, in the steel sheet according to the present invention, a certain amount of martensite is often present, and the lower limit of the martensite amount may be 1%, 2%, 3%, or 4% as necessary.
- the amount of pearlite is preferably 0%, but the lower limit may be 0.5% or 1%.
- the balance of the microstructure is bainite and / or tempered martensite.
- the upper limit of the remaining tissue is 94%, and the lower limit is more than 36%.
- the lower limit may be 40%, 50%, 55%, 60%, 65% or 70%, and the upper limit may be 90%, 86%, 82%, 78% or 74%.
- the amount of tempered martensite is preferably 65% or less or 60% or less, and the amount of tempered martensite is preferably 30% or more or 40% or more.
- a method for calculating the area percentage of the microstructure of the steel sheet according to the present invention will be described.
- a cross section in the rolling direction of the steel sheet was cut out, corroded with a nital solution to reveal a microstructure, and the structure at the 1/4 thickness position was imaged with a scanning electron microscope (magnification: 5000 times, 5 fields of view), and the obtained micro
- the area ratio (area%) is calculated from the tissue photograph by the point counting method.
- the area ratio is calculated assuming that the substructure does not appear and the low luminance region is ferrite, and the substructure does not appear and the high luminance region is martensite or retained austenite.
- the area ratio is calculated using the region where the substructure appears as tempered martensite or bainite.
- the area ratio of retained austenite is X-ray diffraction with the 1 / 4-thickness surface of the steel sheet as the observation surface, and the area ratio is the value calculated from the peak area ratio of bcc and fcc.
- the area ratio of martensite is obtained by subtracting the area ratio of retained austenite obtained by X-ray diffraction from the area ratio calculated as martensite or retained austenite.
- the tissue fraction obtained by X-ray diffraction is originally a volume fraction (volume%).
- the area ratio (area%) of the microstructure is substantially equal to the volume ratio (volume%), the ratio of residual austenite measured by X-ray diffraction as described above is used as the area ratio of residual austenite as it is.
- Bainite and tempered martensite can be distinguished from each other by observing the position and variant of cementite contained in the structure.
- Tempered martensite is composed of martensite lath and cementite produced inside the lath. At this time, since there are two or more kinds of crystal orientation relationships between martensite lath and cementite, cementite constituting tempered martensite has a plurality of variants.
- Bainite is classified into upper bainite and lower bainite. Since the upper bainite is composed of lath-shaped bainitic ferrite and cementite generated at the lath interface, it can be easily distinguished from tempered martensite.
- the lower bainite is composed of lath-shaped bainitic ferrite and cementite generated inside the lath. At this time, the crystal orientation relationship between bainitic ferrite and cementite is one type unlike tempered martensite, and cementite constituting the lower bainite has the same variant. Therefore, lower bainite and tempered martensite can be distinguished based on cementite variants.
- workability and toughness may be deteriorated when martensite or retained austenite having an equivalent circle radius of 1 ⁇ m or more is in contact with ferrite which is a soft structure. For this reason, it is necessary to manage the total length of the interface between the ferrite and martensite or retained austenite having an equivalent circle radius of 1 ⁇ m or more.
- the total length of the interface is obtained as follows. First, the micro structure photograph taken is classified into three areas: (1) ferrite, (2) martensite or retained austenite, and (3) other structure. This “(3) other structure” is an area where the substructure appears in the microstructure picture as described above, and corresponds to bainite and / or tempered martensite.
- the area of martensite or retained austenite is obtained and converted to an equivalent circle radius.
- the boundary line with the ferrite is traced, and the length is calculated. Then, the sum of the lengths is obtained and multiplied by 1000 ( ⁇ m 2 ) / measured visual field area ( ⁇ m 2 ).
- the application for image analysis used at this time is not particularly specified as long as it can perform the above-described operation.
- image-pro plus ver.6.1 Media Cybernetics
- the total length of the interface between the ferrite and martensite or retained austenite having an equivalent circle radius of 1 ⁇ m or more is set to 100 ⁇ m or less per 1000 ⁇ m 2 .
- the total length of the interface is preferably 80 ⁇ m or less, 70 ⁇ m or less, or 60 ⁇ m or less. More preferably, it is 50 ⁇ m or less or 40 ⁇ m or less.
- Tensile strength 980 MPa or more Total elongation: 10% or more Hole expansion ratio: 30% or more 5% pre-strained vTrs: ⁇ 10 ° C. or less
- the tensile strength of the steel plate according to the present invention is 980 MPa or more is preferable.
- the upper limit of the tensile strength is not particularly required, but may be 1250 MPa, 1200 MPa, or 1150 MPa.
- the steel sheet for automobiles preferably has a total elongation of 10% or more and a hole expansion ratio of 30% or more in order to ensure workability that can be formed into various shapes by press working or the like.
- vTrs after 5% pre-strain is preferably ⁇ 10 ° C. or lower. Preferably, it is ⁇ 30 ° C. or lower.
- the thickness of the steel sheet according to the present invention is mainly 0.5 to 3.2 mm, although there are cases where the thickness is less than 0.5 mm or more than 3.2 mm.
- the plated steel sheet according to the present invention is a cold rolled steel sheet having a hot dip galvanized layer on the surface of the steel sheet according to the present invention or a cold rolled steel sheet having an alloyed hot dip galvanized layer.
- the presence of the hot dip galvanized layer on the steel plate surface further improves the corrosion resistance.
- the presence of an alloyed hot-dip galvanized layer in which Fe is incorporated into the hot-dip galvanized layer by alloying treatment on the steel sheet surface ensures excellent weldability and paintability.
- upper plating may be performed on the hot dip galvanized layer or the alloyed hot dip galvanized layer for the purpose of improving the paintability and weldability.
- various treatments such as chromate treatment, phosphate treatment, lubricity improvement treatment, weldability improvement treatment, etc. are performed on the hot dip galvanized layer or the alloyed hot dip galvanized layer. You may give it.
- the following steps (A) to (C) for treating the slab having the chemical composition of the steel sheet according to the present invention are important.
- the inventors have confirmed that the microstructure and the like of the present invention can be obtained when the following conditions are satisfied by previous studies.
- the left side of equation (1) is an equation representing the degree of Mn concentration heterogeneity that occurs during slab heating.
- the molecule on the left side of Formula (1) is a term that represents the amount of Mn that is distributed from ⁇ to ⁇ while staying in the ⁇ + ⁇ two-phase region during slab heating. The larger this value, the less the Mn concentration distribution in the slab. Homogenize.
- the denominator on the left side of Equation (1) is a term corresponding to the distance of Mn atoms that diffuse in ⁇ while staying in the ⁇ single phase region during slab heating, and the larger this value, the higher the Mn concentration in the slab. The distribution is homogenized.
- Equation (1) As the value on the left side of Equation (1) is larger, a Mn concentration region having a high Mn concentration locally is formed in the steel. Further, a Mn diluted region is formed around the Mn concentrated region. These are inherited up to the final annealing process through hot rolling and cold rolling. Since the Mn-diluted region has low hardenability, it is preferentially transformed into ferrite in the final annealing step. On the other hand, since the Mn-concentrated region adjacent to the Mn-diluted region has high hardenability, ferrite transformation and bainite transformation are unlikely to occur in the final annealing step, and are easily transformed into martensite. Accordingly, when the Mn concentration is made heterogeneous, ferrite and martensite are easily formed adjacent to each other, so that ⁇ MA, which is the total length of the interface where ferrite and martensite or retained austenite are in contact, increases.
- ⁇ MA which is the total length of the interface where ferrite and martensite or retained austenite
- FIG. 2 is a diagram illustrating a result of investigating the relationship between the left side value of Equation (1) and ⁇ MA.
- ⁇ MA increases as the value on the left side of Equation (1) increases.
- ⁇ MA increases rapidly.
- Ac 1 and Ac 3 are calculated based on the following empirical formula.
- the element symbol means the element amount (% by mass).
- FIG. 3 shows an example of a slab heating pattern.
- (a) shows the slab heating pattern of No. 1 (invention example, left side value of formula (1) is 0.52 ⁇ 1.0) in Table 2 (following),
- (b) show the slab heating pattern of No. 2 (comparative example, the left-side value of Formula (1) is 1.25> 1.0) in Table 2 (described later). It can be seen that the slab heating pattern (a) and the slab heating pattern (b) are significantly different.
- the slab heating temperature is preferably 1200 ° C. or higher and 1300 ° C. or lower.
- Total rolling reduction at 1050 ° C. or more and 1150 ° C. or less 60% or more Rough rolling is performed at 1050 ° C. or more and 1150 ° C. or less and total rolling reduction: 60% or more. If the total rolling reduction at 1050 ° C. or more and 1150 ° C. or less is less than 60%, recrystallization during rolling becomes insufficient and the hot-rolled sheet structure may become inhomogeneous. 60% or more.
- the finishing final pass reduction exceeds 25%, or the finishing final pass temperature is less than 880 ° C.
- the texture of the hot-rolled steel sheet develops and the anisotropy in the final product sheet becomes obvious.
- the total rolling reduction from 1050 ° C. or lower to before the final finishing pass is 95% or lower
- the final rolling pass reduction is 25% or lower
- the final finishing pass temperature is 880 ° C. or higher.
- (B) Rolling ratio cold rolling process of 30% or more and 80% or less In the final annealing process, it is necessary to refine the austenite grain size, so the rolling ratio is 30% or more. On the other hand, if the rolling reduction exceeds 80%, the rolling load becomes excessive and the load on the rolling mill increases, so the rolling reduction is set to 80% or less.
- the heating time is less than 30 seconds, austenitization does not proceed sufficiently, so the heating time is 30 seconds or more. On the other hand, if the heating time exceeds 500 seconds, the productivity decreases, so the heating time is set to 450 seconds or less.
- primary cooling is performed after the heating, followed by secondary cooling (described later).
- the cooling rate in primary cooling exceeds 5.0 ° C./second, or when the primary cooling end temperature exceeds 720 ° C., the required ferrite fraction cannot be obtained, so the cooling rate is 5.0 ° C. /
- the primary cooling end temperature is 720 ° C. or less.
- the primary cooling end temperature is set to 620 ° C. or higher.
- (C3) Secondary cooling Cooling rate 20 ° C / second or more Secondary cooling end temperature: 280-350 ° C
- the secondary cooling conditions after the primary cooling are as described above.
- the secondary cooling rate is less than 20 ° C./second, the required ferrite fraction and pearlite fraction cannot be obtained.
- the secondary cooling end temperature is lower than 280 ° C., the untransformed austenite fraction is remarkably reduced, so that the retained austenite fraction is lower than the required value. If the secondary cooling end temperature exceeds 350 ° C, the bainite transformation does not proceed sufficiently in the subsequent tertiary cooling step, so the secondary cooling end temperature is set to 350 ° C or lower.
- the secondary cooling start temperature is the same as the primary cooling end temperature.
- Low temperature heating Heating temperature: 390-430 ° C (Low temperature) Heating time (holding time): 10 seconds or less Low temperature heating is performed immediately after secondary cooling. If the heating temperature is less than 390 ° C. or the heating temperature exceeds 430 ° C., the bainite transformation does not proceed sufficiently during the subsequent tertiary cooling, and the stability of the austenite decreases.
- the heating rate is not particularly limited, but it is preferable to heat at 1 ° C./second or more from the viewpoint of production efficiency.
- the low temperature heating time is 10 seconds or less.
- tertiary cooling is performed immediately after low-temperature heating. Usually, the austempering treatment is maintained at a constant temperature, but the stability of austenite can be further enhanced by slow cooling rather than isothermal holding.
- the tertiary cooling end temperature is 280 to 330 ° C.
- the tertiary cooling start temperature is the same as the heating temperature at the low temperature heating temperature.
- the C concentration in the untransformed austenite is the T 0 composition (austenite phase (FCC structure) at the isothermal holding temperature. ) And the ferrite phase (BCC structure) are equal, and the bainite transformation stops when it reaches the C concentration in the austenite when the driving force of the bainite transformation becomes zero.
- the T 0 composition increases every moment as the temperature is lowered by slow cooling, so the C concentration of untransformed austenite is higher than in the case of isothermal holding. As a result, it is considered that the stability of untransformed austenite is further increased.
- FIG. 4 shows the relationship between the tertiary cooling rate and the C concentration (C ⁇ ) in the residual ⁇ . As shown in FIG. 4, it can be seen that C ⁇ is maximized when the tertiary cooling rate is in the range of 0.15 to 1.5 ° C./s.
- temper rolling may be performed for flattening the steel sheet and adjusting the surface roughness.
- the elongation is preferably 2% or less in order to avoid deterioration of ductility.
- the plated steel sheet according to the present invention includes the following steps (D) or (E) after the steps (A) to (C).
- the steel plate according to the present invention is immersed in a hot dip galvanizing bath to form a hot dip galvanized layer on the surface of the steel plate.
- the formation of the hot dip galvanized layer may be performed continuously after the above-described continuous annealing.
- the hot dip galvanizing bath is a plating bath mainly composed of zinc, but may be a plating bath mainly composed of a zinc alloy.
- the temperature of the plating bath is preferably 450 to 470 ° C.
- (E) Alloying process An alloying process is performed on the hot-dip galvanized layer formed on the steel sheet surface to form an alloyed hot-dip galvanized layer.
- the alloying treatment conditions are not particularly limited, but it is preferable to heat to 480 to 600 ° C. and hold at this temperature for 2 to 100 seconds.
- the conditions in the examples are one condition example adopted to confirm the feasibility and effects of the present invention, and the present invention is based on this one condition example. It is not limited.
- the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
- Example 2 A slab having the chemical composition shown in Table 1 was cast, and hot rolled under the conditions shown in Table 2 and Table 3 to obtain a hot rolled steel sheet.
- the hot-rolled steel sheet was pickled and cold-rolled at the rolling reductions shown in Tables 2 and 3 to obtain cold-rolled steel sheets.
- This cold-rolled steel sheet was heat-treated under the conditions shown in Table 2 and Table 3.
- T1 Heating temperature t1: Heating time CR1: Primary cooling rate
- T2 Primary cooling end temperature (secondary cooling start temperature)
- CR2 Secondary cooling rate
- T3 Secondary cooling end temperature
- HR Temperature rising rate
- T4 Low temperature heating temperature t2: Low temperature heating time
- CR3 Tertiary cooling rate
- T5 Tertiary cooling end temperature
- CR Cold rolled steel sheet
- GI Galvanized steel sheet
- GA Alloyed galvanized steel sheet
- a JIS Z2241 No. 5 tensile test piece was taken from the direction perpendicular to the rolling direction, and a tensile test was conducted to determine the tensile strength (TS), yield strength (YS), and total elongation (EL). It was measured. Further, a hole expansion test was performed according to JIS Z2256, and the hole expansion ratio ( ⁇ ) was measured.
- a Charpy test piece is prepared and the brittle-ductile transition temperature (vTrs) is obtained.
- vTrs brittle-ductile transition temperature
- a Charpy test piece was obtained by stacking a plurality of steel plates and fastening them with bolts, and after confirming that there was no gap between the steel plates, a test piece with a V notch having a depth of 2 mm was produced. The number of steel plates to be overlapped was set so that the thickness of the test piece after lamination was closest to 10 mm.
- the plate thickness is 1.2 mm
- 8 sheets are stacked
- the test piece thickness is 9.6 mm.
- Laminated Charpy specimens were collected with the plate width direction as the longitudinal direction. In addition, it is easier to conduct the Charpy impact test with one test piece without laminating the test piece, but since the laminated condition becomes more severe test conditions, the test piece was laminated.
- the test temperature was ⁇ 120 ° C. to + 20 ° C., measured at 20 ° C. intervals, and the temperature at which the brittle fracture surface ratio was 50% was defined as the transition temperature (vTrs).
- vTrs transition temperature
- Conditions other than the above were in accordance with JIS Z 2242.
- the low temperature toughness (vTrs) before prestraining was also evaluated.
- V ⁇ ferrite area ratio
- VP Perlite area ratio
- VM Martensite area ratio
- V ⁇ area ratio of retained austenite remainder: area ratio of bainite and / or tempered martensite
- ⁇ MA total length of interface between ferrite and martensite or retained austenite with equivalent circle radius of 1 ⁇ m or more ( ⁇ m / 1000 ⁇ m 2 )
- YS Yield strength
- TS Tensile strength
- El Total elongation
- ⁇ Hole expansion rate
- vTrs Transition temperature
- the tissue fraction is within the scope of the present invention, so that the tensile strength of 980 MPa or more, the elongation of 10% or more, the hole expansion ratio of 30% or more, 5%
- the vTrs after pre-strain is ⁇ 10 ° C. or lower.
- any of tensile strength, elongation, hole expansion ratio, and 5% pre-strained vTrs has reached a required value. Absent.
- the present invention it is possible to provide a high-strength cold-rolled steel sheet and a high-strength hot-dip galvanized cold-rolled steel sheet that are excellent in workability and low-temperature toughness, especially excellent in low-temperature toughness after introduction of plastic strain. . Therefore, the present invention has high applicability in the steel plate manufacturing industry and the steel plate using industry.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Coating With Molten Metal (AREA)
Abstract
Description
(i)フェライト:1~29面積%
(ii)残留オーステナイト:5~20面積%
(iii)マルテンサイト:10面積%未満
(iv)パーライト:5面積%未満
(v)ベイナイトおよび/または焼戻しマルテンサイト:残部
化学組成が、質量%で、
C:0.10~0.30%、
Si:0.50~2.50%、
Mn:1.50~3.50%、
Al:0.001~1.00%、
P:0.05%以下、
S:0.01%以下、
N:0.01%以下、
O:0.01%以下、
Cr:0~1.00%、
Mo:0~1.00%、
Sn:0~1.00%、
Cu:0~1.00%、
Ni:0~1.00%、
B:0~0.005%、
Ti:0~0.30%、
V:0~0.50%、
Nb:0~0.10%、
W:0~0.50%、
Ca:0~0.010%、
Mg:0~0.010%、
Sb:0~0.200%、
Zr:0~0.010%、
Bi:0~0.010%、
REM:0~0.100%、
残部:Feおよび不純物であり、
ミクロ組織が、面積%で、
フェライト:1~29%、
残留オーステナイト:5~20%、
マルテンサイト:10%未満、
パーライト:5%未満、
残部:ベイナイトおよび/または焼戻しマルテンサイトであり、
フェライトと、円相当半径1μm以上のマルテンサイトまたは残留オーステナイトとが接する界面の長さの総和が、1000μm2当たり100μm以下である、
冷間圧延鋼板。
C:0.10~0.30%
Cは、鋼板強度の確保に必須の元素である。十分な高強度を得るために、Cの含有量は0.10%以上とする。好ましくは0.13%以上、0.15%以上、0.17%以上又は0.18%以上である。一方、過剰な含有は、加工性や溶接性を低下させるので、Cの含有量は0.30%以下とする。プレス成形性や溶接性の低下を抑制するためには、0.27%以下、0.25%以下、0.23%又は0.21%以下が好ましい。
Siは、鉄炭化物の生成を抑制し、強度と成形性の向上に寄与する元素である。その効果を得るため、Siの含有量は0.50%以上とする。鉄系炭化物の析出抑制のためには、0.65%以上、0.80%以上、0.90%以上、1.00%以上、1.10%以上又は1.20%以上が好ましい。一方、過剰な含有は、鋳造したスラブが割れ、鋼板の脆化を生じさせるので、Siの含有量は2.50%以下とする。また、Siは、焼鈍工程において、鋼板表面に酸化物を形成し、化成処理性やめっき密着性を阻害することがあるので、Siの含有量は2.25%以下、2.00%以下、1.85%以下、1.70%以下又は1.60%以下が好ましい。1.50%以下がより好ましい。
Mnは、鋼板の焼入れ性を高め、強度の向上に寄与する元素である。Mnの含有量が1.50%未満では、鋼板の焼入れ性が不足し、焼鈍後の冷却中にフェライトが多量に析出し、所要の強度を確保することが困難となる。よって、Mnの含有量は1.50%以上とする。好ましくは1.80%以上、2.00%以上、2.20%以上又は2.30%以上である。一方、過剰な含有は、Mn偏析を顕在化し、加工性や靭性を低下させるので、Mnの含有量は3.50%以下とする。溶接性を確保する観点から、Mnの含有量は3.00%以下が好ましい。2.80%以下、2.70%以下、2.60%以下又は2.50%以下がより好ましい。
Alは、脱酸元素である。その効果を得るため、Alの含有量は0.001%以上とする。好ましくは0.005%以上、0.010%以上又は0.015%以上である。一方、過剰に含有させても、添加効果が飽和して経済性が低下する他、鋼の変態温度が上昇し、熱間圧延時の負荷が増大するので、Alの含有量は1.00%以下とする。好ましくは0.50%以下、0.20%以下、0.10%以下、0.060%以下又は0.040%以下である。
Pは、固溶強化で、強度の向上に寄与する元素である。Pの含有量が0.05%を超えると、溶接性および靱性が低下するので、Pの含有量は0.05%以下とする。好ましくは0.02%以下又は0.015%以下である。Pの含有量の下限を特に制限する必要はなく、その下限は0%である。しかしながら、Pの含有量を0.001%未満に低減すると、製造コストが大幅に上昇するので、0.001%を下限としてもよい。
Sは、不純物元素であり、MnSを形成して加工性や溶接性を阻害する元素である。のこのため、Sの含有量は0.01%以下とする。好ましくは0.005%以下又は0.003%以下、より好ましくは0.002%以下である。Sの含有量の下限を特に制限する必要はなく、その下限は0%である。Sの含有量を0.0005%未満に低減すると、製造コストが大幅に上昇するので、0.0005%を下限としてもよい。
Nは、不純物元素であり、粗大な窒化物を形成して加工性や靭性を阻害する元素である。このため、Nの含有量は0.01%以下とする。好ましくは0.007%以下、0.005%以下又は0.004%以下である。Nの含有量の下限を特に制限する必要はなく、その下限は0%である。Nの含有量を0.0005%未満に低減すると、製造コストが大幅に上昇するので、0.0005%を下限としてもよい。
Oは、不純物元素であり、粗大な酸化物を形成して曲げ性や穴広げ性を阻害する元素である。このため、Oの含有量は0.01%以下とする。好ましくは0.005%以下又は0.003%以下である。Oの含有量の下限を特に制限する必要はなく、その下限は0%である。Oの含有量を0.0001%未満に低減すると、製造コストが大幅に上昇するので、0.0001%を下限としてもよい。
Mo:0~1.00%
Sn:0~1.00%
Cu:0~1.00%
Ni:0~1.00%
B:0~0.005%
Cr、Mo、Sn、Cu、NiおよびBは、いずれも、鋼板強度の向上に寄与する元素であるので、これらの元素の一種以上を含有させてもよい。ただし、これらの元素を過剰に含有させても、添加効果が飽和し、経済性が低下するので、Cr、Mo、Sn、CuおよびNiの含有量の上限は、いずれも1.00%とし、Bの含有量の上限は0.0050%とする。より好ましい上限は、Cr、Mo、Ni、Sn、CuおよびNiは、いずれも0.60%、0.40%、0.20%、0.10%又は0.050%であり、Bは、0.0020%又は0.0030%である。上記の効果を十分に得るためには、Cr、Mo、Sn、CuおよびNiの含有量の下限を、0.001%、Bの含有量の下限を0.0001%としてもよい。より好ましい下限は、Cr、Mo、Sn、CuおよびNiはいずれも0.010%又は0.020%であり、Bは0.0005%又は0.0010%である。上記の効果を得ることは必須でない。このため、Cr、Mo、Sn、CuおよびNiの含有量の下限を特に制限する必要はなく、それらの下限は0%である。
V:0~0.50%
Nb:0~0.10%
W:0~0.50%
Ti、V、NbおよびWは、炭化物を形成し、鋼板強度の向上に寄与する元素であるので、これらの元素の一種以上を含有させてもよい。ただし、これらの元素を過剰に含有させても、添加効果が飽和し、経済性が低下するので、Tiの含有量の上限は0.30%、Vの含有量の上限は0.50%、Nbの含有量の上限は0.10%、Wの含有量の上限は0.50%とする。Tiのより好ましい上限は、0.15%又は0.05%である。Vのより好ましい上限は、0.30%又は0.08%である。Nbのより好ましい上限は、0.05%又は0.02%である。Wのより好ましい上限は、0.25%又は0.05%である。上記の効果を十分に得るためには、Ti、V、NbおよびWの含有量の下限は、いずれも、0.001%又は0.005%とするのが好ましい。より好ましい下限は、いずれの元素も0.010%である。上記の効果を得ることは必須でない。このため、Ti、V、NbおよびWの含有量の下限を特に制限する必要はなく、それらの下限は0%である。
Mg:0~0.010%、
Sb:0~0.200%、
Zr:0~0.010%、
Bi:0~0.010%、
REM:0~0.100%、
Ca、Mg、Sb、ZrおよびREMは、介在物を微細分散化し、加工性の向上に寄与する元素であり、Biは、Mn、Si等の置換型合金元素のミクロ偏析を軽減し、加工性の向上に寄与する元素である。よって、これらの元素の一種以上を含有させてもよい。ただし、これらの元素の含有量が過剰な場合には、延性が低下するので、CaおよびMgの含有量の上限は0.010%、Sbの含有量の上限は0.200%、ZrおよびBiの含有量の上限は0.010%、REMの含有量の上限は0.100%とする。より好ましい上限は、CaおよびMgは0.005%又は0.003%、Sbは0.150%又は0.05%、ZrおよびBiは0.005%又は0.002%、REMは0.050%又は0.004%である。上記の効果を十分に得るためには、CaおよびMgの含有量の下限は0.0001%、SbおよびZrの含有量の下限は0.001%又は0.005%、BiおよびREMの含有量の下限は0.0001%又は0.005%とするのが好ましい。より好ましい下限は、CaおよびMgは0.0010%、SbおよびZrは0.008%、BiおよびREMは0.0008%である。上記の効果を得ることは必須でない。このため、Ca、Mg、Sb、ZrおよびREMの含有量の下限を特に制限する必要はなく、それらの下限は0%である。なお、REMは、Sc、Yおよびランタノイドの合計17元素の総称であり、REMの含有量は上記元素の合計量を意味する。
フェライト:1~29%
残留オーステナイト:5~20%
マルテンサイト:10%未満
パーライト:5%未満
残部:ベイナイトおよび/または焼戻しマルテンサイト
本発明に係る鋼板においては、上記ミクロ組織を形成して、所要の機械特性を確保する。
マルテンサイトまたは残留オーステナイトは、その円相当半径が大きいと、加工性および靭性を阻害する。特に、円相当半径が1μm以上のマルテンサイトまたは残留オーステナイトが軟質組織であるフェライトと接している場合に、加工性および靭性を劣化させる場合がある。このため、フェライトと、円相当半径1μm以上のマルテンサイトまたは残留オーステナイトとが接する界面の長さの総和を管理する必要がある。
まず、撮影されたミクロ組織写真について、(1)フェライト、(2)マルテンサイトまたは残留オーステナイト、および、(3)その他の組織の3つの領域に区別する。この「(3)その他の組織」は、前記のように、ミクロ組織写真において下部組織が現出した領域であり、ベイナイトおよび/または焼戻しマルテンサイトに該当する。
全伸び:10%以上
穴広げ率:30%以上
5%予歪み後のvTrs:-10℃以下
自動車用鋼板としての強度を確保するため、本発明に係る鋼板の引張強度は980MPa以上が好ましい。引張強さの上限を特に定める必要はないが、1250MPa、1200MPa又は1150MPaとしてもよい。自動車用鋼板として、プレス加工等で様々な形状に成形し得る加工性を確保するため、全伸びは10%以上、穴広げ率は30%以上が好ましい。また、寒冷地用の自動車用鋼板として低温靭性を確保するため、5%予歪み後のvTrsは-10℃以下が好ましい。好ましくは-30℃以下である。
熱間圧延工程は、次の条件に従って行う。
Ac3=910-203・√C-15.2Ni+44.7Si+104V+31.5Mo-30Mn-11Cr-20Cu+700P+400Al+400Ti
なお、上記式中の各元素記号は、それぞれの含有量(質量%)を意味する。
粗圧延を、1050℃以上、1150℃以下、総圧下率:60%以上で行う。1050℃以上、1150℃以下での総圧下率が60%未満であると、圧延中の再結晶が不十分となり、熱延板組織が不均質化になる恐れがあるので、上記総圧下率は60%以上とする。
仕上げ最終パスの圧下率:10~25%
仕上げ最終パスの温度:880~970℃
1050℃以下~仕上げ最終パス前までの総圧下率が70%未満の場合、仕上げ最終パスの圧下率が10%未満の場合、または、仕上げ最終パスの温度が970℃を超える場合には、熱延板組織が粗大化し、最終製品板の組織が粗大化して加工性が劣化する。このため、1050℃以下~仕上げ最終パス前までの総圧下率は70%以上とし、仕上げ最終パスの圧下率は10%以上とし、仕上げ最終パスの温度(入側温度)は970℃以下とする。
巻取温度が430℃未満であると、熱延鋼板の強度が過大となり、冷関圧延性が損なわれるので、巻取温度は430℃以上とする。一方、巻取温度が650℃を超えると、熱延鋼板中のセメンタイトにMnが濃化し、Mn濃度分布が不均質となり、また、酸洗性が低下するので、巻取温度は650℃以下とする。
最終の焼鈍工程において、オーステナイト粒径を微細化する必要があるため、圧下率は30%以上とする。一方、圧下率が80%を超えると、圧延加重が過大となり、圧延機の負荷が増大するので、圧下率は80%以下とする。
(C1)加熱温度:Ac3-30℃以上、900℃以下
加熱時間(保持時間):30秒以上、450秒以下
加熱温度がAc3-30℃未満であると、十分にオーステナイト化が進行しないので、加熱温度はAc3-30℃以上とする。一方、加熱温度が900℃を超えると、オーステナイト粒径が粗大化し、靭性や化成処理性が低下し、また、焼鈍設備が損傷する恐れが生じるので、加熱温度は900℃以下とする。
冷却速度:5.0℃/秒以下、一次冷却終了温度:620~720℃
フェライト分率およびパーライト分率を所要の範囲に制御するため、上記加熱後、一次冷却、続いて、二次冷却(後述)を行う。一次冷却における冷却速度が5.0℃/秒を超える場合、または、一次冷却終了温度が720℃を超える場合には、所要のフェライト分率が得られないので、冷却速度は5.0℃/秒以下とし、一次冷却終了温度は720℃以下とする。一方、一次冷却終了温度が620℃未満であると、所要のフェライト分率が得られないので、一次冷却終了温度は620℃以上とする。
冷却速度:20℃/秒以上
二次冷却終了温度:280~350℃
一次冷却後の二次冷却条件は上記の通りとする。二次冷却速度が20℃/秒未満であると、所要のフェライト分率およびパーライト分率が得られない。二次冷却終了温度が280℃を下回ると、未変態のオーステナイト分率が著しく減少するため、残留オーステナイト分率が所要の値を下回る。二次冷却終了温度が350℃を上回ると、その後の三次冷却工程において、ベイナイト変態が十分進行しないので、二次冷却終了温度は350℃以下とする。なお、二次冷却開始温度は、一次冷却終了温度と同じである。
(低温)加熱温度:390~430℃
(低温)加熱時間(保持時間):10秒以下
二次冷却後直ちに、低温加熱を行う。加熱温度が390℃未満、あるいは加熱温度が430℃を上回ると、その後の三次冷却時にベイナイト変態が十分に進行せず、オーステナイトの安定度が低下する。加熱速度は特に限定する必要はないが、生産効率の観点から1℃/秒以上で加熱することが好ましい。低温加熱時間は、10秒以下とする。
三次冷却終了温度:280~350℃
冷却速度:0.15~1.5℃/秒
オーステナイトの安定化(オーステンパー)のため、低温加熱後直ちに三次冷却を実施する。通常、オーステンパー処理は一定の温度に保持するが、等温保持ではなく徐冷とすることより、オーステナイトの安定度をより一層高めることができる。三次冷却終了温度は、280~330℃とする。なお、三次冷却開始温度は、低温加熱温度時の加熱温度と同じである。
(D)上記(A)~(C)の工程を経て製造した本発明に係る鋼板の表面に溶融亜鉛めっき層を形成するめっき工程
(E)上記(A)~(C)の工程を経て製造した本発明に係る鋼板の表面に溶融亜鉛めっき層を形成した後、合金化処理を施して、合金化溶融亜鉛めっき層を形成する合金化工程
本発明に係る鋼板を溶融亜鉛めっき浴に浸漬して、鋼板表面に溶融亜鉛めっき層を形成する。溶融亜鉛めっき層の形成は、上記の連続焼鈍後に連続して行ってもよい。溶融亜鉛めっき浴は、亜鉛を主体とするめっき浴であるが、亜鉛合金を主体とするめっき浴でもよい。めっき浴の温度は450~470℃が好ましい。
鋼板表面に形成した溶融亜鉛めっき層に合金化処理を施して、合金化溶融亜鉛めっき層を形成する。合金化処理の条件は、特に、特定の条件に限定されないが、480~600℃に加熱し、この温度で2~100秒保持することが好ましい。
表1に示す化学組成を有するスラブを鋳造し、表2および表3に示す条件で熱間圧延を行い熱延鋼板とした。この熱延鋼板に酸洗を施し、表2および表3に示す圧下率で冷間圧延を行い冷延鋼板とした。この冷延鋼板に、表2および表3に示す条件で熱処理を施した。
SRT:スラブ加熱温度
R1:1050~1150℃での総圧下率
R2:1050℃以下~仕上げ最終パス前までの総圧下率
R3:仕上げ最終パスでの圧下率
FT:仕上げ最終パスの入側温度
CT:巻取温度
T1:加熱温度
t1:加熱時間
CR1:一次冷却速度
T2:一次冷却終了温度(二次冷却開始温度)
CR2:二次冷却速度
T3:二次冷却終了温度
HR:昇温速度
T4:低温加熱温度
t2:低温加熱時間
CR3:三次冷却速度
T5:三次冷却終了温度
CR:冷延鋼板、
GI:溶融亜鉛メッキ鋼板、
GA:合金化溶融亜鉛メッキ鋼板
Vα:フェライトの面積率
VP:パーライトの面積率
VM:マルテンサイトの面積率
Vγ:残留オーステナイトの面積率
残部:ベイナイトおよび/または焼戻しマルテンサイトの面積率
σMA:フェライトと、円相当半径1μm以上のマルテンサイトまたは残留オーステナイトとが接する界面の長さの総和(μm/1000μm2)
YS:降伏強度
TS:引張強度
El:全伸び
λ:穴広げ率
vTrs:遷移温度
Claims (4)
- 引張強さが980MPa以上である冷間圧延鋼板であって、
化学組成が、質量%で、
C:0.10~0.30%、
Si:0.50~2.50%、
Mn:1.50~3.50%、
Al:0.001~1.00%、
P:0.05%以下、
S:0.01%以下、
N:0.01%以下、
O:0.01%以下、
Cr:0~1.00%、
Mo:0~1.00%、
Sn:0~1.00%、
Cu:0~1.00%、
Ni:0~1.00%、
B:0~0.005%、
Ti:0~0.30%、
V:0~0.50%、
Nb:0~0.10%、
W:0~0.50%、
Ca:0~0.010%、
Mg:0~0.010%、
Sb:0~0.200%、
Zr:0~0.010%、
Bi:0~0.010%、
REM:0~0.100%、
残部:Feおよび不純物であり、
ミクロ組織が、面積%で、
フェライト:1~29%、
残留オーステナイト:5~20%、
マルテンサイト:10%未満、
パーライト:5%未満、
残部:ベイナイトおよび/または焼戻しマルテンサイトであり、
フェライトと、円相当半径1μm以上のマルテンサイトまたは残留オーステナイトとが接する界面の長さの総和が、1000μm2当たり100μm以下である、
冷間圧延鋼板。 - 前記鋼板の板厚が0.5~3.2mmである、
請求項1に記載の冷間圧延鋼板または溶融亜鉛めっき冷間圧延鋼板。 - 請求項1または請求項2に記載の冷間圧延鋼板の表面に溶融亜鉛めっき層を備える、
溶融亜鉛めっき冷間圧延鋼板。 - 請求項1または請求項2に記載の冷間圧延鋼板の表面に合金化溶融亜鉛めっき層を備える、
溶融亜鉛めっき冷間圧延鋼板。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/499,834 US11326234B2 (en) | 2017-03-31 | 2017-03-31 | Cold-rolled steel sheet and hot-dip galvanized cold-rolled steel sheet |
BR112019019727A BR112019019727A2 (pt) | 2017-03-31 | 2017-03-31 | chapa de aço laminada a frio, e chapa de aço laminada a frio galvanizada por imersão a quente |
MX2019011673A MX394679B (es) | 2017-03-31 | 2017-03-31 | Lámina de acero laminada en frío y lámina de acero laminada en frío galvanizada por inmersión en caliente. |
KR1020197031866A KR102264783B1 (ko) | 2017-03-31 | 2017-03-31 | 냉간 압연 강판 및 용융 아연 도금 냉간 압연 강판 |
CN201780089257.0A CN110475888B (zh) | 2017-03-31 | 2017-03-31 | 冷轧钢板和热浸镀锌冷轧钢板 |
EP17903051.5A EP3604582B1 (en) | 2017-03-31 | 2017-03-31 | Cold-rolled steel sheet and hot-dip galvanized cold-rolled steel sheet |
JP2017538741A JP6252715B1 (ja) | 2017-03-31 | 2017-03-31 | 冷間圧延鋼板および溶融亜鉛めっき冷間圧延鋼板 |
PCT/JP2017/013736 WO2018179386A1 (ja) | 2017-03-31 | 2017-03-31 | 冷間圧延鋼板および溶融亜鉛めっき冷間圧延鋼板 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/013736 WO2018179386A1 (ja) | 2017-03-31 | 2017-03-31 | 冷間圧延鋼板および溶融亜鉛めっき冷間圧延鋼板 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018179386A1 true WO2018179386A1 (ja) | 2018-10-04 |
Family
ID=60860095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/013736 WO2018179386A1 (ja) | 2017-03-31 | 2017-03-31 | 冷間圧延鋼板および溶融亜鉛めっき冷間圧延鋼板 |
Country Status (8)
Country | Link |
---|---|
US (1) | US11326234B2 (ja) |
EP (1) | EP3604582B1 (ja) |
JP (1) | JP6252715B1 (ja) |
KR (1) | KR102264783B1 (ja) |
CN (1) | CN110475888B (ja) |
BR (1) | BR112019019727A2 (ja) |
MX (1) | MX394679B (ja) |
WO (1) | WO2018179386A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110578100A (zh) * | 2019-10-18 | 2019-12-17 | 山东钢铁集团日照有限公司 | 不同屈服强度级别冷轧cp980钢及其生产方法 |
JP2022501510A (ja) * | 2018-09-28 | 2022-01-06 | ポスコPosco | 穴拡げ性が高い高強度冷延鋼板、高強度溶融亜鉛めっき鋼板、及びこれらの製造方法 |
EP4043595A4 (en) * | 2019-10-10 | 2022-08-17 | Nippon Steel Corporation | COLD ROLLED STEEL SHEET AND METHOD OF PRODUCTION THE SAME |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3594374A4 (en) | 2018-03-29 | 2020-06-10 | Nippon Steel Corporation | ABRASION RESISTANT AUSTENITIC STEEL SHEET |
EP3922740B1 (en) * | 2019-02-06 | 2023-09-13 | Nippon Steel Corporation | Hot dip galvanized steel sheet and method for producing same |
CN114080463B (zh) * | 2019-07-29 | 2022-10-25 | Posco公司 | 高强度钢板及其制造方法 |
JP7191796B2 (ja) * | 2019-09-17 | 2022-12-19 | 株式会社神戸製鋼所 | 高強度鋼板およびその製造方法 |
US12215402B2 (en) * | 2019-12-23 | 2025-02-04 | Nippon Steel Corporation | Hot-rolled steel sheet |
MX2022011078A (es) * | 2020-03-11 | 2022-09-23 | Nippon Steel Corp | Lamina de acero laminada en caliente. |
KR102490312B1 (ko) * | 2020-12-09 | 2023-01-19 | 주식회사 포스코 | 연성 및 성형성이 우수한 고강도 용융아연도금강판 |
KR20220086233A (ko) * | 2020-12-16 | 2022-06-23 | 주식회사 포스코 | 성형성이 우수한 고강도 강판 및 이의 제조방법 |
MX2023008838A (es) * | 2021-02-10 | 2023-08-11 | Jfe Steel Corp | Lamina de acero de alta resistencia y metodo para fabricacion de la misma. |
CN113403529B (zh) * | 2021-05-21 | 2022-07-19 | 鞍钢股份有限公司 | 冷冲压用1470MPa级合金化镀锌钢板及其制备方法 |
CN113528978B (zh) * | 2021-06-21 | 2022-08-19 | 首钢集团有限公司 | 一种980MPa级镀锌复相钢及其制备方法 |
KR20240087898A (ko) * | 2022-12-12 | 2024-06-20 | 주식회사 포스코 | 용융아연도금강판 및 그 제조방법 |
CN116288023A (zh) * | 2023-02-24 | 2023-06-23 | 中国科学院金属研究所 | 一种高可镀性、高强塑积trip钢及其制造方法 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004068050A (ja) * | 2002-08-02 | 2004-03-04 | Sumitomo Metal Ind Ltd | 高張力冷延鋼板及びその製造方法 |
JP2006104532A (ja) | 2004-10-06 | 2006-04-20 | Nippon Steel Corp | 伸びと穴拡げ性に優れた高強度薄鋼板およびその製造方法 |
JP2007262494A (ja) | 2006-03-28 | 2007-10-11 | Kobe Steel Ltd | 加工性に優れた高強度鋼板 |
JP2009108343A (ja) * | 2007-10-26 | 2009-05-21 | Sumitomo Metal Ind Ltd | 高強度鋼板及びその製造方法 |
JP2011132602A (ja) | 2009-11-30 | 2011-07-07 | Nippon Steel Corp | 高強度冷延鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板 |
WO2013047830A1 (ja) * | 2011-09-30 | 2013-04-04 | 新日鐵住金株式会社 | 引張強度980MPa以上有するめっき密着性、成形性と穴広げ性に優れた高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板とその製造方法 |
WO2013151238A1 (ko) | 2012-04-05 | 2013-10-10 | Kim Dae Gyu | 식기세척기 |
JP2014034716A (ja) | 2012-08-09 | 2014-02-24 | Nippon Steel & Sumitomo Metal | 鋼板およびその製造方法 |
JP2014133944A (ja) | 2012-12-12 | 2014-07-24 | Kobe Steel Ltd | 加工性と低温靭性に優れた高強度鋼板およびその製造方法 |
JP2015086468A (ja) | 2013-09-27 | 2015-05-07 | 株式会社神戸製鋼所 | 加工性および低温靭性に優れた高強度鋼板、並びにその製造方法 |
JP2015200006A (ja) | 2013-09-27 | 2015-11-12 | 株式会社神戸製鋼所 | 延性および低温靭性に優れた高強度鋼板、並びにその製造方法 |
WO2017002883A1 (ja) * | 2015-06-30 | 2017-01-05 | 新日鐵住金株式会社 | 高強度冷延鋼板、高強度溶融亜鉛めっき鋼板、および高強度合金化溶融亜鉛めっき鋼板 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101624057B1 (ko) * | 2011-07-29 | 2016-05-24 | 신닛테츠스미킨 카부시키카이샤 | 성형성이 우수한 고강도 강판, 고강도 아연 도금 강판 및 그들의 제조 방법 |
MX360333B (es) | 2011-07-29 | 2018-10-29 | Nippon Steel & Sumitomo Metal Corp | Lamina de acero de alta resistencia excelente en resistencia al impacto y metodo de fabricacion de la misma y lamiana de acero galvanizada de alta resistencia y metodo de fabricacion de la misma. |
CN103717773B (zh) | 2011-07-29 | 2016-05-04 | 新日铁住金株式会社 | 弯曲性优异的高强度镀锌钢板及其制造方法 |
TWI507538B (zh) | 2011-09-30 | 2015-11-11 | Nippon Steel & Sumitomo Metal Corp | With excellent burn the attachment strength of the hardenable galvannealed steel sheet, a high strength galvannealed steel sheet and manufacturing method, etc. |
US10253389B2 (en) * | 2014-03-31 | 2019-04-09 | Jfe Steel Corporation | High-yield-ratio, high-strength cold-rolled steel sheet and production method therefor |
-
2017
- 2017-03-31 WO PCT/JP2017/013736 patent/WO2018179386A1/ja unknown
- 2017-03-31 CN CN201780089257.0A patent/CN110475888B/zh active Active
- 2017-03-31 JP JP2017538741A patent/JP6252715B1/ja active Active
- 2017-03-31 US US16/499,834 patent/US11326234B2/en active Active
- 2017-03-31 BR BR112019019727A patent/BR112019019727A2/pt not_active Application Discontinuation
- 2017-03-31 MX MX2019011673A patent/MX394679B/es unknown
- 2017-03-31 EP EP17903051.5A patent/EP3604582B1/en active Active
- 2017-03-31 KR KR1020197031866A patent/KR102264783B1/ko active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004068050A (ja) * | 2002-08-02 | 2004-03-04 | Sumitomo Metal Ind Ltd | 高張力冷延鋼板及びその製造方法 |
JP2006104532A (ja) | 2004-10-06 | 2006-04-20 | Nippon Steel Corp | 伸びと穴拡げ性に優れた高強度薄鋼板およびその製造方法 |
JP2007262494A (ja) | 2006-03-28 | 2007-10-11 | Kobe Steel Ltd | 加工性に優れた高強度鋼板 |
JP2009108343A (ja) * | 2007-10-26 | 2009-05-21 | Sumitomo Metal Ind Ltd | 高強度鋼板及びその製造方法 |
JP2011132602A (ja) | 2009-11-30 | 2011-07-07 | Nippon Steel Corp | 高強度冷延鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板 |
WO2013047830A1 (ja) * | 2011-09-30 | 2013-04-04 | 新日鐵住金株式会社 | 引張強度980MPa以上有するめっき密着性、成形性と穴広げ性に優れた高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板とその製造方法 |
WO2013151238A1 (ko) | 2012-04-05 | 2013-10-10 | Kim Dae Gyu | 식기세척기 |
JP2014034716A (ja) | 2012-08-09 | 2014-02-24 | Nippon Steel & Sumitomo Metal | 鋼板およびその製造方法 |
JP2014133944A (ja) | 2012-12-12 | 2014-07-24 | Kobe Steel Ltd | 加工性と低温靭性に優れた高強度鋼板およびその製造方法 |
JP2015025208A (ja) | 2012-12-12 | 2015-02-05 | 株式会社神戸製鋼所 | 加工性と低温靭性に優れた高強度鋼板およびその製造方法 |
JP2015086468A (ja) | 2013-09-27 | 2015-05-07 | 株式会社神戸製鋼所 | 加工性および低温靭性に優れた高強度鋼板、並びにその製造方法 |
JP2015200006A (ja) | 2013-09-27 | 2015-11-12 | 株式会社神戸製鋼所 | 延性および低温靭性に優れた高強度鋼板、並びにその製造方法 |
WO2017002883A1 (ja) * | 2015-06-30 | 2017-01-05 | 新日鐵住金株式会社 | 高強度冷延鋼板、高強度溶融亜鉛めっき鋼板、および高強度合金化溶融亜鉛めっき鋼板 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022501510A (ja) * | 2018-09-28 | 2022-01-06 | ポスコPosco | 穴拡げ性が高い高強度冷延鋼板、高強度溶融亜鉛めっき鋼板、及びこれらの製造方法 |
US11753693B2 (en) | 2018-09-28 | 2023-09-12 | Posco Co., Ltd | High-strength cold rolled steel sheet having high hole expansion ratio, highstrength hot-dip galvanized steel sheet, and manufacturing methods therefor |
JP7410936B2 (ja) | 2018-09-28 | 2024-01-10 | ポスコ カンパニー リミテッド | 穴拡げ性が高い高強度冷延鋼板、高強度溶融亜鉛めっき鋼板、及びこれらの製造方法 |
EP4043595A4 (en) * | 2019-10-10 | 2022-08-17 | Nippon Steel Corporation | COLD ROLLED STEEL SHEET AND METHOD OF PRODUCTION THE SAME |
CN110578100A (zh) * | 2019-10-18 | 2019-12-17 | 山东钢铁集团日照有限公司 | 不同屈服强度级别冷轧cp980钢及其生产方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3604582A4 (en) | 2020-09-02 |
US20200024709A1 (en) | 2020-01-23 |
EP3604582B1 (en) | 2022-01-26 |
MX394679B (es) | 2025-03-24 |
US11326234B2 (en) | 2022-05-10 |
KR102264783B1 (ko) | 2021-06-14 |
JP6252715B1 (ja) | 2017-12-27 |
KR20190133739A (ko) | 2019-12-03 |
CN110475888B (zh) | 2021-10-15 |
MX2019011673A (es) | 2019-11-01 |
BR112019019727A2 (pt) | 2020-04-14 |
JPWO2018179386A1 (ja) | 2019-04-04 |
EP3604582A1 (en) | 2020-02-05 |
CN110475888A (zh) | 2019-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6252715B1 (ja) | 冷間圧延鋼板および溶融亜鉛めっき冷間圧延鋼板 | |
US9719151B2 (en) | Steel sheet, plated steel sheet, and method for producing the same | |
US8430975B2 (en) | High strength galvanized steel sheet with excellent formability | |
US11939640B2 (en) | Method for producing hot-rolled steel sheet, method for producing cold-rolled full-hard steel sheet, and method for producing heat-treated sheet | |
CA2767439C (en) | High-strength steel sheet and method for manufacturing the same | |
KR102356746B1 (ko) | 열간 프레스 부재 및 그 제조 방법 그리고 열간 프레스용 냉연강판 및 그 제조 방법 | |
US20180037964A1 (en) | HIGH-STRENGTH COLD-ROLLED STEEL SHEET HAVING EXCELLENT FORMABILITY AND COLLISION CHARACTERISTICS AND HAVING TENSILE STRENGTH OF 980 MPa OR MORE, AND METHOD FOR PRODUCING SAME | |
KR102316660B1 (ko) | 열간 프레스 부재 및 그 제조 방법 그리고 열간 프레스용 냉연강판 및 그 제조 방법 | |
US20190177810A1 (en) | Cold-rolled steel sheet and plated steel sheet | |
US20140141280A1 (en) | High-strength steel sheet for warm forming and process for producing same | |
WO2018138898A1 (ja) | 鋼板 | |
JP6265108B2 (ja) | 冷延鋼板用または溶融亜鉛めっき鋼板用熱延鋼板およびその製造方法 | |
WO2018193787A1 (ja) | 高強度溶融亜鉛めっき鋼板およびその製造方法 | |
WO2016157258A1 (ja) | 高強度鋼板およびその製造方法 | |
KR102177591B1 (ko) | 고강도 강판 및 그 제조 방법 | |
US11345973B2 (en) | High-strength steel sheet and method for manufacturing the same | |
WO2016158159A1 (ja) | 加工性および衝突特性に優れた引張強度が980MPa以上の高強度冷延鋼板、およびその製造方法 | |
JP4710558B2 (ja) | 加工性に優れた高張力鋼板およびその製造方法 | |
KR20230059816A (ko) | 고강도 냉연 강판, 용융 아연 도금 강판 및 합금화 용융 아연 도금 강판, 및 이들의 제조 방법 | |
TWI643961B (zh) | Cold rolled steel sheet and hot-dip galvanized cold-rolled steel sheet | |
KR101674283B1 (ko) | 신장과 신장 플랜지성이 우수한 저항복비 고강도 냉연 강판 및 그 제조 방법 | |
JP5987999B1 (ja) | 高強度鋼板およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2017538741 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17903051 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112019019727 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 20197031866 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2017903051 Country of ref document: EP Effective date: 20191031 |
|
ENP | Entry into the national phase |
Ref document number: 112019019727 Country of ref document: BR Kind code of ref document: A2 Effective date: 20190920 |