+

WO2018173573A1 - Mobile mapping system and positioning terminal device - Google Patents

Mobile mapping system and positioning terminal device Download PDF

Info

Publication number
WO2018173573A1
WO2018173573A1 PCT/JP2018/005451 JP2018005451W WO2018173573A1 WO 2018173573 A1 WO2018173573 A1 WO 2018173573A1 JP 2018005451 W JP2018005451 W JP 2018005451W WO 2018173573 A1 WO2018173573 A1 WO 2018173573A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
reinforcement data
data
satellite
terminal device
Prior art date
Application number
PCT/JP2018/005451
Other languages
French (fr)
Japanese (ja)
Inventor
吉田 光伸
隼人 山口
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019507443A priority Critical patent/JPWO2018173573A1/en
Priority to KR1020197027055A priority patent/KR20190116442A/en
Priority to TW107109041A priority patent/TWI664393B/en
Publication of WO2018173573A1 publication Critical patent/WO2018173573A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections

Definitions

  • the present invention relates to a mobile mapping system and a positioning terminal device used in the mobile mapping system.
  • Conventional MMS Mobile Mapping System
  • a positioning position error prediction is performed based on a prediction that a positioning solution will be obtained (for example, Patent Document 1).
  • the conventional MMS has the following problems because it is a prediction that a positioning solution will be obtained. (1) In order to improve the certainty, the stationary time is set longer in the MMS measurement vehicle equipped with the MMS. For example, the initial rest is 6 minutes, the intermediate rest is 2 minutes, and there may be unnecessary rest time. (2) Even if the stationary time is set longer, the reliability of the positioning position may be lacking.
  • positioning reinforcement data is acquired in the post-processing step, and using this positioning reinforcement data and position information acquired by the MMS measurement vehicle, a positioning solution is calculated in the positioning calculation. May not be obtained. This is related to the electronic reference point and the ionosphere, and is unavoidable in the current system. If a positioning solution cannot be obtained in the positioning calculation, the expected position accuracy cannot be obtained and post-processing cannot be performed. In this case, remeasurement is performed using the MMS measuring vehicle, and a significant time loss occurs.
  • the MMS measuring vehicle moves to a place where at least five satellites can be secured and is stationary for 2 minutes, thereby obtaining a fixed prediction state derived by error prediction.
  • the “fix prediction state” refers to a state that can be considered as a fix state.
  • the “fixed state” refers to a state where a positioning solution is obtained in the positioning calculation.
  • MMS measurement includes procedures such as azimuth verification, initial rest, initialization travel, end travel, etc., and the following items must be implemented in conventional operation.
  • the MMS measurement vehicle In order to obtain the fixed prediction state, the MMS measurement vehicle needs to be stationary for 2 minutes. (C) If the prediction error exceeds the specified value during measurement (if it is likely to exceed), the MMS measurement vehicle must move to a place where at least five satellites can be secured and remain stationary until a fixed prediction state is obtained I must. (D) Although error estimation is performed during measurement, it is only an estimation and not an accurate error. For this reason, the error after post-processing is larger than the estimation error, and remeasurement may have to be performed. (E) If the satellite captured by the MMS measurement vehicle during measurement does not match the satellite captured by the electronic reference point used during post-processing, The fixed state cannot be obtained from the post-processing result.
  • the positioning reinforcement data is not used in the position detection. For this reason, in the measurement by the MMS measuring vehicle, it is impossible to present that the vehicle is actually in the fixed state, and it is possible to present only the fixed prediction state.
  • An object of the present invention is to provide a system that can indicate that the vehicle is actually in a fixed state in an MMS measuring vehicle.
  • the mobile mapping system of this invention is A mobile mapping system that includes a communication device, a display device, a positioning terminal device, and a measurement device, and is mounted on a vehicle.
  • the communication device Receiving the positioning reinforcement data from the positioning reinforcement data transmitting device for transmitting the positioning reinforcement data;
  • the positioning terminal device Obtaining the positioning reinforcement data from the communication device, receiving the positioning signal from a positioning satellite that transmits a positioning signal, detecting a position using at least the positioning signal, and detecting the positioning signal and the positioning reinforcement data. If it is in a fixed state where the position is detected, the fact that it is in the fixed state is displayed on the display device.
  • the present invention it is possible to provide a system that can indicate that the vehicle is actually in a fixed state in the MMS measurement vehicle.
  • it since it can be confirmed in the vehicle that the vehicle is actually in the fixed state, it is not necessary to wait for a time to obtain a positioning solution more than necessary, thereby improving the measurement efficiency.
  • FIG. 3 is a diagram of the first embodiment and shows a configuration of a measurement system 1000.
  • FIG. 3 is a diagram of the first embodiment, and shows a device mounted on the measurement vehicle 100.
  • FIG. 3 is a diagram illustrating the hardware configuration of the positioning terminal device 200 according to the first embodiment.
  • FIG. 3 is a flowchart of the operation of the measurement system 1000 in the first embodiment.
  • FIG. 5 is a diagram illustrating the display mode of the Fix indicator 401 and the sky plot 402 on the display device 400 in the first embodiment.
  • the figure of Embodiment 1 is a figure which shows typically the state which reflected fix state information in three-dimensional measurement data.
  • the figure of Embodiment 1 is a figure which shows a modification.
  • Embodiment 1 FIG. *** Explanation of configuration ***
  • fix states are defined. As described in the background art, the “fixed state” refers to a state in which a positioning solution is obtained in the positioning calculation. In another definition, “fixed state” refers to a state in which the wave number of each signal is determined for a positioning satellite of a specified number or more.
  • the measurement system 1000 according to the first embodiment will be described with reference to FIGS.
  • the main features of the measurement system 1000 are as follows.
  • MMS measurement vehicles do not use positioning reinforcement data for position detection. For this reason, the MMS measuring vehicle cannot present that it is actually in the fixed state, but can only present a prediction that it will be in the fixed state.
  • the communication device 300 or the satellite signal receiving device 150 mounted on the vehicle receives the positioning reinforcement data, and the positioning terminal device 200 is positioned using the positioning reinforcement data. Is detected. Therefore, it is possible to display on the display device 400 that the MMS measuring vehicle is actually in the fixed state.
  • various devices mounted on the MMS measurement vehicle communicate with the correction information center device 710 or the quasi-zenith satellite 602, thereby enhancing positioning within the MMS measurement vehicle.
  • Data can be acquired and positioning solution calculation can be performed.
  • a positioning solution as a result which is not a prediction is obtained. Therefore, as an effect, since the MMS measuring vehicle can start the next travel when the vehicle is in the fixed state, the stationary time is not unnecessarily wasted.
  • FIG. 1 shows a measurement system 1000.
  • the measurement system 1000 includes a measurement vehicle 100 equipped with an MMS, a correction information center 700, and a post-processing device 800.
  • the measurement vehicle 100 is an MMS measurement vehicle.
  • the measurement vehicle 100 includes a positioning terminal device 200, a communication device 300, and the like.
  • the communication device 300 can communicate with the correction information center device 710 of the correction information center 700 via the Internet 900.
  • the communication device 300 receives the positioning reinforcement data from the correction information center device 710 and outputs the positioning reinforcement data to the positioning terminal device 200.
  • the correction information center 700 includes a correction information center device 710.
  • the positioning terminal device 200 receives the positioning signal transmitted from the positioning satellite 601 and detects the position.
  • the positioning terminal device 200 performs positioning by RTK (Real Time Kinetic).
  • RTK Real Time Kinetic
  • the RTK positioning result and the three-dimensional measurement data measured by the measurement vehicle 100 are post-processed by the post-processing operation unit 810 of the post-processing device 800, and the post-processing result is output as output data 820.
  • FIG. 2 shows a device mounted on the measurement vehicle 100.
  • the MMS mounted on the measurement vehicle 100 includes a measurement unit 110, an odometer 120, a positioning terminal device 200, a communication device 300, a display device 400, and a three-dimensional measurement data storage device 500 that stores measured three-dimensional measurement data.
  • the measurement unit 110 includes cameras 111A to 111F, laser scanners 112A to 112D, GPS antennas 113A to 113C, and an IMU (navigation inertial device) 114.
  • the mobile mapping system 101 includes a communication device 300, a display device 400, a positioning terminal device 200, a measurement unit 110 and an odometer 120 that are measurement devices.
  • the mobile mapping system 101 is mounted on the measurement vehicle 100.
  • FIG. 3 shows a hardware configuration of the positioning terminal device 200.
  • the positioning terminal device 200 is a computer.
  • the positioning terminal device 200 includes a processor 210, a main storage device 220, an auxiliary storage device 230, an input / output interface device 240, and a satellite signal receiving device 250 as hardware.
  • the processor 210 is connected to other hardware via a signal line, and controls these other hardware.
  • the processor 210 is an IC (Integrated Circuit) that performs arithmetic processing. Specific examples of the processor 210 include a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and a GPU (Graphics Processing Unit).
  • a CPU Central Processing Unit
  • DSP Digital Signal Processor
  • GPU Graphics Processing Unit
  • the main storage device 220 is a volatile storage device that can be read and written. Specific examples of the main storage device 220 are SRAM (Static Random Access Memory) and DRAM (Dynamic Random Access Memory).
  • the auxiliary storage device 230 is a non-volatile storage device that can be read and written.
  • the auxiliary storage device 230 stores a program and other data for realizing the function of the positioning terminal device 200.
  • the auxiliary storage device 230 is a magnetic disk device (Hard Disk Drive).
  • the auxiliary storage device 230 may be a storage device that uses a portable storage medium such as an optical disc, a compact disc, a Blu-ray (registered trademark) disc, or a DVD (Digital Versatile Disk).
  • the input / output interface device 240 is an interface device for the processor 210 to communicate with the satellite signal receiving device 250, the communication device 300, the display device 400, and the three-dimensional measurement data storage device 500.
  • the satellite signal receiving device 250 receives the positioning signal transmitted from the positioning satellite 601 and sends the positioning signal to the processor 210 via the input / output interface device 240.
  • the positioning terminal device 200 includes a positioning reinforcement data acquisition unit 211, a positioning unit 212, a fix state detection unit 213, and a satellite determination unit 214 as functional elements.
  • the functions of the positioning reinforcement data acquisition unit 211, the positioning unit 212, the fixed state detection unit 213, and the satellite determination unit 214 are realized by a program.
  • the auxiliary storage device 230 stores programs that realize the functions of the positioning reinforcement data acquisition unit 211, the positioning unit 212, the fix state detection unit 213, and the satellite determination unit 214. This program is read and executed by the processor 210. Thereby, the functions of the positioning reinforcement data acquisition unit 211, the positioning unit 212, the fixed state detection unit 213, and the satellite determination unit 214 are realized.
  • the programs for realizing the functions of the positioning reinforcement data acquisition unit 211, the positioning unit 212, the fix state detection unit 213, and the satellite determination unit 214 may be provided by being stored in a computer-readable recording medium or a program product. May be provided as
  • the positioning terminal device 200 may include a plurality of processors that replace the processor 210.
  • the plurality of processors share the execution of programs of the positioning reinforcement data acquisition unit 211, the positioning unit 212, the fix state detection unit 213, and the satellite determination unit 214.
  • Each processor is an IC that performs arithmetic processing in the same manner as the processor 210. Note that the processor 210 and a plurality of processors replacing the processor 210 are also referred to as processing circuitry.
  • FIG. 4 is a flowchart showing the operation of the measurement system 1000. The operation of the measurement system 1000 will be described with reference to FIG.
  • step S11 the communication device 300 communicates with the correction information center device 710, and acquires the positioning reinforcement data of the electronic reference point i in real time.
  • the positioning unit 212 receives a positioning signal from the positioning satellite 601 that transmits the positioning signal, and detects a position using at least the positioning signal.
  • the communication apparatus 300 acquires the positioning reinforcement data
  • first the approximate position calculated by the positioning unit 212 from the positioning signal transmitted from the positioning satellite 601 without using the positioning reinforcement data is acquired from the positioning terminal apparatus 200. And transmitted to the correction information center apparatus 710.
  • the correction information center device 710 transmits positioning reinforcement data related to the electronic reference point i closer to the approximate position among the plurality of electronic reference points to the communication device 300.
  • step S12 the communication device 300 outputs positioning reinforcement data to the positioning terminal device 200.
  • step S13 the positioning reinforcement data acquisition unit 211 of the positioning terminal apparatus 200 acquires the positioning reinforcement data sent from the communication device 300.
  • step S14 the positioning unit 212 performs positioning using the positioning reinforcement data and the positioning signal.
  • step S15 the fix state detection unit 213 acquires a positioning solution that is an RTK positioning result calculated by the positioning unit 212 in real time.
  • the fix state detection unit 213 performs the following (1) to (3).
  • (1) Judge whether it is in a fixed state.
  • (2) Display on the display device 400 whether it is in the fixed state.
  • (3) Information indicating whether the state is fixed is reflected in the three-dimensional measurement data.
  • the fix state detection unit 213 is mounted on the measurement vehicle 100 to indicate that it is in the fix state when the positioning unit 212 is in the fix state where the position is detected using the positioning reinforcement data and the positioning signal. Displayed on the display device 400.
  • FIG. 5 shows a display mode of the Fix indicator 401 and the sky plot 402 of the display device 400.
  • the fix state is displayed on the Fix indicator 401 of the display device 400.
  • the fix state detection unit 213 reflects the fix state information indicating the fix state in the three-dimensional measurement data obtained by the measurement of the measurement device (measurement unit 110, odometer 120).
  • the three-dimensional measurement data is stored in the three-dimensional measurement data storage device 500.
  • FIG. 6 is a diagram schematically illustrating a state in which the fix state information is reflected in the three-dimensional measurement data.
  • “Fix” and “NON-Fix” in FIG. 6 are the fix state information
  • “Fix” indicates the fix state
  • “NON-Fix” indicates the non-fix state. “Not in a fixed state” indicates that a positioning solution is not obtained.
  • the satellite determination unit 214 analyzes the acquired positioning reinforcement data related to the electronic reference point i. Further, the satellite determination unit 214 determines the positioning satellite 601 captured by the electronic reference point i, and determines the positioning satellite 601 currently captured by the positioning terminal apparatus 200 based on the received positioning signal. To do. Then, the satellite determination unit 214 displays both positioning satellites 601 on the display device 400. As shown in FIG. 5, a sky plot 402 showing the positioning satellites being captured is displayed. As described above, the satellite determination unit 214 determines the positioning satellite 601 captured for generating the positioning reinforcement data from the positioning reinforcement data. The satellite determination unit 214 also determines the positioning satellite 601 captured for position detection from the positioning signal received by the positioning unit 212.
  • the satellite determination unit 214 matches a positioning satellite 601 that does not coincide with a plurality of positioning satellites 601 related to position detection, among a plurality of positioning satellites 601 related to generation of positioning reinforcement data, with a positioning satellite 601 related to position detection. It is displayed in a manner different from that of the positioning satellite 601.
  • black circles 403 indicate positioning satellites 601 related to position detection
  • white circles 404 indicate positioning satellites 601 that do not match.
  • the positioning reinforcement data acquisition unit 211 transmits the self-position calculated by the positioning unit 212 to the correction information center device 710 via the communication device 300 at regular intervals.
  • the correction information center device 710 transmits the positioning reinforcement data of the electronic reference point i closest to the self position to the communication device 300.
  • the communication device 300 is a device that receives positioning reinforcement data from the correction information center device 710 that is a positioning reinforcement data transmission device that transmits positioning reinforcement data, and is a device mounted on the measurement vehicle 100.
  • the positioning reinforcement data acquisition unit 211 acquires the positioning reinforcement data via the communication device 300, and transmits the position measured by the positioning unit 212 to the correction information center device 710 via the communication device 300. Thereby, the positioning reinforcement data acquisition unit 211 acquires the positioning reinforcement data suitable for the transmitted position from the correction information center device 710 via the communication device 300.
  • the three-dimensional measurement data 510 and the RTK positioning result 260 are sent to the post-processing device 800, processed by the post-processing computing unit 810, and the processing result is output as output data 820.
  • the current MMS is a system based on post-processing of measurement data, and the final result cannot be obtained unless post-processing. Therefore, in the current MMS measurement based on the fix prediction state, the three-dimensional measurement is performed in a state where the required position accuracy is not obtained, and there are cases where the re-measurement is performed after post-processing.
  • the positioning terminal device 200 and the communication device 300 are mounted on the MMS measurement vehicle 100, and the communication device 300 acquires the positioning reinforcement data from the correction information center device 710. For this reason, in the first embodiment, the positioning terminal device 200 can obtain the RTK positioning result in real time from the positioning reinforcement data and the positioning signal.
  • the measurement vehicle 100 is in an actual fixed state. Therefore, it is possible to solve the problem that the fixed state cannot be obtained after the post-processing and the problem that it takes time such as two minutes of rest necessary for obtaining the fixed predicted state.
  • FIG. 7 is a diagram showing a modification of the first embodiment.
  • FIG. 7 shows a configuration in which positioning reinforcement data is distributed from the quasi-zenith satellite 602 with respect to FIG.
  • FIG. 7 shows four positioning satellites 601 and one quasi-zenith satellite 602.
  • the quasi-zenith satellite 602 transmits positioning reinforcement data and a positioning signal.
  • the quasi-zenith satellite 602 is a positioning reinforcement data transmission device that transmits positioning reinforcement data.
  • the difference from FIG. 1 is that the communication device 300 and the correction information center 700 are unnecessary in FIG.
  • the quasi-zenith satellite 602 sequentially transmits positioning reinforcement data of each block obtained by dividing the Japan region into a plurality of blocks.
  • the operation of this ⁇ modified example> is almost the same as that in FIG.
  • step S11 is different and step S17 is not necessary. That is, the positioning terminal device 200 selects positioning reinforcement data close to the approximate position from among the positioning reinforcement data of each block transmitted from the quasi-zenith satellite 602 based on the approximate position. Therefore, step S17 becomes unnecessary.
  • the satellite signal receiving device 250 receives positioning reinforcement data from the quasi-zenith satellite 602 in addition to the positioning signal, and sends it to the processor 210 via the input / output interface device 240.
  • 100 measurement vehicle 110 measurement unit, 111A to 111F camera, 112A to 112D laser scanner, 113A to 111C GPS antenna, 114 IMU, 120 odometer, 200 positioning terminal device, 210 processor, 211 positioning reinforcement data acquisition unit, 212 positioning unit, 213 Fix state detection unit, 214 Satellite determination unit, 220 Main storage device, 230 Auxiliary storage device, 240 Input / output interface device, 250 Satellite signal reception device, 260 RTK positioning result, 300 communication device, 400 display device, 500 3D measurement Data storage device, 510 3D measurement data, 601 positioning satellite, 602 quasi-zenith satellite, 700 correction information center, 710 correction information center device, 800 post-processing device, 810 post-processing Calculation unit, 820 output data, 900 Internet, 1000 measurement system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Automation & Control Theory (AREA)
  • Navigation (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

This mobile mapping system (101) is installed in a measurement vehicle (100) and is provided with a positioning terminal device (200), a communication device (300), a display device (400), and a measurement unit (110) and odometer (120) composing a measurement device. The communication device (300) receives positioning reinforcement data from a correction information center device (710) for transmitting positioning reinforcement data. The positioning terminal device (200) acquires the positioning reinforcement data from the communication device (300), receives a positioning signal from a positioning satellite (601), and detects the position using at least the positioning signal. Further, when the positioning terminal device (200) is in a fixed state in which the position is detected using the positioning signal and the positioning reinforcement data, an indication thereof is displayed on the display device (400).

Description

モービルマッピングシステム及び測位端末装置Mobile mapping system and positioning terminal device
 この発明は、モービルマッピングシステム及び、モービルマッピングシステムで使用される測位端末装置に関する。 The present invention relates to a mobile mapping system and a positioning terminal device used in the mobile mapping system.
 従来のMMS(Mobile Mapping System)では、電子基準点データに基づく測位補強データを取得していない。このため、GPS受信装置から測位解が得られているかどうかは有効衛星数からの予測で行っている。また、測位解が得られているだろう予測に基づいて測位位置の誤差予測を実施している(例えば、特許文献1)。
 従来のMMSでは、測位解が得られているだろうという予測であるため、以下の課題があった。
(1)確実性の向上のために、MMSを搭載したMMS計測車両では、静止時間を長めに設定している。例えば、初期静止は6分、中間静止は2分としており、無用な静止時間があり得る。
(2)静止時間を長めに設定したとしても、測位位置の確実性に欠ける場合がある。つまり、従来では、後処理工程で測位補強データが取得され、この測位補強データとMMS計測車両で取得した位置情報とを用いて、測位演算において測位解が算出されるが、測位演算において測位解が得られない場合が発生する。これは電子基準点及び電離層にかかわるものであり、現状システムでは不可避である。測位演算において測位解が得られない場合、期待する位置精度が得られず、後処理が出来ない事態も発生する。この場合はMMS計測車両を用いての再測定となり、大幅な時間ロスが発生する。
Conventional MMS (Mobile Mapping System) does not acquire positioning reinforcement data based on electronic reference point data. For this reason, whether or not the positioning solution is obtained from the GPS receiver is determined by prediction from the number of effective satellites. In addition, a positioning position error prediction is performed based on a prediction that a positioning solution will be obtained (for example, Patent Document 1).
The conventional MMS has the following problems because it is a prediction that a positioning solution will be obtained.
(1) In order to improve the certainty, the stationary time is set longer in the MMS measurement vehicle equipped with the MMS. For example, the initial rest is 6 minutes, the intermediate rest is 2 minutes, and there may be unnecessary rest time.
(2) Even if the stationary time is set longer, the reliability of the positioning position may be lacking. In other words, conventionally, positioning reinforcement data is acquired in the post-processing step, and using this positioning reinforcement data and position information acquired by the MMS measurement vehicle, a positioning solution is calculated in the positioning calculation. May not be obtained. This is related to the electronic reference point and the ionosphere, and is unavoidable in the current system. If a positioning solution cannot be obtained in the positioning calculation, the expected position accuracy cannot be obtained and post-processing cannot be performed. In this case, remeasurement is performed using the MMS measuring vehicle, and a significant time loss occurs.
 さらに詳しく説明すれば以下のようである。
<現状のMMSの技術>
 従来のMMS技術の場合は、MMS計測車両は衛星を最低5つ以上確保できる場所に移動し、2分間静止する事で、誤差予測にて導き出したフィックス予測状態を得る事ができる。
ここで、「フィックス予測状態」とは、フィックス状態と考えて良い状態をいう。
そして、「フィックス状態」とは、測位演算において、測位解が得られた状態をいう。
MMSの計測には、方位角検定、初期静止、初期化走行、終了走行等の手順が存在し、従来の運用では、以下の項目を実施しなければならない。
(a)衛星を5つ以上確保しづらい場所で計測している場合は、衛星を探す手間がかかる。
(b)フィックス予測状態を得るために、MMS計測車両は2分間の静止が必要となる。
(c)計測中に予測誤差が規定値を超えた場合(超えそうな場合)は、MMS計測車両は、衛星が5つ以上確保できる場所に移動し、フィックス予測状態が得られるまで静止しなければならない。
(d)計測中に誤差推定を行うが、あくまで推定であり正確な誤差ではない。この為、推定誤差より後処理後の誤差が大きく、再計測を実施しなければならない場合がある。
(e)計測中にMMS計測車両が捕捉している衛星と、後処理時に使用される電子基準点が捕捉していた衛星とが一致しない場合は、計測中はフィックス予測状態であっても、後処理結果ではフィックス状態を得られない。
More detailed description is as follows.
<Current MMS technology>
In the case of the conventional MMS technology, the MMS measuring vehicle moves to a place where at least five satellites can be secured and is stationary for 2 minutes, thereby obtaining a fixed prediction state derived by error prediction.
Here, the “fix prediction state” refers to a state that can be considered as a fix state.
The “fixed state” refers to a state where a positioning solution is obtained in the positioning calculation.
MMS measurement includes procedures such as azimuth verification, initial rest, initialization travel, end travel, etc., and the following items must be implemented in conventional operation.
(A) When measuring at a place where it is difficult to secure five or more satellites, it takes time to search for the satellite.
(B) In order to obtain the fixed prediction state, the MMS measurement vehicle needs to be stationary for 2 minutes.
(C) If the prediction error exceeds the specified value during measurement (if it is likely to exceed), the MMS measurement vehicle must move to a place where at least five satellites can be secured and remain stationary until a fixed prediction state is obtained I must.
(D) Although error estimation is performed during measurement, it is only an estimation and not an accurate error. For this reason, the error after post-processing is larger than the estimation error, and remeasurement may have to be performed.
(E) If the satellite captured by the MMS measurement vehicle during measurement does not match the satellite captured by the electronic reference point used during post-processing, The fixed state cannot be obtained from the post-processing result.
 つまり、MMS計測車両による従来の計測では、位置検出においては測位補強データを使用していない。このため、MMS計測車両による計測では、現実にフィックス状態にあることを提示することはできず、単に、フィックス予測状態しか提示できなかった。 That is, in the conventional measurement by the MMS measurement vehicle, the positioning reinforcement data is not used in the position detection. For this reason, in the measurement by the MMS measuring vehicle, it is impossible to present that the vehicle is actually in the fixed state, and it is possible to present only the fixed prediction state.
特開2009-300355号公報JP 2009-300355 A
 この発明は、MMS計測車両の車中で、実際にフィックス状態であることを示すことのできるシステムの提供を目的とする。 An object of the present invention is to provide a system that can indicate that the vehicle is actually in a fixed state in an MMS measuring vehicle.
 この発明のモービルマッピングシステムは、
 通信装置と、表示装置と、測位端末装置と、計測装置とを備え、車両に搭載されるモービルマッピングシステムであって、
 前記通信装置は、
 測位補強データを送信する測位補強データ送信装置から、前記測位補強データを受信し、
 前記測位端末装置は、
 前記通信装置から前記測位補強データを取得し、測位信号を送信する測位衛星から前記測位信号を受信し、少なくとも前記測位信号を用いて位置を検出するとともに、前記測位信号と前記測位補強データとを用いて前記位置を検出するフィックス状態にある場合、前記フィックス状態にあることを前記表示装置に表示する。
The mobile mapping system of this invention is
A mobile mapping system that includes a communication device, a display device, a positioning terminal device, and a measurement device, and is mounted on a vehicle.
The communication device
Receiving the positioning reinforcement data from the positioning reinforcement data transmitting device for transmitting the positioning reinforcement data;
The positioning terminal device
Obtaining the positioning reinforcement data from the communication device, receiving the positioning signal from a positioning satellite that transmits a positioning signal, detecting a position using at least the positioning signal, and detecting the positioning signal and the positioning reinforcement data. If it is in a fixed state where the position is detected, the fact that it is in the fixed state is displayed on the display device.
 この発明により、MMS計測車両において、実際にフィックス状態にあることを示すことのできるシステムを提供できる。
 また、実際にフィックス状態にあることを車両内で確認できることにより、必要以上に測位解を得るために時間待ちをしなくても良くなり、計測の効率が向上する。また、実際にフィックス状態にあることを車両内で確認できることにより、結果的に測位解が得られなかったというような予測誤りが無くなるので、計測の失敗がなくなり、再計測などの二度手間を防ぐことができる。
According to the present invention, it is possible to provide a system that can indicate that the vehicle is actually in a fixed state in the MMS measurement vehicle.
In addition, since it can be confirmed in the vehicle that the vehicle is actually in the fixed state, it is not necessary to wait for a time to obtain a positioning solution more than necessary, thereby improving the measurement efficiency. In addition, since it can be confirmed in the vehicle that it is actually in the fixed state, there is no prediction error that the positioning solution could not be obtained as a result. Can be prevented.
実施の形態1の図で、計測システム1000の構成を示す図。FIG. 3 is a diagram of the first embodiment and shows a configuration of a measurement system 1000. 実施の形態1の図で、計測車両100に搭載される装置を示す図。FIG. 3 is a diagram of the first embodiment, and shows a device mounted on the measurement vehicle 100. 実施の形態1の図で、測位端末装置200のハードウェア構成を示す図。FIG. 3 is a diagram illustrating the hardware configuration of the positioning terminal device 200 according to the first embodiment. 実施の形態1の図で、計測システム1000の動作を示すフローチャート。FIG. 3 is a flowchart of the operation of the measurement system 1000 in the first embodiment. 実施の形態1の図で、表示装置400でのFixインジケータ401とスカイプロット402との表示態様を示す図。FIG. 5 is a diagram illustrating the display mode of the Fix indicator 401 and the sky plot 402 on the display device 400 in the first embodiment. 実施の形態1の図で、3次元計測データにフィックス状態情報を反映した状態を模式的に示す図。The figure of Embodiment 1 is a figure which shows typically the state which reflected fix state information in three-dimensional measurement data. 実施の形態1の図で、変形例を示す図。The figure of Embodiment 1 is a figure which shows a modification.
 以下、本発明の実施の形態について、図を用いて説明する。なお、各図中、同一または相当する部分には、同一符号を付している。実施の形態の説明において、同一または相当する部分については、説明を適宜省略または簡略化する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals. In the description of the embodiments, the description of the same or corresponding parts will be omitted or simplified as appropriate.
 実施の形態1.
***構成の説明***
Embodiment 1 FIG.
*** Explanation of configuration ***
 まず、フィックス状態を定義しておく。
「フィックス状態」とは、背景技術でも述べたが、測位演算において、測位解が得られた状態をいう。別の定義をすれば、「フィックス状態」とは、規定数以上の測位衛星について、それぞれの信号の波数が決定している状態をいう。
First, fix states are defined.
As described in the background art, the “fixed state” refers to a state in which a positioning solution is obtained in the positioning calculation. In another definition, “fixed state” refers to a state in which the wave number of each signal is determined for a positioning satellite of a specified number or more.
 図1~図7を参照して実施の形態1の計測システム1000を説明する。計測システム1000の主な特徴は、以下のようである。従来ではMMS計測車両は位置の検出においては測位補強データを使用していない。このため、MMS計測車両では現実にフィックス状態にあることを提示することはできず、単にフィックス状態にあるであろうという予測しか提示できなかった。これに対して、本実施の形態の計測システム1000では、車両に搭載された、通信装置300あるいは衛星信号受信装置150が測位補強データを受信し、測位端末装置200が測位補強データを用いて位置を検出する。従って、MMS計測車両において、現実にフィックス状態にあることを表示装置400に表示できる。つまり、計測システム1000では、後述のように、MMS計測車両に搭載された各種の装置は、補正情報センター装置710あるいは準天頂衛星602と通信を行う事により、MMS計測車両の中で、測位補強データを取得し、測位解演算を実施できる。これにより予測ではない、結果としての測位解が得られる。そのため、効果として、フィックス状態になった時点でMMS計測車両は次の走行を開始できるので、不要に静止時間を無駄にすることが無くなる。 The measurement system 1000 according to the first embodiment will be described with reference to FIGS. The main features of the measurement system 1000 are as follows. Conventionally, MMS measurement vehicles do not use positioning reinforcement data for position detection. For this reason, the MMS measuring vehicle cannot present that it is actually in the fixed state, but can only present a prediction that it will be in the fixed state. On the other hand, in the measurement system 1000 according to the present embodiment, the communication device 300 or the satellite signal receiving device 150 mounted on the vehicle receives the positioning reinforcement data, and the positioning terminal device 200 is positioned using the positioning reinforcement data. Is detected. Therefore, it is possible to display on the display device 400 that the MMS measuring vehicle is actually in the fixed state. In other words, in the measurement system 1000, as will be described later, various devices mounted on the MMS measurement vehicle communicate with the correction information center device 710 or the quasi-zenith satellite 602, thereby enhancing positioning within the MMS measurement vehicle. Data can be acquired and positioning solution calculation can be performed. As a result, a positioning solution as a result which is not a prediction is obtained. Therefore, as an effect, since the MMS measuring vehicle can start the next travel when the vehicle is in the fixed state, the stationary time is not unnecessarily wasted.
 図1は計測システム1000を示す。計測システム1000は、MMSを搭載した計測車両100、補正情報センター700、後処理装置800を備えている。計測車両100はMMS計測車両である。計測車両100は、測位端末装置200と通信装置300等を備えている。通信装置300はインターネット900を介して補正情報センター700の補正情報センター装置710と通信可能である。通信装置300は補正情報センター装置710から測位補強データを受信し、測位端末装置200へ測位補強データを出力する。補正情報センター700は補正情報センター装置710を備えている。 FIG. 1 shows a measurement system 1000. The measurement system 1000 includes a measurement vehicle 100 equipped with an MMS, a correction information center 700, and a post-processing device 800. The measurement vehicle 100 is an MMS measurement vehicle. The measurement vehicle 100 includes a positioning terminal device 200, a communication device 300, and the like. The communication device 300 can communicate with the correction information center device 710 of the correction information center 700 via the Internet 900. The communication device 300 receives the positioning reinforcement data from the correction information center device 710 and outputs the positioning reinforcement data to the positioning terminal device 200. The correction information center 700 includes a correction information center device 710.
 測位端末装置200は、測位衛星601の送信する測位信号を受信して、位置を検出する。本実施の形態では測位補強データが使用可能な場合、測位端末装置200はRTK(Real Time Kinematic)による測位を行う。計測車両100で計測されたRTK測位結果と3次元計測データとは、後処理装置800の後処理演算部810で後処理され、後処理の結果が、出力データ820として出力される。 The positioning terminal device 200 receives the positioning signal transmitted from the positioning satellite 601 and detects the position. In this embodiment, when the positioning reinforcement data is usable, the positioning terminal device 200 performs positioning by RTK (Real Time Kinetic). The RTK positioning result and the three-dimensional measurement data measured by the measurement vehicle 100 are post-processed by the post-processing operation unit 810 of the post-processing device 800, and the post-processing result is output as output data 820.
 図2は、計測車両100に搭載される装置を示す。計測車両100に搭載されるMMSは、計測ユニット110、オドメータ120、測位端末装置200、通信装置300、表示装置400、計測された3次元計測データを格納する3次元計測データ記憶装置500を備える。計測ユニット110は、カメラ111A~111F、レーザスキャナ112A~112D、GPSアンテナ113A~113C、IMU(航法慣性装置)114を備える。モービルマッピングシステム101は、通信装置300と、表示装置400と、測位端末装置200と、計測装置である計測ユニット110及びオドメータ120とを備える。モービルマッピングシステム101は、計測車両100に搭載される。 FIG. 2 shows a device mounted on the measurement vehicle 100. The MMS mounted on the measurement vehicle 100 includes a measurement unit 110, an odometer 120, a positioning terminal device 200, a communication device 300, a display device 400, and a three-dimensional measurement data storage device 500 that stores measured three-dimensional measurement data. The measurement unit 110 includes cameras 111A to 111F, laser scanners 112A to 112D, GPS antennas 113A to 113C, and an IMU (navigation inertial device) 114. The mobile mapping system 101 includes a communication device 300, a display device 400, a positioning terminal device 200, a measurement unit 110 and an odometer 120 that are measurement devices. The mobile mapping system 101 is mounted on the measurement vehicle 100.
 図3は、測位端末装置200のハードウェア構成を示している。測位端末装置200はコンピュータである。測位端末装置200はハードウェアとして、プロセッサ210、主記憶装置220、補助記憶装置230、入出力インタフェース装置240及び衛星信号受信装置250を備えている。プロセッサ210は、信号線を介して他のハードウェアと接続され、これら他のハードウェアを制御する。 FIG. 3 shows a hardware configuration of the positioning terminal device 200. The positioning terminal device 200 is a computer. The positioning terminal device 200 includes a processor 210, a main storage device 220, an auxiliary storage device 230, an input / output interface device 240, and a satellite signal receiving device 250 as hardware. The processor 210 is connected to other hardware via a signal line, and controls these other hardware.
 プロセッサ210は、演算処理を行うIC(Integrated Circuit)である。プロセッサ210は、具体例としては、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、GPU(Graphics Processing Unit)である。 The processor 210 is an IC (Integrated Circuit) that performs arithmetic processing. Specific examples of the processor 210 include a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and a GPU (Graphics Processing Unit).
 主記憶装置220は、読み書きが可能な揮発性の記憶装置である。主記憶装置220の具体例としては、SRAM(Static Random Access Memory)、DRAM(Dynamic Random Access Memory)である。 The main storage device 220 is a volatile storage device that can be read and written. Specific examples of the main storage device 220 are SRAM (Static Random Access Memory) and DRAM (Dynamic Random Access Memory).
 補助記憶装置230は、読み書きが可能な不揮発性の記憶装置である。補助記憶装置230には、測位端末装置200の機能を実現するためのプログラムや他のデータが記憶される。補助記憶装置230は、具体例としては、磁気ディスク装置(Hard Disk Drive)である。また、補助記憶装置230は、光ディスク、コンパクトディスク、ブルーレイ(登録商標)ディスク、DVD(Digital Versatile Disk)といった可搬記憶媒体を使用する記憶装置であってもよい。 The auxiliary storage device 230 is a non-volatile storage device that can be read and written. The auxiliary storage device 230 stores a program and other data for realizing the function of the positioning terminal device 200. As a specific example, the auxiliary storage device 230 is a magnetic disk device (Hard Disk Drive). Further, the auxiliary storage device 230 may be a storage device that uses a portable storage medium such as an optical disc, a compact disc, a Blu-ray (registered trademark) disc, or a DVD (Digital Versatile Disk).
 入出力インタフェース装置240は、プロセッサ210が衛星信号受信装置250、通信装置300、表示装置400及び3次元計測データ記憶装置500と通信するためのインタフェース装置である。 The input / output interface device 240 is an interface device for the processor 210 to communicate with the satellite signal receiving device 250, the communication device 300, the display device 400, and the three-dimensional measurement data storage device 500.
 衛星信号受信装置250は、測位衛星601の送信する測位信号を受信し、入出力インタフェース装置240を介して測位信号をプロセッサ210に送る。 The satellite signal receiving device 250 receives the positioning signal transmitted from the positioning satellite 601 and sends the positioning signal to the processor 210 via the input / output interface device 240.
 測位端末装置200は、機能要素として、測位補強データ取得部211、測位部212、フィックス状態検出部213、衛星決定部214を備える。測位補強データ取得部211、測位部212、フィックス状態検出部213、衛星決定部214の機能は、プログラムにより実現される。補助記憶装置230には、測位補強データ取得部211、測位部212、フィックス状態検出部213、衛星決定部214の機能を実現するプログラムが記憶されている。このプログラムは、プロセッサ210により読み込まれ実行される。これにより、測位補強データ取得部211、測位部212、フィックス状態検出部213、衛星決定部214の機能が実現される。
 なお、測位補強データ取得部211、測位部212、フィックス状態検出部213、衛星決定部214の機能を実現するプログラムは、コンピュータ読取可能な記録媒体に格納されて提供されてもよいし、プログラムプロダクトとして提供されてもよい。
The positioning terminal device 200 includes a positioning reinforcement data acquisition unit 211, a positioning unit 212, a fix state detection unit 213, and a satellite determination unit 214 as functional elements. The functions of the positioning reinforcement data acquisition unit 211, the positioning unit 212, the fixed state detection unit 213, and the satellite determination unit 214 are realized by a program. The auxiliary storage device 230 stores programs that realize the functions of the positioning reinforcement data acquisition unit 211, the positioning unit 212, the fix state detection unit 213, and the satellite determination unit 214. This program is read and executed by the processor 210. Thereby, the functions of the positioning reinforcement data acquisition unit 211, the positioning unit 212, the fixed state detection unit 213, and the satellite determination unit 214 are realized.
Note that the programs for realizing the functions of the positioning reinforcement data acquisition unit 211, the positioning unit 212, the fix state detection unit 213, and the satellite determination unit 214 may be provided by being stored in a computer-readable recording medium or a program product. May be provided as
 図3では、プロセッサ210は、1つだけ示されている。しかし、測位端末装置200は、プロセッサ210を代替する複数のプロセッサを備えていてもよい。これら複数のプロセッサは、測位補強データ取得部211、測位部212、フィックス状態検出部213、衛星決定部214のプログラムの実行を分担する。それぞれのプロセッサは、プロセッサ210と同じように、演算処理を行うICである。
 なお、プロセッサ210及びプロセッサ210を代替する複数のプロセッサは、プロセッシングサーキットリとも呼ばれる。
In FIG. 3, only one processor 210 is shown. However, the positioning terminal device 200 may include a plurality of processors that replace the processor 210. The plurality of processors share the execution of programs of the positioning reinforcement data acquisition unit 211, the positioning unit 212, the fix state detection unit 213, and the satellite determination unit 214. Each processor is an IC that performs arithmetic processing in the same manner as the processor 210.
Note that the processor 210 and a plurality of processors replacing the processor 210 are also referred to as processing circuitry.
***動作の説明***
 図4は、計測システム1000の動作を示すフローチャートである。図4を参照して計測システム1000の動作を説明する。
*** Explanation of operation ***
FIG. 4 is a flowchart showing the operation of the measurement system 1000. The operation of the measurement system 1000 will be described with reference to FIG.
 ステップS11において、通信装置300は、補正情報センター装置710と通信を行い、リアルタイムに電子基準点iの測位補強データを取得する。なお、測位部212は、測位信号を送信する測位衛星601から測位信号を受信し、少なくとも測位信号を用いて位置を検出する。この場合、通信装置300は測位補強データを取得するに際し、まず、測位補強データを使用することなく測位衛星601の送信する測位信号から測位部212が計算した概略位置を、測位端末装置200から取得し、補正情報センター装置710に送信する。補正情報センター装置710は、複数の電子基準点の中で概略位置により近い電子基準点iに関する測位補強データを、通信装置300に送信する。 In step S11, the communication device 300 communicates with the correction information center device 710, and acquires the positioning reinforcement data of the electronic reference point i in real time. The positioning unit 212 receives a positioning signal from the positioning satellite 601 that transmits the positioning signal, and detects a position using at least the positioning signal. In this case, when the communication apparatus 300 acquires the positioning reinforcement data, first, the approximate position calculated by the positioning unit 212 from the positioning signal transmitted from the positioning satellite 601 without using the positioning reinforcement data is acquired from the positioning terminal apparatus 200. And transmitted to the correction information center apparatus 710. The correction information center device 710 transmits positioning reinforcement data related to the electronic reference point i closer to the approximate position among the plurality of electronic reference points to the communication device 300.
 ステップS12において、通信装置300は測位補強データを測位端末装置200へ出力する。 In step S12, the communication device 300 outputs positioning reinforcement data to the positioning terminal device 200.
 ステップS13において、測位端末装置200の測位補強データ取得部211が、通信装置300から送られた測位補強データを取得する。 In step S13, the positioning reinforcement data acquisition unit 211 of the positioning terminal apparatus 200 acquires the positioning reinforcement data sent from the communication device 300.
 ステップS14において、測位部212が、測位補強データ及び測位信号を用いて測位を実施する。 In step S14, the positioning unit 212 performs positioning using the positioning reinforcement data and the positioning signal.
 ステップS15において、フィックス状態検出部213は、測位部212で計算されたRTK測位結果である測位解をリアルタイムに取得する。
並行してフィックス状態検出部213は、以下の(1)-(3)を行う。
(1)フィックス状態にあるかどうかを判断する。
(2)フィックス状態かどうかを表示装置400に表示する。
(3)フィックス状態かどうかを示す情報を3次元計測データに反映する。
上記(2)では、フィックス状態検出部213は、測位部212が測位補強データと測位信号とを用いて位置を検出したフィックス状態にある場合、フィックス状態にあることを、計測車両100に搭載された表示装置400に表示する。
 図5は表示装置400のFixインジケータ401とスカイプロット402との表示態様を示している。図5のように、表示装置400のFixインジケータ401に、フィックス状態が表示される。
 上記(3)では、フィックス状態検出部213は、計測装置(計測ユニット110、オドメータ120)の計測により得られた3次元計測データにフィックス状態を示すフィックス状態情報を反映する。3次元計測データは3次元計測データ記憶装置500に格納されている。
 図6は、3次元計測データにフィックス状態情報を反映した状態を模式的に示す図である。図6の「Fix」及び「NON-Fix」がフィックス状態情報であり、「Fix」はフィックス状態であることを示し、「NON-Fix」はフィックス状態にないことを示す。
「フィックス状態にない」とは、測位解が得られていないことを示す。
In step S15, the fix state detection unit 213 acquires a positioning solution that is an RTK positioning result calculated by the positioning unit 212 in real time.
In parallel, the fix state detection unit 213 performs the following (1) to (3).
(1) Judge whether it is in a fixed state.
(2) Display on the display device 400 whether it is in the fixed state.
(3) Information indicating whether the state is fixed is reflected in the three-dimensional measurement data.
In (2) above, the fix state detection unit 213 is mounted on the measurement vehicle 100 to indicate that it is in the fix state when the positioning unit 212 is in the fix state where the position is detected using the positioning reinforcement data and the positioning signal. Displayed on the display device 400.
FIG. 5 shows a display mode of the Fix indicator 401 and the sky plot 402 of the display device 400. As shown in FIG. 5, the fix state is displayed on the Fix indicator 401 of the display device 400.
In (3) above, the fix state detection unit 213 reflects the fix state information indicating the fix state in the three-dimensional measurement data obtained by the measurement of the measurement device (measurement unit 110, odometer 120). The three-dimensional measurement data is stored in the three-dimensional measurement data storage device 500.
FIG. 6 is a diagram schematically illustrating a state in which the fix state information is reflected in the three-dimensional measurement data. “Fix” and “NON-Fix” in FIG. 6 are the fix state information, “Fix” indicates the fix state, and “NON-Fix” indicates the non-fix state.
“Not in a fixed state” indicates that a positioning solution is not obtained.
 ステップS16において、衛星決定部214は、取得した、電子基準点iに関する測位補強データを解析する。
また、衛星決定部214は、電子基準点iが捕捉している測位衛星601を決定し、かつ、現在、測位端末装置200が、受信している測位信号によって捕捉している測位衛星601を決定する。
そして、衛星決定部214は、両者の測位衛星601を表示装置400に表示する。図5のように、捕捉されている測位衛星を示すスカイプロット402が表示される。このように、衛星決定部214は、測位補強データから、測位補強データの生成のために捕捉された測位衛星601を決定する。また衛星決定部214は、測位部212が受信した測位信号から位置検出のために捕捉された測位衛星601を決定する。
 衛星決定部214は、測位補強データの生成に関わる複数の測位衛星601のうち、位置の検出に関わる複数の測位衛星601と一致しない測位衛星601を、位置の検出に関わる測位衛星601と一致する測位衛星601と異なる態様で表示する。
 図5では黒丸403が位置の検出に関わる測位衛星601を示し、白丸404が一致しない測位衛星601を示す。
In step S16, the satellite determination unit 214 analyzes the acquired positioning reinforcement data related to the electronic reference point i.
Further, the satellite determination unit 214 determines the positioning satellite 601 captured by the electronic reference point i, and determines the positioning satellite 601 currently captured by the positioning terminal apparatus 200 based on the received positioning signal. To do.
Then, the satellite determination unit 214 displays both positioning satellites 601 on the display device 400. As shown in FIG. 5, a sky plot 402 showing the positioning satellites being captured is displayed. As described above, the satellite determination unit 214 determines the positioning satellite 601 captured for generating the positioning reinforcement data from the positioning reinforcement data. The satellite determination unit 214 also determines the positioning satellite 601 captured for position detection from the positioning signal received by the positioning unit 212.
The satellite determination unit 214 matches a positioning satellite 601 that does not coincide with a plurality of positioning satellites 601 related to position detection, among a plurality of positioning satellites 601 related to generation of positioning reinforcement data, with a positioning satellite 601 related to position detection. It is displayed in a manner different from that of the positioning satellite 601.
In FIG. 5, black circles 403 indicate positioning satellites 601 related to position detection, and white circles 404 indicate positioning satellites 601 that do not match.
 ステップS17において、測位補強データ取得部211は、一定間隔で、補正情報センター装置710に、測位部212が計算した自己位置を通信装置300を介して送信する。補正情報センター装置710は、自己位置に一番近い場所の電子基準点iの測位補強データを通信装置300に送信する。通信装置300は、測位補強データを送信する測位補強データ送信装置である補正情報センター装置710から測位補強データを受信する装置であって、計測車両100に搭載された装置である。測位補強データ取得部211は、通信装置300を介して測位補強データを取得するとともに、測位部212が測位した位置を、通信装置300を介して補正情報センター装置710に送信する。これにより測位補強データ取得部211は、送信した位置に適合する測位補強データを、補正情報センター装置710から通信装置300を介して取得する。 In step S17, the positioning reinforcement data acquisition unit 211 transmits the self-position calculated by the positioning unit 212 to the correction information center device 710 via the communication device 300 at regular intervals. The correction information center device 710 transmits the positioning reinforcement data of the electronic reference point i closest to the self position to the communication device 300. The communication device 300 is a device that receives positioning reinforcement data from the correction information center device 710 that is a positioning reinforcement data transmission device that transmits positioning reinforcement data, and is a device mounted on the measurement vehicle 100. The positioning reinforcement data acquisition unit 211 acquires the positioning reinforcement data via the communication device 300, and transmits the position measured by the positioning unit 212 to the correction information center device 710 via the communication device 300. Thereby, the positioning reinforcement data acquisition unit 211 acquires the positioning reinforcement data suitable for the transmitted position from the correction information center device 710 via the communication device 300.
 図4による処理が終了した場合、3次元計測データ510とRTK測位結果260とは後処理装置800に送られ、後処理演算部810で処理され、この処理結果が出力データ820として出力される。 4 is completed, the three-dimensional measurement data 510 and the RTK positioning result 260 are sent to the post-processing device 800, processed by the post-processing computing unit 810, and the processing result is output as output data 820.
***実施の形態1の効果***
 現状のMMSは計測データの後処理を前提としたシステムであり、後処理後でないと最終結果が得られない。その為、フィックス予測状態をもとにした現状のMMSの計測では、必要な位置精度を得ていない状態で3次元計測を行ってしまい、後処理後に再計測となる場合があった。しかし、実施の形態1では、MMSの計測車両100に測位端末装置200及び通信装置300を搭載し、通信装置300が補正情報センター装置710から測位補強データを取得する。このため実施の形態1では、測位端末装置200は測位補強データと測位信号とからRTK測位結果をリアルタイムに取得する事が可能となる。よって、計測車両100において現実のフィックス状態にあるかどうかを提示することができる。これにより、後処理後にフィックス状態が得られない課題や、フィックス予測状態を得る為に必要な2分間静止等の手間がかかるという課題を解消できる。
*** Effects of Embodiment 1 ***
The current MMS is a system based on post-processing of measurement data, and the final result cannot be obtained unless post-processing. Therefore, in the current MMS measurement based on the fix prediction state, the three-dimensional measurement is performed in a state where the required position accuracy is not obtained, and there are cases where the re-measurement is performed after post-processing. However, in the first embodiment, the positioning terminal device 200 and the communication device 300 are mounted on the MMS measurement vehicle 100, and the communication device 300 acquires the positioning reinforcement data from the correction information center device 710. For this reason, in the first embodiment, the positioning terminal device 200 can obtain the RTK positioning result in real time from the positioning reinforcement data and the positioning signal. Therefore, it can be shown whether the measurement vehicle 100 is in an actual fixed state. As a result, it is possible to solve the problem that the fixed state cannot be obtained after the post-processing and the problem that it takes time such as two minutes of rest necessary for obtaining the fixed predicted state.
<変形例>
 図7は実施の形態1の変形例を示す図である。図7は図1に対して、測位補強データを準天頂衛星602から配信する構成を示す。図7には4基の測位衛星601と1基の準天頂衛星602を示している。準天頂衛星602は測位補強データと測位信号を送信する。準天頂衛星602は、測位補強データを送信する測位補強データ送信装置である。図1との相違は、図7では、通信装置300及び補正情報センター700が不要であることである。準天頂衛星602は、日本領域を複数のブロックに分けた各ブロックの測位補強データを順番に送信する。この<変形例>の動作は図4とほぼ同様であるが、ステップS11が異なり、ステップS17は不要となる。つまり、測位端末装置200は、概略位置をもとに準天頂衛星602から送信される各ブロックの測位補強データのなかから、概略位置に近い測位補強データを選択する。よって、ステップS17は不要となる。なお、衛星信号受信装置250が、測位信号に加え準天頂衛星602から測位補強データを受信し、入出力インタフェース装置240を介してプロセッサ210に送る。
<Modification>
FIG. 7 is a diagram showing a modification of the first embodiment. FIG. 7 shows a configuration in which positioning reinforcement data is distributed from the quasi-zenith satellite 602 with respect to FIG. FIG. 7 shows four positioning satellites 601 and one quasi-zenith satellite 602. The quasi-zenith satellite 602 transmits positioning reinforcement data and a positioning signal. The quasi-zenith satellite 602 is a positioning reinforcement data transmission device that transmits positioning reinforcement data. The difference from FIG. 1 is that the communication device 300 and the correction information center 700 are unnecessary in FIG. The quasi-zenith satellite 602 sequentially transmits positioning reinforcement data of each block obtained by dividing the Japan region into a plurality of blocks. The operation of this <modified example> is almost the same as that in FIG. 4, but step S11 is different and step S17 is not necessary. That is, the positioning terminal device 200 selects positioning reinforcement data close to the approximate position from among the positioning reinforcement data of each block transmitted from the quasi-zenith satellite 602 based on the approximate position. Therefore, step S17 becomes unnecessary. The satellite signal receiving device 250 receives positioning reinforcement data from the quasi-zenith satellite 602 in addition to the positioning signal, and sends it to the processor 210 via the input / output interface device 240.
 この<変形例>によれば、上記で述べた実施の形態1の効果に加え、補正情報センター装置710との通信が不要となる効果がある。 According to this <variation>, in addition to the effect of the first embodiment described above, there is an effect that communication with the correction information center device 710 is not required.
 100 計測車両、110 計測ユニット、111A~111F カメラ、112A~112D レーザスキャナ、113A~111C GPSアンテナ、114 IMU、120 オドメータ、200 測位端末装置、210 プロセッサ、211 測位補強データ取得部、212 測位部、213 フィックス状態検出部、214 衛星決定部、220 主記憶装置、230 補助記憶装置、240 入出力インタフェース装置、250 衛星信号受信装置、260 RTK測位結果、300 通信装置、400 表示装置、500 3次元計測データ記憶装置、510 3次元計測データ、601 測位衛星、602 準天頂衛星、700 補正情報センター、710 補正情報センター装置、800 後処理装置、810 後処理演算部、820 出力データ、900 インターネット、1000 計測システム。 100 measurement vehicle, 110 measurement unit, 111A to 111F camera, 112A to 112D laser scanner, 113A to 111C GPS antenna, 114 IMU, 120 odometer, 200 positioning terminal device, 210 processor, 211 positioning reinforcement data acquisition unit, 212 positioning unit, 213 Fix state detection unit, 214 Satellite determination unit, 220 Main storage device, 230 Auxiliary storage device, 240 Input / output interface device, 250 Satellite signal reception device, 260 RTK positioning result, 300 communication device, 400 display device, 500 3D measurement Data storage device, 510 3D measurement data, 601 positioning satellite, 602 quasi-zenith satellite, 700 correction information center, 710 correction information center device, 800 post-processing device, 810 post-processing Calculation unit, 820 output data, 900 Internet, 1000 measurement system.

Claims (6)

  1.  通信装置と、表示装置と、測位端末装置と、計測装置とを備え、車両に搭載されるモービルマッピングシステムであって、
     前記通信装置は、
     測位補強データを送信する測位補強データ送信装置から、前記測位補強データを受信し、
     前記測位端末装置は、
     前記通信装置から前記測位補強データを取得し、測位信号を送信する測位衛星から前記測位信号を受信し、少なくとも前記測位信号を用いて位置を検出するとともに、前記測位信号と前記測位補強データとを用いて前記位置を検出するフィックス状態にある場合、前記フィックス状態にあることを前記表示装置に表示する、
    モービルマッピングシステム。
    A mobile mapping system that includes a communication device, a display device, a positioning terminal device, and a measurement device, and is mounted on a vehicle.
    The communication device
    Receiving the positioning reinforcement data from the positioning reinforcement data transmitting device for transmitting the positioning reinforcement data;
    The positioning terminal device
    Obtaining the positioning reinforcement data from the communication device, receiving the positioning signal from a positioning satellite that transmits a positioning signal, detecting a position using at least the positioning signal, and detecting the positioning signal and the positioning reinforcement data. When using the fixed state to detect the position, to display the fixed state on the display device,
    Mobile mapping system.
  2.  前記測位端末装置は、
     前記計測装置が計測した計測データに前記フィックス状態を示すフィックス状態情報を反映する請求項1に記載のモービルマッピングシステム。
    The positioning terminal device
    The mobile mapping system according to claim 1, wherein fix state information indicating the fix state is reflected in measurement data measured by the measurement device.
  3.  車両に搭載されたモービルマッピングピングシステムの備える測位端末装置において、
     測位補強データを取得する測位補強データ取得部と、
     測位信号を送信する測位衛星から前記測位信号を受信し、少なくとも前記測位信号を用いて位置を検出する測位部と、
     前記測位部が前記測位補強データと前記測位信号とを用いて前記位置を検出するフィックス状態にある場合、前記フィックス状態にあることを、前記車両に搭載された表示装置に表示するフィックス状態検出部と
    を備える測位端末装置。
    In a positioning terminal device provided in a mobile mapping ping system mounted on a vehicle,
    A positioning reinforcement data acquisition unit for acquiring positioning reinforcement data;
    A positioning unit that receives the positioning signal from a positioning satellite that transmits a positioning signal and detects a position using at least the positioning signal;
    When the positioning unit is in a fixed state in which the position is detected using the positioning reinforcement data and the positioning signal, a fixed state detecting unit that displays the fixed state on a display device mounted on the vehicle A positioning terminal device comprising:
  4.  前記測位端末装置は、さらに、
     前記測位補強データから、前記測位補強データの生成のために捕捉された前記測位衛星を決定し、前記測位部が受信した前記測位信号から、前記位置の検出のために捕捉された前記測位衛星を決定し、前記測位補強データの生成に関わる前記測位衛星のうち前記位置の検出に関わる前記測位衛星と一致しない測位衛星を、前記位置の検出に関わる前記測位衛星と一致する前記測位衛星と異なる態様で前記表示装置に表示する請求項3に記載の測位端末装置。
    The positioning terminal device further includes:
    The positioning satellite captured for generating the positioning augmentation data is determined from the positioning augmentation data, and the positioning satellite captured for detection of the position is determined from the positioning signal received by the positioning unit. A positioning satellite that does not match the positioning satellite related to the position detection among the positioning satellites related to the generation of the positioning augmentation data that is determined is different from the positioning satellite that matches the positioning satellite related to the position detection. The positioning terminal device according to claim 3, which is displayed on the display device.
  5.  前記測位補強データ取得部は、
     前記測位補強データを送信する測位補強データ送信装置から前記測位補強データを受信する装置であって前記車両に搭載された装置である通信装置を介して前記測位補強データを取得するとともに、前記測位部が測位した前記位置を、前記通信装置を介して前記測位補強データ送信装置に送信することにより、送信した前記位置に適合する前記測位補強データを、前記測位補強データ送信装置から前記通信装置を介して取得する請求項3または請求項4に記載の測位端末装置。
    The positioning reinforcement data acquisition unit
    The positioning reinforcement data is transmitted from the positioning reinforcement data transmitting device that transmits the positioning reinforcement data, and the positioning reinforcement data is acquired via a communication device that is a device mounted on the vehicle, and the positioning unit The positioning augmentation data that matches the transmitted position is transmitted from the positioning reinforcement data transmission device via the communication device by transmitting the position measured by the positioning reinforcement data transmission device via the communication device. The positioning terminal device according to claim 3 or claim 4, which is acquired by:
  6.  前記測位補強データ取得部は、
     前記測位補強データを送信する準天頂衛星から前記測位補強データを受信する装置であって、前記車両に搭載された装置である通信装置を介して前記測位補強データを取得する請求項3または請求項4に記載の測位端末装置。
    The positioning reinforcement data acquisition unit
    The apparatus for receiving the positioning reinforcement data from a quasi-zenith satellite that transmits the positioning reinforcement data, wherein the positioning reinforcement data is acquired via a communication device that is an apparatus mounted on the vehicle. 4. The positioning terminal device according to 4.
PCT/JP2018/005451 2017-03-23 2018-02-16 Mobile mapping system and positioning terminal device WO2018173573A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019507443A JPWO2018173573A1 (en) 2017-03-23 2018-02-16 Mobile mapping system and positioning terminal device
KR1020197027055A KR20190116442A (en) 2017-03-23 2018-02-16 Mobile mapping system and positioning terminal device
TW107109041A TWI664393B (en) 2017-03-23 2018-03-16 Mobile mapping system and positioning terminal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-058000 2017-03-23
JP2017058000 2017-03-23

Publications (1)

Publication Number Publication Date
WO2018173573A1 true WO2018173573A1 (en) 2018-09-27

Family

ID=63585207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005451 WO2018173573A1 (en) 2017-03-23 2018-02-16 Mobile mapping system and positioning terminal device

Country Status (4)

Country Link
JP (1) JPWO2018173573A1 (en)
KR (1) KR20190116442A (en)
TW (1) TWI664393B (en)
WO (1) WO2018173573A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021071288A (en) * 2019-10-29 2021-05-06 大林道路株式会社 Three-dimensional measurement system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03295411A (en) * 1990-04-13 1991-12-26 Pioneer Electron Corp Satellite display system in on-vehicle navigation device
JPH06314060A (en) * 1993-04-28 1994-11-08 Nec Home Electron Ltd Navigation device
JP2004125580A (en) * 2002-10-02 2004-04-22 Hitachi Constr Mach Co Ltd Position measuring system of working machine
JP2006200933A (en) * 2005-01-18 2006-08-03 Mitsubishi Electric Corp Positioning device, positioning server device and positioning system
JP2007147341A (en) * 2005-11-24 2007-06-14 Topcon Corp 3D data creation method and 3D data creation apparatus
JP2009257802A (en) * 2008-04-14 2009-11-05 Mitsubishi Electric Corp Data transmitter, data transmission method, data transmission program, positioning device, positioning method, and positioning program
US20100090890A1 (en) * 2007-05-18 2010-04-15 Lauri Wirola Positioning using a reference station
US9103671B1 (en) * 2007-11-29 2015-08-11 American Vehicular Sciences, LLC Mapping techniques using probe vehicles

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5477458A (en) * 1994-01-03 1995-12-19 Trimble Navigation Limited Network for carrier phase differential GPS corrections
JP2002071782A (en) * 2000-08-31 2002-03-12 Hitachi Ltd Information terminal with positioning function
US7013226B2 (en) * 2003-10-14 2006-03-14 Intel Corporation Reflectometer with echo canceller
JP5116572B2 (en) 2008-06-17 2013-01-09 三菱電機株式会社 Accuracy prediction apparatus, accuracy prediction method, and accuracy prediction program

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03295411A (en) * 1990-04-13 1991-12-26 Pioneer Electron Corp Satellite display system in on-vehicle navigation device
JPH06314060A (en) * 1993-04-28 1994-11-08 Nec Home Electron Ltd Navigation device
JP2004125580A (en) * 2002-10-02 2004-04-22 Hitachi Constr Mach Co Ltd Position measuring system of working machine
JP2006200933A (en) * 2005-01-18 2006-08-03 Mitsubishi Electric Corp Positioning device, positioning server device and positioning system
JP2007147341A (en) * 2005-11-24 2007-06-14 Topcon Corp 3D data creation method and 3D data creation apparatus
US20100090890A1 (en) * 2007-05-18 2010-04-15 Lauri Wirola Positioning using a reference station
US9103671B1 (en) * 2007-11-29 2015-08-11 American Vehicular Sciences, LLC Mapping techniques using probe vehicles
JP2009257802A (en) * 2008-04-14 2009-11-05 Mitsubishi Electric Corp Data transmitter, data transmission method, data transmission program, positioning device, positioning method, and positioning program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021071288A (en) * 2019-10-29 2021-05-06 大林道路株式会社 Three-dimensional measurement system
JP7219201B2 (en) 2019-10-29 2023-02-07 大林道路株式会社 3D measurement system

Also Published As

Publication number Publication date
TW201835530A (en) 2018-10-01
TWI664393B (en) 2019-07-01
JPWO2018173573A1 (en) 2019-06-27
KR20190116442A (en) 2019-10-14

Similar Documents

Publication Publication Date Title
CN111801596B (en) Method and apparatus for determining calibration information for a vehicle antenna
JP5270184B2 (en) Satellite navigation / dead reckoning integrated positioning system
JP4781313B2 (en) Multipath detection device, positioning device, posture orientation determination device, multipath detection method, and multipath detection program
KR20160139065A (en) Techniques for affecting a wireless signal-based positioning capability of a mobile device based on one or more onboard sensors
JP2015025804A (en) Method and receiver for determining system time of navigation system
US11209555B2 (en) Positioning method and apparatus for mobile terminal, and mobile terminal
US20190101653A1 (en) Global navigation satellite system, navigation terminal, navigation method and program
US10852442B2 (en) Reception control device
US8384593B2 (en) Synchronized measurement sampling in a navigation device
JP6597843B2 (en) Reception control apparatus, reception control method, and program
JP6929492B2 (en) Locator device and its accuracy evaluation system and positioning method
JP6075377B2 (en) COMMUNICATION DEVICE, COMMUNICATION SYSTEM, COMMUNICATION METHOD, AND PROGRAM
WO2018173573A1 (en) Mobile mapping system and positioning terminal device
EP2656097B1 (en) Method and apparatus for estimating satellite positioning reliability
JP5600882B2 (en) GPS receiver carrier phase measurement quality monitoring apparatus, method and program
US20210240196A1 (en) Positioning apparatus, recording medium, and positioning method
KR101364047B1 (en) Method for estimating location based on object recognition using kalman filter
CN110678781A (en) Positioning method and positioning terminal
JP2018146545A (en) Composite positioning device, composite positioning method, and composite positioning program
CN114829981B (en) Method and device for identifying group delay changes of a navigation sensor of a navigation system of a vehicle, and navigation sensor having such a device
CN114236584B (en) Positioning method, system, electronic device, storage medium and program product
JP2025057545A (en) Positioning device and recording medium
JP2014126539A (en) Gnss(global navigation satellite system) receiver and positioning position calculation method
JP2005337791A (en) TERMINAL DEVICE, TERMINAL DEVICE CONTROL METHOD, TERMINAL DEVICE CONTROL PROGRAM, AND COMPUTER-READABLE RECORDING MEDIUM CONTAINING TERMINAL DEVICE CONTROL PROGRAM

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771115

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019507443

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197027055

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18771115

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载