WO2018173993A1 - Production method for alkoxyhydrosilane and production method for alkoxyhalosilane - Google Patents
Production method for alkoxyhydrosilane and production method for alkoxyhalosilane Download PDFInfo
- Publication number
- WO2018173993A1 WO2018173993A1 PCT/JP2018/010720 JP2018010720W WO2018173993A1 WO 2018173993 A1 WO2018173993 A1 WO 2018173993A1 JP 2018010720 W JP2018010720 W JP 2018010720W WO 2018173993 A1 WO2018173993 A1 WO 2018173993A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alkoxyhalosilane
- producing
- group
- alkoxyhydrosilane
- formula
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 76
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 91
- 230000002140 halogenating effect Effects 0.000 claims abstract description 52
- 239000002904 solvent Substances 0.000 claims abstract description 38
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000003960 organic solvent Substances 0.000 claims abstract description 19
- 238000006243 chemical reaction Methods 0.000 claims description 96
- 125000004432 carbon atom Chemical group C* 0.000 claims description 41
- 238000000034 method Methods 0.000 claims description 30
- 150000001875 compounds Chemical class 0.000 claims description 29
- 229910052751 metal Inorganic materials 0.000 claims description 29
- 239000002184 metal Substances 0.000 claims description 29
- 150000003839 salts Chemical class 0.000 claims description 28
- 125000003545 alkoxy group Chemical group 0.000 claims description 25
- -1 carboxylic acid halide Chemical class 0.000 claims description 25
- 125000005843 halogen group Chemical group 0.000 claims description 25
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 claims description 18
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 claims description 18
- 229910052801 chlorine Inorganic materials 0.000 claims description 17
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 17
- 125000000217 alkyl group Chemical group 0.000 claims description 16
- 125000001424 substituent group Chemical group 0.000 claims description 14
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 13
- WETWJCDKMRHUPV-UHFFFAOYSA-N acetyl chloride Chemical compound CC(Cl)=O WETWJCDKMRHUPV-UHFFFAOYSA-N 0.000 claims description 11
- 239000012346 acetyl chloride Substances 0.000 claims description 10
- 239000011592 zinc chloride Substances 0.000 claims description 9
- 235000005074 zinc chloride Nutrition 0.000 claims description 9
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 8
- 125000004184 methoxymethyl group Chemical group [H]C([H])([H])OC([H])([H])* 0.000 claims description 8
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical group C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 6
- 230000001747 exhibiting effect Effects 0.000 claims description 6
- 239000011734 sodium Chemical group 0.000 claims description 6
- 229910052708 sodium Inorganic materials 0.000 claims description 6
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 claims description 5
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 5
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical compound COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 claims description 5
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical group [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical group [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 3
- 229910052744 lithium Inorganic materials 0.000 claims description 3
- 229910052700 potassium Chemical group 0.000 claims description 3
- 239000011591 potassium Chemical group 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- 125000001183 hydrocarbyl group Chemical group 0.000 claims 4
- 239000000126 substance Substances 0.000 abstract description 5
- 239000007858 starting material Substances 0.000 abstract 1
- 239000000460 chlorine Substances 0.000 description 22
- 239000002994 raw material Substances 0.000 description 19
- 150000002430 hydrocarbons Chemical group 0.000 description 18
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 16
- 229910000077 silane Inorganic materials 0.000 description 16
- PLYDAAYVOHDGFT-UHFFFAOYSA-N dimethoxy(methoxymethyl)silane Chemical compound COC[SiH](OC)OC PLYDAAYVOHDGFT-UHFFFAOYSA-N 0.000 description 12
- 230000009257 reactivity Effects 0.000 description 10
- IBMUMCCOQRVIMN-UHFFFAOYSA-N trimethoxy(methoxymethyl)silane Chemical compound COC[Si](OC)(OC)OC IBMUMCCOQRVIMN-UHFFFAOYSA-N 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 238000005984 hydrogenation reaction Methods 0.000 description 8
- 230000035484 reaction time Effects 0.000 description 8
- FOWDTBRZHAMOQA-UHFFFAOYSA-N chloro-dimethoxy-(methoxymethyl)silane Chemical compound COC[Si](Cl)(OC)OC FOWDTBRZHAMOQA-UHFFFAOYSA-N 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- MVFRQXOSUYQVOR-UHFFFAOYSA-N dichloro(methoxymethyl)silane Chemical compound COC[SiH](Cl)Cl MVFRQXOSUYQVOR-UHFFFAOYSA-N 0.000 description 5
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 5
- ZUHZGEOKBKGPSW-UHFFFAOYSA-N tetraglyme Chemical compound COCCOCCOCCOCCOC ZUHZGEOKBKGPSW-UHFFFAOYSA-N 0.000 description 5
- BCZMHLQQANKEBO-UHFFFAOYSA-N trichloro(methoxymethyl)silane Chemical compound COC[Si](Cl)(Cl)Cl BCZMHLQQANKEBO-UHFFFAOYSA-N 0.000 description 5
- FXXACINHVKSMDR-UHFFFAOYSA-N acetyl bromide Chemical compound CC(Br)=O FXXACINHVKSMDR-UHFFFAOYSA-N 0.000 description 4
- 125000005370 alkoxysilyl group Chemical group 0.000 description 4
- PASDCCFISLVPSO-UHFFFAOYSA-N benzoyl chloride Chemical compound ClC(=O)C1=CC=CC=C1 PASDCCFISLVPSO-UHFFFAOYSA-N 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 125000001153 fluoro group Chemical group F* 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- HDPNBNXLBDFELL-UHFFFAOYSA-N 1,1,1-trimethoxyethane Chemical compound COC(C)(OC)OC HDPNBNXLBDFELL-UHFFFAOYSA-N 0.000 description 3
- 238000005160 1H NMR spectroscopy Methods 0.000 description 3
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000005658 halogenation reaction Methods 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- 229910052740 iodine Inorganic materials 0.000 description 3
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 150000004756 silanes Chemical class 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- WPCSWVPIPCNXIO-UHFFFAOYSA-N chloro-(3-chloropropyl)-dimethoxysilane Chemical compound CO[Si](Cl)(OC)CCCCl WPCSWVPIPCNXIO-UHFFFAOYSA-N 0.000 description 2
- PELBZXLLQLEQAU-UHFFFAOYSA-N chloro-diethoxy-methylsilane Chemical compound CCO[Si](C)(Cl)OCC PELBZXLLQLEQAU-UHFFFAOYSA-N 0.000 description 2
- XTUSCGHJFRPEFH-UHFFFAOYSA-N chloro-dimethoxy-phenylsilane Chemical compound CO[Si](Cl)(OC)C1=CC=CC=C1 XTUSCGHJFRPEFH-UHFFFAOYSA-N 0.000 description 2
- LFJMRJHKLLWKAN-UHFFFAOYSA-N chloro-dimethoxy-propylsilane Chemical compound CCC[Si](Cl)(OC)OC LFJMRJHKLLWKAN-UHFFFAOYSA-N 0.000 description 2
- MVDZFHCSXIYQOL-UHFFFAOYSA-N chloro-hexyl-dimethoxysilane Chemical compound CCCCCC[Si](Cl)(OC)OC MVDZFHCSXIYQOL-UHFFFAOYSA-N 0.000 description 2
- JQIIWRICVUNPSC-UHFFFAOYSA-N chloromethyl(diethoxy)silane Chemical compound CCO[SiH](CCl)OCC JQIIWRICVUNPSC-UHFFFAOYSA-N 0.000 description 2
- SSIQXDFLQAEZDI-UHFFFAOYSA-N chloromethyl(dimethoxy)silane Chemical compound CO[SiH](CCl)OC SSIQXDFLQAEZDI-UHFFFAOYSA-N 0.000 description 2
- CKNREEMAYYRRBX-UHFFFAOYSA-N chloromethyl-methoxy-methylsilane Chemical compound CO[SiH](C)CCl CKNREEMAYYRRBX-UHFFFAOYSA-N 0.000 description 2
- 238000006482 condensation reaction Methods 0.000 description 2
- 238000011437 continuous method Methods 0.000 description 2
- 125000003963 dichloro group Chemical group Cl* 0.000 description 2
- KTQYJQFGNYHXMB-UHFFFAOYSA-N dichloro(methyl)silicon Chemical compound C[Si](Cl)Cl KTQYJQFGNYHXMB-UHFFFAOYSA-N 0.000 description 2
- KNSNZUPJVJLAOT-UHFFFAOYSA-N diethoxy(methoxymethyl)silane Chemical compound CCO[SiH](COC)OCC KNSNZUPJVJLAOT-UHFFFAOYSA-N 0.000 description 2
- PKTOVQRKCNPVKY-UHFFFAOYSA-N dimethoxy(methyl)silicon Chemical compound CO[Si](C)OC PKTOVQRKCNPVKY-UHFFFAOYSA-N 0.000 description 2
- CIQDYIQMZXESRD-UHFFFAOYSA-N dimethoxy(phenyl)silane Chemical compound CO[SiH](OC)C1=CC=CC=C1 CIQDYIQMZXESRD-UHFFFAOYSA-N 0.000 description 2
- SGKDAFJDYSMACD-UHFFFAOYSA-N dimethoxy(propyl)silane Chemical compound CCC[SiH](OC)OC SGKDAFJDYSMACD-UHFFFAOYSA-N 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- YSLVSGVAVRTLAV-UHFFFAOYSA-N ethyl(dimethoxy)silane Chemical compound CC[SiH](OC)OC YSLVSGVAVRTLAV-UHFFFAOYSA-N 0.000 description 2
- XLLIQLLCWZCATF-UHFFFAOYSA-N ethylene glycol monomethyl ether acetate Natural products COCCOC(C)=O XLLIQLLCWZCATF-UHFFFAOYSA-N 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 230000026030 halogenation Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- OGMDYZVGIYQLCM-UHFFFAOYSA-N hexyl(dimethoxy)silane Chemical compound CCCCCC[SiH](OC)OC OGMDYZVGIYQLCM-UHFFFAOYSA-N 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- OGMRNBPHWGVZID-UHFFFAOYSA-N methoxy-bis(methoxymethyl)silane Chemical compound COC[SiH](OC)COC OGMRNBPHWGVZID-UHFFFAOYSA-N 0.000 description 2
- 239000005048 methyldichlorosilane Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- 125000000962 organic group Chemical group 0.000 description 2
- CTSLXHKWHWQRSH-UHFFFAOYSA-N oxalyl chloride Chemical compound ClC(=O)C(Cl)=O CTSLXHKWHWQRSH-UHFFFAOYSA-N 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 1
- LEEANUDEDHYDTG-UHFFFAOYSA-N 1,2-dimethoxypropane Chemical compound COCC(C)OC LEEANUDEDHYDTG-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- 125000001478 1-chloroethyl group Chemical group [H]C([H])([H])C([H])(Cl)* 0.000 description 1
- RERATEUBWLKDFE-UHFFFAOYSA-N 1-methoxy-2-[2-(2-methoxypropoxy)propoxy]propane Chemical compound COCC(C)OCC(C)OCC(C)OC RERATEUBWLKDFE-UHFFFAOYSA-N 0.000 description 1
- 125000001637 1-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C(*)=C([H])C([H])=C([H])C2=C1[H] 0.000 description 1
- BJINVQNEBGOMCR-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethyl acetate Chemical compound COCCOCCOC(C)=O BJINVQNEBGOMCR-UHFFFAOYSA-N 0.000 description 1
- DRLRGHZJOQGQEC-UHFFFAOYSA-N 2-(2-methoxypropoxy)propyl acetate Chemical compound COC(C)COC(C)COC(C)=O DRLRGHZJOQGQEC-UHFFFAOYSA-N 0.000 description 1
- 125000001340 2-chloroethyl group Chemical group [H]C([H])(Cl)C([H])([H])* 0.000 description 1
- CKORNTZYBBLKPG-UHFFFAOYSA-N 2-chloropropyl(dimethoxy)silane Chemical compound ClC(C[SiH](OC)OC)C CKORNTZYBBLKPG-UHFFFAOYSA-N 0.000 description 1
- 125000004200 2-methoxyethyl group Chemical group [H]C([H])([H])OC([H])([H])C([H])([H])* 0.000 description 1
- ICPWFHKNYYRBSZ-UHFFFAOYSA-M 2-methoxypropanoate Chemical compound COC(C)C([O-])=O ICPWFHKNYYRBSZ-UHFFFAOYSA-M 0.000 description 1
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- OXYZDRAJMHGSMW-UHFFFAOYSA-N 3-chloropropyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)CCCCl OXYZDRAJMHGSMW-UHFFFAOYSA-N 0.000 description 1
- VATRWWPJWVCZTA-UHFFFAOYSA-N 3-oxo-n-[2-(trifluoromethyl)phenyl]butanamide Chemical compound CC(=O)CC(=O)NC1=CC=CC=C1C(F)(F)F VATRWWPJWVCZTA-UHFFFAOYSA-N 0.000 description 1
- 229910015900 BF3 Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- DIDHYBNDPYEXMX-UHFFFAOYSA-N C(C)OC[Si](OCC)(OCC)Cl Chemical compound C(C)OC[Si](OCC)(OCC)Cl DIDHYBNDPYEXMX-UHFFFAOYSA-N 0.000 description 1
- NUIYNEGHIRHNLY-UHFFFAOYSA-N CC(C[Si](OC)(OC)Cl)Cl Chemical compound CC(C[Si](OC)(OC)Cl)Cl NUIYNEGHIRHNLY-UHFFFAOYSA-N 0.000 description 1
- OJIPZMVFPXIRGV-UHFFFAOYSA-N CC(OC)[Si](OC)(OC)Cl Chemical compound CC(OC)[Si](OC)(OC)Cl OJIPZMVFPXIRGV-UHFFFAOYSA-N 0.000 description 1
- MMNQALJBVQDOGK-UHFFFAOYSA-N CCC([Si](OC)(OC)Cl)Cl Chemical compound CCC([Si](OC)(OC)Cl)Cl MMNQALJBVQDOGK-UHFFFAOYSA-N 0.000 description 1
- YQTKLYYISKLJMX-UHFFFAOYSA-N CCCCCC[SiH](OCC)OCC Chemical compound CCCCCC[SiH](OCC)OCC YQTKLYYISKLJMX-UHFFFAOYSA-N 0.000 description 1
- MYIAKAFTUDOYHQ-UHFFFAOYSA-N CCOC[Si](OC)(OC)Cl Chemical compound CCOC[Si](OC)(OC)Cl MYIAKAFTUDOYHQ-UHFFFAOYSA-N 0.000 description 1
- KZMHLABISOTMIO-UHFFFAOYSA-N COC(OC)[SiH](OC)OC Chemical compound COC(OC)[SiH](OC)OC KZMHLABISOTMIO-UHFFFAOYSA-N 0.000 description 1
- NLTSXAFZTKXVKA-UHFFFAOYSA-N COC(OC)[Si](OC)(OC)Cl Chemical compound COC(OC)[Si](OC)(OC)Cl NLTSXAFZTKXVKA-UHFFFAOYSA-N 0.000 description 1
- LDVBOURKFNKTDQ-UHFFFAOYSA-N CO[SiH](OC)C(C)Cl Chemical compound CO[SiH](OC)C(C)Cl LDVBOURKFNKTDQ-UHFFFAOYSA-N 0.000 description 1
- WHQIRVKMXNIHJT-UHFFFAOYSA-N CO[SiH](OC)CCCl Chemical compound CO[SiH](OC)CCCl WHQIRVKMXNIHJT-UHFFFAOYSA-N 0.000 description 1
- IXVJEFOUSFXQFR-UHFFFAOYSA-N CO[Si](CBr)(OC)Cl Chemical compound CO[Si](CBr)(OC)Cl IXVJEFOUSFXQFR-UHFFFAOYSA-N 0.000 description 1
- LNMMXQUWDMHFPB-UHFFFAOYSA-N CO[Si](CF)(OC)Cl Chemical compound CO[Si](CF)(OC)Cl LNMMXQUWDMHFPB-UHFFFAOYSA-N 0.000 description 1
- IGWVFNYEQSABLL-UHFFFAOYSA-N CO[Si](CI)(OC)Cl Chemical compound CO[Si](CI)(OC)Cl IGWVFNYEQSABLL-UHFFFAOYSA-N 0.000 description 1
- SJIZILLCOZOPQO-UHFFFAOYSA-N CO[Si](OC)CCCCl Chemical compound CO[Si](OC)CCCCl SJIZILLCOZOPQO-UHFFFAOYSA-N 0.000 description 1
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 1
- IHYBAGQITWPOBB-UHFFFAOYSA-N ClC(CC)[SiH](OC)OC Chemical compound ClC(CC)[SiH](OC)OC IHYBAGQITWPOBB-UHFFFAOYSA-N 0.000 description 1
- XYLSSNKANLFJSW-UHFFFAOYSA-N ClC[SiH](Cl)COC Chemical compound ClC[SiH](Cl)COC XYLSSNKANLFJSW-UHFFFAOYSA-N 0.000 description 1
- GGXJMJMWNLIJIU-UHFFFAOYSA-N ClC[Si](Cl)(OC)CCl Chemical compound ClC[Si](Cl)(OC)CCl GGXJMJMWNLIJIU-UHFFFAOYSA-N 0.000 description 1
- 229910020366 ClO 4 Inorganic materials 0.000 description 1
- 229910021576 Iron(III) bromide Inorganic materials 0.000 description 1
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229910018286 SbF 6 Inorganic materials 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 1
- 229910021623 Tin(IV) bromide Inorganic materials 0.000 description 1
- 229910021627 Tin(IV) chloride Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- SJMSVSGLCKYLDY-UHFFFAOYSA-N [SiH4].COCC=1C(=C(C=CC1)C(=C)C)C(=C)C Chemical compound [SiH4].COCC=1C(=C(C=CC1)C(=C)C)C(=C)C SJMSVSGLCKYLDY-UHFFFAOYSA-N 0.000 description 1
- WJRCNNAFJWIDPB-UHFFFAOYSA-N [SiH4].ClCC=1C(=C(C=CC1)C(=C)C)C(=C)C Chemical compound [SiH4].ClCC=1C(=C(C=CC1)C(=C)C)C(=C)C WJRCNNAFJWIDPB-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- HFBMWMNUJJDEQZ-UHFFFAOYSA-N acryloyl chloride Chemical compound ClC(=O)C=C HFBMWMNUJJDEQZ-UHFFFAOYSA-N 0.000 description 1
- PWAXUOGZOSVGBO-UHFFFAOYSA-N adipoyl chloride Chemical compound ClC(=O)CCCCC(Cl)=O PWAXUOGZOSVGBO-UHFFFAOYSA-N 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000003302 alkenyloxy group Chemical group 0.000 description 1
- 125000005108 alkenylthio group Chemical group 0.000 description 1
- 150000005224 alkoxybenzenes Chemical class 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 1
- 239000003849 aromatic solvent Substances 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000004659 aryl alkyl thio group Chemical group 0.000 description 1
- 125000002102 aryl alkyloxo group Chemical group 0.000 description 1
- 125000005110 aryl thio group Chemical group 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- UWCPYKQBIPYOLX-UHFFFAOYSA-N benzene-1,3,5-tricarbonyl chloride Chemical compound ClC(=O)C1=CC(C(Cl)=O)=CC(C(Cl)=O)=C1 UWCPYKQBIPYOLX-UHFFFAOYSA-N 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- QSNFTQCYPGYAIX-UHFFFAOYSA-N bis(chloromethyl)-methoxysilane Chemical compound CO[SiH](CCl)CCl QSNFTQCYPGYAIX-UHFFFAOYSA-N 0.000 description 1
- WLVCKQCYPRKQMH-UHFFFAOYSA-N bis(chloromethyl)silane Chemical compound ClC[SiH2]CCl WLVCKQCYPRKQMH-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 150000001649 bromium compounds Chemical class 0.000 description 1
- VWSQRGXAJWMUOZ-UHFFFAOYSA-N bromo-dimethoxy-(methoxymethyl)silane Chemical compound COC[Si](Br)(OC)OC VWSQRGXAJWMUOZ-UHFFFAOYSA-N 0.000 description 1
- ZVGCVIXCRWSSAU-UHFFFAOYSA-N bromo-dimethoxy-methylsilane Chemical compound CO[Si](C)(Br)OC ZVGCVIXCRWSSAU-UHFFFAOYSA-N 0.000 description 1
- IRXBNHGNHKNOJI-UHFFFAOYSA-N butanedioyl dichloride Chemical compound ClC(=O)CCC(Cl)=O IRXBNHGNHKNOJI-UHFFFAOYSA-N 0.000 description 1
- DVECBJCOGJRVPX-UHFFFAOYSA-N butyryl chloride Chemical compound CCCC(Cl)=O DVECBJCOGJRVPX-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- ZRFGUTUQZAPCPV-UHFFFAOYSA-N chloro-(1-chloroethyl)-dimethoxysilane Chemical compound ClC(C)[Si](Cl)(OC)OC ZRFGUTUQZAPCPV-UHFFFAOYSA-N 0.000 description 1
- NUTHWBPJTLOEIP-UHFFFAOYSA-N chloro-(2-chloroethyl)-dimethoxysilane Chemical compound CO[Si](Cl)(OC)CCCl NUTHWBPJTLOEIP-UHFFFAOYSA-N 0.000 description 1
- BGPCJOLADKEEKF-UHFFFAOYSA-N chloro-(chloromethyl)-(ethoxymethyl)silane Chemical compound ClC[SiH](Cl)COCC BGPCJOLADKEEKF-UHFFFAOYSA-N 0.000 description 1
- HPCGGUDXZDEQKG-UHFFFAOYSA-N chloro-(chloromethyl)-diethoxysilane Chemical compound CCO[Si](Cl)(CCl)OCC HPCGGUDXZDEQKG-UHFFFAOYSA-N 0.000 description 1
- LQDCBGCFLCNFBI-UHFFFAOYSA-N chloro-(chloromethyl)-dimethoxysilane Chemical compound CO[Si](Cl)(CCl)OC LQDCBGCFLCNFBI-UHFFFAOYSA-N 0.000 description 1
- UCSMQBIXPVUQAJ-UHFFFAOYSA-N chloro-bis(chloromethyl)-ethoxysilane Chemical compound ClC[Si](Cl)(OCC)CCl UCSMQBIXPVUQAJ-UHFFFAOYSA-N 0.000 description 1
- ASBBMDURLGJWNN-UHFFFAOYSA-N chloro-diethoxy-ethylsilane Chemical compound CCO[Si](Cl)(CC)OCC ASBBMDURLGJWNN-UHFFFAOYSA-N 0.000 description 1
- SXPKJUSHKBZARO-UHFFFAOYSA-N chloro-diethoxy-hexylsilane Chemical compound CCCCCC[Si](Cl)(OCC)OCC SXPKJUSHKBZARO-UHFFFAOYSA-N 0.000 description 1
- LEYKSONZGURWNL-UHFFFAOYSA-N chloro-diethoxy-phenylsilane Chemical compound CCO[Si](Cl)(OCC)C1=CC=CC=C1 LEYKSONZGURWNL-UHFFFAOYSA-N 0.000 description 1
- DFCJNSYFWNMBKR-UHFFFAOYSA-N chloro-diethoxy-propylsilane Chemical compound CCC[Si](Cl)(OCC)OCC DFCJNSYFWNMBKR-UHFFFAOYSA-N 0.000 description 1
- KJPLHNZDTIQPCR-UHFFFAOYSA-N chloro-dimethoxy-(methylsulfanylmethyl)silane Chemical compound CSC[Si](Cl)(OC)OC KJPLHNZDTIQPCR-UHFFFAOYSA-N 0.000 description 1
- GYQKYMDXABOCBE-UHFFFAOYSA-N chloro-dimethoxy-methylsilane Chemical compound CO[Si](C)(Cl)OC GYQKYMDXABOCBE-UHFFFAOYSA-N 0.000 description 1
- XZOKYDWIQYKBFQ-UHFFFAOYSA-N chloro-ethyl-dimethoxysilane Chemical compound CC[Si](Cl)(OC)OC XZOKYDWIQYKBFQ-UHFFFAOYSA-N 0.000 description 1
- UYLYRDZPAKGEQG-UHFFFAOYSA-N chloro-methoxy-bis(methoxymethyl)silane Chemical compound COC[Si](Cl)(OC)COC UYLYRDZPAKGEQG-UHFFFAOYSA-N 0.000 description 1
- 229960001701 chloroform Drugs 0.000 description 1
- 125000004218 chloromethyl group Chemical group [H]C([H])(Cl)* 0.000 description 1
- NSOIHJQEVHQHFX-UHFFFAOYSA-N chloromethyl-ethoxy-methylsilane Chemical compound CCO[SiH](C)CCl NSOIHJQEVHQHFX-UHFFFAOYSA-N 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- 125000000000 cycloalkoxy group Chemical group 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 125000005366 cycloalkylthio group Chemical group 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- WMPOZLHMGVKUEJ-UHFFFAOYSA-N decanedioyl dichloride Chemical compound ClC(=O)CCCCCCCCC(Cl)=O WMPOZLHMGVKUEJ-UHFFFAOYSA-N 0.000 description 1
- 150000001983 dialkylethers Chemical class 0.000 description 1
- MROCJMGDEKINLD-UHFFFAOYSA-N dichlorosilane Chemical compound Cl[SiH2]Cl MROCJMGDEKINLD-UHFFFAOYSA-N 0.000 description 1
- OQZMNXOTOASCSA-UHFFFAOYSA-N diethoxy(ethoxymethyl)silane Chemical compound C(C)OC[SiH](OCC)OCC OQZMNXOTOASCSA-UHFFFAOYSA-N 0.000 description 1
- ZWTJVXCCMKLQKS-UHFFFAOYSA-N diethoxy(ethyl)silicon Chemical compound CCO[Si](CC)OCC ZWTJVXCCMKLQKS-UHFFFAOYSA-N 0.000 description 1
- GAURFLBIDLSLQU-UHFFFAOYSA-N diethoxy(methyl)silicon Chemical compound CCO[Si](C)OCC GAURFLBIDLSLQU-UHFFFAOYSA-N 0.000 description 1
- BODAWKLCLUZBEZ-UHFFFAOYSA-N diethoxy(phenyl)silicon Chemical compound CCO[Si](OCC)C1=CC=CC=C1 BODAWKLCLUZBEZ-UHFFFAOYSA-N 0.000 description 1
- FZQNBVBLHJXOEA-UHFFFAOYSA-N diethoxy(propyl)silane Chemical compound CCC[SiH](OCC)OCC FZQNBVBLHJXOEA-UHFFFAOYSA-N 0.000 description 1
- CMNOTPMDDFQTJV-UHFFFAOYSA-N dimethoxy(1-methoxyethyl)silane Chemical compound COC(C)[SiH](OC)OC CMNOTPMDDFQTJV-UHFFFAOYSA-N 0.000 description 1
- AMCPBHFBNZRPFR-UHFFFAOYSA-N dimethoxy(methylsulfanylmethyl)silane Chemical compound CSC[SiH](OC)OC AMCPBHFBNZRPFR-UHFFFAOYSA-N 0.000 description 1
- 239000003759 ester based solvent Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000004210 ether based solvent Substances 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 125000005745 ethoxymethyl group Chemical group [H]C([H])([H])C([H])([H])OC([H])([H])* 0.000 description 1
- HMZNHHYEYYLNDA-UHFFFAOYSA-N ethoxymethyl(dimethoxy)silane Chemical compound CCOC[SiH](OC)OC HMZNHHYEYYLNDA-UHFFFAOYSA-N 0.000 description 1
- JLEKJZUYWFJPMB-UHFFFAOYSA-N ethyl 2-methoxyacetate Chemical compound CCOC(=O)COC JLEKJZUYWFJPMB-UHFFFAOYSA-N 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- NTXBAOYYXHQKKZ-UHFFFAOYSA-N fluoromethyl(dimethoxy)silane Chemical compound CO[SiH](CF)OC NTXBAOYYXHQKKZ-UHFFFAOYSA-N 0.000 description 1
- CZWLNMOIEMTDJY-UHFFFAOYSA-N hexyl(trimethoxy)silane Chemical compound CCCCCC[Si](OC)(OC)OC CZWLNMOIEMTDJY-UHFFFAOYSA-N 0.000 description 1
- 238000006459 hydrosilylation reaction Methods 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- IRLXIDISTONAQD-UHFFFAOYSA-N iodomethyl(silyl)silane Chemical compound IC[SiH2][SiH3] IRLXIDISTONAQD-UHFFFAOYSA-N 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 125000000555 isopropenyl group Chemical group [H]\C([H])=C(\*)C([H])([H])[H] 0.000 description 1
- 125000000040 m-tolyl group Chemical group [H]C1=C([H])C(*)=C([H])C(=C1[H])C([H])([H])[H] 0.000 description 1
- OTCKOJUMXQWKQG-UHFFFAOYSA-L magnesium bromide Chemical compound [Mg+2].[Br-].[Br-] OTCKOJUMXQWKQG-UHFFFAOYSA-L 0.000 description 1
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 1
- 125000001827 mesitylenyl group Chemical group [H]C1=C(C(*)=C(C([H])=C1C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000002454 metastable transfer emission spectrometry Methods 0.000 description 1
- VHRYZQNGTZXDNX-UHFFFAOYSA-N methacryloyl chloride Chemical compound CC(=C)C(Cl)=O VHRYZQNGTZXDNX-UHFFFAOYSA-N 0.000 description 1
- NSVHLVHOECRTLP-UHFFFAOYSA-N methoxy-(methoxymethyl)-methylsilane Chemical compound COC[SiH](OC)C NSVHLVHOECRTLP-UHFFFAOYSA-N 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- SKTCDJAMAYNROS-UHFFFAOYSA-N methoxycyclopentane Chemical compound COC1CCCC1 SKTCDJAMAYNROS-UHFFFAOYSA-N 0.000 description 1
- HYRCKUAWXXGRAD-UHFFFAOYSA-N methoxymethyl(methyl)silane Chemical compound COC[SiH2]C HYRCKUAWXXGRAD-UHFFFAOYSA-N 0.000 description 1
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000003261 o-tolyl group Chemical group [H]C1=C([H])C(*)=C(C([H])=C1[H])C([H])([H])[H] 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 125000001037 p-tolyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])[H] 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- RZWZRACFZGVKFM-UHFFFAOYSA-N propanoyl chloride Chemical compound CCC(Cl)=O RZWZRACFZGVKFM-UHFFFAOYSA-N 0.000 description 1
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- PUGUQINMNYINPK-UHFFFAOYSA-N tert-butyl 4-(2-chloroacetyl)piperazine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCN(C(=O)CCl)CC1 PUGUQINMNYINPK-UHFFFAOYSA-N 0.000 description 1
- LTSUHJWLSNQKIP-UHFFFAOYSA-J tin(iv) bromide Chemical compound Br[Sn](Br)(Br)Br LTSUHJWLSNQKIP-UHFFFAOYSA-J 0.000 description 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 1
- UBZYKBZMAMTNKW-UHFFFAOYSA-J titanium tetrabromide Chemical compound Br[Ti](Br)(Br)Br UBZYKBZMAMTNKW-UHFFFAOYSA-J 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- FEONEKOZSGPOFN-UHFFFAOYSA-K tribromoiron Chemical compound Br[Fe](Br)Br FEONEKOZSGPOFN-UHFFFAOYSA-K 0.000 description 1
- IPILPUZVTYHGIL-UHFFFAOYSA-M tributyl(methyl)azanium;chloride Chemical compound [Cl-].CCCC[N+](C)(CCCC)CCCC IPILPUZVTYHGIL-UHFFFAOYSA-M 0.000 description 1
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 1
- ZNOCGWVLWPVKAO-UHFFFAOYSA-N trimethoxy(phenyl)silane Chemical compound CO[Si](OC)(OC)C1=CC=CC=C1 ZNOCGWVLWPVKAO-UHFFFAOYSA-N 0.000 description 1
- HQYALQRYBUJWDH-UHFFFAOYSA-N trimethoxy(propyl)silane Chemical compound CCC[Si](OC)(OC)OC HQYALQRYBUJWDH-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- VNDYJBBGRKZCSX-UHFFFAOYSA-L zinc bromide Chemical compound Br[Zn]Br VNDYJBBGRKZCSX-UHFFFAOYSA-L 0.000 description 1
Definitions
- the present invention relates to a method for producing alkoxyhydrosilane, a method for producing alkoxyhalosilane suitably used as a raw material compound in the production method, and an alkoxyhalosilane having a specific structure.
- alkoxyhydrosilane having a specific substituent on a carbon atom bonded to a silicon atom is also known, and it is known that a curable composition having a high curing rate can be obtained from a polymer produced therefrom.
- Patent Document 1 alkoxyhydrosilane having a specific substituent on a carbon atom bonded to a silicon atom is also known, and it is known that a curable composition having a high curing rate can be obtained from a polymer produced therefrom.
- a method for producing alkoxyhydrosilane a method of selectively hydrogenating a part of alkoxy groups of the corresponding trialkoxysilane in a plurality of steps can be considered.
- methoxymethyltrimethoxysilane is reacted with acetyl chloride in the presence of a catalyst to obtain methoxymethyltrichlorosilane, then methoxymethyltrichlorosilane and methyldichlorosilane are reacted to obtain methoxymethyldichlorosilane
- a method for producing methoxymethyldimethoxysilane (H—Si (CH 2 OCH 3 ) (OCH 3 ) 2 ) by reacting methoxymethyldichlorosilane with trimethyl orthoacetate or methanol and trimethyl orthoacetate has been proposed.
- Patent Document 2 Synthesis Example 1
- Patent Document 3 Example 6
- Patent Document 4 Example 3
- Patent Document 1 has a large number of steps and a low yield when selectively hydrogenating one or two of the three halogen atoms of organotrihalosilane. As a result, there is still room for improvement in the desired yield of alkoxyhydrosilane based on the amount of organotrimethoxysilane as a raw material.
- the present invention has been made in view of the above problems, and a method for producing an alkoxyhydrosilane capable of producing a target product in a high yield and a method for producing an alkoxyhalosilane suitably used as a raw material in the method for producing an alkoxyhydrosilane.
- the object is to provide a method and a novel alkoxyhalosilane of a specific structure.
- the inventors of the present invention produce an alkoxyhalosilane having a predetermined structure by halogenating an alkoxysilane having a predetermined structure with a halogenating agent under specific conditions, and converting the alkoxyhalosilane having the predetermined structure into an ether.
- the present inventors have found that the above problems can be solved by producing an alkoxyhydrosilane having a desired structure by hydrogenation using a hydrogenating agent in a solvent containing an aprotic organic solvent having a bond. It was.
- H-SiR 1 a (OR 2 ) 3-a (1)
- R 1 and R 2 are each independently a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent, and a is 1 or 2.
- R For each of 1 and OR 2 when there are a plurality of them, they may be the same or different.
- a halogenating agent E
- halogenating agent (E) when 1 mole equivalent of stoichiometric halogenating agent (E) is used to form 1 mol of alkoxyhalosilane (B) from 1 mol of alkoxysilane (C) The manufacturing method whose quantity is 1.5 molar equivalent or less.
- X is a chlorine atom
- the halogenating agent (E) is acetyl chloride.
- R 3 is an alkyl group having 1 to 20 carbon atoms, and the alkyl group as R 3 may be substituted with a halogen atom or an alkoxy group having 1 to 6 carbon atoms.
- R 4 is a hydrocarbon group having 1 to 20 carbon atoms, and X is a halogen atom, and for two OR 4 , they may be the same or different.
- R 3 is an alkyl group having 1 to 3 carbon atoms substituted with an alkoxy group having 1 to 3 carbon atoms
- R 4 is an alkyl group having 1 to 3 carbon atoms.
- (22) The alkoxyhalosilane compound according to (21), wherein R 3 is a methoxymethyl group and R 4 is a methyl group. About.
- the manufacturing method of the alkoxyhydrosilane which can manufacture a target object with a high yield, the manufacturing method of the alkoxyhalosilane used suitably as a raw material in the manufacturing method of the said alkoxyhydrosilane, and novel of a specific structure And alkoxyhalosilanes can be provided.
- the alkoxyhydrosilane (A) produced by the method according to the present invention has the following formula (1): H-SiR 1 a (OR 2 ) 3-a (1)
- R 1 and R 2 are each independently a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent, and a is 1 or 2.
- It is a compound represented by these.
- R 1 and R 2 are each independently a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent.
- the substituent that the hydrocarbon group as R 1 and R 2 may have is not particularly limited as long as it is a group that does not inhibit the good production of alkoxyhydrosilane. Specific examples include an alkoxy group, a cycloalkoxy group, an alkenyloxy group, an aryloxy group, an aralkyloxy group, an alkylthio group, a cycloalkylthio group, an alkenylthio group, an arylthio group, an aralkylthio group, and a halogen atom.
- an alkoxy group and a halogen atom are preferable from the usefulness of the resulting hydrosilane.
- the alkoxy group is preferably an alkoxy group having 1 to 10 carbon atoms, more preferably an alkoxy group having 1 to 6 carbon atoms, still more preferably a methoxy group and an ethoxy group, and particularly preferably a methoxy group.
- An alkoxy group having a small number of carbon atoms and a small stericity tends to favorably advance the hydrogenation reaction.
- halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom and a chlorine atom are preferable in that a side reaction with the hydrogenating agent (D) hardly occurs.
- the total number of carbon atoms of the hydrocarbon group which may have a substituent as R 1 and R 2 is smaller as the reactive functional group when the total number of carbon atoms is smaller when introduced into the polymer molecular chain. Since reactivity tends to be high, 1 to 12 is preferable, 1 to 6 is more preferable, and 1 to 3 is particularly preferable.
- the unsubstituted hydrocarbon group having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, n-hexyl group, n-octyl group, 2 -Alkyl groups such as ethylhexyl group, n-dodecyl group and n-icosyl group; cycloalkyl groups such as cyclopropyl group and cyclohexyl group; alkenyl groups such as vinyl group, allyl group and isopropenyl group; phenyl group Aromatic hydrocarbon groups such as o-tolyl group, m-tolyl group, p-tolyl group and naphthalen-1-yl group; and aralkyl groups such as benzyl group, phenethyl group and naphthalen-1-ylmethyl group It is done. Among them,
- R 1 is preferably a hydrocarbon group having 1 to 3 carbon atoms which may have a substituent from the viewpoint of easy availability and production of the raw material of alkoxyhydrosilane (A). Further, R 1 is either substituted by a chlorine atom, that an ether bond preferable from the viewpoint of reactivity.
- Suitable groups for R 1 include methyl group, ethyl group, n-propyl group, isopropyl group, chloromethyl group, 1-chloroethyl group, 2-chloroethyl group, 1-chloropropyl group, 2-chloropropyl group, Examples include 3-chloropropyl group, methoxymethyl group, ethoxymethyl group, 1-methoxyethyl group, 2-methoxyethyl group, 1-methoxypropyl group, 2-methoxypropyl group, and 3-methoxypropyl group. Among these, a methoxymethyl group is preferable because the hydrogenation reaction proceeds well.
- R 2 is preferably a methyl group or an ethyl group, and more preferably a methyl group. That is, the alkoxyhydrosilane (A) is preferably methoxyhydrosilane or ethoxyhydrosilane, and more preferably methoxyhydrosilane.
- the plurality of groups when there are a plurality of R 1 or (OR 2 ), the plurality of groups may be the same or different from each other, and are preferably the same from the viewpoint of ease of raw material production. .
- a is 1 or 2. From the viewpoint of availability of raw materials, a is preferably 1. On the other hand, the reactivity of the alkoxysilyl group of the alkoxyhydrosilane (A) can be adjusted and further chemical modification can be performed by the substituent of the organic group on the silicon group. For this reason, a is preferably 2. In producing various chemical products using the obtained alkoxyhydrosilane (A), the number of alkoxy groups contained in the alkoxysilyl group is determined from the reactivity of the alkoxysilyl group derived from the alkoxyhydrosilane (A). Is more preferable. For this reason, a is more preferably 1.
- alkoxyhydrosilane (A) represented by the formula (1) obtained by the method for producing an alkoxyhydrosilane according to the present invention include methyldimethoxysilane (HSi (CH 3 ) (OCH 3 ) 2 ), methyl diethoxy silane (HSi (CH 3) (OC 2 H 5) 2), ethyl dimethoxy silane (HSi (C 2 H 5) (OCH 3) 2), ethyldiethoxysilane (HSi (C 2 H 5) (OC 2 H 5) 2), n- propyl dimethoxy silane (HSi (n-C 3 H 7) (OCH 3) 2), n- propyl diethoxy silane (HSi (n-C 3 H 7) (OC 2 H 5 2 ), n-hexyldimethoxysilane (HSi (n-C 6 H 13 ) (OCH 3 ) 2 ), n-hexyldiethoxysilane
- the alkoxy hydrosilane (A) is represented by the following formula (2): X-SiR 1 a (OR 2 ) 3-a (2) (In Formula (2), R 1 , R 2 , and a are the same as in Formula (1), and X is a halogen atom.) It is manufactured using the alkoxyhalosilane (B) represented by these.
- the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
- a chlorine atom and a bromine atom are preferable from the viewpoint of availability of raw materials, and a chlorine atom is more preferable in terms of ease of handling.
- a preferred method for producing the alkoxyhalosilane (B) will be described later.
- a hydrogen atom bonded to a silicon atom in the compound exemplified as a preferable specific example of the alkoxyhydrosilane (A) represented by the formula (1) is a chlorine atom.
- the compound substituted by is mentioned.
- the alkoxyhydrosilane (A) is produced by hydrogenating the halogen atom (X) contained in the alkoxyhalosilane (B) with the hydrogenating agent (D).
- the type of the hydrogenating agent (D) is not particularly limited as long as the halogen atom (X) in the alkoxyhalosilane (B) can be hydrogenated well, and is appropriately selected from the known hydrogenating agents (D).
- the hydrogenating agent (D) may be used in combination of two or more.
- the following formula (D1) MBH 4 ... (D1) (In the formula (D1), M is lithium, sodium, or potassium.)
- M is lithium, sodium, or potassium.
- the compound represented by these is mentioned.
- sodium borohydride, in which M is sodium, is preferable because the alkoxyhydrosilane (A) can be easily produced from the alkoxyhalosilane (B) with a high yield.
- the amount of hydrogenating agent (D) used is not particularly limited as long as alkoxyhydrosilane (A) can be produced in a desired yield.
- the amount of the hydrogenating agent (D) used is preferably 0.5 to 10 times the stoichiometric amount capable of hydrogenating 1 mol of the halogen atom (X) contained in the alkoxyhalosilane (B).
- An amount of 0.0 to 5.0 times is more preferable, and an amount of 1.2 to 3.0 times is particularly preferable.
- Suitable aprotic organic solvents having an ether bond include cyclic ethers such as tetrahydrofuran, tetrahydropyran, and 1,4-dioxane; dialkyl ethers such as diethyl ether, di-n-butyl ether, and cyclopentyl methyl ether; Alkoxybenzenes such as anisole; alkoxyalkanoic acid esters such as methyl methoxyacetate and ethyl methoxyacetate; 1,2-dimethoxyethane, 1,2-diethoxyethane, propylene glycol dimethyl ether, diethylene glycol dimethyl ether (diglyme), dipropylene glycol Dimethyl ether, triethylene glycol dimethyl ether (triglyme), tripropylene glycol dimethyl ether, tetraethylene glycol dimethyl ether (Tetraglyme), glycol dialkyl ethers such as tetraethylene glycol dimethyl ether, ethylene glycol
- alkoxyhydrosilane (A) can be easily produced in a good yield, and recovery and purification after handling and reaction. 1,2-dimethoxyethane is more preferable.
- the content of the aprotic organic solvent having an ether bond in the solvent (S) is not particularly limited as long as it is 50% by mass or more, but is preferably 70% by mass or more, more preferably 90% by mass or more, and particularly preferably 100% by mass. preferable. As the content of the aprotic organic solvent having an ether bond in the solvent (S) is larger, the hydrogenation reactivity tends to be improved.
- the type of the other solvent is a hydrogenating agent (D) of the halogen atom (X) contained in the alkoxyhalosilane (B).
- D hydrogenating agent
- X halogen atom
- the other solvent typically, a hydrocarbon organic solvent is preferable in that it hardly reacts with the hydrogenating agent (D).
- a solvent that is miscible with an aprotic organic solvent having an ether bond is more preferable.
- the amount of the solvent (S) used is not particularly limited as long as the alkoxyhydrosilane (A) can be produced in a desired yield.
- the amount of the solvent (S) used is typically preferably 50 to 1000 parts by weight, more preferably 70 to 800 parts by weight, and more preferably 100 to 500 parts by weight with respect to 100 parts by weight of the alkoxyhalosilane (B). Particularly preferred.
- solvent (S) When there is too little solvent (S), there exists a tendency for progress of hydrogenation to become slow, and when there is too much solvent (S), the removal after reaction becomes complicated.
- the conditions for reacting the alkoxyhalosilane (B) with the hydrogenating agent (D) described above are not particularly limited as long as the reaction proceeds well.
- the hydrogenating agent (D) may be added to the alkoxyhalosilane (B), and conversely, the alkoxyhalosilane (B) may be added to the hydrogenating agent (D).
- the solvent (S) is preferably present in the reaction system.
- the method for adding the alkoxyhalosilane (B) or the hydrogenating agent (D) is not particularly limited, and the alkoxyhalosilane (B) or the hydrogenating agent (D) may be added alone to the reaction system.
- a solution or suspension of B) or hydrogenating agent (D) may be added to the reaction system.
- Alkoxyhalosilane (B) or hydrogenating agent (D) may be added to the reaction system by dividing it once or several times, or may be continuously added to the reaction system by a method such as dropping.
- the time for adding the alkoxyhalosilane (B) or the hydrogenating agent (D) to the reaction system is not particularly limited, and is appropriately selected according to the progress of the reaction.
- the temperature at which the alkoxyhalosilane (B) and the hydrogenating agent (D) are reacted is not particularly limited as long as the reaction proceeds well. Typically, it is 0 to 40 ° C.
- the atmosphere in which the alkoxyhalosilane (B) and the hydrogenating agent (D) are reacted is not particularly limited, but the reaction is preferably performed in an inert gas atmosphere such as nitrogen gas.
- the reaction between the alkoxyhalosilane (B) and the hydrogenating agent (D) may be carried out under atmospheric pressure, under reduced pressure, or under pressure.
- the reaction between the alkoxyhalosilane (B) and the hydrogenating agent (D) can be carried out by either a batch method or a continuous method.
- the time for reacting the alkoxyhalosilane (B) and the hydrogenating agent (D) is not particularly limited as long as the reaction proceeds well. Including the addition time of alkoxyhalosilane (B) or hydrogenating agent (D), it is typically 1 hour to 24 hours, preferably 1 hour 30 minutes to 10 hours, more preferably 2 hours to 5 hours. . If the reaction time is short, there is a concern that the temperature of the reaction system rapidly rises due to heat generated by the reaction. If the reaction time is long, the product may be decomposed. However, when the number of carbon atoms of R 1 in the alkoxyhalosilane (B) represented by the formula (2) is large, the hydrogenation reaction may take a long time. In consideration of this point, the reaction time is preferably appropriately determined while analyzing the progress of the reaction as necessary.
- the alkoxyhydrosilane (A) produced by the method described above is recovered from the reaction system by a well-known method such as filtration or collection under reduced pressure, and then purified by a method such as distillation, if necessary.
- the alkoxyhydrosilane (A) produced by such a method is, for example, as proposed in WO2011 / 161915, hydrosilylation reaction using Si—H, hydrolysis and condensation reaction using Si—OR 2. It can be used as a raw material for producing various compounds.
- the production method of the alkoxyhalosilane (B) represented by the above formula (2) used for the production of the alkoxyhydrosilane is not particularly limited. Since the yield is good, the production method of alkoxyhalosilane (B) is represented by the following formula (3): SiR 1 a (OR 2 ) 4-a (3) (In formula (3), R 1 , R 2 , and a are the same as in formula (2).)
- a method comprising reacting the alkoxysilane (C) represented by formula (I) with a halogenating agent (E) at a temperature of ⁇ 30 ° C. or higher and 80 ° C.
- alkoxysilane (C) is SiR 1 a (OR 2 ) 4-a (3) (In formula (3), R 1 , R 2 , and a are the same as in formula (2).) It is a compound represented by these.
- alkoxysilane (C) As a suitable specific example of alkoxysilane (C), the hydrogen atom couple
- the halogenating agent is not particularly limited as long as it is a compound that can halogenate one of the alkoxy groups represented by 4-a OR 2 contained in the alkoxysilane (C) with a desired high selectivity. Not.
- a carboxylic acid halide is preferable because post-treatment after the reaction is easy.
- a halogen atom (X) a chlorine atom or a bromine atom is preferable in terms of reactivity, and a chlorine atom is more preferable in terms of availability of raw materials and price.
- a carboxylic acid halide a carboxylic acid chloride or a carboxylic acid bromide is preferable, and a carboxylic acid chloride is more preferable.
- carboxylic acid halides include monochlorides such as acetyl chloride, propionyl chloride, butanoyl chloride, acryloyl chloride, methacryloyl chloride, benzoyl chloride, oxalyl chloride, adipoyl chloride, succinic acid chloride, sebacic acid chloride, and the like.
- Examples thereof include dichlorides, trichlorides such as 1,3,5-benzenetricarboxylic acid trichloride, and bromides such as acetyl bromide.
- acetyl chloride, benzoyl chloride, and acetyl bromide are more preferable in terms of yield of the reaction, and acetyl chloride is particularly preferable in terms of cost.
- the amount of the halogenating agent (E) used is 1 molar equivalent of the stoichiometric amount of the halogenating agent (E) that generates 1 mol of alkoxyhalosilane (B) from 1 mol of alkoxysilane (C). In some cases, the amount is 1.5 molar equivalents or less, preferably 0.5 to 1.2 molar equivalents, and more preferably 0.7 to 1.1 molar equivalents. If the amount of the halogenating agent (E) used decreases, the halogenation rate decreases, which ultimately leads to a decrease in the yield of the desired hydrosilane. If the amount used increases, the amount of by-produced dihalogenated compounds and trihalogenated compounds increases. Resulting in.
- the metal salt (F) is preferably a salt composed of a metal cation and an anion.
- Preferred examples of the metal in the metal salt (F) include alkaline earth metals, transition metals, zinc, aluminum, and boron.
- Preferred examples of the anion constituting the metal salt (F) include halide ions, BF 4 ⁇ , PF 6 ⁇ , SbF 6 ⁇ , ClO 4 ⁇ , CF 3 CO 2 ⁇ , and CF 3 SO 3 ⁇ .
- Halide ions are more preferable in that by-products other than halosilane can be suppressed.
- Preferred examples of the metal salt (F) exhibiting Lewis acidity include magnesium chloride (MgCl 2 ), magnesium bromide (MgBr 2 ), boron trifluoride ether complex (BF 3 .O (C 2 H 5 ) 2 ), Boron trichloride (BCl 3 ), aluminum chloride (AlCl 3 ), aluminum bromide (AlBr 3 ), zinc chloride (ZnCl 2 ), zinc bromide (ZnBr 2 ), tin tetrachloride (SnCl 4 ), tin tetrabromide (SnBr 4 ), iron trichloride (FeCl 3 ), iron tribromide (FeBr 3 ), titanium tetrachloride (TiCl 4 ), titanium tetrabromide (TiBr 4 ), and the like.
- MgCl 2 magnesium chloride
- MgBr 2 magnesium bromide
- zinc chloride is preferable in terms of reactivity and ease of handling. For this reason, it is preferable to use the metal salt (F) containing zinc chloride for the reaction between the alkoxysilane (C) and the halogenating agent (E).
- the amount of the metal salt (F) used is not particularly limited as long as the reaction between the alkoxysilane (C) and the halogenating agent (E) proceeds well.
- the amount of the metal salt (F) used is typically preferably 0.01 to 20 mol%, more preferably 0.05 to 10 mol%, relative to the amount of the alkoxysilane (C) substance. 1 to 2.0 mol% is particularly preferred. If the amount of the metal salt (F) used is small, the reaction rate is slow, and if it is too large, it is economically disadvantageous.
- a solvent can be used as necessary.
- the solvent is not particularly limited as long as the halogenation of the alkoxysilane (C) is not inhibited by reaction with the halogenating agent (E) or the like.
- Suitable solvents include, for example, aprotic ether solvents such as 1,2-dimethoxyethane, hydrocarbon solvents such as hexane, and aprotic ester solvents such as methyl acetate.
- a solvent may be used independently or may be used in mixture of multiple.
- the solvent (S) described above as the solvent used for the production of the alkoxyhalosilane (B) can also be used.
- the amount of the solvent used is not particularly limited as long as the alkoxyhalosilane (B) can be produced in a desired yield.
- the amount of the solvent used is preferably 1000 parts by mass or less, more preferably 800 parts by mass or less, and particularly preferably 500 parts by mass or less with respect to 100 parts by mass of the alkoxysilane (C).
- the removal after the reaction becomes complicated, and it is disadvantageous economically.
- the reaction between the alkoxysilane (C) and the halogenating agent (E) is performed at a temperature of ⁇ 30 ° C. or higher and 100 ° C. or lower.
- the reaction temperature may be constant during the reaction or may vary.
- the temperature at which the alkoxysilane (C) and the halogenating agent (E) are reacted may be at least partially -30 ° C to 100 ° C, and the average temperature during the reaction is -30 ° C to 100 ° C.
- the temperature during the reaction is preferably within the range of ⁇ 30 ° C. or more and 100 ° C. or less. When the temperatures during the reaction are all lower than ⁇ 30 ° C., the reaction hardly proceeds. If the reaction temperature exceeds 100 ° C. for a long time, the amount of by-produced dihalides and trihalides increases.
- the temperature at which the alkoxysilane (C) and the halogenating agent (E) are reacted is preferably at least partly ⁇ 10 ° C. or higher and 90 ° C. or lower, and the average temperature during the reaction is ⁇ 10 ° C. It is more preferable that the temperature is 90 ° C. or lower, and it is particularly preferable that all the temperatures during the reaction are within a range of ⁇ 10 ° C. or higher and 90 ° C. or lower. If the reaction temperature is within such a range, the reaction temperature can be adjusted using a commonly used heat medium or refrigerant such as hot water, cold water, or brine, which is economically advantageous.
- a commonly used heat medium or refrigerant such as hot water, cold water, or brine
- At least a part of the reaction between the alkoxysilane (C) and the halogenating agent (E) is 0 ° C. or higher and 20 ° C. or lower, and the average temperature during the reaction is 0 ° C. or higher and 20 ° C. or lower. It is more preferable that all the temperatures during the reaction are in the range of 0 ° C. or higher and 20 ° C. or lower. Sufficient reactivity can be secured by setting the temperature during the reaction to 0 ° C. or higher. In addition, when the reaction temperature is 20 ° C. or less, the amount of by-produced dihalides and trihalogenated substances can be sufficiently suppressed.
- the method for adding the halogenating agent (E) and the metal salt (F) is not particularly limited, and the halogenating agent (E) or the metal salt (F) may be added to the reaction system alone. Alternatively, a solution or suspension of the metal salt (F) may be added to the reaction system. The halogenating agent (E) and the metal salt (F) may be added to the reaction system by dividing it once or several times, or may be continuously added to the reaction system by a method such as dropping.
- the time for adding the halogenating agent (E) and the metal salt (F) to the reaction system is not particularly limited, and is appropriately selected according to the progress of the reaction.
- the order of addition of the halogenating agent (E) and the metal salt (F) is not particularly limited, but the metal salt (F) is added first, and then the halogenating agent (E) is added to suppress the temperature increase during the reaction. It is preferably added continuously to the reaction system by a method such as dropping.
- the atmosphere in which the alkoxysilane (C) and the halogenating agent (E) are reacted is not particularly limited, but the reaction is preferably performed in an inert gas atmosphere such as nitrogen gas.
- the reaction between the alkoxysilane (C) and the halogenating agent (E) may be carried out under atmospheric pressure, under reduced pressure, or under pressure.
- the reaction of the alkoxysilane (C) and the halogenating agent (E) can be carried out by either a batch method or a continuous method.
- the time for reacting the alkoxysilane (C) and the halogenating agent (E) is not particularly limited. Including the time for dropping the halogenating agent (E) and the subsequent reaction time, it is typically 10 minutes to 24 hours, preferably 30 minutes to 10 hours, and more preferably 1 hour to 5 hours. If the reaction time is short, there is a concern that the temperature of the reaction system rapidly rises due to heat generated by the reaction. Although there is no particular influence on the reaction system due to the long reaction time, it is economically disadvantageous.
- the alkoxyhalosilane (B) thus produced is directly or purified, preferably purified, and used as a production raw material in the method for producing alkoxyhydrosilane (E) by the above-described method.
- it can be used for hydrolysis, condensation reaction, etc. using Si—X or Si—OR 2 and is suitably used as a raw material for producing various compounds.
- the alkoxy halosilane compound (B) represented by the said Formula (2) which is a manufacturing raw material of alkoxy hydrosilane (A) is manufactured.
- the alkoxyhalosilane compounds (B) the following formula (4): X-SiR 3 (OR 4 ) 2 (4)
- R 3 is an alkyl group having 1 to 20 carbon atoms, and the alkyl group as R 3 may be substituted with a halogen atom or an alkoxy group having 1 to 6 carbon atoms
- R 4 is a hydrocarbon group having 1 to 20 carbon atoms
- X is a halogen atom, and for two OR 4 , they may be the same or different.
- the alkoxyhalosilane compound represented by these is preferable.
- the halogen atom as X and the halogen atom as a substituent on the alkyl group include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a chlorine atom or a bromine atom is preferable for ease of production, From the availability of raw materials, a chlorine atom is preferable.
- Specific examples of the alkyl group having 1 to 20 carbon atoms for R 3 and specific examples of the hydrocarbon group having 1 to 20 carbon atoms for R 4 include those described for R 1 and R 2 . This is the same as the specific example of the alkyl group and the specific example of the hydrocarbon group having 1 to 20 carbon atoms.
- R 3 is an alkyl group having 1 to 3 carbon atoms substituted with a halogen atom (preferably a chlorine atom) from the viewpoint of reactivity when used as a raw material for producing various compounds. It is preferably an alkyl group having 1 to 3 carbon atoms substituted with an alkoxy group having 1 to 3 carbon atoms, and R 4 is preferably an alkyl group having 1 to 3 carbon atoms.
- R 3 is preferably a methoxymethyl group
- R 4 is preferably a methyl group.
- alkoxyhalosilane (A) represented by the formula (4) include methyldimethoxychlorosilane (ClSi (CH 3 ) (OCH 3 ) 2 ), methyldiethoxychlorosilane (ClSi (CH 3 ) (OC) 2 H 5) 2), ethyl dimethoxy chlorosilane (ClSi (C 2 H 5) (OCH 3) 2), ethyl diethoxy chlorosilane (ClSi (C 2 H 5) (OC 2 H 5) 2), n- propyl dimethoxy Chlorosilane (ClSi (n—C 3 H 7 ) (OCH 3 ) 2 ), n-propyldiethoxychlorosilane (ClSi (n—C 3 H 7 ) (OC 2 H 5 ) 2 ), n-hexyldimethoxychlorosilane (ClSi) (NC 6 H 13
- Example 1 Methoxymethyltrimethoxysilane was used as the aforementioned alkoxysilane (C) (silane (C)).
- the amount of silane (C) is as described in Table 1.
- Zinc chloride (ZnCl 2 ) was added as a metal salt (F) at a ratio shown in Table 1 (mol%, number of moles of silane (C)) with respect to silane (C).
- Acetyl chloride as the halogenating agent (E) was added dropwise to the mixture of silane (C) and metal salt (F) in the amount shown in Table 1.
- Table 1 shows the initial temperature at the start of dropping and the maximum temperature from the start of dropping to the end of reaction.
- Example 6 to 13 As the aforementioned alkoxysilane (C) (silane (C)), the types of silane compounds described in Table 2 were used. The amount of silane (C) is as described in Table 2. Zinc chloride (ZnCl 2 ) was added as a metal salt (F) at a ratio shown in Table 2 (mol%, moles of silane (C)) with respect to silane (C). However, in Example 13, the metal salt (F) was not used. In the mixture of silane (C) and metal salt (F), the types and amounts of halogenating agents (E) listed in Table 2 were added dropwise.
- Zinc chloride (ZnCl 2 ) Zinc chloride (ZnCl 2 ) was added as a metal salt (F) at a ratio shown in Table 2 (mol%, moles of silane (C)) with respect to silane (C). However, in Example 13, the metal salt (F) was not used.
- the initial temperature at the start of dropping was 5 ° C., and the maximum temperature from the start of dropping to the end of the reaction was less than 20 ° C.
- the reaction was carried out for 30 minutes while maintaining the temperature after completion of dropping.
- the composition of the reaction solution after completion of the reaction was analyzed to determine the consumption rate of the halogenating agent and the production ratio of the monohalo form (X 1 ) and dihalo form (X 2 ). These results are shown in Table 2.
- the measurement results of 1 H-NMR (CDCl 3 ) of the product are shown in Table 3.
- the 1 H-NMR measurement was performed using JNM-AL400 manufactured by JEOL Ltd.
- Example 14 As the alkoxyhalosilane (B) (halosilane (B)), 26.83 mmol of the silanes described in Table 4 were used. 1.73 g (44.67 mmol, 1.67 equivalents based on halosilane (B)) of NaBH 4 as the hydrogenating agent (D) was suspended in 14.7 g of the solvent (S) of the type described in Table 4. Thereafter, the halosilane (B) was added dropwise to the suspension of the hydrogenating agent (D) at 20 ° C. over 30 to 90 minutes. After completion of dropping, the reaction was carried out at 20 ° C. for 2 hours. The yield of alkoxyhydrosilane (A) (methoxymethyldimethoxysilane) after the reaction was determined from 1 H-NMR (CDCl 3 ). The obtained yield is shown in Table 4.
- Example 18 and Comparative Example 4 Changing the solvent (S) to the solvent shown in Table 4, changing the dropping time of the halosilane (B) to 13 hours, and changing the reaction time after the dropping of the halosilane (B) to 6 hours The others were reacted in the same manner as in Example 14. The yield of alkoxyhydrosilane (A) (methoxymethyldimethoxysilane) after the reaction was determined in the same manner as in Example 14. The obtained yield is shown in Table 4.
- MMDMCS represents methoxymethyldimethoxychlorosilane
- MMDMBS represents methoxymethyldimethoxybromosilane
- a desired structure is obtained by reacting an alkoxyhalosilane (B) having a predetermined structure with a hydrogenating agent (D) in a solvent (S) containing 50% by mass or more of an aprotic organic solvent having an ether bond. It can be seen that the alkoxyhydrosilane (A) having the structure as described above is favorably produced.
- Example 14 and Examples 20 to 24 Type and amount of use of alkoxyhalosilane (B) (halosilane (B)) (mmol), amount of use of hydrogenating agent (D) (equivalent), amount of use of solvent (S) (g), and reaction time And alkoxyhydrosilane (A) (hydrosilane (A)) were synthesized in the same manner as in Example 14 except that they were changed as described in Table 5. The yield of hydrosilane (A) measured in the same manner as in Example 14 is shown in Table 5.
- MMDMCS Methoxymethyldimethoxychlorosilane
- MDECS Methyldiethoxychlorosilane
- nPrDMCS n-propyldimethoxychlorosilane
- HexDMCS n-hexyldimethoxychlorosilane
- PhDMCS phenyldimethoxychlorosilane 3-ClC3DMCS: 3-chloropropyldimethoxychlorosilane
- Example 25 With respect to methoxymethyltrimethoxysilane, 0.011 mol% of zinc chloride was used as a catalyst, and addition of 0.92 mol equivalent of acetyl chloride at 5 ° C. was started. The addition was completed over 1.5 hours while adjusting the addition rate so that the temperature of the reaction system did not exceed 20 ° C. The reaction was further continued for 0.5 hours to obtain methoxymethyldimethoxychlorosilane. To the purified methoxymethyldimethoxychlorosilane, 1.67 molar equivalents of NaBH 4 and 3 times the mass of 1,2-dimethoxyethane were charged into the reaction vessel.
- Example 25 is a method having only two steps according to the present invention, the monochloroation reaction of methoxymethyltrimethoxysilane and the monohydrolysis reaction of methoxymethyldimethoxychlorosilane.
- the yield of methoxymethyldimethoxysilane based on the amount of methoxymethyltrimethoxysilane used was as high as 60%.
- methoxymethyldichlorosilane To the purified methoxymethyldichlorosilane, 2.5 molar equivalents of trimethyl orthoacetate were charged into the reaction vessel. While stirring the contents of the reaction vessel, methoxymethyldimethoxysilane was obtained by slowly adding methoxymethyldichlorosilane so that the internal temperature of the reaction vessel did not exceed 50 ° C.
- the method of Comparative Example 5 is a method having three steps: a trichlorination reaction of methoxymethyltrimethoxysilane, a monohydrolysis reaction of methoxymethyltrichlorosilane, and a dimethoxylation reaction of methoxymethyldichlorosilane described in Patent Document 2. It is. As a result, in Comparative Example 5, the yield of methoxymethyldimethoxysilane based on the amount of methoxymethyltrimethoxysilane used was as low as 30%.
Abstract
Provided are: a method for producing an alkoxyhydrosilane from which an objective substance can be produced in high yield; a method for producing an alkoxyhalosilane which is suitable for use as a starting material in the method for producing an alkoxyhydrosilane; and a novel alkoxyhalosilane having a specific structure.
An alkoxysilane having a given structure is halogenated with a halogenating agent under specific conditions to produce an alkoxyhalosilane having a given structure. The alkoxyhalosilane having a given structure is hydrogenated with a hydrogenating agent in a solvent comprising an aprotic organic solvent having an ether bond, thereby producing an alkoxyhydrosilane having a desired structure.
Description
本発明は、アルコキシヒドロシランの製造方法と、当該製造方法における原料化合物として好適に使用されるアルコキシハロシランの製造方法と、特定の構造のアルコキシハロシランに関する。
The present invention relates to a method for producing alkoxyhydrosilane, a method for producing alkoxyhalosilane suitably used as a raw material compound in the production method, and an alkoxyhalosilane having a specific structure.
シランカップリング剤のような種々の機能性シラン化合物の原料化合物や、ポリマー分子鎖に反応性の官能基を導入するための原料化合物として、例えば、メチル基のような有機基と、メトキシ基のようなアルコキシ基と、1つの水素原子とを組み合わせて有する、アルコキシヒドロシランが広く用いられている。
Examples of raw material compounds for various functional silane compounds such as silane coupling agents and raw material compounds for introducing reactive functional groups into polymer molecular chains include, for example, organic groups such as methyl groups and methoxy groups. Alkoxyhydrosilanes having a combination of such an alkoxy group and one hydrogen atom are widely used.
一方、ケイ素原子に結合した炭素原子上に特定の置換基を有するアルコキシヒドロシランも知られており、これらから製造される重合体から高い硬化速度を有する硬化性組成物が得られることが知られている(特許文献1)。
On the other hand, alkoxyhydrosilane having a specific substituent on a carbon atom bonded to a silicon atom is also known, and it is known that a curable composition having a high curing rate can be obtained from a polymer produced therefrom. (Patent Document 1).
一般に、アルコキシヒドロシランの製造方法としては、対応するトリアルコキシシランの一部のアルコキシ基を複数工程にて選択的に水素化する方法が考えられる。例えば、メトキシメチルトリメトキシシランを触媒の存在下に塩化アセチルと反応させて、メトキシメチルトリクロロシランを得た後、メトキシメチルトリクロロシランとメチルジクロロシランとを反応させてメトキシメチルジクロロシランを得、さらに、メトキシメチルジクロロシランを、オルト酢酸トリメチル、あるいはメタノール及びオルト酢酸トリメチルと反応させてメトキシメチルジメトキシシラン(H-Si(CH2OCH3)(OCH3)2)を製造する方法が提案されている(特許文献2(合成例1)、特許文献3(実施例6)、及び特許文献4(実施例3)を参照。)。
In general, as a method for producing alkoxyhydrosilane, a method of selectively hydrogenating a part of alkoxy groups of the corresponding trialkoxysilane in a plurality of steps can be considered. For example, methoxymethyltrimethoxysilane is reacted with acetyl chloride in the presence of a catalyst to obtain methoxymethyltrichlorosilane, then methoxymethyltrichlorosilane and methyldichlorosilane are reacted to obtain methoxymethyldichlorosilane, A method for producing methoxymethyldimethoxysilane (H—Si (CH 2 OCH 3 ) (OCH 3 ) 2 ) by reacting methoxymethyldichlorosilane with trimethyl orthoacetate or methanol and trimethyl orthoacetate has been proposed. (See Patent Document 2 (Synthesis Example 1), Patent Document 3 (Example 6), and Patent Document 4 (Example 3).)
しかし、特許文献1に記載される方法は、工程数が多いことや、オルガノトリハロシランが有する3つのハロゲン原子のうちの1つ又は2つを選択的に水素化する際の収率が低いことに起因して、原料であるオルガノトリメトキシシランの量を基準とする、所望するアルコキシヒドロシランの収率には未だ改善の余地があった。
However, the method described in Patent Document 1 has a large number of steps and a low yield when selectively hydrogenating one or two of the three halogen atoms of organotrihalosilane. As a result, there is still room for improvement in the desired yield of alkoxyhydrosilane based on the amount of organotrimethoxysilane as a raw material.
本発明は、上記の課題に鑑みなされたものであり、高収率で目的物を製造できるアルコキシヒドロシランの製造方法と、当該アルコキシヒドロシランの製造方法において原料として好適に使用されるアルコキシハロシランの製造方法と、特定の構造の新規なアルコキシハロシランとを提供することを目的とする。
The present invention has been made in view of the above problems, and a method for producing an alkoxyhydrosilane capable of producing a target product in a high yield and a method for producing an alkoxyhalosilane suitably used as a raw material in the method for producing an alkoxyhydrosilane. The object is to provide a method and a novel alkoxyhalosilane of a specific structure.
本発明者らは、所定の構造のアルコキシシランを特定の条件下においてハロゲン化剤によりハロゲン化して所定の構造のアルコキシハロシランを製造することと、前述の所定の構造のアルコキシハロシランを、エーテル結合を有する非プロトン性有機溶剤を含む溶剤中で、水素化剤を用いて水素化して所望する構造のアルコキシヒドロシランを製造することにより上記の課題を解決できることを見出し、本発明を完成するに至った。
The inventors of the present invention produce an alkoxyhalosilane having a predetermined structure by halogenating an alkoxysilane having a predetermined structure with a halogenating agent under specific conditions, and converting the alkoxyhalosilane having the predetermined structure into an ether. The present inventors have found that the above problems can be solved by producing an alkoxyhydrosilane having a desired structure by hydrogenation using a hydrogenating agent in a solvent containing an aprotic organic solvent having a bond. It was.
すなわち、本発明は、
(1)下記式(1):
H-SiR1 a(OR2)3-a・・・(1)
(式(1)中、R1、及びR2は、それぞれ独立に、置換基を有していてもよい炭素原子数1~20の炭化水素基であり、aは1又は2である。R1、OR2のそれぞれについて、それらが複数存在するとき、それらは同じでもよく、異なっていてもよい。)
で表されるアルコキシヒドロシラン(A)を製造するアルコキシヒドロシランの製造方法であって、
下記式(2):
X-SiR1 a(OR2)3-a・・・(2)
(式(2)中、R1、R2、及びaは、式(1)と同様であり、Xはハロゲン原子である。R1、OR2のそれぞれについて、それらが複数存在するとき、それらは同じでもよく、異なっていてもよい。)
で表されるアルコキシハロシラン(B)を、エーテル結合を有する非プロトン性有機溶剤を50質量%以上含む溶剤(S)中で、水素化剤(D)を用いて水素化することを含む、製造方法。
(2)水素化剤(D)が、下記式(D1):
MBH4・・・(D1)
(式(D1)中、Mは、リチウム、ナトリウム、又はカリウムである。)
で表される化合物である、(1)に記載のアルコキシヒドロシランの製造方法。
(3)Mがナトリウムである、(2)に記載のアルコキシヒドロシランの製造方法。
(4)R2がメチル基、又はエチル基である、(1)~(3)のいずれか1つに記載のアルコキシヒドロシランの製造方法。
(5)R2がメチル基である、(4)に記載のアルコキシヒドロシランの製造方法。
(6)非プロトン性有機溶剤が、テトラヒドロフラン、1,2-ジメトキシエタン、ジエチレングリコールジメチルエーテル、及びトリエチレングリコールジメチルエーテルからなる群より選択される1種以上を含む、(1)~(5)のいずれか1つに記載のアルコキシヒドロシランの製造方法。
(7)非プロトン性有機溶剤が、1,2-ジメトキシエタンである、(6)に記載のアルコキシヒドロシランの製造方法。
(8)R1が、置換基を有していてもよい炭素原子数1~3の炭化水素基である、(1)~(7)のいずれか1つに記載のアルコキシヒドロシランの製造方法。
(9)R1が、塩素原子で置換されているか、エーテル結合を含む、(1)~(8)のいずれか1つに記載のアルコキシヒドロシランの製造方法。
(10)R1が、メトキシメチル基である、(9)に記載のアルコキシヒドロシランの製造方法。
(11)aが1である、(1)~(10)のいずれか1つに記載のアルコキシヒドロシランの製造方法。
(12)下記式(2):
X-SiR1 a(OR2)3-a・・・(2)
(式(2)中、R1、及びR2は、それぞれ独立に、置換基を有していてもよい炭素原子数1~20の炭化水素基であり、Xはハロゲン原子であり、aは1又は2である。R1、OR2のそれぞれについて、それらが複数存在するとき、それらは同じでもよく、異なっていてもよい。)
で表されるアルコキシハロシラン(B)を製造するアルコキシハロシランの製造方法であって、
下記式(3):
SiR1 a(OR2)4-a・・・(3)
(式(3)中、R1、及びR2、及びaは式(2)と同様である。R1、OR2のそれぞれについて、それらが複数存在するとき、それらは同じでもよく、異なっていてもよい。)
で表されるアルコキシシラン(C)に、-30℃以上100℃以下の温度で、ハロゲン化剤(E)を反応させてアルコキシハロシラン(B)を生成させることを含み、
アルコキシシラン(C)1モルからアルコキシハロシラン(B)1モルを生成させる、化学量論的なハロゲン化剤(E)の量を1モル当量とする場合に、ハロゲン化剤(E)の使用量が1.5モル当量以下である、製造方法。
(13)ハロゲン化剤(E)が、カルボン酸ハライドである、(12)に記載のアルコキシハロシランの製造方法。
(14)Xが塩素原子であり、ハロゲン化剤(E)が、塩化アセチルである、(13)に記載のアルコキシハロシランの製造方法。
(15)アルコキシシラン(C)に、-10℃以上90℃以下の温度で、ハロゲン化剤(E)を反応させる、(12)~(14)のいずれか1つに記載のアルコキシハロシランの製造方法。
(16)アルコキシシラン(C)に、0℃以上20℃以下の温度で、ハロゲン化剤(E)を反応させる、(15)に記載のアルコキシハロシランの製造方法。
(17)アルコキシシラン(C)と、ハロゲン化剤(E)との反応をルイス酸性を示す金属塩(F)の存在下に行う、(12)~(16)のいずれか1つに記載のアルコキシハロシランの製造方法。
(18)金属塩(F)が塩化亜鉛を含む、(17)に記載のアルコキシハロシランの製造方法。
(19)アルコキシハロシラン(B)が、(12)~(18)のいずれか1つに記載の方法により製造される、(1)~(11)のいずれか1つに記載のアルコキシヒドロシランの製造方法。
(20)下記式(4):
X-SiR3(OR4)2・・・(4)
(式(4)中、R3は、炭素原子数1~20のアルキル基であり、R3としてのアルキル基は、ハロゲン原子又は炭素原子数1~6のアルコキシ基で置換されていてもよく、R4は、炭素原子数1~20の炭化水素基であり、Xはハロゲン原子である。2つのOR4について、それらは同じでもよく、異なっていてもよい。)
で表されるアルコキシハロシラン化合物。
(21)R3が炭素原子数1~3のアルコキシ基で置換された炭素原子数1~3のアルキル基であり、R4が炭素原子数1~3のアルキル基である、(20)に記載のアルコキシハロシラン化合物。
(22)R3がメトキシメチル基であり、R4がメチル基である、(21)に記載のアルコキシハロシラン化合物。
に関する。 That is, the present invention
(1) The following formula (1):
H-SiR 1 a (OR 2 ) 3-a (1)
(In Formula (1), R 1 and R 2 are each independently a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent, and a is 1 or 2. R For each of 1 and OR 2 , when there are a plurality of them, they may be the same or different.)
A process for producing an alkoxyhydrosilane (A) represented by:
Following formula (2):
X-SiR 1 a (OR 2 ) 3-a (2)
(In Formula (2), R 1 , R 2 , and a are the same as in Formula (1), and X is a halogen atom. When there are a plurality of each of R 1 and OR 2 , May be the same or different.)
Hydrogenating the alkoxyhalosilane (B) represented by the formula (B) with a hydrogenating agent (D) in a solvent (S) containing 50 mass% or more of an aprotic organic solvent having an ether bond, Production method.
(2) The hydrogenating agent (D) is represented by the following formula (D1):
MBH 4 ... (D1)
(In the formula (D1), M is lithium, sodium, or potassium.)
The manufacturing method of the alkoxy hydrosilane as described in (1) which is a compound represented by these.
(3) The method for producing an alkoxyhydrosilane according to (2), wherein M is sodium.
(4) The method for producing an alkoxyhydrosilane according to any one of (1) to (3), wherein R 2 is a methyl group or an ethyl group.
(5) The method for producing an alkoxyhydrosilane according to (4), wherein R 2 is a methyl group.
(6) Any of (1) to (5), wherein the aprotic organic solvent includes one or more selected from the group consisting of tetrahydrofuran, 1,2-dimethoxyethane, diethylene glycol dimethyl ether, and triethylene glycol dimethyl ether The manufacturing method of the alkoxy hydrosilane as described in one.
(7) The method for producing an alkoxyhydrosilane according to (6), wherein the aprotic organic solvent is 1,2-dimethoxyethane.
(8) The method for producing an alkoxyhydrosilane according to any one of (1) to (7), wherein R 1 is a hydrocarbon group having 1 to 3 carbon atoms which may have a substituent.
(9) The method for producing an alkoxyhydrosilane according to any one of (1) to (8), wherein R 1 is substituted with a chlorine atom or contains an ether bond.
(10) The method for producing an alkoxyhydrosilane according to (9), wherein R 1 is a methoxymethyl group.
(11) The method for producing an alkoxyhydrosilane according to any one of (1) to (10), wherein a is 1.
(12) The following formula (2):
X-SiR 1 a (OR 2 ) 3-a (2)
(In the formula (2), R 1 and R 2 are each independently a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent, X is a halogen atom, and a is 1 or 2. For each of R 1 and OR 2 , when there are a plurality of them, they may be the same or different.
A method for producing an alkoxyhalosilane for producing an alkoxyhalosilane (B) represented by:
Following formula (3):
SiR 1 a (OR 2 ) 4-a (3)
(In formula (3), R 1 , R 2 , and a are the same as in formula (2). For each of R 1 and OR 2 , when there are a plurality of them, they may be the same or different. May be.)
A reaction with a halogenating agent (E) at a temperature of −30 ° C. or higher and 100 ° C. or lower to produce an alkoxyhalosilane (B).
Use of halogenating agent (E) when 1 mole equivalent of stoichiometric halogenating agent (E) is used to form 1 mol of alkoxyhalosilane (B) from 1 mol of alkoxysilane (C) The manufacturing method whose quantity is 1.5 molar equivalent or less.
(13) The method for producing an alkoxyhalosilane according to (12), wherein the halogenating agent (E) is a carboxylic acid halide.
(14) The method for producing an alkoxyhalosilane according to (13), wherein X is a chlorine atom, and the halogenating agent (E) is acetyl chloride.
(15) The alkoxyhalosilane according to any one of (12) to (14), wherein the halogenating agent (E) is reacted with the alkoxysilane (C) at a temperature of −10 ° C. or higher and 90 ° C. or lower. Production method.
(16) The method for producing an alkoxyhalosilane according to (15), wherein the halogenating agent (E) is reacted with the alkoxysilane (C) at a temperature of 0 ° C. or higher and 20 ° C. or lower.
(17) The reaction according to any one of (12) to (16), wherein the reaction between the alkoxysilane (C) and the halogenating agent (E) is performed in the presence of a metal salt (F) exhibiting Lewis acidity. A method for producing an alkoxyhalosilane.
(18) The method for producing an alkoxyhalosilane according to (17), wherein the metal salt (F) contains zinc chloride.
(19) The alkoxyhydrosilane according to any one of (1) to (11), wherein the alkoxyhalosilane (B) is produced by the method according to any one of (12) to (18) Production method.
(20) The following formula (4):
X-SiR 3 (OR 4 ) 2 (4)
(In formula (4), R 3 is an alkyl group having 1 to 20 carbon atoms, and the alkyl group as R 3 may be substituted with a halogen atom or an alkoxy group having 1 to 6 carbon atoms. , R 4 is a hydrocarbon group having 1 to 20 carbon atoms, and X is a halogen atom, and for two OR 4 , they may be the same or different.
The alkoxyhalosilane compound represented by these.
(21) In (20), R 3 is an alkyl group having 1 to 3 carbon atoms substituted with an alkoxy group having 1 to 3 carbon atoms, and R 4 is an alkyl group having 1 to 3 carbon atoms. The alkoxyhalosilane compound described.
(22) The alkoxyhalosilane compound according to (21), wherein R 3 is a methoxymethyl group and R 4 is a methyl group.
About.
(1)下記式(1):
H-SiR1 a(OR2)3-a・・・(1)
(式(1)中、R1、及びR2は、それぞれ独立に、置換基を有していてもよい炭素原子数1~20の炭化水素基であり、aは1又は2である。R1、OR2のそれぞれについて、それらが複数存在するとき、それらは同じでもよく、異なっていてもよい。)
で表されるアルコキシヒドロシラン(A)を製造するアルコキシヒドロシランの製造方法であって、
下記式(2):
X-SiR1 a(OR2)3-a・・・(2)
(式(2)中、R1、R2、及びaは、式(1)と同様であり、Xはハロゲン原子である。R1、OR2のそれぞれについて、それらが複数存在するとき、それらは同じでもよく、異なっていてもよい。)
で表されるアルコキシハロシラン(B)を、エーテル結合を有する非プロトン性有機溶剤を50質量%以上含む溶剤(S)中で、水素化剤(D)を用いて水素化することを含む、製造方法。
(2)水素化剤(D)が、下記式(D1):
MBH4・・・(D1)
(式(D1)中、Mは、リチウム、ナトリウム、又はカリウムである。)
で表される化合物である、(1)に記載のアルコキシヒドロシランの製造方法。
(3)Mがナトリウムである、(2)に記載のアルコキシヒドロシランの製造方法。
(4)R2がメチル基、又はエチル基である、(1)~(3)のいずれか1つに記載のアルコキシヒドロシランの製造方法。
(5)R2がメチル基である、(4)に記載のアルコキシヒドロシランの製造方法。
(6)非プロトン性有機溶剤が、テトラヒドロフラン、1,2-ジメトキシエタン、ジエチレングリコールジメチルエーテル、及びトリエチレングリコールジメチルエーテルからなる群より選択される1種以上を含む、(1)~(5)のいずれか1つに記載のアルコキシヒドロシランの製造方法。
(7)非プロトン性有機溶剤が、1,2-ジメトキシエタンである、(6)に記載のアルコキシヒドロシランの製造方法。
(8)R1が、置換基を有していてもよい炭素原子数1~3の炭化水素基である、(1)~(7)のいずれか1つに記載のアルコキシヒドロシランの製造方法。
(9)R1が、塩素原子で置換されているか、エーテル結合を含む、(1)~(8)のいずれか1つに記載のアルコキシヒドロシランの製造方法。
(10)R1が、メトキシメチル基である、(9)に記載のアルコキシヒドロシランの製造方法。
(11)aが1である、(1)~(10)のいずれか1つに記載のアルコキシヒドロシランの製造方法。
(12)下記式(2):
X-SiR1 a(OR2)3-a・・・(2)
(式(2)中、R1、及びR2は、それぞれ独立に、置換基を有していてもよい炭素原子数1~20の炭化水素基であり、Xはハロゲン原子であり、aは1又は2である。R1、OR2のそれぞれについて、それらが複数存在するとき、それらは同じでもよく、異なっていてもよい。)
で表されるアルコキシハロシラン(B)を製造するアルコキシハロシランの製造方法であって、
下記式(3):
SiR1 a(OR2)4-a・・・(3)
(式(3)中、R1、及びR2、及びaは式(2)と同様である。R1、OR2のそれぞれについて、それらが複数存在するとき、それらは同じでもよく、異なっていてもよい。)
で表されるアルコキシシラン(C)に、-30℃以上100℃以下の温度で、ハロゲン化剤(E)を反応させてアルコキシハロシラン(B)を生成させることを含み、
アルコキシシラン(C)1モルからアルコキシハロシラン(B)1モルを生成させる、化学量論的なハロゲン化剤(E)の量を1モル当量とする場合に、ハロゲン化剤(E)の使用量が1.5モル当量以下である、製造方法。
(13)ハロゲン化剤(E)が、カルボン酸ハライドである、(12)に記載のアルコキシハロシランの製造方法。
(14)Xが塩素原子であり、ハロゲン化剤(E)が、塩化アセチルである、(13)に記載のアルコキシハロシランの製造方法。
(15)アルコキシシラン(C)に、-10℃以上90℃以下の温度で、ハロゲン化剤(E)を反応させる、(12)~(14)のいずれか1つに記載のアルコキシハロシランの製造方法。
(16)アルコキシシラン(C)に、0℃以上20℃以下の温度で、ハロゲン化剤(E)を反応させる、(15)に記載のアルコキシハロシランの製造方法。
(17)アルコキシシラン(C)と、ハロゲン化剤(E)との反応をルイス酸性を示す金属塩(F)の存在下に行う、(12)~(16)のいずれか1つに記載のアルコキシハロシランの製造方法。
(18)金属塩(F)が塩化亜鉛を含む、(17)に記載のアルコキシハロシランの製造方法。
(19)アルコキシハロシラン(B)が、(12)~(18)のいずれか1つに記載の方法により製造される、(1)~(11)のいずれか1つに記載のアルコキシヒドロシランの製造方法。
(20)下記式(4):
X-SiR3(OR4)2・・・(4)
(式(4)中、R3は、炭素原子数1~20のアルキル基であり、R3としてのアルキル基は、ハロゲン原子又は炭素原子数1~6のアルコキシ基で置換されていてもよく、R4は、炭素原子数1~20の炭化水素基であり、Xはハロゲン原子である。2つのOR4について、それらは同じでもよく、異なっていてもよい。)
で表されるアルコキシハロシラン化合物。
(21)R3が炭素原子数1~3のアルコキシ基で置換された炭素原子数1~3のアルキル基であり、R4が炭素原子数1~3のアルキル基である、(20)に記載のアルコキシハロシラン化合物。
(22)R3がメトキシメチル基であり、R4がメチル基である、(21)に記載のアルコキシハロシラン化合物。
に関する。 That is, the present invention
(1) The following formula (1):
H-SiR 1 a (OR 2 ) 3-a (1)
(In Formula (1), R 1 and R 2 are each independently a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent, and a is 1 or 2. R For each of 1 and OR 2 , when there are a plurality of them, they may be the same or different.)
A process for producing an alkoxyhydrosilane (A) represented by:
Following formula (2):
X-SiR 1 a (OR 2 ) 3-a (2)
(In Formula (2), R 1 , R 2 , and a are the same as in Formula (1), and X is a halogen atom. When there are a plurality of each of R 1 and OR 2 , May be the same or different.)
Hydrogenating the alkoxyhalosilane (B) represented by the formula (B) with a hydrogenating agent (D) in a solvent (S) containing 50 mass% or more of an aprotic organic solvent having an ether bond, Production method.
(2) The hydrogenating agent (D) is represented by the following formula (D1):
MBH 4 ... (D1)
(In the formula (D1), M is lithium, sodium, or potassium.)
The manufacturing method of the alkoxy hydrosilane as described in (1) which is a compound represented by these.
(3) The method for producing an alkoxyhydrosilane according to (2), wherein M is sodium.
(4) The method for producing an alkoxyhydrosilane according to any one of (1) to (3), wherein R 2 is a methyl group or an ethyl group.
(5) The method for producing an alkoxyhydrosilane according to (4), wherein R 2 is a methyl group.
(6) Any of (1) to (5), wherein the aprotic organic solvent includes one or more selected from the group consisting of tetrahydrofuran, 1,2-dimethoxyethane, diethylene glycol dimethyl ether, and triethylene glycol dimethyl ether The manufacturing method of the alkoxy hydrosilane as described in one.
(7) The method for producing an alkoxyhydrosilane according to (6), wherein the aprotic organic solvent is 1,2-dimethoxyethane.
(8) The method for producing an alkoxyhydrosilane according to any one of (1) to (7), wherein R 1 is a hydrocarbon group having 1 to 3 carbon atoms which may have a substituent.
(9) The method for producing an alkoxyhydrosilane according to any one of (1) to (8), wherein R 1 is substituted with a chlorine atom or contains an ether bond.
(10) The method for producing an alkoxyhydrosilane according to (9), wherein R 1 is a methoxymethyl group.
(11) The method for producing an alkoxyhydrosilane according to any one of (1) to (10), wherein a is 1.
(12) The following formula (2):
X-SiR 1 a (OR 2 ) 3-a (2)
(In the formula (2), R 1 and R 2 are each independently a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent, X is a halogen atom, and a is 1 or 2. For each of R 1 and OR 2 , when there are a plurality of them, they may be the same or different.
A method for producing an alkoxyhalosilane for producing an alkoxyhalosilane (B) represented by:
Following formula (3):
SiR 1 a (OR 2 ) 4-a (3)
(In formula (3), R 1 , R 2 , and a are the same as in formula (2). For each of R 1 and OR 2 , when there are a plurality of them, they may be the same or different. May be.)
A reaction with a halogenating agent (E) at a temperature of −30 ° C. or higher and 100 ° C. or lower to produce an alkoxyhalosilane (B).
Use of halogenating agent (E) when 1 mole equivalent of stoichiometric halogenating agent (E) is used to form 1 mol of alkoxyhalosilane (B) from 1 mol of alkoxysilane (C) The manufacturing method whose quantity is 1.5 molar equivalent or less.
(13) The method for producing an alkoxyhalosilane according to (12), wherein the halogenating agent (E) is a carboxylic acid halide.
(14) The method for producing an alkoxyhalosilane according to (13), wherein X is a chlorine atom, and the halogenating agent (E) is acetyl chloride.
(15) The alkoxyhalosilane according to any one of (12) to (14), wherein the halogenating agent (E) is reacted with the alkoxysilane (C) at a temperature of −10 ° C. or higher and 90 ° C. or lower. Production method.
(16) The method for producing an alkoxyhalosilane according to (15), wherein the halogenating agent (E) is reacted with the alkoxysilane (C) at a temperature of 0 ° C. or higher and 20 ° C. or lower.
(17) The reaction according to any one of (12) to (16), wherein the reaction between the alkoxysilane (C) and the halogenating agent (E) is performed in the presence of a metal salt (F) exhibiting Lewis acidity. A method for producing an alkoxyhalosilane.
(18) The method for producing an alkoxyhalosilane according to (17), wherein the metal salt (F) contains zinc chloride.
(19) The alkoxyhydrosilane according to any one of (1) to (11), wherein the alkoxyhalosilane (B) is produced by the method according to any one of (12) to (18) Production method.
(20) The following formula (4):
X-SiR 3 (OR 4 ) 2 (4)
(In formula (4), R 3 is an alkyl group having 1 to 20 carbon atoms, and the alkyl group as R 3 may be substituted with a halogen atom or an alkoxy group having 1 to 6 carbon atoms. , R 4 is a hydrocarbon group having 1 to 20 carbon atoms, and X is a halogen atom, and for two OR 4 , they may be the same or different.
The alkoxyhalosilane compound represented by these.
(21) In (20), R 3 is an alkyl group having 1 to 3 carbon atoms substituted with an alkoxy group having 1 to 3 carbon atoms, and R 4 is an alkyl group having 1 to 3 carbon atoms. The alkoxyhalosilane compound described.
(22) The alkoxyhalosilane compound according to (21), wherein R 3 is a methoxymethyl group and R 4 is a methyl group.
About.
本発明によれば、高収率で目的物を製造できるアルコキシヒドロシランの製造方法と、当該アルコキシヒドロシランの製造方法において原料として好適に使用されるアルコキシハロシランの製造方法と、特定の構造の新規なアルコキシハロシランとを提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the alkoxyhydrosilane which can manufacture a target object with a high yield, the manufacturing method of the alkoxyhalosilane used suitably as a raw material in the manufacturing method of the said alkoxyhydrosilane, and novel of a specific structure And alkoxyhalosilanes can be provided.
≪アルコキシヒドロシランの製造方法≫
以下、アルコキシヒドロシランの製造方法について説明する。 ≪Method for producing alkoxyhydrosilane≫
Hereinafter, the manufacturing method of alkoxy hydrosilane is demonstrated.
以下、アルコキシヒドロシランの製造方法について説明する。 ≪Method for producing alkoxyhydrosilane≫
Hereinafter, the manufacturing method of alkoxy hydrosilane is demonstrated.
<アルコキシヒドロシラン(A)>
本発明にかかる方法により製造されるアルコキシヒドロシラン(A)は、下記式(1):
H-SiR1 a(OR2)3-a・・・(1)
(式(1)中、R1、及びR2は、それぞれ独立に、置換基を有していてもよい炭素原子数1~20の炭化水素基であり、aは1又は2である。)
で表される化合物である。 <Alkoxyhydrosilane (A)>
The alkoxyhydrosilane (A) produced by the method according to the present invention has the following formula (1):
H-SiR 1 a (OR 2 ) 3-a (1)
(In Formula (1), R 1 and R 2 are each independently a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent, and a is 1 or 2.)
It is a compound represented by these.
本発明にかかる方法により製造されるアルコキシヒドロシラン(A)は、下記式(1):
H-SiR1 a(OR2)3-a・・・(1)
(式(1)中、R1、及びR2は、それぞれ独立に、置換基を有していてもよい炭素原子数1~20の炭化水素基であり、aは1又は2である。)
で表される化合物である。 <Alkoxyhydrosilane (A)>
The alkoxyhydrosilane (A) produced by the method according to the present invention has the following formula (1):
H-SiR 1 a (OR 2 ) 3-a (1)
(In Formula (1), R 1 and R 2 are each independently a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent, and a is 1 or 2.)
It is a compound represented by these.
R1、及びR2は、それぞれ独立に、置換基を有していてもよい炭素原子数1~20の炭化水素基である。
R1及びR2としての炭化水素基が有し得る置換基としては、アルコキシヒドロシランの良好な生成を阻害しない基であれば特に限定されない。具体的には、アルコキシ基、シクロアルコキシ基、アルケニルオキシ基、アリールオキシ基、アラルキルオキシ基、アルキルチオ基、シクロアルキルチオ基、アルケニルチオ基、アリールチオ基、アラルキルチオ基、ハロゲン原子等が挙げられる。上記の置換基のなかでは、アルコキシ基、及びハロゲン原子が、得られるヒドロシランの有用性から好ましい。
アルコキシ基としては、炭素原子数1~10のアルコキシ基が好ましく、炭素原子数1~6のアルコキシ基がより好ましく、メトキシ基及びエトキシ基がさらにより好ましく、メトキシ基が特に好ましい。炭素原子数が少なく、立体的に小さいアルコキシ基のほうが、水素化反応が良好に進行する傾向にある。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が挙げられ、水素化剤(D)との副反応が生じにくいという点で、フッ素原子、及び塩素原子が好ましい。 R 1 and R 2 are each independently a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent.
The substituent that the hydrocarbon group as R 1 and R 2 may have is not particularly limited as long as it is a group that does not inhibit the good production of alkoxyhydrosilane. Specific examples include an alkoxy group, a cycloalkoxy group, an alkenyloxy group, an aryloxy group, an aralkyloxy group, an alkylthio group, a cycloalkylthio group, an alkenylthio group, an arylthio group, an aralkylthio group, and a halogen atom. Among the above substituents, an alkoxy group and a halogen atom are preferable from the usefulness of the resulting hydrosilane.
The alkoxy group is preferably an alkoxy group having 1 to 10 carbon atoms, more preferably an alkoxy group having 1 to 6 carbon atoms, still more preferably a methoxy group and an ethoxy group, and particularly preferably a methoxy group. An alkoxy group having a small number of carbon atoms and a small stericity tends to favorably advance the hydrogenation reaction.
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom and a chlorine atom are preferable in that a side reaction with the hydrogenating agent (D) hardly occurs.
R1及びR2としての炭化水素基が有し得る置換基としては、アルコキシヒドロシランの良好な生成を阻害しない基であれば特に限定されない。具体的には、アルコキシ基、シクロアルコキシ基、アルケニルオキシ基、アリールオキシ基、アラルキルオキシ基、アルキルチオ基、シクロアルキルチオ基、アルケニルチオ基、アリールチオ基、アラルキルチオ基、ハロゲン原子等が挙げられる。上記の置換基のなかでは、アルコキシ基、及びハロゲン原子が、得られるヒドロシランの有用性から好ましい。
アルコキシ基としては、炭素原子数1~10のアルコキシ基が好ましく、炭素原子数1~6のアルコキシ基がより好ましく、メトキシ基及びエトキシ基がさらにより好ましく、メトキシ基が特に好ましい。炭素原子数が少なく、立体的に小さいアルコキシ基のほうが、水素化反応が良好に進行する傾向にある。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が挙げられ、水素化剤(D)との副反応が生じにくいという点で、フッ素原子、及び塩素原子が好ましい。 R 1 and R 2 are each independently a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent.
The substituent that the hydrocarbon group as R 1 and R 2 may have is not particularly limited as long as it is a group that does not inhibit the good production of alkoxyhydrosilane. Specific examples include an alkoxy group, a cycloalkoxy group, an alkenyloxy group, an aryloxy group, an aralkyloxy group, an alkylthio group, a cycloalkylthio group, an alkenylthio group, an arylthio group, an aralkylthio group, and a halogen atom. Among the above substituents, an alkoxy group and a halogen atom are preferable from the usefulness of the resulting hydrosilane.
The alkoxy group is preferably an alkoxy group having 1 to 10 carbon atoms, more preferably an alkoxy group having 1 to 6 carbon atoms, still more preferably a methoxy group and an ethoxy group, and particularly preferably a methoxy group. An alkoxy group having a small number of carbon atoms and a small stericity tends to favorably advance the hydrogenation reaction.
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom and a chlorine atom are preferable in that a side reaction with the hydrogenating agent (D) hardly occurs.
R1及びR2としての置換基を有してもよい炭化水素基の炭素原子数の総数は、ポリマー分子鎖に導入した際に、炭素原子数の総数が少ないほうが、反応性官能基としての反応性が高くなる傾向にあることから、1~12が好ましく、1~6がより好ましく、1~3が特に好ましい。
The total number of carbon atoms of the hydrocarbon group which may have a substituent as R 1 and R 2 is smaller as the reactive functional group when the total number of carbon atoms is smaller when introduced into the polymer molecular chain. Since reactivity tends to be high, 1 to 12 is preferable, 1 to 6 is more preferable, and 1 to 3 is particularly preferable.
無置換の炭素原子数1~20の炭化水素基の好適な例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、n-ヘキシル基、n-オクチル基、2-エチルヘキシル基、n-ドデシル基、及びn-イコシル基等のアルキル基;シクロプロピル基、及びシクロヘキシル基等のシクロアルキル基;ビニル基、アリル基、及びイソプロぺニル基等のアルケニル基;フェニル基、o-トリル基、m-トリル基、p-トリル基、及びナフタレン-1-イル基等の芳香族炭化水素基;ベンジル基、フェネチル基、及びナフタレン-1-イルメチル基等のアラルキル基が挙げられる。炭素数が多くなりすぎると反応性が低下することから、これらの中では炭素原子数6以下の炭化水素基が好ましく、炭素原子数3以下の炭化水素基がより好ましく、メチル基が特に好ましい。
Preferable examples of the unsubstituted hydrocarbon group having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, n-hexyl group, n-octyl group, 2 -Alkyl groups such as ethylhexyl group, n-dodecyl group and n-icosyl group; cycloalkyl groups such as cyclopropyl group and cyclohexyl group; alkenyl groups such as vinyl group, allyl group and isopropenyl group; phenyl group Aromatic hydrocarbon groups such as o-tolyl group, m-tolyl group, p-tolyl group and naphthalen-1-yl group; and aralkyl groups such as benzyl group, phenethyl group and naphthalen-1-ylmethyl group It is done. Among them, a hydrocarbon group having 6 or less carbon atoms is preferable, a hydrocarbon group having 3 or less carbon atoms is more preferable, and a methyl group is particularly preferable.
R1としては、アルコキシヒドロシラン(A)の原料の入手や製造が容易である点等から、置換基を有してもよい炭素原子数1~3の炭化水素基が好ましい。
また、R1は、塩素原子で置換されているか、エーテル結合を含むのが反応性の観点で好ましい。
R1としての好適な基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、クロロメチル基、1-クロロエチル基、2-クロロエチル基、1-クロロプロピル基、2-クロロプロピル基、3-クロロプロピル基、メトキシメチル基、エトキシメチル基、1-メトキシエチル基、2-メトキシエチル基、1-メトキシプロピル基、2-メトキシプロピル基、3-メトキシプロピル基、が挙げられる。
これらの中では、水素化反応が良好に進行することから、メトキシメチル基が好ましい。 R 1 is preferably a hydrocarbon group having 1 to 3 carbon atoms which may have a substituent from the viewpoint of easy availability and production of the raw material of alkoxyhydrosilane (A).
Further, R 1 is either substituted by a chlorine atom, that an ether bond preferable from the viewpoint of reactivity.
Suitable groups for R 1 include methyl group, ethyl group, n-propyl group, isopropyl group, chloromethyl group, 1-chloroethyl group, 2-chloroethyl group, 1-chloropropyl group, 2-chloropropyl group, Examples include 3-chloropropyl group, methoxymethyl group, ethoxymethyl group, 1-methoxyethyl group, 2-methoxyethyl group, 1-methoxypropyl group, 2-methoxypropyl group, and 3-methoxypropyl group.
Among these, a methoxymethyl group is preferable because the hydrogenation reaction proceeds well.
また、R1は、塩素原子で置換されているか、エーテル結合を含むのが反応性の観点で好ましい。
R1としての好適な基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、クロロメチル基、1-クロロエチル基、2-クロロエチル基、1-クロロプロピル基、2-クロロプロピル基、3-クロロプロピル基、メトキシメチル基、エトキシメチル基、1-メトキシエチル基、2-メトキシエチル基、1-メトキシプロピル基、2-メトキシプロピル基、3-メトキシプロピル基、が挙げられる。
これらの中では、水素化反応が良好に進行することから、メトキシメチル基が好ましい。 R 1 is preferably a hydrocarbon group having 1 to 3 carbon atoms which may have a substituent from the viewpoint of easy availability and production of the raw material of alkoxyhydrosilane (A).
Further, R 1 is either substituted by a chlorine atom, that an ether bond preferable from the viewpoint of reactivity.
Suitable groups for R 1 include methyl group, ethyl group, n-propyl group, isopropyl group, chloromethyl group, 1-chloroethyl group, 2-chloroethyl group, 1-chloropropyl group, 2-chloropropyl group, Examples include 3-chloropropyl group, methoxymethyl group, ethoxymethyl group, 1-methoxyethyl group, 2-methoxyethyl group, 1-methoxypropyl group, 2-methoxypropyl group, and 3-methoxypropyl group.
Among these, a methoxymethyl group is preferable because the hydrogenation reaction proceeds well.
また、得られたアルコキシヒドロシラン(A)を用いて種々の化学製品を製造する際に、アルコキシヒドロシラン(A)に由来するアルコキシシリル基の反応性が良好であることから、式(1)中のR2としては、メチル基、又はエチル基が好ましく、メチル基がより好ましい。
つまり、アルコキシヒドロシラン(A)は、メトキシヒドロシラン、又はエトキシヒドロシランであるのが好ましく、メトキシヒドロシランであるのがより好ましい。 Moreover, when manufacturing various chemical products using the obtained alkoxy hydrosilane (A), since the reactivity of the alkoxy silyl group derived from alkoxy hydrosilane (A) is favorable, in Formula (1), R 2 is preferably a methyl group or an ethyl group, and more preferably a methyl group.
That is, the alkoxyhydrosilane (A) is preferably methoxyhydrosilane or ethoxyhydrosilane, and more preferably methoxyhydrosilane.
つまり、アルコキシヒドロシラン(A)は、メトキシヒドロシラン、又はエトキシヒドロシランであるのが好ましく、メトキシヒドロシランであるのがより好ましい。 Moreover, when manufacturing various chemical products using the obtained alkoxy hydrosilane (A), since the reactivity of the alkoxy silyl group derived from alkoxy hydrosilane (A) is favorable, in Formula (1), R 2 is preferably a methyl group or an ethyl group, and more preferably a methyl group.
That is, the alkoxyhydrosilane (A) is preferably methoxyhydrosilane or ethoxyhydrosilane, and more preferably methoxyhydrosilane.
式(1)において、R1又は(OR2)が複数である場合に、複数の基は、互いに同一であっても異なっていてもよく、原料製造の容易さから、同一であるのが好ましい。
In the formula (1), when there are a plurality of R 1 or (OR 2 ), the plurality of groups may be the same or different from each other, and are preferably the same from the viewpoint of ease of raw material production. .
式(1)において、aは1又は2である。原料の入手性の観点では、aは1であるのが好ましい。一方で、ケイ素基上の有機基の置換基によってアルコキシヒドロシラン(A)のアルコキシシリル基の反応性の調整や更なる化学修飾が可能である。この理由では、aは2であるのが好ましい。得られたアルコキシヒドロシラン(A)を用いて種々の化学製品を製造する際に、アルコキシヒドロシラン(A)に由来するアルコキシシリル基の反応性の点からは、アルコキシシリル基に含まれるアルコキシ基の数は多いほうが好ましい。このため、aは1であるのがより好ましい。
In the formula (1), a is 1 or 2. From the viewpoint of availability of raw materials, a is preferably 1. On the other hand, the reactivity of the alkoxysilyl group of the alkoxyhydrosilane (A) can be adjusted and further chemical modification can be performed by the substituent of the organic group on the silicon group. For this reason, a is preferably 2. In producing various chemical products using the obtained alkoxyhydrosilane (A), the number of alkoxy groups contained in the alkoxysilyl group is determined from the reactivity of the alkoxysilyl group derived from the alkoxyhydrosilane (A). Is more preferable. For this reason, a is more preferably 1.
本発明にかかるアルコキシヒドロシランの製造方法によって得られる式(1)で表されるアルコキシヒドロシラン(A)の好適な具体例としては、メチルジメトキシシラン(HSi(CH3)(OCH3)2)、メチルジエトキシシラン(HSi(CH3)(OC2H5)2)、エチルジメトキシシラン(HSi(C2H5)(OCH3)2)、エチルジエトキシシラン(HSi(C2H5)(OC2H5)2)、n-プロピルジメトキシシラン(HSi(n-C3H7)(OCH3)2)、n-プロピルジエトキシシラン(HSi(n-C3H7)(OC2H5)2)、n-ヘキシルジメトキシシラン(HSi(n-C6H13)(OCH3)2)、n-ヘキシルジエトキシシラン(HSi(n-C6H13)(OC2H5)2)、フェニルジメトキシシラン(HSi(Ph)(OCH3)2)、フェニルジエトキシシラン(HSi(Ph)(OC2H5)2)、クロロメチルジメトキシシラン(HSi(CH2Cl)(OCH3)2)、クロロメチルジエトキシシラン(HSi(CH2Cl)(OC2H5)2)、クロロメチルジイソプロペニルオキシシラン(HSi(CH2Cl)(OC(CH3)=CH2)2)、クロロメチルメトキシメチルシラン(HSi(CH2Cl)(OCH3)(CH3))、クロロメチルエトキシメチルシラン(HSi(CH2Cl)(OC2H5)(CH3))、ビス(クロロメチル)メトキシシラン(HSi(CH2Cl)2(OCH3))、ビス(クロロメチル)エトキシシラン(HSi(CH2Cl)2(OC2H5))、1-クロロエチルジメトキシシラン(HSi(CHClCH3)(OCH3)2)、2-クロロエチルジメトキシシラン(HSi(CH2CH2Cl)(OCH3)2)、1-クロロプロピルジメトキシシラン(HSi(CHClCH2CH3)(OCH3)2)、2-クロロプロピルジメトキシシラン(HSi(CH2CHClCH3)(OCH3)2)、3-クロロプロピルジメトキシシラン(HSi(CH2CH2CH2Cl)(OCH3)2)、フルオロメチルジメトキシシラン(HSi(CH2F)(OCH3)2)、ブロモメチルジメトキシシラン(HSi(CH2Br)(OCH3)2)、ヨードメチルジメトキシシラン(HSi(CH2I)(OCH3)2)、メトキシメチルジメトキシシラン(HSi(CH2OCH3)(OCH3)2)、メトキシメチルジエトキシシラン(HSi(CH2OCH3)(OC2H5)2)、メトキシメチルジイソプロペニルオキシシラン(HSi(CH2OCH3)(OC(CH3)=CH2)2)、(ジメトキシメチル)ジメトキシシラン(HSi(CH(OCH3)2)(OCH3)2)、エトキシメチルジメトキシシラン(HSi(CH2OC2H5)(OCH3)2)、エトキシメチルジエトキシシラン(HSi(CH2OC2H5)(OC2H5)2)、1-メトキシエチルジメトキシシラン(HSi(CH(OCH3)CH3)(OCH3)2)、トリメトキシメチルジメトキシシラン(HSi(C(OCH3)3)(OCH3)2)、(メトキシメチル)メチルメトキシシラン(HSi(CH2OCH3)(CH3)(OCH3))、ビス(メトキシメチル)メトキシシラン(HSi(CH2OCH3)2(OCH3))、及びメチルチオメチルジメトキシシラン(HSi(CH2SCH3)(OCH3)2)等が挙げられる。ただし、アルコキシヒドロシラン(A)は、これらに限定されない。
Preferable specific examples of the alkoxyhydrosilane (A) represented by the formula (1) obtained by the method for producing an alkoxyhydrosilane according to the present invention include methyldimethoxysilane (HSi (CH 3 ) (OCH 3 ) 2 ), methyl diethoxy silane (HSi (CH 3) (OC 2 H 5) 2), ethyl dimethoxy silane (HSi (C 2 H 5) (OCH 3) 2), ethyldiethoxysilane (HSi (C 2 H 5) (OC 2 H 5) 2), n- propyl dimethoxy silane (HSi (n-C 3 H 7) (OCH 3) 2), n- propyl diethoxy silane (HSi (n-C 3 H 7) (OC 2 H 5 2 ), n-hexyldimethoxysilane (HSi (n-C 6 H 13 ) (OCH 3 ) 2 ), n-hexyldiethoxysilane (HSi (n- C 6 H 13) (OC 2 H 5) 2), phenyl dimethoxy silane (HSi (Ph) (OCH 3 ) 2), phenyl diethoxy silane (HSi (Ph) (OC 2 H 5) 2), chloromethyl dimethoxy silane (HSi (CH 2 Cl) ( OCH 3) 2), chloromethyl diethoxy silane (HSi (CH 2 Cl) ( OC 2 H 5) 2), chloromethyl diisopropenylbenzene silane (HSi (CH 2 Cl) (OC (CH 3 ) ═CH 2 ) 2 ), chloromethylmethoxymethylsilane (HSi (CH 2 Cl) (OCH 3 ) (CH 3 )), chloromethylethoxymethylsilane (HSi (CH 2 Cl) (OC 2 ) H 5) (CH 3)), bis (chloromethyl) silane (HSi (CH 2 Cl) 2 (OCH 3)), bis ( Roromechiru) silane (HSi (CH 2 Cl) 2 (OC 2 H 5)), 1- chloroethyl dimethoxy silane (HSi (CHClCH 3) (OCH 3) 2), 2- chloro-ethyl dimethoxy silane (HSi (CH 2 CH 2 Cl) (OCH 3 ) 2 ), 1-chloropropyldimethoxysilane (HSi (CHClCH 2 CH 3 ) (OCH 3 ) 2 ), 2-chloropropyldimethoxysilane (HSi (CH 2 CHClCH 3 ) (OCH 3 ) 2), 3-chloropropyl dimethoxy silane (HSi (CH 2 CH 2 CH 2 Cl) (OCH 3) 2), fluoromethyl dimethoxy silane (HSi (CH 2 F) (OCH 3) 2), bromo methyldimethoxysilane ( HSi (CH 2 Br) (OCH 3 ) 2 ), iodomethyldi Silane (HSi (CH 2 I) ( OCH 3) 2), methoxymethyl dimethoxy silane (HSi (CH 2 OCH 3) (OCH 3) 2), methoxymethyl diethoxy silane (HSi (CH 2 OCH 3) (OC 2 H 5) 2), methoxymethyl diisopropenylbenzene silane (HSi (CH 2 OCH 3) (OC (CH 3) = CH 2) 2), ( dimethoxymethyl) dimethoxysilane (HSi (CH (OCH 3) 2 ) (OCH 3 ) 2 ), ethoxymethyldimethoxysilane (HSi (CH 2 OC 2 H 5 ) (OCH 3 ) 2 ), ethoxymethyldiethoxysilane (HSi (CH 2 OC 2 H 5 ) (OC 2 H 5 ) 2 ), 1-methoxyethyldimethoxysilane (HSi (CH (OCH 3 ) CH 3 ) (OCH 3 ) 2), trimethoxy methyl silane (HSi (C (OCH 3) 3) (OCH 3) 2), ( methoxymethyl) methyl silane (HSi (CH 2 OCH 3) (CH 3) (OCH 3)), Bis (methoxymethyl) methoxysilane (HSi (CH 2 OCH 3 ) 2 (OCH 3 )), methylthiomethyldimethoxysilane (HSi (CH 2 SCH 3 ) (OCH 3 ) 2 ), and the like can be given. However, alkoxyhydrosilane (A) is not limited to these.
得られるシランの有用性から、上記の中では、メチルジメトキシシラン、エチルジメトキシシラン、n-プロピルジメトキシシラン、n-ヘキシルジメトキシシラン、フェニルジメトキシシラン、クロロメチルジメトキシシラン、クロロメチルジエトキシシラン、クロロメチルメトキシメチルシラン、ビス(クロロメチル)メトキシシラン、メトキシメチルジメトキシシラン、メトキシメチルジエトキシシラン、(メトキシメチル)メチルメトキシシラン、ビス(メトキシメチル)メトキシシラン、が好ましく、メトキシメチルジメトキシシランがより好ましい。
From the usefulness of the resulting silane, among the above, methyldimethoxysilane, ethyldimethoxysilane, n-propyldimethoxysilane, n-hexyldimethoxysilane, phenyldimethoxysilane, chloromethyldimethoxysilane, chloromethyldiethoxysilane, chloromethyl Methoxymethylsilane, bis (chloromethyl) methoxysilane, methoxymethyldimethoxysilane, methoxymethyldiethoxysilane, (methoxymethyl) methylmethoxysilane, and bis (methoxymethyl) methoxysilane are preferred, and methoxymethyldimethoxysilane is more preferred.
<アルコキシハロシラン(B)>
上記のアルコキシヒドロシラン(A)は、下記式(2):
X-SiR1 a(OR2)3-a・・・(2)
(式(2)中、R1、R2、及びaは、式(1)と同様であり、Xはハロゲン原子である。)
で表されるアルコキシハロシラン(B)を用いて製造される。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が挙げられ、原料の入手性の観点で塩素原子、臭素原子が好ましく、取り扱いの容易さの面で塩素原子がより好ましい。
アルコキシハロシラン(B)の好ましい製造方法については後述する。 <Alkoxyhalosilane (B)>
The alkoxy hydrosilane (A) is represented by the following formula (2):
X-SiR 1 a (OR 2 ) 3-a (2)
(In Formula (2), R 1 , R 2 , and a are the same as in Formula (1), and X is a halogen atom.)
It is manufactured using the alkoxyhalosilane (B) represented by these.
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. A chlorine atom and a bromine atom are preferable from the viewpoint of availability of raw materials, and a chlorine atom is more preferable in terms of ease of handling.
A preferred method for producing the alkoxyhalosilane (B) will be described later.
上記のアルコキシヒドロシラン(A)は、下記式(2):
X-SiR1 a(OR2)3-a・・・(2)
(式(2)中、R1、R2、及びaは、式(1)と同様であり、Xはハロゲン原子である。)
で表されるアルコキシハロシラン(B)を用いて製造される。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が挙げられ、原料の入手性の観点で塩素原子、臭素原子が好ましく、取り扱いの容易さの面で塩素原子がより好ましい。
アルコキシハロシラン(B)の好ましい製造方法については後述する。 <Alkoxyhalosilane (B)>
The alkoxy hydrosilane (A) is represented by the following formula (2):
X-SiR 1 a (OR 2 ) 3-a (2)
(In Formula (2), R 1 , R 2 , and a are the same as in Formula (1), and X is a halogen atom.)
It is manufactured using the alkoxyhalosilane (B) represented by these.
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. A chlorine atom and a bromine atom are preferable from the viewpoint of availability of raw materials, and a chlorine atom is more preferable in terms of ease of handling.
A preferred method for producing the alkoxyhalosilane (B) will be described later.
アルコキシハロシラン(B)の好適な具体例としては、前述の式(1)で表されるアルコキシヒドロシラン(A)の好適な具体例として挙げた化合物における、ケイ素原子に結合する水素原子を塩素原子に置換した化合物が挙げられる。
As a preferable specific example of the alkoxyhalosilane (B), a hydrogen atom bonded to a silicon atom in the compound exemplified as a preferable specific example of the alkoxyhydrosilane (A) represented by the formula (1) is a chlorine atom. The compound substituted by is mentioned.
<水素化剤(D)>
アルコキシヒドロシラン(A)は、アルコキシハロシラン(B)に含まれるハロゲン原子(X)を水素化剤(D)により水素化して製造される。
水素化剤(D)の種類は、アルコキシハロシラン(B)中のハロゲン原子(X)を良好に水素化できれば特に限定されず、周知の水素化剤(D)から適宜選択される。水素化剤(D)は2種以上を組合わせて用いてよい。 <Hydrogenating agent (D)>
The alkoxyhydrosilane (A) is produced by hydrogenating the halogen atom (X) contained in the alkoxyhalosilane (B) with the hydrogenating agent (D).
The type of the hydrogenating agent (D) is not particularly limited as long as the halogen atom (X) in the alkoxyhalosilane (B) can be hydrogenated well, and is appropriately selected from the known hydrogenating agents (D). The hydrogenating agent (D) may be used in combination of two or more.
アルコキシヒドロシラン(A)は、アルコキシハロシラン(B)に含まれるハロゲン原子(X)を水素化剤(D)により水素化して製造される。
水素化剤(D)の種類は、アルコキシハロシラン(B)中のハロゲン原子(X)を良好に水素化できれば特に限定されず、周知の水素化剤(D)から適宜選択される。水素化剤(D)は2種以上を組合わせて用いてよい。 <Hydrogenating agent (D)>
The alkoxyhydrosilane (A) is produced by hydrogenating the halogen atom (X) contained in the alkoxyhalosilane (B) with the hydrogenating agent (D).
The type of the hydrogenating agent (D) is not particularly limited as long as the halogen atom (X) in the alkoxyhalosilane (B) can be hydrogenated well, and is appropriately selected from the known hydrogenating agents (D). The hydrogenating agent (D) may be used in combination of two or more.
好適な水素化剤としては、下記式(D1):
MBH4・・・(D1)
(式(D1)中、Mは、リチウム、ナトリウム、又はカリウムである。)
で表される化合物が挙げられる。式(D1)で表される化合物の中では、アルコキシハロシラン(B)から収率良くアルコキシヒドロシラン(A)を生成させやすいことから、Mがナトリウムである水素化ホウ素ナトリウムが好ましい。 As a suitable hydrogenating agent, the following formula (D1):
MBH 4 ... (D1)
(In the formula (D1), M is lithium, sodium, or potassium.)
The compound represented by these is mentioned. Among the compounds represented by the formula (D1), sodium borohydride, in which M is sodium, is preferable because the alkoxyhydrosilane (A) can be easily produced from the alkoxyhalosilane (B) with a high yield.
MBH4・・・(D1)
(式(D1)中、Mは、リチウム、ナトリウム、又はカリウムである。)
で表される化合物が挙げられる。式(D1)で表される化合物の中では、アルコキシハロシラン(B)から収率良くアルコキシヒドロシラン(A)を生成させやすいことから、Mがナトリウムである水素化ホウ素ナトリウムが好ましい。 As a suitable hydrogenating agent, the following formula (D1):
MBH 4 ... (D1)
(In the formula (D1), M is lithium, sodium, or potassium.)
The compound represented by these is mentioned. Among the compounds represented by the formula (D1), sodium borohydride, in which M is sodium, is preferable because the alkoxyhydrosilane (A) can be easily produced from the alkoxyhalosilane (B) with a high yield.
水素化剤(D)の使用量は、所望する収率でアルコキシヒドロシラン(A)を製造できれば特に限定されない。水素化剤(D)の使用量は、アルコキシハロシラン(B)に含まれるハロゲン原子(X)1モルを水素化し得る化学量論的な量の、0.5~10倍量が好ましく、1.0~5.0倍量がより好ましく、1.2~3.0倍量が特に好ましい。
The amount of hydrogenating agent (D) used is not particularly limited as long as alkoxyhydrosilane (A) can be produced in a desired yield. The amount of the hydrogenating agent (D) used is preferably 0.5 to 10 times the stoichiometric amount capable of hydrogenating 1 mol of the halogen atom (X) contained in the alkoxyhalosilane (B). An amount of 0.0 to 5.0 times is more preferable, and an amount of 1.2 to 3.0 times is particularly preferable.
<溶剤(S)>
アルコキシハロシラン(B)と、前述の水素化剤(D)とを反応させる際には、エーテル結合を有する非プロトン性有機溶剤を50質量%以上含む溶剤(S)を用いる。
これにより、アルコキシハロシラン(B)に含まれるハロゲン原子(X)の水素化剤(D)による水素化が良好に進行する。 <Solvent (S)>
When the alkoxyhalosilane (B) is reacted with the hydrogenating agent (D), a solvent (S) containing 50% by mass or more of an aprotic organic solvent having an ether bond is used.
Thereby, hydrogenation of the halogen atom (X) contained in the alkoxyhalosilane (B) with the hydrogenating agent (D) proceeds well.
アルコキシハロシラン(B)と、前述の水素化剤(D)とを反応させる際には、エーテル結合を有する非プロトン性有機溶剤を50質量%以上含む溶剤(S)を用いる。
これにより、アルコキシハロシラン(B)に含まれるハロゲン原子(X)の水素化剤(D)による水素化が良好に進行する。 <Solvent (S)>
When the alkoxyhalosilane (B) is reacted with the hydrogenating agent (D), a solvent (S) containing 50% by mass or more of an aprotic organic solvent having an ether bond is used.
Thereby, hydrogenation of the halogen atom (X) contained in the alkoxyhalosilane (B) with the hydrogenating agent (D) proceeds well.
エーテル結合を有する非プロトン性有機溶剤の好適な具体例としては、テトラヒドロフラン、テトラヒドロピラン、1,4-ジオキサン等の環状エーテル類;ジエチルエーテル、ジn-ブチルエーテル、シクロペンチルメチルエーテル等のジアルキルエーテル類;アニソール等のアルコキシベンゼン類;メトキシ酢酸メチル、メトキシ酢酸エチル等のアルコキシアルカン酸エステル類;1,2-ジメトキシエタン、1,2-ジエトキシエタン、プロピレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル(ジグライム)、ジプロピレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル(トリグライム)、トリプロピレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル(テトラグライム)、テトラプロピレングリコールジメチルエーテル等のグリコールジアルキルエーテル;エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート等のグリコールアルキルエーテルアセテートが挙げられる。これらのエーテル結合を有する非プロトン性有機溶剤は2種以上を組み合わせて用いてもよい。
Specific examples of suitable aprotic organic solvents having an ether bond include cyclic ethers such as tetrahydrofuran, tetrahydropyran, and 1,4-dioxane; dialkyl ethers such as diethyl ether, di-n-butyl ether, and cyclopentyl methyl ether; Alkoxybenzenes such as anisole; alkoxyalkanoic acid esters such as methyl methoxyacetate and ethyl methoxyacetate; 1,2-dimethoxyethane, 1,2-diethoxyethane, propylene glycol dimethyl ether, diethylene glycol dimethyl ether (diglyme), dipropylene glycol Dimethyl ether, triethylene glycol dimethyl ether (triglyme), tripropylene glycol dimethyl ether, tetraethylene glycol dimethyl ether (Tetraglyme), glycol dialkyl ethers such as tetraethylene glycol dimethyl ether, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether acetate, glycolate alkyl ether acetates such as dipropylene glycol monomethyl ether acetate. These aprotic organic solvents having an ether bond may be used in combination of two or more.
これらの中では、アルコキシヒドロシラン(A)を良好な収率で製造しやすいことから、テトラヒドロフラン、1,2-ジメトキシエタン、ジエチレングリコールジメチルエーテル、及びトリエチレングリコールジメチルエーテルが好ましく、取扱いや反応後の回収、精製が容易であることから1,2-ジメトキシエタンがより好ましい。
Among these, tetrahydrofuran, 1,2-dimethoxyethane, diethylene glycol dimethyl ether, and triethylene glycol dimethyl ether are preferable because alkoxyhydrosilane (A) can be easily produced in a good yield, and recovery and purification after handling and reaction. 1,2-dimethoxyethane is more preferable.
溶剤(S)におけるエーテル結合を有する非プロトン性有機溶剤の含有量は50質量%以上であれば特に限定されないが、70質量%以上が好ましく、90質量%以上がより好ましく、100質量%が特に好ましい。溶剤(S)におけるエーテル結合を有する非プロトン性有機溶剤の含有量が多いほど、水素化の反応性が向上する傾向にある。
The content of the aprotic organic solvent having an ether bond in the solvent (S) is not particularly limited as long as it is 50% by mass or more, but is preferably 70% by mass or more, more preferably 90% by mass or more, and particularly preferably 100% by mass. preferable. As the content of the aprotic organic solvent having an ether bond in the solvent (S) is larger, the hydrogenation reactivity tends to be improved.
溶剤(S)において、エーテル結合を有する非プロトン性有機溶剤とともに他の溶剤を用いる場合、他の溶剤の種類は、アルコキシハロシラン(B)に含まれるハロゲン原子(X)の水素化剤(D)による水素化を阻害しない限り特に限定されない。
他の溶剤としては、典型的には、炭化水素系有機溶剤が、水素化剤(D)と反応しにくい点で好ましい。その中でも、エーテル結合を有する非プロトン性有機溶剤と混和する溶剤がより好ましい。 When another solvent is used together with the aprotic organic solvent having an ether bond in the solvent (S), the type of the other solvent is a hydrogenating agent (D) of the halogen atom (X) contained in the alkoxyhalosilane (B). ) Is not particularly limited as long as hydrogenation by h is not inhibited.
As the other solvent, typically, a hydrocarbon organic solvent is preferable in that it hardly reacts with the hydrogenating agent (D). Among these, a solvent that is miscible with an aprotic organic solvent having an ether bond is more preferable.
他の溶剤としては、典型的には、炭化水素系有機溶剤が、水素化剤(D)と反応しにくい点で好ましい。その中でも、エーテル結合を有する非プロトン性有機溶剤と混和する溶剤がより好ましい。 When another solvent is used together with the aprotic organic solvent having an ether bond in the solvent (S), the type of the other solvent is a hydrogenating agent (D) of the halogen atom (X) contained in the alkoxyhalosilane (B). ) Is not particularly limited as long as hydrogenation by h is not inhibited.
As the other solvent, typically, a hydrocarbon organic solvent is preferable in that it hardly reacts with the hydrogenating agent (D). Among these, a solvent that is miscible with an aprotic organic solvent having an ether bond is more preferable.
他の溶剤として使用できる炭化水素系有機溶剤の好適な具体例としては、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン等のアルカン;トルエン、キシレン、メシチレン、エチルベンゼン等の芳香族溶剤等が挙げられる。
Specific examples of hydrocarbon organic solvents that can be used as other solvents include alkanes such as n-pentane, n-hexane, n-heptane, and n-octane; aromatic solvents such as toluene, xylene, mesitylene, and ethylbenzene. Etc.
溶剤(S)の使用量は、所望する収率でアルコキシヒドロシラン(A)を生成させることができる限り特に限定されない。溶剤(S)の使用量は、典型的には、アルコキシハロシラン(B)100質量部に対して、50~1000質量部が好ましく、70~800質量部がより好ましく、100~500質量部が特に好ましい。溶剤(S)が少なすぎる場合は、水素化の進行が遅くなる傾向にあり、溶剤(S)が多すぎる場合は、反応後の除去が煩雑になる。
The amount of the solvent (S) used is not particularly limited as long as the alkoxyhydrosilane (A) can be produced in a desired yield. The amount of the solvent (S) used is typically preferably 50 to 1000 parts by weight, more preferably 70 to 800 parts by weight, and more preferably 100 to 500 parts by weight with respect to 100 parts by weight of the alkoxyhalosilane (B). Particularly preferred. When there is too little solvent (S), there exists a tendency for progress of hydrogenation to become slow, and when there is too much solvent (S), the removal after reaction becomes complicated.
<反応条件>
アルコキシハロシラン(B)と、前述の水素化剤(D)とを反応させる条件は、反応が良好に進行する限り特に限定されない。アルコキシハロシラン(B)に対して水素化剤(D)を添加してもよく、逆に水素化剤(D)に対してアルコキシハロシラン(B)を添加してもよい。アルコキシハロシラン(B)及び水素化剤(D)の混合前に、反応系に溶剤(S)が存在しているのが好ましい。
アルコキシハロシラン(B)又は水素化剤(D)の添加方法は特に限定されず、アルコキシハロシラン(B)又は水素化剤(D)を単独で反応系に加えてもよく、アルコキシハロシラン(B)又は水素化剤(D)の溶液又は懸濁液を反応系に加えてもよい。
アルコキシハロシラン(B)又は水素化剤(D)は、1度又は数度に分割して反応系に加えられてもよく、滴下等の方法により連続的に反応系に加えられてもよい。アルコキシハロシラン(B)又は水素化剤(D)を反応系内に加える時間は特に限定されず、反応の進行状況に応じて適宜選択される。 <Reaction conditions>
The conditions for reacting the alkoxyhalosilane (B) with the hydrogenating agent (D) described above are not particularly limited as long as the reaction proceeds well. The hydrogenating agent (D) may be added to the alkoxyhalosilane (B), and conversely, the alkoxyhalosilane (B) may be added to the hydrogenating agent (D). Before mixing the alkoxyhalosilane (B) and the hydrogenating agent (D), the solvent (S) is preferably present in the reaction system.
The method for adding the alkoxyhalosilane (B) or the hydrogenating agent (D) is not particularly limited, and the alkoxyhalosilane (B) or the hydrogenating agent (D) may be added alone to the reaction system. A solution or suspension of B) or hydrogenating agent (D) may be added to the reaction system.
Alkoxyhalosilane (B) or hydrogenating agent (D) may be added to the reaction system by dividing it once or several times, or may be continuously added to the reaction system by a method such as dropping. The time for adding the alkoxyhalosilane (B) or the hydrogenating agent (D) to the reaction system is not particularly limited, and is appropriately selected according to the progress of the reaction.
アルコキシハロシラン(B)と、前述の水素化剤(D)とを反応させる条件は、反応が良好に進行する限り特に限定されない。アルコキシハロシラン(B)に対して水素化剤(D)を添加してもよく、逆に水素化剤(D)に対してアルコキシハロシラン(B)を添加してもよい。アルコキシハロシラン(B)及び水素化剤(D)の混合前に、反応系に溶剤(S)が存在しているのが好ましい。
アルコキシハロシラン(B)又は水素化剤(D)の添加方法は特に限定されず、アルコキシハロシラン(B)又は水素化剤(D)を単独で反応系に加えてもよく、アルコキシハロシラン(B)又は水素化剤(D)の溶液又は懸濁液を反応系に加えてもよい。
アルコキシハロシラン(B)又は水素化剤(D)は、1度又は数度に分割して反応系に加えられてもよく、滴下等の方法により連続的に反応系に加えられてもよい。アルコキシハロシラン(B)又は水素化剤(D)を反応系内に加える時間は特に限定されず、反応の進行状況に応じて適宜選択される。 <Reaction conditions>
The conditions for reacting the alkoxyhalosilane (B) with the hydrogenating agent (D) described above are not particularly limited as long as the reaction proceeds well. The hydrogenating agent (D) may be added to the alkoxyhalosilane (B), and conversely, the alkoxyhalosilane (B) may be added to the hydrogenating agent (D). Before mixing the alkoxyhalosilane (B) and the hydrogenating agent (D), the solvent (S) is preferably present in the reaction system.
The method for adding the alkoxyhalosilane (B) or the hydrogenating agent (D) is not particularly limited, and the alkoxyhalosilane (B) or the hydrogenating agent (D) may be added alone to the reaction system. A solution or suspension of B) or hydrogenating agent (D) may be added to the reaction system.
Alkoxyhalosilane (B) or hydrogenating agent (D) may be added to the reaction system by dividing it once or several times, or may be continuously added to the reaction system by a method such as dropping. The time for adding the alkoxyhalosilane (B) or the hydrogenating agent (D) to the reaction system is not particularly limited, and is appropriately selected according to the progress of the reaction.
アルコキシハロシラン(B)と、水素化剤(D)とを反応させる温度は、反応が良好に進行する限り特に限定されない。典型的には0~40℃である。
The temperature at which the alkoxyhalosilane (B) and the hydrogenating agent (D) are reacted is not particularly limited as long as the reaction proceeds well. Typically, it is 0 to 40 ° C.
アルコキシハロシラン(B)と、水素化剤(D)とを反応させる雰囲気は特に限定されないが、窒素ガス等の不活性ガス雰囲気下に反応が行われるのが好ましい。
アルコキシハロシラン(B)と、水素化剤(D)との反応は、大気圧下で行われても、減圧下で行われても、加圧下で行われてもよい。
アルコキシハロシラン(B)と、水素化剤(D)との反応は、バッチ式及び連続式のいずれの方法で行うこともできる。 The atmosphere in which the alkoxyhalosilane (B) and the hydrogenating agent (D) are reacted is not particularly limited, but the reaction is preferably performed in an inert gas atmosphere such as nitrogen gas.
The reaction between the alkoxyhalosilane (B) and the hydrogenating agent (D) may be carried out under atmospheric pressure, under reduced pressure, or under pressure.
The reaction between the alkoxyhalosilane (B) and the hydrogenating agent (D) can be carried out by either a batch method or a continuous method.
アルコキシハロシラン(B)と、水素化剤(D)との反応は、大気圧下で行われても、減圧下で行われても、加圧下で行われてもよい。
アルコキシハロシラン(B)と、水素化剤(D)との反応は、バッチ式及び連続式のいずれの方法で行うこともできる。 The atmosphere in which the alkoxyhalosilane (B) and the hydrogenating agent (D) are reacted is not particularly limited, but the reaction is preferably performed in an inert gas atmosphere such as nitrogen gas.
The reaction between the alkoxyhalosilane (B) and the hydrogenating agent (D) may be carried out under atmospheric pressure, under reduced pressure, or under pressure.
The reaction between the alkoxyhalosilane (B) and the hydrogenating agent (D) can be carried out by either a batch method or a continuous method.
アルコキシハロシラン(B)と、水素化剤(D)とを反応させる時間は、反応が良好に進行する限り特に限定されない。アルコキシハロシラン(B)又は水素化剤(D)の添加時間も含め、典型的には、1時間~24時間であり、1時間30分~10時間が好ましく、2時間~5時間がより好ましい。反応時間が短いと、反応による発熱で反応系の温度が急上昇する懸念がある。反応時間が長いと、生成物が分解する懸念がある。
ただし、式(2)で表されるアルコキシハロシラン(B)におけるR1の炭素原子数が大きい場合、水素化反応に長時間を要する場合がある。反応時間は、この点を考慮のうえ、必要に応じて反応の進行状況を分析しながら、適宜決定されるのが好ましい。 The time for reacting the alkoxyhalosilane (B) and the hydrogenating agent (D) is not particularly limited as long as the reaction proceeds well. Including the addition time of alkoxyhalosilane (B) or hydrogenating agent (D), it is typically 1 hour to 24 hours, preferably 1 hour 30 minutes to 10 hours, more preferably 2 hours to 5 hours. . If the reaction time is short, there is a concern that the temperature of the reaction system rapidly rises due to heat generated by the reaction. If the reaction time is long, the product may be decomposed.
However, when the number of carbon atoms of R 1 in the alkoxyhalosilane (B) represented by the formula (2) is large, the hydrogenation reaction may take a long time. In consideration of this point, the reaction time is preferably appropriately determined while analyzing the progress of the reaction as necessary.
ただし、式(2)で表されるアルコキシハロシラン(B)におけるR1の炭素原子数が大きい場合、水素化反応に長時間を要する場合がある。反応時間は、この点を考慮のうえ、必要に応じて反応の進行状況を分析しながら、適宜決定されるのが好ましい。 The time for reacting the alkoxyhalosilane (B) and the hydrogenating agent (D) is not particularly limited as long as the reaction proceeds well. Including the addition time of alkoxyhalosilane (B) or hydrogenating agent (D), it is typically 1 hour to 24 hours, preferably 1 hour 30 minutes to 10 hours, more preferably 2 hours to 5 hours. . If the reaction time is short, there is a concern that the temperature of the reaction system rapidly rises due to heat generated by the reaction. If the reaction time is long, the product may be decomposed.
However, when the number of carbon atoms of R 1 in the alkoxyhalosilane (B) represented by the formula (2) is large, the hydrogenation reaction may take a long time. In consideration of this point, the reaction time is preferably appropriately determined while analyzing the progress of the reaction as necessary.
以上説明した方法により製造されるアルコキシヒドロシラン(A)は、例えばろ過や減圧捕集等、周知の方法で反応系内から回収された後、必要に応じて、蒸留等の方法により精製される。
かかる方法により製造されるアルコキシヒドロシラン(A)は、例えば、WO2011/161915号公報で提案されているように、Si-Hを利用したヒドロシリル化反応、Si-OR2を利用した加水分解、縮合反応等に使用することができ、種々の化合物の製造原料として好適に使用される。 The alkoxyhydrosilane (A) produced by the method described above is recovered from the reaction system by a well-known method such as filtration or collection under reduced pressure, and then purified by a method such as distillation, if necessary.
The alkoxyhydrosilane (A) produced by such a method is, for example, as proposed in WO2011 / 161915, hydrosilylation reaction using Si—H, hydrolysis and condensation reaction using Si—OR 2. It can be used as a raw material for producing various compounds.
かかる方法により製造されるアルコキシヒドロシラン(A)は、例えば、WO2011/161915号公報で提案されているように、Si-Hを利用したヒドロシリル化反応、Si-OR2を利用した加水分解、縮合反応等に使用することができ、種々の化合物の製造原料として好適に使用される。 The alkoxyhydrosilane (A) produced by the method described above is recovered from the reaction system by a well-known method such as filtration or collection under reduced pressure, and then purified by a method such as distillation, if necessary.
The alkoxyhydrosilane (A) produced by such a method is, for example, as proposed in WO2011 / 161915, hydrosilylation reaction using Si—H, hydrolysis and condensation reaction using Si—OR 2. It can be used as a raw material for producing various compounds.
≪アルコキシハロシラン(B)の製造方法≫
アルコキシヒドロシランの製造に用いられる、前述の式(2)で表されるアルコキシハロシラン(B)の製造方法は特に限定されない。
収率が良好であることから、アルコキシハロシラン(B)の製造方法は、下記式(3):
SiR1 a(OR2)4-a・・・(3)
(式(3)中、R1、及びR2、及びaは式(2)と同様である。)
で表されるアルコキシシラン(C)に、-30℃以上80℃以下の温度で、ハロゲン化剤(E)を反応させてアルコキシハロシラン(B)を生成させることを含む方法が好ましい。
この方法では、アルコキシシラン(C)1モルからアルコキシハロシラン(B)1モルを生成させる、化学量論的なハロゲン化剤(E)の量を1モル当量とする場合に、1.5モル当量以下である量のハロゲン化剤(E)が使用される。 ≪Method for producing alkoxyhalosilane (B) ≫
The production method of the alkoxyhalosilane (B) represented by the above formula (2) used for the production of the alkoxyhydrosilane is not particularly limited.
Since the yield is good, the production method of alkoxyhalosilane (B) is represented by the following formula (3):
SiR 1 a (OR 2 ) 4-a (3)
(In formula (3), R 1 , R 2 , and a are the same as in formula (2).)
A method comprising reacting the alkoxysilane (C) represented by formula (I) with a halogenating agent (E) at a temperature of −30 ° C. or higher and 80 ° C. or lower to produce an alkoxyhalosilane (B) is preferable.
In this method, when 1 mole equivalent of the stoichiometric halogenating agent (E) for producing 1 mole of alkoxyhalosilane (B) from 1 mole of alkoxysilane (C) is 1.5 moles. An amount of halogenating agent (E) that is less than or equal to the equivalent is used.
アルコキシヒドロシランの製造に用いられる、前述の式(2)で表されるアルコキシハロシラン(B)の製造方法は特に限定されない。
収率が良好であることから、アルコキシハロシラン(B)の製造方法は、下記式(3):
SiR1 a(OR2)4-a・・・(3)
(式(3)中、R1、及びR2、及びaは式(2)と同様である。)
で表されるアルコキシシラン(C)に、-30℃以上80℃以下の温度で、ハロゲン化剤(E)を反応させてアルコキシハロシラン(B)を生成させることを含む方法が好ましい。
この方法では、アルコキシシラン(C)1モルからアルコキシハロシラン(B)1モルを生成させる、化学量論的なハロゲン化剤(E)の量を1モル当量とする場合に、1.5モル当量以下である量のハロゲン化剤(E)が使用される。 ≪Method for producing alkoxyhalosilane (B) ≫
The production method of the alkoxyhalosilane (B) represented by the above formula (2) used for the production of the alkoxyhydrosilane is not particularly limited.
Since the yield is good, the production method of alkoxyhalosilane (B) is represented by the following formula (3):
SiR 1 a (OR 2 ) 4-a (3)
(In formula (3), R 1 , R 2 , and a are the same as in formula (2).)
A method comprising reacting the alkoxysilane (C) represented by formula (I) with a halogenating agent (E) at a temperature of −30 ° C. or higher and 80 ° C. or lower to produce an alkoxyhalosilane (B) is preferable.
In this method, when 1 mole equivalent of the stoichiometric halogenating agent (E) for producing 1 mole of alkoxyhalosilane (B) from 1 mole of alkoxysilane (C) is 1.5 moles. An amount of halogenating agent (E) that is less than or equal to the equivalent is used.
<アルコキシシラン(C)>
上記のアルコキシシラン(C)は、SiR1 a(OR2)4-a・・・(3)
(式(3)中、R1、及びR2、及びaは式(2)と同様である。)
で表される化合物である。 <Alkoxysilane (C)>
The alkoxysilane (C) is SiR 1 a (OR 2 ) 4-a (3)
(In formula (3), R 1 , R 2 , and a are the same as in formula (2).)
It is a compound represented by these.
上記のアルコキシシラン(C)は、SiR1 a(OR2)4-a・・・(3)
(式(3)中、R1、及びR2、及びaは式(2)と同様である。)
で表される化合物である。 <Alkoxysilane (C)>
The alkoxysilane (C) is SiR 1 a (OR 2 ) 4-a (3)
(In formula (3), R 1 , R 2 , and a are the same as in formula (2).)
It is a compound represented by these.
アルコキシシラン(C)の好適な具体例としては、前述の式(1)で表されるアルコキシヒドロシラン(A)の好適な具体例として挙げた化合物における、ケイ素原子に結合する水素原子を、OR2基(R2は式(2)と同様である。)に置換した化合物が挙げられる。
As a suitable specific example of alkoxysilane (C), the hydrogen atom couple | bonded with a silicon atom in the compound quoted as a suitable specific example of alkoxyhydrosilane (A) represented by the above-mentioned Formula (1) is OR 2. And a compound substituted with a group (R 2 is the same as in formula (2)).
<ハロゲン化剤(E)>
ハロゲン化剤としては、アルコキシシラン(C)に含まれる4-a個のOR2で表されるアルコキシ基のうちの1つを所望する程度に高い選択率でハロゲン化できる化合物であれば特に限定されない。 <Halogenating agent (E)>
The halogenating agent is not particularly limited as long as it is a compound that can halogenate one of the alkoxy groups represented by 4-a OR 2 contained in the alkoxysilane (C) with a desired high selectivity. Not.
ハロゲン化剤としては、アルコキシシラン(C)に含まれる4-a個のOR2で表されるアルコキシ基のうちの1つを所望する程度に高い選択率でハロゲン化できる化合物であれば特に限定されない。 <Halogenating agent (E)>
The halogenating agent is not particularly limited as long as it is a compound that can halogenate one of the alkoxy groups represented by 4-a OR 2 contained in the alkoxysilane (C) with a desired high selectivity. Not.
このようなハロゲン化剤の好適な例としては、反応後の後処理の容易であることから、カルボン酸ハライドが好ましい。前述の通りアルコキシハロシラン(B)に関する式(2)において、ハロゲン原子(X)としては塩素原子又は臭素原子が反応性の面で好ましく、塩素原子が原料入手性や価格の面でより好ましい。このため、カルボン酸ハライドとしても、カルボン酸クロリド又はカルボン酸ブロミドが好ましく、カルボン酸クロリドがより好ましい。
As a suitable example of such a halogenating agent, a carboxylic acid halide is preferable because post-treatment after the reaction is easy. As described above, in the formula (2) relating to the alkoxyhalosilane (B), as the halogen atom (X), a chlorine atom or a bromine atom is preferable in terms of reactivity, and a chlorine atom is more preferable in terms of availability of raw materials and price. For this reason, also as a carboxylic acid halide, a carboxylic acid chloride or a carboxylic acid bromide is preferable, and a carboxylic acid chloride is more preferable.
カルボン酸ハライドの好ましい具体例としては、塩化アセチル、塩化プロピオニル、塩化ブタノイル、塩化アクリロイル、塩化メタクリロイル、塩化ベンゾイル等の一塩化物、塩化オキサリル、塩化アジポイル、コハク酸塩化物、セバシン酸塩化物等の二塩化物、1,3,5-ベンゼントリカルボン酸三塩化物等の三塩化物、及び臭化アセチル等の臭化物等が挙げられる。これらの中では、塩化アセチル、塩化ベンゾイル、臭化アセチルが反応の収率面でより好ましく、塩化アセチルが価格の面で特に好ましい。
Preferred specific examples of carboxylic acid halides include monochlorides such as acetyl chloride, propionyl chloride, butanoyl chloride, acryloyl chloride, methacryloyl chloride, benzoyl chloride, oxalyl chloride, adipoyl chloride, succinic acid chloride, sebacic acid chloride, and the like. Examples thereof include dichlorides, trichlorides such as 1,3,5-benzenetricarboxylic acid trichloride, and bromides such as acetyl bromide. Among these, acetyl chloride, benzoyl chloride, and acetyl bromide are more preferable in terms of yield of the reaction, and acetyl chloride is particularly preferable in terms of cost.
ハロゲン化剤(E)の使用量は、アルコキシシラン(C)1モルからアルコキシハロシラン(B)1モルを生成させる、化学量論的なハロゲン化剤(E)の量を1モル当量とする場合に、1.5モル当量以下である量であり、0.5~1.2モル当量が好ましく、0.7~1.1モル当量がより好ましい。
ハロゲン化剤(E)の使用量は、少なくなるとハロゲン化率が下がることから最終的に所望のヒドロシランの収率低下に繋がり、多くなるとジハロゲン化体やトリハロゲン化の体の副生量が増加してしまう。 The amount of the halogenating agent (E) used is 1 molar equivalent of the stoichiometric amount of the halogenating agent (E) that generates 1 mol of alkoxyhalosilane (B) from 1 mol of alkoxysilane (C). In some cases, the amount is 1.5 molar equivalents or less, preferably 0.5 to 1.2 molar equivalents, and more preferably 0.7 to 1.1 molar equivalents.
If the amount of the halogenating agent (E) used decreases, the halogenation rate decreases, which ultimately leads to a decrease in the yield of the desired hydrosilane. If the amount used increases, the amount of by-produced dihalogenated compounds and trihalogenated compounds increases. Resulting in.
ハロゲン化剤(E)の使用量は、少なくなるとハロゲン化率が下がることから最終的に所望のヒドロシランの収率低下に繋がり、多くなるとジハロゲン化体やトリハロゲン化の体の副生量が増加してしまう。 The amount of the halogenating agent (E) used is 1 molar equivalent of the stoichiometric amount of the halogenating agent (E) that generates 1 mol of alkoxyhalosilane (B) from 1 mol of alkoxysilane (C). In some cases, the amount is 1.5 molar equivalents or less, preferably 0.5 to 1.2 molar equivalents, and more preferably 0.7 to 1.1 molar equivalents.
If the amount of the halogenating agent (E) used decreases, the halogenation rate decreases, which ultimately leads to a decrease in the yield of the desired hydrosilane. If the amount used increases, the amount of by-produced dihalogenated compounds and trihalogenated compounds increases. Resulting in.
<ルイス酸性を示す金属塩(F)>
アルコキシシラン(C)とハロゲン化剤(E)との反応は、ルイス酸性を示す金属塩(F)の存在下に行われるのが好ましい。 <Metal salt exhibiting Lewis acidity (F)>
The reaction between the alkoxysilane (C) and the halogenating agent (E) is preferably performed in the presence of a metal salt (F) exhibiting Lewis acidity.
アルコキシシラン(C)とハロゲン化剤(E)との反応は、ルイス酸性を示す金属塩(F)の存在下に行われるのが好ましい。 <Metal salt exhibiting Lewis acidity (F)>
The reaction between the alkoxysilane (C) and the halogenating agent (E) is preferably performed in the presence of a metal salt (F) exhibiting Lewis acidity.
金属塩(F)は、金属カチオンとアニオンとからなる塩であることが好ましい。金属塩(F)における金属としては、アルカリ土類金属、遷移金属、亜鉛、アルミニウム、及び、ホウ素が好ましく挙げられる。金属塩(F)を構成するアニオンとしては、ハロゲン化物イオン、BF4
-、PF6
-、SbF6
-、ClO4
-、CF3CO2
-、及び、CF3SO3
-が好ましく挙げられ、ハロシラン以外の副生を抑制できる点で、ハロゲン化物イオンがより好ましい。
The metal salt (F) is preferably a salt composed of a metal cation and an anion. Preferred examples of the metal in the metal salt (F) include alkaline earth metals, transition metals, zinc, aluminum, and boron. Preferred examples of the anion constituting the metal salt (F) include halide ions, BF 4 − , PF 6 − , SbF 6 − , ClO 4 − , CF 3 CO 2 − , and CF 3 SO 3 − . Halide ions are more preferable in that by-products other than halosilane can be suppressed.
ルイス酸性を示す金属塩(F)の好ましい例としては、塩化マグネシウム(MgCl2)、臭化マグネシウム(MgBr2)、三フッ化ホウ素エーテル錯体(BF3・O(C2H5)2)、三塩化ホウ素(BCl3)、塩化アルミニウム(AlCl3)、臭化アルミニウム(AlBr3)、塩化亜鉛(ZnCl2)、臭化亜鉛(ZnBr2)、四塩化スズ(SnCl4)、四臭化スズ(SnBr4)、三塩化鉄(FeCl3)、三臭化鉄(FeBr3)、四塩化チタン(TiCl4)、四臭化チタン(TiBr4)、等が挙げられる。
これらの中では塩化亜鉛が反応性や取り扱いの容易さの面で好ましい。このため、アルコキシシラン(C)とハロゲン化剤(E)との反応には、塩化亜鉛を含む金属塩(F)を用いるのが好ましい。 Preferred examples of the metal salt (F) exhibiting Lewis acidity include magnesium chloride (MgCl 2 ), magnesium bromide (MgBr 2 ), boron trifluoride ether complex (BF 3 .O (C 2 H 5 ) 2 ), Boron trichloride (BCl 3 ), aluminum chloride (AlCl 3 ), aluminum bromide (AlBr 3 ), zinc chloride (ZnCl 2 ), zinc bromide (ZnBr 2 ), tin tetrachloride (SnCl 4 ), tin tetrabromide (SnBr 4 ), iron trichloride (FeCl 3 ), iron tribromide (FeBr 3 ), titanium tetrachloride (TiCl 4 ), titanium tetrabromide (TiBr 4 ), and the like.
Among these, zinc chloride is preferable in terms of reactivity and ease of handling. For this reason, it is preferable to use the metal salt (F) containing zinc chloride for the reaction between the alkoxysilane (C) and the halogenating agent (E).
これらの中では塩化亜鉛が反応性や取り扱いの容易さの面で好ましい。このため、アルコキシシラン(C)とハロゲン化剤(E)との反応には、塩化亜鉛を含む金属塩(F)を用いるのが好ましい。 Preferred examples of the metal salt (F) exhibiting Lewis acidity include magnesium chloride (MgCl 2 ), magnesium bromide (MgBr 2 ), boron trifluoride ether complex (BF 3 .O (C 2 H 5 ) 2 ), Boron trichloride (BCl 3 ), aluminum chloride (AlCl 3 ), aluminum bromide (AlBr 3 ), zinc chloride (ZnCl 2 ), zinc bromide (ZnBr 2 ), tin tetrachloride (SnCl 4 ), tin tetrabromide (SnBr 4 ), iron trichloride (FeCl 3 ), iron tribromide (FeBr 3 ), titanium tetrachloride (TiCl 4 ), titanium tetrabromide (TiBr 4 ), and the like.
Among these, zinc chloride is preferable in terms of reactivity and ease of handling. For this reason, it is preferable to use the metal salt (F) containing zinc chloride for the reaction between the alkoxysilane (C) and the halogenating agent (E).
金属塩(F)の使用量は、アルコキシシラン(C)とハロゲン化剤(E)との反応が良好に進行する限り特に限定されない。
金属塩(F)の使用量は、典型的には、アルコキシシラン(C)の物質量に対して、0.01~20モル%が好ましく、0.05~10モル%がより好ましく、0.1~2.0モル%が特に好ましい。金属塩(F)の使用量が少ないと反応速度が遅くなり、多すぎると経済的に不利である。 The amount of the metal salt (F) used is not particularly limited as long as the reaction between the alkoxysilane (C) and the halogenating agent (E) proceeds well.
The amount of the metal salt (F) used is typically preferably 0.01 to 20 mol%, more preferably 0.05 to 10 mol%, relative to the amount of the alkoxysilane (C) substance. 1 to 2.0 mol% is particularly preferred. If the amount of the metal salt (F) used is small, the reaction rate is slow, and if it is too large, it is economically disadvantageous.
金属塩(F)の使用量は、典型的には、アルコキシシラン(C)の物質量に対して、0.01~20モル%が好ましく、0.05~10モル%がより好ましく、0.1~2.0モル%が特に好ましい。金属塩(F)の使用量が少ないと反応速度が遅くなり、多すぎると経済的に不利である。 The amount of the metal salt (F) used is not particularly limited as long as the reaction between the alkoxysilane (C) and the halogenating agent (E) proceeds well.
The amount of the metal salt (F) used is typically preferably 0.01 to 20 mol%, more preferably 0.05 to 10 mol%, relative to the amount of the alkoxysilane (C) substance. 1 to 2.0 mol% is particularly preferred. If the amount of the metal salt (F) used is small, the reaction rate is slow, and if it is too large, it is economically disadvantageous.
<溶剤>
上記の方法によりアルコキシハロシラン(B)を製造する場合、必要に応じて、溶剤を用いることができる。溶剤としては、ハロゲン化剤(E)との反応等により、アルコキシシラン(C)のハロゲン化を阻害しなければ特に限定されない。
好適に使用される溶剤としては、例えば、1,2-ジメトキシエタン等の非プロトン性エーテル系溶剤、ヘキサン等の炭化水素系溶剤、及び酢酸メチル等の非プロトン性エステル系溶剤等が挙げられる。溶剤は単独で用いても、複数を混合して用いてもよい。
アルコキシハロシラン(B)の製造に引き続き、アルコキシヒドロシラン(A)を前述の方法に従って製造する場合、アルコキシハロシラン(B)の製造に用いる溶剤として前述した、溶剤(S)を用いることもできる。 <Solvent>
When the alkoxyhalosilane (B) is produced by the above method, a solvent can be used as necessary. The solvent is not particularly limited as long as the halogenation of the alkoxysilane (C) is not inhibited by reaction with the halogenating agent (E) or the like.
Suitable solvents include, for example, aprotic ether solvents such as 1,2-dimethoxyethane, hydrocarbon solvents such as hexane, and aprotic ester solvents such as methyl acetate. A solvent may be used independently or may be used in mixture of multiple.
Subsequent to the production of the alkoxyhalosilane (B), when the alkoxyhydrosilane (A) is produced according to the method described above, the solvent (S) described above as the solvent used for the production of the alkoxyhalosilane (B) can also be used.
上記の方法によりアルコキシハロシラン(B)を製造する場合、必要に応じて、溶剤を用いることができる。溶剤としては、ハロゲン化剤(E)との反応等により、アルコキシシラン(C)のハロゲン化を阻害しなければ特に限定されない。
好適に使用される溶剤としては、例えば、1,2-ジメトキシエタン等の非プロトン性エーテル系溶剤、ヘキサン等の炭化水素系溶剤、及び酢酸メチル等の非プロトン性エステル系溶剤等が挙げられる。溶剤は単独で用いても、複数を混合して用いてもよい。
アルコキシハロシラン(B)の製造に引き続き、アルコキシヒドロシラン(A)を前述の方法に従って製造する場合、アルコキシハロシラン(B)の製造に用いる溶剤として前述した、溶剤(S)を用いることもできる。 <Solvent>
When the alkoxyhalosilane (B) is produced by the above method, a solvent can be used as necessary. The solvent is not particularly limited as long as the halogenation of the alkoxysilane (C) is not inhibited by reaction with the halogenating agent (E) or the like.
Suitable solvents include, for example, aprotic ether solvents such as 1,2-dimethoxyethane, hydrocarbon solvents such as hexane, and aprotic ester solvents such as methyl acetate. A solvent may be used independently or may be used in mixture of multiple.
Subsequent to the production of the alkoxyhalosilane (B), when the alkoxyhydrosilane (A) is produced according to the method described above, the solvent (S) described above as the solvent used for the production of the alkoxyhalosilane (B) can also be used.
溶剤を用いる場合、溶剤の使用量は、所望する収率でアルコキシハロシラン(B)を生成させることができる限り特に限定されない。溶剤の使用量は、典型的には、アルコキシシラン(C)100質量部に対して、1000質量部以下が好ましく、800質量部以下がより好ましく、500質量部以下が特に好ましい。溶剤が多すぎる場合は、反応後の除去が煩雑になり、また経済的にも不利である。
When the solvent is used, the amount of the solvent used is not particularly limited as long as the alkoxyhalosilane (B) can be produced in a desired yield. Typically, the amount of the solvent used is preferably 1000 parts by mass or less, more preferably 800 parts by mass or less, and particularly preferably 500 parts by mass or less with respect to 100 parts by mass of the alkoxysilane (C). When there is too much solvent, the removal after the reaction becomes complicated, and it is disadvantageous economically.
<反応条件>
アルコキシシラン(C)と、ハロゲン化剤(E)との反応は、-30℃以上100℃以下の温度で行われる。反応温度は、反応中一定であっても、変化していてもよい。
アルコキシシラン(C)と、ハロゲン化剤(E)との反応を行う温度は、その少なくとも一部が-30℃以上100℃以下であればよく、反応中の平均温度が-30℃以上100℃以下であるのが好ましく、反応中の温度が、全て-30℃以上100℃以下の範囲内であるのがより好ましい。反応中の温度が全て-30℃未満であると、反応がほとんど進行しなくなる。反応温度が100℃を超える時間が長くなると、ジハロゲン化体やトリハロゲン化体の副生量が増加してしまう。 <Reaction conditions>
The reaction between the alkoxysilane (C) and the halogenating agent (E) is performed at a temperature of −30 ° C. or higher and 100 ° C. or lower. The reaction temperature may be constant during the reaction or may vary.
The temperature at which the alkoxysilane (C) and the halogenating agent (E) are reacted may be at least partially -30 ° C to 100 ° C, and the average temperature during the reaction is -30 ° C to 100 ° C. The temperature during the reaction is preferably within the range of −30 ° C. or more and 100 ° C. or less. When the temperatures during the reaction are all lower than −30 ° C., the reaction hardly proceeds. If the reaction temperature exceeds 100 ° C. for a long time, the amount of by-produced dihalides and trihalides increases.
アルコキシシラン(C)と、ハロゲン化剤(E)との反応は、-30℃以上100℃以下の温度で行われる。反応温度は、反応中一定であっても、変化していてもよい。
アルコキシシラン(C)と、ハロゲン化剤(E)との反応を行う温度は、その少なくとも一部が-30℃以上100℃以下であればよく、反応中の平均温度が-30℃以上100℃以下であるのが好ましく、反応中の温度が、全て-30℃以上100℃以下の範囲内であるのがより好ましい。反応中の温度が全て-30℃未満であると、反応がほとんど進行しなくなる。反応温度が100℃を超える時間が長くなると、ジハロゲン化体やトリハロゲン化体の副生量が増加してしまう。 <Reaction conditions>
The reaction between the alkoxysilane (C) and the halogenating agent (E) is performed at a temperature of −30 ° C. or higher and 100 ° C. or lower. The reaction temperature may be constant during the reaction or may vary.
The temperature at which the alkoxysilane (C) and the halogenating agent (E) are reacted may be at least partially -30 ° C to 100 ° C, and the average temperature during the reaction is -30 ° C to 100 ° C. The temperature during the reaction is preferably within the range of −30 ° C. or more and 100 ° C. or less. When the temperatures during the reaction are all lower than −30 ° C., the reaction hardly proceeds. If the reaction temperature exceeds 100 ° C. for a long time, the amount of by-produced dihalides and trihalides increases.
また、アルコキシシラン(C)と、ハロゲン化剤(E)との反応を行う温度は、その少なくとも一部が-10℃以上90℃以下であるのが好ましく、反応中の平均温度が-10℃以上90℃以下であるのがより好ましく、反応中の温度が、全て-10℃以上90℃以下の範囲内であるのが特に好ましい。反応温度がかかる範囲内であれば、温水、冷水、ブライン等の、汎用される熱媒や冷媒を用いて反応温度の調製が可能であり、経済的に有利である。
Further, the temperature at which the alkoxysilane (C) and the halogenating agent (E) are reacted is preferably at least partly −10 ° C. or higher and 90 ° C. or lower, and the average temperature during the reaction is −10 ° C. It is more preferable that the temperature is 90 ° C. or lower, and it is particularly preferable that all the temperatures during the reaction are within a range of −10 ° C. or higher and 90 ° C. or lower. If the reaction temperature is within such a range, the reaction temperature can be adjusted using a commonly used heat medium or refrigerant such as hot water, cold water, or brine, which is economically advantageous.
さらに、アルコキシシラン(C)と、ハロゲン化剤(E)との反応は、その少なくとも一部が0℃以上20℃以下であるのが好ましく、反応中の平均温度が0℃以上20℃以下であるのがより好ましく、反応中の温度が、全て0℃以上20℃以下の範囲内であるのが特に好ましい。反応中の温度を0℃以上とすることで十分な反応性を確保できる。また反応温度が20℃以下とすることで、ジハロゲン化体やトリハロゲン化の体の副生量を十分に抑制できる。
Furthermore, it is preferable that at least a part of the reaction between the alkoxysilane (C) and the halogenating agent (E) is 0 ° C. or higher and 20 ° C. or lower, and the average temperature during the reaction is 0 ° C. or higher and 20 ° C. or lower. It is more preferable that all the temperatures during the reaction are in the range of 0 ° C. or higher and 20 ° C. or lower. Sufficient reactivity can be secured by setting the temperature during the reaction to 0 ° C. or higher. In addition, when the reaction temperature is 20 ° C. or less, the amount of by-produced dihalides and trihalogenated substances can be sufficiently suppressed.
ハロゲン化剤(E)及び金属塩(F)の添加方法は特に限定されず、ハロゲン化剤(E)又は金属塩(F)を単独で反応系に加えてもよく、ハロゲン化剤(E)又は金属塩(F)の溶液又は懸濁液を反応系に加えてもよい。
ハロゲン化剤(E)及び金属塩(F)は、1度又は数度に分割して反応系に加えられてもよく、滴下等の方法により連続的に反応系に加えられてもよい。ハロゲン化剤(E)及び金属塩(F)を反応系内に加える時間は特に限定されず、反応の進行状況に応じて適宜選択される。
ハロゲン化剤(E)及び金属塩(F)の添加順序も特に限定されないが、反応時の昇温を抑制するため、金属塩(F)を先に添加し、その後ハロゲン化剤(E)を滴下等の方法により連続的に反応系に添加されることが好ましい。 The method for adding the halogenating agent (E) and the metal salt (F) is not particularly limited, and the halogenating agent (E) or the metal salt (F) may be added to the reaction system alone. Alternatively, a solution or suspension of the metal salt (F) may be added to the reaction system.
The halogenating agent (E) and the metal salt (F) may be added to the reaction system by dividing it once or several times, or may be continuously added to the reaction system by a method such as dropping. The time for adding the halogenating agent (E) and the metal salt (F) to the reaction system is not particularly limited, and is appropriately selected according to the progress of the reaction.
The order of addition of the halogenating agent (E) and the metal salt (F) is not particularly limited, but the metal salt (F) is added first, and then the halogenating agent (E) is added to suppress the temperature increase during the reaction. It is preferably added continuously to the reaction system by a method such as dropping.
ハロゲン化剤(E)及び金属塩(F)は、1度又は数度に分割して反応系に加えられてもよく、滴下等の方法により連続的に反応系に加えられてもよい。ハロゲン化剤(E)及び金属塩(F)を反応系内に加える時間は特に限定されず、反応の進行状況に応じて適宜選択される。
ハロゲン化剤(E)及び金属塩(F)の添加順序も特に限定されないが、反応時の昇温を抑制するため、金属塩(F)を先に添加し、その後ハロゲン化剤(E)を滴下等の方法により連続的に反応系に添加されることが好ましい。 The method for adding the halogenating agent (E) and the metal salt (F) is not particularly limited, and the halogenating agent (E) or the metal salt (F) may be added to the reaction system alone. Alternatively, a solution or suspension of the metal salt (F) may be added to the reaction system.
The halogenating agent (E) and the metal salt (F) may be added to the reaction system by dividing it once or several times, or may be continuously added to the reaction system by a method such as dropping. The time for adding the halogenating agent (E) and the metal salt (F) to the reaction system is not particularly limited, and is appropriately selected according to the progress of the reaction.
The order of addition of the halogenating agent (E) and the metal salt (F) is not particularly limited, but the metal salt (F) is added first, and then the halogenating agent (E) is added to suppress the temperature increase during the reaction. It is preferably added continuously to the reaction system by a method such as dropping.
アルコキシシラン(C)と、ハロゲン化剤(E)とを反応させる雰囲気は特に限定されないが、窒素ガス等の不活性ガス雰囲気下に反応が行われるのが好ましい。
アルコキシシラン(C)と、ハロゲン化剤(E)との反応は、大気圧下で行われても、減圧下で行われても、加圧下で行われてもよい。
アルコキシシラン(C)と、ハロゲン化剤(E)との反応は、バッチ式及び連続式のいずれの方法で行うこともできる。 The atmosphere in which the alkoxysilane (C) and the halogenating agent (E) are reacted is not particularly limited, but the reaction is preferably performed in an inert gas atmosphere such as nitrogen gas.
The reaction between the alkoxysilane (C) and the halogenating agent (E) may be carried out under atmospheric pressure, under reduced pressure, or under pressure.
The reaction of the alkoxysilane (C) and the halogenating agent (E) can be carried out by either a batch method or a continuous method.
アルコキシシラン(C)と、ハロゲン化剤(E)との反応は、大気圧下で行われても、減圧下で行われても、加圧下で行われてもよい。
アルコキシシラン(C)と、ハロゲン化剤(E)との反応は、バッチ式及び連続式のいずれの方法で行うこともできる。 The atmosphere in which the alkoxysilane (C) and the halogenating agent (E) are reacted is not particularly limited, but the reaction is preferably performed in an inert gas atmosphere such as nitrogen gas.
The reaction between the alkoxysilane (C) and the halogenating agent (E) may be carried out under atmospheric pressure, under reduced pressure, or under pressure.
The reaction of the alkoxysilane (C) and the halogenating agent (E) can be carried out by either a batch method or a continuous method.
アルコキシシラン(C)とハロゲン化剤(E)とを反応させる時間は特に限定されない。ハロゲン化剤(E)を滴下する時間、及びその後の反応時間を含め、典型的には、10分~24時間であり、30分~10時間が好ましく、1時間~5時間がより好ましい。反応時間が短いと、反応による発熱で反応系の温度が急上昇する懸念がある。反応時間が長いことによる反応系への影響は特にないが、経済的に不利である。
The time for reacting the alkoxysilane (C) and the halogenating agent (E) is not particularly limited. Including the time for dropping the halogenating agent (E) and the subsequent reaction time, it is typically 10 minutes to 24 hours, preferably 30 minutes to 10 hours, and more preferably 1 hour to 5 hours. If the reaction time is short, there is a concern that the temperature of the reaction system rapidly rises due to heat generated by the reaction. Although there is no particular influence on the reaction system due to the long reaction time, it is economically disadvantageous.
このようにして生成するアルコキシハロシラン(B)は、そのまま又は精製され、好ましくは精製され、前述の方法による、アルコキシヒドロシラン(E)の製造方法における製造原料として供される。その他、Si-XやSi-OR2を利用した加水分解、縮合反応等に使用することができ、種々の化合物の製造原料として好適に使用される。
The alkoxyhalosilane (B) thus produced is directly or purified, preferably purified, and used as a production raw material in the method for producing alkoxyhydrosilane (E) by the above-described method. In addition, it can be used for hydrolysis, condensation reaction, etc. using Si—X or Si—OR 2 and is suitably used as a raw material for producing various compounds.
≪アルコキシハロシラン化合物≫
以上説明した方法により、アルコキシヒドロシラン(A)の製造原料である上記式(2)で表されるアルコキシハロシラン化合物(B)が製造される。
アルコキシハロシラン化合物(B)の中では、アルコキシヒドロシラン(A)を製造する際に副反応が生じにくい点等から、下記式(4):
X-SiR3(OR4)2・・・(4)
(式(4)中、R3は、炭素原子数1~20のアルキル基であり、R3としてのアルキル基はハロゲン原子又は炭素原子数1~6のアルコキシ基で置換されていてもよく、R4は、炭素原子数1~20の炭化水素基であり、Xはハロゲン原子である。2つのOR4について、それらは同じでもよく、異なっていてもよい。)
で表されるアルコキシハロシラン化合物が好ましい。
Xとしてのハロゲン原子と、アルキル基上の置換基としてのハロゲン原子としては、それぞれフッ素原子、塩素原子、臭素原子、及びヨウ素原子が挙げられ、製造の容易さから塩素原子又は臭素原子が好ましく、原料の入手性から塩素原子が好ましい。
R3についての炭素原子1~20のアルキル基の具体例や、R4についての炭素原子1~20の炭化水素基の具体例は、R1及びR2について説明した、炭素原子1~20のアルキル基の具体例や、炭素原子1~20の炭化水素基の具体例と同様である。 ≪Alkoxyhalosilane compound≫
By the method demonstrated above, the alkoxy halosilane compound (B) represented by the said Formula (2) which is a manufacturing raw material of alkoxy hydrosilane (A) is manufactured.
Among the alkoxyhalosilane compounds (B), the following formula (4):
X-SiR 3 (OR 4 ) 2 (4)
(In Formula (4), R 3 is an alkyl group having 1 to 20 carbon atoms, and the alkyl group as R 3 may be substituted with a halogen atom or an alkoxy group having 1 to 6 carbon atoms; R 4 is a hydrocarbon group having 1 to 20 carbon atoms, and X is a halogen atom, and for two OR 4 , they may be the same or different.
The alkoxyhalosilane compound represented by these is preferable.
Examples of the halogen atom as X and the halogen atom as a substituent on the alkyl group include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a chlorine atom or a bromine atom is preferable for ease of production, From the availability of raw materials, a chlorine atom is preferable.
Specific examples of the alkyl group having 1 to 20 carbon atoms for R 3 and specific examples of the hydrocarbon group having 1 to 20 carbon atoms for R 4 include those described for R 1 and R 2 . This is the same as the specific example of the alkyl group and the specific example of the hydrocarbon group having 1 to 20 carbon atoms.
以上説明した方法により、アルコキシヒドロシラン(A)の製造原料である上記式(2)で表されるアルコキシハロシラン化合物(B)が製造される。
アルコキシハロシラン化合物(B)の中では、アルコキシヒドロシラン(A)を製造する際に副反応が生じにくい点等から、下記式(4):
X-SiR3(OR4)2・・・(4)
(式(4)中、R3は、炭素原子数1~20のアルキル基であり、R3としてのアルキル基はハロゲン原子又は炭素原子数1~6のアルコキシ基で置換されていてもよく、R4は、炭素原子数1~20の炭化水素基であり、Xはハロゲン原子である。2つのOR4について、それらは同じでもよく、異なっていてもよい。)
で表されるアルコキシハロシラン化合物が好ましい。
Xとしてのハロゲン原子と、アルキル基上の置換基としてのハロゲン原子としては、それぞれフッ素原子、塩素原子、臭素原子、及びヨウ素原子が挙げられ、製造の容易さから塩素原子又は臭素原子が好ましく、原料の入手性から塩素原子が好ましい。
R3についての炭素原子1~20のアルキル基の具体例や、R4についての炭素原子1~20の炭化水素基の具体例は、R1及びR2について説明した、炭素原子1~20のアルキル基の具体例や、炭素原子1~20の炭化水素基の具体例と同様である。 ≪Alkoxyhalosilane compound≫
By the method demonstrated above, the alkoxy halosilane compound (B) represented by the said Formula (2) which is a manufacturing raw material of alkoxy hydrosilane (A) is manufactured.
Among the alkoxyhalosilane compounds (B), the following formula (4):
X-SiR 3 (OR 4 ) 2 (4)
(In Formula (4), R 3 is an alkyl group having 1 to 20 carbon atoms, and the alkyl group as R 3 may be substituted with a halogen atom or an alkoxy group having 1 to 6 carbon atoms; R 4 is a hydrocarbon group having 1 to 20 carbon atoms, and X is a halogen atom, and for two OR 4 , they may be the same or different.
The alkoxyhalosilane compound represented by these is preferable.
Examples of the halogen atom as X and the halogen atom as a substituent on the alkyl group include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a chlorine atom or a bromine atom is preferable for ease of production, From the availability of raw materials, a chlorine atom is preferable.
Specific examples of the alkyl group having 1 to 20 carbon atoms for R 3 and specific examples of the hydrocarbon group having 1 to 20 carbon atoms for R 4 include those described for R 1 and R 2 . This is the same as the specific example of the alkyl group and the specific example of the hydrocarbon group having 1 to 20 carbon atoms.
式(4)について、いずれも種々の化合物の製造原料として使用する際の反応性の観点から、R3がハロゲン原子(好ましくは塩素原子)で置換された炭素原子数1~3のアルキル基であるか、炭素原子数1~3のアルコキシ基で置換された炭素原子数1~3のアルキル基であるのが好ましく、且つR4が炭素原子数1~3のアルキル基であるのが好ましい。
In formula (4), R 3 is an alkyl group having 1 to 3 carbon atoms substituted with a halogen atom (preferably a chlorine atom) from the viewpoint of reactivity when used as a raw material for producing various compounds. It is preferably an alkyl group having 1 to 3 carbon atoms substituted with an alkoxy group having 1 to 3 carbon atoms, and R 4 is preferably an alkyl group having 1 to 3 carbon atoms.
また、式(4)について、該当する反応性ケイ素基を有機重合体に導入することにより、例えばWO2012/036109号公報に記載のような優れた伸び物性と速硬化性とを有する硬化性組成物を提供できることから、R3がメトキシメチル基であるのが好ましく、且つR4がメチル基であるのが好ましい。
Moreover, about formula (4), by introducing a corresponding reactive silicon group into an organic polymer, for example, a curable composition having excellent elongation properties and rapid curing properties as described in, for example, WO2012 / 036109. R 3 is preferably a methoxymethyl group, and R 4 is preferably a methyl group.
式(4)で表されるアルコキシハロシラン(A)の好適な具体例としては、メチルジメトキシクロロシラン(ClSi(CH3)(OCH3)2)、メチルジエトキシクロロシラン(ClSi(CH3)(OC2H5)2)、エチルジメトキシクロロシラン(ClSi(C2H5)(OCH3)2)、エチルジエトキシクロロシラン(ClSi(C2H5)(OC2H5)2)、n-プロピルジメトキシクロロシラン(ClSi(n-C3H7)(OCH3)2)、n-プロピルジエトキシクロロシラン(ClSi(n-C3H7)(OC2H5)2)、n-ヘキシルジメトキシクロロシラン(ClSi(n-C6H13)(OCH3)2)、n-ヘキシルジエトキシクロロシラン(ClSi(n-C6H13)(OC2H5)2)、フェニルジメトキシクロロシラン(ClSi(Ph)(OCH3)2)、フェニルジエトキシクロロシラン(ClSi(Ph)(OC2H5)2)、クロロメチルジメトキシクロロシラン(ClSi(CH2Cl)(OCH3)2)、クロロメチルジエトキシクロロシラン(ClSi(CH2Cl)(OC2H5)2)、クロロメチルメトキシメチルクロロシラン(ClSi(CH2Cl)(OCH3)(CH3))、クロロメチルエトキシメチルクロロシラン(ClSi(CH2Cl)(OC2H5)(CH3))、ビス(クロロメチル)メトキシクロロシラン(ClSi(CH2Cl)2(OCH3))、ビス(クロロメチル)エトキシクロロシラン(ClSi(CH2Cl)2(OC2H5))、1-クロロエチルジメトキシクロロシラン(ClSi(CHClCH3)(OCH3)2)、2-クロロエチルジメトキシクロロシラン(ClSi(CH2CH2Cl)(OCH3)2)、1-クロロプロピルジメトキシクロロシラン(ClSi(CHClCH2CH3)(OCH3)2)、2-クロロプロピルジメトキシクロロシラン(ClSi(CH2CHClCH3)(OCH3)2)、3-クロロプロピルジメトキシクロロシラン(ClSi(CH2CH2CH2Cl)(OCH3)2)、フルオロメチルジメトキシクロロシラン(ClSi(CH2F)(OCH3)2)、ブロモメチルジメトキシクロロシラン(ClSi(CH2Br)(OCH3)2)、ヨードメチルジメトキシクロロシラン(ClSi(CH2I)(OCH3)2)、メトキシメチルジメトキシクロロシラン(ClSi(CH2OCH3)(OCH3)2)、(ジメトキシメチル)ジメトキシクロロシラン(ClSi(CH(OCH3)2)(OCH3)2)、エトキシメチルジメトキシクロロシラン(ClSi(CH2OC2H5)(OCH3)2)、エトキシメチルジエトキシクロロシラン(ClSi(CH2OC2H5)(OC2H5)2)、1-メトキシエチルジメトキシクロロシラン(ClSi(CH(OCH3)CH3)(OCH3)2)、トリメトキシメチルジメトキシクロロシラン(ClSi(C(OCH3)3)(OCH3)2)、(メトキシメチル)メチルメトキシクロロシラン(ClSi(CH2OCH3)(CH3)(OCH3))、ビス(メトキシメチル)メトキシクロロシラン(ClSi(CH2OCH3)2(OCH3))、及びメチルチオメチルジメトキシクロロシラン(ClSi(CH2SCH3)(OCH3)2)等が挙げられる。
Preferable specific examples of the alkoxyhalosilane (A) represented by the formula (4) include methyldimethoxychlorosilane (ClSi (CH 3 ) (OCH 3 ) 2 ), methyldiethoxychlorosilane (ClSi (CH 3 ) (OC) 2 H 5) 2), ethyl dimethoxy chlorosilane (ClSi (C 2 H 5) (OCH 3) 2), ethyl diethoxy chlorosilane (ClSi (C 2 H 5) (OC 2 H 5) 2), n- propyl dimethoxy Chlorosilane (ClSi (n—C 3 H 7 ) (OCH 3 ) 2 ), n-propyldiethoxychlorosilane (ClSi (n—C 3 H 7 ) (OC 2 H 5 ) 2 ), n-hexyldimethoxychlorosilane (ClSi) (NC 6 H 13 ) (OCH 3 ) 2 ), n-hexyldiethoxychlorosilane (ClSi (n- C 6 H 13) (OC 2 H 5) 2), phenyl dimethoxy chlorosilane (ClSi (Ph) (OCH 3 ) 2), phenyl diethoxy chlorosilane (ClSi (Ph) (OC 2 H 5) 2), chloromethyl dimethoxy chlorosilane (ClSi (CH 2 Cl) ( OCH 3) 2), chloromethyl diethoxy chlorosilane (ClSi (CH 2 Cl) ( OC 2 H 5) 2), chloromethyl methoxymethyl chlorosilane (ClSi (CH 2 Cl) ( OCH 3) (CH 3)), chloromethyl ethoxymethyl chlorosilane (ClSi (CH 2 Cl) ( OC 2 H 5) (CH 3)), bis (chloromethyl) methoxy chlorosilane (ClSi (CH 2 Cl) 2 (OCH 3 )), Bis (chloromethyl) ethoxychlorosilane (ClSi) CH 2 Cl) 2 (OC 2 H 5)), 1- chloroethyl dimethoxy chlorosilane (ClSi (CHClCH 3) (OCH 3) 2), 2- chloroethyl dimethoxy chlorosilane (ClSi (CH 2 CH 2 Cl ) (OCH 3 2 ), 1-chloropropyldimethoxychlorosilane (ClSi (CHClCH 2 CH 3 ) (OCH 3 ) 2 ), 2-chloropropyldimethoxychlorosilane (ClSi (CH 2 CHClCH 3 ) (OCH 3 ) 2 ), 3-chloropropyl Dimethoxychlorosilane (ClSi (CH 2 CH 2 CH 2 Cl) (OCH 3 ) 2 ), fluoromethyldimethoxychlorosilane (ClSi (CH 2 F) (OCH 3 ) 2 ), bromomethyldimethoxychlorosilane (ClSi (CH 2 Br) ( OCH 3 ) 2), iodomethyl dimethoxy chlorosilane (ClSi (CH 2 I) ( OCH 3) 2), methoxymethyl dimethoxy chlorosilane (ClSi (CH 2 OCH 3) (OCH 3) 2), ( dimethoxymethyl) dimethoxy chlorosilane (ClSi (CH (OCH 3 ) 2 ) (OCH 3 ) 2 ), ethoxymethyldimethoxychlorosilane (ClSi (CH 2 OC 2 H 5 ) (OCH 3 ) 2 ), ethoxymethyldiethoxychlorosilane (ClSi (CH 2 OC 2 H 5 ) ( OC 2 H 5 ) 2 ), 1-methoxyethyldimethoxychlorosilane (ClSi (CH (OCH 3 ) CH 3 ) (OCH 3 ) 2 ), trimethoxymethyldimethoxychlorosilane (ClSi (C (OCH 3 ) 3 ) (OCH 3 ) 2 ), (methoxymethyl) Tylmethoxychlorosilane (ClSi (CH 2 OCH 3 ) (CH 3 ) (OCH 3 )), bis (methoxymethyl) methoxychlorosilane (ClSi (CH 2 OCH 3 ) 2 (OCH 3 )), and methylthiomethyldimethoxychlorosilane (ClSi) (CH 2 SCH 3 ) (OCH 3 ) 2 ) and the like.
以下に、具体的な実施例を挙げて本発明をより詳細に説明するが、本発明は、下記実施例に限定されるものではない。
Hereinafter, the present invention will be described in more detail with specific examples, but the present invention is not limited to the following examples.
〔実施例1~5、及び比較例1〕
前述のアルコキシシラン(C)(シラン(C))として、メトキシメチルトリメトキシシランを用いた。シラン(C)の量は、表1に記載される通りである。
シラン(C)に対して、表1に記載の割合(モル%、対シラン(C)のモル数)で、金属塩(F)として塩化亜鉛(ZnCl2)を加えた。シラン(C)と金属塩(F)との混合物中にハロゲン化剤(E)としての塩化アセチルを表1に記載の量、滴下した。
滴下開始時の初期温度と、滴下開始から反応終了までの間の最高温度とを表1に記す。
滴下終了後、滴下終了後の温度を保持して30分間反応を行った。
反応終了後の反応液の組成を分析し、ハロゲン化剤の消費率、並びにモノクロロ体(Cl1)、ジクロロ体(Cl2)、トリクロロ体(Cl3)、及び原料シラン(C)の生成比を求めた。これらの結果を表1に記す。 [Examples 1 to 5 and Comparative Example 1]
Methoxymethyltrimethoxysilane was used as the aforementioned alkoxysilane (C) (silane (C)). The amount of silane (C) is as described in Table 1.
Zinc chloride (ZnCl 2 ) was added as a metal salt (F) at a ratio shown in Table 1 (mol%, number of moles of silane (C)) with respect to silane (C). Acetyl chloride as the halogenating agent (E) was added dropwise to the mixture of silane (C) and metal salt (F) in the amount shown in Table 1.
Table 1 shows the initial temperature at the start of dropping and the maximum temperature from the start of dropping to the end of reaction.
After completion of dropping, the reaction was carried out for 30 minutes while maintaining the temperature after completion of dropping.
The composition of the reaction solution after the completion of the reaction was analyzed, the consumption rate of the halogenating agent, and the production ratio of monochloro isomer (Cl 1 ), dichloro isomer (Cl 2 ), trichloro isomer (Cl 3 ), and raw silane (C) Asked. These results are shown in Table 1.
前述のアルコキシシラン(C)(シラン(C))として、メトキシメチルトリメトキシシランを用いた。シラン(C)の量は、表1に記載される通りである。
シラン(C)に対して、表1に記載の割合(モル%、対シラン(C)のモル数)で、金属塩(F)として塩化亜鉛(ZnCl2)を加えた。シラン(C)と金属塩(F)との混合物中にハロゲン化剤(E)としての塩化アセチルを表1に記載の量、滴下した。
滴下開始時の初期温度と、滴下開始から反応終了までの間の最高温度とを表1に記す。
滴下終了後、滴下終了後の温度を保持して30分間反応を行った。
反応終了後の反応液の組成を分析し、ハロゲン化剤の消費率、並びにモノクロロ体(Cl1)、ジクロロ体(Cl2)、トリクロロ体(Cl3)、及び原料シラン(C)の生成比を求めた。これらの結果を表1に記す。 [Examples 1 to 5 and Comparative Example 1]
Methoxymethyltrimethoxysilane was used as the aforementioned alkoxysilane (C) (silane (C)). The amount of silane (C) is as described in Table 1.
Zinc chloride (ZnCl 2 ) was added as a metal salt (F) at a ratio shown in Table 1 (mol%, number of moles of silane (C)) with respect to silane (C). Acetyl chloride as the halogenating agent (E) was added dropwise to the mixture of silane (C) and metal salt (F) in the amount shown in Table 1.
Table 1 shows the initial temperature at the start of dropping and the maximum temperature from the start of dropping to the end of reaction.
After completion of dropping, the reaction was carried out for 30 minutes while maintaining the temperature after completion of dropping.
The composition of the reaction solution after the completion of the reaction was analyzed, the consumption rate of the halogenating agent, and the production ratio of monochloro isomer (Cl 1 ), dichloro isomer (Cl 2 ), trichloro isomer (Cl 3 ), and raw silane (C) Asked. These results are shown in Table 1.
表1から、所定の構造のシラン(C)を、-30℃以上80℃以下の温度で反応させることにより、モノハロゲン置換体である、所望する構造のアルコキシハロシランを高い選択性で製造できることが分かる。
他方、比較例1からは、反応温度が-30℃未満であると、シラン(C)のハロゲン化反応がほとんど進行しないことが分かる。
また、実施例1~4と、実施例5との比較により、ルイス酸性を示す金属塩(F)の使用により、ハロゲン化剤(E)の利用効率を高められることが分かる。
さらに、実施例1及び3と、実施例2、4、及び5との比較により、反応温度を20℃以下に保つことで、ジクロロ体(Cl2)、トリクロロ体(Cl3)、の副生量が抑えられることが分かる。 From Table 1, by reacting silane (C) having a predetermined structure at a temperature of −30 ° C. or more and 80 ° C. or less, alkoxyhalosilane having a desired structure, which is a monohalogen substitution product, can be produced with high selectivity. I understand.
On the other hand, it can be seen from Comparative Example 1 that when the reaction temperature is lower than −30 ° C., the halogenation reaction of silane (C) hardly proceeds.
Further, comparison between Examples 1 to 4 and Example 5 shows that the use efficiency of the halogenating agent (E) can be increased by using the metal salt (F) exhibiting Lewis acidity.
Furthermore, by comparing Examples 1 and 3 with Examples 2, 4, and 5, by maintaining the reaction temperature at 20 ° C. or less, by-products of dichloro form (Cl 2 ) and trichloro form (Cl 3 ) are obtained. It can be seen that the amount is suppressed.
他方、比較例1からは、反応温度が-30℃未満であると、シラン(C)のハロゲン化反応がほとんど進行しないことが分かる。
また、実施例1~4と、実施例5との比較により、ルイス酸性を示す金属塩(F)の使用により、ハロゲン化剤(E)の利用効率を高められることが分かる。
さらに、実施例1及び3と、実施例2、4、及び5との比較により、反応温度を20℃以下に保つことで、ジクロロ体(Cl2)、トリクロロ体(Cl3)、の副生量が抑えられることが分かる。 From Table 1, by reacting silane (C) having a predetermined structure at a temperature of −30 ° C. or more and 80 ° C. or less, alkoxyhalosilane having a desired structure, which is a monohalogen substitution product, can be produced with high selectivity. I understand.
On the other hand, it can be seen from Comparative Example 1 that when the reaction temperature is lower than −30 ° C., the halogenation reaction of silane (C) hardly proceeds.
Further, comparison between Examples 1 to 4 and Example 5 shows that the use efficiency of the halogenating agent (E) can be increased by using the metal salt (F) exhibiting Lewis acidity.
Furthermore, by comparing Examples 1 and 3 with Examples 2, 4, and 5, by maintaining the reaction temperature at 20 ° C. or less, by-products of dichloro form (Cl 2 ) and trichloro form (Cl 3 ) are obtained. It can be seen that the amount is suppressed.
〔実施例6~実施例13〕
前述のアルコキシシラン(C)(シラン(C))として、表2に記載の種類のシラン化合物を用いた。シラン(C)の量は、表2に記載される通りである。
シラン(C)に対して、表2に記載の割合(モル%、対シラン(C)のモル数)で、金属塩(F)として塩化亜鉛(ZnCl2)を加えた。ただし、実施例13では、金属塩(F)を用いなかった。
シラン(C)と金属塩(F)との混合物中に表2に記載の種類及び量のハロゲン化剤(E)を、滴下した。
滴下開始時の初期温度は5℃であり、滴下開始から反応終了までの間の最高温度は20℃未満であった。
滴下終了後、滴下終了後の温度を保持して30分間反応を行った。
反応終了後の反応液の組成を分析し、ハロゲン化剤の消費率、並びにモノハロ体(X1)、ジハロ体(X2)の生成比を求めた。これらの結果を表2に記す。
また、生成物についての1H-NMR(CDCl3)の測定結果を表3に記す。
なお、1H-NMRの測定は、日本電子(株)製、JNM-AL400を用いて行った。 [Examples 6 to 13]
As the aforementioned alkoxysilane (C) (silane (C)), the types of silane compounds described in Table 2 were used. The amount of silane (C) is as described in Table 2.
Zinc chloride (ZnCl 2 ) was added as a metal salt (F) at a ratio shown in Table 2 (mol%, moles of silane (C)) with respect to silane (C). However, in Example 13, the metal salt (F) was not used.
In the mixture of silane (C) and metal salt (F), the types and amounts of halogenating agents (E) listed in Table 2 were added dropwise.
The initial temperature at the start of dropping was 5 ° C., and the maximum temperature from the start of dropping to the end of the reaction was less than 20 ° C.
After completion of dropping, the reaction was carried out for 30 minutes while maintaining the temperature after completion of dropping.
The composition of the reaction solution after completion of the reaction was analyzed to determine the consumption rate of the halogenating agent and the production ratio of the monohalo form (X 1 ) and dihalo form (X 2 ). These results are shown in Table 2.
The measurement results of 1 H-NMR (CDCl 3 ) of the product are shown in Table 3.
The 1 H-NMR measurement was performed using JNM-AL400 manufactured by JEOL Ltd.
前述のアルコキシシラン(C)(シラン(C))として、表2に記載の種類のシラン化合物を用いた。シラン(C)の量は、表2に記載される通りである。
シラン(C)に対して、表2に記載の割合(モル%、対シラン(C)のモル数)で、金属塩(F)として塩化亜鉛(ZnCl2)を加えた。ただし、実施例13では、金属塩(F)を用いなかった。
シラン(C)と金属塩(F)との混合物中に表2に記載の種類及び量のハロゲン化剤(E)を、滴下した。
滴下開始時の初期温度は5℃であり、滴下開始から反応終了までの間の最高温度は20℃未満であった。
滴下終了後、滴下終了後の温度を保持して30分間反応を行った。
反応終了後の反応液の組成を分析し、ハロゲン化剤の消費率、並びにモノハロ体(X1)、ジハロ体(X2)の生成比を求めた。これらの結果を表2に記す。
また、生成物についての1H-NMR(CDCl3)の測定結果を表3に記す。
なお、1H-NMRの測定は、日本電子(株)製、JNM-AL400を用いて行った。 [Examples 6 to 13]
As the aforementioned alkoxysilane (C) (silane (C)), the types of silane compounds described in Table 2 were used. The amount of silane (C) is as described in Table 2.
Zinc chloride (ZnCl 2 ) was added as a metal salt (F) at a ratio shown in Table 2 (mol%, moles of silane (C)) with respect to silane (C). However, in Example 13, the metal salt (F) was not used.
In the mixture of silane (C) and metal salt (F), the types and amounts of halogenating agents (E) listed in Table 2 were added dropwise.
The initial temperature at the start of dropping was 5 ° C., and the maximum temperature from the start of dropping to the end of the reaction was less than 20 ° C.
After completion of dropping, the reaction was carried out for 30 minutes while maintaining the temperature after completion of dropping.
The composition of the reaction solution after completion of the reaction was analyzed to determine the consumption rate of the halogenating agent and the production ratio of the monohalo form (X 1 ) and dihalo form (X 2 ). These results are shown in Table 2.
The measurement results of 1 H-NMR (CDCl 3 ) of the product are shown in Table 3.
The 1 H-NMR measurement was performed using JNM-AL400 manufactured by JEOL Ltd.
表2中の原料シラン(C)についての略称は以下の通りである。
MMTMS:メトキシメチルトリメトキシシラン
MTES:メチルトリエトキシシラン
nPrTMS:n-プロピルトリメトキシシラン
nHexTMS:n-ヘキシルトリメトキシシラン
PhTMS:フェニルトリメトキシシラン
3-ClC3TMS:3-クロロプロピルトリメトキシシラン
また、ハロゲン化剤(E)についての略称は以下の通りである。
AcCl:塩化アセチル
BzCl:塩化ベンゾイル
AcBr:臭化アセチル Abbreviations for the raw material silane (C) in Table 2 are as follows.
MMTMS: methoxymethyltrimethoxysilane MTES: methyltriethoxysilane nPrTMS: n-propyltrimethoxysilane nHexTMS: n-hexyltrimethoxysilane PhTMS: phenyltrimethoxysilane 3-ClC3TMS: 3-chloropropyltrimethoxysilane Abbreviations for the agent (E) are as follows.
AcCl: Acetyl chloride BzCl: Benzoyl chloride AcBr: Acetyl bromide
MMTMS:メトキシメチルトリメトキシシラン
MTES:メチルトリエトキシシラン
nPrTMS:n-プロピルトリメトキシシラン
nHexTMS:n-ヘキシルトリメトキシシラン
PhTMS:フェニルトリメトキシシラン
3-ClC3TMS:3-クロロプロピルトリメトキシシラン
また、ハロゲン化剤(E)についての略称は以下の通りである。
AcCl:塩化アセチル
BzCl:塩化ベンゾイル
AcBr:臭化アセチル Abbreviations for the raw material silane (C) in Table 2 are as follows.
MMTMS: methoxymethyltrimethoxysilane MTES: methyltriethoxysilane nPrTMS: n-propyltrimethoxysilane nHexTMS: n-hexyltrimethoxysilane PhTMS: phenyltrimethoxysilane 3-ClC3TMS: 3-chloropropyltrimethoxysilane Abbreviations for the agent (E) are as follows.
AcCl: Acetyl chloride BzCl: Benzoyl chloride AcBr: Acetyl bromide
〔実施例14〕
アルコキシハロシラン(B)(ハロシラン(B))として、表4に記載の種類のシラン26.83mmolを用いた。水素化剤(D)であるNaBH41.73g(44.67mmol、ハロシラン(B)に対して1.67当量)を、表4に記載の種類の溶剤(S)14.7gに懸濁させた後、ハロシラン(B)を、水素化剤(D)の懸濁液に20℃で30分~90分間かけて滴下した。滴下終了後、20℃にて2時間反応を行った。
反応後のアルコキシヒドロシラン(A)(メトキシメチルジメトキシシラン)の収率を、1H-NMR(CDCl3)より求めた。
求められた収率を表4に記す。 Example 14
As the alkoxyhalosilane (B) (halosilane (B)), 26.83 mmol of the silanes described in Table 4 were used. 1.73 g (44.67 mmol, 1.67 equivalents based on halosilane (B)) of NaBH 4 as the hydrogenating agent (D) was suspended in 14.7 g of the solvent (S) of the type described in Table 4. Thereafter, the halosilane (B) was added dropwise to the suspension of the hydrogenating agent (D) at 20 ° C. over 30 to 90 minutes. After completion of dropping, the reaction was carried out at 20 ° C. for 2 hours.
The yield of alkoxyhydrosilane (A) (methoxymethyldimethoxysilane) after the reaction was determined from 1 H-NMR (CDCl 3 ).
The obtained yield is shown in Table 4.
アルコキシハロシラン(B)(ハロシラン(B))として、表4に記載の種類のシラン26.83mmolを用いた。水素化剤(D)であるNaBH41.73g(44.67mmol、ハロシラン(B)に対して1.67当量)を、表4に記載の種類の溶剤(S)14.7gに懸濁させた後、ハロシラン(B)を、水素化剤(D)の懸濁液に20℃で30分~90分間かけて滴下した。滴下終了後、20℃にて2時間反応を行った。
反応後のアルコキシヒドロシラン(A)(メトキシメチルジメトキシシラン)の収率を、1H-NMR(CDCl3)より求めた。
求められた収率を表4に記す。 Example 14
As the alkoxyhalosilane (B) (halosilane (B)), 26.83 mmol of the silanes described in Table 4 were used. 1.73 g (44.67 mmol, 1.67 equivalents based on halosilane (B)) of NaBH 4 as the hydrogenating agent (D) was suspended in 14.7 g of the solvent (S) of the type described in Table 4. Thereafter, the halosilane (B) was added dropwise to the suspension of the hydrogenating agent (D) at 20 ° C. over 30 to 90 minutes. After completion of dropping, the reaction was carried out at 20 ° C. for 2 hours.
The yield of alkoxyhydrosilane (A) (methoxymethyldimethoxysilane) after the reaction was determined from 1 H-NMR (CDCl 3 ).
The obtained yield is shown in Table 4.
〔実施例15~17、実施例19、及び比較例3〕
ハロシラン(B)を5.0mmol、水素化剤(D)であるNaBH4を0.31g(8.3mmol、ハロシラン(B)に対して1.67当量)、溶剤(S)を2.5g、それぞれ用いることの他は、実施例14と同様に反応を行った。
反応後のアルコキシヒドロシラン(A)(メトキシメチルジメトキシシラン)の収率を、実施例14と同様にして求めた。
求められた収率を表4に記す。 [Examples 15 to 17, Example 19, and Comparative Example 3]
Halosilane (B) 5.0 mmol, hydrogenating agent (D) NaBH 4 0.31 g (8.3 mmol, 1.67 equivalents to halosilane (B)), solvent (S) 2.5 g, The reaction was performed in the same manner as in Example 14 except for using each.
The yield of alkoxyhydrosilane (A) (methoxymethyldimethoxysilane) after the reaction was determined in the same manner as in Example 14.
The obtained yield is shown in Table 4.
ハロシラン(B)を5.0mmol、水素化剤(D)であるNaBH4を0.31g(8.3mmol、ハロシラン(B)に対して1.67当量)、溶剤(S)を2.5g、それぞれ用いることの他は、実施例14と同様に反応を行った。
反応後のアルコキシヒドロシラン(A)(メトキシメチルジメトキシシラン)の収率を、実施例14と同様にして求めた。
求められた収率を表4に記す。 [Examples 15 to 17, Example 19, and Comparative Example 3]
Halosilane (B) 5.0 mmol, hydrogenating agent (D) NaBH 4 0.31 g (8.3 mmol, 1.67 equivalents to halosilane (B)), solvent (S) 2.5 g, The reaction was performed in the same manner as in Example 14 except for using each.
The yield of alkoxyhydrosilane (A) (methoxymethyldimethoxysilane) after the reaction was determined in the same manner as in Example 14.
The obtained yield is shown in Table 4.
〔実施例18、及び比較例4〕
溶剤(S)を、表4に記載の溶剤に変えることと、ハロシラン(B)の滴下時間を13時間に変えることと、ハロシラン(B)の滴下後の反応時間を6時間に変えることとの他は、実施例14と同様に反応を行った。
反応後のアルコキシヒドロシラン(A)(メトキシメチルジメトキシシラン)の収率を、実施例14と同様にして求めた。
求められた収率を表4に記す。 Example 18 and Comparative Example 4
Changing the solvent (S) to the solvent shown in Table 4, changing the dropping time of the halosilane (B) to 13 hours, and changing the reaction time after the dropping of the halosilane (B) to 6 hours The others were reacted in the same manner as in Example 14.
The yield of alkoxyhydrosilane (A) (methoxymethyldimethoxysilane) after the reaction was determined in the same manner as in Example 14.
The obtained yield is shown in Table 4.
溶剤(S)を、表4に記載の溶剤に変えることと、ハロシラン(B)の滴下時間を13時間に変えることと、ハロシラン(B)の滴下後の反応時間を6時間に変えることとの他は、実施例14と同様に反応を行った。
反応後のアルコキシヒドロシラン(A)(メトキシメチルジメトキシシラン)の収率を、実施例14と同様にして求めた。
求められた収率を表4に記す。 Example 18 and Comparative Example 4
Changing the solvent (S) to the solvent shown in Table 4, changing the dropping time of the halosilane (B) to 13 hours, and changing the reaction time after the dropping of the halosilane (B) to 6 hours The others were reacted in the same manner as in Example 14.
The yield of alkoxyhydrosilane (A) (methoxymethyldimethoxysilane) after the reaction was determined in the same manner as in Example 14.
The obtained yield is shown in Table 4.
〔比較例2〕
溶剤(S)を用いないことの他は、実施例14と同様に反応を行った。
反応後のメトキシメチルジメトキシシランの収率を、実施例14と同様にして求めた。
求められた収率を表4に記す。 [Comparative Example 2]
The reaction was conducted in the same manner as in Example 14 except that the solvent (S) was not used.
The yield of methoxymethyldimethoxysilane after the reaction was determined in the same manner as in Example 14.
The obtained yield is shown in Table 4.
溶剤(S)を用いないことの他は、実施例14と同様に反応を行った。
反応後のメトキシメチルジメトキシシランの収率を、実施例14と同様にして求めた。
求められた収率を表4に記す。 [Comparative Example 2]
The reaction was conducted in the same manner as in Example 14 except that the solvent (S) was not used.
The yield of methoxymethyldimethoxysilane after the reaction was determined in the same manner as in Example 14.
The obtained yield is shown in Table 4.
表4中、MMDMCSは、メトキシメチルジメトキシクロロシランを表し、MMDMBSは、メトキシメチルジメトキシブロモシランを表す。
In Table 4, MMDMCS represents methoxymethyldimethoxychlorosilane, and MMDMBS represents methoxymethyldimethoxybromosilane.
表4から、所定の構造のアルコキシハロシラン(B)を、エーテル結合を有する非プロトン性有機溶剤を50質量%以上含む溶剤(S)中で水素化剤(D)と反応させることにより、所望する構造のアルコキシヒドロシラン(A)が良好に生成することが分かる。
From Table 4, a desired structure is obtained by reacting an alkoxyhalosilane (B) having a predetermined structure with a hydrogenating agent (D) in a solvent (S) containing 50% by mass or more of an aprotic organic solvent having an ether bond. It can be seen that the alkoxyhydrosilane (A) having the structure as described above is favorably produced.
〔実施例14、及び実施例20~24〕
アルコキシハロシラン(B)(ハロシラン(B))の種類及び使用量(mmol)と、水素化剤(D)の使用量(当量)と、溶剤(S)の使用量(g)と、反応時間とを、表5に記載されるように変更することの他は、実施例14と同様にしてアルコキシヒドロシラン(A)(ヒドロシラン(A))を合成した。実施例14と同様に測定したヒドロシラン(A)の収率を表5に記す。
[Example 14 and Examples 20 to 24]
Type and amount of use of alkoxyhalosilane (B) (halosilane (B)) (mmol), amount of use of hydrogenating agent (D) (equivalent), amount of use of solvent (S) (g), and reaction time And alkoxyhydrosilane (A) (hydrosilane (A)) were synthesized in the same manner as in Example 14 except that they were changed as described in Table 5. The yield of hydrosilane (A) measured in the same manner as in Example 14 is shown in Table 5.
アルコキシハロシラン(B)(ハロシラン(B))の種類及び使用量(mmol)と、水素化剤(D)の使用量(当量)と、溶剤(S)の使用量(g)と、反応時間とを、表5に記載されるように変更することの他は、実施例14と同様にしてアルコキシヒドロシラン(A)(ヒドロシラン(A))を合成した。実施例14と同様に測定したヒドロシラン(A)の収率を表5に記す。
Type and amount of use of alkoxyhalosilane (B) (halosilane (B)) (mmol), amount of use of hydrogenating agent (D) (equivalent), amount of use of solvent (S) (g), and reaction time And alkoxyhydrosilane (A) (hydrosilane (A)) were synthesized in the same manner as in Example 14 except that they were changed as described in Table 5. The yield of hydrosilane (A) measured in the same manner as in Example 14 is shown in Table 5.
表5中の原料ハロシラン(B)についての略称は以下の通りである。
MMDMCS:メトキシメチルジメトキシクロロシラン
MDECS:メチルジエトキシクロロシラン
nPrDMCS:n-プロピルジメトキシクロロシラン
HexDMCS:n-ヘキシルジメトキシクロロシラン
PhDMCS:フェニルジメトキシクロロシラン
3-ClC3DMCS:3-クロロプロピルジメトキシクロロシラン Abbreviations for the raw material halosilane (B) in Table 5 are as follows.
MMDMCS: Methoxymethyldimethoxychlorosilane MDECS: Methyldiethoxychlorosilane nPrDMCS: n-propyldimethoxychlorosilane HexDMCS: n-hexyldimethoxychlorosilane PhDMCS: phenyldimethoxychlorosilane 3-ClC3DMCS: 3-chloropropyldimethoxychlorosilane
MMDMCS:メトキシメチルジメトキシクロロシラン
MDECS:メチルジエトキシクロロシラン
nPrDMCS:n-プロピルジメトキシクロロシラン
HexDMCS:n-ヘキシルジメトキシクロロシラン
PhDMCS:フェニルジメトキシクロロシラン
3-ClC3DMCS:3-クロロプロピルジメトキシクロロシラン Abbreviations for the raw material halosilane (B) in Table 5 are as follows.
MMDMCS: Methoxymethyldimethoxychlorosilane MDECS: Methyldiethoxychlorosilane nPrDMCS: n-propyldimethoxychlorosilane HexDMCS: n-hexyldimethoxychlorosilane PhDMCS: phenyldimethoxychlorosilane 3-ClC3DMCS: 3-chloropropyldimethoxychlorosilane
〔実施例25〕
メトキシメチルトリメトキシシランに対し、触媒として0.011モル%の塩化亜鉛を用い、5℃で0.92モル当量の塩化アセチルの添加を開始した。反応系の温度が20℃を超えないよう添加速度を調節しながら1.5時間かけて添加を終了させた。さらに0.5時間反応を行い、メトキシメチルジメトキシクロロシランを得た。
精製したメトキシメチルジメトキシクロロシランに対して、1.67モル当量のNaBH4及び質量で3倍量の1,2-ジメトキシエタンを反応容器に仕込んだ。反応容器の内容物を撹拌して懸濁させながら、20℃でメトキシメチルジメトキシクロロシランを30分かけて添加した。さらに2時間反応を行い、メトキシメチルジメトキシシランを得た。
実施例25の方法は、本発明内容に従った、メトキシメチルトリメトキシシランのモノクロロ化反応と、メトキシメチルジメトキシクロロシランのモノヒドロ化反応と、2つのみの工程を有する方法である。
その結果、実施例25では、メトキシメチルトリメトキシシランの使用量を基準とするメトキシメチルジメトキシシランの収率は60%と、非常に高かった。 Example 25
With respect to methoxymethyltrimethoxysilane, 0.011 mol% of zinc chloride was used as a catalyst, and addition of 0.92 mol equivalent of acetyl chloride at 5 ° C. was started. The addition was completed over 1.5 hours while adjusting the addition rate so that the temperature of the reaction system did not exceed 20 ° C. The reaction was further continued for 0.5 hours to obtain methoxymethyldimethoxychlorosilane.
To the purified methoxymethyldimethoxychlorosilane, 1.67 molar equivalents of NaBH 4 and 3 times the mass of 1,2-dimethoxyethane were charged into the reaction vessel. While stirring and suspending the contents of the reaction vessel, methoxymethyldimethoxychlorosilane was added at 20 ° C. over 30 minutes. The reaction was further continued for 2 hours to obtain methoxymethyldimethoxysilane.
The method of Example 25 is a method having only two steps according to the present invention, the monochloroation reaction of methoxymethyltrimethoxysilane and the monohydrolysis reaction of methoxymethyldimethoxychlorosilane.
As a result, in Example 25, the yield of methoxymethyldimethoxysilane based on the amount of methoxymethyltrimethoxysilane used was as high as 60%.
メトキシメチルトリメトキシシランに対し、触媒として0.011モル%の塩化亜鉛を用い、5℃で0.92モル当量の塩化アセチルの添加を開始した。反応系の温度が20℃を超えないよう添加速度を調節しながら1.5時間かけて添加を終了させた。さらに0.5時間反応を行い、メトキシメチルジメトキシクロロシランを得た。
精製したメトキシメチルジメトキシクロロシランに対して、1.67モル当量のNaBH4及び質量で3倍量の1,2-ジメトキシエタンを反応容器に仕込んだ。反応容器の内容物を撹拌して懸濁させながら、20℃でメトキシメチルジメトキシクロロシランを30分かけて添加した。さらに2時間反応を行い、メトキシメチルジメトキシシランを得た。
実施例25の方法は、本発明内容に従った、メトキシメチルトリメトキシシランのモノクロロ化反応と、メトキシメチルジメトキシクロロシランのモノヒドロ化反応と、2つのみの工程を有する方法である。
その結果、実施例25では、メトキシメチルトリメトキシシランの使用量を基準とするメトキシメチルジメトキシシランの収率は60%と、非常に高かった。 Example 25
With respect to methoxymethyltrimethoxysilane, 0.011 mol% of zinc chloride was used as a catalyst, and addition of 0.92 mol equivalent of acetyl chloride at 5 ° C. was started. The addition was completed over 1.5 hours while adjusting the addition rate so that the temperature of the reaction system did not exceed 20 ° C. The reaction was further continued for 0.5 hours to obtain methoxymethyldimethoxychlorosilane.
To the purified methoxymethyldimethoxychlorosilane, 1.67 molar equivalents of NaBH 4 and 3 times the mass of 1,2-dimethoxyethane were charged into the reaction vessel. While stirring and suspending the contents of the reaction vessel, methoxymethyldimethoxychlorosilane was added at 20 ° C. over 30 minutes. The reaction was further continued for 2 hours to obtain methoxymethyldimethoxysilane.
The method of Example 25 is a method having only two steps according to the present invention, the monochloroation reaction of methoxymethyltrimethoxysilane and the monohydrolysis reaction of methoxymethyldimethoxychlorosilane.
As a result, in Example 25, the yield of methoxymethyldimethoxysilane based on the amount of methoxymethyltrimethoxysilane used was as high as 60%.
〔比較例5〕
メトキシメチルトリメトキシシランに対し、触媒として0.02モル%量の塩化亜鉛を用い、4モル当量の塩化アセチルを作用させた。加熱還流条件下で36時間反応を行い、メトキシメチルトリクロロシランを得た。
蒸留により精製されたメトキシメチルトリクロロシランと、1モル当量のメチルジクロロシランを混合した後、0.05モル当量の塩化メチルトリブチルアンモニウムの存在下に、加熱還流条件で3時間反応を行い、メトキシメチルジクロロシランを得た。
精製したメトキシメチルジクロロシランに対して、2.5モル当量のオルト酢酸トリメチルを反応容器に仕込んだ。反応容器の内容物を撹拌しながら、反応容器の内温が50℃を超えないように、メトキシメチルジクロロシランをゆっくりと添加することで、メトキシメチルジメトキシシランを得た。 [Comparative Example 5]
To methoxymethyltrimethoxysilane, 0.02 mol% of zinc chloride was used as a catalyst, and 4 molar equivalents of acetyl chloride were allowed to act. Reaction was performed for 36 hours under heating and refluxing conditions to obtain methoxymethyltrichlorosilane.
After mixing methoxymethyltrichlorosilane purified by distillation and 1 molar equivalent of methyldichlorosilane, the reaction is carried out in the presence of 0.05 molar equivalent of methyltributylammonium chloride under heating and refluxing conditions for 3 hours. Dichlorosilane was obtained.
To the purified methoxymethyldichlorosilane, 2.5 molar equivalents of trimethyl orthoacetate were charged into the reaction vessel. While stirring the contents of the reaction vessel, methoxymethyldimethoxysilane was obtained by slowly adding methoxymethyldichlorosilane so that the internal temperature of the reaction vessel did not exceed 50 ° C.
メトキシメチルトリメトキシシランに対し、触媒として0.02モル%量の塩化亜鉛を用い、4モル当量の塩化アセチルを作用させた。加熱還流条件下で36時間反応を行い、メトキシメチルトリクロロシランを得た。
蒸留により精製されたメトキシメチルトリクロロシランと、1モル当量のメチルジクロロシランを混合した後、0.05モル当量の塩化メチルトリブチルアンモニウムの存在下に、加熱還流条件で3時間反応を行い、メトキシメチルジクロロシランを得た。
精製したメトキシメチルジクロロシランに対して、2.5モル当量のオルト酢酸トリメチルを反応容器に仕込んだ。反応容器の内容物を撹拌しながら、反応容器の内温が50℃を超えないように、メトキシメチルジクロロシランをゆっくりと添加することで、メトキシメチルジメトキシシランを得た。 [Comparative Example 5]
To methoxymethyltrimethoxysilane, 0.02 mol% of zinc chloride was used as a catalyst, and 4 molar equivalents of acetyl chloride were allowed to act. Reaction was performed for 36 hours under heating and refluxing conditions to obtain methoxymethyltrichlorosilane.
After mixing methoxymethyltrichlorosilane purified by distillation and 1 molar equivalent of methyldichlorosilane, the reaction is carried out in the presence of 0.05 molar equivalent of methyltributylammonium chloride under heating and refluxing conditions for 3 hours. Dichlorosilane was obtained.
To the purified methoxymethyldichlorosilane, 2.5 molar equivalents of trimethyl orthoacetate were charged into the reaction vessel. While stirring the contents of the reaction vessel, methoxymethyldimethoxysilane was obtained by slowly adding methoxymethyldichlorosilane so that the internal temperature of the reaction vessel did not exceed 50 ° C.
比較例5の方法は、特許文献2に記載のメトキシメチルトリメトキシシランのトリクロロ化反応と、メトキシメチルトリクロロシランのモノヒドロ化反応と、メトキシメチルジクロロシランのジメトキシ化反応と、3つの工程を有する方法である。
その結果、比較例5では、メトキシメチルトリメトキシシランの使用量を基準とするメトキシメチルジメトキシシランの収率は30%と、低かった。 The method of Comparative Example 5 is a method having three steps: a trichlorination reaction of methoxymethyltrimethoxysilane, a monohydrolysis reaction of methoxymethyltrichlorosilane, and a dimethoxylation reaction of methoxymethyldichlorosilane described in Patent Document 2. It is.
As a result, in Comparative Example 5, the yield of methoxymethyldimethoxysilane based on the amount of methoxymethyltrimethoxysilane used was as low as 30%.
その結果、比較例5では、メトキシメチルトリメトキシシランの使用量を基準とするメトキシメチルジメトキシシランの収率は30%と、低かった。 The method of Comparative Example 5 is a method having three steps: a trichlorination reaction of methoxymethyltrimethoxysilane, a monohydrolysis reaction of methoxymethyltrichlorosilane, and a dimethoxylation reaction of methoxymethyldichlorosilane described in Patent Document 2. It is.
As a result, in Comparative Example 5, the yield of methoxymethyldimethoxysilane based on the amount of methoxymethyltrimethoxysilane used was as low as 30%.
Claims (22)
- 下記式(1):
H-SiR1 a(OR2)3-a・・・(1)
(式(1)中、R1、及びR2は、それぞれ独立に、置換基を有していてもよい炭素原子数1~20の炭化水素基であり、aは1又は2である。R1、OR2のそれぞれについて、それらが複数存在するとき、それらは同じでもよく、異なっていてもよい。)
で表されるアルコキシヒドロシラン(A)を製造するアルコキシヒドロシランの製造方法であって、
下記式(2):
X-SiR1 a(OR2)3-a・・・(2)
(式(2)中、R1、R2、及びaは、式(1)と同様であり、Xはハロゲン原子である。R1、OR2のそれぞれについて、それらが複数存在するとき、それらは同じでもよく、異なっていてもよい。)
で表されるアルコキシハロシラン(B)を、エーテル結合を有する非プロトン性有機溶剤を50質量%以上含む溶剤(S)中で、水素化剤(D)を用いて水素化することを含む、製造方法。 Following formula (1):
H-SiR 1 a (OR 2 ) 3-a (1)
(In Formula (1), R 1 and R 2 are each independently a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent, and a is 1 or 2. R For each of 1 and OR 2 , when there are a plurality of them, they may be the same or different.)
A process for producing an alkoxyhydrosilane (A) represented by:
Following formula (2):
X-SiR 1 a (OR 2 ) 3-a (2)
(In Formula (2), R 1 , R 2 , and a are the same as in Formula (1), and X is a halogen atom. When there are a plurality of each of R 1 and OR 2 , May be the same or different.)
Hydrogenating the alkoxyhalosilane (B) represented by the formula (B) with a hydrogenating agent (D) in a solvent (S) containing 50 mass% or more of an aprotic organic solvent having an ether bond, Production method. - 前記水素化剤(D)が、下記式(D1):
MBH4・・・(D1)
(式(D1)中、Mは、リチウム、ナトリウム、又はカリウムである。)
で表される化合物である、請求項1に記載のアルコキシヒドロシランの製造方法。 The hydrogenating agent (D) is represented by the following formula (D1):
MBH 4 ... (D1)
(In the formula (D1), M is lithium, sodium, or potassium.)
The manufacturing method of the alkoxy hydrosilane of Claim 1 which is a compound represented by these. - 前記Mがナトリウムである、請求項2に記載のアルコキシヒドロシランの製造方法。 The method for producing an alkoxyhydrosilane according to claim 2, wherein the M is sodium.
- 前記R2がメチル基、又はエチル基である、請求項1~3のいずれか1項に記載のアルコキシヒドロシランの製造方法。 The method for producing an alkoxyhydrosilane according to any one of claims 1 to 3, wherein R 2 is a methyl group or an ethyl group.
- 前記R2がメチル基である、請求項4に記載のアルコキシヒドロシランの製造方法。 The method for producing an alkoxyhydrosilane according to claim 4, wherein R 2 is a methyl group.
- 前記非プロトン性有機溶剤が、テトラヒドロフラン、1,2-ジメトキシエタン、ジエチレングリコールジメチルエーテル、及びトリエチレングリコールジメチルエーテルからなる群より選択される1種以上を含む、請求項1~5のいずれか1項に記載のアルコキシヒドロシランの製造方法。 6. The aprotic organic solvent according to claim 1, wherein the aprotic organic solvent includes one or more selected from the group consisting of tetrahydrofuran, 1,2-dimethoxyethane, diethylene glycol dimethyl ether, and triethylene glycol dimethyl ether. A process for producing an alkoxyhydrosilane.
- 前記非プロトン性有機溶剤が、1,2-ジメトキシエタンである、請求項6に記載のアルコキシヒドロシランの製造方法。 The method for producing an alkoxyhydrosilane according to claim 6, wherein the aprotic organic solvent is 1,2-dimethoxyethane.
- 前記R1が、置換基を有していてもよい炭素原子数1~3の炭化水素基である、請求項1~7のいずれか1項に記載のアルコキシヒドロシランの製造方法。 The method for producing an alkoxyhydrosilane according to any one of claims 1 to 7, wherein R 1 is an optionally substituted hydrocarbon group having 1 to 3 carbon atoms.
- 前記R1が、塩素原子で置換されているか、エーテル結合を含む、請求項1~8のいずれか1項に記載のアルコキシヒドロシランの製造方法。 The method for producing an alkoxyhydrosilane according to any one of claims 1 to 8, wherein R 1 is substituted with a chlorine atom or contains an ether bond.
- 前記R1が、メトキシメチル基である、請求項9に記載のアルコキシヒドロシランの製造方法。 The method for producing an alkoxyhydrosilane according to claim 9, wherein R 1 is a methoxymethyl group.
- 前記aが1である、請求項1~10のいずれか1項に記載のアルコキシヒドロシランの製造方法。 The method for producing an alkoxyhydrosilane according to any one of claims 1 to 10, wherein a is 1.
- 下記式(2):
X-SiR1 a(OR2)3-a・・・(2)
(式(2)中、R1、及びR2は、それぞれ独立に、置換基を有していてもよい炭素原子数1~20の炭化水素基であり、Xはハロゲン原子であり、aは1又は2である。R1、OR2のそれぞれについて、それらが複数存在するとき、それらは同じでもよく、異なっていてもよい。)
で表されるアルコキシハロシラン(B)を製造するアルコキシハロシランの製造方法であって、
下記式(3):
SiR1 a(OR2)4-a・・・(3)
(式(3)中、R1、及びR2、及びaは式(2)と同様である。R1、OR2のそれぞれについて、それらが複数存在するとき、それらは同じでもよく、異なっていてもよい。)
で表されるアルコキシシラン(C)に、-30℃以上100℃以下の温度で、ハロゲン化剤(E)を反応させて前記アルコキシハロシラン(B)を生成させることを含み、
前記アルコキシシラン(C)1モルから前記アルコキシハロシラン(B)1モルを生成させる、化学量論的な前記ハロゲン化剤(E)の量を1モル当量とする場合に、前記ハロゲン化剤(E)の使用量が1.5モル当量以下である、製造方法。 Following formula (2):
X-SiR 1 a (OR 2 ) 3-a (2)
(In the formula (2), R 1 and R 2 are each independently a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent, X is a halogen atom, and a is 1 or 2. For each of R 1 and OR 2 , when there are a plurality of them, they may be the same or different.
A method for producing an alkoxyhalosilane for producing an alkoxyhalosilane (B) represented by:
Following formula (3):
SiR 1 a (OR 2 ) 4-a (3)
(In formula (3), R 1 , R 2 , and a are the same as in formula (2). For each of R 1 and OR 2 , when there are a plurality of them, they may be the same or different. May be.)
And reacting the halogenating agent (E) at a temperature of −30 ° C. or higher and 100 ° C. or lower to the alkoxysilane (C) represented by the formula:
When the stoichiometric amount of the halogenating agent (E) for generating 1 mol of the alkoxyhalosilane (B) from 1 mol of the alkoxysilane (C) is 1 molar equivalent, the halogenating agent ( The manufacturing method whose usage-amount of E) is 1.5 molar equivalent or less. - 前記ハロゲン化剤(E)が、カルボン酸ハライドである、請求項12に記載のアルコキシハロシランの製造方法。 The method for producing an alkoxyhalosilane according to claim 12, wherein the halogenating agent (E) is a carboxylic acid halide.
- 前記Xが塩素原子であり、前記ハロゲン化剤(E)が、塩化アセチルである、請求項13に記載のアルコキシハロシランの製造方法。 The method for producing an alkoxyhalosilane according to claim 13, wherein the X is a chlorine atom and the halogenating agent (E) is acetyl chloride.
- 前記アルコキシシラン(C)に、-10℃以上90℃以下の温度で、前記ハロゲン化剤(E)を反応させる、請求項12~14のいずれか1項に記載のアルコキシハロシランの製造方法。 The method for producing an alkoxyhalosilane according to any one of claims 12 to 14, wherein the halogenating agent (E) is reacted with the alkoxysilane (C) at a temperature of -10 ° C or higher and 90 ° C or lower.
- 前記アルコキシシラン(C)に、0℃以上20℃以下の温度で、前記ハロゲン化剤(E)を反応させる、請求項15に記載のアルコキシハロシランの製造方法。 The method for producing an alkoxyhalosilane according to claim 15, wherein the halogenating agent (E) is reacted with the alkoxysilane (C) at a temperature of 0 ° C or higher and 20 ° C or lower.
- 前記アルコキシシラン(C)と、前記ハロゲン化剤(E)との反応をルイス酸性を示す金属塩(F)の存在下に行う、請求項12~16のいずれか1項に記載のアルコキシハロシランの製造方法。 The alkoxyhalosilane according to any one of claims 12 to 16, wherein the reaction between the alkoxysilane (C) and the halogenating agent (E) is carried out in the presence of a metal salt (F) exhibiting Lewis acidity. Manufacturing method.
- 前記金属塩(F)が塩化亜鉛を含む、請求項17に記載のアルコキシハロシランの製造方法。 The method for producing an alkoxyhalosilane according to claim 17, wherein the metal salt (F) contains zinc chloride.
- 前記(B)アルコキシハロシランが、請求項12~18のいずれか1項に記載の方法により製造される、請求項1~11のいずれか1項に記載のアルコキシヒドロシランの製造方法。 The method for producing an alkoxyhydrosilane according to any one of claims 1 to 11, wherein the (B) alkoxyhalosilane is produced by the method according to any one of claims 12 to 18.
- 下記式(4):
X-SiR3(OR4)2・・・(4)
(式(4)中、R3は、炭素原子数1~20のアルキル基であり、R3としての前記アルキル基はハロゲン原子又は炭素原子数1~6のアルコキシ基で置換されていてもよく、R4は、炭素原子数1~20の炭化水素基であり、Xはハロゲン原子である。2つのOR4について、それらは同じでもよく、異なっていてもよい。)
で表されるアルコキシハロシラン化合物。 Following formula (4):
X-SiR 3 (OR 4 ) 2 (4)
(In Formula (4), R 3 is an alkyl group having 1 to 20 carbon atoms, and the alkyl group as R 3 may be substituted with a halogen atom or an alkoxy group having 1 to 6 carbon atoms. , R 4 is a hydrocarbon group having 1 to 20 carbon atoms, and X is a halogen atom, and for two OR 4 , they may be the same or different.
The alkoxyhalosilane compound represented by these. - 前記R3が、炭素原子数1~3のアルコキシ基で置換された炭素原子数1~3のアルキル基であり、前記R4が炭素原子数1~3のアルキル基である、請求項20に記載のアルコキシハロシラン化合物。 The R 3 is an alkyl group having 1 to 3 carbon atoms substituted with an alkoxy group having 1 to 3 carbon atoms, and the R 4 is an alkyl group having 1 to 3 carbon atoms. The alkoxyhalosilane compound described.
- 前記R3がメトキシメチル基であり、前記R4がメチル基である、請求項21に記載のアルコキシハロシラン化合物。 The alkoxyhalosilane compound according to claim 21, wherein R 3 is a methoxymethyl group, and R 4 is a methyl group.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019507654A JPWO2018173993A1 (en) | 2017-03-23 | 2018-03-19 | Method for producing alkoxyhydrosilane and method for producing alkoxyhalosilane |
CN201880020434.4A CN110461856B (en) | 2017-03-23 | 2018-03-19 | Method for producing alkoxyhydrosilane and method for producing alkoxyhalosilane |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-058294 | 2017-03-23 | ||
JP2017058294 | 2017-03-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018173993A1 true WO2018173993A1 (en) | 2018-09-27 |
Family
ID=63585976
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/010720 WO2018173993A1 (en) | 2017-03-23 | 2018-03-19 | Production method for alkoxyhydrosilane and production method for alkoxyhalosilane |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2018173993A1 (en) |
CN (1) | CN110461856B (en) |
WO (1) | WO2018173993A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024101404A1 (en) * | 2022-11-08 | 2024-05-16 | ダイキン工業株式会社 | Fluorine atom containing silane compound |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114181243B (en) * | 2021-12-01 | 2024-04-02 | 浙江皇马科技股份有限公司 | Preparation method of methyldimethoxy hydrosilane |
CN114213450A (en) * | 2021-12-29 | 2022-03-22 | 南京杰运医药科技有限公司 | Synthesis method of methoxymethyl dimethoxysilane |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01188501A (en) * | 1988-01-25 | 1989-07-27 | Bridgestone Corp | Method for manufacturing rubber composition |
JP2000159785A (en) * | 1998-11-27 | 2000-06-13 | Mitsubishi Materials Corp | Fluorine-substituted organometallic compound and its production |
JP2003313190A (en) * | 2002-04-19 | 2003-11-06 | Jsr Corp | Method for producing silanes |
US20030235933A1 (en) * | 2002-05-17 | 2003-12-25 | Rantala Juha T. | Hybrid organic -inorganic materials for waveguides, optical devices, and other applications |
JP2007314671A (en) * | 2006-05-26 | 2007-12-06 | Shin Etsu Chem Co Ltd | Method for producing silicone resin |
JP2007538069A (en) * | 2004-05-20 | 2007-12-27 | ゼネラル・エレクトリック・カンパニイ | Method for producing haloorganoalkoxysilane |
JP2008156482A (en) * | 2006-12-25 | 2008-07-10 | Kaneka Corp | Curable composition |
WO2010004948A1 (en) * | 2008-07-08 | 2010-01-14 | 株式会社カネカ | METHOD FOR PRODUCING α-HETERO-SUBSTITUTED ALKYLHALOHYDROSILANE AND USE THEREOF |
WO2011161916A1 (en) * | 2010-06-22 | 2011-12-29 | 株式会社カネカ | Method for producing alkoxy hydrosilane |
WO2012036109A1 (en) * | 2010-09-14 | 2012-03-22 | 株式会社カネカ | Curable composition |
CN104177621A (en) * | 2014-08-14 | 2014-12-03 | 中国科学院化学研究所 | Novel liquid polycarbosilane as well as preparation method and application thereof |
-
2018
- 2018-03-19 WO PCT/JP2018/010720 patent/WO2018173993A1/en active Application Filing
- 2018-03-19 CN CN201880020434.4A patent/CN110461856B/en active Active
- 2018-03-19 JP JP2019507654A patent/JPWO2018173993A1/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01188501A (en) * | 1988-01-25 | 1989-07-27 | Bridgestone Corp | Method for manufacturing rubber composition |
JP2000159785A (en) * | 1998-11-27 | 2000-06-13 | Mitsubishi Materials Corp | Fluorine-substituted organometallic compound and its production |
JP2003313190A (en) * | 2002-04-19 | 2003-11-06 | Jsr Corp | Method for producing silanes |
US20030235933A1 (en) * | 2002-05-17 | 2003-12-25 | Rantala Juha T. | Hybrid organic -inorganic materials for waveguides, optical devices, and other applications |
JP2007538069A (en) * | 2004-05-20 | 2007-12-27 | ゼネラル・エレクトリック・カンパニイ | Method for producing haloorganoalkoxysilane |
JP2007314671A (en) * | 2006-05-26 | 2007-12-06 | Shin Etsu Chem Co Ltd | Method for producing silicone resin |
JP2008156482A (en) * | 2006-12-25 | 2008-07-10 | Kaneka Corp | Curable composition |
WO2010004948A1 (en) * | 2008-07-08 | 2010-01-14 | 株式会社カネカ | METHOD FOR PRODUCING α-HETERO-SUBSTITUTED ALKYLHALOHYDROSILANE AND USE THEREOF |
WO2011161916A1 (en) * | 2010-06-22 | 2011-12-29 | 株式会社カネカ | Method for producing alkoxy hydrosilane |
WO2012036109A1 (en) * | 2010-09-14 | 2012-03-22 | 株式会社カネカ | Curable composition |
CN104177621A (en) * | 2014-08-14 | 2014-12-03 | 中国科学院化学研究所 | Novel liquid polycarbosilane as well as preparation method and application thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024101404A1 (en) * | 2022-11-08 | 2024-05-16 | ダイキン工業株式会社 | Fluorine atom containing silane compound |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018173993A1 (en) | 2020-01-30 |
CN110461856A (en) | 2019-11-15 |
CN110461856B (en) | 2023-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018173993A1 (en) | Production method for alkoxyhydrosilane and production method for alkoxyhalosilane | |
US4035411A (en) | Organosilane compounds | |
JP3555646B2 (en) | Method for producing chlorosilane containing acryloxy group or methacryloxy group | |
JP5282526B2 (en) | Siloxy group-containing silyl (meth) acrylate compound having bulky substituent and method for producing the same | |
JP4435572B2 (en) | Method for producing phenylorganosilicon intermediate | |
JP2000344727A (en) | 4-tert-butoxy-4'-cyanobiphenyl and method for producing the same, and method for producing 4-hydroxy-4'-cyanobiphenyl | |
JP3288722B2 (en) | Method for obtaining organosilane using redistribution reaction | |
US20100056745A1 (en) | Method for producing organoalkoxydialkylsilane | |
JP4584588B2 (en) | Grignard production of unsaturated organic compounds | |
EP2586784B1 (en) | Method for producing alkoxy hydrosilane | |
WO2011161915A1 (en) | Method for producing alkoxy hydrosilane | |
EP3202756B1 (en) | Polyfluoroalkylallyl compound and method for producing same | |
US8927753B2 (en) | Method for preparing di-organo-dialkoxysilanes | |
JP3186820B2 (en) | Reactive polysiloxane and method for producing the same | |
EP0154867B1 (en) | 2-substituted-1,3-butadiene derivatives and process for producing same | |
JPH08311083A (en) | Production of silicon compound having steric hindrance | |
JP2718617B2 (en) | Method for producing polyorganosilane | |
JP3874073B2 (en) | Method for producing chlorosilane compound having texyl group | |
JP6020410B2 (en) | [3- (2-Norbornyl) -2-norbornyl] silane compound and method for producing the same | |
JPH107686A (en) | Production of organodisilane | |
CN119080820A (en) | Preparation method of dienyldichlorosilane | |
CN103154008A (en) | Solventless process to produce aromatic group-containing organosilanes | |
EP3202768A1 (en) | Fluorinated alkyl silane compound, and production method for same | |
JP2000264967A (en) | Method for producing polyorganosiloxane compound | |
JP2024161885A (en) | Method for producing one-end unsubstituted polythiophene and thiophene compound |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18770459 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019507654 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18770459 Country of ref document: EP Kind code of ref document: A1 |