+

WO2018173109A1 - Laser oscillator, and laser processing device - Google Patents

Laser oscillator, and laser processing device Download PDF

Info

Publication number
WO2018173109A1
WO2018173109A1 PCT/JP2017/011160 JP2017011160W WO2018173109A1 WO 2018173109 A1 WO2018173109 A1 WO 2018173109A1 JP 2017011160 W JP2017011160 W JP 2017011160W WO 2018173109 A1 WO2018173109 A1 WO 2018173109A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
beams
wavelength dispersion
axis direction
laser oscillator
Prior art date
Application number
PCT/JP2017/011160
Other languages
French (fr)
Japanese (ja)
Inventor
大嗣 森田
智毅 桂
裕章 黒川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/011160 priority Critical patent/WO2018173109A1/en
Priority to JP2017555815A priority patent/JPWO2018173109A1/en
Publication of WO2018173109A1 publication Critical patent/WO2018173109A1/en

Links

Images

Definitions

  • the present invention relates to a laser oscillator and a laser processing apparatus including a laser stack composed of a plurality of laser arrays.
  • the semiconductor laser stack is a laser oscillator configured by stacking a plurality of semiconductor laser arrays.
  • a plurality of light emitting points are arranged in one semiconductor laser array.
  • a semiconductor laser stack using a plurality of semiconductor laser arrays can obtain a high-power laser as compared with a semiconductor laser stack using a single semiconductor laser array, and is of the order of several hundreds [W] to several [kW]. It is one of the cheapest laser oscillators in the high-power laser field.
  • the semiconductor laser stack has a structure in which a plurality of semiconductor laser arrays are simply arranged in the fast axis direction, the beam output from each of the plurality of light emitting points of the semiconductor laser array spreads, and the beam quality decreases.
  • BPP Beam Parameter Products
  • BPP Beam Parameter Products
  • BPP is a numerical value represented by the product of the beam divergence angle and the minimum beam diameter. The smaller the BPP beam, the narrower the beam, and the higher the energy density of light on the processed surface, so that it is suitable for laser processing. Therefore, a semiconductor laser stack with low beam quality is not suitable for applications such as sheet metal cutting and welding that require high beam quality, and is limited to applications such as cladding and surface treatment.
  • Japanese Patent Application Laid-Open No. H10-228561 discloses a technique of increasing the beam brightness by wavelength-coupling a laser array composed of a plurality of stacked semiconductors with an external resonator.
  • the present invention has been made in view of the above, and an object thereof is to obtain a laser oscillator capable of improving the luminance of a beam.
  • a laser oscillator is formed by laminating a plurality of laser arrays in the fast axis direction, each having a plurality of light emitting points that generate beams having different wavelengths.
  • Laser stack configured, a plurality of fibers attached to each of a plurality of light emitting points, a wavelength dispersion element, and an optical element for condensing beams emitted from the plurality of fibers so as to overlap on the wavelength dispersion element
  • the wavelength dispersion element is installed at a position where a plurality of beams are superimposed by an optical element, and combines and outputs a plurality of condensed beams in the fast axis direction and the slow axis direction.
  • the laser oscillator according to the present invention has an effect that the brightness of the beam can be improved.
  • Configuration diagram of laser oscillator according to Embodiment 1 Configuration diagram of laser oscillator according to second embodiment Configuration of Laser Oscillator according to Embodiment 3 Configuration of Laser Oscillator according to Embodiment 4
  • FIG. 1 is a configuration diagram of a laser oscillator according to the first embodiment.
  • the laser oscillator 100-1 according to the first embodiment includes a semiconductor laser configured by laminating a plurality of semiconductor laser arrays 11 having a plurality of light emitting points 12 that generate beams having different wavelengths in the slow axis direction in the fast axis direction.
  • a stack 10 a plurality of fibers 21 each having one end attached to each of a plurality of light emitting points 12; a plurality of wavelength dispersion elements 33 that combine and output a plurality of condensed beams in a fast axis direction and a slow axis direction; And a condensing optical element 32 which is an optical element that condenses the oscillation beam 31 emitted from each of the fibers 21 so as to be superimposed on the wavelength dispersion element 33.
  • Each of the plurality of fibers 21 transmits a beam emitted from the light emitting point 12.
  • the semiconductor laser stack 10 is configured by stacking a plurality of semiconductor laser arrays 11.
  • the semiconductor laser array 11 has a plurality of light emitting points 12, and each of the plurality of fibers 21 is arranged so that beams emitted from each of the plurality of light emitting points 12 are coupled to the core of the fiber 21.
  • the coupling efficiency can be improved by forming the end face shape of the fiber 21 into a lens shape. Further, the coupling efficiency can be improved by arranging a small optical element between the light emitting point 12 and the fiber 21.
  • the arrangement direction of the plurality of light emitting points 12 included in one semiconductor laser array 11 is the X-axis direction
  • the stacking direction of the plurality of semiconductor laser arrays 11 is the Y-axis direction
  • the X-axis A direction perpendicular to both the direction and the Y-axis direction is taken as a Z-axis direction.
  • the X-axis direction is equal to the slow axis
  • the Y-axis direction is equal to the fast axis.
  • the slow axis is equal to the direction in which a plurality of light emitting points 12 provided in one semiconductor laser array 11 are arranged.
  • the fast axis is an axis orthogonal to the slow axis and is equal to the direction in which the plurality of semiconductor laser arrays 11 are stacked.
  • the other ends of the plurality of fibers 21 are routed toward the condensing optical element 32, and the termination regions 21b of the plurality of fibers 21 are arranged in parallel on the same plane, that is, on the XZ plane of FIG. At this time, it is desirable that the emission ends 21a of the plurality of fibers 21 have the same position in the Z-axis direction.
  • the beams emitted from the respective light emission points 12 of the semiconductor laser stack 10 are emitted as the oscillation beam 31 from the emission end 21 a of the fiber 21.
  • the plurality of oscillation beams 31 are superimposed on the wavelength dispersion element 33 by the condensing optical element 32, and the wavelength dispersion element 33 is installed at a position where the plurality of oscillation beams 31 are superimposed by the condensing optical element 32, A plurality of oscillation beams 31 condensed by the condensing optical element 32 are output as a combined beam 34 having one optical axis.
  • the oscillation beams 31 emitted from the plurality of fibers 21 are collected from different positions on the XZ plane.
  • the light enters the optical optical element 32. Therefore, the beams collected by the condensing optical element 32 are incident on the wavelength dispersion element 33 at different angles ⁇ 1 to ⁇ 9 in the XZ plane.
  • Angles ⁇ 1 to ⁇ 9 are incident angles of the plurality of outgoing beams with respect to the normal line of the surface of the wavelength dispersion element 33, respectively.
  • the oscillation beam 31 incident on the wavelength dispersion element 33 is diffracted by the wavelength dispersion element 33.
  • the wavelength dispersion element 33 is a diffraction grating
  • N is the groove number density
  • is the oscillation wavelength.
  • the groove density N is 1850 [lines / mm]
  • the oscillation wavelength ⁇ e is 980 [nm]
  • the incident angle ⁇ 3 is 65.03 degrees
  • the overall width D in the X-axis direction of each of the plurality of fibers 21 is 8 [mm]
  • the separation distance d between adjacent fibers 21 is 1 [mm]
  • the focal length of the condensing optical element 32 is 100 [mm].
  • the distance L from the emission end 21a of the fiber 21 to the condensing optical element 32 is 100 [mm]
  • the oscillation wavelengths of the plurality of oscillation beams 31 are ⁇ a to ⁇ i.
  • the oscillation wavelength ⁇ a is 988.7 [nm]
  • the oscillation wavelength ⁇ b is 986.6 [nm]
  • the oscillation wavelength ⁇ c is 984.4 [nm]
  • the oscillation wavelength ⁇ d is 982.3 [nm]
  • the oscillation wavelength ⁇ e is 980.0 [nm]
  • the diffraction angle ⁇ is 65.03 degrees
  • the outgoing beam superimposed on the wavelength dispersion element 33 is combined by the wavelength dispersion effect of the wavelength dispersion element 33 into one combined beam 34.
  • the combined beam 34 is transmitted by a processing head via a transmission fiber (not shown), and is irradiated onto the processing object from the processing head.
  • laser beams emitted from the plurality of light emitting points 12 included in each of the plurality of semiconductor laser arrays 11 constituting the semiconductor laser stack 10 can be output as the combined beam 34. Therefore, compared with the case where the beam combining method disclosed in Patent Document 1 is used, a laser beam with high output and high brightness can be obtained. Further, by using a laser processing apparatus including the laser oscillator 100-1 according to the first embodiment and a processing head (not shown), it is possible to process a processing target using a high-power and high-intensity beam.
  • FIG. FIG. 2 is a configuration diagram of the laser oscillator according to the second embodiment.
  • the difference between the laser oscillator 100-2 according to the second embodiment and the laser oscillator 100-1 according to the first embodiment is that the laser oscillator 100-2 is arranged on the optical path of the beam synthesized by the wavelength dispersion element 33.
  • the partial reflection mirror 43 having wavelength selectivity is used.
  • an external resonator is configured between the light emitting point 12 and the partial reflection mirror 43.
  • the intracavity outgoing beam 31 a emitted from each of the plurality of fibers 21 is condensed by the condensing optical element 32 and superimposed on the wavelength dispersion element 33.
  • Each of the plurality of intracavity beams 31 a diffracted by the wavelength dispersion element 33 returns to the light emitting point 12 only when it enters the partial reflection mirror 43 perpendicularly.
  • laser oscillation occurs between the light emitting point 12 and the partial reflection mirror 43. Therefore, in the laser oscillator 100-2, the oscillation wavelengths ⁇ a to ⁇ i of each of the plurality of intracavity outgoing beams 31a are selected so as to enter the partial reflection mirror 43 perpendicularly.
  • each of the plurality of intracavity outgoing beams 31a is configured to be superimposed on the wavelength dispersive element 33. Therefore, the plurality of intracavity outgoing beams 31a are combined to form a single beam.
  • the intracavity coupled beam 42 is obtained, and the intracavity coupled beam 42 is extracted as an output beam 44.
  • the laser oscillator 100-2 it is not necessary to prepare elements having different refractive index distributions such as FBG and VBG, which will be described later, according to each light emitting point.
  • the assembly time of the oscillator 100-2 is shortened, and the manufacturing cost of the laser oscillator 100-2 can be reduced.
  • FIG. 3 is a configuration diagram of a laser oscillator according to the third embodiment.
  • the difference between the laser oscillator 100-3 according to the third embodiment and the laser oscillator 100-1 according to the first embodiment is that, in the laser oscillator 100-3, an FBG 23 is provided for each of the plurality of fibers 21. It is.
  • the wavelengths of the beams emitted from the plural light emitting points 12 may be the same, or the wavelengths of the beams emitted from the plural light emitting points 12 may be different.
  • the FBG 23 is an element in which a periodic refractive index change is formed inside the glass.
  • the refractive index change works as a diffraction grating, and can reflect only light having a wavelength that satisfies the Bragg reflection condition created by the period of the diffraction grating.
  • the FBG 23 as a partial reflection mirror of the external resonator, it is possible to oscillate at a specific wavelength.
  • the refractive index changes of the plurality of FBGs 23 are formed at different periods, each of them can be oscillated at different wavelengths.
  • the wavelength of the oscillation beam 31 is fixed using the FBG 23.
  • the wavelength fixing method is not limited to this, and VBG (Volume Bragg Grating), DBR (Distributed Bragg Reflector) or DFB (Distributed Feedback) may be used.
  • VBG like FBG23, is an element in which a periodic refractive index change is formed inside the glass.
  • VBG is arrange
  • the DBR forms a diffraction grating structure on the extension of the waveguide of the active layer at the light emitting point 12, and the oscillation wavelength is fixed by the wavelength selectivity of the diffraction grating.
  • the DFB is formed by forming diffraction gratings on the upper and lower surfaces of the active layer of the light emitting point 12, and the oscillation wavelength is fixed by the wavelength selectivity of the diffraction grating.
  • the intervals between the diffraction gratings need to be different.
  • FIG. 4 is a configuration diagram of a laser oscillator according to the fourth embodiment.
  • a plurality of FBG stretching mechanisms 51 are used in addition to the configuration shown in FIG.
  • Each of the plurality of FBG stretching mechanisms 51 is attached to each of the plurality of fibers 21.
  • the FBG stretching mechanism 51 is attached across the FBG 23 of FIG.
  • the effective refractive index n and the diffraction grating period ⁇ can be changed inside each of the plurality of FBGs 23 by the FBG stretching mechanism 51. Details of a configuration example of the FBG stretching mechanism 51 will be described later.
  • Examples of the FBG stretching mechanism 51 include one that stretches the FBG 23 by physically extending the fiber 21, and one that stretches the FBG 23 by applying heat to the fiber 21. Specifically, when the FBG stretching mechanism 51 causes distortion in the formation location of the FBG 23 or a temperature change occurs in the formation location of the FBG 23, the effective refractive index and the diffraction grating period of the FBG 23 change. The reflection wavelength changes. Accordingly, the oscillation wavelength of the oscillation beam 31 emitted from each of the plurality of fibers 21 changes.
  • the manufacturing cost of the laser oscillator can be reduced as compared with the laser oscillator provided with the FBG 23 each having a different diffraction grating period.
  • the manufacturing error of the FBG 23 can be allowed, the yield of the FBG 23 is improved, and the manufacturing cost of the laser oscillator provided with the FBG 23 can be reduced.
  • the oscillation wavelength can be changed around 5 [nm].
  • the entire oscillation wavelength width corresponding to the difference between the oscillation wavelength ⁇ a and the oscillation wavelength ⁇ i is 18.2 [nm]. In this case, it is sufficient to form three to four types of FBGs 23. It will be.
  • the number of light emitting points 12 included in one semiconductor laser array 11 is several tens to several hundreds. Can be covered by four types of FBG23.
  • FIG. 5 is a diagram showing a configuration example of the FBG stretching mechanism shown in FIG. FIG. 5 illustrates an FBG stretching mechanism 51 that causes strain at the formation site of the FBG 23 by physically pulling the fiber 21.
  • the FBG stretching mechanism 51 shown in FIG. 5 includes a plate-like glass substrate 51d arranged in parallel with the fiber 21, a fixing member 51b installed on the glass substrate 51d by an adhesive 51a, and an adhesive 51a from the fixing member 51b. And an adjustment member 51c installed at a position separated by a certain distance.
  • the fixing member 51b and the adjustment member 51c are arranged so as to sandwich the FBG 23.
  • the fiber 21 on one end side of the FBG 23 is fixed to the fixing member 51b by an adhesive 51a.
  • the fiber 21 on the other end side of the FBG 23 is fixed to the adjustment member 51c with an adhesive 51a.
  • An example of the material of the fixing member 51b and the adjustment member 51c is glass. This is because it is desirable to align the thermal expansion coefficients of the fiber 21, the fixing member 51b, and the adjusting member 51c.
  • the adjustment member 51c When adjusting the oscillation wavelength in the FBG stretching mechanism 51 configured as described above, the adjustment member 51c is slid with a member extending from a stage (not shown), and the adjustment member 51c is bonded to the adhesive 51a when a specific oscillation wavelength is reached. Is fixed to the glass substrate 51d.
  • An example of the stage is an electric stage that is driven in one axial direction.
  • distortion can be generated at the location where the FBG 23 of the fiber 21 is formed simply by adjusting the position of the adjustment member 51 c, so that a complicated mechanism such as a ball screw mechanism is used.
  • the oscillation wavelength can be adjusted without using it. Therefore, the manufacturing cost of the laser oscillator can be reduced, and even when the laser oscillator is used for a long time, the fluctuation of the oscillation wavelength is small, and a high-power and high-luminance beam can be maintained.
  • FIG. FIG. 6 is a configuration diagram of a laser oscillator according to the fifth embodiment.
  • the difference between the laser oscillator 100-2 according to the second embodiment and the laser oscillator 100-5 according to the fifth embodiment is that, in the laser oscillator 100-5, the partial reflection mirror 43 is omitted and the wavelength dispersion is a diffraction grating.
  • the element 33 is arranged in a Littrow arrangement. In the Littrow arrangement, the number of grooves and the installation angle of the diffraction grating are set so that the diffraction angles of the second-order diffracted lights of the plurality of laser beams and the incident angles of the plurality of laser beams coincide with each other at an assumed wavelength. Refers to the arrangement.
  • the second-order diffracted light generated by the wavelength dispersion element 33 becomes feedback light that returns to the semiconductor laser stack 10 along the incident beam, and the plurality of semiconductor laser arrays 11 Resonators that operate at different wavelengths for each beam are configured between each of these and the wavelength dispersion element 33.
  • the first-order diffracted light of the laser beam is used as the output beam of the laser oscillator 100-5.
  • an external resonator is configured between the light emitting point 12 and the partial reflection mirror 43, and partial reflection is performed on the first-order diffracted light of the laser beam generated by the wavelength dispersion element 33.
  • a mirror 43 is installed. The beam reflected by the partially reflecting mirror 43 returns to the semiconductor laser stack 10, and the transmitted beam of the partially reflecting mirror 43 is used as the output beam of the laser oscillator 100-2.
  • the second-order diffracted light of the laser beam generated by the wavelength dispersion element 33 returns to the semiconductor laser stack 10.
  • the first-order diffracted light is diffracted when the diffraction angle ⁇ of the wavelength dispersion element 33 is 0 degree. That is, the first-order diffracted light is emitted perpendicular to the diffraction grating. It is this first-order diffracted light that is used as the output beam of the laser oscillator 100-5. Even when there are a plurality of laser beams, the first-order diffracted light is emitted perpendicular to the diffraction grating, so that the plurality of laser beams can be superimposed on one beam.
  • the wavelength dispersion element 33 returns a part of the plurality of beams to the laser stack 10 as the first laser beam, and a part of the plurality of beams. Are output as a second laser beam having one optical axis, and the wavelength dispersion element 33 is arranged in a Littrow arrangement with respect to the first laser beam.
  • the partial reflection mirror 43 since the partial reflection mirror 43 is not used, the configuration of the laser oscillator 100-5 is simplified, and not only the laser oscillator 100-5 can be miniaturized, but also the loss in the resonator is reduced. Efficient laser oscillation is possible.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Semiconductor Lasers (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Laser Beam Processing (AREA)

Abstract

This laser oscillator (100-1) is characterized by being provided with: a semiconductor laser stack (10) which is formed by stacking, in a fast axis direction, a plurality of semiconductor laser arrays (11) having, provided in a slow axis direction, a plurality of light-emission points (12) for generating beams having different wavelengths; a plurality of fibres (21) which are attached to each of the plurality of light-emission points (12); a wavelength dispersion element (33); and a condensing optical element (32) which condenses the beams emitted from the plurality of fibres (21) so as to superpose the beams on the wavelength dispersion element (33). The laser oscillator is further characterized in that the wavelength dispersion element (33) is installed in a position where the plurality of beams are superposed by the condensing optical element (32), and combines and outputs the plurality of condensed fast-axis-direction and slow-axis-direction beams.

Description

レーザ発振器及びレーザ加工装置Laser oscillator and laser processing apparatus
 本発明は、複数のレーザアレイで構成されるレーザスタックを備えたレーザ発振器及びレーザ加工装置に関する。 The present invention relates to a laser oscillator and a laser processing apparatus including a laser stack composed of a plurality of laser arrays.
 半導体レーザスタックとは半導体レーザアレイを複数個積層して構成されたレーザ発振器である。1つの半導体レーザアレイには複数の発光点が配置される。複数個の半導体レーザアレイを用いた半導体レーザスタックは、1つの半導体レーザアレイを用いた半導体レーザスタックに比べて高出力なレーザを得ることができ、数100[W]から数[kW]クラスの高出力レーザ分野において最も安価なレーザ発振器の一つである。ただし半導体レーザスタックは、複数の半導体レーザアレイを速軸方向に単に配列した構造であるため、半導体レーザアレイが有する複数の発光点のそれぞれから出力されるビームが広がり、ビーム品質が低下する。ビーム品質の評価には一般的にBPP(Beam Parameter Products)が用いられ、BPPはビームの広がり角度とビームの最小径の積で表される数値である。BPPが小さなビームであるほどビームを細径に絞ることができ、加工面において光のエネルギー密度を高くすることができるため、レーザ加工に好適である。そのためビーム品質が低い半導体レーザスタックは、高ビーム品質が要求される板金切断及び溶接といった用途には適しておらず、クラッディング及び表面処理といった用途に限定されている。 The semiconductor laser stack is a laser oscillator configured by stacking a plurality of semiconductor laser arrays. A plurality of light emitting points are arranged in one semiconductor laser array. A semiconductor laser stack using a plurality of semiconductor laser arrays can obtain a high-power laser as compared with a semiconductor laser stack using a single semiconductor laser array, and is of the order of several hundreds [W] to several [kW]. It is one of the cheapest laser oscillators in the high-power laser field. However, since the semiconductor laser stack has a structure in which a plurality of semiconductor laser arrays are simply arranged in the fast axis direction, the beam output from each of the plurality of light emitting points of the semiconductor laser array spreads, and the beam quality decreases. In general, BPP (Beam Parameter Products) is used for evaluation of beam quality, and BPP is a numerical value represented by the product of the beam divergence angle and the minimum beam diameter. The smaller the BPP beam, the narrower the beam, and the higher the energy density of light on the processed surface, so that it is suitable for laser processing. Therefore, a semiconductor laser stack with low beam quality is not suitable for applications such as sheet metal cutting and welding that require high beam quality, and is limited to applications such as cladding and surface treatment.
 特許文献1に開示には、複数のスタック半導体で構成されるレーザアレイを外部共振器により波長結合し、ビームの輝度を高める手法が記載されている。 Japanese Patent Application Laid-Open No. H10-228561 discloses a technique of increasing the beam brightness by wavelength-coupling a laser array composed of a plurality of stacked semiconductors with an external resonator.
特表2012-508453号公報Special table 2012-508453 gazette
 しかしながら特許文献1に開示されるビームの波長結合は遅軸方向にのみ実施されるため、速軸方向には輝度の向上に寄与しない複数のビームが存在するため、ビームの輝度を十分に向上させることができないという課題があった。 However, since the wavelength combination of the beam disclosed in Patent Document 1 is performed only in the slow axis direction, there are a plurality of beams that do not contribute to the improvement of the brightness in the fast axis direction, so that the brightness of the beam is sufficiently improved. There was a problem that it was not possible.
 本発明は、上記に鑑みてなされたものであって、ビームの輝度を向上させることができるレーザ発振器を得ることを目的とする。 The present invention has been made in view of the above, and an object thereof is to obtain a laser oscillator capable of improving the luminance of a beam.
 上述した課題を解決し、目的を達成するために、本発明のレーザ発振器は、互いに波長の異なるビームを発生する複数の発光点を遅軸方向に有するレーザアレイを速軸方向に複数積層して構成されるレーザスタックと、複数の発光点のそれぞれに取り付けられた複数のファイバと、波長分散素子と、複数のファイバから出射されたビームを波長分散素子上で重畳するように集光する光学素子とを備え、波長分散素子は、光学素子により複数のビームが重畳された位置に設置されると共に、集光した複数の速軸方向及び遅軸方向のビームを合成して出力することを特徴とする。 In order to solve the above-described problems and achieve the object, a laser oscillator according to the present invention is formed by laminating a plurality of laser arrays in the fast axis direction, each having a plurality of light emitting points that generate beams having different wavelengths. Laser stack configured, a plurality of fibers attached to each of a plurality of light emitting points, a wavelength dispersion element, and an optical element for condensing beams emitted from the plurality of fibers so as to overlap on the wavelength dispersion element The wavelength dispersion element is installed at a position where a plurality of beams are superimposed by an optical element, and combines and outputs a plurality of condensed beams in the fast axis direction and the slow axis direction. To do.
 本発明に係るレーザ発振器は、ビームの輝度を向上させることができるという効果を奏する。 The laser oscillator according to the present invention has an effect that the brightness of the beam can be improved.
実施の形態1に係るレーザ発振器の構成図Configuration diagram of laser oscillator according to Embodiment 1 実施の形態2に係るレーザ発振器の構成図Configuration diagram of laser oscillator according to second embodiment 実施の形態3に係るレーザ発振器の構成図Configuration of Laser Oscillator according to Embodiment 3 実施の形態4に係るレーザ発振器の構成図Configuration of Laser Oscillator according to Embodiment 4 図4に示すファイバブラッググレーティング(Fiber Bragg Grating:FBG)延伸機構の構成例を示す図The figure which shows the structural example of the fiber Bragg grating (Fiber Bragg Grating: FBG) extending | stretching mechanism shown in FIG. 実施の形態5に係るレーザ発振器の構成図Configuration diagram of laser oscillator according to embodiment 5
 以下に、本発明の実施の形態に係るレーザ発振器及びレーザ加工装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a laser oscillator and a laser processing apparatus according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は実施の形態1に係るレーザ発振器の構成図である。実施の形態1に係るレーザ発振器100-1は、互いに波長の異なるビームを発生する複数の発光点12を遅軸方向に有する半導体レーザアレイ11を速軸方向に複数積層して構成される半導体レーザスタック10と、一端が複数の発光点12のそれぞれに取り付けられた複数のファイバ21と、集光した複数の速軸方向及び遅軸方向のビームを合成して出力する波長分散素子33と、複数のファイバ21のそれぞれから出射された発振ビーム31を波長分散素子33上で重畳するように集光する光学素子である集光光学素子32とを備える。複数のファイバ21のそれぞれは、発光点12から出射されたビームを伝送する。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a laser oscillator according to the first embodiment. The laser oscillator 100-1 according to the first embodiment includes a semiconductor laser configured by laminating a plurality of semiconductor laser arrays 11 having a plurality of light emitting points 12 that generate beams having different wavelengths in the slow axis direction in the fast axis direction. A stack 10; a plurality of fibers 21 each having one end attached to each of a plurality of light emitting points 12; a plurality of wavelength dispersion elements 33 that combine and output a plurality of condensed beams in a fast axis direction and a slow axis direction; And a condensing optical element 32 which is an optical element that condenses the oscillation beam 31 emitted from each of the fibers 21 so as to be superimposed on the wavelength dispersion element 33. Each of the plurality of fibers 21 transmits a beam emitted from the light emitting point 12.
 半導体レーザスタック10は複数の半導体レーザアレイ11を積層して構成される。半導体レーザアレイ11は複数の発光点12を有し、複数のファイバ21のそれぞれは、複数の発光点12のそれぞれから出射するビームがファイバ21のコアに結合されるように配置されている。このときファイバ21の端面形状をレンズ状に形成することにより結合効率を向上させることができる。また発光点12とファイバ21との間に小型の光学素子を配置することにより結合効率を向上させることができる。 The semiconductor laser stack 10 is configured by stacking a plurality of semiconductor laser arrays 11. The semiconductor laser array 11 has a plurality of light emitting points 12, and each of the plurality of fibers 21 is arranged so that beams emitted from each of the plurality of light emitting points 12 are coupled to the core of the fiber 21. At this time, the coupling efficiency can be improved by forming the end face shape of the fiber 21 into a lens shape. Further, the coupling efficiency can be improved by arranging a small optical element between the light emitting point 12 and the fiber 21.
 図1では、右手系のXYZ座標において、1つの半導体レーザアレイ11が有する複数の発光点12の配列方向をX軸方向とし、複数の半導体レーザアレイ11の積層方向をY軸方向とし、X軸方向及びY軸方向の双方に直交する方向をZ軸方向とする。X軸方向は遅軸に等しく、Y軸方向は速軸に等しい。遅軸は1つの半導体レーザアレイ11に設けられる複数の発光点12が配列される方向に等しい。速軸は遅軸と直交する軸であって、複数の半導体レーザアレイ11が積層される方向に等しい。 In FIG. 1, in the right-handed XYZ coordinates, the arrangement direction of the plurality of light emitting points 12 included in one semiconductor laser array 11 is the X-axis direction, the stacking direction of the plurality of semiconductor laser arrays 11 is the Y-axis direction, and the X-axis A direction perpendicular to both the direction and the Y-axis direction is taken as a Z-axis direction. The X-axis direction is equal to the slow axis, and the Y-axis direction is equal to the fast axis. The slow axis is equal to the direction in which a plurality of light emitting points 12 provided in one semiconductor laser array 11 are arranged. The fast axis is an axis orthogonal to the slow axis and is equal to the direction in which the plurality of semiconductor laser arrays 11 are stacked.
 複数のファイバ21の他端は集光光学素子32に向けて引き回され、複数のファイバ21のそれぞれの終端領域21bが同一面上、すなわち図1のXZ平面上に平行に配列される。このとき複数のファイバ21のそれぞれの出射端21aは、Z軸方向における位置が互いに同一であることが望ましい。 The other ends of the plurality of fibers 21 are routed toward the condensing optical element 32, and the termination regions 21b of the plurality of fibers 21 are arranged in parallel on the same plane, that is, on the XZ plane of FIG. At this time, it is desirable that the emission ends 21a of the plurality of fibers 21 have the same position in the Z-axis direction.
 このように構成されたレーザ発振器100-1では、半導体レーザスタック10のそれぞれの発光点12から出射されたビームは、ファイバ21の出射端21aから発振ビーム31として出射される。複数の発振ビーム31は、集光光学素子32により波長分散素子33上に重畳され、波長分散素子33は、集光光学素子32により複数の発振ビーム31が重畳された位置に設置されると共に、集光光学素子32により集光された複数の発振ビーム31を1つの光軸を有する結合ビーム34として出力する。 In the laser oscillator 100-1 configured as described above, the beams emitted from the respective light emission points 12 of the semiconductor laser stack 10 are emitted as the oscillation beam 31 from the emission end 21 a of the fiber 21. The plurality of oscillation beams 31 are superimposed on the wavelength dispersion element 33 by the condensing optical element 32, and the wavelength dispersion element 33 is installed at a position where the plurality of oscillation beams 31 are superimposed by the condensing optical element 32, A plurality of oscillation beams 31 condensed by the condensing optical element 32 are output as a combined beam 34 having one optical axis.
 以下では、複数本の発振ビーム31が波長分散素子33により一本に結合される原理について簡単に説明する。 Hereinafter, the principle of combining a plurality of oscillation beams 31 into one by the wavelength dispersion element 33 will be briefly described.
 XZ面内に配置された複数のファイバ21は、X軸方向にそれぞれ離間して配置されているため、複数のファイバ21のそれぞれから出射される発振ビーム31は、XZ平面上において異なる位置から集光光学素子32に入射する。そのため、集光光学素子32により集光されたビームは、それぞれXZ面内で異なる角度α1からα9で、波長分散素子33に入射する。角度α1からα9は、波長分散素子33面の法線に対する複数の出射ビームのそれぞれの入射角である。 Since the plurality of fibers 21 arranged in the XZ plane are arranged apart from each other in the X-axis direction, the oscillation beams 31 emitted from the plurality of fibers 21 are collected from different positions on the XZ plane. The light enters the optical optical element 32. Therefore, the beams collected by the condensing optical element 32 are incident on the wavelength dispersion element 33 at different angles α1 to α9 in the XZ plane. Angles α1 to α9 are incident angles of the plurality of outgoing beams with respect to the normal line of the surface of the wavelength dispersion element 33, respectively.
 波長分散素子33に入射した発振ビーム31は、波長分散素子33により回折される。波長分散素子33が回折格子の場合、波長分散素子33の回折角βは、Nλ=sinα+sinβより求めることができる。Nは溝本数密度、λは発振波長である。 The oscillation beam 31 incident on the wavelength dispersion element 33 is diffracted by the wavelength dispersion element 33. When the wavelength dispersion element 33 is a diffraction grating, the diffraction angle β of the wavelength dispersion element 33 can be obtained from Nλ = sin α + sin β. N is the groove number density, and λ is the oscillation wavelength.
 具体例で説明すると、溝本数密度Nを1850[本/mm]とし、発振波長λeを980[nm]とし、入射角α3を65.03度とした場合、Nλ=sinα+sinβより、回折角βは65.03度である。ここで複数のファイバ21のそれぞれのX軸方向における全体幅Dを8[mm]とし、隣接するファイバ21のそれぞれ離間距離dを1[mm]とし、集光光学素子32の焦点距離を100[mm]とし、ファイバ21の出射端21aから集光光学素子32までの距離Lを100[mm]とし、複数の発振ビーム31のそれぞれの発振波長をλaからλiとする。さらに、発振波長λaを988.7[nm]、発振波長λbを986.6[nm]、発振波長λcを984.4[nm]、発振波長λdを982.3[nm]、発振波長λeを980.0[nm]、発振波長λfを977.7[nm]、発振波長λgを975.3[nm]、発振波長λhを972.9[nm]、発振波長λiを970.5[nm]とする。この場合、回折角βは65.03度となり、波長分散素子33上に重畳された出射ビームは、波長分散素子33の波長分散効果により結合されて一本の結合ビーム34となる。 As a specific example, when the groove density N is 1850 [lines / mm], the oscillation wavelength λe is 980 [nm], and the incident angle α3 is 65.03 degrees, the diffraction angle β is Nλ = sin α + sin β. It is 65.03 degrees. Here, the overall width D in the X-axis direction of each of the plurality of fibers 21 is 8 [mm], the separation distance d between adjacent fibers 21 is 1 [mm], and the focal length of the condensing optical element 32 is 100 [mm]. mm], the distance L from the emission end 21a of the fiber 21 to the condensing optical element 32 is 100 [mm], and the oscillation wavelengths of the plurality of oscillation beams 31 are λa to λi. Furthermore, the oscillation wavelength λa is 988.7 [nm], the oscillation wavelength λb is 986.6 [nm], the oscillation wavelength λc is 984.4 [nm], the oscillation wavelength λd is 982.3 [nm], and the oscillation wavelength λe is 980.0 [nm], oscillation wavelength λf of 977.7 [nm], oscillation wavelength λg of 975.3 [nm], oscillation wavelength λh of 972.9 [nm], oscillation wavelength λi of 970.5 [nm] And In this case, the diffraction angle β is 65.03 degrees, and the outgoing beam superimposed on the wavelength dispersion element 33 is combined by the wavelength dispersion effect of the wavelength dispersion element 33 into one combined beam 34.
 結合ビーム34は、不図示の伝送ファイバにより加工ヘッドで伝送され、加工ヘッドから加工対象物へ照射される。 The combined beam 34 is transmitted by a processing head via a transmission fiber (not shown), and is irradiated onto the processing object from the processing head.
 このように実施の形態1に係るレーザ発振器100-1では、半導体レーザスタック10を構成する複数の半導体レーザアレイ11のそれぞれが有する複数の発光点12から出射されるレーザを結合ビーム34として出力できるため、特許文献1に開示されるビーム結合手法を用いた場合に比べて、高出力かつ高輝度のレーザビームを得ることができる。また実施の形態1に係るレーザ発振器100-1と不図示の加工ヘッドとを備えたレーザ加工装置を用いることにより、高出力かつ高輝度のビームを用いて加工対象物の加工が可能である。 As described above, in the laser oscillator 100-1 according to the first embodiment, laser beams emitted from the plurality of light emitting points 12 included in each of the plurality of semiconductor laser arrays 11 constituting the semiconductor laser stack 10 can be output as the combined beam 34. Therefore, compared with the case where the beam combining method disclosed in Patent Document 1 is used, a laser beam with high output and high brightness can be obtained. Further, by using a laser processing apparatus including the laser oscillator 100-1 according to the first embodiment and a processing head (not shown), it is possible to process a processing target using a high-power and high-intensity beam.
実施の形態2.
 図2は実施の形態2に係るレーザ発振器の構成図である。実施の形態2に係るレーザ発振器100-2と実施の形態1に係るレーザ発振器100-1との相違点は、レーザ発振器100-2では、波長分散素子33により合成されたビームの光路上に配置され、波長選択性を有する部分反射ミラー43が用いられていることである。レーザ発振器100-2では、発光点12と部分反射ミラー43との間で外部共振器が構成される。
Embodiment 2. FIG.
FIG. 2 is a configuration diagram of the laser oscillator according to the second embodiment. The difference between the laser oscillator 100-2 according to the second embodiment and the laser oscillator 100-1 according to the first embodiment is that the laser oscillator 100-2 is arranged on the optical path of the beam synthesized by the wavelength dispersion element 33. The partial reflection mirror 43 having wavelength selectivity is used. In the laser oscillator 100-2, an external resonator is configured between the light emitting point 12 and the partial reflection mirror 43.
 複数のファイバ21のそれぞれから出射された共振器内出射ビーム31aは、集光光学素子32により集光され、波長分散素子33上に重畳される。波長分散素子33により回折された複数の共振器内出射ビーム31aのそれぞれは、部分反射ミラー43に垂直に入射した場合のみ発光点12まで帰還する。これにより発光点12と部分反射ミラー43との間でレーザ発振が起こる。そのためレーザ発振器100-2では、部分反射ミラー43に垂直に入射するように複数の共振器内出射ビーム31aのそれぞれの発振波長λaからλiが選択される。 The intracavity outgoing beam 31 a emitted from each of the plurality of fibers 21 is condensed by the condensing optical element 32 and superimposed on the wavelength dispersion element 33. Each of the plurality of intracavity beams 31 a diffracted by the wavelength dispersion element 33 returns to the light emitting point 12 only when it enters the partial reflection mirror 43 perpendicularly. As a result, laser oscillation occurs between the light emitting point 12 and the partial reflection mirror 43. Therefore, in the laser oscillator 100-2, the oscillation wavelengths λa to λi of each of the plurality of intracavity outgoing beams 31a are selected so as to enter the partial reflection mirror 43 perpendicularly.
 レーザ発振器100-2では、複数の共振器内出射ビーム31aのそれぞれが波長分散素子33上に重畳されるように構成されているため、複数の共振器内出射ビーム31aが結合され、一本の共振器内結合ビーム42となり、共振器内結合ビーム42が出力ビーム44として取り出される。 In the laser oscillator 100-2, each of the plurality of intracavity outgoing beams 31a is configured to be superimposed on the wavelength dispersive element 33. Therefore, the plurality of intracavity outgoing beams 31a are combined to form a single beam. The intracavity coupled beam 42 is obtained, and the intracavity coupled beam 42 is extracted as an output beam 44.
 実施の形態2に係るレーザ発振器100-2では、各発光点に応じて、後述するFBG及びVBGといった屈折率分布の異なる素子を用意する必要がないため、当該素子を用いた場合に比べてレーザ発振器100-2の組立時間が短縮され、レーザ発振器100-2の製造コストを低減できる。 In the laser oscillator 100-2 according to the second embodiment, it is not necessary to prepare elements having different refractive index distributions such as FBG and VBG, which will be described later, according to each light emitting point. The assembly time of the oscillator 100-2 is shortened, and the manufacturing cost of the laser oscillator 100-2 can be reduced.
実施の形態3.
 図3は実施の形態3に係るレーザ発振器の構成図である。実施の形態3に係るレーザ発振器100-3と実施の形態1に係るレーザ発振器100-1との相違点は、レーザ発振器100-3では、複数のファイバ21のそれぞれにFBG23が設けられていることである。なおレーザ発振器100-3では、複数の発光点12から出射されるビームの波長が同一でもよいし、複数の発光点12から出射されるビームの波長が異なっていてもよい。
Embodiment 3 FIG.
FIG. 3 is a configuration diagram of a laser oscillator according to the third embodiment. The difference between the laser oscillator 100-3 according to the third embodiment and the laser oscillator 100-1 according to the first embodiment is that, in the laser oscillator 100-3, an FBG 23 is provided for each of the plurality of fibers 21. It is. In the laser oscillator 100-3, the wavelengths of the beams emitted from the plural light emitting points 12 may be the same, or the wavelengths of the beams emitted from the plural light emitting points 12 may be different.
 FBG23は、ガラス内部に周期的な屈折率変化が形成された素子である。屈折率変化は回折格子として働き、回折格子の周期が作るブラッグ反射条件を満たす波長の光のみを反射させることができる。FBG23を外部共振器の部分反射ミラーとして使うことで、特定の波長で発振させることができる。実施の形態3では、複数のFBG23のそれぞれの屈折率変化が異なる周期で形成されているため、それぞれを異なる波長で発振させることができる。 The FBG 23 is an element in which a periodic refractive index change is formed inside the glass. The refractive index change works as a diffraction grating, and can reflect only light having a wavelength that satisfies the Bragg reflection condition created by the period of the diffraction grating. By using the FBG 23 as a partial reflection mirror of the external resonator, it is possible to oscillate at a specific wavelength. In the third embodiment, since the refractive index changes of the plurality of FBGs 23 are formed at different periods, each of them can be oscillated at different wavelengths.
 なお実施の形態3では、FBG23を用いて発振ビーム31の波長を固定させているが、波長固定方法はこれに限定されるものではなく、VBG(Volume Bragg Grating)、DBR(Distributed Bragg Reflector)又はDFB(Distributed Feedback)を用いてもよい。 In the third embodiment, the wavelength of the oscillation beam 31 is fixed using the FBG 23. However, the wavelength fixing method is not limited to this, and VBG (Volume Bragg Grating), DBR (Distributed Bragg Reflector) or DFB (Distributed Feedback) may be used.
 VBGは、FBG23と同様、ガラス内部に周期的な屈折率変化が形成された素子である。VBGを用いる場合、VBGは発光点12とファイバ21との間に配置され、又はVBGは半導体レーザスタック10の背面に配置される。これにより発振波長が固定される。DBRは、発光点12の活性層の導波路の延長線上に回折格子構造を形成するものであり、回折格子の波長選択性により発振波長が固定される。DFBは、発光点12の活性層の上下面に回折格子を形成したものであり、回折格子の波長選択性により発振波長が固定される。ただし実施の形態3のレーザ発振器100-3において、複数のVBG、DBR又はDFBを用いる場合、それぞれの回折格子の間隔を異なるものにする必要がある。 VBG, like FBG23, is an element in which a periodic refractive index change is formed inside the glass. When using VBG, VBG is arrange | positioned between the light emission point 12 and the fiber 21, or VBG is arrange | positioned at the back surface of the semiconductor laser stack 10. FIG. As a result, the oscillation wavelength is fixed. The DBR forms a diffraction grating structure on the extension of the waveguide of the active layer at the light emitting point 12, and the oscillation wavelength is fixed by the wavelength selectivity of the diffraction grating. The DFB is formed by forming diffraction gratings on the upper and lower surfaces of the active layer of the light emitting point 12, and the oscillation wavelength is fixed by the wavelength selectivity of the diffraction grating. However, when a plurality of VBGs, DBRs, or DFBs are used in the laser oscillator 100-3 of the third embodiment, the intervals between the diffraction gratings need to be different.
実施の形態4.
 図4は実施の形態4に係るレーザ発振器の構成図である。実施の形態4に係るレーザ発振器100-4では、図3に示す構成に加えて、複数のFBG延伸機構51が用いられる。複数のFBG延伸機構51のそれぞれは、複数のファイバ21のそれぞれに取り付けられている。FBG延伸機構51は、ファイバ21に設けられた図3のFBG23に跨がって取り付けられている。FBG延伸機構51により、複数のFBG23のそれぞれの内部に有効屈折率nと回折格子周期Λと変化させることができる。FBG延伸機構51の構成例の詳細は後述する。
Embodiment 4 FIG.
FIG. 4 is a configuration diagram of a laser oscillator according to the fourth embodiment. In the laser oscillator 100-4 according to the fourth embodiment, a plurality of FBG stretching mechanisms 51 are used in addition to the configuration shown in FIG. Each of the plurality of FBG stretching mechanisms 51 is attached to each of the plurality of fibers 21. The FBG stretching mechanism 51 is attached across the FBG 23 of FIG. The effective refractive index n and the diffraction grating period Λ can be changed inside each of the plurality of FBGs 23 by the FBG stretching mechanism 51. Details of a configuration example of the FBG stretching mechanism 51 will be described later.
 FBG延伸機構51としては、ファイバ21を物理的に延ばすことによりFBG23を延伸するもの、又はファイバ21に熱を加えてFBG23を延伸するものを例示できる。具体的には、FBG延伸機構51により、FBG23の形成箇所に歪が生じ、又はFBG23の形成箇所に温度変化が生じると、FBG23の有効屈折率と回折格子周期とが変化し、その変化に応じて反射波長が変化する。それに伴い、複数のファイバ21のそれぞれから出射された発振ビーム31の発振波長が変化する。 Examples of the FBG stretching mechanism 51 include one that stretches the FBG 23 by physically extending the fiber 21, and one that stretches the FBG 23 by applying heat to the fiber 21. Specifically, when the FBG stretching mechanism 51 causes distortion in the formation location of the FBG 23 or a temperature change occurs in the formation location of the FBG 23, the effective refractive index and the diffraction grating period of the FBG 23 change. The reflection wavelength changes. Accordingly, the oscillation wavelength of the oscillation beam 31 emitted from each of the plurality of fibers 21 changes.
 これにより複数のファイバ21のそれぞれに、それぞれが異なる回折格子周期を持つFBG23を形成する必要が無く、作製するFBG23の種類を減らすことができる。そのため、それぞれが異なる回折格子周期を持つFBG23を備えたレーザ発振器に比べて、レーザ発振器の製造コストを低減できる。また実施の形態4ではFBG延伸機構51により発振波長を調整できるため、FBG23の製造誤差を許容でき、FBG23の歩留まりが向上し、FBG23を備えたレーザ発振器の製造コストを低減できる。 Thus, it is not necessary to form the FBGs 23 having different diffraction grating periods in each of the plurality of fibers 21, and the types of FBGs 23 to be manufactured can be reduced. Therefore, the manufacturing cost of the laser oscillator can be reduced as compared with the laser oscillator provided with the FBG 23 each having a different diffraction grating period. In the fourth embodiment, since the oscillation wavelength can be adjusted by the FBG stretching mechanism 51, the manufacturing error of the FBG 23 can be allowed, the yield of the FBG 23 is improved, and the manufacturing cost of the laser oscillator provided with the FBG 23 can be reduced.
 なお物理的に歪を与えてFBG23の有効屈折率と回折格子周期を変化させる場合、発振波長を5[nm]前後変化させることができる。実施の形態1では、発振波長λaと発振波長λiとの差分に相当する全体の発振波長幅が18.2[nm]であるが、この場合、3種類から4種類のFBG23を形成すれば事足りることになる。数100[W]から数[kW]の高出力化を図る場合、1つの半導体レーザアレイ11が有する発光点12の数は、数10個から数100個となるが、その場合においても3種類から4種類のFBG23で賄うことができる。 When the effective refractive index and the diffraction grating period of the FBG 23 are changed by applying physical strain, the oscillation wavelength can be changed around 5 [nm]. In the first embodiment, the entire oscillation wavelength width corresponding to the difference between the oscillation wavelength λa and the oscillation wavelength λi is 18.2 [nm]. In this case, it is sufficient to form three to four types of FBGs 23. It will be. When increasing the output from several hundreds [W] to several [kW], the number of light emitting points 12 included in one semiconductor laser array 11 is several tens to several hundreds. Can be covered by four types of FBG23.
 図5は図4に示すFBG延伸機構の構成例を示す図である。図5には、物理的にファイバ21を引っ張ることによりFBG23の形成箇所に歪を生じさせるFBG延伸機構51が例示される。 FIG. 5 is a diagram showing a configuration example of the FBG stretching mechanism shown in FIG. FIG. 5 illustrates an FBG stretching mechanism 51 that causes strain at the formation site of the FBG 23 by physically pulling the fiber 21.
 図5に示すFBG延伸機構51は、ファイバ21と平行に配置される板状のガラス基板51dと、接着剤51aによりガラス基板51dに設置される固定部材51bと、接着剤51aにより固定部材51bから一定距離隔てた位置に設置される調整用部材51cとを備える。固定部材51b及び調整用部材51cはFBG23を挟むように配置される。FBG23の一端側のファイバ21は、接着剤51aにより固定部材51bに固定される。FBG23の他端側のファイバ21は、接着剤51aにより調整用部材51cに固定される。固定部材51b及び調整用部材51cの材料としてはガラスを例示できる。これはファイバ21と固定部材51bと調整用部材51cとのそれぞれの熱膨張係数を揃えたほうが望ましいためである。 The FBG stretching mechanism 51 shown in FIG. 5 includes a plate-like glass substrate 51d arranged in parallel with the fiber 21, a fixing member 51b installed on the glass substrate 51d by an adhesive 51a, and an adhesive 51a from the fixing member 51b. And an adjustment member 51c installed at a position separated by a certain distance. The fixing member 51b and the adjustment member 51c are arranged so as to sandwich the FBG 23. The fiber 21 on one end side of the FBG 23 is fixed to the fixing member 51b by an adhesive 51a. The fiber 21 on the other end side of the FBG 23 is fixed to the adjustment member 51c with an adhesive 51a. An example of the material of the fixing member 51b and the adjustment member 51c is glass. This is because it is desirable to align the thermal expansion coefficients of the fiber 21, the fixing member 51b, and the adjusting member 51c.
 このように構成されたFBG延伸機構51において発振波長を調整する場合、不図示のステージから伸びる部材で調整用部材51cをスライドさせ、特定の発振波長となったところで調整用部材51cが接着剤51aによりガラス基板51dに固定される。上記のステージとしては、1軸方向に駆動する電動ステージを例示できる。図5に示すFBG延伸機構51では、調整用部材51cの位置を調整するだけでファイバ21のFBG23が形成されている箇所に歪を生じさせることができるため、ボールネジ機構のように複雑な機構を用いることなく発振波長を調整できる。従ってレーザ発振器の製造コストを低減できると共に、レーザ発振器の長期使用時においても発振波長の変動が小さく、高出力かつ高輝度のビームを維持できる。 When adjusting the oscillation wavelength in the FBG stretching mechanism 51 configured as described above, the adjustment member 51c is slid with a member extending from a stage (not shown), and the adjustment member 51c is bonded to the adhesive 51a when a specific oscillation wavelength is reached. Is fixed to the glass substrate 51d. An example of the stage is an electric stage that is driven in one axial direction. In the FBG stretching mechanism 51 shown in FIG. 5, distortion can be generated at the location where the FBG 23 of the fiber 21 is formed simply by adjusting the position of the adjustment member 51 c, so that a complicated mechanism such as a ball screw mechanism is used. The oscillation wavelength can be adjusted without using it. Therefore, the manufacturing cost of the laser oscillator can be reduced, and even when the laser oscillator is used for a long time, the fluctuation of the oscillation wavelength is small, and a high-power and high-luminance beam can be maintained.
実施の形態5.
 図6は実施の形態5に係るレーザ発振器の構成図である。実施の形態2に係るレーザ発振器100-2と実施の形態5に係るレーザ発振器100-5との相違点は、レーザ発振器100-5では、部分反射ミラー43が省かれ、回折格子である波長分散素子33がリトロー配置されていることである。リトロー配置は、想定される波長において複数のレーザビームのそれぞれの2次回折光の回折角と複数のレーザビームのそれぞれの入射角とが一致するように、回折格子の溝本数及び設置角度が設定されている配置を指す。リトロー配置された波長分散素子33を備えるレーザ発振器100-5では、波長分散素子33で発生する2次回折光が入射ビームに沿って半導体レーザスタック10に帰還するフィードバック光となり、複数の半導体レーザアレイ11のそれぞれと波長分散素子33との間でビーム毎に各々異なる波長で動作する共振器が構成される。またレーザビームの一次回折光がレーザ発振器100-5の出力ビームとして使用される。
Embodiment 5 FIG.
FIG. 6 is a configuration diagram of a laser oscillator according to the fifth embodiment. The difference between the laser oscillator 100-2 according to the second embodiment and the laser oscillator 100-5 according to the fifth embodiment is that, in the laser oscillator 100-5, the partial reflection mirror 43 is omitted and the wavelength dispersion is a diffraction grating. The element 33 is arranged in a Littrow arrangement. In the Littrow arrangement, the number of grooves and the installation angle of the diffraction grating are set so that the diffraction angles of the second-order diffracted lights of the plurality of laser beams and the incident angles of the plurality of laser beams coincide with each other at an assumed wavelength. Refers to the arrangement. In the laser oscillator 100-5 including the wavelength dispersion element 33 arranged in the Littrow arrangement, the second-order diffracted light generated by the wavelength dispersion element 33 becomes feedback light that returns to the semiconductor laser stack 10 along the incident beam, and the plurality of semiconductor laser arrays 11 Resonators that operate at different wavelengths for each beam are configured between each of these and the wavelength dispersion element 33. The first-order diffracted light of the laser beam is used as the output beam of the laser oscillator 100-5.
 実施の形態2に係るレーザ発振器100-2では、発光点12と部分反射ミラー43との間で外部共振器が構成され、波長分散素子33で発生するレーザビームの一次回折光に対して部分反射ミラー43が設置される。部分反射ミラー43で反射されたビームは、半導体レーザスタック10に戻り、部分反射ミラー43の透過ビームがレーザ発振器100-2の出力ビームとして使用される。 In the laser oscillator 100-2 according to the second embodiment, an external resonator is configured between the light emitting point 12 and the partial reflection mirror 43, and partial reflection is performed on the first-order diffracted light of the laser beam generated by the wavelength dispersion element 33. A mirror 43 is installed. The beam reflected by the partially reflecting mirror 43 returns to the semiconductor laser stack 10, and the transmitted beam of the partially reflecting mirror 43 is used as the output beam of the laser oscillator 100-2.
 実施の形態5に係るレーザ発振器100-5では、波長分散素子33で発生するレーザビームの二次回折光が半導体レーザスタック10に戻る。一次回折光は、波長分散素子33の回折角βが0度で回折される。すなわち一次回折光は、回折格子に対して垂直に出射される。レーザ発振器100-5の出力ビームとして使用されるのは、この一次回折光である。複数のレーザビームが存在する場合でも、一次回折光は、回折格子と垂直に出射されるために、複数のレーザビームを一本のビームに重畳することができる。 In the laser oscillator 100-5 according to the fifth embodiment, the second-order diffracted light of the laser beam generated by the wavelength dispersion element 33 returns to the semiconductor laser stack 10. The first-order diffracted light is diffracted when the diffraction angle β of the wavelength dispersion element 33 is 0 degree. That is, the first-order diffracted light is emitted perpendicular to the diffraction grating. It is this first-order diffracted light that is used as the output beam of the laser oscillator 100-5. Even when there are a plurality of laser beams, the first-order diffracted light is emitted perpendicular to the diffraction grating, so that the plurality of laser beams can be superimposed on one beam.
 以上に説明したように実施の形態5に係るレーザ発振器100-5では、波長分散素子33が、複数のビームの一部を第1のレーザビームとしてレーザスタック10へ戻し、複数のビームの一部を1つの光軸を有する第2のレーザビームとして出力し、波長分散素子33は、第1のレーザビームに対してリトロー配置されている。実施の形態5では、部分反射ミラー43が使用されないため、レーザ発振器100-5の構成が簡素化され、レーザ発振器100-5を小型化できるのみでなく、共振器内の損失が低減され、高効率のレーザ発振が可能となる。 As described above, in the laser oscillator 100-5 according to the fifth embodiment, the wavelength dispersion element 33 returns a part of the plurality of beams to the laser stack 10 as the first laser beam, and a part of the plurality of beams. Are output as a second laser beam having one optical axis, and the wavelength dispersion element 33 is arranged in a Littrow arrangement with respect to the first laser beam. In the fifth embodiment, since the partial reflection mirror 43 is not used, the configuration of the laser oscillator 100-5 is simplified, and not only the laser oscillator 100-5 can be miniaturized, but also the loss in the resonator is reduced. Efficient laser oscillation is possible.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 10 半導体レーザスタック、11 半導体レーザアレイ、12 発光点、21 ファイバ、21a 出射端、21b 終端領域、23 FBG、31 発振ビーム、31a 共振器内出射ビーム、32 集光光学素子、33 波長分散素子、34 結合ビーム、42 共振器内結合ビーム、43 部分反射ミラー、44 出力ビーム、51 FBG延伸機構、51a 接着剤、51b 固定部材、51c 調整用部材、51d ガラス基板、100-1,100-2,100-3,100-4,100-5 レーザ発振器。 10 semiconductor laser stack, 11 semiconductor laser array, 12 emission point, 21 fiber, 21a exit end, 21b termination region, 23 FBG, 31 oscillation beam, 31a exit beam in resonator, 32 condensing optical element, 33 wavelength dispersion element, 34 coupled beam, 42 intracavity coupled beam, 43 partial reflection mirror, 44 output beam, 51 FBG stretching mechanism, 51a adhesive, 51b fixing member, 51c adjustment member, 51d glass substrate, 100-1, 100-2, 100-3, 100-4, 100-5 laser oscillator.

Claims (8)

  1.  互いに波長の異なるビームを発生する複数の発光点を遅軸方向に有するレーザアレイを速軸方向に複数積層して構成されるレーザスタックと、
     前記複数の発光点のそれぞれに取り付けられた複数のファイバと、
     波長分散素子と、
     前記複数のファイバから出射されたビームを前記波長分散素子上で重畳するように集光する光学素子と
     を備え、
     前記波長分散素子は、前記光学素子により複数の前記ビームが重畳された位置に設置されると共に、集光した複数の前記速軸方向及び遅軸方向のビームを合成して出力することを特徴とするレーザ発振器。
    A laser stack configured by laminating a plurality of laser arrays in the slow axis direction having a plurality of light emitting points that generate beams having different wavelengths from each other; and
    A plurality of fibers attached to each of the plurality of light emitting points;
    A wavelength dispersion element;
    An optical element that focuses the beams emitted from the plurality of fibers so as to be superimposed on the wavelength dispersion element, and
    The wavelength dispersive element is installed at a position where the plurality of beams are superimposed by the optical element, and combines and outputs a plurality of condensed beams in the fast axis direction and the slow axis direction. Laser oscillator.
  2.  前記波長分散素子により合成された前記ビームの光路上に配置され、波長選択性を有する部分反射ミラーを備えることを特徴とする請求項1に記載のレーザ発振器。 The laser oscillator according to claim 1, further comprising a partial reflection mirror disposed on an optical path of the beam synthesized by the wavelength dispersion element and having wavelength selectivity.
  3.  複数の発光点を遅軸方向に有するレーザアレイを速軸方向に複数積層して構成されるレーザスタックと、
     前記複数の発光点のそれぞれに取り付けられた複数のファイバと、
     波長分散素子と、
     前記複数のファイバから出射されたビームを前記波長分散素子上で重畳するように集光する光学素子と
     を備え、
     前記波長分散素子は、前記光学素子により複数の前記ビームで重畳された位置に設置されると共に、集光した複数の前記速軸方向及び遅軸方向のビームを合成して出力し、
     前記複数のファイバは、波長選択性を有し、
     前記波長選択性は、前記複数のファイバの内部に形成された回折格子により生じることを特徴とするレーザ発振器。
    A laser stack configured by laminating a plurality of laser arrays having a plurality of light emitting points in the slow axis direction in the fast axis direction;
    A plurality of fibers attached to each of the plurality of light emitting points;
    A wavelength dispersion element;
    An optical element that focuses the beams emitted from the plurality of fibers so as to be superimposed on the wavelength dispersion element, and
    The wavelength dispersion element is installed at a position where the plurality of beams are superimposed by the optical element, and combines and outputs a plurality of condensed beams in the fast axis direction and the slow axis direction,
    The plurality of fibers have wavelength selectivity;
    The laser oscillator according to claim 1, wherein the wavelength selectivity is generated by a diffraction grating formed inside the plurality of fibers.
  4.  複数の発光点を遅軸方向に有するレーザアレイを速軸方向に複数積層して構成されるレーザスタックと、
     前記複数の発光点のそれぞれに取り付けられた複数のファイバと、
     波長分散素子と、
     前記複数のファイバから出射されたビームを前記波長分散素子上で重畳するように集光する光学素子と
     を備え、
     前記波長分散素子は、前記光学素子により複数の前記ビームで重畳された位置に設置されると共に、集光した複数の前記速軸方向及び遅軸方向のビームを合成して出力し、
     前記複数のファイバのそれぞれには、ファイバブラッググレーティングが設けられていることを特徴とするレーザ発振器。
    A laser stack configured by laminating a plurality of laser arrays having a plurality of light emitting points in the slow axis direction in the fast axis direction;
    A plurality of fibers attached to each of the plurality of light emitting points;
    A wavelength dispersion element;
    An optical element that focuses the beams emitted from the plurality of fibers so as to be superimposed on the wavelength dispersion element, and
    The wavelength dispersion element is installed at a position where the plurality of beams are superimposed by the optical element, and combines and outputs a plurality of condensed beams in the fast axis direction and the slow axis direction,
    Each of the plurality of fibers is provided with a fiber Bragg grating.
  5.  前記ファイバブラッググレーティングを延伸する延伸機構を備え、
     前記延伸機構は、前記ファイバを物理的に延ばすことにより前記ファイバブラッググレーティングを延伸することを特徴とする請求項4に記載のレーザ発振器。
    A drawing mechanism for drawing the fiber Bragg grating;
    The laser oscillator according to claim 4, wherein the drawing mechanism extends the fiber Bragg grating by physically extending the fiber.
  6.  前記ファイバブラッググレーティングを延伸する延伸機構を備え、
     前記延伸機構は、前記ファイバに熱を加えることにより前記ファイバブラッググレーティングを延伸することを特徴とする請求項4に記載のレーザ発振器。
    A drawing mechanism for drawing the fiber Bragg grating;
    The laser oscillator according to claim 4, wherein the drawing mechanism extends the fiber Bragg grating by applying heat to the fiber.
  7.  前記波長分散素子は、複数の前記ビームの一部を第1のレーザビームとして前記レーザスタックへ戻し、複数の前記ビームの一部を1つの光軸を有する第2のレーザビームとして出力し、
     前記波長分散素子は、前記第1のレーザビームに対してリトロー配置されていることを特徴とする請求項1に記載のレーザ発振器。
    The wavelength dispersion element returns a part of the plurality of beams as a first laser beam to the laser stack, and outputs a part of the plurality of beams as a second laser beam having one optical axis,
    The laser oscillator according to claim 1, wherein the wavelength dispersion element is arranged in a Littrow arrangement with respect to the first laser beam.
  8.  請求項1から7の何れか一項に記載のレーザ発振器を備えたことを特徴とするレーザ加工装置。 A laser processing apparatus comprising the laser oscillator according to any one of claims 1 to 7.
PCT/JP2017/011160 2017-03-21 2017-03-21 Laser oscillator, and laser processing device WO2018173109A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/011160 WO2018173109A1 (en) 2017-03-21 2017-03-21 Laser oscillator, and laser processing device
JP2017555815A JPWO2018173109A1 (en) 2017-03-21 2017-03-21 Laser oscillator and laser processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/011160 WO2018173109A1 (en) 2017-03-21 2017-03-21 Laser oscillator, and laser processing device

Publications (1)

Publication Number Publication Date
WO2018173109A1 true WO2018173109A1 (en) 2018-09-27

Family

ID=63586498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011160 WO2018173109A1 (en) 2017-03-21 2017-03-21 Laser oscillator, and laser processing device

Country Status (2)

Country Link
JP (1) JPWO2018173109A1 (en)
WO (1) WO2018173109A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020195659A1 (en) * 2019-03-25 2020-10-01
JP2020202281A (en) * 2019-06-10 2020-12-17 日亜化学工業株式会社 Light source device
US11757258B2 (en) 2020-02-25 2023-09-12 Nichia Corporation Light source device and direct diode laser system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165393A (en) * 2002-11-13 2004-06-10 Shimadzu Corp Wavelength conversion laser equipment
WO2006116477A2 (en) * 2005-04-25 2006-11-02 Massachusetts Institute Of Technology Multi-wavelength beam combiner
JP2007027306A (en) * 2005-07-14 2007-02-01 Sun Tec Kk Tunable laser light source
JP2011205061A (en) * 2010-03-04 2011-10-13 Komatsu Ltd Laser device, laser system, and extreme ultraviolet light generation apparatus
WO2015115301A1 (en) * 2014-01-30 2015-08-06 三菱電機株式会社 Beam coupling device and output recovery method for beam coupling device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165393A (en) * 2002-11-13 2004-06-10 Shimadzu Corp Wavelength conversion laser equipment
WO2006116477A2 (en) * 2005-04-25 2006-11-02 Massachusetts Institute Of Technology Multi-wavelength beam combiner
JP2007027306A (en) * 2005-07-14 2007-02-01 Sun Tec Kk Tunable laser light source
JP2011205061A (en) * 2010-03-04 2011-10-13 Komatsu Ltd Laser device, laser system, and extreme ultraviolet light generation apparatus
WO2015115301A1 (en) * 2014-01-30 2015-08-06 三菱電機株式会社 Beam coupling device and output recovery method for beam coupling device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020195659A1 (en) * 2019-03-25 2020-10-01
JP7440492B2 (en) 2019-03-25 2024-02-28 パナソニックホールディングス株式会社 semiconductor laser equipment
JP2020202281A (en) * 2019-06-10 2020-12-17 日亜化学工業株式会社 Light source device
JP7280498B2 (en) 2019-06-10 2023-05-24 日亜化学工業株式会社 Light source device
US11757258B2 (en) 2020-02-25 2023-09-12 Nichia Corporation Light source device and direct diode laser system

Also Published As

Publication number Publication date
JPWO2018173109A1 (en) 2019-03-28

Similar Documents

Publication Publication Date Title
US11526019B2 (en) High brightness, monolithic, multispectral semiconductor laser
JP6157194B2 (en) Laser apparatus and light beam wavelength coupling method
JP7053993B2 (en) Light source device
US20060280209A1 (en) Beam combining methods and devices with high output intensity
CN107624207B (en) Dense wavelength beam combining with variable feedback control
WO2017022142A1 (en) Semiconductor laser device
JP6227212B1 (en) Laser oscillator
US10025107B2 (en) Two-dimensional coherent beam combination using circular or spiral diffraction grating
CN102208753A (en) External cavity semiconductor laser with multi-wavelength combination
US8817832B2 (en) Multi-wavelength diode laser array
WO2018173109A1 (en) Laser oscillator, and laser processing device
WO2017026358A1 (en) Wavelength-locked beam coupling-type semiconductor laser light source
GB2589779A (en) Methods and systems for spectral beam-combining
JP2016224376A (en) Laser apparatus
JP6227216B1 (en) Laser processing equipment
JP2022508765A (en) Laser system with stepped slow axis collimator
US20170222401A1 (en) Dense wavelength beam combining with variable feedback control
JP2016096333A (en) Semiconductor laser device
JP2022523693A (en) Systems and methods for wavelength beam coupled resonator alignment
WO2019187784A1 (en) Optical device
JP4816855B2 (en) Light source device
CN106663917B (en) Laser beam generating apparatus and method for adjusting wavelength of laser beam
JP6949289B1 (en) Laser device
JPWO2020081335A5 (en)
KR20240006562A (en) EUV excitation light source and EUV light source

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017555815

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902391

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17902391

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载