+

WO2018176087A1 - Circuit de sécurité et système de commande destiné à un système d'eau chaude alimenté en courant continu - Google Patents

Circuit de sécurité et système de commande destiné à un système d'eau chaude alimenté en courant continu Download PDF

Info

Publication number
WO2018176087A1
WO2018176087A1 PCT/AU2018/050280 AU2018050280W WO2018176087A1 WO 2018176087 A1 WO2018176087 A1 WO 2018176087A1 AU 2018050280 W AU2018050280 W AU 2018050280W WO 2018176087 A1 WO2018176087 A1 WO 2018176087A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
thermal switch
hot water
over temperature
terminals
Prior art date
Application number
PCT/AU2018/050280
Other languages
English (en)
Inventor
Simon RIDLEY
Original Assignee
Sidek Manufacturing Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2017901182A external-priority patent/AU2017901182A0/en
Application filed by Sidek Manufacturing Pty Ltd filed Critical Sidek Manufacturing Pty Ltd
Priority to AU2018241239A priority Critical patent/AU2018241239A1/en
Publication of WO2018176087A1 publication Critical patent/WO2018176087A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • H01H37/32Thermally-sensitive members
    • H01H37/52Thermally-sensitive members actuated due to deflection of bimetallic element
    • H01H37/54Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D18/00Small-scale combined heat and power [CHP] generation systems specially adapted for domestic heating, space heating or domestic hot-water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/0026Domestic hot-water supply systems with conventional heating means
    • F24D17/0031Domestic hot-water supply systems with conventional heating means with accumulation of the heated water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/18Water-storage heaters
    • F24H1/185Water-storage heaters using electric energy supply
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/10Adaptation for built-in fuses
    • H01H9/106Adaptation for built-in fuses fuse and switch being connected in parallel
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/0252Domestic applications
    • H05B1/0275Heating of spaces, e.g. rooms, wardrobes
    • H05B1/0283For heating of fluids, e.g. water heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/78Heating arrangements specially adapted for immersion heating
    • H05B3/82Fixedly-mounted immersion heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2101/00Electric generators of small-scale CHP systems
    • F24D2101/40Photovoltaic [PV] modules
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/02Photovoltaic energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/14Solar energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • H01H37/32Thermally-sensitive members
    • H01H37/52Thermally-sensitive members actuated due to deflection of bimetallic element
    • H01H37/54Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting
    • H01H37/5409Bistable switches; Resetting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal

Definitions

  • the technical filed of the present invention is over temperature protection and thermostatic control systems.
  • solar energy is a particularly attractive form of renewable energy.
  • solar has the disadvantages of periodic supply - only available during daylight hours.
  • the energy supply is variable, having relatively predictable temporally slow intensity variation due to time of day and seasonal variation, and temporally faster and less predictable variation due to intermittent weather or shadowing effects.
  • a common household utilisation of solar energy is for supplying hot water. Typical solar hot water supplies utilise solar thermal energy to directly heat water during the day, effectively storing the solar energy in the water for use.
  • the efficiency of such systems is typically low, but has the advantage of utilising a free and clean energy source.
  • Such systems can also have the disadvantage of slow reheating after consumption of stored hot water.
  • Solar energy can be converted directly to electricity using photovoltaic technologies. Due to the variability and intermittent supply, utilisation of solar energy for electricity generation is typically utilised only in conjunction with other power supplies, such as mains power or backup generators. Households may utilise arrays of solar photovoltaic (PV) collectors for generation of electricity which can be utilised by the household (for example, for powering traditional electric hot water systems, lighting, electric appliances etc.) and excess energy is fed into an electricity grid (and the household's energy bills adjusted based on a feed in tariff). PV arrays are a direct current supply, so household systems require inverters for DC/AC conversion and power control for safe operation and to enable the generated power to be fed into the household power supply and electricity grid. Such systems are complex and expensive to install.
  • PV solar photovoltaic
  • control system for a direct current (DC) powered hot water generation system, the control system comprising:
  • a water temperature sensor component configured to monitor the temperature of water stored in a water storage vessel of the hot water generation system
  • a power supply control system component configured to receive water temperature data from the water temperature sensor component, and control switching on and off direct current power supply to the hot water generation system based on the water temperature data;
  • an over temperature protection device configured to mechanically disconnect the DC power supply from the hot water generation system in response to an over temperature condition
  • the over temperature protection device comprising a safety circuit configured for mounting in thermal communication with a water storage vessel of the hot water generation system and in electrical connection with the DC power supply to a heating element of the hot water generation system, the safety circuit comprising:
  • thermal switch configured to mechanically disconnect the DC power supply responsive to exceeding a switching temperature threshold; and a low current fuse connected in parallel with the thermal switch the low current fuse being configured to temporarily conduct current during the mechanical disconnection by the thermal switch and be sacrificial below a minimum operating current threshold for the hot water generation system, to prevent arcing during mechanical disconnection of the DC Power supply.
  • the thermal switch is configured to switch from a closed current conducting state to an open non-conducting state responsive to exceeding the switching temperature threshold, the thermal switch connected in series with the DC power supply positive terminal and input to the heating element.
  • the thermal switch is a bimetallic switch.
  • the safety circuit can be further configured to cause disconnection between the DC power supply negative terminal and heating element.
  • the safety circuit can further comprise a second thermal switch connected in series with the DC power supply negative terminal and output from the heating element, and in parallel with a second low current fuse configured to be sacrificial below the minimum operating current threshold for the hot water generation system.
  • control system comprises one thermal switch having four terminals and configured to provide two electrical connections in a closed state, each connection connecting a different pair of terminals, and no electrical connection between terminals in an open state,
  • the thermal switch being arranged in the safety circuit to provide a series connection between the DC power supply positive terminal and the heating element via a first pair of terminals, and a series connection between the DC power supply negative terminal and the heating element via a second pair of terminals,
  • the safety circuit having a first low current fuse connected in parallel across the first pair of terminals, and a second low current fuse connected in parallel with the second pair of terminals, the first low current fuse and second low current fuse configured to be sacrificial below the minimum operating current threshold for the hot water generation system.
  • an over temperature protection device configured to mechanically disconnect a direct current (DC) power supply from a protected system in response to an over temperature condition in the protected system
  • the over temperature protection device comprising a safety circuit configured for mounting in thermal communication a component adapted to output heat indicative of the over temperature condition of the protected system and in electrical connection with the DC power supply to the protected system, the safety circuit comprising:
  • thermal switch configured to mechanically disconnect the DC power supply responsive to exceeding a switching temperature threshold
  • a low current fuse connected in parallel with the thermal switch the low current fuse being configured to temporarily conduct current during the mechanical disconnection by the thermal switch and be sacrificial below a minimum operating current threshold for the protected system, to prevent arcing during mechanical disconnection of the DC Power supply.
  • the thermal switch configured to switch from a closed current conducting state to an open nonconducting state responsive to exceeding the switching temperature threshold, the thermal switch connected in series with a positive terminal of the DC power supply and input to the protected system.
  • the thermal switch can be a bimetallic switch.
  • the safety circuit is further configured to cause disconnection between a negative terminal of the DC power supply and the protected system.
  • the safety circuit further comprises a second thermal switch connected in series with the DC power supply negative terminal and the protected system, and in parallel with a second low current fuse configured to be sacrificial below the minimum operating current threshold for the protected system.
  • the over temperature protection device comprises one thermal switch having four terminals and configured to provide two electrical connections in a closed state, each connection connecting a different pair of terminals, and no electrical connection between terminals in an open state, the thermal switch being arranged in the safety circuit to provide a series connection between the DC power supply positive terminal and the protected system via a first pair of terminals, and a series connection between the DC power supply negative terminal and the protected system via a second pair of terminals,
  • the safety circuit having a first low current fuse connected in parallel across the first pair of terminals, and a second low current fuse connected in parallel with the second pair of terminals, the first low current fuse and second low current fuse configured to be sacrificial below the minimum operating current threshold for the protected system.
  • the thermal switch can be a bimetallic disc type thermal switch.
  • the low current fuse is configured to be sacrificial in a range of 0.5 to 5 amps.
  • the switching temperature threshold is in the range of 70 to 99 degrees Celsius.
  • a direct current (DC) powered hot water generation system comprising:
  • a DC power supply connection component for connection to a DC power supply providing positive and negative DC power terminals
  • a heating element disposed to heat water stored in the water storage vessel; and a control system comprising:
  • a water temperature sensor component configured to monitor the temperature of water stored in the water storage vessel
  • a power supply control system component configured to receive water temperature data from the water temperature sensor component, and control switching on and off direct current power supply to the hot water generation system based on the water temperature data;
  • an over temperature protection device configured to mechanically disconnect the DC power supply from the hot water generation system in response to an over temperature condition
  • the over temperature protection device comprising a safety circuit configured for mounting in thermal communication with the water storage vessel of the hot water generation system and in electrical connection between the DC power supply connection component and the heating element, the safety circuit comprising:
  • thermal switch configured to mechanically disconnect the DC power supply responsive to exceeding a switching temperature threshold, and a low current fuse connected in parallel with the thermal switch the low current fuse being configured to temporarily conduct current during the mechanical disconnection by the thermal switch and be sacrificial below a minimum operating current threshold for the hot water generation system, to prevent arcing during mechanical disconnection of the DC Power supply.
  • FIG. 1 is a schematic example of a hot water system incorporating an
  • Figure 2 is a block diagram of an example of a controller
  • Figure 3 shows the main components of the power supply and control for a solar PV hot water system
  • Figure 4 is a schematic illustration of an embodiment of an over temperature protection circuit
  • Figure 5 is a set of photographs of components of a disc type bimetallic thermal switch.
  • PV array direct current supply for powering hot water generation has been proposed.
  • PV array generated direct current electricity supply is utilised to power a resistive element to heat water. This can enable better energy conversion efficiency and water heating time than for thermal solar energy water heating.
  • the PV system also avoids the overheating problem associated with solar thermal hot water systems as there is no water on the roof, no 200 degree water temperatures and reduced likelihood of leaks as no pumping system and associated piping is required.
  • the PV system can be simply turned off when the water in the storage vessel has reached the defined temperature. This also reduces deterioration of the components due to calcification caused by excessive temperatures.
  • hot water service heating elements typically have a fixed resistance, designed for use with a fixed voltage power supply to operate at a particular power rating.
  • a typical Australian hot water system designed to operate using AC power supply, a
  • 2400 watt element has a resistance of 24 ohms, to draw 10 amps at 240 volts.
  • DC power supply from solar panels is variable, meaning the constant power model is not applicable.
  • the instantaneous power supply to the heating element will vary in a PV DC hot water system.
  • switching of DC at high power is more complex than switching AC due to potential risk of arcing across contacts.
  • Embodiments of the present invention provide a safety circuit and controller for a direct current powered hot water system.
  • FIG. 1 An example of a hot water system incorporating an embodiment of the invention is shown in Figure 1 .
  • the hot water system comprises a water tank 120 for heating water and storing the hot water, with an inlet 160 for cold water and outlet 170 for hot water.
  • a heating element 130 in the tank 120 heats the water.
  • the power supply to the heating element 130 is DC power from a solar PV array 1 10.
  • a controller 140 monitors the temperature of the water in the tank 120 and switches power on and off to the heating element 130 based on the water temperature and power supply availability from the PV array 1 10.
  • the representation of the hot water system in Figure 1 is a simplified representation of the key system components, rather than a true illustration of such a system, and in practice the invention can be utilised with many different hot water system configurations.
  • the proposed power supply is a PV array, embodiments of the invention could be utilised with any DC power supply.
  • the system should not be considered limited to PV power.
  • the controller 140 includes a water temperature sensor component configured to monitor the temperature of water stored in a water storage vessel 120 of the hot water generation system.
  • a power supply control system component is configured to receive water temperature data from the water temperature sensor component, and control switching on and off direct current power supply to the hot water generation system based on the water temperature data.
  • the controller can be configured to monitor the power output from the DC power supply and taken in to consideration varying power supply when managing water heating control .
  • the controller can also be configured to be powered via the DC power supply, in this instance the controller will also turn off in low or no light conditions.
  • AC Alternating Current
  • DC Direct Current
  • Disconnecting and connecting AC is relatively easy to do safely due to the constant flux in current flow. Direct current is more problematic as the current flow is constant and wants to continue flowing, even using the air as a medium to keep the electrons flowing.
  • this arc effect can strip thermostat switch contacts causing premature failure of the thermostat. This may occur in an unsafe manner as the arc may weld the contact on causing overheating of the unit. It should be appreciated that DC switch arcing can be a problem for any mechanical switching, both in regular operation and safety cut off switching.
  • the power supply control system is configured to monitor and control the power supply production by the PV array and control operating parameters to maintain power supply output below a threshold voltage.
  • a threshold voltage In an example configured for Australian markets the voltage threshold is 120 volts. This target is chosen to minimise regulatory burden for installation of the system, as system designed to operate above 120V require special installation licenses. Complexity exists here in that to generate the heat in an element you want as much voltage and amperage as possible to generate as much heat as possible with a resistive element while keeping it under the 120V threshold.
  • the present invention is not limited to voltage at, or below, 120 volts and the voltage may be above this level, for instance 150 volts, 250 volts or otherwise, without departing from the spirit or scope of the invention. Accordingly, the example of a 120V threshold is provided for illustration purposes only and is not intended to limit the scope of the invention.
  • Embodiments of the inventors PV hot water controller uses a microprocessor to monitor and control load and current switching from the PV collectors to power the heating element.
  • the controller utilises a small regulated current and voltage generated from the PV collector array to power the microprocessor. This is a relatively small voltage and current, compared to the voltage and current used for the heating circuit, enabling a microprocessor to be used to monitor the system operation even in low light conditions.
  • embodiments of the controller can be configured to operate without the need for an additional fixed power source, such as an on-board battery. Even low light conditions the PV array can generate enough power to start the microprocessor, to allowing monitoring and controlling of the system.
  • FIG. 2 A block diagram of an example of an embodiment of the controller 140 is shown in Figure 2.
  • the controller 200 comprises a power supply control system 210 including a processor 240, and memory 245.
  • the processor 240 may be implemented using any suitable programmable or non-programmable logic device, for example, a microprocessor, programmable logic controller (PLC), filed programmable gate array (FPGA) or application specific integrated circuit (ASIC).
  • PLC programmable logic controller
  • FPGA filed programmable gate array
  • ASIC application specific integrated circuit
  • the processor 240 is a microprocessor.
  • Memory 245 can include ROM and RAM memory accessed by the processor 240.
  • the memory 245 may be configured to buffer data from the temperature sensor and PV array power monitoring.
  • a user interface 248 may be provided to enable input of some user controllable data, for example setting a target operating temperature range.
  • the user interface may also be used to output data such as fault indications.
  • the user interface comprises a display screen (such as a liquid crystal display) and buttons for data input.
  • Alternative user interfaces such as touch screens or a wireless communication interface accessible via a remote device, computer or mobile phone may also be used in some embodiments. It should be appreciated that hot water systems are often installed outside, exposed to the elements or in hostile
  • the power supply control system 210 may also include a power supply such as a battery or mains power connection, however this is optional.
  • a power supply such as a battery or mains power connection, however this is optional.
  • An advantageous embodiment of the controller is configured to operate powered by the PV array alone, without requiring an independent power supply.
  • the controller may be configured to receive operating power from a separate PV source, for example a smaller panel beside a main array or from a single panel of the array.
  • the power for turning on the controller and enabling temperature monitoring is separate from a main PV array.
  • This embodiment can have an advantage of enabling one controller to be configured for use with a variety of sizes of main PV array - for example reducing the number of different capacity controllers required to be carried by installers or allowing scale up of main array without needing to change the hot water system controller.
  • the power supply control system 210 is configured to receive temperature data from a temperature sensor measuring the stored water temperature, and controls power switching hardware 220 for turning on and off DC power supply to the heating element 130. Illustrated as part of the controller in Figure 2 is also an over temperature cut out circuit 250 that will be described in further detail below.
  • the controller 200 is configured to monitor the PV array 1 10 power output and temperature of the stored water.
  • the controller 200 controls switching of power to the heating element 130, once the power output from the PV array is adequate for heating, and if heating of the stored water is required to maintain the stored water temperature with a target temperature range.
  • the power switching hardware 220 includes two MOSFETS (metal-oxide-semiconductor field-effect transistor) used for switching electronic signals, and configured to be controlled by the microprocessor 240.
  • the microprocessor controls two MOSFETS.
  • MOSFETS have a gate that requires very little current to cause the device to switch on and switch much larger currents.
  • the microprocessor is programmed to monitor the PV array output power supply and only turn the MOSFETs on once there is a stable voltage and current available. This avoids the MOSFET turning partially on with low start up voltages and currents, particularly in low light conditions.
  • the controller is configured to avoid MOSFET partial turn on in low light or fluctuating power conditions as this can cause huge amounts of heat to be generated in the MOSFET leading to component failure.
  • embodiments of the controller can be implemented using only one MOSFET. Alternatively, more than two MOSFETs can be used.
  • One advantage of using more than one MOSFET is for reduction of heat in the controller circuitry. Particularly for a hot water system controller that must be enclosed for outdoor installation heat dissipation and reduction in heat generation in the controller are important.
  • the controller may be configured to divert PV power supply to a battery storage system or even an inverter for grid feed in or household use.
  • the controller is configured to monitor the PV DC power supply level and while a relatively stable DC power supply is available the controller can selectively switch the power supply to any one of the hot water system heating element or other connected systems such as a battery storage unit, inverter or other system, by selectively switching MOSFETS.
  • the controller can select which system to power based on current operating conditions, for example when the hot water is within a target temperature range the PV DC power can be diverted to a battery storage unit or an inverter for grid feed in.
  • the controller may also be configured to also draw DC power from the battery storage unit for water heating in inadequate PV power supply conditions (low light or dark).
  • Another advantage enabled by using microprocessor controlled MOSFETS is providing earth leakage protection, enabling shutdown of both positive and negative sides of the circuit via MOSFET switching in the case of earth leakage.
  • the use of microprocessor controlled MOSFETs allows control of current flow to the heating element even in fluctuating or failing light conditions (i.e. passing clouds, end of day) by the microprocessor holding the MOSFET hard on.
  • MOSFETs are turned hard off by the microprocessor once the voltages and currents produced by the PV array fall below a predetermined limit and are not turned back on again until the determined requirements are met. This stops the gates opening and closing rapidly in changing conditions which would cause heat build-up and component failure.
  • Use of microprocessor controlled MOSFET switching enables controlled turning on and off of the power supply to the heating element.
  • An embodiment of the controller is configured to monitor the water temperature using a sensor to detect potential water overheating and cease power supply to the heating element.
  • the hot water system controller can also be configured to operate a booster system powered using an alternative energy source (for example gas, or mains electricity) where the required heating cannot be achieved using the PV system, for example if water heating is required at night.
  • the controller may include a battery (preferably rechargeable via the PV array) or alternative power supply (mains) to ensure night time operation.
  • the controller monitors the water temperature and if the temperature falls below a threshold temperature when power form the PV array is not available (for example at night) or a target heating temperature cannot be achieved via the PV power (for example during winter in colder more overcast conditions) the controller is configured to activate an alternative (boost) heating system, for example a gas boost, for example LPG (liquid petroleum gas) or natural gas heating system.
  • a gas boost for example LPG (liquid petroleum gas) or natural gas heating system.
  • FIG. 3 provides an overview of the main components of the power supply and control for a solar PV hot water system, a solar panel array 310, a controller 320, and an over temperature protection device 330 configured in the circuit to cut off power supply from the heating element 340 in over temperature conditions - if the water in the hot water tank exceeds a set safe threshold temperature.
  • the Solar panel array 310 generates DC electricity.
  • the controller 320 monitors the water temperature and PV power supply and controls switching on and off direct current power supply to the heating element.
  • PV DC Hot water controller uses information from the temperature sensor on the tank and the power available to switch power to the element to heat the water.
  • the Over temperature cut out device 330 sits in series, attached to the hot water storage tank to sense the stored water temperature and only functions in response to the sensed temperature exceeding a set threshold. If it functions it separates the positive and negative connections to prevent further heating of water in the tank.
  • the over temperature cut out device operates mechanically to break the electrical connection between the power supply and heating element. This is a requirement of safety regulations for hot water systems in many counties. In Australia the safety regulations at the time of writing also require disconnection from both positive and negative power supply terminals. As discussed above mechanical switching in DC circuits can cause arcing between switch contacts, which can cause switch contact to fuse and a failure to disconnect. Thus, traditional thermal switches or thermal fuses typically used in AC hot water systems are not safe for application in DC system.
  • An aspect of the present invention provides an over temperature protection device for use to protect DC powered systems.
  • Embodiments provide an over temperature protection device configured to mechanically disconnect a direct current (DC) power supply from a protected system in response to an over temperature condition.
  • the over temperature protection device comprises a safety circuit configured for mounting in thermal communication a component adapted to output heat indicative of the over temperature condition of the protected system and in electrical connection with the DC power supply to the protected system.
  • the safety circuit comprises a thermal switch configured to mechanically disconnect the DC power supply responsive to exceeding a switching temperature threshold, and a low current fuse connected in parallel with the thermal switch.
  • the low current fuse is configured to temporarily conduct current during the mechanical disconnection by the thermal switch and be sacrificial below a minimum operating current threshold for the protected system, to prevent arcing during mechanical disconnection of the DC Power supply.
  • the thermal switch is configured to switch from a closed current conducting state to an open non-conducting state responsive to exceeding the switching temperature threshold, the thermal switch connected in series with a positive terminal of the DC power supply and input to the protected system.
  • the safety circuit can also be configured to cause disconnection between a negative terminal of the DC power supply and the protected system.
  • the safety circuit further comprises a second thermal switch connected in series with the DC power supply negative terminal and the protected system, and in parallel with a second low current fuse configured to be sacrificial below the minimum operating current threshold for the protected system.
  • thermal switches used can be bimetallic switches, however other types of thermal switches can also be used.
  • the requirement for thermal switch choice include, operation temperature threshold, Bimetallic type switches are well suited to this application because these are available for a range of operation threshold temperatures and configured to cleanly separate electrical contacts. These components can also be economically sourced. This is advantageous for applications where the over temperature device is to be treated as sacrificial and replaced once activated.
  • an over temperature protection circuit is illustrated schematically in Figure 4 and the thermal switch shown pictorially in Figure 5.
  • This embodiment is configured for a solar PV CD hot water system as described above.
  • the over temperature protection requires dual poll (both positive and negative sides) disconnection. It should be appreciated that dual pole disconnection cannot typically be achieved using conventional thermal fuses in series with the power supply, as once one fuse breaks the other loses power so may not break. It is highly unlikely to have two thermal fuses blow simultaneously and therefore near impossible to meet the dual pole disconnection requirement using standard thermal fuses.
  • the over temperature protection device 400 uses one thermal switch 410 having four terminals, 1 ,2,3,4 and configured to provide two electrical connections 412, 414 in a closed state, each connection connecting a different pair of terminals (as shown in figure 4), and no electrical connection between terminals in an open state.
  • the thermal switch 410 is arranged in the safety circuit to provide a series 412 connection between the DC power supply positive terminal 430 and the heating element 420 via a first pair of terminals 1 , 2, and a series connection 414 between the DC power supply negative terminal 440 and the heating element 420 via a second pair of terminals 3, 4.
  • a first low current fuse 450 is connected in parallel across the first pair of terminals 1 , 2, and a second low current fuse 455 is connected in parallel with the second pair of terminals3, 4.
  • the first low current fuse and second low current fuse are configured to be sacrificial below the minimum operating current threshold for the protected system.
  • the thermal switch will operate to disconnect all switch terminalsl , 2, 3, 4 at the threshold temperature.
  • the sacrificial fuses are typically destroyed during operation but allow the contacts to separate cleanly by momentarily taking the full DC load allowing the contacts to open cleanly without arc, before blowing. Thus the switch can operate safely without generating an arc, and/or causing the contact to melt and fail or alternately, welding the contact closed and causing a device operation failure.
  • the sacrificial fuses are configured to blow below the minimum operating current threshold for the protected system so that in a rare case where the fuses may not have blown initially as the switch was tripped and power cut, the fuse will blow as soon as power supply resumes at normal levels, if the thermal switch remains tripped. It should be appreciated that the threshold current for the sacrificial fuses and also the
  • the threshold current for the sacrificial fuses is chosen based on the minimum normal operating current range of the system to be protected. This minimum current will vary based on the nature of the system, for example a DC motor may operate at around 2-5 amps, whereas for an industrial process a minim operating current may be around 10 amps, thus different current rated sacrificial fuses may be used in over temperature protection devices used in these two systems.
  • One consideration in choice of sacrificial fuse current threshold may also be potential current variation (current spiking) during regular operation, in particular to avoid choosing a fuse that may blow during normal operation and thus effect the safe operation of the over temperature protection device during an over temperature fault.
  • the minimum operating current for the protected system can reduces the risk of premature blowing of the fuse either during normal operation or too early during a fault to ensure that arcing is prevented.
  • the low current fuses may be sacrificial below current thresholds from 1 to 4amps depending on the system configuration.
  • the temperature threshold for thermal cut-out consideration should be given to the nature of the over temperature condition and thermal conductivity to the over temperature protection device, to determine a threshold value for detection at the switch that will be indicative of the over temperature condition in the system.
  • an over temperature condition may be water in excess of 90 or 95 degrees Celsius within the water tank, in an embodiment where the over temperature device is attached directly to the tank, within the tank insulation this may trip at the over temperature condition temperature.
  • the over temperature protection device may be in thermal communication with a heat source via another element of the system, and therefore due to heat loss or thermal conductivity coefficient of the element the temperature indicative of the over temperature condition may be different from the actual temperature of the heat source.
  • the thermal switch is chosen to trip at a temperature sensed at the system element which is indicative of an over temperature condition in the protected system.
  • the thermal switch is a bimetallic disc type thermal switch as illustrated in Figure 5.
  • the temperature cut out is triggered by the bi-metallic disc reaching the trigger temperature.
  • a bi-metallic disc is a disc is made from a laminate of two different metal alloys with different coefficients of thermal expansion. The disc changes instantly from a concave to a convex shape when it is heated above its activation temperature. The mechanical displacement of the disc creates mechanical movement. The mechanical movement moves a pin that physically separates the contacts via a pin and bridge.
  • the thermal switch mechanism tends to only operate while under load as if there is no current flowing though the contacts there is no power being supplied to the heating element. The system tends not to go over temperature unless there is an alternate heating source. If the bimetallic thermal switch is used alone the contacts separate, while conducting DC current, the contacts tend to arc and fail. However, in the configuration described herein this arcing is prevented by placing a low current fuse across the contact to very temporarily take the load to allow the contacts to separate without arcing before the fuses fail.
  • the over temperature cut out is a safety device. It should only ever operate if there is a fault in the thermostat and controller. If the thermostat fails on and continues to supply energy to the heating element when it should have disconnected the supply, the cut out will operate and disconnect the heating element. In Australia the requirement is for dual pole operation, so the positive and negative are disconnected. The unit must be manually reset - often replaced - to ensure the system is checked before being able to be reconnected.
  • over temperature protection device has been discussed above in the context of a hot water system the over temperature protection device can be used in any DC powered system where thermal cut-out protection may be required.
  • any DC powered system where thermal cut-out protection may be required.
  • industrial process control systems for example, industrial process control systems, DC motors etc.
  • the invention provides a control system for a direct current (DC) powered hot water generation system including a bimetallic switch which mechanically disconnects a DC power supply in response to a switching temperature threshold being exceeded.
  • DC direct current

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

L'invention concerne un système de commande destiné à un système de génération d'eau chaude alimenté en courant continu (CC), le système de commande comprenant un composant capteur de température d'eau configuré, un composant de système de commande d'alimentation électrique et un dispositif de protection contre la surchauffe configuré de façon à déconnecter mécaniquement l'alimentation CC du système de génération d'eau chaude en réponse à une condition de surchauffe. Le dispositif de protection contre la surchauffe comprend un circuit de sécurité comprenant : un commutateur thermique configuré de façon à déconnecter mécaniquement l'alimentation CC en réponse à un dépassement d'un seuil de température de commutation ; et un fusible à faible courant connecté en parallèle au commutateur thermique et configuré de façon à conduire temporairement le courant pendant la déconnexion mécanique par le commutateur thermique et être sacrificiel au-dessous d'un seuil de courant de fonctionnement minimum en ce qui concerne le système de génération d'eau chaude, afin d'empêcher la formation d'arcs lors de la déconnexion mécanique de l'alimentation CC.
PCT/AU2018/050280 2017-03-31 2018-03-26 Circuit de sécurité et système de commande destiné à un système d'eau chaude alimenté en courant continu WO2018176087A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2018241239A AU2018241239A1 (en) 2017-03-31 2018-03-26 Safety circuit and control system for direct current powered hot water system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU2017901182 2017-03-31
AU2017901182A AU2017901182A0 (en) 2017-03-31 Safety Circuit and Control System for Direct Current Powered Hot Water System

Publications (1)

Publication Number Publication Date
WO2018176087A1 true WO2018176087A1 (fr) 2018-10-04

Family

ID=63673840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU2018/050280 WO2018176087A1 (fr) 2017-03-31 2018-03-26 Circuit de sécurité et système de commande destiné à un système d'eau chaude alimenté en courant continu

Country Status (2)

Country Link
AU (1) AU2018241239A1 (fr)
WO (1) WO2018176087A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4119087A (en) * 1976-07-26 1978-10-10 A. O. Smith Corporation Solar water heating system
WO2006032083A1 (fr) * 2004-09-23 2006-03-30 Rheem Australia Pty Limited Système de protection contre les températures excessives
WO2007098561A1 (fr) * 2006-03-02 2007-09-07 Dux Manufacturing Limited Procédé et dispositifs d'exploitation de systèmes de fourniture d'eau chaude
WO2008069870A1 (fr) * 2006-12-05 2008-06-12 Ferraz Shawmut S.A. Dispositif de protection de circuit
US20150104160A1 (en) * 2013-10-10 2015-04-16 Barry Lynn Butler Photovoltaic dc heater systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4119087A (en) * 1976-07-26 1978-10-10 A. O. Smith Corporation Solar water heating system
WO2006032083A1 (fr) * 2004-09-23 2006-03-30 Rheem Australia Pty Limited Système de protection contre les températures excessives
WO2007098561A1 (fr) * 2006-03-02 2007-09-07 Dux Manufacturing Limited Procédé et dispositifs d'exploitation de systèmes de fourniture d'eau chaude
WO2008069870A1 (fr) * 2006-12-05 2008-06-12 Ferraz Shawmut S.A. Dispositif de protection de circuit
US20150104160A1 (en) * 2013-10-10 2015-04-16 Barry Lynn Butler Photovoltaic dc heater systems

Also Published As

Publication number Publication date
AU2018241239A1 (en) 2019-10-24

Similar Documents

Publication Publication Date Title
US9002185B2 (en) PV water heating system
US8909033B2 (en) Control systems for renewable hot water heating systems
US8977117B2 (en) Renewable energy hot water heating elements
US10571135B2 (en) Renewable energy hot water heater with heat pump
CN1182756C (zh) 具有改进的加热元件控制器的流体加热器
US20130266295A1 (en) Hybrid Gas-Electric Hot Water Heater
US10393406B2 (en) Electrical water heater with a dual resistive heating element and a control method for energy management
US8536495B2 (en) Device for regulated water heating using the energy gained by photovoltaic cells
CN110050245A (zh) 用于有效使用太阳能光伏能量的系统、装置和方法
JP2010213479A (ja) 分散型電源装置
US11480366B2 (en) Solar water heating system
US20190264950A1 (en) Power supply system for an electrically powered resistive element
WO2018176087A1 (fr) Circuit de sécurité et système de commande destiné à un système d'eau chaude alimenté en courant continu
JP2016093081A (ja) 電源システム及び制御装置
CA2867607C (fr) Chauffe-eau electrique dote d'un element chauffant a double resistance et d'un mode de commande de gestion d'energie
KR101048035B1 (ko) 대기전력 차단용 콘센트 제어기
CN205897515U (zh) 一种光伏并网驱动的热水器
CN211876381U (zh) 热水器过温保护的电路、热水器供电的电路和热水器
US20150221799A1 (en) Transformerless Photovoltaic Solar Heating System
JP5833775B2 (ja) 水の加熱調節において光起電性パネルからの直流を利用する、ボイラーのための電力切替え装置
JP2014229549A (ja) コージェネレーションシステム
JP6084077B2 (ja) 自家発電システム
CN209979079U (zh) 一种基于ntc温度传感器的过温保护模块
JP2014179168A (ja) 燃料電池発電システム
CZ29182U1 (cs) Zařízení pro regulovaný ohřev média pomocí energie získávané z fotovoltaických panelů

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018241239

Country of ref document: AU

Date of ref document: 20180326

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18775480

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载