WO2018173573A1 - Mobile mapping system and positioning terminal device - Google Patents
Mobile mapping system and positioning terminal device Download PDFInfo
- Publication number
- WO2018173573A1 WO2018173573A1 PCT/JP2018/005451 JP2018005451W WO2018173573A1 WO 2018173573 A1 WO2018173573 A1 WO 2018173573A1 JP 2018005451 W JP2018005451 W JP 2018005451W WO 2018173573 A1 WO2018173573 A1 WO 2018173573A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positioning
- reinforcement data
- data
- satellite
- terminal device
- Prior art date
Links
- 238000013507 mapping Methods 0.000 title claims abstract description 13
- 230000002787 reinforcement Effects 0.000 claims abstract description 77
- 238000005259 measurement Methods 0.000 claims abstract description 74
- 238000004891 communication Methods 0.000 claims abstract description 36
- 238000001514 detection method Methods 0.000 claims description 20
- 230000005540 biological transmission Effects 0.000 claims description 4
- 230000003416 augmentation Effects 0.000 claims 4
- 238000012937 correction Methods 0.000 abstract description 21
- 238000012805 post-processing Methods 0.000 description 17
- 238000004364 calculation method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 238000013500 data storage Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012951 Remeasurement Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000005433 ionosphere Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/43—Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/28—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/03—Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
- G01S19/07—Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
Definitions
- the present invention relates to a mobile mapping system and a positioning terminal device used in the mobile mapping system.
- Conventional MMS Mobile Mapping System
- a positioning position error prediction is performed based on a prediction that a positioning solution will be obtained (for example, Patent Document 1).
- the conventional MMS has the following problems because it is a prediction that a positioning solution will be obtained. (1) In order to improve the certainty, the stationary time is set longer in the MMS measurement vehicle equipped with the MMS. For example, the initial rest is 6 minutes, the intermediate rest is 2 minutes, and there may be unnecessary rest time. (2) Even if the stationary time is set longer, the reliability of the positioning position may be lacking.
- positioning reinforcement data is acquired in the post-processing step, and using this positioning reinforcement data and position information acquired by the MMS measurement vehicle, a positioning solution is calculated in the positioning calculation. May not be obtained. This is related to the electronic reference point and the ionosphere, and is unavoidable in the current system. If a positioning solution cannot be obtained in the positioning calculation, the expected position accuracy cannot be obtained and post-processing cannot be performed. In this case, remeasurement is performed using the MMS measuring vehicle, and a significant time loss occurs.
- the MMS measuring vehicle moves to a place where at least five satellites can be secured and is stationary for 2 minutes, thereby obtaining a fixed prediction state derived by error prediction.
- the “fix prediction state” refers to a state that can be considered as a fix state.
- the “fixed state” refers to a state where a positioning solution is obtained in the positioning calculation.
- MMS measurement includes procedures such as azimuth verification, initial rest, initialization travel, end travel, etc., and the following items must be implemented in conventional operation.
- the MMS measurement vehicle In order to obtain the fixed prediction state, the MMS measurement vehicle needs to be stationary for 2 minutes. (C) If the prediction error exceeds the specified value during measurement (if it is likely to exceed), the MMS measurement vehicle must move to a place where at least five satellites can be secured and remain stationary until a fixed prediction state is obtained I must. (D) Although error estimation is performed during measurement, it is only an estimation and not an accurate error. For this reason, the error after post-processing is larger than the estimation error, and remeasurement may have to be performed. (E) If the satellite captured by the MMS measurement vehicle during measurement does not match the satellite captured by the electronic reference point used during post-processing, The fixed state cannot be obtained from the post-processing result.
- the positioning reinforcement data is not used in the position detection. For this reason, in the measurement by the MMS measuring vehicle, it is impossible to present that the vehicle is actually in the fixed state, and it is possible to present only the fixed prediction state.
- An object of the present invention is to provide a system that can indicate that the vehicle is actually in a fixed state in an MMS measuring vehicle.
- the mobile mapping system of this invention is A mobile mapping system that includes a communication device, a display device, a positioning terminal device, and a measurement device, and is mounted on a vehicle.
- the communication device Receiving the positioning reinforcement data from the positioning reinforcement data transmitting device for transmitting the positioning reinforcement data;
- the positioning terminal device Obtaining the positioning reinforcement data from the communication device, receiving the positioning signal from a positioning satellite that transmits a positioning signal, detecting a position using at least the positioning signal, and detecting the positioning signal and the positioning reinforcement data. If it is in a fixed state where the position is detected, the fact that it is in the fixed state is displayed on the display device.
- the present invention it is possible to provide a system that can indicate that the vehicle is actually in a fixed state in the MMS measurement vehicle.
- it since it can be confirmed in the vehicle that the vehicle is actually in the fixed state, it is not necessary to wait for a time to obtain a positioning solution more than necessary, thereby improving the measurement efficiency.
- FIG. 3 is a diagram of the first embodiment and shows a configuration of a measurement system 1000.
- FIG. 3 is a diagram of the first embodiment, and shows a device mounted on the measurement vehicle 100.
- FIG. 3 is a diagram illustrating the hardware configuration of the positioning terminal device 200 according to the first embodiment.
- FIG. 3 is a flowchart of the operation of the measurement system 1000 in the first embodiment.
- FIG. 5 is a diagram illustrating the display mode of the Fix indicator 401 and the sky plot 402 on the display device 400 in the first embodiment.
- the figure of Embodiment 1 is a figure which shows typically the state which reflected fix state information in three-dimensional measurement data.
- the figure of Embodiment 1 is a figure which shows a modification.
- Embodiment 1 FIG. *** Explanation of configuration ***
- fix states are defined. As described in the background art, the “fixed state” refers to a state in which a positioning solution is obtained in the positioning calculation. In another definition, “fixed state” refers to a state in which the wave number of each signal is determined for a positioning satellite of a specified number or more.
- the measurement system 1000 according to the first embodiment will be described with reference to FIGS.
- the main features of the measurement system 1000 are as follows.
- MMS measurement vehicles do not use positioning reinforcement data for position detection. For this reason, the MMS measuring vehicle cannot present that it is actually in the fixed state, but can only present a prediction that it will be in the fixed state.
- the communication device 300 or the satellite signal receiving device 150 mounted on the vehicle receives the positioning reinforcement data, and the positioning terminal device 200 is positioned using the positioning reinforcement data. Is detected. Therefore, it is possible to display on the display device 400 that the MMS measuring vehicle is actually in the fixed state.
- various devices mounted on the MMS measurement vehicle communicate with the correction information center device 710 or the quasi-zenith satellite 602, thereby enhancing positioning within the MMS measurement vehicle.
- Data can be acquired and positioning solution calculation can be performed.
- a positioning solution as a result which is not a prediction is obtained. Therefore, as an effect, since the MMS measuring vehicle can start the next travel when the vehicle is in the fixed state, the stationary time is not unnecessarily wasted.
- FIG. 1 shows a measurement system 1000.
- the measurement system 1000 includes a measurement vehicle 100 equipped with an MMS, a correction information center 700, and a post-processing device 800.
- the measurement vehicle 100 is an MMS measurement vehicle.
- the measurement vehicle 100 includes a positioning terminal device 200, a communication device 300, and the like.
- the communication device 300 can communicate with the correction information center device 710 of the correction information center 700 via the Internet 900.
- the communication device 300 receives the positioning reinforcement data from the correction information center device 710 and outputs the positioning reinforcement data to the positioning terminal device 200.
- the correction information center 700 includes a correction information center device 710.
- the positioning terminal device 200 receives the positioning signal transmitted from the positioning satellite 601 and detects the position.
- the positioning terminal device 200 performs positioning by RTK (Real Time Kinetic).
- RTK Real Time Kinetic
- the RTK positioning result and the three-dimensional measurement data measured by the measurement vehicle 100 are post-processed by the post-processing operation unit 810 of the post-processing device 800, and the post-processing result is output as output data 820.
- FIG. 2 shows a device mounted on the measurement vehicle 100.
- the MMS mounted on the measurement vehicle 100 includes a measurement unit 110, an odometer 120, a positioning terminal device 200, a communication device 300, a display device 400, and a three-dimensional measurement data storage device 500 that stores measured three-dimensional measurement data.
- the measurement unit 110 includes cameras 111A to 111F, laser scanners 112A to 112D, GPS antennas 113A to 113C, and an IMU (navigation inertial device) 114.
- the mobile mapping system 101 includes a communication device 300, a display device 400, a positioning terminal device 200, a measurement unit 110 and an odometer 120 that are measurement devices.
- the mobile mapping system 101 is mounted on the measurement vehicle 100.
- FIG. 3 shows a hardware configuration of the positioning terminal device 200.
- the positioning terminal device 200 is a computer.
- the positioning terminal device 200 includes a processor 210, a main storage device 220, an auxiliary storage device 230, an input / output interface device 240, and a satellite signal receiving device 250 as hardware.
- the processor 210 is connected to other hardware via a signal line, and controls these other hardware.
- the processor 210 is an IC (Integrated Circuit) that performs arithmetic processing. Specific examples of the processor 210 include a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and a GPU (Graphics Processing Unit).
- a CPU Central Processing Unit
- DSP Digital Signal Processor
- GPU Graphics Processing Unit
- the main storage device 220 is a volatile storage device that can be read and written. Specific examples of the main storage device 220 are SRAM (Static Random Access Memory) and DRAM (Dynamic Random Access Memory).
- the auxiliary storage device 230 is a non-volatile storage device that can be read and written.
- the auxiliary storage device 230 stores a program and other data for realizing the function of the positioning terminal device 200.
- the auxiliary storage device 230 is a magnetic disk device (Hard Disk Drive).
- the auxiliary storage device 230 may be a storage device that uses a portable storage medium such as an optical disc, a compact disc, a Blu-ray (registered trademark) disc, or a DVD (Digital Versatile Disk).
- the input / output interface device 240 is an interface device for the processor 210 to communicate with the satellite signal receiving device 250, the communication device 300, the display device 400, and the three-dimensional measurement data storage device 500.
- the satellite signal receiving device 250 receives the positioning signal transmitted from the positioning satellite 601 and sends the positioning signal to the processor 210 via the input / output interface device 240.
- the positioning terminal device 200 includes a positioning reinforcement data acquisition unit 211, a positioning unit 212, a fix state detection unit 213, and a satellite determination unit 214 as functional elements.
- the functions of the positioning reinforcement data acquisition unit 211, the positioning unit 212, the fixed state detection unit 213, and the satellite determination unit 214 are realized by a program.
- the auxiliary storage device 230 stores programs that realize the functions of the positioning reinforcement data acquisition unit 211, the positioning unit 212, the fix state detection unit 213, and the satellite determination unit 214. This program is read and executed by the processor 210. Thereby, the functions of the positioning reinforcement data acquisition unit 211, the positioning unit 212, the fixed state detection unit 213, and the satellite determination unit 214 are realized.
- the programs for realizing the functions of the positioning reinforcement data acquisition unit 211, the positioning unit 212, the fix state detection unit 213, and the satellite determination unit 214 may be provided by being stored in a computer-readable recording medium or a program product. May be provided as
- the positioning terminal device 200 may include a plurality of processors that replace the processor 210.
- the plurality of processors share the execution of programs of the positioning reinforcement data acquisition unit 211, the positioning unit 212, the fix state detection unit 213, and the satellite determination unit 214.
- Each processor is an IC that performs arithmetic processing in the same manner as the processor 210. Note that the processor 210 and a plurality of processors replacing the processor 210 are also referred to as processing circuitry.
- FIG. 4 is a flowchart showing the operation of the measurement system 1000. The operation of the measurement system 1000 will be described with reference to FIG.
- step S11 the communication device 300 communicates with the correction information center device 710, and acquires the positioning reinforcement data of the electronic reference point i in real time.
- the positioning unit 212 receives a positioning signal from the positioning satellite 601 that transmits the positioning signal, and detects a position using at least the positioning signal.
- the communication apparatus 300 acquires the positioning reinforcement data
- first the approximate position calculated by the positioning unit 212 from the positioning signal transmitted from the positioning satellite 601 without using the positioning reinforcement data is acquired from the positioning terminal apparatus 200. And transmitted to the correction information center apparatus 710.
- the correction information center device 710 transmits positioning reinforcement data related to the electronic reference point i closer to the approximate position among the plurality of electronic reference points to the communication device 300.
- step S12 the communication device 300 outputs positioning reinforcement data to the positioning terminal device 200.
- step S13 the positioning reinforcement data acquisition unit 211 of the positioning terminal apparatus 200 acquires the positioning reinforcement data sent from the communication device 300.
- step S14 the positioning unit 212 performs positioning using the positioning reinforcement data and the positioning signal.
- step S15 the fix state detection unit 213 acquires a positioning solution that is an RTK positioning result calculated by the positioning unit 212 in real time.
- the fix state detection unit 213 performs the following (1) to (3).
- (1) Judge whether it is in a fixed state.
- (2) Display on the display device 400 whether it is in the fixed state.
- (3) Information indicating whether the state is fixed is reflected in the three-dimensional measurement data.
- the fix state detection unit 213 is mounted on the measurement vehicle 100 to indicate that it is in the fix state when the positioning unit 212 is in the fix state where the position is detected using the positioning reinforcement data and the positioning signal. Displayed on the display device 400.
- FIG. 5 shows a display mode of the Fix indicator 401 and the sky plot 402 of the display device 400.
- the fix state is displayed on the Fix indicator 401 of the display device 400.
- the fix state detection unit 213 reflects the fix state information indicating the fix state in the three-dimensional measurement data obtained by the measurement of the measurement device (measurement unit 110, odometer 120).
- the three-dimensional measurement data is stored in the three-dimensional measurement data storage device 500.
- FIG. 6 is a diagram schematically illustrating a state in which the fix state information is reflected in the three-dimensional measurement data.
- “Fix” and “NON-Fix” in FIG. 6 are the fix state information
- “Fix” indicates the fix state
- “NON-Fix” indicates the non-fix state. “Not in a fixed state” indicates that a positioning solution is not obtained.
- the satellite determination unit 214 analyzes the acquired positioning reinforcement data related to the electronic reference point i. Further, the satellite determination unit 214 determines the positioning satellite 601 captured by the electronic reference point i, and determines the positioning satellite 601 currently captured by the positioning terminal apparatus 200 based on the received positioning signal. To do. Then, the satellite determination unit 214 displays both positioning satellites 601 on the display device 400. As shown in FIG. 5, a sky plot 402 showing the positioning satellites being captured is displayed. As described above, the satellite determination unit 214 determines the positioning satellite 601 captured for generating the positioning reinforcement data from the positioning reinforcement data. The satellite determination unit 214 also determines the positioning satellite 601 captured for position detection from the positioning signal received by the positioning unit 212.
- the satellite determination unit 214 matches a positioning satellite 601 that does not coincide with a plurality of positioning satellites 601 related to position detection, among a plurality of positioning satellites 601 related to generation of positioning reinforcement data, with a positioning satellite 601 related to position detection. It is displayed in a manner different from that of the positioning satellite 601.
- black circles 403 indicate positioning satellites 601 related to position detection
- white circles 404 indicate positioning satellites 601 that do not match.
- the positioning reinforcement data acquisition unit 211 transmits the self-position calculated by the positioning unit 212 to the correction information center device 710 via the communication device 300 at regular intervals.
- the correction information center device 710 transmits the positioning reinforcement data of the electronic reference point i closest to the self position to the communication device 300.
- the communication device 300 is a device that receives positioning reinforcement data from the correction information center device 710 that is a positioning reinforcement data transmission device that transmits positioning reinforcement data, and is a device mounted on the measurement vehicle 100.
- the positioning reinforcement data acquisition unit 211 acquires the positioning reinforcement data via the communication device 300, and transmits the position measured by the positioning unit 212 to the correction information center device 710 via the communication device 300. Thereby, the positioning reinforcement data acquisition unit 211 acquires the positioning reinforcement data suitable for the transmitted position from the correction information center device 710 via the communication device 300.
- the three-dimensional measurement data 510 and the RTK positioning result 260 are sent to the post-processing device 800, processed by the post-processing computing unit 810, and the processing result is output as output data 820.
- the current MMS is a system based on post-processing of measurement data, and the final result cannot be obtained unless post-processing. Therefore, in the current MMS measurement based on the fix prediction state, the three-dimensional measurement is performed in a state where the required position accuracy is not obtained, and there are cases where the re-measurement is performed after post-processing.
- the positioning terminal device 200 and the communication device 300 are mounted on the MMS measurement vehicle 100, and the communication device 300 acquires the positioning reinforcement data from the correction information center device 710. For this reason, in the first embodiment, the positioning terminal device 200 can obtain the RTK positioning result in real time from the positioning reinforcement data and the positioning signal.
- the measurement vehicle 100 is in an actual fixed state. Therefore, it is possible to solve the problem that the fixed state cannot be obtained after the post-processing and the problem that it takes time such as two minutes of rest necessary for obtaining the fixed predicted state.
- FIG. 7 is a diagram showing a modification of the first embodiment.
- FIG. 7 shows a configuration in which positioning reinforcement data is distributed from the quasi-zenith satellite 602 with respect to FIG.
- FIG. 7 shows four positioning satellites 601 and one quasi-zenith satellite 602.
- the quasi-zenith satellite 602 transmits positioning reinforcement data and a positioning signal.
- the quasi-zenith satellite 602 is a positioning reinforcement data transmission device that transmits positioning reinforcement data.
- the difference from FIG. 1 is that the communication device 300 and the correction information center 700 are unnecessary in FIG.
- the quasi-zenith satellite 602 sequentially transmits positioning reinforcement data of each block obtained by dividing the Japan region into a plurality of blocks.
- the operation of this ⁇ modified example> is almost the same as that in FIG.
- step S11 is different and step S17 is not necessary. That is, the positioning terminal device 200 selects positioning reinforcement data close to the approximate position from among the positioning reinforcement data of each block transmitted from the quasi-zenith satellite 602 based on the approximate position. Therefore, step S17 becomes unnecessary.
- the satellite signal receiving device 250 receives positioning reinforcement data from the quasi-zenith satellite 602 in addition to the positioning signal, and sends it to the processor 210 via the input / output interface device 240.
- 100 measurement vehicle 110 measurement unit, 111A to 111F camera, 112A to 112D laser scanner, 113A to 111C GPS antenna, 114 IMU, 120 odometer, 200 positioning terminal device, 210 processor, 211 positioning reinforcement data acquisition unit, 212 positioning unit, 213 Fix state detection unit, 214 Satellite determination unit, 220 Main storage device, 230 Auxiliary storage device, 240 Input / output interface device, 250 Satellite signal reception device, 260 RTK positioning result, 300 communication device, 400 display device, 500 3D measurement Data storage device, 510 3D measurement data, 601 positioning satellite, 602 quasi-zenith satellite, 700 correction information center, 710 correction information center device, 800 post-processing device, 810 post-processing Calculation unit, 820 output data, 900 Internet, 1000 measurement system.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Automation & Control Theory (AREA)
- Navigation (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
Description
従来のMMSでは、測位解が得られているだろうという予測であるため、以下の課題があった。
(1)確実性の向上のために、MMSを搭載したMMS計測車両では、静止時間を長めに設定している。例えば、初期静止は6分、中間静止は2分としており、無用な静止時間があり得る。
(2)静止時間を長めに設定したとしても、測位位置の確実性に欠ける場合がある。つまり、従来では、後処理工程で測位補強データが取得され、この測位補強データとMMS計測車両で取得した位置情報とを用いて、測位演算において測位解が算出されるが、測位演算において測位解が得られない場合が発生する。これは電子基準点及び電離層にかかわるものであり、現状システムでは不可避である。測位演算において測位解が得られない場合、期待する位置精度が得られず、後処理が出来ない事態も発生する。この場合はMMS計測車両を用いての再測定となり、大幅な時間ロスが発生する。 Conventional MMS (Mobile Mapping System) does not acquire positioning reinforcement data based on electronic reference point data. For this reason, whether or not the positioning solution is obtained from the GPS receiver is determined by prediction from the number of effective satellites. In addition, a positioning position error prediction is performed based on a prediction that a positioning solution will be obtained (for example, Patent Document 1).
The conventional MMS has the following problems because it is a prediction that a positioning solution will be obtained.
(1) In order to improve the certainty, the stationary time is set longer in the MMS measurement vehicle equipped with the MMS. For example, the initial rest is 6 minutes, the intermediate rest is 2 minutes, and there may be unnecessary rest time.
(2) Even if the stationary time is set longer, the reliability of the positioning position may be lacking. In other words, conventionally, positioning reinforcement data is acquired in the post-processing step, and using this positioning reinforcement data and position information acquired by the MMS measurement vehicle, a positioning solution is calculated in the positioning calculation. May not be obtained. This is related to the electronic reference point and the ionosphere, and is unavoidable in the current system. If a positioning solution cannot be obtained in the positioning calculation, the expected position accuracy cannot be obtained and post-processing cannot be performed. In this case, remeasurement is performed using the MMS measuring vehicle, and a significant time loss occurs.
<現状のMMSの技術>
従来のMMS技術の場合は、MMS計測車両は衛星を最低5つ以上確保できる場所に移動し、2分間静止する事で、誤差予測にて導き出したフィックス予測状態を得る事ができる。
ここで、「フィックス予測状態」とは、フィックス状態と考えて良い状態をいう。
そして、「フィックス状態」とは、測位演算において、測位解が得られた状態をいう。
MMSの計測には、方位角検定、初期静止、初期化走行、終了走行等の手順が存在し、従来の運用では、以下の項目を実施しなければならない。
(a)衛星を5つ以上確保しづらい場所で計測している場合は、衛星を探す手間がかかる。
(b)フィックス予測状態を得るために、MMS計測車両は2分間の静止が必要となる。
(c)計測中に予測誤差が規定値を超えた場合(超えそうな場合)は、MMS計測車両は、衛星が5つ以上確保できる場所に移動し、フィックス予測状態が得られるまで静止しなければならない。
(d)計測中に誤差推定を行うが、あくまで推定であり正確な誤差ではない。この為、推定誤差より後処理後の誤差が大きく、再計測を実施しなければならない場合がある。
(e)計測中にMMS計測車両が捕捉している衛星と、後処理時に使用される電子基準点が捕捉していた衛星とが一致しない場合は、計測中はフィックス予測状態であっても、後処理結果ではフィックス状態を得られない。 More detailed description is as follows.
<Current MMS technology>
In the case of the conventional MMS technology, the MMS measuring vehicle moves to a place where at least five satellites can be secured and is stationary for 2 minutes, thereby obtaining a fixed prediction state derived by error prediction.
Here, the “fix prediction state” refers to a state that can be considered as a fix state.
The “fixed state” refers to a state where a positioning solution is obtained in the positioning calculation.
MMS measurement includes procedures such as azimuth verification, initial rest, initialization travel, end travel, etc., and the following items must be implemented in conventional operation.
(A) When measuring at a place where it is difficult to secure five or more satellites, it takes time to search for the satellite.
(B) In order to obtain the fixed prediction state, the MMS measurement vehicle needs to be stationary for 2 minutes.
(C) If the prediction error exceeds the specified value during measurement (if it is likely to exceed), the MMS measurement vehicle must move to a place where at least five satellites can be secured and remain stationary until a fixed prediction state is obtained I must.
(D) Although error estimation is performed during measurement, it is only an estimation and not an accurate error. For this reason, the error after post-processing is larger than the estimation error, and remeasurement may have to be performed.
(E) If the satellite captured by the MMS measurement vehicle during measurement does not match the satellite captured by the electronic reference point used during post-processing, The fixed state cannot be obtained from the post-processing result.
通信装置と、表示装置と、測位端末装置と、計測装置とを備え、車両に搭載されるモービルマッピングシステムであって、
前記通信装置は、
測位補強データを送信する測位補強データ送信装置から、前記測位補強データを受信し、
前記測位端末装置は、
前記通信装置から前記測位補強データを取得し、測位信号を送信する測位衛星から前記測位信号を受信し、少なくとも前記測位信号を用いて位置を検出するとともに、前記測位信号と前記測位補強データとを用いて前記位置を検出するフィックス状態にある場合、前記フィックス状態にあることを前記表示装置に表示する。 The mobile mapping system of this invention is
A mobile mapping system that includes a communication device, a display device, a positioning terminal device, and a measurement device, and is mounted on a vehicle.
The communication device
Receiving the positioning reinforcement data from the positioning reinforcement data transmitting device for transmitting the positioning reinforcement data;
The positioning terminal device
Obtaining the positioning reinforcement data from the communication device, receiving the positioning signal from a positioning satellite that transmits a positioning signal, detecting a position using at least the positioning signal, and detecting the positioning signal and the positioning reinforcement data. If it is in a fixed state where the position is detected, the fact that it is in the fixed state is displayed on the display device.
また、実際にフィックス状態にあることを車両内で確認できることにより、必要以上に測位解を得るために時間待ちをしなくても良くなり、計測の効率が向上する。また、実際にフィックス状態にあることを車両内で確認できることにより、結果的に測位解が得られなかったというような予測誤りが無くなるので、計測の失敗がなくなり、再計測などの二度手間を防ぐことができる。 According to the present invention, it is possible to provide a system that can indicate that the vehicle is actually in a fixed state in the MMS measurement vehicle.
In addition, since it can be confirmed in the vehicle that the vehicle is actually in the fixed state, it is not necessary to wait for a time to obtain a positioning solution more than necessary, thereby improving the measurement efficiency. In addition, since it can be confirmed in the vehicle that it is actually in the fixed state, there is no prediction error that the positioning solution could not be obtained as a result. Can be prevented.
***構成の説明***
*** Explanation of configuration ***
「フィックス状態」とは、背景技術でも述べたが、測位演算において、測位解が得られた状態をいう。別の定義をすれば、「フィックス状態」とは、規定数以上の測位衛星について、それぞれの信号の波数が決定している状態をいう。 First, fix states are defined.
As described in the background art, the “fixed state” refers to a state in which a positioning solution is obtained in the positioning calculation. In another definition, “fixed state” refers to a state in which the wave number of each signal is determined for a positioning satellite of a specified number or more.
なお、測位補強データ取得部211、測位部212、フィックス状態検出部213、衛星決定部214の機能を実現するプログラムは、コンピュータ読取可能な記録媒体に格納されて提供されてもよいし、プログラムプロダクトとして提供されてもよい。 The positioning
Note that the programs for realizing the functions of the positioning reinforcement
なお、プロセッサ210及びプロセッサ210を代替する複数のプロセッサは、プロセッシングサーキットリとも呼ばれる。 In FIG. 3, only one
Note that the
図4は、計測システム1000の動作を示すフローチャートである。図4を参照して計測システム1000の動作を説明する。 *** Explanation of operation ***
FIG. 4 is a flowchart showing the operation of the
並行してフィックス状態検出部213は、以下の(1)-(3)を行う。
(1)フィックス状態にあるかどうかを判断する。
(2)フィックス状態かどうかを表示装置400に表示する。
(3)フィックス状態かどうかを示す情報を3次元計測データに反映する。
上記(2)では、フィックス状態検出部213は、測位部212が測位補強データと測位信号とを用いて位置を検出したフィックス状態にある場合、フィックス状態にあることを、計測車両100に搭載された表示装置400に表示する。
図5は表示装置400のFixインジケータ401とスカイプロット402との表示態様を示している。図5のように、表示装置400のFixインジケータ401に、フィックス状態が表示される。
上記(3)では、フィックス状態検出部213は、計測装置(計測ユニット110、オドメータ120)の計測により得られた3次元計測データにフィックス状態を示すフィックス状態情報を反映する。3次元計測データは3次元計測データ記憶装置500に格納されている。
図6は、3次元計測データにフィックス状態情報を反映した状態を模式的に示す図である。図6の「Fix」及び「NON-Fix」がフィックス状態情報であり、「Fix」はフィックス状態であることを示し、「NON-Fix」はフィックス状態にないことを示す。
「フィックス状態にない」とは、測位解が得られていないことを示す。 In step S15, the fix
In parallel, the fix
(1) Judge whether it is in a fixed state.
(2) Display on the
(3) Information indicating whether the state is fixed is reflected in the three-dimensional measurement data.
In (2) above, the fix
FIG. 5 shows a display mode of the Fix indicator 401 and the sky plot 402 of the
In (3) above, the fix
FIG. 6 is a diagram schematically illustrating a state in which the fix state information is reflected in the three-dimensional measurement data. “Fix” and “NON-Fix” in FIG. 6 are the fix state information, “Fix” indicates the fix state, and “NON-Fix” indicates the non-fix state.
“Not in a fixed state” indicates that a positioning solution is not obtained.
また、衛星決定部214は、電子基準点iが捕捉している測位衛星601を決定し、かつ、現在、測位端末装置200が、受信している測位信号によって捕捉している測位衛星601を決定する。
そして、衛星決定部214は、両者の測位衛星601を表示装置400に表示する。図5のように、捕捉されている測位衛星を示すスカイプロット402が表示される。このように、衛星決定部214は、測位補強データから、測位補強データの生成のために捕捉された測位衛星601を決定する。また衛星決定部214は、測位部212が受信した測位信号から位置検出のために捕捉された測位衛星601を決定する。
衛星決定部214は、測位補強データの生成に関わる複数の測位衛星601のうち、位置の検出に関わる複数の測位衛星601と一致しない測位衛星601を、位置の検出に関わる測位衛星601と一致する測位衛星601と異なる態様で表示する。
図5では黒丸403が位置の検出に関わる測位衛星601を示し、白丸404が一致しない測位衛星601を示す。 In step S16, the
Further, the
Then, the
The
In FIG. 5,
現状のMMSは計測データの後処理を前提としたシステムであり、後処理後でないと最終結果が得られない。その為、フィックス予測状態をもとにした現状のMMSの計測では、必要な位置精度を得ていない状態で3次元計測を行ってしまい、後処理後に再計測となる場合があった。しかし、実施の形態1では、MMSの計測車両100に測位端末装置200及び通信装置300を搭載し、通信装置300が補正情報センター装置710から測位補強データを取得する。このため実施の形態1では、測位端末装置200は測位補強データと測位信号とからRTK測位結果をリアルタイムに取得する事が可能となる。よって、計測車両100において現実のフィックス状態にあるかどうかを提示することができる。これにより、後処理後にフィックス状態が得られない課題や、フィックス予測状態を得る為に必要な2分間静止等の手間がかかるという課題を解消できる。 *** Effects of
The current MMS is a system based on post-processing of measurement data, and the final result cannot be obtained unless post-processing. Therefore, in the current MMS measurement based on the fix prediction state, the three-dimensional measurement is performed in a state where the required position accuracy is not obtained, and there are cases where the re-measurement is performed after post-processing. However, in the first embodiment, the positioning
図7は実施の形態1の変形例を示す図である。図7は図1に対して、測位補強データを準天頂衛星602から配信する構成を示す。図7には4基の測位衛星601と1基の準天頂衛星602を示している。準天頂衛星602は測位補強データと測位信号を送信する。準天頂衛星602は、測位補強データを送信する測位補強データ送信装置である。図1との相違は、図7では、通信装置300及び補正情報センター700が不要であることである。準天頂衛星602は、日本領域を複数のブロックに分けた各ブロックの測位補強データを順番に送信する。この<変形例>の動作は図4とほぼ同様であるが、ステップS11が異なり、ステップS17は不要となる。つまり、測位端末装置200は、概略位置をもとに準天頂衛星602から送信される各ブロックの測位補強データのなかから、概略位置に近い測位補強データを選択する。よって、ステップS17は不要となる。なお、衛星信号受信装置250が、測位信号に加え準天頂衛星602から測位補強データを受信し、入出力インタフェース装置240を介してプロセッサ210に送る。 <Modification>
FIG. 7 is a diagram showing a modification of the first embodiment. FIG. 7 shows a configuration in which positioning reinforcement data is distributed from the quasi-zenith satellite 602 with respect to FIG. FIG. 7 shows four
Claims (6)
- 通信装置と、表示装置と、測位端末装置と、計測装置とを備え、車両に搭載されるモービルマッピングシステムであって、
前記通信装置は、
測位補強データを送信する測位補強データ送信装置から、前記測位補強データを受信し、
前記測位端末装置は、
前記通信装置から前記測位補強データを取得し、測位信号を送信する測位衛星から前記測位信号を受信し、少なくとも前記測位信号を用いて位置を検出するとともに、前記測位信号と前記測位補強データとを用いて前記位置を検出するフィックス状態にある場合、前記フィックス状態にあることを前記表示装置に表示する、
モービルマッピングシステム。 A mobile mapping system that includes a communication device, a display device, a positioning terminal device, and a measurement device, and is mounted on a vehicle.
The communication device
Receiving the positioning reinforcement data from the positioning reinforcement data transmitting device for transmitting the positioning reinforcement data;
The positioning terminal device
Obtaining the positioning reinforcement data from the communication device, receiving the positioning signal from a positioning satellite that transmits a positioning signal, detecting a position using at least the positioning signal, and detecting the positioning signal and the positioning reinforcement data. When using the fixed state to detect the position, to display the fixed state on the display device,
Mobile mapping system. - 前記測位端末装置は、
前記計測装置が計測した計測データに前記フィックス状態を示すフィックス状態情報を反映する請求項1に記載のモービルマッピングシステム。 The positioning terminal device
The mobile mapping system according to claim 1, wherein fix state information indicating the fix state is reflected in measurement data measured by the measurement device. - 車両に搭載されたモービルマッピングピングシステムの備える測位端末装置において、
測位補強データを取得する測位補強データ取得部と、
測位信号を送信する測位衛星から前記測位信号を受信し、少なくとも前記測位信号を用いて位置を検出する測位部と、
前記測位部が前記測位補強データと前記測位信号とを用いて前記位置を検出するフィックス状態にある場合、前記フィックス状態にあることを、前記車両に搭載された表示装置に表示するフィックス状態検出部と
を備える測位端末装置。 In a positioning terminal device provided in a mobile mapping ping system mounted on a vehicle,
A positioning reinforcement data acquisition unit for acquiring positioning reinforcement data;
A positioning unit that receives the positioning signal from a positioning satellite that transmits a positioning signal and detects a position using at least the positioning signal;
When the positioning unit is in a fixed state in which the position is detected using the positioning reinforcement data and the positioning signal, a fixed state detecting unit that displays the fixed state on a display device mounted on the vehicle A positioning terminal device comprising: - 前記測位端末装置は、さらに、
前記測位補強データから、前記測位補強データの生成のために捕捉された前記測位衛星を決定し、前記測位部が受信した前記測位信号から、前記位置の検出のために捕捉された前記測位衛星を決定し、前記測位補強データの生成に関わる前記測位衛星のうち前記位置の検出に関わる前記測位衛星と一致しない測位衛星を、前記位置の検出に関わる前記測位衛星と一致する前記測位衛星と異なる態様で前記表示装置に表示する請求項3に記載の測位端末装置。 The positioning terminal device further includes:
The positioning satellite captured for generating the positioning augmentation data is determined from the positioning augmentation data, and the positioning satellite captured for detection of the position is determined from the positioning signal received by the positioning unit. A positioning satellite that does not match the positioning satellite related to the position detection among the positioning satellites related to the generation of the positioning augmentation data that is determined is different from the positioning satellite that matches the positioning satellite related to the position detection. The positioning terminal device according to claim 3, which is displayed on the display device. - 前記測位補強データ取得部は、
前記測位補強データを送信する測位補強データ送信装置から前記測位補強データを受信する装置であって前記車両に搭載された装置である通信装置を介して前記測位補強データを取得するとともに、前記測位部が測位した前記位置を、前記通信装置を介して前記測位補強データ送信装置に送信することにより、送信した前記位置に適合する前記測位補強データを、前記測位補強データ送信装置から前記通信装置を介して取得する請求項3または請求項4に記載の測位端末装置。 The positioning reinforcement data acquisition unit
The positioning reinforcement data is transmitted from the positioning reinforcement data transmitting device that transmits the positioning reinforcement data, and the positioning reinforcement data is acquired via a communication device that is a device mounted on the vehicle, and the positioning unit The positioning augmentation data that matches the transmitted position is transmitted from the positioning reinforcement data transmission device via the communication device by transmitting the position measured by the positioning reinforcement data transmission device via the communication device. The positioning terminal device according to claim 3 or claim 4, which is acquired by: - 前記測位補強データ取得部は、
前記測位補強データを送信する準天頂衛星から前記測位補強データを受信する装置であって、前記車両に搭載された装置である通信装置を介して前記測位補強データを取得する請求項3または請求項4に記載の測位端末装置。 The positioning reinforcement data acquisition unit
The apparatus for receiving the positioning reinforcement data from a quasi-zenith satellite that transmits the positioning reinforcement data, wherein the positioning reinforcement data is acquired via a communication device that is an apparatus mounted on the vehicle. 4. The positioning terminal device according to 4.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019507443A JPWO2018173573A1 (en) | 2017-03-23 | 2018-02-16 | Mobile mapping system and positioning terminal device |
KR1020197027055A KR20190116442A (en) | 2017-03-23 | 2018-02-16 | Mobile mapping system and positioning terminal device |
TW107109041A TWI664393B (en) | 2017-03-23 | 2018-03-16 | Mobile mapping system and positioning terminal device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-058000 | 2017-03-23 | ||
JP2017058000 | 2017-03-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018173573A1 true WO2018173573A1 (en) | 2018-09-27 |
Family
ID=63585207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/005451 WO2018173573A1 (en) | 2017-03-23 | 2018-02-16 | Mobile mapping system and positioning terminal device |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPWO2018173573A1 (en) |
KR (1) | KR20190116442A (en) |
TW (1) | TWI664393B (en) |
WO (1) | WO2018173573A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021071288A (en) * | 2019-10-29 | 2021-05-06 | 大林道路株式会社 | Three-dimensional measurement system |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03295411A (en) * | 1990-04-13 | 1991-12-26 | Pioneer Electron Corp | Satellite display system in on-vehicle navigation device |
JPH06314060A (en) * | 1993-04-28 | 1994-11-08 | Nec Home Electron Ltd | Navigation device |
JP2004125580A (en) * | 2002-10-02 | 2004-04-22 | Hitachi Constr Mach Co Ltd | Position measuring system of working machine |
JP2006200933A (en) * | 2005-01-18 | 2006-08-03 | Mitsubishi Electric Corp | Positioning device, positioning server device and positioning system |
JP2007147341A (en) * | 2005-11-24 | 2007-06-14 | Topcon Corp | 3D data creation method and 3D data creation apparatus |
JP2009257802A (en) * | 2008-04-14 | 2009-11-05 | Mitsubishi Electric Corp | Data transmitter, data transmission method, data transmission program, positioning device, positioning method, and positioning program |
US20100090890A1 (en) * | 2007-05-18 | 2010-04-15 | Lauri Wirola | Positioning using a reference station |
US9103671B1 (en) * | 2007-11-29 | 2015-08-11 | American Vehicular Sciences, LLC | Mapping techniques using probe vehicles |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5477458A (en) * | 1994-01-03 | 1995-12-19 | Trimble Navigation Limited | Network for carrier phase differential GPS corrections |
JP2002071782A (en) * | 2000-08-31 | 2002-03-12 | Hitachi Ltd | Information terminal with positioning function |
US7013226B2 (en) * | 2003-10-14 | 2006-03-14 | Intel Corporation | Reflectometer with echo canceller |
JP5116572B2 (en) | 2008-06-17 | 2013-01-09 | 三菱電機株式会社 | Accuracy prediction apparatus, accuracy prediction method, and accuracy prediction program |
-
2018
- 2018-02-16 JP JP2019507443A patent/JPWO2018173573A1/en active Pending
- 2018-02-16 WO PCT/JP2018/005451 patent/WO2018173573A1/en active Application Filing
- 2018-02-16 KR KR1020197027055A patent/KR20190116442A/en not_active Ceased
- 2018-03-16 TW TW107109041A patent/TWI664393B/en not_active IP Right Cessation
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03295411A (en) * | 1990-04-13 | 1991-12-26 | Pioneer Electron Corp | Satellite display system in on-vehicle navigation device |
JPH06314060A (en) * | 1993-04-28 | 1994-11-08 | Nec Home Electron Ltd | Navigation device |
JP2004125580A (en) * | 2002-10-02 | 2004-04-22 | Hitachi Constr Mach Co Ltd | Position measuring system of working machine |
JP2006200933A (en) * | 2005-01-18 | 2006-08-03 | Mitsubishi Electric Corp | Positioning device, positioning server device and positioning system |
JP2007147341A (en) * | 2005-11-24 | 2007-06-14 | Topcon Corp | 3D data creation method and 3D data creation apparatus |
US20100090890A1 (en) * | 2007-05-18 | 2010-04-15 | Lauri Wirola | Positioning using a reference station |
US9103671B1 (en) * | 2007-11-29 | 2015-08-11 | American Vehicular Sciences, LLC | Mapping techniques using probe vehicles |
JP2009257802A (en) * | 2008-04-14 | 2009-11-05 | Mitsubishi Electric Corp | Data transmitter, data transmission method, data transmission program, positioning device, positioning method, and positioning program |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021071288A (en) * | 2019-10-29 | 2021-05-06 | 大林道路株式会社 | Three-dimensional measurement system |
JP7219201B2 (en) | 2019-10-29 | 2023-02-07 | 大林道路株式会社 | 3D measurement system |
Also Published As
Publication number | Publication date |
---|---|
TW201835530A (en) | 2018-10-01 |
TWI664393B (en) | 2019-07-01 |
JPWO2018173573A1 (en) | 2019-06-27 |
KR20190116442A (en) | 2019-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111801596B (en) | Method and apparatus for determining calibration information for a vehicle antenna | |
JP5270184B2 (en) | Satellite navigation / dead reckoning integrated positioning system | |
JP4781313B2 (en) | Multipath detection device, positioning device, posture orientation determination device, multipath detection method, and multipath detection program | |
KR20160139065A (en) | Techniques for affecting a wireless signal-based positioning capability of a mobile device based on one or more onboard sensors | |
JP2015025804A (en) | Method and receiver for determining system time of navigation system | |
US11209555B2 (en) | Positioning method and apparatus for mobile terminal, and mobile terminal | |
US20190101653A1 (en) | Global navigation satellite system, navigation terminal, navigation method and program | |
US10852442B2 (en) | Reception control device | |
US8384593B2 (en) | Synchronized measurement sampling in a navigation device | |
JP6597843B2 (en) | Reception control apparatus, reception control method, and program | |
JP6929492B2 (en) | Locator device and its accuracy evaluation system and positioning method | |
JP6075377B2 (en) | COMMUNICATION DEVICE, COMMUNICATION SYSTEM, COMMUNICATION METHOD, AND PROGRAM | |
WO2018173573A1 (en) | Mobile mapping system and positioning terminal device | |
EP2656097B1 (en) | Method and apparatus for estimating satellite positioning reliability | |
JP5600882B2 (en) | GPS receiver carrier phase measurement quality monitoring apparatus, method and program | |
US20210240196A1 (en) | Positioning apparatus, recording medium, and positioning method | |
KR101364047B1 (en) | Method for estimating location based on object recognition using kalman filter | |
CN110678781A (en) | Positioning method and positioning terminal | |
JP2018146545A (en) | Composite positioning device, composite positioning method, and composite positioning program | |
CN114829981B (en) | Method and device for identifying group delay changes of a navigation sensor of a navigation system of a vehicle, and navigation sensor having such a device | |
CN114236584B (en) | Positioning method, system, electronic device, storage medium and program product | |
JP2025057545A (en) | Positioning device and recording medium | |
JP2014126539A (en) | Gnss(global navigation satellite system) receiver and positioning position calculation method | |
JP2005337791A (en) | TERMINAL DEVICE, TERMINAL DEVICE CONTROL METHOD, TERMINAL DEVICE CONTROL PROGRAM, AND COMPUTER-READABLE RECORDING MEDIUM CONTAINING TERMINAL DEVICE CONTROL PROGRAM |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18771115 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019507443 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20197027055 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18771115 Country of ref document: EP Kind code of ref document: A1 |