+

WO2018174012A1 - Optical laminate - Google Patents

Optical laminate Download PDF

Info

Publication number
WO2018174012A1
WO2018174012A1 PCT/JP2018/010830 JP2018010830W WO2018174012A1 WO 2018174012 A1 WO2018174012 A1 WO 2018174012A1 JP 2018010830 W JP2018010830 W JP 2018010830W WO 2018174012 A1 WO2018174012 A1 WO 2018174012A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
meth
sensitive adhesive
optical laminate
acrylate
Prior art date
Application number
PCT/JP2018/010830
Other languages
French (fr)
Japanese (ja)
Inventor
晶子 杉野
毅 村重
稲垣 淳一
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to JP2019507665A priority Critical patent/JPWO2018174012A1/en
Priority to CN201880020357.2A priority patent/CN110446956A/en
Priority to KR1020197026941A priority patent/KR20190120255A/en
Priority to KR1020217016143A priority patent/KR20210066022A/en
Publication of WO2018174012A1 publication Critical patent/WO2018174012A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/02Polyureas
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering

Definitions

  • the present invention relates to an optical laminate.
  • an image display device is manufactured by bonding a resin film including a polarizing plate to a substrate of a display element via an adhesive, and then further bonding glass on the resin film via an adhesive or an adhesive. .
  • a bonding defect misalignment of bonding position, entrapment of foreign matter, etc.
  • the adhesive or adhesive between the glass and the resin film is frozen and cut. Then, the resin film is often peeled from the substrate of the display element.
  • the operation is complicated and complicated, resulting in a problem that the productivity of the image display device is deteriorated.
  • Patent Document 1 An optical laminated body made of thinner glass
  • the present invention has been made in order to solve the above-described conventional problems, and an object of the present invention is to provide an optical laminate having excellent reworkability while being provided with a glass film.
  • the optical layered body of the present invention includes a glass film, a polarizer, and a pressure-sensitive adhesive layer in this order, and the adhesive force to the glass plate is 5 N / 25 mm or less.
  • the pressure-sensitive adhesive layer has a thickness of 5 ⁇ m to 100 ⁇ m.
  • the glass film has a thickness of 20 ⁇ m to 200 ⁇ m.
  • the pressure-sensitive adhesive layer contains a (meth) acrylic pressure-sensitive adhesive.
  • the pressure-sensitive adhesive layer contains a urethane-based pressure-sensitive adhesive.
  • an image display device is provided.
  • the image display device includes the optical laminate.
  • the image display device includes the optical layered body on the outermost side on the viewing side.
  • the optical laminate 100 includes a glass film 10, a polarizer 20, and an adhesive layer 30 in this order.
  • the optical laminate 100 may further include a protective film 40 that protects the polarizer 20 between the glass film 10 and the polarizer 20 as necessary.
  • a protective film between the polarizer 20 and the adhesive layer 30 as needed.
  • the glass film 10, the polarizer 20, and the protective film 40 can be bonded together through any appropriate pressure-sensitive adhesive or adhesive.
  • the optical laminated body 100 of the present invention includes the glass film 10, the hardness is high. Moreover, the optical laminated body 100 of this invention can prevent the damage of the glass film 10 by providing the polarizer 20 on the one side of the glass film 10, and is excellent in impact resistance. In the present invention, since the impact applied to the surface of the glass film 10 (surface opposite to the polarizer) can be effectively released to the polarizer 20 side, the impact resistance is excellent as described above. Conceivable. Further, the glass film 10 has a function of protecting the polarizer 20. That is, in the present invention, the glass film 10 and the polarizer 20 protect each other. Therefore, it is possible to reduce the number of protective members, and a lightweight and thin optical laminate can be obtained.
  • the glass film 10 has high gas barrier property, deterioration of the polarizer 20 is prevented. Furthermore, since the glass film 10 has a small dimensional change, the expansion or contraction of the optical laminate 100 of the present invention is suppressed. As a result, it is possible to obtain the optical layered body 100 that has high durability and is prevented from peeling or floating.
  • the adhesive strength of the optical laminate of the present invention to the glass plate is preferably 5 N / 25 mm or less, more preferably 3 N / 25 mm or less, and even more preferably 1.5 N / 25 mm or less.
  • the adhesive strength is determined by bonding the optical layer of the optical laminate to the glass plate, and then peeling the optical laminate at a peel angle of 90 ° and a peel rate in an environment of a temperature of 23 ° C./humidity of 55%. Measured by peeling at 300 mm / min. A detailed measurement method will be described later.
  • the optical laminate of the present invention is excellent in reworkability because the adhesive strength to the glass plate is in the above range. More specifically, when the optical laminated body is bonded to an adherend (for example, a member constituting an image display device such as a display element substrate), any trouble (for example, misalignment, entrapment of foreign matter, etc.) If this occurs, the optical laminate needs to be peeled off. At this time, if the optical laminate has an adhesive strength to the glass plate within the above range, the glass film is prevented from being broken and easily peeled off from the adherend. can do.
  • an adherend for example, a member constituting an image display device such as a display element substrate
  • any trouble for example, misalignment, entrapment of foreign matter, etc.
  • the lower limit value of the adhesive strength of the optical laminate of the present invention to the glass plate is preferably 0.005 N / 25 mm or more, more preferably 0.01 N / 25 mm or more, and further preferably 0.1 N / 25 mm or more. is there. Within such a range, problems such as peeling and floating can be prevented even under high heat and / or high humidity.
  • the thickness of the optical laminate of the present invention is preferably 50 ⁇ m to 500 ⁇ m, more preferably 100 ⁇ m to 300 ⁇ m.
  • the optical layered body of the present invention may further include other layers.
  • other layers include an antireflection layer, an antiglare layer, an antistatic layer, and a conductive layer.
  • a separator may be disposed on the surface of the pressure-sensitive adhesive layer. The separator can protect the pressure-sensitive adhesive layer until the optical laminate is put into practical use.
  • the optical layered body of the present invention is suitably used for an image display device. More specifically, the optical layered body of the present invention can be used for a substrate of a display element of an image display device. In another aspect of the present invention, an image display device including the optical laminate is provided. In one embodiment, the optical layered body of the present invention may be arranged on the outermost side on the viewing side of the image display device. The optical layered body thus arranged can function as a front protective plate of the image display device.
  • the glass film Any appropriate film can be adopted as the glass film.
  • the glass film include soda-lime glass, borate glass, aluminosilicate glass, and quartz glass according to the classification according to the composition.
  • category by an alkali component an alkali free glass and a low alkali glass are mentioned.
  • the content of alkali metal components (for example, Na 2 O, K 2 O, Li 2 O) in the glass is preferably 15% by weight or less, and more preferably 10% by weight or less.
  • the thickness of the glass film is preferably 20 ⁇ m to 200 ⁇ m, more preferably 50 ⁇ m to 150 ⁇ m. If it is such a range, the optical laminated body which is excellent in flexibility, and a glass film is hard to crack and is excellent in productivity can be obtained.
  • the light transmittance at a wavelength of 550 nm of the glass film is preferably 85% or more.
  • the refractive index of the glass film at a wavelength of 550 nm is preferably 1.4 to 1.65.
  • the density of the glass film is preferably 2.3 g / cm 3 to 3.0 g / cm 3 , more preferably 2.3 g / cm 3 to 2.7 g / cm 3 . If it is a glass film of the said range, a lightweight optical laminated body will be obtained.
  • the glass film is obtained by melting a mixture containing main raw materials such as silica and alumina, an antifoaming agent such as sodium nitrate and antimony oxide, and a reducing agent such as carbon at a temperature of 1400 ° C to 1600 ° C. Then, after forming into a thin plate shape, it is produced by cooling.
  • the glass film forming method include a slot down draw method, a fusion method, and a float method.
  • the glass film formed into a plate shape by these methods may be chemically polished with a solvent such as hydrofluoric acid, if necessary, in order to reduce the thickness or improve the smoothness.
  • the thickness of the polarizer is not particularly limited, and an appropriate thickness can be adopted depending on the purpose.
  • the thickness is typically about 1 ⁇ m to 80 ⁇ m.
  • a thin polarizer is used, and the thickness of the polarizer is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, further preferably 10 ⁇ m or less, and particularly preferably 6 ⁇ m or less. It is. By using such a thin polarizer, a thin optical laminate can be obtained.
  • the polarizer preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm.
  • the single transmittance of the polarizer is preferably 40.0% or more, more preferably 41.0% or more, further preferably 42.0% or more, and particularly preferably 43.0% or more.
  • the polarization degree of the polarizer is preferably 99.8% or more, more preferably 99.9% or more, and further preferably 99.95% or more.
  • the polarizer is an iodine-based polarizer. More specifically, the polarizer may be composed of a polyvinyl alcohol resin (hereinafter referred to as “PVA resin”) film containing iodine.
  • PVA resin polyvinyl alcohol resin
  • any appropriate resin can be adopted as the PVA resin for forming the PVA resin film.
  • Examples thereof include polyvinyl alcohol and ethylene-vinyl alcohol copolymer.
  • Polyvinyl alcohol is obtained by saponifying polyvinyl acetate.
  • the ethylene-vinyl alcohol copolymer can be obtained by saponifying an ethylene-vinyl acetate copolymer.
  • the degree of saponification of the PVA resin is usually 85 mol% to 100 mol%, preferably 95.0 mol% to 99.95 mol%, more preferably 99.0 mol% to 99.93 mol%. It is.
  • the degree of saponification can be determined according to JIS K 6726-1994. By using a PVA-based resin having such a saponification degree, a polarizer having excellent durability can be obtained. If the degree of saponification is too high, there is a risk of gelation.
  • the average degree of polymerization of the PVA resin can be appropriately selected according to the purpose.
  • the average degree of polymerization is usually 1000 to 10,000, preferably 1200 to 5000, and more preferably 1500 to 4500.
  • the average degree of polymerization can be determined according to JIS K 6726-1994.
  • unit the method of extending
  • the production method (II) preferably, a laminate (i) having a resin base material and a polyvinyl alcohol resin layer formed on one side of the resin base material is stretched and dyed, A step of producing a polarizer.
  • the laminate (i) can be formed by applying and drying a coating liquid containing a polyvinyl alcohol-based resin on a resin substrate.
  • the laminate (i) may be formed by transferring a polyvinyl alcohol-based resin film onto a resin base material. Details of the production method (II) are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580, which is incorporated herein by reference.
  • the protective film Any appropriate resin film may be employed as the protective film.
  • the protective film forming material include polyester resins such as polyethylene terephthalate (PET), cellulose resins such as triacetyl cellulose (TAC), cycloolefin resins such as norbornene resins, and olefins such as polyethylene and polypropylene.
  • polyester resins such as polyethylene terephthalate (PET)
  • cellulose resins such as triacetyl cellulose (TAC)
  • cycloolefin resins such as norbornene resins
  • olefins such as polyethylene and polypropylene.
  • resins and (meth) acrylic resins include resins and (meth) acrylic resins. Of these, polyethylene terephthalate (PET) is preferable.
  • the “(meth) acrylic resin” refers to an acrylic resin and / or a methacrylic resin.
  • a (meth) acrylic resin having a glutarimide structure is used as the (meth) acrylic resin.
  • (meth) acrylic resins having a glutarimide structure include, for example, JP-A-2006-309033, JP-A-2006-317560, JP-A-2006-328329, and JP-A-2006-328329.
  • the protective film and the polarizer are laminated via any appropriate adhesive layer.
  • the resin base material used at the time of producing the polarizer can be peeled off before or after the protective film and the polarizer are laminated.
  • the thickness of the protective film is preferably 5 ⁇ m to 55 ⁇ m, more preferably 10 ⁇ m to 50 ⁇ m, and still more preferably 15 ⁇ m to 45 ⁇ m.
  • the thickness of the adhesive layer adhesive layer is preferably 5 [mu] m ⁇ 100 [mu] m, more preferably 10 [mu] m ⁇ 70 [mu] m. If it is in such a range, the adhesive strength is appropriately adjusted, the glass film is hardly broken at the time of peeling, it can be easily peeled off from the adherend, and the optical layer is excellent in the durability of the pressure-sensitive adhesive layer. You can get a body.
  • the pressure-sensitive adhesive layer contains any appropriate pressure-sensitive adhesive as long as the effects of the present invention can be obtained.
  • the pressure-sensitive adhesive layer contains a (meth) acrylic pressure-sensitive adhesive and / or a urethane pressure-sensitive adhesive.
  • (meth) acrylic pressure-sensitive adhesive contains a (meth) acrylic polymer.
  • the content ratio of the (meth) acrylic polymer in the (meth) acrylic pressure-sensitive adhesive is preferably 40% by weight to 99.9% by weight, more preferably 50% by weight to 99.5% by weight, Preferably, it is 60 to 99% by weight.
  • (Meth) acrylic polymer is a polymer containing a (meth) acrylic monomer as a constituent monomer component. Only one type of (meth) acrylic polymer may be used, or two or more types may be used. Only one (meth) acrylic monomer may be used, or two or more may be used.
  • the (meth) acrylic polymer preferably contains (meth) acrylic acid alkyl ester as a monomer component constituting the polymer.
  • (meth) acrylic acid alkyl esters include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, and hexyl.
  • (meth) acrylic acid alkyl esters having an alkyl group having 4 to 13 carbon atoms are preferred, more preferably 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, n-decyl (meth) acrylate, isodecyl (meth) acrylate, n-dodecyl (meth) acrylate, and n-tridecyl (meth) acrylate. Only one (meth) acrylic acid alkyl ester may be used, or two or more may be used.
  • the content ratio of the (meth) acrylic acid alkyl ester to the total monomer components (100 wt%) constituting the (meth) acrylic polymer is preferably 70 wt% to 98 wt%, more preferably 80 wt% to 98 wt%. % By weight, more preferably 85% by weight to 98% by weight, and particularly preferably 90% by weight to 98% by weight.
  • the monomer component constituting the (meth) acrylic polymer may further contain a hydroxyl group-containing monomer.
  • the hydroxyl group-containing monomer include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl ( (Meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate, (4-hydroxymethylcyclohexyl) methyl acrylate, N-methylol (meth) acrylamide, vinyl alcohol, allyl alcohol, 2- Examples thereof include hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether, and diethylene glycol monovinyl ether. Only one kind of hydroxyl group-containing monomer may be used, or two or more kinds thereof may be used.
  • the content ratio of the hydroxyl group-containing monomer to the total monomer component (100% by weight) constituting the (meth) acrylic polymer is preferably 0.1% by weight to 15% by weight, more preferably 0.5% by weight to It is 13% by weight, more preferably 0.5% by weight to 10% by weight, and particularly preferably 1% by weight to 8% by weight.
  • the monomer component constituting the (meth) acrylic polymer contains, for example, a polyfunctional monomer from the viewpoint that a crosslinked structure can be introduced into the (meth) acrylic polymer and appropriate cohesive force can be obtained. May be.
  • the polyfunctional monomer include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, and 1,6 hexanediol di (meta).
  • the content ratio of the polyfunctional monomer to the total monomer component (100 wt%) constituting the (meth) acrylic polymer is preferably 0.1 wt% to 30 wt%, more preferably 0.1 wt% to 10 wt%. % By weight. Within such a range, it is possible to obtain an optical laminate in which the adhesive strength is appropriately adjusted and the glass film is not particularly easily broken during peeling.
  • the monomer component constituting the (meth) acrylic polymer may further contain other monomers.
  • examples of other monomers include cyano group-containing monomers, vinyl ester monomers, aromatic vinyl monomers, amide group-containing monomers, imide group-containing monomers, amino group-containing monomers, epoxy group-containing monomers, vinyl ether monomers, and N-acryloylmorpholine. Is mentioned. Among these, a cyano group-containing monomer, a vinyl ester monomer, and an aromatic vinyl monomer are preferable from the viewpoint of improving cohesion and heat resistance.
  • amide group-containing monomers imide group-containing monomers, amino group-containing monomers, epoxy group-containing monomers, vinyl ether monomers, and N-acryloylmorpholine are preferred. Only one type of other monomer may be used, or two or more types may be used.
  • Examples of the cyano group-containing monomer include acrylonitrile and methacrylonitrile.
  • vinyl ester monomer examples include vinyl esters such as vinyl acetate, vinyl propionate, and vinyl laurate.
  • aromatic vinyl monomer examples include styrene, chlorostyrene, chloromethylstyrene, ⁇ -methylstyrene, and other substituted styrene.
  • amide group-containing monomers include acrylamide, methacrylamide, diethyl acrylamide, N-vinyl pyrrolidone, N, N-dimethyl acrylamide, N, N-dimethyl methacrylamide, N, N-diethyl acrylamide, N, N-diethyl methacryl.
  • examples thereof include amide, N, N′-methylenebisacrylamide, N, N-dimethylaminopropyl acrylamide, N, N-dimethylaminopropyl methacrylamide, and diacetone acrylamide.
  • Examples of the imide group-containing monomer include cyclohexylmaleimide, isopropylmaleimide, N-cyclohexylmaleimide, and itaconimide.
  • amino group-containing monomer examples include aminoethyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylate, and the like.
  • epoxy group-containing monomer examples include glycidyl (meth) acrylate, methyl glycidyl (meth) acrylate, and allyl glycidyl ether.
  • vinyl ether monomer examples include methyl vinyl ether, ethyl vinyl ether, isobutyl vinyl ether, and the like.
  • the content ratio of other monomers to the total monomer components (100% by weight) constituting the (meth) acrylic polymer is preferably 0 to 40% by weight, more preferably more than 0% by weight and 40% by weight or less. More preferably, it is more than 0% by weight and 35% by weight or less, and particularly preferably more than 0% by weight and 30% by weight or less.
  • the monomer component constituting the (meth) acrylic polymer has a carboxyl group-containing monomer, a sulfo group-containing monomer, a phosphate group-containing monomer, and an acid anhydride group-containing from the viewpoint of suppressing an increase in adhesion to an adherend. It is preferable that no monomer is contained. That is, it is preferable that the other monomer does not include a carboxyl group-containing monomer, a sulfo group-containing monomer, a phosphate group-containing monomer, and an acid anhydride group-containing monomer.
  • (Meth) acrylic polymer can be obtained by polymerizing monomer components constituting the (meth) acrylic polymer.
  • the polymerization method include solution polymerization, emulsion polymerization, bulk polymerization, suspension polymerization, photopolymerization (active energy ray polymerization), and the like. Among these, solution polymerization is preferable from the viewpoint of cost and productivity.
  • the (meth) acrylic polymer to be obtained may be any of a random copolymer, a block copolymer, an alternating copolymer, a graft copolymer, and the like.
  • the weight average molecular weight of the (meth) acrylic polymer is preferably 100,000 to 5,000,000, more preferably 200,000 to 4,000,000, and further preferably 300,000 to 3,000,000.
  • the glass transition temperature (Tg) of the (meth) acrylic polymer is preferably 0 ° C. or lower, more preferably ⁇ 10 ° C. or lower.
  • Tg (° C.) is the glass transition temperature of the copolymer
  • Wn is the weight fraction of each monomer
  • Tgn (° C.) is the glass transition temperature of the homopolymer obtained from each monomer
  • n is the type of each monomer. .
  • the (meth) acrylic pressure-sensitive adhesive may contain a cross-linking agent from the viewpoint that an appropriate cohesive force can be obtained.
  • the crosslinking agent include an isocyanate crosslinking agent, an epoxy crosslinking agent, a melamine crosslinking agent, an aziridine crosslinking agent, and a metal chelate crosslinking agent.
  • an isocyanate type crosslinking agent and an epoxy type crosslinking agent are preferable in that the effects of the present invention can be sufficiently exhibited.
  • One type of crosslinking agent may be sufficient and 2 or more types may be sufficient as it.
  • isocyanate-based crosslinking agent examples include lower aliphatic polyisocyanates such as butylene diisocyanate and hexamethylene diisocyanate, alicyclic isocyanates such as cyclopentylene diisocyanate, cyclohexylene diisocyanate and isophorone diisocyanate, and 2,4-tolylene diene.
  • lower aliphatic polyisocyanates such as butylene diisocyanate and hexamethylene diisocyanate
  • alicyclic isocyanates such as cyclopentylene diisocyanate, cyclohexylene diisocyanate and isophorone diisocyanate
  • 2,4-tolylene diene examples include 2,4-tolylene diene.
  • Isocyanates aromatic isocyanates such as 4,4′-diphenylmethane diisocyanate, xylylene diisocyanate, trimethylolpropane / tolylene diisocyanate trimer adduct (trade name “Coronate L” manufactured by Nippon Polyurethane Industry Co., Ltd.), trimethylolpropane / Hexamethylene diisocyanate trimer adduct (trade name “Coronate HL” manufactured by Nippon Polyurethane Industry Co., Ltd.), Isocyanate of hexamethylene diisocyanate Rate body (trade name "Coronate HX” manufactured by Nippon Polyurethane Industry Co., Ltd.), and the like isocyanate adducts such as.
  • epoxy crosslinking agent examples include bisphenol A, epichlorohydrin type epoxy resin, ethylene glycidyl ether, polyethylene glycol diglycidyl ether, glycerin diglycidyl ether, glycerin triglycidyl ether, 1,6-hexanediol glycidyl ether, and trimethylol.
  • the amount of the crosslinking agent is preferably 0.01 to 15 parts by weight, more preferably 0.1 to 10 parts by weight, with respect to 100 parts by weight of the (meth) acrylic polymer.
  • the amount is preferably 0.1 to 8 parts by weight, particularly preferably 0.5 to 5 parts by weight.
  • (Meth) acrylic pressure-sensitive adhesive may contain a crosslinking catalyst.
  • the cross-linking catalyst include metal-based cross-linking catalysts (particularly tin-based cross-linking catalysts) such as tetra-n-butyl titanate, tetraisopropyl titanate, nasec ferric acid, butyl tin oxide, and dioctyl tin dilaurate. Only one type of crosslinking catalyst may be used, or two or more types may be used.
  • the amount of the crosslinking catalyst is preferably 0.001 to 0.05 parts by weight, more preferably 0.003 to 0.04 parts by weight per 100 parts by weight of the (meth) acrylic polymer. More preferably, it is 0.005 to 0.03 parts by weight.
  • (Meth) acrylic adhesive may contain a crosslinking retarder.
  • the crosslinking retarder include ⁇ -ketoesters such as methyl acetoacetate, ethyl acetoacetate, octyl acetoacetate, oleyl acetoacetate, lauryl acetoacetate, stearyl acetoacetate, acetylacetone, 2,4-hexanedione, benzoylacetone, etc. ⁇ -diketone.
  • acetylacetone is preferable in that the effects of the present invention can be sufficiently exhibited. Only one type of crosslinking retarder may be used, or two or more types may be used.
  • the amount of the crosslinking retarder is preferably 0.1 to 10 parts by weight, more preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the (meth) acrylic polymer. More preferably, it is 0.1 to 3 parts by weight.
  • the (meth) acrylic pressure-sensitive adhesive contains additives such as a plasticizer, an anti-aging agent, a colorant (such as a pigment and a dye), an antistatic agent, and a tackifying resin as long as the effects of the present invention are not impaired. Also good.
  • the (meth) acrylic pressure-sensitive adhesive may contain any appropriate solvent.
  • Urethane adhesive contains a polyurethane resin.
  • the polyurethane resin content in the urethane pressure-sensitive adhesive is preferably 40% by weight to 99% by weight, more preferably 50% by weight to 95% by weight, and still more preferably 60% by weight to 90% by weight. is there.
  • Only one type of polyurethane resin may be used, or two or more types may be used.
  • the polyurethane resin can be obtained by reacting the polyol (A) with the polyfunctional isocyanate compound (B).
  • polyol (A) As a polyol (A), only 1 type may be sufficient and 2 or more types may be sufficient.
  • polyol (A) examples include polyester polyol, polyether polyol, polycaprolactone polyol, polycarbonate polyol, and castor oil-based polyol.
  • Polyester polyol can be obtained, for example, by an esterification reaction between a polyol component and an acid component.
  • polyol component examples include ethylene glycol, diethylene glycol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, 2-butyl-2-ethyl-1 , 3-propanediol, 2,4-diethyl-1,5-pentanediol, 1,2-hexanediol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 2-methyl -1,8-octanediol, 1,8-decanediol, octadecanediol, glycerin, trimethylolpropane, pentaerythritol, hexanetriol, polypropylene glycol and the like.
  • the acid component examples include succinic acid, methyl succinic acid, adipic acid, pimelic acid, azelaic acid, sebacic acid, 1,12-dodecanedioic acid, 1,14-tetradecanedioic acid, dimer acid, 2-methyl-1, 4-cyclohexanedicarboxylic acid, 2-ethyl-1,4-cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 4,4'-biphenyldicarboxylic acid, acid anhydrides thereof Etc.
  • polyether polyols examples include water, low molecular weight polyols (propylene glycol, ethylene glycol, glycerin, trimethylolpropane, pentaerythritol, etc.), bisphenols (bisphenol A, etc.), dihydroxybenzenes (catechol, resorcin, hydroquinone, etc.), etc. And polyether polyols obtained by addition polymerization of alkylene oxides such as ethylene oxide, propylene oxide, butylene oxide. Specific examples include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and the like.
  • polycaprolactone polyol examples include caprolactone-based polyester diols obtained by ring-opening polymerization of cyclic ester monomers such as ⁇ -caprolactone and ⁇ -valerolactone.
  • polycarbonate polyol examples include a polycarbonate polyol obtained by polycondensation reaction of the polyol component and phosgene; the polyol component, dimethyl carbonate, diethyl carbonate, diprovir carbonate, diisopropyl carbonate, dibutyl carbonate, ethyl butyl carbonate, ethylene carbonate, Polycarbonate polyol obtained by ester exchange condensation with carbonic acid diesters such as propylene carbonate, diphenyl carbonate and dibenzyl carbonate; copolymerized polycarbonate polyol obtained by using two or more of the above polyol components in combination; Polycarbonate polyol obtained by esterification reaction with a compound; the above-mentioned various polycarbonate polyols and a hydroxyl group-containing compound; Polycarbonate polyol obtained by etherification reaction; polycarbonate polyol obtained by transesterification of the various polycarbonate polyols and ester compounds; polycarbonate polyol obtained by trans
  • castor oil-based polyol examples include castor oil-based polyol obtained by reacting castor oil fatty acid with the above polyol component. Specific examples include castor oil-based polyols obtained by reacting castor oil fatty acid with polypropylene glycol.
  • a polyol (triol) having three OH groups is used as the polyol (A).
  • triol an optical laminate can be obtained in which the adhesive force is appropriately adjusted and the glass film is hardly broken at the time of peeling.
  • the content ratio of the polyol (triol) having 3 OH groups in the polyol (A) is preferably 50% by weight to 100% by weight, more preferably 70% by weight to 100% by weight, and still more preferably. It is 80 to 100% by weight, more preferably 90 to 100% by weight, particularly preferably 95 to 100% by weight, and most preferably substantially 100% by weight.
  • the polyol (A) preferably contains a polyol having a number average molecular weight Mn of 400 to 20000.
  • the content ratio of the polyol having a number average molecular weight Mn of 400 to 20000 in the polyol (A) is preferably 50% by weight to 100% by weight, more preferably 70% by weight to 100% by weight, and still more preferably. It is 90% to 100% by weight, particularly preferably 95% to 100% by weight, and most preferably substantially 100% by weight.
  • a triol having a number average molecular weight Mn of 7000 to 20000 and a number average molecular weight Mn of 2000 to 6000 are used.
  • a triol having a number average molecular weight Mn of 400 to 1900 more preferably a triol having a number average molecular weight Mn of 8000 to 15000, a triol having a number average molecular weight Mn of 2000 to 5000, and a number average molecular weight.
  • a triol having a Mn of 500 to 1800 more preferably a triol having a number average molecular weight Mn of 8000 to 12000, a triol having a number average molecular weight Mn of 2000 to 4000, and a triol having a number average molecular weight Mn of 500 to 1500 And in combination.
  • the adhesive strength is appropriately adjusted, and an optical laminate that is particularly difficult to break the glass film at the time of peeling can be obtained.
  • 1 type of polyfunctional isocyanate compounds (B) may be sufficient, and 2 or more types may be sufficient as them.
  • polyfunctional isocyanate compound (B) any suitable polyfunctional isocyanate compound that can be used for the urethanization reaction can be adopted.
  • examples of such a polyfunctional isocyanate compound (B) include polyfunctional aliphatic isocyanate compounds, polyfunctional alicyclic isocyanate compounds, polyfunctional aromatic isocyanate compounds, and the like.
  • polyfunctional aliphatic isocyanate compound examples include trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, pentamethylene diisocyanate, 1,2-propylene diisocyanate, 1,3-butylene diisocyanate, dodecamethylene diisocyanate, 2,4,4 Examples include 4-trimethylhexamethylene diisocyanate.
  • polyfunctional alicyclic isocyanate compound examples include 1,3-cyclopentene diisocyanate, 1,3-cyclohexane diisocyanate, 1,4-cyclohexane diisocyanate, isophorone diisocyanate, hydrogenated diphenylmethane diisocyanate, hydrogenated xylylene diisocyanate, Examples include hydrogenated tolylene diisocyanate and hydrogenated tetramethylxylylene diisocyanate.
  • polyfunctional aromatic diisocyanate compound examples include phenylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 2,2 ′ monodiphenylmethane diisocyanate, 4,4′-diphenylmethane diisocyanate, 4,4 Examples include '-toluidine diisocyanate, 4,4'-diphenyl ether diisocyanate, 4,4'-diphenyl diisocyanate, 1,5-naphthalene diisocyanate, and xylylene diisocyanate.
  • polyfunctional isocyanate compound (B) examples include trimethylolpropane adducts of various polyfunctional isocyanate compounds as described above, burettes reacted with water, and trimers having an isocyanurate ring. These may be used in combination.
  • the equivalent ratio of the NCO group to the OH group is more than 1.0 and not more than 5.0 as the NCO group / OH group, preferably 1.1 to 5.0, more preferably 1.2 to 4.0, still more preferably 1.5 to 3.5, and particularly preferably 1.8 to 3.0.
  • the polyurethane-based pressure-sensitive adhesive preferably contains a deterioration preventing agent such as an antioxidant, an ultraviolet absorber, and a light stabilizer. Only one type of deterioration preventing agent may be used, or two or more types may be used. As the deterioration preventing agent, an antioxidant is particularly preferable.
  • the urethane-based pressure-sensitive adhesive can contain any appropriate other component as long as the effects of the present invention are not impaired.
  • other components include other resin components other than polyurethane resins, tackifiers, inorganic fillers, organic fillers, metal powders, pigments, foils, softeners, plasticizers, and anti-aging agents.
  • Urethane adhesive may contain a modified silicone oil.
  • the content ratio is preferably 0.001 to 50 parts by weight, more preferably 0.01 parts by weight to 100 parts by weight of the polyurethane resin. 40 parts by weight, more preferably 0.01 parts by weight to 30 parts by weight, particularly preferably 0.01 parts by weight to 20 parts by weight, and most preferably 0.01 parts by weight to 10 parts by weight. .
  • modified silicone oil any appropriate modified silicone oil can be adopted as long as the effects of the present invention are not impaired.
  • modified silicone oil include modified silicone oil available from Shin-Etsu Chemical Co., Ltd.
  • the modified silicone oil is preferably a polyether-modified silicone oil.
  • the polyether-modified silicone oil include a side chain-type polyether-modified silicone oil and a both-end-type polyether-modified silicone oil.
  • PET Amorphous polyethylene terephthalate (hereinafter also referred to as “PET”) (IPA copolymerized PET) film (thickness: 100 ⁇ m) having 7 mol% of isophthalic acid unit as a thermoplastic resin substrate. ) And the surface was subjected to corona treatment (58 W / m 2 / min).
  • PET Amorphous polyethylene terephthalate
  • acetoacetyl-modified PVA manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name: Gohsephimer Z200 (average polymerization degree: 1200, saponification degree: 98.5 mol%, acetoacetylation degree: 5 mol%)
  • a PVA added with 1 wt% (polymerization degree 4200, saponification degree 99.2%) was prepared, and a coating solution of PVA aqueous solution with a PVA resin of 5.5 wt% was prepared, and the film thickness after drying was 12 ⁇ m. And dried for 10 minutes by hot air drying in an atmosphere of 60 ° C. to prepare a laminate in which a PVA resin layer was provided on the substrate.
  • this laminate was first stretched 1.8 times in air at 130 ° C. (air-assisted stretching) to produce a stretched laminate.
  • a step of insolubilizing the PVA layer in which the PVA molecules contained in the stretched laminate were oriented was performed by immersing the stretched laminate in a boric acid insolubilized aqueous solution having a liquid temperature of 30 ° C. for 30 seconds.
  • the boric acid insolubilized aqueous solution in this step had a boric acid content of 3 parts by weight with respect to 100 parts by weight of water.
  • a colored laminate was produced by dyeing this stretched laminate.
  • the stretched laminate is applied to a dye solution containing iodine and potassium iodide at a liquid temperature of 30 ° C. so that the single transmittance of the PVA layer constituting the finally produced polarizer is 40 to 44%.
  • the PVA layer contained in the stretched laminate is dyed with iodine by immersing it in an arbitrary time.
  • the staining solution was prepared using water as a solvent and an iodine concentration in the range of 0.1 to 0.4% by weight and a potassium iodide concentration in the range of 0.7 to 2.8% by weight.
  • the concentration ratio of iodine and potassium iodide is 1 to 7.
  • the colored laminated body was immersed in a 30 ° C.
  • boric acid crosslinking aqueous solution for 60 seconds to perform a crosslinking treatment between PVA molecules of the PVA layer on which iodine was adsorbed.
  • the boric acid crosslinking aqueous solution in this step had a boric acid content of 3 parts by weight with respect to 100 parts by weight of water and a potassium iodide content of 3 parts by weight with respect to 100 parts by weight of water.
  • the obtained colored laminate was stretched in a boric acid aqueous solution at a stretching temperature of 70 ° C. and stretched 3.05 times in the same direction as the stretching in the air (boric acid-water stretching), and finally An optical film laminate having a draw ratio of 5.50 was obtained.
  • the optical film laminate was removed from the boric acid aqueous solution, and the boric acid adhering to the surface of the PVA layer was washed with an aqueous solution having a potassium iodide content of 4 parts by weight with respect to 100 parts by weight of water.
  • the washed optical film laminate was dried by a drying process using hot air at 60 ° C.
  • the thickness of the polarizer A contained in the obtained optical film laminate was 5 ⁇ m.
  • a (meth) acrylic polymer solution (A2) having a weight average molecular weight of 1,600,000.
  • an isocyanate crosslinking agent manufactured by Mitsui Takeda Chemical Co., Ltd., trade name: Takenate D110N, trimethylolpropane xylylene diisocyanate
  • a (meth) acrylic pressure-sensitive adhesive D was prepared by blending 1 part by weight of a polyether compound (manufactured by Asahi Glass Urethane Co., Ltd., trade name: Excestar 2420).
  • Example 1 A glass film (manufactured by Nippon Electric Glass Co., Ltd., trade name: OA10, size: 400 mm ⁇ 40 mm, thickness: 100 ⁇ m), protective film (40 ⁇ m thick acrylic resin film), and polarizer A in this order are adhesives To obtain a laminate a.
  • the (meth) acrylic adhesive A was applied to the silicone-treated surface of a polyethylene terephthalate film having a silicone treatment on one side, and heated at 110 ° C. for 3 minutes to form an adhesive layer A having a thickness of 25 ⁇ m.
  • the pressure-sensitive adhesive layer A was transferred to the polarizer A side of the laminate a to obtain an optical laminate A.
  • Example 2 (Production of optical laminate) A glass film (manufactured by Nippon Electric Glass Co., Ltd., trade name: OA10, size: 400 mm ⁇ 40 mm, thickness: 100 ⁇ m) and polarizer A were bonded together with an adhesive to obtain a laminate b.
  • the (meth) acrylic adhesive A was applied to the silicone-treated surface of a polyethylene terephthalate film having a silicone treatment on one side, and heated at 110 ° C. for 3 minutes to form an adhesive layer A having a thickness of 25 ⁇ m.
  • the pressure-sensitive adhesive layer A was transferred to the polarizer A side of the laminate b to obtain an optical laminate B.
  • Example 3 Glass film (manufactured by Nippon Electric Glass Co., Ltd., trade name: OA10, size: 400 mm ⁇ 40 mm, thickness: 100 ⁇ m), protective film (40 ⁇ m thick acrylic resin film), polarizer B, protective film (thickness) 40 ⁇ m acrylic resin film) was laminated in this order via an adhesive to obtain a laminate c.
  • the (meth) acrylic adhesive A was applied to the silicone-treated surface of a polyethylene terephthalate film having a silicone treatment on one side, and heated at 110 ° C. for 3 minutes to form an adhesive layer A having a thickness of 25 ⁇ m.
  • the pressure-sensitive adhesive layer A was transferred to the polarizer B side of the laminate c to obtain an optical laminate C.
  • Example 4 In the same manner as in Example 1, a laminate a was obtained.
  • the (meth) acrylic adhesive B was applied to the silicone-treated surface of the polyethylene terephthalate film subjected to silicone treatment and heated at 110 ° C. for 3 minutes to form an adhesive layer B having a thickness of 12 ⁇ m.
  • the pressure-sensitive adhesive layer B was transferred to the polarizer A side of the laminate a to obtain an optical laminate D.
  • Example 5 In the same manner as in Example 1, a laminate a was obtained. Urethane pressure-sensitive adhesive C was applied to the silicone-treated surface of a polyethylene terephthalate film having a silicone treatment on one side, and heated at 110 ° C. for 3 minutes to form a pressure-sensitive adhesive layer C having a thickness of 25 ⁇ m. The pressure-sensitive adhesive layer C was transferred to the polarizer A side of the laminate a to obtain an optical laminate E.
  • Example 6 In the same manner as in Example 1, a laminate a was obtained.
  • the (meth) acrylic adhesive D was applied to the silicone-treated surface of the polyethylene terephthalate film subjected to silicone treatment, and heated at 110 ° C. for 3 minutes to form an adhesive layer D having a thickness of 25 ⁇ m.
  • the pressure-sensitive adhesive layer D was transferred to the polarizer A side of the laminate a to obtain an optical laminate F.
  • Example 7 In the same manner as in Example 1, a laminate a was obtained. (Meth) acrylic pressure-sensitive adhesive E was applied to the silicone-treated surface of a polyethylene terephthalate film subjected to silicone treatment, and heated at 110 ° C. for 3 minutes to form a pressure-sensitive adhesive layer E having a thickness of 50 ⁇ m. The pressure-sensitive adhesive layer E was transferred to the polarizer A side of the laminate a to obtain an optical laminate G.
  • Example 1 In the same manner as in Example 1, a laminate a was obtained.
  • the (meth) acrylic pressure-sensitive adhesive F was applied to a silicone-treated surface of a polyethylene terephthalate film subjected to silicone treatment, and heated at 110 ° C. for 3 minutes to form a pressure-sensitive adhesive layer F having a thickness of 25 ⁇ m.
  • the pressure-sensitive adhesive layer F was transferred to the polarizer A side of the laminate a to obtain an optical laminate H.
  • the optical laminate was cut into 150 mm ⁇ 25 mm, and attached to a non-alkali glass plate having a thickness of 0.7 mm (product name: EG-XG) using a laminator, and then 50 ° C. A sample for evaluation was produced by autoclaving at 5 atm for 15 minutes to ensure complete adhesion. Using the tensile tester (Autograph SHIMAZU AG-1 10KN), the optical laminate was removed from the glass plate using the tensile tester (autograph SHIMAZU AG-1 10KN) under the conditions of 23 ° C./humidity 55%, peeling angle 90 °, peeling speed 300 mm / min. It peeled and the adhesive force of the optical laminated body was measured. The measurement was sampled at an interval of 1 time / 0.5 s, and the average value was taken as the measurement value.
  • the optical laminate was attached to non-alkali glass (trade name: EG-XG, manufactured by Corning) having a size of 15 inches (diagonal line) with a thickness of 0.7 mm using a laminator. Next, autoclaving was performed at 50 ° C. and 0.5 MPa for 15 minutes, and the optical laminate was brought into close contact with the acrylic-free glass to prepare a sample for evaluation. About the said sample for evaluation, the optical laminated body was peeled from the glass in the diagonal direction from one corner of the optical laminated body, and the crack of the glass film and the fracture
  • The optical laminate has slight cracks but can be easily reworked. There is no practical problem. (Triangle
  • A No change in appearance such as foaming or peeling.
  • Slightly peeled off or foamed at the end, but no problem in practical use.
  • There is peeling or foaming at the end, but there is no practical problem unless it is a special use.
  • X Remarkably peeled off at the end, causing practical problems.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Laminated Bodies (AREA)
  • Polarising Elements (AREA)
  • Adhesive Tapes (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Provided is an optical laminate which has excellent reworkability even if provided with a glass film. An optical laminate according to the present invention is sequentially provided with a glass film, a polarizer and an adhesive layer in this order, while having an adhesive power of 5 N/25 mm or less with respect to glass plates. In one embodiment of the present invention, the thickness of the adhesive layer is from 5 μm to 100 μm. In one embodiment of the present invention, the thickness of the glass film is from 20 μm to 200 μm.

Description

光学積層体Optical laminate
 本発明は、光学積層体に関する。 The present invention relates to an optical laminate.
 従来、画像表示装置は、表示素子の基板に粘着剤を介して偏光板を含む樹脂フィルムを貼り合せ、次いで該樹脂フィルム上に更に接着剤または粘着剤を介してガラスを貼り合せ、製造される。このような画像表示装置の製造において、貼り合せの不具合(貼り合せ位置のズレ、異物のかみこみ等)が判明した場合には、該ガラスと該樹脂フィルムの間の接着剤または粘着剤を凍結切断し、次いで該樹脂フィルムを該表示素子の基板から剥離することが多い。しかしながら、このような剥離プロセスを採用した場合、操作が多く煩雑であり、画像表示装置の生産性を悪化させるという問題が生じる。 Conventionally, an image display device is manufactured by bonding a resin film including a polarizing plate to a substrate of a display element via an adhesive, and then further bonding glass on the resin film via an adhesive or an adhesive. . In the manufacture of such an image display device, if a bonding defect (misalignment of bonding position, entrapment of foreign matter, etc.) is found, the adhesive or adhesive between the glass and the resin film is frozen and cut. Then, the resin film is often peeled from the substrate of the display element. However, when such a peeling process is employed, the operation is complicated and complicated, resulting in a problem that the productivity of the image display device is deteriorated.
 また、近年、画像表示装置は、軽量薄型化が進んでおり、また、フレキシブル化が求められる傾向にあり、より薄いガラスから構成された光学積層体を用いることが提案されている(特許文献1)。薄ガラスを用いた光学積層体を剥離する必要が生じた場合、該薄ガラスの脆弱性に起因して、上記のように凍結切断による方法は採用し難くなる。 In recent years, image display devices are becoming lighter and thinner, and tend to be flexible, and it has been proposed to use an optical laminated body made of thinner glass (Patent Document 1). ). When it becomes necessary to peel off an optical laminate using thin glass, the freeze-cutting method as described above is difficult to adopt due to the fragility of the thin glass.
 上記のように、ガラスを含む光学積層体においては、他の部材に貼り合わせた後に再剥離する際の作業性(リワーク性)が問題となり、リワーク性の改善が求められる。 As described above, in an optical laminated body including glass, workability (reworkability) at the time of re-peeling after bonding to another member becomes a problem, and improvement of reworkability is required.
国際公開第2013-175767号公報International Publication No. 2013-175767
 本発明は上記従来の課題を解決するためになされたものであり、その目的とするところは、ガラスフィルムを備えながら、リワーク性に優れる光学積層体を提供することにある。 The present invention has been made in order to solve the above-described conventional problems, and an object of the present invention is to provide an optical laminate having excellent reworkability while being provided with a glass film.
 本発明の光学積層体は、ガラスフィルムと、偏光子と、粘着剤層とをこの順に備え、ガラス板に対する接着力が、5N/25mm以下である。
 1つの実施形態においては、上記粘着剤層の厚みが、5μm~100μmである。
 1つの実施形態においては、上記ガラスフィルムの厚みが、20μm~200μmである。
 1つの実施形態においては、上記粘着剤層が、(メタ)アクリル系粘着剤を含む。
 1つの実施形態においては、上記粘着剤層が、ウレタン系粘着剤を含む。
 本発明の別の局面によれば、画像表示装置が提供される。この画像表示装置は、上記光学積層体を含む。
 1つの実施形態においては、上記画像表示装置は、視認側における最外側に、前記光学積層体を備える。
The optical layered body of the present invention includes a glass film, a polarizer, and a pressure-sensitive adhesive layer in this order, and the adhesive force to the glass plate is 5 N / 25 mm or less.
In one embodiment, the pressure-sensitive adhesive layer has a thickness of 5 μm to 100 μm.
In one embodiment, the glass film has a thickness of 20 μm to 200 μm.
In one embodiment, the pressure-sensitive adhesive layer contains a (meth) acrylic pressure-sensitive adhesive.
In one embodiment, the pressure-sensitive adhesive layer contains a urethane-based pressure-sensitive adhesive.
According to another aspect of the present invention, an image display device is provided. The image display device includes the optical laminate.
In one embodiment, the image display device includes the optical layered body on the outermost side on the viewing side.
 本発明によれば、ガラスフィルムを備えながら、リワーク性に優れる光学積層体を提供することができる。 According to the present invention, it is possible to provide an optical laminate that is excellent in reworkability while having a glass film.
本発明のひとつの実施形態による光学積層体の概略断面図である。It is a schematic sectional drawing of the optical laminated body by one Embodiment of this invention.
A.光学積層体の全体構成
 図1は、本発明のひとつの実施形態による光学積層体の概略断面図である。この光学積層体100は、ガラスフィルム10と、偏光子20と、粘着剤層30とをこの順に備える。光学積層体100は、必要に応じて、ガラスフィルム10と偏光子20との間に、偏光子20を保護する保護フィルム40をさらに備えていてもよい。また、図示していないが、必要に応じて、偏光子20と粘着剤層30との間に保護フィルムを配置してもよい。ガラスフィルム10、偏光子20および保護フィルム40は、任意の適切な粘着剤または接着剤を介して貼り合わされ得る。
A. Overall configuration diagram 1 of the optical stack is a schematic sectional view of an optical laminate according to one embodiment of the present invention. The optical laminate 100 includes a glass film 10, a polarizer 20, and an adhesive layer 30 in this order. The optical laminate 100 may further include a protective film 40 that protects the polarizer 20 between the glass film 10 and the polarizer 20 as necessary. Moreover, although not shown in figure, you may arrange | position a protective film between the polarizer 20 and the adhesive layer 30 as needed. The glass film 10, the polarizer 20, and the protective film 40 can be bonded together through any appropriate pressure-sensitive adhesive or adhesive.
 本発明の光学積層体100は、ガラスフィルム10を備えるため、硬度が高い。また、本発明の光学積層体100は、ガラスフィルム10の一方の側に偏光子20を備えることにより、ガラスフィルム10の破損が防止され得、耐衝撃性に優れる。本発明においては、ガラスフィルム10の表面(偏光子とは反対側の面)に与えられた衝撃を、偏光子20側に有効に逃がすことができるため、上記のように耐衝撃性に優れると考えられる。また、ガラスフィルム10は、偏光子20を保護する機能を有する。すなわち、本発明においては、ガラスフィルム10と偏光子20とがそれぞれ互いを保護する。そのため、保護用部材を減らすことが可能となり、軽量かつ薄型の光学積層体を得ることができる。また、ガラスフィルム10はガスバリア性が高いため、偏光子20の劣化が防止される。さらに、ガラスフィルム10は寸法変化が小さいため、本発明の光学積層体100の膨張または収縮が抑制される。その結果、耐久性が高く、剥がれや浮きなどが抑制された光学積層体100を得ることができる。 Since the optical laminated body 100 of the present invention includes the glass film 10, the hardness is high. Moreover, the optical laminated body 100 of this invention can prevent the damage of the glass film 10 by providing the polarizer 20 on the one side of the glass film 10, and is excellent in impact resistance. In the present invention, since the impact applied to the surface of the glass film 10 (surface opposite to the polarizer) can be effectively released to the polarizer 20 side, the impact resistance is excellent as described above. Conceivable. Further, the glass film 10 has a function of protecting the polarizer 20. That is, in the present invention, the glass film 10 and the polarizer 20 protect each other. Therefore, it is possible to reduce the number of protective members, and a lightweight and thin optical laminate can be obtained. Moreover, since the glass film 10 has high gas barrier property, deterioration of the polarizer 20 is prevented. Furthermore, since the glass film 10 has a small dimensional change, the expansion or contraction of the optical laminate 100 of the present invention is suppressed. As a result, it is possible to obtain the optical layered body 100 that has high durability and is prevented from peeling or floating.
 本発明の光学積層体のガラス板に対する接着力は、好ましくは5N/25mm以下であり、より好ましくは3N/25mm以下であり、さらに好ましくは1.5N/25mm以下である。本明細書において、接着力は、光学積層体の粘着剤層側をガラス板に貼り合わせた後、温度23℃/湿度55%の環境下で、該光学積層体を剥離角度90°、剥離速度300mm/minで剥離して測定される。詳細な測定方法は後述する。 The adhesive strength of the optical laminate of the present invention to the glass plate is preferably 5 N / 25 mm or less, more preferably 3 N / 25 mm or less, and even more preferably 1.5 N / 25 mm or less. In this specification, the adhesive strength is determined by bonding the optical layer of the optical laminate to the glass plate, and then peeling the optical laminate at a peel angle of 90 ° and a peel rate in an environment of a temperature of 23 ° C./humidity of 55%. Measured by peeling at 300 mm / min. A detailed measurement method will be described later.
 本発明の光学積層体は、ガラス板に対する接着力が上記範囲であることにより、リワーク性に優れる。より具体的には、被着体(例えば、表示素子基板等の画像表示装置を構成する部材)に上記光学積層体を貼り合わせた際に、何らかの不具合(例えば、位置ずれ、異物のかみこみ等)が生じると、光学積層体を剥離する必要が生じるが、このとき、ガラス板に対する接着力が上記範囲である光学積層体であれば、ガラスフィルムの破断が防止され、容易に被着体から剥離することができる。 The optical laminate of the present invention is excellent in reworkability because the adhesive strength to the glass plate is in the above range. More specifically, when the optical laminated body is bonded to an adherend (for example, a member constituting an image display device such as a display element substrate), any trouble (for example, misalignment, entrapment of foreign matter, etc.) If this occurs, the optical laminate needs to be peeled off. At this time, if the optical laminate has an adhesive strength to the glass plate within the above range, the glass film is prevented from being broken and easily peeled off from the adherend. can do.
 本発明の光学積層体のガラス板に対する接着力の下限値は、好ましくは0.005N/25mm以上であり、より好ましくは0.01N/25mm以上であり、さらに好ましくは0.1N/25mm以上である。このような範囲であれば、高熱下および/または高湿度下においても、剥がれ、浮き等の不具合が防止され得る。 The lower limit value of the adhesive strength of the optical laminate of the present invention to the glass plate is preferably 0.005 N / 25 mm or more, more preferably 0.01 N / 25 mm or more, and further preferably 0.1 N / 25 mm or more. is there. Within such a range, problems such as peeling and floating can be prevented even under high heat and / or high humidity.
 本発明の光学積層体の厚みは、好ましくは50μm~500μmであり、さらに好ましくは100μm~300μmである。 The thickness of the optical laminate of the present invention is preferably 50 μm to 500 μm, more preferably 100 μm to 300 μm.
 本発明の光学積層体は、その他の層をさらに備え得る。その他の層としては、例えば、反射防止層、防眩層、帯電防止層、導電層等が挙げられる。粘着剤層の表面にセパレーターが配置されていてもよい。該セパレーターは、光学積層体が実用に供されるまで、粘着剤層を保護し得る。 The optical layered body of the present invention may further include other layers. Examples of other layers include an antireflection layer, an antiglare layer, an antistatic layer, and a conductive layer. A separator may be disposed on the surface of the pressure-sensitive adhesive layer. The separator can protect the pressure-sensitive adhesive layer until the optical laminate is put into practical use.
 本発明の光学積層体は、画像表示装置に好適に用いられる。より具体的には、本発明の光学積層体は、画像表示装置の表示素子の基板等に用いられ得る。本発明の別の局面においては、上記光学積層体を備える画像表示装置が提供される。1つの実施形態においては、本発明の光学積層体は、画像表示装置の視認側における最外側に配置され得る。このように配置された光学積層体は、画像表示装置の前面保護板として機能し得る。 The optical layered body of the present invention is suitably used for an image display device. More specifically, the optical layered body of the present invention can be used for a substrate of a display element of an image display device. In another aspect of the present invention, an image display device including the optical laminate is provided. In one embodiment, the optical layered body of the present invention may be arranged on the outermost side on the viewing side of the image display device. The optical layered body thus arranged can function as a front protective plate of the image display device.
B.ガラスフィルム
 上記ガラスフィルムは、任意の適切なものが採用され得る。上記ガラスフィルムは、組成による分類によれば、例えば、ソーダ石灰ガラス、ホウ酸ガラス、アルミノ珪酸ガラス、石英ガラス等が挙げられる。また、アルカリ成分による分類によれば、無アルカリガラス、低アルカリガラスが挙げられる。上記ガラスのアルカリ金属成分(例えば、NaO、KO、LiO)の含有量は、好ましくは15重量%以下であり、さらに好ましくは10重量%以下である。
B. Glass Film Any appropriate film can be adopted as the glass film. Examples of the glass film include soda-lime glass, borate glass, aluminosilicate glass, and quartz glass according to the classification according to the composition. Moreover, according to the classification | category by an alkali component, an alkali free glass and a low alkali glass are mentioned. The content of alkali metal components (for example, Na 2 O, K 2 O, Li 2 O) in the glass is preferably 15% by weight or less, and more preferably 10% by weight or less.
 上記ガラスフィルムの厚みは、好ましくは20μm~200μmであり、より好ましくは50μm~150μmである。このような範囲であれば、フレキシブル性に優れ、かつ、ガラスフィルムが割れがたく生産性に優れる光学積層体を得ることができる。 The thickness of the glass film is preferably 20 μm to 200 μm, more preferably 50 μm to 150 μm. If it is such a range, the optical laminated body which is excellent in flexibility, and a glass film is hard to crack and is excellent in productivity can be obtained.
 上記ガラスフィルムの波長550nmにおける光透過率は、好ましくは85%以上である。上記ガラスフィルムの波長550nmにおける屈折率は、好ましくは1.4~1.65である。 The light transmittance at a wavelength of 550 nm of the glass film is preferably 85% or more. The refractive index of the glass film at a wavelength of 550 nm is preferably 1.4 to 1.65.
 上記ガラスフィルムの密度は、好ましくは2.3g/cm~3.0g/cmであり、さらに好ましくは2.3g/cm~2.7g/cmである。上記範囲のガラスフィルムであれば、軽量の光学積層体が得られる。 The density of the glass film is preferably 2.3 g / cm 3 to 3.0 g / cm 3 , more preferably 2.3 g / cm 3 to 2.7 g / cm 3 . If it is a glass film of the said range, a lightweight optical laminated body will be obtained.
 上記ガラスフィルムの成形方法は、任意の適切な方法が採用され得る。代表的には、上記ガラスフィルムは、シリカやアルミナ等の主原料と、芒硝や酸化アンチモン等の消泡剤と、カーボン等の還元剤とを含む混合物を、1400℃~1600℃の温度で溶融し、薄板状に成形した後、冷却して作製される。上記ガラスフィルムの成形方法としては、例えば、スロットダウンドロー法、フュージョン法、フロート法等が挙げられる。これらの方法によって板状に成形されたガラスフィルムは、薄板化したり、平滑性を高めたりするために、必要に応じて、フッ酸等の溶剤により化学研磨されてもよい。 Any appropriate method can be adopted as the method for forming the glass film. Typically, the glass film is obtained by melting a mixture containing main raw materials such as silica and alumina, an antifoaming agent such as sodium nitrate and antimony oxide, and a reducing agent such as carbon at a temperature of 1400 ° C to 1600 ° C. Then, after forming into a thin plate shape, it is produced by cooling. Examples of the glass film forming method include a slot down draw method, a fusion method, and a float method. The glass film formed into a plate shape by these methods may be chemically polished with a solvent such as hydrofluoric acid, if necessary, in order to reduce the thickness or improve the smoothness.
C.偏光子・保護フィルム
C-1.偏光子
 上記偏光子の厚みは特に制限されず、目的に応じて適切な厚みが採用され得る。当該厚みは、代表的には、1μm~80μm程度である。1つの実施形態においては、薄型の偏光子が用いられ、当該偏光子の厚みは、好ましくは20μm以下であり、より好ましくは15μm以下であり、さらに好ましくは10μm以下であり、特に好ましくは6μm以下である。このように薄い偏光子を用いることにより、薄型の光学積層体を得ることができる。
C. Polarizer / protective film C-1. Polarizer The thickness of the polarizer is not particularly limited, and an appropriate thickness can be adopted depending on the purpose. The thickness is typically about 1 μm to 80 μm. In one embodiment, a thin polarizer is used, and the thickness of the polarizer is preferably 20 μm or less, more preferably 15 μm or less, further preferably 10 μm or less, and particularly preferably 6 μm or less. It is. By using such a thin polarizer, a thin optical laminate can be obtained.
 上記偏光子は、好ましくは、波長380nm~780nmのいずれかの波長で吸収二色性を示す。偏光子の単体透過率は、好ましくは40.0%以上、より好ましくは41.0%以上、さらに好ましくは42.0%以上、特に好ましくは43.0%以上である。偏光子の偏光度は、好ましくは99.8%以上であり、より好ましくは99.9%以上であり、さらに好ましくは99.95%以上である。 The polarizer preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm. The single transmittance of the polarizer is preferably 40.0% or more, more preferably 41.0% or more, further preferably 42.0% or more, and particularly preferably 43.0% or more. The polarization degree of the polarizer is preferably 99.8% or more, more preferably 99.9% or more, and further preferably 99.95% or more.
 好ましくは、上記偏光子は、ヨウ素系偏光子である。より詳細には、上記偏光子は、ヨウ素を含むポリビニルアルコール系樹脂(以下、「PVA系樹脂」と称する)フィルムから構成され得る。 Preferably, the polarizer is an iodine-based polarizer. More specifically, the polarizer may be composed of a polyvinyl alcohol resin (hereinafter referred to as “PVA resin”) film containing iodine.
 上記PVA系樹脂フィルムを形成するPVA系樹脂としては、任意の適切な樹脂が採用され得る。例えば、ポリビニルアルコール、エチレン-ビニルアルコール共重合体が挙げられる。ポリビニルアルコールは、ポリ酢酸ビニルをケン化することにより得られる。エチレン-ビニルアルコール共重合体は、エチレン-酢酸ビニル共重合体をケン化することにより得られる。PVA系樹脂のケン化度は、通常85モル%~100モル%であり、好ましくは95.0モル%~99.95モル%であり、さらに好ましくは99.0モル%~99.93モル%である。ケン化度は、JIS K 6726-1994に準じて求めることができる。このようなケン化度のPVA系樹脂を用いることによって、耐久性に優れた偏光子が得られ得る。ケン化度が高すぎる場合には、ゲル化してしまうおそれがある。 Any appropriate resin can be adopted as the PVA resin for forming the PVA resin film. Examples thereof include polyvinyl alcohol and ethylene-vinyl alcohol copolymer. Polyvinyl alcohol is obtained by saponifying polyvinyl acetate. The ethylene-vinyl alcohol copolymer can be obtained by saponifying an ethylene-vinyl acetate copolymer. The degree of saponification of the PVA resin is usually 85 mol% to 100 mol%, preferably 95.0 mol% to 99.95 mol%, more preferably 99.0 mol% to 99.93 mol%. It is. The degree of saponification can be determined according to JIS K 6726-1994. By using a PVA-based resin having such a saponification degree, a polarizer having excellent durability can be obtained. If the degree of saponification is too high, there is a risk of gelation.
 PVA系樹脂の平均重合度は、目的に応じて適切に選択され得る。平均重合度は、通常1000~10000であり、好ましくは1200~5000であり、さらに好ましくは1500~4500である。なお、平均重合度は、JIS K 6726-1994に準じて求めることができる。 The average degree of polymerization of the PVA resin can be appropriately selected according to the purpose. The average degree of polymerization is usually 1000 to 10,000, preferably 1200 to 5000, and more preferably 1500 to 4500. The average degree of polymerization can be determined according to JIS K 6726-1994.
 上記偏光子の製造方法としては、例えば、PVA系樹脂フィルム単体を延伸、染色する方法(I)、樹脂基材とポリビニルアルコール系樹脂層とを有する積層体(i)を延伸、染色する方法(II)等が挙げられる。方法(I)は、当業界で周知慣用の方法であるため、詳細な説明は省略する。上記製造方法(II)は、好ましくは、樹脂基材と該樹脂基材の片側に形成されたポリビニルアルコール系樹脂層とを有する積層体(i)を延伸、染色して、該樹脂基材上に偏光子を作製する工程を含む。積層体(i)は、樹脂基材上にポリビニルアルコール系樹脂を含む塗布液を塗布・乾燥して形成され得る。また、積層体(i)は、ポリビニルアルコール系樹脂膜を樹脂基材上に転写して形成されてもよい。上記製造方法(II)の詳細は、例えば、特開2012-73580号公報に記載されており、この公報は、本明細書に参考として援用される。 As a manufacturing method of the said polarizer, the method (I) of extending | stretching and dye | staining a PVA-type resin film single-piece | unit, and the method of extending | stretching and dye | staining the laminated body (i) which has a resin base material and a polyvinyl alcohol-type resin layer ( II) and the like. Since the method (I) is a well-known and commonly used method in the art, detailed description thereof is omitted. In the production method (II), preferably, a laminate (i) having a resin base material and a polyvinyl alcohol resin layer formed on one side of the resin base material is stretched and dyed, A step of producing a polarizer. The laminate (i) can be formed by applying and drying a coating liquid containing a polyvinyl alcohol-based resin on a resin substrate. The laminate (i) may be formed by transferring a polyvinyl alcohol-based resin film onto a resin base material. Details of the production method (II) are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580, which is incorporated herein by reference.
C-2.保護フィルム
 上記保護フィルムとしては、任意の適切な樹脂フィルムが採用され得る。保護フィルムの形成材料としては、例えば、ポリエチレンテレフタレート(PET)等のポリエステル系樹脂、トリアセチルセルロース(TAC)等のセルロース系樹脂、ノルボルネン系樹脂等のシクロオレフィン系樹脂、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、(メタ)アクリル系樹脂等が挙げられる。なかでも好ましくは、ポリエチレンテレフタレート(PET)である。なお、「(メタ)アクリル系樹脂」とは、アクリル系樹脂および/またはメタクリル系樹脂をいう。
C-2. Protective film Any appropriate resin film may be employed as the protective film. Examples of the protective film forming material include polyester resins such as polyethylene terephthalate (PET), cellulose resins such as triacetyl cellulose (TAC), cycloolefin resins such as norbornene resins, and olefins such as polyethylene and polypropylene. Examples thereof include resins and (meth) acrylic resins. Of these, polyethylene terephthalate (PET) is preferable. The “(meth) acrylic resin” refers to an acrylic resin and / or a methacrylic resin.
 1つの実施形態においては、上記(メタ)アクリル系樹脂として、グルタルイミド構造を有する(メタ)アクリル系樹脂が用いられる。グルタルイミド構造を有する(メタ)アクリル系樹脂(以下、グルタルイミド樹脂とも称する)は、例えば、特開2006-309033号公報、特開2006-317560号公報、特開2006-328329号公報、特開2006-328334号公報、特開2006-337491号公報、特開2006-337492号公報、特開2006-337493号公報、特開2006-337569号公報、特開2007-009182号公報、特開2009-161744号公報、特開2010-284840号公報に記載されている。これらの記載は、本明細書に参考として援用される。 In one embodiment, a (meth) acrylic resin having a glutarimide structure is used as the (meth) acrylic resin. Examples of (meth) acrylic resins having a glutarimide structure (hereinafter also referred to as glutarimide resins) include, for example, JP-A-2006-309033, JP-A-2006-317560, JP-A-2006-328329, and JP-A-2006-328329. JP-A-2006-328334, JP-A-2006-337491, JP-A-2006-337492, JP-A-2006-337493, JP-A-2006-337569, JP-A-2007-009182, JP-A-2009- Nos. 161744 and 2010-284840. These descriptions are incorporated herein by reference.
 上記保護フィルムと上記偏光子とは、任意の適切な接着剤層を介して積層される。偏光子作製時に用いた樹脂基材は、保護フィルムと偏光子とを積層する前、あるいは、積層した後に、剥離され得る。 The protective film and the polarizer are laminated via any appropriate adhesive layer. The resin base material used at the time of producing the polarizer can be peeled off before or after the protective film and the polarizer are laminated.
 上記保護フィルムの厚みは、好ましくは5μm~55μmであり、より好ましくは10μm~50μmであり、さらに好ましくは15μm~45μmである。 The thickness of the protective film is preferably 5 μm to 55 μm, more preferably 10 μm to 50 μm, and still more preferably 15 μm to 45 μm.
D.粘着剤層
 粘着剤層の厚みは、好ましくは5μm~100μmであり、より好ましくは10μm~70μmである。このような範囲であれば、接着力が適切に調整され、剥離時のガラスフィルムの破断が特に生じ難く、被着体から容易に剥離し得、かつ、粘着剤層の耐久性に優れる光学積層体を得ることができる。
D. The thickness of the adhesive layer adhesive layer is preferably 5 [mu] m ~ 100 [mu] m, more preferably 10 [mu] m ~ 70 [mu] m. If it is in such a range, the adhesive strength is appropriately adjusted, the glass film is hardly broken at the time of peeling, it can be easily peeled off from the adherend, and the optical layer is excellent in the durability of the pressure-sensitive adhesive layer. You can get a body.
 上記粘着剤層は、本発明の効果が得られる限り、任意の適切な粘着剤を含む。好ましくは、上記粘着剤層は、(メタ)アクリル系粘着剤および/またはウレタン系粘着剤を含む。これらの粘着剤を用いれば、接着力が適切に調整され、剥離時のガラスフィルムの破断が特に生じ難い光学積層体を得ることができる。 The pressure-sensitive adhesive layer contains any appropriate pressure-sensitive adhesive as long as the effects of the present invention can be obtained. Preferably, the pressure-sensitive adhesive layer contains a (meth) acrylic pressure-sensitive adhesive and / or a urethane pressure-sensitive adhesive. By using these pressure-sensitive adhesives, it is possible to obtain an optical laminate in which the adhesive force is appropriately adjusted and the glass film is hardly broken at the time of peeling.
D-1.(メタ)アクリル系粘着剤
 (メタ)アクリル系粘着剤は(メタ)アクリル系ポリマーを含む。
D-1. (Meth) acrylic pressure-sensitive adhesive (meth) acrylic pressure-sensitive adhesive contains a (meth) acrylic polymer.
 (メタ)アクリル系粘着剤中の(メタ)アクリル系ポリマーの含有割合は、好ましくは40重量%~99.9重量%であり、より好ましくは50重量%~99.5重量%であり、さらに好ましくは60重量%~99重量%である。 The content ratio of the (meth) acrylic polymer in the (meth) acrylic pressure-sensitive adhesive is preferably 40% by weight to 99.9% by weight, more preferably 50% by weight to 99.5% by weight, Preferably, it is 60 to 99% by weight.
 (メタ)アクリル系ポリマーは、構成モノマー成分として、(メタ)アクリル系モノマーを含むポリマーである。(メタ)アクリル系ポリマーは、1種のみであってもよいし、2種以上であってもよい。(メタ)アクリル系モノマーは、1種のみであってもよいし、2種以上であってもよい。 (Meth) acrylic polymer is a polymer containing a (meth) acrylic monomer as a constituent monomer component. Only one type of (meth) acrylic polymer may be used, or two or more types may be used. Only one (meth) acrylic monomer may be used, or two or more may be used.
 (メタ)アクリル系ポリマーは、ポリマーを構成するモノマー成分として、(メタ)アクリル酸アルキルエステルを含むことが好ましい。(メタ)アクリル酸アルキルエステルとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、へキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、n-ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、n-デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、n-ドデシル(メタ)アクリレート、n-トリデシル(メタ)アクリレート、n-テトラデシル(メタ)アクリレートなどの炭素数1~18のアルキル基を有する(メタ)アクリル酸アルキルエステルが挙げられる。これらの中でも、炭素数4~13のアルキル基を有する(メタ)アクリル酸アルキルエステルが好ましく、より好ましくは、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、n-ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、n-デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、n-ドデシル(メタ)アクリレート、n-トリデシル(メタ)アクリレートである。(メタ)アクリル酸アルキルエステルは、1種のみであってもよいし、2種以上であってもよい。 The (meth) acrylic polymer preferably contains (meth) acrylic acid alkyl ester as a monomer component constituting the polymer. Examples of (meth) acrylic acid alkyl esters include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, and hexyl. (Meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, n-decyl (meth) acrylate, isodecyl (Meth) acrylates having 1 to 18 carbon atoms such as (meth) acrylate, n-dodecyl (meth) acrylate, n-tridecyl (meth) acrylate, n-tetradecyl (meth) acrylate, etc. Glycol ester and the like. Among these, (meth) acrylic acid alkyl esters having an alkyl group having 4 to 13 carbon atoms are preferred, more preferably 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, n-decyl (meth) acrylate, isodecyl (meth) acrylate, n-dodecyl (meth) acrylate, and n-tridecyl (meth) acrylate. Only one (meth) acrylic acid alkyl ester may be used, or two or more may be used.
 (メタ)アクリル系ポリマーを構成する全モノマー成分(100重量%)に対する(メタ)アクリル酸アルキルエステルの含有割合は、好ましくは70重量%~98重量%であり、より好ましくは80重量%~98重量%であり、さらに好ましくは85重量%~98重量%であり、特に好ましくは90重量%~98重量%である。 The content ratio of the (meth) acrylic acid alkyl ester to the total monomer components (100 wt%) constituting the (meth) acrylic polymer is preferably 70 wt% to 98 wt%, more preferably 80 wt% to 98 wt%. % By weight, more preferably 85% by weight to 98% by weight, and particularly preferably 90% by weight to 98% by weight.
 (メタ)アクリル系ポリマーを構成するモノマー成分は、さらにヒドロキシル基含有モノマーを含んでいてもよい。ヒドロキシル基含有モノマーとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、8-ヒドロキシオクチル(メタ)アクリレート、10-ヒドロキシデシル(メタ)アクリレート、12-ヒドロキシラウリル(メタ)アクリレート、(4-ヒドロキシメチルシクロへキシル)メチルアクリレート、N-メチロール(メタ)アクリルアミド、ビニルアルコール、アリルアルコール、2-ヒドロキシエチルビニルエーテル、4-ヒドロキシブチルビニルエーテル、ジエチレングリコールモノビニルエーテルなどが挙げられる。ヒドロキシル基含有モノマーは、1種のみであってもよいし、2種以上であってもよい。 The monomer component constituting the (meth) acrylic polymer may further contain a hydroxyl group-containing monomer. Examples of the hydroxyl group-containing monomer include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl ( (Meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate, (4-hydroxymethylcyclohexyl) methyl acrylate, N-methylol (meth) acrylamide, vinyl alcohol, allyl alcohol, 2- Examples thereof include hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether, and diethylene glycol monovinyl ether. Only one kind of hydroxyl group-containing monomer may be used, or two or more kinds thereof may be used.
 (メタ)アクリル系ポリマーを構成する全モノマー成分(100重量%)に対するヒドロキシル基含有モノマーの含有割合は、好ましくは0.1重量%~15重量%であり、より好ましくは0.5重量%~13重量%であり、さらに好ましくは0.5重量%~10重量%であり、特に好ましくは1重量%~8重量%である。 The content ratio of the hydroxyl group-containing monomer to the total monomer component (100% by weight) constituting the (meth) acrylic polymer is preferably 0.1% by weight to 15% by weight, more preferably 0.5% by weight to It is 13% by weight, more preferably 0.5% by weight to 10% by weight, and particularly preferably 1% by weight to 8% by weight.
 (メタ)アクリル系ポリマーを構成するモノマー成分には、(メタ)アクリル系ポリマーに架橋構造を導入することができ、適切な凝集力が得られるという観点から、例えば、多官能モノマーが含まれていてもよい。多官能モノマーとしては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6へキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジビニルベンゼン、N,N´-メチレンビスアクリルアミドなどが挙げられる。多官能モノマーは、1種のみであってもよいし、2種以上であってもよい。 The monomer component constituting the (meth) acrylic polymer contains, for example, a polyfunctional monomer from the viewpoint that a crosslinked structure can be introduced into the (meth) acrylic polymer and appropriate cohesive force can be obtained. May be. Examples of the polyfunctional monomer include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, and 1,6 hexanediol di (meta). ) Acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, divinylbenzene, N, N′-methylenebisacrylamide and the like. Only one type of polyfunctional monomer may be used, or two or more types may be used.
 (メタ)アクリル系ポリマーを構成する全モノマー成分(100重量%)に対する多官能モノマーの含有割合は、好ましくは0.1重量%~30重量%であり、より好ましくは0.1重量%~10重量%である。このような範囲であれば、接着力が適切に調整され、剥離時のガラスフィルムの破断が特に生じ難い光学積層体を得ることができる。 The content ratio of the polyfunctional monomer to the total monomer component (100 wt%) constituting the (meth) acrylic polymer is preferably 0.1 wt% to 30 wt%, more preferably 0.1 wt% to 10 wt%. % By weight. Within such a range, it is possible to obtain an optical laminate in which the adhesive strength is appropriately adjusted and the glass film is not particularly easily broken during peeling.
 (メタ)アクリル系ポリマーを構成するモノマー成分には、さらに他のモノマーを含んでいてもよい。他のモノマーとしては、例えば、シアノ基含有モノマー、ビニルエステルモノマー、芳香族ビニルモノマー、アミド基含有モノマー、イミド基含有モノマー、アミノ基含有モノマー、エポキシ基含有モノマー、ビニルエーテルモノマー、N-アクリロイルモルホリンなどが挙げられる。これらの中でも、凝集力、耐熱性を向上させる観点から、シアノ基含有モノマー、ビニルエステルモノマー、芳香族ビニルモノマーが好ましい。また、接着力の向上や、架橋点として働く官能基を有するという観点から、アミド基含有モノマー、イミド基含有モノマー、アミノ基含有モノマー、エポキシ基含有モノマー、ビニルエーテルモノマー、N-アクリロイルモルホリンが好ましい。他のモノマーは、1種のみであってもよいし、2種以上であってもよい。 The monomer component constituting the (meth) acrylic polymer may further contain other monomers. Examples of other monomers include cyano group-containing monomers, vinyl ester monomers, aromatic vinyl monomers, amide group-containing monomers, imide group-containing monomers, amino group-containing monomers, epoxy group-containing monomers, vinyl ether monomers, and N-acryloylmorpholine. Is mentioned. Among these, a cyano group-containing monomer, a vinyl ester monomer, and an aromatic vinyl monomer are preferable from the viewpoint of improving cohesion and heat resistance. From the viewpoint of improving adhesive strength and having a functional group that functions as a crosslinking point, amide group-containing monomers, imide group-containing monomers, amino group-containing monomers, epoxy group-containing monomers, vinyl ether monomers, and N-acryloylmorpholine are preferred. Only one type of other monomer may be used, or two or more types may be used.
 シアノ基含有モノマーとしては、例えば、アクリロニトリル、メタクリロニトリルなどが挙げられる。 Examples of the cyano group-containing monomer include acrylonitrile and methacrylonitrile.
 ビニルエステルモノマーとしては、例えば、酢酸ビニル、プロピオン酸ビニル、ラウリン酸ビニルなどのビニルエステル類が挙げられる。 Examples of the vinyl ester monomer include vinyl esters such as vinyl acetate, vinyl propionate, and vinyl laurate.
 芳香族ビニルモノマーとしては、例えば、スチレン、クロロスチレン、クロロメチルスチレン、α-メチルスチレン、その他の置換スチレンなどが挙げられる。 Examples of the aromatic vinyl monomer include styrene, chlorostyrene, chloromethylstyrene, α-methylstyrene, and other substituted styrene.
 アミド基含有モノマーとしては、例えば、アクリルアミド、メタクリルアミド、ジエチルアクリルアミド、N-ビニルピロリドン、N,N-ジメチルアクリルアミド、N,N-ジメチルメタクリルアミド、N,N-ジエチルアクリルアミド、N,N-ジエチルメタクリルアミド、N,N´-メチレンビスアクリルアミド、N,N-ジメチルアミノプロピルアクリルアミド、N,N-ジメチルアミノプロピルメタクリルアミド、ジアセトンアクリルアミドなどが挙げられる。 Examples of amide group-containing monomers include acrylamide, methacrylamide, diethyl acrylamide, N-vinyl pyrrolidone, N, N-dimethyl acrylamide, N, N-dimethyl methacrylamide, N, N-diethyl acrylamide, N, N-diethyl methacryl. Examples thereof include amide, N, N′-methylenebisacrylamide, N, N-dimethylaminopropyl acrylamide, N, N-dimethylaminopropyl methacrylamide, and diacetone acrylamide.
 イミド基含有モノマーとしては、例えば、シクロヘキシルマレイミド、イソプロピルマレイミド、N-シクロヘキシルマレイミド、イタコンイミドなどが挙げられる。 Examples of the imide group-containing monomer include cyclohexylmaleimide, isopropylmaleimide, N-cyclohexylmaleimide, and itaconimide.
 アミノ基含有モノマーとしては、例えば、アミノエチル(メタ)アクリレート、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリレートなどが挙げられる。 Examples of the amino group-containing monomer include aminoethyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylate, and the like.
 エポキシ基含有モノマーとしては、例えば、グリシジル(メタ)アクリレート、メチルグリシジル(メタ)アクリレート、アリルグリシジルエーテルなどが挙げられる。 Examples of the epoxy group-containing monomer include glycidyl (meth) acrylate, methyl glycidyl (meth) acrylate, and allyl glycidyl ether.
 ビニルエーテルモノマーとしては、例えば、メチルビニルエーテル、エチルビニルエーテル、イソブチルビニルエーテルなどが挙げられる。 Examples of the vinyl ether monomer include methyl vinyl ether, ethyl vinyl ether, isobutyl vinyl ether, and the like.
 (メタ)アクリル系ポリマーを構成する全モノマー成分(100重量%)に対する他のモノマーの含有割合は、好ましくは0~40重量%であり、より好ましくは0重量%より多く40重量%以下であり、さらに好ましくは0重量%より多く35重量%以下であり、特に好ましくは0重量%より多く30重量%以下である。 The content ratio of other monomers to the total monomer components (100% by weight) constituting the (meth) acrylic polymer is preferably 0 to 40% by weight, more preferably more than 0% by weight and 40% by weight or less. More preferably, it is more than 0% by weight and 35% by weight or less, and particularly preferably more than 0% by weight and 30% by weight or less.
 (メタ)アクリル系ポリマーを構成するモノマー成分は、被着体に対する接着力の上昇性を抑制するという観点から、カルボキシル基含有モノマー、スルホ基含有モノマー、リン酸基含有モノマー、酸無水物基含有モノマーを含まないことが好ましい。すなわち、他のモノマーには、カルボキシル基含有モノマー、スルホ基含有モノマー、リン酸基含有モノマー、酸無水物基含有モノマーが含まれないことが好ましい。 The monomer component constituting the (meth) acrylic polymer has a carboxyl group-containing monomer, a sulfo group-containing monomer, a phosphate group-containing monomer, and an acid anhydride group-containing from the viewpoint of suppressing an increase in adhesion to an adherend. It is preferable that no monomer is contained. That is, it is preferable that the other monomer does not include a carboxyl group-containing monomer, a sulfo group-containing monomer, a phosphate group-containing monomer, and an acid anhydride group-containing monomer.
 (メタ)アクリル系ポリマーは、該(メタ)アクリル系ポリマーを構成するモノマー成分を重合することにより得ることができる。重合方法としては、例えば、溶液重合、乳化重合、塊状重合、懸濁重合、光重合(活性エネルギー線重合)などが挙げられる。これらの中でも、コストや生産性の観点から、溶液重合が好ましい。得られる(メタ)アクリル系ポリマーは、ランダム共重合体、ブロック共重合体、交互共重合体、グラフト共重合体など、いずれでもよい。 (Meth) acrylic polymer can be obtained by polymerizing monomer components constituting the (meth) acrylic polymer. Examples of the polymerization method include solution polymerization, emulsion polymerization, bulk polymerization, suspension polymerization, photopolymerization (active energy ray polymerization), and the like. Among these, solution polymerization is preferable from the viewpoint of cost and productivity. The (meth) acrylic polymer to be obtained may be any of a random copolymer, a block copolymer, an alternating copolymer, a graft copolymer, and the like.
 (メタ)アクリル系ポリマーの重量平均分子量は、好ましくは10万~500万であり、より好ましくは20万~400万であり、さらに好ましくは30万~300万である。 The weight average molecular weight of the (meth) acrylic polymer is preferably 100,000 to 5,000,000, more preferably 200,000 to 4,000,000, and further preferably 300,000 to 3,000,000.
 (メタ)アクリル系ポリマーのガラス転移温度(Tg)は、好ましくは0℃以下であり、より好ましくは-10℃以下である。ガラス転移温度(Tg)は、各モノマーから得られるホモポリマーのガラス転移温度をTgn(℃)としたとき、下記式により求めることができる。
 1/(Tg+273)=Σ〔Wn/(Tgn+273)〕
 式中、Tg(℃)は共重合体のガラス転移温度、Wnは各モノマーの重量分率、Tgn(℃)は各モノマーから得られるホモポリマーのガラス転移温度、nは各モノマーの種類を表す。
The glass transition temperature (Tg) of the (meth) acrylic polymer is preferably 0 ° C. or lower, more preferably −10 ° C. or lower. The glass transition temperature (Tg) can be determined by the following formula, where the glass transition temperature of the homopolymer obtained from each monomer is Tgn (° C.).
1 / (Tg + 273) = Σ [Wn / (Tgn + 273)]
In the formula, Tg (° C.) is the glass transition temperature of the copolymer, Wn is the weight fraction of each monomer, Tgn (° C.) is the glass transition temperature of the homopolymer obtained from each monomer, and n is the type of each monomer. .
 (メタ)アクリル系粘着剤は、適度な凝集力が得られるという観点から、架橋剤を含んでいてもよい。架橋剤としては、例えば、イソシアネート系架橋剤、エポキシ系架橋剤、メラミン系架橋剤、アジリジン系架橋剤、および金属キレート系架橋剤などが挙げられる。これらの中でも、本発明の効果を十分に発現し得る点で、イソシアネート系架橋剤、エポキシ系架橋剤が好ましい。架橋剤は、1種のみであってもよいし、2種以上であってもよい。 The (meth) acrylic pressure-sensitive adhesive may contain a cross-linking agent from the viewpoint that an appropriate cohesive force can be obtained. Examples of the crosslinking agent include an isocyanate crosslinking agent, an epoxy crosslinking agent, a melamine crosslinking agent, an aziridine crosslinking agent, and a metal chelate crosslinking agent. Among these, an isocyanate type crosslinking agent and an epoxy type crosslinking agent are preferable in that the effects of the present invention can be sufficiently exhibited. One type of crosslinking agent may be sufficient and 2 or more types may be sufficient as it.
 イソシアネート系架橋剤としては、例えば、ブチレンジイソシアネート、ヘキサメチレンジイソシアネートなどの低級脂肪族ポリイソシアネート類、シクロペンチレンジイソシアネート、シクロへキシレンジイソシアネート、イソホロンジイソシアネートなどの脂環族イソシアネート類、2,4-トリレンジイソシアネート、4,4´-ジフェニルメタンジイソシアネート、キシリレンジイソシアネートなどの芳香族イソシアネート類、トリメチロールプロパン/トリレンジイソシアネート3量体付加物(商品名「コロネートL」日本ポリウレタン工業社製)、トリメチロールプロパン/へキサメチレンジイソシアネート3量体付加物(商品名「コロネートHL」日本ポリウレタン工業社製)、ヘキサメチレンジイソシアネートのイソシアヌレート体(商品名「コロネートHX」日本ポリウレタン工業社製)などのイソシアネート付加物などが挙げられる。 Examples of the isocyanate-based crosslinking agent include lower aliphatic polyisocyanates such as butylene diisocyanate and hexamethylene diisocyanate, alicyclic isocyanates such as cyclopentylene diisocyanate, cyclohexylene diisocyanate and isophorone diisocyanate, and 2,4-tolylene diene. Isocyanates, aromatic isocyanates such as 4,4′-diphenylmethane diisocyanate, xylylene diisocyanate, trimethylolpropane / tolylene diisocyanate trimer adduct (trade name “Coronate L” manufactured by Nippon Polyurethane Industry Co., Ltd.), trimethylolpropane / Hexamethylene diisocyanate trimer adduct (trade name “Coronate HL” manufactured by Nippon Polyurethane Industry Co., Ltd.), Isocyanate of hexamethylene diisocyanate Rate body (trade name "Coronate HX" manufactured by Nippon Polyurethane Industry Co., Ltd.), and the like isocyanate adducts such as.
 エポキシ系架橋剤としては、例えば、ビスフェノールA、エピクロルヒドリン型のエポキシ系樹脂、エチレングリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、グリセリントリグリシジルエーテル、1,6-ヘキサンジオールグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ジグリシジルアニリン、ジアミングリシジルアミン、N,N,N´,N´-テトラグリシジル-m-キシレンジアミン(商品名「TETRAD-X」三菱瓦斯化学社製)、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロへキサン(商品名「TETRAD-C」三菱瓦斯化学社製)などが挙げられる。 Examples of the epoxy crosslinking agent include bisphenol A, epichlorohydrin type epoxy resin, ethylene glycidyl ether, polyethylene glycol diglycidyl ether, glycerin diglycidyl ether, glycerin triglycidyl ether, 1,6-hexanediol glycidyl ether, and trimethylol. Propane triglycidyl ether, diglycidyl aniline, diamine glycidyl amine, N, N, N ′, N′-tetraglycidyl-m-xylenediamine (trade name “TETRAD-X” manufactured by Mitsubishi Gas Chemical Company), 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane (trade name “TETRAD-C” manufactured by Mitsubishi Gas Chemical Company, Inc.).
 架橋剤の配合量は、(メタ)アクリル系ポリマー100重量部に対して、好ましくは0.01重量部~15重量部であり、より好ましくは0.1重量部~10重量部であり、さらに好ましくは0.1重量部~8重量部であり、特に好ましくは0.5重量部~5重量部である。(メタ)アクリル系ポリマー100重量部に対する架橋剤の配合量を、上記範囲内に調整することにより、接着力が適切に調整され、剥離時のガラスフィルムの破断が特に生じ難い光学積層体を得ることができる。 The amount of the crosslinking agent is preferably 0.01 to 15 parts by weight, more preferably 0.1 to 10 parts by weight, with respect to 100 parts by weight of the (meth) acrylic polymer. The amount is preferably 0.1 to 8 parts by weight, particularly preferably 0.5 to 5 parts by weight. By adjusting the blending amount of the cross-linking agent with respect to 100 parts by weight of the (meth) acrylic polymer within the above range, an optical laminate is obtained in which the adhesive force is appropriately adjusted and the glass film is not easily broken during peeling. be able to.
 (メタ)アクリル系粘着剤は、架橋触媒を含んでいてもよい。架橋触媒としては、例えば、テトラ-n-ブチルチタネート、テトライソプロピルチタネート、ナーセム第二鉄、ブチルスズオキシド、ジオクチルスズジラウレートなどの金属系架橋触媒(特にスズ系架橋触媒)が挙げられる。架橋触媒は、1種のみであってもよいし、2種以上であってもよい。 (Meth) acrylic pressure-sensitive adhesive may contain a crosslinking catalyst. Examples of the cross-linking catalyst include metal-based cross-linking catalysts (particularly tin-based cross-linking catalysts) such as tetra-n-butyl titanate, tetraisopropyl titanate, nasec ferric acid, butyl tin oxide, and dioctyl tin dilaurate. Only one type of crosslinking catalyst may be used, or two or more types may be used.
 架橋触媒の配合量は、(メタ)アクリル系ポリマー100重量部に対して、好ましくは0.001重量部~0.05重量部であり、より好ましくは0.003重量部~0.04重量部であり、さらに好ましくは0.005重量部~0.03重量部である。 The amount of the crosslinking catalyst is preferably 0.001 to 0.05 parts by weight, more preferably 0.003 to 0.04 parts by weight per 100 parts by weight of the (meth) acrylic polymer. More preferably, it is 0.005 to 0.03 parts by weight.
 (メタ)アクリル系粘着剤は、架橋遅延剤を含んでいてもよい。架橋遅延剤としては、例えば、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸オクチル、アセト酢酸オレイル、アセト酢酸ラウリル、アセト酢酸ステアリル等のβ-ケトエステルや、アセチルアセトン、2,4-ヘキサンジオン、ベンゾイルアセトン等のβ-ジケトンが挙げられる。これらの中でも、本発明の効果を十分に発現し得る点で、アセチルアセトンが好ましい。架橋遅延剤は、1種のみであってもよいし、2種以上であってもよい。 (Meth) acrylic adhesive may contain a crosslinking retarder. Examples of the crosslinking retarder include β-ketoesters such as methyl acetoacetate, ethyl acetoacetate, octyl acetoacetate, oleyl acetoacetate, lauryl acetoacetate, stearyl acetoacetate, acetylacetone, 2,4-hexanedione, benzoylacetone, etc. Β-diketone. Among these, acetylacetone is preferable in that the effects of the present invention can be sufficiently exhibited. Only one type of crosslinking retarder may be used, or two or more types may be used.
 架橋遅延剤の配合量は、(メタ)アクリル系ポリマー100重量部に対して、好ましくは0.1重量部~10重量部であり、より好ましくは0.1重量部~5重量部であり、さらに好ましくは0.1重量部~3重量部である。 The amount of the crosslinking retarder is preferably 0.1 to 10 parts by weight, more preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the (meth) acrylic polymer. More preferably, it is 0.1 to 3 parts by weight.
 (メタ)アクリル系粘着剤は、本発明の効果を損なわない範囲で、可塑剤、老化防止剤、着色剤(顔料や染料など)、帯電防止剤、粘着付与樹脂などの添加剤を含んでいてもよい。また、(メタ)アクリル系粘着剤は、任意の適切な溶媒を含んでいてもよい。 The (meth) acrylic pressure-sensitive adhesive contains additives such as a plasticizer, an anti-aging agent, a colorant (such as a pigment and a dye), an antistatic agent, and a tackifying resin as long as the effects of the present invention are not impaired. Also good. The (meth) acrylic pressure-sensitive adhesive may contain any appropriate solvent.
D-2.ウレタン系粘着剤
 ウレタン系粘着剤はポリウレタン系樹脂を含む。
D-2. Urethane adhesive The urethane adhesive contains a polyurethane resin.
 ウレタン系粘着剤中のポリウレタン系樹脂の含有割合は、好ましくは40重量%~99重量%であり、より好ましくは50重量%~95重量%であり、さらに好ましくは60重量%~90重量%である。 The polyurethane resin content in the urethane pressure-sensitive adhesive is preferably 40% by weight to 99% by weight, more preferably 50% by weight to 95% by weight, and still more preferably 60% by weight to 90% by weight. is there.
 ポリウレタン系樹脂は、1種のみであってもよいし、2種以上であってもよい。 Only one type of polyurethane resin may be used, or two or more types may be used.
 ポリウレタン系樹脂は、ポリオール(A)と多官能イソシアネート化合物(B)とを反応させて得られ得る。 The polyurethane resin can be obtained by reacting the polyol (A) with the polyfunctional isocyanate compound (B).
 ポリオール(A)としては、1種のみであってもよいし、2種以上であってもよい。 As a polyol (A), only 1 type may be sufficient and 2 or more types may be sufficient.
 ポリオール(A)としては、例えば、ポリエステルポリオール、ポリエーテルポリオール、ポリカプロラクトンポリオール、ポリカーボネートポリオール、ひまし油系ポリオールなどが挙げられる。 Examples of the polyol (A) include polyester polyol, polyether polyol, polycaprolactone polyol, polycarbonate polyol, and castor oil-based polyol.
 ポリエステルポリオールとしては、例えば、ポリオール成分と酸成分とのエステル化反応によって得ることができる。 Polyester polyol can be obtained, for example, by an esterification reaction between a polyol component and an acid component.
 ポリオール成分としては、例えば、エチレングリコール、ジエチレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、2,4-ジエチル-1,5-ペンタンジオール、1,2-ヘキサンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、2-メチル-1,8-オクタンジオール、1,8-デカンジオール、オクタデカンジオール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ヘキサントリオール、ポリプロピレングリコールなどが挙げられる。 Examples of the polyol component include ethylene glycol, diethylene glycol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, 2-butyl-2-ethyl-1 , 3-propanediol, 2,4-diethyl-1,5-pentanediol, 1,2-hexanediol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 2-methyl -1,8-octanediol, 1,8-decanediol, octadecanediol, glycerin, trimethylolpropane, pentaerythritol, hexanetriol, polypropylene glycol and the like.
 酸成分としては、例えば、コハク酸、メチルコハク酸、アジピン酸、ピメリック酸、アゼライン酸、セバシン酸、1,12-ドデカン二酸、1,14-テトラデカン二酸、ダイマー酸、2-メチル-1,4-シクロヘキサンジカルボン酸、2-エチル-1,4-シクロヘキサンジカルボン酸、テレフタル酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、4,4’-ビフェエルジカルボン酸、これらの酸無水物などが挙げられる。 Examples of the acid component include succinic acid, methyl succinic acid, adipic acid, pimelic acid, azelaic acid, sebacic acid, 1,12-dodecanedioic acid, 1,14-tetradecanedioic acid, dimer acid, 2-methyl-1, 4-cyclohexanedicarboxylic acid, 2-ethyl-1,4-cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 4,4'-biphenyldicarboxylic acid, acid anhydrides thereof Etc.
 ポリエーテルポリオールとしては、例えば、水、低分子ポリオール(プロピレングリコール、エチレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトールなど)、ビスフェノール類(ビスフェノールAなど)、ジヒドロキシベンゼン(カテコール、レゾルシン、ハイドロキノンなど)などを開始剤として、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイドなどのアルキレンオキサイドを付加重合させることによって得られるポリエーテルポリオールが挙げられる。具体的には、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコールなどが挙げられる。 Examples of polyether polyols include water, low molecular weight polyols (propylene glycol, ethylene glycol, glycerin, trimethylolpropane, pentaerythritol, etc.), bisphenols (bisphenol A, etc.), dihydroxybenzenes (catechol, resorcin, hydroquinone, etc.), etc. And polyether polyols obtained by addition polymerization of alkylene oxides such as ethylene oxide, propylene oxide, butylene oxide. Specific examples include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and the like.
 ポリカプロラクトンポリオールとしては、例えば、ε-カプロラクトン、σ-バレーロラクトンなどの環状エステルモノマーの開環重合により得られるカプロラクトン系ポリエステルジオールなどが挙げられる。 Examples of the polycaprolactone polyol include caprolactone-based polyester diols obtained by ring-opening polymerization of cyclic ester monomers such as ε-caprolactone and σ-valerolactone.
 ポリカーボネートポリオールとしては、例えば、上記ポリオール成分とホスゲンとを重縮合反応させて得られるポリカーボネートポリオール;上記ポリオール成分と、炭酸ジメチル、炭酸ジエチル、炭酸ジプロビル、炭酸ジイソプロピル、炭酸ジブチル、エチルブチル炭酸、エチレンカーボネート、プロピレンカーボネート、炭酸ジフェニル、炭酸ジベンジル等の炭酸ジエステル類とをエステル交換縮合させて得られるポリカーボネートポリオール;上記ポリオール成分を2種以上併用して得られる共重合ポリカーボネートポリオール;上記各種ポリカーボネートポリオールとカルボキシル基含有化合物とをエステル化反応させて得られるポリカーボネートポリオール;上記各種ポリカーボネートポリオールとヒドロキシル基含有化合物とをエーテル化反応させて得られるポリカーボネートポリオール;上記各種ポリカーボネートポリオールとエステル化合物とをエステル交換反応させて得られるポリカーボネートポリオール;上記各種ポリカーボネートポリオールとヒドロキシル基含有化合物とをエステル交換反応させて得られるポリカーボネートポリオール;上記各種ポリカーボネートポリオールとジカルボン酸化合物とを重縮合反応させて得られるポリエステル系ポリカーボネートポリオール;上記各種ポリカーボネートポリオールとアルキレンオキサイドとを共重合させて得られる共重合ポリエーテル系ポリカーボネートポリオール;などが挙げられる。 Examples of the polycarbonate polyol include a polycarbonate polyol obtained by polycondensation reaction of the polyol component and phosgene; the polyol component, dimethyl carbonate, diethyl carbonate, diprovir carbonate, diisopropyl carbonate, dibutyl carbonate, ethyl butyl carbonate, ethylene carbonate, Polycarbonate polyol obtained by ester exchange condensation with carbonic acid diesters such as propylene carbonate, diphenyl carbonate and dibenzyl carbonate; copolymerized polycarbonate polyol obtained by using two or more of the above polyol components in combination; Polycarbonate polyol obtained by esterification reaction with a compound; the above-mentioned various polycarbonate polyols and a hydroxyl group-containing compound; Polycarbonate polyol obtained by etherification reaction; polycarbonate polyol obtained by transesterification of the various polycarbonate polyols and ester compounds; polycarbonate polyol obtained by transesterification of the various polycarbonate polyols and hydroxyl group-containing compounds; And polyester polycarbonate polyols obtained by polycondensation reaction of the various polycarbonate polyols with dicarboxylic acid compounds; copolymer polyether polycarbonate polyols obtained by copolymerizing the various polycarbonate polyols and alkylene oxides;
 ひまし油系ポリオールとしては、例えば、ひまし油脂肪酸と上記ポリオール成分とを反応させて得られるひまし油系ポリオールが挙げられる。具体的には、例えば、ひまし油脂肪酸とポリプロピレングリコールとを反応させて得られるひまし油系ポリオールが挙げられる。 Examples of castor oil-based polyol include castor oil-based polyol obtained by reacting castor oil fatty acid with the above polyol component. Specific examples include castor oil-based polyols obtained by reacting castor oil fatty acid with polypropylene glycol.
 1つの実施形態においては、ポリオール(A)として、OH基を3個有するポリオール(トリオール)が用いられる。トリオールを用いれば、接着力が適切に調整され、剥離時のガラスフィルムの破断が特に生じ難い光学積層体を得ることができる。ポリオール(A)中の、OH基を3個有するポリオール(トリオール)の含有割合は、好ましくは50重量%~100重量%であり、より好ましくは70重量%~100重量%であり、さらに好ましくは80重量%~100重量%であり、さらに好ましくは90重量%~100重量%であり、特に好ましくは95重量%~100重量%であり、最も好ましくは実質的に100重量%である。 In one embodiment, a polyol (triol) having three OH groups is used as the polyol (A). When triol is used, an optical laminate can be obtained in which the adhesive force is appropriately adjusted and the glass film is hardly broken at the time of peeling. The content ratio of the polyol (triol) having 3 OH groups in the polyol (A) is preferably 50% by weight to 100% by weight, more preferably 70% by weight to 100% by weight, and still more preferably. It is 80 to 100% by weight, more preferably 90 to 100% by weight, particularly preferably 95 to 100% by weight, and most preferably substantially 100% by weight.
 ポリオール(A)としては、好ましくは、数平均分子量Mnが400~20000のポリオールを含む。ポリオール(A)中の、数平均分子量Mnが400~20000のポリオールの含有割合は、好ましくは50重量%~100重量%であり、より好ましくは70重量%~100重量%であり、さらに好ましくは90重量%~100重量%であり、特に好ましくは95重量%~100重量%であり、最も好ましくは実質的に100重量%である。 The polyol (A) preferably contains a polyol having a number average molecular weight Mn of 400 to 20000. The content ratio of the polyol having a number average molecular weight Mn of 400 to 20000 in the polyol (A) is preferably 50% by weight to 100% by weight, more preferably 70% by weight to 100% by weight, and still more preferably. It is 90% to 100% by weight, particularly preferably 95% to 100% by weight, and most preferably substantially 100% by weight.
 1つの実施形態においては、ポリオール(A)としてOH基を3個有するポリオール(トリオール)を必須成分として採用する場合、数平均分子量Mnが7000~20000のトリオールと、数平均分子量Mnが2000~6000のトリオールと、数平均分子量Mnが400~1900のトリオールとを併用し、より好ましくは、数平均分子量Mnが8000~15000のトリオールと、数平均分子量Mnが2000~5000のトリオールと、数平均分子量Mnが500~1800のトリオールとを併用し、さらに好ましくは、数平均分子量Mnが8000~12000のトリオールと、数平均分子量Mnが2000~4000のトリオールと、数平均分子量Mnが500~1500のトリオールとを併用する。このような3種のトリオールを併用すると、接着力が適切に調整され、剥離時のガラスフィルムの破断が特に生じ難い光学積層体を得ることができる。 In one embodiment, when a polyol (triol) having three OH groups is used as the essential component as the polyol (A), a triol having a number average molecular weight Mn of 7000 to 20000 and a number average molecular weight Mn of 2000 to 6000 are used. And a triol having a number average molecular weight Mn of 400 to 1900, more preferably a triol having a number average molecular weight Mn of 8000 to 15000, a triol having a number average molecular weight Mn of 2000 to 5000, and a number average molecular weight. A triol having a Mn of 500 to 1800, more preferably a triol having a number average molecular weight Mn of 8000 to 12000, a triol having a number average molecular weight Mn of 2000 to 4000, and a triol having a number average molecular weight Mn of 500 to 1500 And in combination. When these three types of triols are used in combination, the adhesive strength is appropriately adjusted, and an optical laminate that is particularly difficult to break the glass film at the time of peeling can be obtained.
 多官能イソシアネート化合物(B)は、1種のみであってもよいし、2種以上であってもよい。 1 type of polyfunctional isocyanate compounds (B) may be sufficient, and 2 or more types may be sufficient as them.
 多官能イソシアネート化合物(B)としては、ウレタン化反応に用い得る任意の適切な多官能イソシアネート化合物を採用し得る。このような多官能イソシアネート化合物(B)としては、例えば、多官能脂肪族系イソシアネート化合物、多官能脂環族系イソシアネート、多官能芳香族系イソシアネート化合物などが挙げられる。 As the polyfunctional isocyanate compound (B), any suitable polyfunctional isocyanate compound that can be used for the urethanization reaction can be adopted. Examples of such a polyfunctional isocyanate compound (B) include polyfunctional aliphatic isocyanate compounds, polyfunctional alicyclic isocyanate compounds, polyfunctional aromatic isocyanate compounds, and the like.
 多官能脂肪族系イソシアネート化合物としては、例えば、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ペンタメチレンジイソシアネート、1,2-プロピレンジイソシアネート、1,3-ブチレンジイソシアネート、ドデカメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネートなどが挙げられる。 Examples of the polyfunctional aliphatic isocyanate compound include trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, pentamethylene diisocyanate, 1,2-propylene diisocyanate, 1,3-butylene diisocyanate, dodecamethylene diisocyanate, 2,4,4 Examples include 4-trimethylhexamethylene diisocyanate.
 多官能脂環族系イソシアネート化合物としては、例えば、1,3-シクロペンテンジイソシアネート、1,3-シクロへキサンジイソシアネート、1,4-シクロヘキサンジイソシアネート、イソホロンジイソシアネート、水素添加ジフェニルメタンジイソシアネート、水素添加キシリレンジイソシアネート、水素添加トリレンジイソシアネート、水素添加テトラメチルキシリレンジイソシアネートなどが挙げられる。 Examples of the polyfunctional alicyclic isocyanate compound include 1,3-cyclopentene diisocyanate, 1,3-cyclohexane diisocyanate, 1,4-cyclohexane diisocyanate, isophorone diisocyanate, hydrogenated diphenylmethane diisocyanate, hydrogenated xylylene diisocyanate, Examples include hydrogenated tolylene diisocyanate and hydrogenated tetramethylxylylene diisocyanate.
 多官能芳香族系ジイソシアネート化合物としては、例えば、フェニレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、2,2’一ジフェニルメタンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、4,4’-トルイジンジイソシアネート、4,4’-ジフェニルエーテルジイソシアネート、4,4’-ジフェニルジイソシアネート、1,5-ナフタレンジイソシアネート、キシリレンジイソシアネートなどが挙げられる。 Examples of the polyfunctional aromatic diisocyanate compound include phenylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 2,2 ′ monodiphenylmethane diisocyanate, 4,4′-diphenylmethane diisocyanate, 4,4 Examples include '-toluidine diisocyanate, 4,4'-diphenyl ether diisocyanate, 4,4'-diphenyl diisocyanate, 1,5-naphthalene diisocyanate, and xylylene diisocyanate.
 多官能イソシアネート化合物(B)としては、上記のような各種多官能イソシアネート化合物のトリメチロールプロパンアダクト体、水と反応したビュウレット体、イソシアヌレート環を有する3量体なども挙げられる。また、これらを併用してもよい。 Examples of the polyfunctional isocyanate compound (B) include trimethylolpropane adducts of various polyfunctional isocyanate compounds as described above, burettes reacted with water, and trimers having an isocyanurate ring. These may be used in combination.
 ポリオール(A)と多官能イソシアネート化合物(B)における、NCO基とOH基の当量比は、NCO基/OH基として、1.0を超えて5.0以下であり、好ましくは1.1~5.0であり、より好ましくは1.2~4.0であり、さらに好ましくは1.5~3.5であり、特に好ましくは1.8~3.0である。 In the polyol (A) and the polyfunctional isocyanate compound (B), the equivalent ratio of the NCO group to the OH group is more than 1.0 and not more than 5.0 as the NCO group / OH group, preferably 1.1 to 5.0, more preferably 1.2 to 4.0, still more preferably 1.5 to 3.5, and particularly preferably 1.8 to 3.0.
 ポリウレタン系粘着剤は、好ましくは、酸化防止剤、紫外線吸収剤、光安定剤といった劣化防止剤を含む。劣化防止剤は、1種のみであってもよいし、2種以上であってもよい。劣化防止剤として、特に好ましくは、酸化防止剤である。 The polyurethane-based pressure-sensitive adhesive preferably contains a deterioration preventing agent such as an antioxidant, an ultraviolet absorber, and a light stabilizer. Only one type of deterioration preventing agent may be used, or two or more types may be used. As the deterioration preventing agent, an antioxidant is particularly preferable.
 また、ウレタン系粘着剤は、本発明の効果を損なわない範囲で、任意の適切なその他の成分を含み得る。このようなその他の成分としては、例えば、ポリウレタン系樹脂以外の他の樹脂成分、粘着付与剤、無機充填剤、有機充填剤、金属粉、顔料、箔状物、軟化剤、可塑剤、老化防止剤、導電剤、紫外線吸収剤、酸化防止剤、光安定剤、表面潤滑剤、レベリング剤、腐食防止剤、耐熱安定剤、重合禁止剤、滑剤、溶剤などが挙げられる。 In addition, the urethane-based pressure-sensitive adhesive can contain any appropriate other component as long as the effects of the present invention are not impaired. Examples of such other components include other resin components other than polyurethane resins, tackifiers, inorganic fillers, organic fillers, metal powders, pigments, foils, softeners, plasticizers, and anti-aging agents. Agents, conductive agents, ultraviolet absorbers, antioxidants, light stabilizers, surface lubricants, leveling agents, corrosion inhibitors, heat stabilizers, polymerization inhibitors, lubricants, solvents and the like.
 ウレタン系粘着剤は、変性シリコーンオイルを含んでいても良い。 Urethane adhesive may contain a modified silicone oil.
 ウレタン系粘着剤が変性シリコーンオイルを含む場合、その含有割合は、ポリウレタン系樹脂100重量部に対して、好ましくは0.001重量部~50重量部であり、より好ましくは0.01重量部~40重量部であり、さらに好ましくは0.01重量部~30重量部であり、特に好ましくは0.01重量部~20重量部であり、最も好ましくは0.01重量部~10重量部である。 When the urethane pressure-sensitive adhesive contains a modified silicone oil, the content ratio is preferably 0.001 to 50 parts by weight, more preferably 0.01 parts by weight to 100 parts by weight of the polyurethane resin. 40 parts by weight, more preferably 0.01 parts by weight to 30 parts by weight, particularly preferably 0.01 parts by weight to 20 parts by weight, and most preferably 0.01 parts by weight to 10 parts by weight. .
 変性シリコーンオイルとしては、本発明の効果を損なわない範囲で、任意の適切な変性シリコーンオイルを採用し得る。このような変性シリコーンオイルとしては、例えば、信越化学工業(株)から入手可能な変性シリコーンオイルが挙げられる。変性シリコーンオイルとしては、好ましくは、ポリエーテル変性シリコーンオイルである。ポリエーテル変性シリコーンオイルとしては、側鎖型のポリエーテル変性シリコーンオイル、両末端型のポリエーテル変性シリコーンオイルなどが挙げられる。 As the modified silicone oil, any appropriate modified silicone oil can be adopted as long as the effects of the present invention are not impaired. Examples of such modified silicone oil include modified silicone oil available from Shin-Etsu Chemical Co., Ltd. The modified silicone oil is preferably a polyether-modified silicone oil. Examples of the polyether-modified silicone oil include a side chain-type polyether-modified silicone oil and a both-end-type polyether-modified silicone oil.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。また、実施例において、特に明記しない限り、「部」および「%」は重量基準である。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples. In Examples, unless otherwise specified, “parts” and “%” are based on weight.
[製造例1]偏光子Aの製造
 熱可塑性樹脂基材として、イソフタル酸ユニットを7モル%有するアモルファスのポリエチレンテレフタレート(以下、「PET」ともいう。)(IPA共重合PET)フィルム(厚み:100μm)を用意し、表面にコロナ処理(58W/m/min)を施した。一方、アセトアセチル変性PVA(日本合成化学工業(株)製、商品名:ゴーセファイマーZ200(平均重合度:1200,ケン化度:98.5モル%,アセトアセチル化度:5モル%)を1wt%添加したPVA(重合度4200、ケン化度99.2%)を用意して、PVA系樹脂が5.5wt%であるPVA水溶液の塗工液を準備し、乾燥後の膜厚が12μmになるように塗工し、60℃の雰囲気下において熱風乾燥により10分間乾燥して、基材上にPVA系樹脂の層を設けた積層体を作製した。
 次いで、この積層体をまず空気中130℃で1.8倍に自由端延伸して(空中補助延伸)、延伸積層体を生成した。次に、延伸積層体を液温30℃のホウ酸不溶化水溶液に30秒間浸漬することによって、延伸積層体に含まれるPVA分子が配向されたPVA層を不溶化する工程を行った。本工程のホウ酸不溶化水溶液は、ホウ酸含有量を水100重量部に対して3重量部とした。この延伸積層体を染色することによって着色積層体を生成した。着色積層体は、延伸積層体を液温30℃のヨウ素およびヨウ化カリウムを含む染色液に、最終的に生成される偏光子を構成するPVA層の単体透過率が40~44%になるように任意の時間、浸漬することによって、延伸積層体に含まれるPVA層をヨウ素により染色させたものである。本工程において、染色液は、水を溶媒として、ヨウ素濃度を0.1~0.4重量%の範囲内とし、ヨウ化カリウム濃度を0.7~2.8重量%の範囲内とした。ヨウ素とヨウ化カリウムの濃度の比は1対7である。次に、着色積層体を30℃のホウ酸架橋水溶液に60秒間浸漬することによって、ヨウ素を吸着させたPVA層のPVA分子同士に架橋処理を施す工程を行った。本工程のホウ酸架橋水溶液は、ホウ酸含有量を水100重量部に対して3重量部とし、ヨウ化カリウム含有量を水100重量部に対して3重量部とした。
 さらに、得られた着色積層体をホウ酸水溶液中で延伸温度70℃として、先の空気中での延伸と同様の方向に3.05倍に延伸して(ホウ酸水中延伸)、最終的な延伸倍率は5.50倍である光学フィルム積層体を得た。光学フィルム積層体をホウ酸水溶液から取り出し、PVA層の表面に付着したホウ酸を、ヨウ化カリウム含有量が水100重量部に対して4重量部とした水溶液で洗浄した。洗浄された光学フィルム積層体を60℃の温風による乾燥工程によって乾燥した。得られた光学フィルム積層体に含まれる偏光子Aの厚みは5μmであった。
[Production Example 1] Production of Polarizer A Amorphous polyethylene terephthalate (hereinafter also referred to as “PET”) (IPA copolymerized PET) film (thickness: 100 μm) having 7 mol% of isophthalic acid unit as a thermoplastic resin substrate. ) And the surface was subjected to corona treatment (58 W / m 2 / min). On the other hand, acetoacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name: Gohsephimer Z200 (average polymerization degree: 1200, saponification degree: 98.5 mol%, acetoacetylation degree: 5 mol%)) A PVA added with 1 wt% (polymerization degree 4200, saponification degree 99.2%) was prepared, and a coating solution of PVA aqueous solution with a PVA resin of 5.5 wt% was prepared, and the film thickness after drying was 12 μm. And dried for 10 minutes by hot air drying in an atmosphere of 60 ° C. to prepare a laminate in which a PVA resin layer was provided on the substrate.
Next, this laminate was first stretched 1.8 times in air at 130 ° C. (air-assisted stretching) to produce a stretched laminate. Next, a step of insolubilizing the PVA layer in which the PVA molecules contained in the stretched laminate were oriented was performed by immersing the stretched laminate in a boric acid insolubilized aqueous solution having a liquid temperature of 30 ° C. for 30 seconds. The boric acid insolubilized aqueous solution in this step had a boric acid content of 3 parts by weight with respect to 100 parts by weight of water. A colored laminate was produced by dyeing this stretched laminate. In the colored laminate, the stretched laminate is applied to a dye solution containing iodine and potassium iodide at a liquid temperature of 30 ° C. so that the single transmittance of the PVA layer constituting the finally produced polarizer is 40 to 44%. The PVA layer contained in the stretched laminate is dyed with iodine by immersing it in an arbitrary time. In this step, the staining solution was prepared using water as a solvent and an iodine concentration in the range of 0.1 to 0.4% by weight and a potassium iodide concentration in the range of 0.7 to 2.8% by weight. The concentration ratio of iodine and potassium iodide is 1 to 7. Next, the colored laminated body was immersed in a 30 ° C. boric acid crosslinking aqueous solution for 60 seconds to perform a crosslinking treatment between PVA molecules of the PVA layer on which iodine was adsorbed. The boric acid crosslinking aqueous solution in this step had a boric acid content of 3 parts by weight with respect to 100 parts by weight of water and a potassium iodide content of 3 parts by weight with respect to 100 parts by weight of water.
Furthermore, the obtained colored laminate was stretched in a boric acid aqueous solution at a stretching temperature of 70 ° C. and stretched 3.05 times in the same direction as the stretching in the air (boric acid-water stretching), and finally An optical film laminate having a draw ratio of 5.50 was obtained. The optical film laminate was removed from the boric acid aqueous solution, and the boric acid adhering to the surface of the PVA layer was washed with an aqueous solution having a potassium iodide content of 4 parts by weight with respect to 100 parts by weight of water. The washed optical film laminate was dried by a drying process using hot air at 60 ° C. The thickness of the polarizer A contained in the obtained optical film laminate was 5 μm.
[製造例2]偏光子Bの製造
 厚さ60μmのポリビニルアルコールフィルムを、速度比の異なるロール間において、30℃、0.3%濃度のヨウ素溶液中で1分間染色しながら、3倍まで延伸した。その後、60℃、4%濃度のホウ酸、10%濃度のヨウ化カリウムを含む水溶液中に0.5分間浸漬しながら総合延伸倍率が6倍まで延伸した。次いで、30℃、1.5%濃度のヨウ化カリウムを含む水溶液中に10秒間浸漬することで洗浄した後、50℃で4分間乾燥を行い、厚さ22μmの偏光子Bを得た。
[Production Example 2] Production of polarizer B A polyvinyl alcohol film having a thickness of 60 μm is stretched up to 3 times while being dyed in an iodine solution of 0.3% concentration at 30 ° C. for 1 minute between rolls having different speed ratios. did. Thereafter, the total draw ratio was stretched to 6 times while being immersed in an aqueous solution containing 60% at 4% concentration of boric acid and 10% concentration of potassium iodide for 0.5 minutes. Next, after washing by immersing in an aqueous solution containing potassium iodide at 30 ° C. and 1.5% concentration for 10 seconds, drying was performed at 50 ° C. for 4 minutes to obtain a polarizer B having a thickness of 22 μm.
[製造例3](メタ)アクリル系粘着剤Aの製造
 攪拌羽根、温度計、窒素ガス導入管、冷却器を備えた四つ口フラスコに2-エチルヘキシルアクリレート200重量部、2-ヒドロキシエチルアクリレート10重量部、重合開始剤として2,2’-アゾビスイソブチロニトリル0.4重量部、酢酸エチル312重量部を仕込み、緩やかに攪拌しながら窒素ガスを導入し、フラスコ内の液温を65℃付近に保って約6時間重合反応を行い、重量平均分子量は50万の(メタ)アクリル系ポリマー溶液(A1)を調製した。
 得られた(メタ)アクリル系ポリマー溶液(A1)(固形分100重量部)に、架橋剤としてヘキサメチレンジイソシアネートのイソシアヌレート体(日本ポリウレタン工業社製、商品名:コロネートHX)0.6重量部、架橋触媒としてジラウリン酸ジブチルスズ(1重量%酢酸エチル溶液)0.6重量部、シランカップリング剤として(信越化学工業(株)製、商品名:KBM403)0.1重量部を加えて25℃付近に保って約1分間混合撹拌を行い、(メタ)アクリル系粘着剤Aを調製した。
[Production Example 3] Production of (meth) acrylic pressure-sensitive adhesive A 200 parts by weight of 2-ethylhexyl acrylate and 10-hydroxyethyl acrylate 10 in a four-necked flask equipped with a stirring blade, a thermometer, a nitrogen gas inlet tube and a condenser Part by weight, 0.4 part by weight of 2,2′-azobisisobutyronitrile and 312 parts by weight of ethyl acetate as a polymerization initiator were charged, nitrogen gas was introduced while gently stirring, and the liquid temperature in the flask was adjusted to 65. The polymerization reaction was carried out for about 6 hours while maintaining the temperature at around 0 ° C. to prepare a (meth) acrylic polymer solution (A1) having a weight average molecular weight of 500,000.
To the obtained (meth) acrylic polymer solution (A1) (solid content: 100 parts by weight), 0.6 parts by weight of isocyanurate of hexamethylene diisocyanate (manufactured by Nippon Polyurethane Industry Co., Ltd., trade name: Coronate HX) as a crosslinking agent. Then, 0.6 parts by weight of dibutyltin dilaurate (1% by weight ethyl acetate solution) as a crosslinking catalyst and 0.1 parts by weight of a silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KBM403) are added at 25 ° C. The (meth) acrylic pressure-sensitive adhesive A was prepared by mixing and stirring for about 1 minute while maintaining the vicinity.
[製造例4](メタ)アクリル系粘着剤Bの製造
 製造例3で作製した(メタ)アクリル系ポリマー溶液(A1)(固形分100重量部)に、架橋剤としてヘキサメチレンジイソシアネートのイソシアヌレート体(日本ポリウレタン工業社製、商品名:コロネートHX)1.0重量部、架橋触媒としてジラウリン酸ジブチルスズ(1重量%酢酸エチル溶液)0.6重量部、シランカップリング剤(信越化学工業(株)製、商品名:KBM403)0.1重量部を配合して、(メタ)アクリル系粘着剤Bを調製した。
[Production Example 4] Production of (meth) acrylic pressure-sensitive adhesive B In the (meth) acrylic polymer solution (A1) (solid content 100 parts by weight) produced in Production Example 3, isocyanurate of hexamethylene diisocyanate as a crosslinking agent. (Product name: Coronate HX, manufactured by Nippon Polyurethane Industry Co., Ltd.) 1.0 part by weight, dibutyltin dilaurate (1% by weight ethyl acetate solution) as a crosslinking catalyst, 0.6 part by weight, silane coupling agent (Shin-Etsu Chemical Co., Ltd.) (Product name: KBM403) 0.1 part by weight was blended to prepare (meth) acrylic adhesive B.
[製造例5]ウレタン系粘着剤Cの製造
 ポリオール(A)として、トリオール(旭硝子株式会社製、商品名:プレミノールS3011、Mn=10000):85重量部、トリオール(三洋化成株式会社製、サンニックスGP-3000、Mn=3000):13重量部、トリオール(三洋化成株式会社製、商品名:サンニックスGP-1000、Mn=1000):2重量部を用い、多官能イソシアネート化合物(B)として多官能脂環族系イソシアネート化合物(日本ポリウレタン工業株式会社、商品名:コロネートHX):18重量部、触媒(日本化学産業株式会社製、商品名:ナーセム第2鉄):0.04重量部、劣化防止剤としてIrganox1010(BASF製):0.50重量部、脂肪酸エステル(ミリスチン酸イソプロピル、花王製、商品名:エキセパールIPM、Mn=270):30重量部、1-エチル-3-メチルイミダゾリウムビス(フルオロメタンスルホニル)イミド(第一工業製薬社製、商品名:AS110):1.5重量部、両末端型のポリエーテル変性シリコーンオイル(信越化学工業株式会社製、KF-6004):0.01重量部、希釈溶剤として酢酸エチル:241重量部を配合し、ディスパーで撹拌し、ウレタン系粘着剤Cを得た。
[Production Example 5] Production of urethane-based pressure-sensitive adhesive C As polyol (A), triol (manufactured by Asahi Glass Co., Ltd., trade name: Preminol S3011, Mn = 10000): 85 parts by weight, triol (manufactured by Sanyo Chemical Co., Ltd., Sanniks) GP-3000, Mn = 3000): 13 parts by weight, triol (manufactured by Sanyo Chemical Co., Ltd., trade name: Sannix GP-1000, Mn = 1000): 2 parts by weight are used as the polyfunctional isocyanate compound (B). Functional alicyclic isocyanate compound (Nippon Polyurethane Industry Co., Ltd., trade name: Coronate HX): 18 parts by weight, Catalyst (manufactured by Nippon Chemical Industry Co., Ltd., trade name: Nursem Ferric): 0.04 parts by weight, deterioration Irganox 1010 (manufactured by BASF) as an inhibitor: 0.50 part by weight, fatty acid ester (isopropyl myristate) Pill, manufactured by Kao, trade name: Exepal IPM, Mn = 270): 30 parts by weight, 1-ethyl-3-methylimidazolium bis (fluoromethanesulfonyl) imide (Daiichi Kogyo Seiyaku Co., Ltd., trade name: AS110): 1.5 parts by weight, double-ended polyether-modified silicone oil (manufactured by Shin-Etsu Chemical Co., Ltd., KF-6004): 0.01 parts by weight, ethyl acetate: 241 parts by weight as a diluent solvent, and stirred with a disper As a result, urethane pressure-sensitive adhesive C was obtained.
[製造例6](メタ)アクリル系粘着剤Dの製造
 攪拌羽根、温度計、窒素ガス導入管、冷却器を備えた4つ口フラスコに、ブチルアクリレート99重量部、4-ヒドロキシブチルアクリレート1重量部、重合開始剤として2,2’-アゾビスイソブチロニトリル0.1重量部を酢酸エチル100重量部と共に仕込み、緩やかに攪拌しながら窒素ガスを導入して窒素置換した後、フラスコ内の液温を55℃付近に保って8時間重合反応を行い、重量平均分子量160万の(メタ)アクリル系ポリマー溶液(A2)を調製した。
 得られた(メタ)アクリル系ポリマー溶液(A2)(固形分100重量部)に対して、イソシアネート架橋剤(三井武田ケミカル社製、商品名:タケネートD110N,トリメチロールプロパンキシリレンジイソシアネート)0.1重量部、ポリエーテル化合物(旭ガラスウレタン社製、商品名:Excestar2420)1重量部を配合して、(メタ)アクリル系粘着剤Dを調製した。
[Production Example 6] Production of (meth) acrylic pressure-sensitive adhesive D In a four-necked flask equipped with a stirring blade, a thermometer, a nitrogen gas inlet tube and a condenser, 99 parts by weight of butyl acrylate and 1 weight of 4-hydroxybutyl acrylate Then, 0.1 part by weight of 2,2′-azobisisobutyronitrile as a polymerization initiator was charged together with 100 parts by weight of ethyl acetate, and nitrogen gas was introduced with gentle stirring, followed by substitution with nitrogen. A polymerization reaction was carried out for 8 hours while maintaining the liquid temperature at around 55 ° C. to prepare a (meth) acrylic polymer solution (A2) having a weight average molecular weight of 1,600,000.
With respect to the obtained (meth) acrylic polymer solution (A2) (solid content: 100 parts by weight), an isocyanate crosslinking agent (manufactured by Mitsui Takeda Chemical Co., Ltd., trade name: Takenate D110N, trimethylolpropane xylylene diisocyanate) 0.1 A (meth) acrylic pressure-sensitive adhesive D was prepared by blending 1 part by weight of a polyether compound (manufactured by Asahi Glass Urethane Co., Ltd., trade name: Excestar 2420).
[製造例7](メタ)アクリル系粘着剤Eの製造
 製造例6で調製した(メタ)アクリル系ポリマー溶液(A2)(固形分100重量部)に対して、イソシアネート架橋剤(三井武田ケミカル社製、商品名:タケネートD110N,トリメチロールプロパンキシリレンジイソシアネート)0.3重量部、シランカップリング剤(信越化学工業(株)製、商品名:KBM403)0.1重量部を配合して、(メタ)アクリル系粘着剤Eを調製した。
[Production Example 7] Production of (meth) acrylic pressure-sensitive adhesive E With respect to the (meth) acrylic polymer solution (A2) (solid content 100 parts by weight) prepared in Production Example 6, an isocyanate crosslinking agent (Mitsui Takeda Chemical Co., Ltd.) Product name: Takenate D110N, trimethylolpropane xylylene diisocyanate 0.3 parts by weight, silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KBM403) 0.1 parts by weight, A (meth) acrylic pressure-sensitive adhesive E was prepared.
[製造例8](メタ)アクリル系粘着剤Fの製造
 攪拌羽根、温度計、窒素ガス導入管、冷却器を備えた4つ口フラスコに、ブチルアクリレート100重量部、アクリル酸3重量部、2-ヒドロキシエチルアクリレート1重量部、重合開始剤として2,2’-アゾビスイソブチロニトリル0.1重量部を酢酸エチル100重量部と共に仕込み、緩やかに攪拌しながら窒素ガスを導入して窒素置換した後、フラスコ内の液温を55℃付近に保って8時間重合反応を行い、重量平均分子量180万の(メタ)アクリル系ポリマー溶液(A3)を調製した。
 得られた(メタ)アクリル系ポリマー溶液(A3)(固形分100重量部)に対して、イソシアネート架橋剤(日本ポリウレタン工業社製、商品名:コロネートL,トリメチロールプロパンのトリレンジイソシアネートのアダクト体)0.5重量部、シランカップリング剤(信越化学工業(株)製、商品名:KBM403)0.1重量部を配合して、(メタ)アクリル系粘着剤Fを調製した。
[Production Example 8] Production of (meth) acrylic pressure-sensitive adhesive F In a four-necked flask equipped with a stirring blade, a thermometer, a nitrogen gas introduction tube and a condenser, 100 parts by weight of butyl acrylate, 3 parts by weight of acrylic acid, 2 -1 part by weight of hydroxyethyl acrylate and 0.1 part by weight of 2,2'-azobisisobutyronitrile as a polymerization initiator were added together with 100 parts by weight of ethyl acetate, and nitrogen gas was introduced while gently stirring to replace the nitrogen. After that, the polymerization temperature was kept at around 55 ° C. for 8 hours, and a (meth) acrylic polymer solution (A3) having a weight average molecular weight of 1.8 million was prepared.
With respect to the obtained (meth) acrylic polymer solution (A3) (solid content 100 parts by weight), an isocyanate crosslinking agent (manufactured by Nippon Polyurethane Industry Co., Ltd., trade name: Coronate L, adduct of tolylene diisocyanate of trimethylolpropane) ) 0.5 part by weight, 0.1 part by weight of a silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KBM403) was blended to prepare (meth) acrylic pressure-sensitive adhesive F.
[実施例1]
 ガラスフィルム(日本電気硝子社製、商品名:OA10、サイズ:400mm×40mm、厚み:100μm)と、保護フィルム(厚さ40μmのアクリル系樹脂フィルム)と、偏光子Aとを、この順に接着剤を介して貼り合せて積層体aを得た。
 (メタ)アクリル系粘着剤Aを、片面にシリコーン処理を施したポリエチレンテレフタレートフィルムのシリコーン処理面に塗布し、110℃で3分間加熱して、厚さ25μmの粘着剤層Aを形成した。この粘着剤層Aを上記積層体aの偏光子A側に転写して、光学積層体Aを得た。
[Example 1]
A glass film (manufactured by Nippon Electric Glass Co., Ltd., trade name: OA10, size: 400 mm × 40 mm, thickness: 100 μm), protective film (40 μm thick acrylic resin film), and polarizer A in this order are adhesives To obtain a laminate a.
The (meth) acrylic adhesive A was applied to the silicone-treated surface of a polyethylene terephthalate film having a silicone treatment on one side, and heated at 110 ° C. for 3 minutes to form an adhesive layer A having a thickness of 25 μm. The pressure-sensitive adhesive layer A was transferred to the polarizer A side of the laminate a to obtain an optical laminate A.
[実施例2]
(光学積層体の作製)
 ガラスフィルム(日本電気硝子社製、商品名:OA10、サイズ:400mm×40mm、厚み:100μm)と、偏光子Aとを、接着剤を介して貼り合せて積層体bを得た。
 (メタ)アクリル系粘着剤Aを、片面にシリコーン処理を施したポリエチレンテレフタレートフィルムのシリコーン処理面に塗布し、110℃で3分間加熱して、厚さ25μmの粘着剤層Aを形成した。この粘着剤層Aを上記積層体bの偏光子A側に転写して、光学積層体Bを得た。
[Example 2]
(Production of optical laminate)
A glass film (manufactured by Nippon Electric Glass Co., Ltd., trade name: OA10, size: 400 mm × 40 mm, thickness: 100 μm) and polarizer A were bonded together with an adhesive to obtain a laminate b.
The (meth) acrylic adhesive A was applied to the silicone-treated surface of a polyethylene terephthalate film having a silicone treatment on one side, and heated at 110 ° C. for 3 minutes to form an adhesive layer A having a thickness of 25 μm. The pressure-sensitive adhesive layer A was transferred to the polarizer A side of the laminate b to obtain an optical laminate B.
[実施例3]
 ガラスフィルム(日本電気硝子社製、商品名:OA10、サイズ:400mm×40mm、厚み:100μm)と、保護フィルム(厚さ40μmのアクリル系樹脂フィルム)と、偏光子Bと、保護フィルム(厚さ40μmのアクリル系樹脂フィルム)とを、この順に接着剤を介して貼り合せて積層体cを得た。
 (メタ)アクリル系粘着剤Aを、片面にシリコーン処理を施したポリエチレンテレフタレートフィルムのシリコーン処理面に塗布し、110℃で3分間加熱して、厚さ25μmの粘着剤層Aを形成した。この粘着剤層Aを上記積層体cの偏光子B側に転写して、光学積層体Cを得た。
[Example 3]
Glass film (manufactured by Nippon Electric Glass Co., Ltd., trade name: OA10, size: 400 mm × 40 mm, thickness: 100 μm), protective film (40 μm thick acrylic resin film), polarizer B, protective film (thickness) 40 μm acrylic resin film) was laminated in this order via an adhesive to obtain a laminate c.
The (meth) acrylic adhesive A was applied to the silicone-treated surface of a polyethylene terephthalate film having a silicone treatment on one side, and heated at 110 ° C. for 3 minutes to form an adhesive layer A having a thickness of 25 μm. The pressure-sensitive adhesive layer A was transferred to the polarizer B side of the laminate c to obtain an optical laminate C.
[実施例4]
 実施例1と同様にして、積層体aを得た。
 (メタ)アクリル系粘着剤Bを、シリコーン処理を施したポリエチレンテレフタレートフィルムのシリコーン処理面に塗布し、110℃で3分間加熱して、厚さ12μmの粘着剤層Bを形成した。この粘着剤層Bを上記積層体aの偏光子A側に転写して、光学積層体Dを得た。
[Example 4]
In the same manner as in Example 1, a laminate a was obtained.
The (meth) acrylic adhesive B was applied to the silicone-treated surface of the polyethylene terephthalate film subjected to silicone treatment and heated at 110 ° C. for 3 minutes to form an adhesive layer B having a thickness of 12 μm. The pressure-sensitive adhesive layer B was transferred to the polarizer A side of the laminate a to obtain an optical laminate D.
[実施例5]
 実施例1と同様にして、積層体aを得た。
 ウレタン系粘着剤Cを、片面にシリコーン処理を施したポリエチレンテレフタレートフィルムのシリコーン処理面に塗布し、110℃で3分間加熱して、厚さ25μmの粘着剤層Cを形成した。この粘着剤層Cを上記積層体aの偏光子A側に転写して、光学積層体Eを得た。
[Example 5]
In the same manner as in Example 1, a laminate a was obtained.
Urethane pressure-sensitive adhesive C was applied to the silicone-treated surface of a polyethylene terephthalate film having a silicone treatment on one side, and heated at 110 ° C. for 3 minutes to form a pressure-sensitive adhesive layer C having a thickness of 25 μm. The pressure-sensitive adhesive layer C was transferred to the polarizer A side of the laminate a to obtain an optical laminate E.
[実施例6]
 実施例1と同様にして、積層体aを得た。
 (メタ)アクリル系粘着剤Dを、シリコーン処理を施したポリエチレンテレフタレートフィルムムのシリコーン処理面に塗布し、110℃で3分間加熱して、厚さ25μmの粘着剤層Dを形成した。この粘着剤層Dを上記積層体aの偏光子A側に転写して、光学積層体Fを得た。
[Example 6]
In the same manner as in Example 1, a laminate a was obtained.
The (meth) acrylic adhesive D was applied to the silicone-treated surface of the polyethylene terephthalate film subjected to silicone treatment, and heated at 110 ° C. for 3 minutes to form an adhesive layer D having a thickness of 25 μm. The pressure-sensitive adhesive layer D was transferred to the polarizer A side of the laminate a to obtain an optical laminate F.
[実施例7]
 実施例1と同様にして、積層体aを得た。
 (メタ)アクリル系粘着剤Eを、シリコーン処理を施したポリエチレンテレフタレートフィルムムのシリコーン処理面に塗布し、110℃で3分間加熱して、厚さ50μmの粘着剤層Eを形成した。この粘着剤層Eを上記積層体aの偏光子A側に転写して、光学積層体Gを得た。
[Example 7]
In the same manner as in Example 1, a laminate a was obtained.
(Meth) acrylic pressure-sensitive adhesive E was applied to the silicone-treated surface of a polyethylene terephthalate film subjected to silicone treatment, and heated at 110 ° C. for 3 minutes to form a pressure-sensitive adhesive layer E having a thickness of 50 μm. The pressure-sensitive adhesive layer E was transferred to the polarizer A side of the laminate a to obtain an optical laminate G.
[比較例1]
 実施例1と同様にして、積層体aを得た。
 上記(メタ)アクリル系粘着剤Fを、シリコーン処理を施したポリエチレンテレフタレートフィルムムのシリコーン処理面に塗布し、110℃で3分間加熱して、厚さ25μmの粘着剤層Fを形成した。この粘着剤層Fを上記積層体aの偏光子A側に転写して、光学積層体Hを得た。
[Comparative Example 1]
In the same manner as in Example 1, a laminate a was obtained.
The (meth) acrylic pressure-sensitive adhesive F was applied to a silicone-treated surface of a polyethylene terephthalate film subjected to silicone treatment, and heated at 110 ° C. for 3 minutes to form a pressure-sensitive adhesive layer F having a thickness of 25 μm. The pressure-sensitive adhesive layer F was transferred to the polarizer A side of the laminate a to obtain an optical laminate H.
[比較例2]
 ガラスフィルムを厚さ100μmのポリエチレンテレフタレートフィルムに変えたこと以外は、実施例1と同様にして光学積層体Iを得た。
[Comparative Example 2]
An optical laminate I was obtained in the same manner as in Example 1 except that the glass film was changed to a polyethylene terephthalate film having a thickness of 100 μm.
<評価>
 実施例および比較例で得られた光学積層体を下記の評価に供した。結果を表1に示す。
<Evaluation>
The optical laminates obtained in the examples and comparative examples were subjected to the following evaluation. The results are shown in Table 1.
1、接着力
 光学積層体を、150mm×25mmに裁断し、厚さ0.7mmの無アルカリガラス板(コーニング社製、商品名:EG-XG)に、ラミネーターを用いて貼り付け、次いで50℃、5atmで15分間オートクレーブ処理して完全に密着させて、評価用サンプルを作製した。
 上記評価用サンプルについて、引張り試験機(オートグラフSHIMAZU AG-1 10KN)を用い、23℃/湿度55%、剥離角度90°、剥離速度300mm/minの条件にて、ガラス板から光学積層体を剥離して、光学積層体の接着力を測定した。測定は、1回/0.5sの間隔でサンプリングし、その平均値を測定値とした。
1. Adhesive strength The optical laminate was cut into 150 mm × 25 mm, and attached to a non-alkali glass plate having a thickness of 0.7 mm (product name: EG-XG) using a laminator, and then 50 ° C. A sample for evaluation was produced by autoclaving at 5 atm for 15 minutes to ensure complete adhesion.
Using the tensile tester (Autograph SHIMAZU AG-1 10KN), the optical laminate was removed from the glass plate using the tensile tester (autograph SHIMAZU AG-1 10KN) under the conditions of 23 ° C./humidity 55%, peeling angle 90 °, peeling speed 300 mm / min. It peeled and the adhesive force of the optical laminated body was measured. The measurement was sampled at an interval of 1 time / 0.5 s, and the average value was taken as the measurement value.
2、リワーク性
 光学積層体を、15インチ(対角線)サイズとし、厚さ0.7mmの無アルカリガラス(コーニング社製、商品名:EG-XG)にラミネーターを用いて貼着した。次いで、50℃、0.5MPaで15分間オートクレーブ処理して、光学積層体を完全に無アクリルガラスに密着させて評価用サンプルを作製した。
 上記評価用サンプルについて、光学積層体の1角から対角方向に光学積層体をガラスから剥離し、ガラスフィルムの割れ、破断を評価した。
◎:光学積層体に割れが全くなく、容易にリワーク可
○:わずかながら光学積層体に割れがあるが容易にリワーク可。実用上問題なし。
△:光学積層体に割れがあるが破断することなくリワーク可。実用上問題なし。
×:光学積層体が破断してリワーク不可
2. Reworkability The optical laminate was attached to non-alkali glass (trade name: EG-XG, manufactured by Corning) having a size of 15 inches (diagonal line) with a thickness of 0.7 mm using a laminator. Next, autoclaving was performed at 50 ° C. and 0.5 MPa for 15 minutes, and the optical laminate was brought into close contact with the acrylic-free glass to prepare a sample for evaluation.
About the said sample for evaluation, the optical laminated body was peeled from the glass in the diagonal direction from one corner of the optical laminated body, and the crack of the glass film and the fracture | rupture were evaluated.
A: The optical laminate has no cracks and can be easily reworked. ○: The optical laminate has slight cracks but can be easily reworked. There is no practical problem.
(Triangle | delta): Although an optical laminated body has a crack, it can rework without fracture | rupture. There is no practical problem.
×: Rework is not possible because the optical laminate breaks
3、耐久性試験
 光学積層体を、15インチ(対角線)サイズとし、厚さ0.7mmの無アルカリガラス(コーニング社製,EG-XG)にラミネーターを用いて貼着した。次いで、50℃、0.5MPaで15分間オートクレーブ処理して、光学積層体を完全に無アクリルガラスに密着させて評価用サンプルを作製した。
 上記評価用サンプルを、80℃の雰囲気下で500時間処理を施した後(加熱試験)、外観を下記基準で目視にて評価した。
 また、上記評価用サンプルを、60℃/90%RHの雰囲気下で500時間処理を施した後(加湿試験)、外観を下記基準で目視にて評価した。
◎:発泡、剥がれなどの外観上の変化が全くなし。
○:わずかながら端部に剥がれ、または発泡があるが、実用上問題なし。
△:端部に剥がれ、または発泡があるが、特別な用途でなければ、実用上問題なし。
×:端部に著しい剥がれあり、実用上問題あり。
3. Durability test The optical laminate was bonded to non-alkali glass (EG-XG manufactured by Corning, Inc.) having a size of 15 inches (diagonal line) with a thickness of 0.7 mm using a laminator. Next, autoclaving was performed at 50 ° C. and 0.5 MPa for 15 minutes, and the optical laminate was brought into close contact with the acrylic-free glass to prepare a sample for evaluation.
After the sample for evaluation was treated in an atmosphere of 80 ° C. for 500 hours (heating test), the appearance was visually evaluated according to the following criteria.
Further, the sample for evaluation was treated for 500 hours in an atmosphere of 60 ° C./90% RH (humidification test), and then the appearance was visually evaluated according to the following criteria.
A: No change in appearance such as foaming or peeling.
○: Slightly peeled off or foamed at the end, but no problem in practical use.
Δ: There is peeling or foaming at the end, but there is no practical problem unless it is a special use.
X: Remarkably peeled off at the end, causing practical problems.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 10         ガラスフィルム
 20         偏光子
 30         粘着剤層
100         光学積層体
 
DESCRIPTION OF SYMBOLS 10 Glass film 20 Polarizer 30 Adhesive layer 100 Optical laminated body

Claims (7)

  1.  ガラスフィルムと、偏光子と、粘着剤層とをこの順に備え、
     ガラス板に対する接着力が、5N/25mm以下である、
     光学積層体。
    A glass film, a polarizer, and an adhesive layer are provided in this order,
    The adhesive force to the glass plate is 5 N / 25 mm or less,
    Optical laminate.
  2.  前記粘着剤層の厚みが、5μm~100μmである、請求項1に記載の光学積層体。 2. The optical laminate according to claim 1, wherein the pressure-sensitive adhesive layer has a thickness of 5 μm to 100 μm.
  3.  前記ガラスフィルムの厚みが、20μm~200μmである、請求項1に記載の光学積層体。 2. The optical laminate according to claim 1, wherein the glass film has a thickness of 20 μm to 200 μm.
  4.  前記粘着剤層が、(メタ)アクリル系粘着剤を含む、請求項1に記載の光学積層体。 The optical laminate according to claim 1, wherein the pressure-sensitive adhesive layer contains a (meth) acrylic pressure-sensitive adhesive.
  5.  前記粘着剤層が、ウレタン系粘着剤を含む、請求項1に記載の光学積層体。 The optical laminate according to claim 1, wherein the pressure-sensitive adhesive layer contains a urethane-based pressure-sensitive adhesive.
  6.  請求項1に記載の光学積層体を含む、画像表示装置。 An image display device comprising the optical laminate according to claim 1.
  7.  視認側における最外側に、前記光学積層体を備える、請求項6に記載の画像表示装置。

     
     
    The image display device according to claim 6, comprising the optical laminate on the outermost side on the viewing side.


PCT/JP2018/010830 2017-03-23 2018-03-19 Optical laminate WO2018174012A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019507665A JPWO2018174012A1 (en) 2017-03-23 2018-03-19 Optical laminate
CN201880020357.2A CN110446956A (en) 2017-03-23 2018-03-19 Optical laminate
KR1020197026941A KR20190120255A (en) 2017-03-23 2018-03-19 Optical stack
KR1020217016143A KR20210066022A (en) 2017-03-23 2018-03-19 Optical laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017057545 2017-03-23
JP2017-057545 2017-03-23

Publications (1)

Publication Number Publication Date
WO2018174012A1 true WO2018174012A1 (en) 2018-09-27

Family

ID=63585362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010830 WO2018174012A1 (en) 2017-03-23 2018-03-19 Optical laminate

Country Status (5)

Country Link
JP (2) JPWO2018174012A1 (en)
KR (2) KR20190120255A (en)
CN (1) CN110446956A (en)
TW (1) TW201842129A (en)
WO (1) WO2018174012A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019087938A1 (en) * 2017-10-30 2019-05-09 日東電工株式会社 Laminate for image display devices
JP2019172932A (en) * 2018-03-29 2019-10-10 リンテック株式会社 Repeat bending device, manufacturing method therefor and suppression method of bent trace
JP2020139034A (en) * 2019-02-27 2020-09-03 リンテック株式会社 Adhesives for repetitive bending devices, adhesive sheets, repetitive bending laminates and repetitive bending devices
JP2020139036A (en) * 2019-02-27 2020-09-03 リンテック株式会社 Adhesives for repetitive bending devices, adhesive sheets, repetitive bending laminates and repetitive bending devices
JP2020139037A (en) * 2019-02-27 2020-09-03 リンテック株式会社 Adhesives for repetitive bending devices, adhesive sheets, repetitive bending laminates and repetitive bending devices
WO2020203647A1 (en) * 2019-03-29 2020-10-08 日東電工株式会社 Optical film
JPWO2019151091A1 (en) * 2018-01-31 2021-01-28 日東電工株式会社 Optical laminate roll
CN113646675A (en) * 2019-03-29 2021-11-12 日东电工株式会社 Optical film group and optical laminate
JP2022100334A (en) * 2018-03-29 2022-07-05 リンテック株式会社 Repeat bending device, manufacturing method therefor and suppression method of bent trace

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021154665A (en) * 2020-03-30 2021-10-07 日東電工株式会社 Multilayer structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013175767A1 (en) * 2012-05-23 2013-11-28 コニカミノルタ株式会社 Polarizing plate, fabrication method for polarizing plate, and image display device
JP2015025125A (en) * 2013-06-21 2015-02-05 日東電工株式会社 Adhesive layer having separator and manufacturing method thereof, polarization film with adhesive layer having separator and manufacturing method thereof, and image display unit
JP2016044291A (en) * 2014-08-26 2016-04-04 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Adhesive composition, adhesive layer, adhesive optical film, adhesive polarizer and image display device
JP2016160408A (en) * 2015-03-05 2016-09-05 旭硝子株式会社 Manufacturing method of double-sided adhesive sheet, transparent face material with double-sided adhesive sheet and manufacturing method therefor, and display device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350639A (en) * 2001-05-28 2002-12-04 Nitto Denko Corp Pressure sensitive adhesive optical film and liquid crystal display device
WO2003104862A1 (en) * 2002-06-11 2003-12-18 日東電工株式会社 Polarizing plate, adhesive for polarizing plate, optical film and image display device
JP2004078171A (en) * 2002-06-18 2004-03-11 Nitto Denko Corp Polarizing plate with optical compensating layer and image display device using same
JP4432487B2 (en) * 2003-12-22 2010-03-17 住友化学株式会社 Polarizing plate and manufacturing method thereof
JP5572589B2 (en) * 2011-05-26 2014-08-13 日東電工株式会社 Polarizing plate with adhesive layer and image display device
JP2013003515A (en) * 2011-06-21 2013-01-07 Sumitomo Chemical Co Ltd Composite polarizer and liquid crystal display device using the same
JP2017043366A (en) * 2015-08-24 2017-03-02 日本電気硝子株式会社 Glass roll, method of manufacturing the same, and unwinding method for the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013175767A1 (en) * 2012-05-23 2013-11-28 コニカミノルタ株式会社 Polarizing plate, fabrication method for polarizing plate, and image display device
JP2015025125A (en) * 2013-06-21 2015-02-05 日東電工株式会社 Adhesive layer having separator and manufacturing method thereof, polarization film with adhesive layer having separator and manufacturing method thereof, and image display unit
JP2016044291A (en) * 2014-08-26 2016-04-04 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Adhesive composition, adhesive layer, adhesive optical film, adhesive polarizer and image display device
JP2016160408A (en) * 2015-03-05 2016-09-05 旭硝子株式会社 Manufacturing method of double-sided adhesive sheet, transparent face material with double-sided adhesive sheet and manufacturing method therefor, and display device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019087938A1 (en) * 2017-10-30 2019-05-09 日東電工株式会社 Laminate for image display devices
US11760077B2 (en) 2017-10-30 2023-09-19 Nitto Denko Corporation Laminate for image display devices
JPWO2019151091A1 (en) * 2018-01-31 2021-01-28 日東電工株式会社 Optical laminate roll
JP7309006B2 (en) 2018-03-29 2023-07-14 リンテック株式会社 Repetitive bending device, method for manufacturing the same, and method for suppressing bending marks
JP7489755B2 (en) 2018-03-29 2024-05-24 リンテック株式会社 Repeatedly bent device, manufacturing method thereof, and method for suppressing flexion marks
JP2019172932A (en) * 2018-03-29 2019-10-10 リンテック株式会社 Repeat bending device, manufacturing method therefor and suppression method of bent trace
JP2022100334A (en) * 2018-03-29 2022-07-05 リンテック株式会社 Repeat bending device, manufacturing method therefor and suppression method of bent trace
JP2020139037A (en) * 2019-02-27 2020-09-03 リンテック株式会社 Adhesives for repetitive bending devices, adhesive sheets, repetitive bending laminates and repetitive bending devices
JP2020139036A (en) * 2019-02-27 2020-09-03 リンテック株式会社 Adhesives for repetitive bending devices, adhesive sheets, repetitive bending laminates and repetitive bending devices
JP2020139034A (en) * 2019-02-27 2020-09-03 リンテック株式会社 Adhesives for repetitive bending devices, adhesive sheets, repetitive bending laminates and repetitive bending devices
JP2022103255A (en) * 2019-02-27 2022-07-07 リンテック株式会社 Adhesive for repeated bending device, adhesive sheet, repeated bending laminate member and repeated bending device
JP7069065B2 (en) 2019-02-27 2022-05-17 リンテック株式会社 Repeated bending display
JP7069068B2 (en) 2019-02-27 2022-05-17 リンテック株式会社 Repeated bending display
JP7069067B2 (en) 2019-02-27 2022-05-17 リンテック株式会社 Repeated bending display
WO2020203647A1 (en) * 2019-03-29 2020-10-08 日東電工株式会社 Optical film
EP3951455A4 (en) * 2019-03-29 2022-06-29 Nitto Denko Corporation Optical film set and optical layered body
US20220146731A1 (en) * 2019-03-29 2022-05-12 Nitto Denko Corporation Optical film
EP3951454A4 (en) * 2019-03-29 2022-12-14 Nitto Denko Corporation OPTICAL FILM
CN113678033A (en) * 2019-03-29 2021-11-19 日东电工株式会社 Optical film
CN113646675A (en) * 2019-03-29 2021-11-12 日东电工株式会社 Optical film group and optical laminate
JPWO2020203647A1 (en) * 2019-03-29 2020-10-08
JP7553174B2 (en) 2019-03-29 2024-09-18 日東電工株式会社 Optical film set, optical laminate

Also Published As

Publication number Publication date
KR20190120255A (en) 2019-10-23
JPWO2018174012A1 (en) 2019-12-12
JP2021131540A (en) 2021-09-09
KR20210066022A (en) 2021-06-04
JP7523404B2 (en) 2024-07-26
TW201842129A (en) 2018-12-01
CN110446956A (en) 2019-11-12

Similar Documents

Publication Publication Date Title
JP7523404B2 (en) Optical laminate
TWI776869B (en) surface protection film
KR101914456B1 (en) Adhesive and adhesive sheet
JP2020170174A (en) Flexible polarizing film, manufacturing method therefor, and image display device
US10488571B2 (en) Polarizing plate, method of manufacturing the same, and optical display comprising the same
JP6240793B2 (en) Double-sided adhesive sheet for surface protection panel and surface protection panel
JP6895266B2 (en) Adhesive sheet
TWI812726B (en) Single-sided protective polarizing film with adhesive layer, image display device and continuous manufacturing method thereof
JP2020160461A (en) Flexible polarizing film, manufacturing method therefor, and image display device
JP2020160462A (en) Flexible polarizing film, manufacturing method therefor, and image display device
KR20180068321A (en) Adhesive composition for optical film, adhesive layer, optical member and image display device
JP2020160460A (en) Flexible polarizing film, manufacturing method therefor, and image display device
JP7273895B2 (en) Surface protective film and optical member with protective film
JP7178776B2 (en) Method for manufacturing polarizing film
KR102614889B1 (en) Surface protecting film and optical member
KR20180092802A (en) Adhesive and adhesive sheet
KR101707581B1 (en) Light shielding double-sided adhesive tape without substrate
US9624409B2 (en) Adhesive composition
KR101957306B1 (en) Adhesive and adhesive sheet
JP7203624B2 (en) Optically transparent adhesive sheet, laminate sheet and laminated structure
KR102003584B1 (en) Adehesive Composition and Polarizing Plate Containing the Same
KR20140120490A (en) Acrylic copolmer, adhesive composition containing threrof and polarizing plate
KR20230106137A (en) Adhesive sheet and OPTICAL DISPLAY COMPRISING THE SAME
KR20230126329A (en) Adhesive film for polarizing plate, polarizing plate comprising the same and optical display comprising the same
KR20190128629A (en) Adhesive layer, single protection polarizing film provided with adhesive layer, image display apparatus, and its continuous manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18770843

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019507665

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197026941

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18770843

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载