+

WO2018171800A1 - 参考信号的处理方法及装置 - Google Patents

参考信号的处理方法及装置 Download PDF

Info

Publication number
WO2018171800A1
WO2018171800A1 PCT/CN2018/080499 CN2018080499W WO2018171800A1 WO 2018171800 A1 WO2018171800 A1 WO 2018171800A1 CN 2018080499 W CN2018080499 W CN 2018080499W WO 2018171800 A1 WO2018171800 A1 WO 2018171800A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
phase tracking
port
tracking reference
ports
Prior art date
Application number
PCT/CN2018/080499
Other languages
English (en)
French (fr)
Inventor
梅猛
蒋创新
鲁照华
陈艺戬
张淑娟
弓宇宏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018171800A1 publication Critical patent/WO2018171800A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present disclosure relates to the field of communications, for example, to a method and apparatus for processing a reference signal.
  • NR New Radio
  • the use of high frequency bands has become a key research area of NR technology, and with the application of multi-beamforming, multi-user reuse scenarios have also become research. Focus. Since the ability of data demodulation greatly affects the output quality of multi-user transmission, the design of reference signals related to demodulation also affects the ability of data demodulation to a large extent, and there are phase noises in different degrees due to high frequency bands. Or Doppler frequency domain and other factors that seriously affect data demodulation, so the compensation for phase noise or Doppler frequency domain is also the focus of high frequency band research.
  • Phase 3 tracking reference signals have been used for phase noise compensation at the 3rd Generation Partnership Project (3GPP) conference, and there are a variety of flexible design phase tracking reference signal pattern designs.
  • 3GPP 3rd Generation Partnership Project
  • the design of more port demodulation reference signals has been adopted at the 3GPP conference, and the design of the demodulation reference signal has more flexibility. Therefore, in order to achieve more compensation for the phase noise of the demodulation reference signal, it is necessary to More port demodulation reference signals are designed with corresponding phase tracking reference signals.
  • the pattern of the phase tracking reference signal of the single user scenario and the multi-user multiplexing scenario is different, and the design of the phase tracking reference signal of the multi-user multiplexing scenario needs to consider the interference effect on other users.
  • the base station needs to allocate different phase tracking reference signal resources to different users according to the requirements of different phase tracking reference signals of different users.
  • the phase tracking reference signal designed according to the information of the relevant demodulation reference signal cannot effectively avoid the influence of the phase tracking reference signal between multiple users. For more demodulation reference signal ports, The overhead of the phase tracking reference signal cannot be controlled.
  • the embodiment of the invention provides a method and a device for processing a reference signal, which can design a corresponding phase tracking reference signal for specific information of the demodulation reference signal.
  • a method for processing a reference signal including:
  • the first communication node uses the Mth subset of the demodulation reference signal resource to indicate a Mth subset of the phase tracking reference signal resource; wherein the demodulation reference signal resource includes M subsets, M is a positive integer, and The M subsets of the demodulation reference signal resources are transmitted within a frequency domain of each subset of phase tracking reference signal resources.
  • another method for processing a reference signal comprising: configuring, by a first communication node, a phase tracking reference signal resource set for a second communication node; and demodulating the reference signal resource by the first communication node
  • the allocation status indicates the usage of each resource in the phase tracking reference signal resource set; wherein the phase tracking reference signal resource includes at least one of the following parameters: port number, port number, time domain density, frequency domain density, Patterns and how to reuse between ports.
  • a method for processing a reference signal, the phase tracking reference signal hopping on different resources wherein the resource comprises at least one of: a time unit, a frequency domain unit, a port, And precoding.
  • a method for processing a reference signal comprising: a second communication node receiving a phase tracking reference signal resource set configured by a first communication node; and the second communication node receiving the first The indication of the usage of each resource in the phase tracking reference signal resource set by the communication node by demodulating the allocation of the reference signal resource; wherein the reference signal resource includes at least one of the following parameters: port number, port serial number, Time domain density, frequency domain density, pattern, and multiplexing between ports.
  • a processing apparatus for a reference signal which is applied to a first communication node, and includes: a configuration module configured to configure a second communication node phase tracking reference signal resource set; an indication module, setting In order to indicate the usage of each resource in the phase tracking reference signal resource set by demodulating the allocation of reference signal resources; wherein the phase tracking reference signal resource includes at least one of the following parameters: port number, port number, time Domain density, frequency domain density, pattern, and multiplexing between ports.
  • a processing apparatus for providing another reference signal, applied to a first communication node includes: an indication module, configured to use a Mth subset of demodulation reference signal resources to indicate a phase tracking reference signal resource The Mth subset; wherein the demodulation reference signal resource comprises M subsets, M is a positive integer, and the demodulation reference signal is transmitted in a frequency range of each subset of the phase tracking reference signal resources M subsets of resources.
  • a processing apparatus for a further reference signal which is applied to the second communication node, and includes: a first receiving module, configured to receive a phase tracking reference signal resource set configured by the first communication node; a second receiving module, configured to receive, by the first communications node, an indication of usage of each resource in the phase tracking reference signal resource set by demodulating a distribution of reference signal resources; wherein the phase tracking reference signal
  • the resource includes at least one of the following parameters: port number, port number, time domain density, frequency domain density, pattern, and multiplexing between ports.
  • a storage medium is also provided.
  • the storage medium is arranged to store program code for performing the following steps:
  • the usage of each resource within the set of phase tracking reference signal resources is indicated by the allocation of demodulation reference signal resources.
  • An embodiment of the present invention provides a method and a device for processing a reference signal, where a first communication node is configured to provide a second communication node with a phase tracking reference signal resource set; and the first communication node indicates by using a demodulation reference signal resource.
  • the phase tracking uses the usage of each resource in the reference signal resource set; wherein the demodulation reference signal resource includes at least one of the following parameters: port number, port number, time domain density, frequency domain density, pattern, and port.
  • FIG. 1 is a flow chart of a method for processing a reference signal according to an embodiment of the present invention
  • FIG. 2 is a flow chart of another method for processing a reference signal according to an embodiment of the present invention.
  • FIG. 3 is a structural block diagram of a processing device for a reference signal according to an embodiment of the present invention.
  • FIG. 4 is a structural block diagram of another apparatus for processing a reference signal according to an embodiment of the present invention.
  • FIG. 5a is a diagram showing a zero power phase tracking reference signal in the embodiment of the present invention.
  • FIG. 5b is a schematic diagram of a zero power phase tracking reference signal according to an embodiment of the present invention.
  • 5c is a mapping diagram of phase tracking reference signals of different subsets of an embodiment of the present invention.
  • FIG. 5d is a schematic diagram of a port set of a phase tracking reference signal according to an embodiment of the present invention.
  • 5e is a schematic diagram of a phase tracking reference signal pattern of different densities according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of usage of PTRS resources outside a PTRS resource set according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of cross mapping of a subset of PTRS ports according to an embodiment of the present invention.
  • Figure 10a is a PTRS pattern a of a non-port set indication according to an embodiment of the present invention.
  • Figure 10b is a PTRS pattern b indicating a non-port set indication according to an embodiment of the present invention
  • 11 is a phase tracking reference signal pattern of different densities according to an embodiment of the present invention.
  • 13 is a PTRS pattern of the terminal 1 according to an embodiment of the present invention.
  • Figure 14a is a PTRS pattern a of an embodiment of the present invention.
  • Figure 14b is a PTRS pattern b of an embodiment of the present invention.
  • 15 is a PTRS pattern corresponding to a multi-column DMRS according to an embodiment of the present invention
  • FIG. 16 is a diagram corresponding to an orthogonal port DMRS according to Embodiment 12 of the present invention.
  • FIG. 17a is a PTRS pattern of occupying 7 time domain symbols in each subframe according to an embodiment of the present invention.
  • 17b is a PTRS pattern in which a DMRS does not occupy 12 subcarriers in each PRB according to an embodiment of the present invention
  • 18 is a diagram showing eight ports of reference signals in an embodiment of the present invention.
  • 18a is a sequence diagram of a phase tracking reference signal port according to an embodiment of the present invention.
  • 19 is a sequence diagram of four phase tracking reference signal ports according to an embodiment of the present invention.
  • FIG. 20 is a schematic diagram of ports of a phase tracking reference signal corresponding to different demodulation reference signal ports on different time units according to an embodiment of the present invention
  • Figure 21 is a diagram of hopping on different slots or sub-bands in accordance with an embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for processing a reference signal according to an embodiment of the present invention. As shown in FIG. 1, the process includes the following steps:
  • Step S102 the first communication node is configured to provide a second communication node phase tracking reference signal resource set.
  • the set of phase tracking reference signal resources may be configured by higher layer signaling.
  • Step S104 the first communication node indicates the usage of each resource in the phase tracking reference signal resource set by demodulating the allocation condition of the reference signal resource.
  • the phase tracking reference signal resource includes at least one of the following parameters: port number, port number, time domain density, frequency domain density, pattern, and multiplexing mode between ports.
  • the reference signal resources include phase tracking reference signal resources and demodulation reference signal resources.
  • the first communication node is configured to the second communication node phase tracking reference signal resource set; the first communication node indicates each of the phase tracking reference signal resource sets by demodulating the allocation of the reference signal resource The use of the resource; wherein the demodulation reference signal resource includes at least one of the following parameters: port number, port number, time domain density, frequency domain density, pattern, and multiplexing mode between ports, which solves the related art.
  • the technical problem of the corresponding phase tracking reference signal cannot be designed for the specific information of the demodulation reference signal.
  • FIG. 2 is a flowchart of another method for processing a reference signal according to an embodiment of the present invention. As shown in FIG. 2, the process includes the following steps:
  • Step S202 the second communication node receives the phase tracking reference signal resource set configured by the first communication node
  • Step S204 The second communication node receives an indication that the first communication node uses the allocation of the demodulated reference signal resource to the usage of each resource in the phase tracking reference signal resource set.
  • the phase tracking reference signal resource includes At least one of the following parameters: port number, port number, time domain density, frequency domain density, pattern, and multiplexing between ports.
  • the phase tracking reference signal may also be referred to as a phase noise reference signal, or a reference signal for phase tracking or phase compensation.
  • This embodiment further provides another method for processing a reference signal, including:
  • the first communication node uses the Mth subset of the demodulation reference signal resource to indicate a Mth subset of the phase tracking reference signal resource; wherein the demodulation reference signal resource includes M subsets, M is a positive integer, and The M subsets of the demodulation reference signal resources are transmitted within a frequency domain of each subset of phase tracking reference signal resources.
  • the first communication node uses the first subset of the demodulation reference signal resources to indicate a first subset of the phase tracking reference signal resources, and to use the Mth sub-module of the demodulation reference signal resource a set of Mth segments indicating the phase tracking reference signal resource, wherein the demodulation reference signal resource comprises M subsets, and the frequency domain is transmitted in each subset frequency domain of the phase tracking reference signal resource Demodulate M subsets of reference signal resources.
  • M is a positive integer.
  • the ports of the M subsets of the demodulation reference signal resources are code division multiplexed in the time domain or time division multiplexed in the time domain, and ports of the M subsets of the phase tracking reference signal resources Frequency division multiplexing.
  • the ports of the M subsets of the demodulation reference signal resources when the ports of the M subsets of the demodulation reference signal resources are time division multiplexed in the time domain, the ports of the M subsets of the demodulation reference signal resources occupy different time domain symbols.
  • different second communication nodes may correspond to phase tracking reference signals of different port numbers.
  • the time domain frequency domain density of each phase tracking reference signal or each set of phase tracking reference signals within the set of phase tracking reference signal resources is configured by the first communication node.
  • the execution body of the foregoing steps may be a base station or the like, but is not limited thereto.
  • the first communication node transmits or receives data on a phase tracking reference signal resource outside of the set of phase tracking reference signal resources.
  • the first communication node does not transmit a signal or transmit a reference signal of zero power on the phase tracking reference signal resource outside the set of phase tracking reference signal resources.
  • the phase tracking reference signal resource set when the number of ports of the demodulation reference signal resource is greater than the first threshold, the phase tracking reference signal resource set is not enabled, or the number of ports of the demodulation reference signal resource is less than the second. At the threshold, the phase tracking reference signal resource set is enabled.
  • the first communication node when the phase tracking reference signal resource set is enabled, notifies the second communication node with the phase tracking reference signal resource set by using indication signaling of the demodulation reference signal resource.
  • the non-zero power phase tracking reference signal transmission resource when the phase tracking reference signal resource set is enabled, notifies the second communication node with the phase tracking reference signal resource set by using indication signaling of the demodulation reference signal resource.
  • the first communication node transmits a phase tracking reference signal of non-zero power and zero power within the set of phase tracking reference signal resources.
  • the first communication node is configured to the second communication node phase tracking reference signal resource set, the first communication node notifying the second communication node of the position of the phase tracking reference signal resource set by using the dynamic signaling, where
  • the dynamic signaling includes at least one of the following: quasi co-located QCL indication information, scrambling sequence, and physical layer dynamic signaling.
  • the first communication node is configured to the second communication node
  • the number of ports included in the phase tracking reference signal resource set is the number of ports using the phase tracking reference signal, or according to the phase tracking reference signal port number and demodulation reference
  • the ratio value of the number of signal ports is calculated, and the number of the demodulation reference signal ports is an integer greater than or equal to 1. If the number of ports of the demodulation reference signal is 8, and the P value is configured to be 1/2, the number of ports that can obtain the phase tracking reference signal is 4.
  • the time domain frequency domain density of each phase tracking reference signal or each set of phase tracking reference signals within the set of phase tracking reference signal resources is configurable, such as a first communication node configuration.
  • the set of phase tracking reference signal resources comprises: a predefined resource configuration.
  • the set of phase tracking reference signal resources is mapped by the first communication node to different sets of resources by means of a bitmap bitmap.
  • the embodiment further provides a method for processing a reference signal, including: the phase tracking reference signal hopping on different resources, wherein the resource includes at least one of the following: a time unit, a frequency domain unit, a port, and a precoding. the way.
  • the relative position of the pattern of the phase tracking reference signal is associated with the sequence number of the time unit or the frequency domain unit.
  • the rules for phase tracking reference signal resource hopping are different for different first communication nodes or second communication nodes.
  • the N demodulation reference signal ports are associated with one phase tracking reference signal port, there are N types of precoding methods for the phase tracking reference signals, wherein an error! The reference source was not found.
  • the first communication node respectively configures a correspondence relationship between the demodulation reference signal port and the phase tracking reference signal port for different time units or different frequency domain units; wherein the phase tracking reference signal port and the demodulation reference signal port
  • the corresponding relationship is that the phase tracking reference signal port and the demodulation reference signal port use the same precoding mode, and the correspondence between the phase tracking reference signal port and the demodulation reference signal port is related to the sequence number of the time unit or the frequency domain unit.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM or RAM, a disk,
  • a storage medium such as ROM or RAM, a disk
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods of various embodiments of the present invention.
  • the embodiment of the present invention provides a processing device for a reference signal, which is used to implement the foregoing embodiments and implementation manners, and has not been described again.
  • the term "module” may implement a combination of at least one of software and hardware for a predetermined function.
  • the devices described in the following embodiments are implemented in software, hardware, or a combination of software and hardware, is also possible and conceivable.
  • FIG. 3 is a structural block diagram of a processing apparatus for a reference signal according to an embodiment of the present invention, which is applied to a first communication node, as shown in FIG. 3, the apparatus includes:
  • the configuration module 30 is configured to configure a second communication node phase tracking reference signal resource set
  • the indicating module 32 is configured to indicate, by using an allocation condition of the demodulation reference signal resource, a usage of each resource in the phase tracking reference signal resource set;
  • the phase tracking reference signal resource includes at least one of the following parameters: port number, port number, time domain density, frequency domain density, pattern, and multiplexing mode between ports.
  • the embodiment further provides another processing device for the reference signal, which is applied to the first communication node, and includes: an indication module, configured to use the Mth subset of the demodulation reference signal resource to indicate the Mth subset of the phase tracking reference signal resource .
  • the demodulation reference signal resource includes M subsets, M is a positive integer, and M subsets of the demodulation reference signal resources are transmitted in a frequency range of each subset of the phase tracking reference signal resources. .
  • the indication module is further configured to use the first subset of the demodulation reference signal resources to indicate a first subset of the phase tracking reference signal resources, and to use the Mth of the demodulation reference signal resources
  • the subset indicates the Mth subset of the phase tracking reference signal resource
  • the demodulation reference signal resource includes M subsets, and each of the subsets of the phase tracking reference signal resources has a frequency domain Describe M subsets of reference signal resources.
  • M is a positive integer.
  • FIG. 4 is a structural block diagram of another apparatus for processing a reference signal according to an embodiment of the present invention. As shown in FIG. 4, the apparatus includes:
  • the first receiving module 40 is configured to receive a phase tracking reference signal resource set configured by the first communications node;
  • the second receiving module 42 is configured to receive, by the first communications node, an indication of the usage of each resource in the phase tracking reference signal resource set by demodulating the allocation of the reference signal resource;
  • the phase tracking reference signal resource includes at least one of the following parameters: port number, port number, time domain density, frequency domain density, pattern, and multiplexing mode between ports.
  • the first communication node transmits or receives data on a phase tracking reference signal resource outside of the set of phase tracking reference signal resources.
  • the first communication node does not transmit a signal or transmit a reference signal of zero power on the phase tracking reference signal resource outside the set of phase tracking reference signal resources.
  • the different second communication nodes correspond to phase tracking reference signals of different port numbers.
  • the phase tracking reference signal resource set when the number of ports of the demodulation reference signal resource is greater than the first threshold, the phase tracking reference signal resource set is not enabled, or when the number of ports of the demodulation reference signal resource is less than the second threshold, the phase tracking reference is used. Signal resource collection is enabled.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are arbitrary.
  • the combined forms are located in different processors.
  • the embodiment provides a method and a device for designing a phase tracking reference signal, which relates to a plurality of resource sets, patterns, time-frequency domain densities, port multiplexing modes, and port number thresholds of the phase tracking reference signal, which can be solved. Details of the design of phase tracking reference signals when multi-user multiplexing.
  • the definition of the NR according to the 3GPP includes a Demodulation Reference Signal (DMRS) and a Phase Tracking Reference Signal (PTRS), and other signaling or names are the same as the Long Term Evolution ( The Long Term Evolution (LTE) is consistent.
  • the Radio Resource Contro (RRC) signaling in all the embodiments may also be a MAC Control Element (MAC CE) and downlink control information (Downlink Control).
  • MAC CE MAC Control Element
  • Downlink Control Downlink Control
  • Information, DCI) and other signaling, and the DMRS and PTRS patterns and port resource sets are mainly examples in one physical resource block (PRB).
  • PRB physical resource block
  • a user serving the same base station determines whether PTRS compensation is required according to a Modulation and Coding Scheme (MCS) level, and when the MCS level is high, for example, 256-phase quadrature amplitude modulation ( In Quadrature Amplitude Modulation (QAM) or higher modulation mode, the user needs PTRS for phase compensation, which can better perform data demodulation and improve spectral efficiency.
  • MCS Modulation and Coding Scheme
  • QAM Quadrature Amplitude Modulation
  • Users with lower MCS level can perform phase compensation without PTRS. Because the MCS level is higher, the transmission information is more sensitive to the influence of the RF antenna crystal oscillator. When the MCS level is lower, the impact is not significant. Therefore, phase compensation is more needed when the MCS level is higher. And as the center frequency increases, the user is more affected by phase noise. Therefore, in the high frequency band, phase compensation using PTRS can improve user spectrum efficiency.
  • MCS Modulation and Coding Scheme
  • the base station and each user transmit information using multiple radio frequency antennas, the crystal oscillator of each antenna has a certain difference, and each user's MCS level is not the same, so each user The PTRS needs are different.
  • the PTRS demand situation is expressed as whether PTRS, the number of ports of the PTRS, and the pattern corresponding to each PTRS port are required, and these parameters show a certain degree of difference. Therefore, the base station needs to confirm whether it is necessary to perform PTRS phase compensation for one or several users according to the PTRS requirement of each user.
  • the user determines whether there is a zero-power PTRS at this time according to the layer information sent by the base station. If the layer number information is greater than a certain value (in the case of LTE, this value is 2), and in this case, a single-user scenario, there is no zero-power PTRS. As shown in FIG. 5a, FIG. 5a shows a zero power phase tracking reference signal pattern in the embodiment of the present invention. If the layer information is smaller than a certain value at this time, it can be processed in a multi-user scenario. If there are multiple users who need PTRS for phase compensation, then there is zero power PTRS and non-zero power PTRS. As shown in Figure 5b, there is a zero power phase tracking reference signal pattern in Figure 5b.
  • the number of layers allocated by the base station side when the number of layers allocated by the base station side is greater than 2, it is considered to be a single-user scenario; when the number of layers allocated by the base station side is less than or equal to 2, the number of DMRS ports allocated according to the base station side Can judge.
  • the number of DMRS ports When the number of DMRS ports is large, it can be considered as a multi-user multiplexing scenario.
  • the number of DMRS ports is small (for example, equal to the number of layers 2), it may be considered as a single-user scenario or a multi-user multiplexing scenario, because there may be certain Non-orthogonal DMRS ports, but can be processed at this time in a multi-user multiplexing scenario.
  • the base station sets a maximum PTRS port number reference coefficient P according to the number of PTRSs required by multiple users, and the P value represents a ratio of the number of phase tracking reference signal ports set by the base station to the number of demodulation reference signal ports.
  • RRC radio resource control
  • the maximum number of PTRS ports is N.
  • the base station side sets a certain number of PTRS port sets, each set containing a different PTRS port.
  • Each set of sets represents the demand situation of PTRS in different scenarios, and according to the set maximum number of PTRS ports mentioned above, the maximum number of ports in each set of PTRS port sets is N, which may exist.
  • a collection of ports smaller than N. For example, according to N 4, the number of PTRS ports per group in the port set of the PTRS configured by the RRC through the RRC may be selected to be at most 4.
  • the mapping of the PTRS directly affects the mapping relationship of the PTRS port set. .
  • the ports of the DMRS corresponding to the same subcarrier position are not the same in different time domain symbol positions, it is considered that there are different subsets, and the number of DMRSs of different ports corresponding to each port in the frequency domain may be referred to as one frequency domain transmission. cycle.
  • the PTRS ports corresponding to different subsets are distinguished by different subcarrier positions, and the first subset of PTRSs are transmitted in the first frequency domain transmission period, and are in the second frequency domain transmission period.
  • the PTRS of the second subset is transmitted, and so on, until all PTRS transmissions are completed.
  • FIG. 5c is a mapping relationship diagram of phase tracking reference signals of different subsets of the embodiment of the present invention.
  • the PTRS port can be configured by the base station through RRC to [1, 2, 3, 5 ].
  • the two DMRSs cannot share the same PTRS port.
  • the two DMRS ports do not use the same antenna to transmit information on the same antenna of the same base station, or the crystal oscillators between the two antennas used are different, and the user equipment ( User Equipment (UE) has a higher MCS level (for example, 256QAM), so this UE needs to occupy two PTRS ports.
  • FIG. 5d is a schematic diagram of a port set of a phase tracking reference signal according to an embodiment of the present invention.
  • the PTRS port can be in one-to-one correspondence with the DMRS port, that is, the same port of the PTRS and the DMRS occupy the same subcarrier.
  • user 1 occupies two PTRS ports, and there are two other users. Each user corresponds to one PTRS port.
  • port 1 and port 2 for user 1 according to the configuration of the port set. Both users are configured with port 3 and port 5 respectively.
  • the resource set may use a resource map mapping.
  • the base station configures four PTRS ports through RRC, and there are eight DMRS ports, and the content of the resource mapping (bitmap) is [1]. 1,1,0,1,0,0,0], where 1 indicates the intra-subcarrier transmission PTRS corresponding to the DMRS port, and 0 indicates the subcarrier transmission data corresponding to the DMRS port.
  • the PTRS pattern assigned to each user may indicate the PTRS location, zero power location, and data location of the user by the mapping result of the above resource map and the port correspondence information of the PTRS port set.
  • User 1, User 2, and User 3 are configured with PTRS port 1 and port 2, port 3, and port 5, respectively, corresponding to DMRS port 1 and port 2, port 3, and port 5, respectively, according to resource mapping (bitmap) mapping.
  • the correspondence between the content and the DMRS port is taken as an intersection, that is, the intersection of the PTRS port and the resource map of the user 1 is obtained as the first two PTRS ports, so that the four subcarrier positions corresponding to the user 1PTRS port can be obtained, and the port 1 and The subcarrier position corresponding to port 2 is a non-zero power reference signal, and the remaining two subcarrier positions are zero power positions; similarly, for user 2, the corresponding resource mapping (bitmap) and the subcarrier of port 3 of the PTRS intersection can be obtained.
  • the remaining three ports are zero power ports; similarly, for user 3, the corresponding resource mapping (bitmap) and the PTRS intersection of port 5 subcarriers are non-zero power ports, and the remaining three ports are Zero power port.
  • the base station may configure parameters to indicate the time-frequency domain density of the PTRS through RRC or DCI signaling, for example, the default time domain density is 1.
  • the density of the PTRS is processed in accordance with the entire time domain symbol. If the PTRS density is not 1, the user can be notified by DCI to send 1 bit information, and the density of the PTRS corresponding to the port in the time domain is 1/2 or 1/4 of the density when the entire time domain symbol is occupied.
  • the same frequency domain density can be mapped in a similar way.
  • the time-frequency domain density of the DCI notification may be adjusted according to the change of the MCS level, but may not exceed the time-frequency domain density threshold of the high-level signaling. For example, when the time-frequency domain density of a user's PTRS is reduced, DCI signaling notifies the user of the new pattern. Since the time-frequency domain resources occupied by the PTRS are reduced, the user can send data on the changed resources, and other users do not make adjustments. If a user's time-frequency domain density increases, DCI signaling does not notify the new pattern, and the user's PTRS still uses the old pattern.
  • the base station collects the ports through RRC signaling, and sends the information to the user according to the mapping relationship of the resource mapping, and performs demodulation of the reference signals and data for the obtained DMRS and PTRS patterns.
  • the base station may inform the user of the new PTRS pattern through DCI signaling, as shown in FIG. 5d.
  • the DCI can inform the user of the density change in the PTRS time domain by using the 1-bit information.
  • FIG. 5e is a schematic diagram of a phase tracking reference signal pattern of different densities according to an embodiment of the present invention.
  • User 2 can transmit half of the symbol number of PTRS and half of the symbol number on the subcarrier corresponding to the DMRS port position, which can improve the spectrum efficiency.
  • the other two users will not receive the relevant signaling, and still occupy the entire time domain symbol according to the RRC configured PTRS port 3, all of which are recorded as zero power PTRS, which can save a part of the overhead without spectrum efficiency. Has a big impact.
  • the first communication node transmits or receives data on a phase tracking reference signal resource outside of the set of phase tracking reference signal resources.
  • the first communication node does not transmit any signal or transmit a reference signal of zero power on the phase tracking reference signal resource outside the set of phase tracking reference signal resources.
  • the PTRS resource set configured by the base station high layer signaling is a subset of all PTRS resources. For example, the number of DMRS ports is eight at this time, and the total number of PTRS resources is eight. If a PTRS resource set is taken as a PTRS resource of the PTRS port [1, 2, 3, 5], then the PTRS port outside the PTRS resource set is [4, 6, 7, 8]. As shown in Figure 5d, the PTRS port [4, 6, 7, 8] location can transmit or receive data. As shown in FIG. 6, FIG. 6 is a schematic diagram of the use of PTRS resources outside the PTRS resource set according to the embodiment of the present invention. No signal or zero-power reference signal may be transmitted at the PTRS port [4, 6, 7, 8].
  • a first communication node indicates a first subset of the phase tracking reference signal resources with a first subset of the demodulation reference signal resources, and indicates the phase tracking reference with an Mth subset of the demodulation reference signal resources The Mth subset of signal resources.
  • the ports of the subset of the demodulation reference signal resources are code division multiplexed or time division multiplexed in the time domain, and the ports of the phase tracking reference signal resources M subsets are frequency division multiplexed.
  • the ports of the M subsets of the demodulation reference signal resources are time division multiplexed in the time domain, the ports of the M subsets occupy different time domain symbols.
  • the value of M can be 2, 3, 4, and the like.
  • the first subset of the DMRS is the DMRS port on the first DMRS symbol bit in the time domain
  • the second subset of the DMRS is the DMRS port on the second DMRS symbol bit in the time domain
  • the subset of the PTRS is the same as the DMRS.
  • the subsets correspond one-to-one, as shown in Figure 5c.
  • the first subset and the second subset of the demodulation reference signal resources are transmitted within a frequency range of each subset of the phase tracking reference signal resources.
  • resources within each subset of PTRS may correspond to DMRS port resources within multiple subsets of the DMRS.
  • the DMRS ports occupying the same subcarrier correspond to port resources in different PTRS subsets, and all ports in each DMRS port subset have corresponding PTRS ports corresponding thereto. This is a more flexible design method for PTRS port patterns.
  • FIG. 7 is a schematic diagram of a cross mapping of a subset of PTRS ports according to an embodiment of the present invention.
  • each of the two subsets of the DMRS includes four DMRS ports, which are mapped at different PTRS port locations. For example, 2 ports within the first subset of DMRS can be mapped into a second subset of PTRS.
  • DMRS port 1 and port 2, port 3, and port 4 correspond to the same user, and the two DMRS ports corresponding to each user can be used as the Orthogonal Covering Code (OCC) in the frequency domain, then DMRS at this time.
  • Port 1 and port 2 can be phase compensated without corresponding two PTRSs.
  • the vacated DMRS2 port can be used by other users, for example, can be provided to a user corresponding to the DMRS port 7.
  • the PTRS resources of 4 users can be transmitted in the first port subset of the PTRS.
  • Port 2 in the first subset of DMRS may be transmitted in the frequency domain corresponding to the second subset of PTRS, or DMRS port 2 may not be selected to have PTRS phase compensation, and does not correspond to any PTRS port.
  • the port of the first subset of the demodulation reference signal resources and the port of the second subset are code division multiplexed or time division multiplexed in the time domain, and the first phase of the phase tracking reference signal resource
  • the set port and the second subset of ports are frequency division multiplexed.
  • the ports in the first subset of the DMRS and the ports in the second subset are time division multiplexed.
  • DMRS port 1 is a port in the first subset of DMRS
  • port 5 is a port in the second subset of DMRS
  • the number of these two ports is time-division.
  • the two ports are respectively configured with PTRS port 1 and port 5
  • PTRS port 1 corresponds to the DMRS port 1 and port 5 positions of the first frequency domain transmission period
  • PTRS port 5 corresponds to the DMRS port of the first frequency domain transmission period. 1 and port 5 position.
  • the allocated PTRS port 1 and port 5 respectively correspond to the first subset of PTRS and the second subset of PTRS, and PTRS port 1 and port 5 are frequency division multiplexing. In this case, it can be ensured that the two DMRS ports corresponding to the same subcarrier position are both There may be a corresponding PTRS for phase compensation.
  • FIG. 8 is a PTRS pattern corresponding to a code division multiplexed DMRS according to an embodiment of the present invention.
  • DMRS port 1 and port 5 have code division multiplexing, and the DMRS ports of the two terminals of the corresponding code points occupy the same subcarrier position, so the port 1 corresponding to the first subset of the PTRS is configured.
  • the DMRS port 1 and port 5 of the first subset configure port 5 of the second subset of the PTRS corresponding to the DMRS port 1 and port 5 of the second subset of the code points.
  • phase tracking reference signal port numbers are different for different second communication nodes.
  • pseudo-orthogonal DMRS ports for multiple terminals, that is, DMRSs of multiple terminals occupy the same port.
  • orthogonal PTRS correspondence and pseudo-orthogonal DMRS need to be designed.
  • both terminals are assigned DMRS port 1 and port 2, and both terminals need PTRS for phase compensation.
  • the base station is required for these two.
  • the terminal distinguishes the PTRS port.
  • FIG. 9 is a PTRS pattern of two terminals DMRS pseudo-orthogonal according to an embodiment of the present invention.
  • the DMRS port number corresponding to the terminal 1PTRS port set is [1, 2, 3, 4, 5, 6, 7, 8]
  • the DMRS port number corresponding to the terminal 2PTRS set by the base station is [2]. , 1, 4, 3, 5, 7, 6, 8].
  • there is a pseudo-orthogonal terminal and the first port of the mapping and the port in the PTRS resource set corresponding to the DMRS, that is, the PTRS port of the terminal 1 corresponds to the DMRS port 1, and the PTRS port of the terminal 2 corresponds to the DMRS port 2.
  • the phase tracking reference signal resource set is not enabled.
  • the phase tracking reference signal resource set is enabled.
  • the enabling of the PTRS resource set is confirmed according to the demodulation reference signal or the terminal MCS level or the base station RRC signaling.
  • the base station may allocate PTRS resources to the user according to the MCS level of the user or the number of DMRS ports, and may notify the user whether the PTRS resource is allocated by using RRC signaling according to whether there is multi-user multiplexing at this time.
  • the base station can confirm the enable of the PTRS resource set based on the MCS level of the terminal.
  • the threshold value of the number of DMRS ports configured for one user may be set to 2.
  • the number of DMRS ports is greater than 2, it can be considered as a single-user scenario.
  • the base station does not set a PTRS resource set, and the PTRS resource corresponding to the DMRS port can be configured for the user.
  • the number of DMRS ports is less than 2, it is considered that there may be multi-user multiplexing, and the base station triggers the PTRS resource set to be enabled.
  • the user can determine whether the base station side sends the PTRS resource set according to the number of allocated DMRS ports. Or, set the threshold of the number of DMRS ports configured for one user to 4.
  • the number of DMRS ports When the number of DMRS ports is greater than 4, it can be considered as a single-user scenario.
  • the base station does not set a PTRS resource set, and the PTRS resource corresponding to the DMRS port can be configured for the user.
  • the number of DMRS ports is less than 4, it is considered that there may be multi-user multiplexing, and the base station triggers the PTRS resource set to be enabled.
  • the user can determine whether the base station side sends the PTRS resource set according to the number of allocated DMRS ports.
  • the first communication node when the phase tracking reference signal resource set is enabled, notifies the second communication node of the corresponding non-corresponding non-correspondence in the set of phase tracking reference signal resources by using the indication signaling of the demodulation reference signal resource.
  • Zero power phase tracking reference signal transmission resource when the phase tracking reference signal resource set is enabled, the first communication node notifies the second communication node of the corresponding non-corresponding non-correspondence in the set of phase tracking reference signal resources by using the indication signaling of the demodulation reference signal resource.
  • the base station configures the PTRS resource set to the user.
  • the multiplexed multiple users receive the PTRS resource, it determines which PTRS or PTRS is allocated to the user.
  • the base station can use the resources of the DMRS port to indicate.
  • the PTRS resource set configured by the base station at this time is [1, 3, 5, 7], corresponding to the DMRS port [1, 3, 5, 7], and the user 1 is configured with DMRS port 1 and port 2 at this time.
  • the allocation of the DMRS and PTRS port sets it is obtained that the user 1 is assigned a PTRS port 1, and other PTRS ports in the resource set can transmit a zero power reference signal or not transmit any signal.
  • the DMRS ports allocated to User 1 and User 2 are both Port 1 and Port 2, and the set of PTRS port resources allocated by the base station at this time is [1, 2, 3, 5], There are no other instructions at this time.
  • the allocation of the two PTRSs can be distinguished by the method described in Embodiment 5.
  • the base station sends a 1-bit signaling through the DCI to notify the two users of the allocation of the PTRS port 1 and the PTRS port 2, as shown in FIG.
  • the first communication node transmits only non-zero power and zero power phase tracking reference signals within the set of phase tracking reference signal resources.
  • the set of PTRS resources configured by the base station is [1, 2, 3, 4].
  • the PTRS port corresponding to the DMRS port is 1, that is, at the PTRS port [1, 2, 3, 4] in the physical resource block sent by the base station to the user 1 at this time, the PTRS port 1 is non-zero power.
  • PTRS, ports 2, 3, 4 are zero power PTRS. Therefore, only the port 1 of the non-zero power PTRS and the PTRS ports of zero power 2, 3, 4 are transmitted to the user 1 in the PTRS resource set [1, 2, 3, 4] configured by the base station.
  • the PTRS port 2 sent by the base station to user 2 is a non-zero power PTRS, and the other three ports send zero-power PTRS.
  • the base station transmits a reference signal of non-zero power on the PTRS corresponding to the user, and transmits a zero-power PTRS on other ports in the resource set.
  • the first communication node configures, by the higher layer signaling, a plurality of phase tracking reference signal resource sets to the second communication node, and the first communication node notifies the second communication node by using dynamic signaling of at least one of: Resource collection.
  • QCL Quasi co-location
  • the base station is configured with multiple PTRS resource sets, and the base station can allocate QCL information, similar to LTE data rate matching and Quasi-Co-Location Indicator (PQI), for different QCLs, and can be allocated. Different sets of PTRS ports;
  • different DMRS ports have different PTRS ports corresponding thereto, so the resource set of the PTRS can be notified through the scrambling sequence of the DMRS;
  • the base station may notify the PTRS resource set through DCI signaling, and the different resource sets correspond to different numbers, and may notify the resource set of each number through DCI signaling, and the DCI notifies the terminal by using 1 bit signaling.
  • the set of resource pools sent by the base station is [1, 2, 3, 4].
  • the phase tracking reference signal resource set is configured by the high layer signaling to the number P of ports included in the phase tracking reference signal resource set of the second communication node.
  • the P value is the number of phase tracking reference signal ports used, or the ratio of the number of demodulation reference signal ports, and M is an integer greater than or equal to 1;
  • the P value can be obtained by the number of PTRS ports configured by the base station, whether it is directly configured with the number of PTRS ports or 1/M of the number of DMRS ports.
  • the P value may be the number of ports of the PTRS resource set configured by the base station, as described in Embodiment 1, or the number of ports P may be directly configured by the base station to the number of direct ports of the user by signaling, and the port set is not required to be configured.
  • the base station maps the relationship between the PTRS and the DMRS according to the MCS level of the terminal, and allocates the port with the higher MCS level in the DMRS as the first subset, and so on.
  • the high-level signaling of the base station may not configure the detailed information of the PTRS port set, and only needs to inform the terminal of the final number of P-ports P, and the P ports occupy consecutive P sub-carriers in the frequency domain.
  • FIG. 10a is a PTRS pattern a of a non-port set indication according to an embodiment of the present invention.
  • the number of the PTRS port may not correspond to the corresponding DMRS port number.
  • FIG. 10b is a PTRS pattern b of the non-port set indication according to the embodiment of the present invention, and the port number design of the PTRS is shown in FIG. 10b.
  • the number of the PTRS also represents the number of ports, and the pattern at this time can solve the existence of 4 ports.
  • the terminal of the DMRS port, and the four DMRS ports use the same codebook, so the DMRS ports 1, 2, 3, and 4 of the terminal 1 can complete phase compensation by using one PTRS port, and the PTRS port 1 corresponds to The 4 DMRS ports.
  • PTRS port 2 corresponds to DMRS port 5 and is used to compensate the phase of other terminals.
  • the base station can transmit the port number without transmitting the port set.
  • each phase tracking reference signal within the set of phase tracking reference signal resources or the time domain frequency domain density of each set of phase tracking reference signals is configurable;
  • the resource set of the phase tracking reference signal includes a pre- Defined resource configuration;
  • the eNB may configure the parameter to indicate the time-frequency domain density of the PTRS through RRC or DCI signaling, for example, the predefined time domain density is 1, and if the RRC signaling or the DCI signaling is not notified, the density of the PTRS fills the entire time domain. Symbol processing. If the PTRS density is not 1, the user can be notified by DCI to send 1 bit information, and the density of the PTRS corresponding to the port in the time domain is 1/2 or 1/4 of the density when the entire time domain symbol is occupied. The same frequency domain density can be mapped in a similar way.
  • the time-frequency domain density of the DCI notification may be adjusted according to the change of the MCS level, but may not exceed the time-frequency domain density threshold of the high-level signaling. For example, when the time-frequency domain density of a user's PTRS is reduced, DCI signaling notifies the user of the new pattern. Since the time-frequency domain resources occupied by the PTRS are reduced, the user can send data on the changed resources, and other users do not make adjustments. If a user's time-frequency domain density increases, DCI signaling does not notify the new pattern, and the user's PTRS still uses the old pattern.
  • the base station aggregates the ports through RRC signaling, and sends the data to the user according to the resource mapping bitmap, and performs demodulation of the reference signal and the data for the obtained DMRS and PTRS patterns.
  • the base station can inform the user of the new PTRS pattern through DCI signaling.
  • the DCI can inform the user of the density change in the PTRS time domain at this time by using the 1-bit information.
  • FIG. 11 is a phase tracking reference signal pattern of different densities according to an embodiment of the present invention.
  • the user 2 can transmit the PTRS of half the symbol number and the data of the half symbol number on the subcarrier corresponding to the DMRS port position, thereby improving the spectrum efficiency.
  • the other two users will not receive the relevant signaling, and still occupy the entire time domain symbol according to the RRC configured PTRS port 3, all of which are recorded as zero power PTRS, which can save a part of the overhead without spectrum efficiency. Has a big impact.
  • each phase tracking reference signal within the set of phase tracking reference signal resources or the time domain frequency domain density of each set of phase tracking reference signals is configurable
  • the base station configures a multi-user PTRS resource set, and the predefined time domain density is 1, that is, the entire time domain symbol is occupied. If the time domain density becomes 1/2 or 1/4, the DCI can notify the port by using 1-bit information. Density changes.
  • the base station configures DMRS port 1 to implement one PTRS port 1 assigned by the two terminals.
  • the PTRS density also decreases.
  • the two PTRS patterns can be implemented by time division, as shown in Figure 12. Show.
  • Figure 12 is a PTRS pattern of a pseudo orthogonal terminal in accordance with an embodiment of the present invention.
  • nscid can be used to indicate the allocation of two ports of PTRS.
  • the terminal with nscid of 0 uses PTRS port 1
  • the terminal with nscid of 1 uses PTRS port 2.
  • the set of phase tracking reference signal resources is notified to the second communication node by the first communication node by means of a bitmap.
  • the dimension of the bitmap is the number of ports for demodulating the reference signal
  • the two states of each bit in the bitmap indicate that the position is a phase tracking reference signal or data bit, respectively.
  • Bitmap is set to the dimension of the number of DMRS ports. At this time, the dimension of the bitmap has nothing to do with PTRS.
  • the content of the bitmap mapping indicates whether the port location corresponding to the DMRS is to transmit PTRS or data. For example, if a bit in the bitmap is 0, it means that the data is transmitted here, and when it is 1, it means that the PTRS is transmitted at this position.
  • Figure 13 is a PTRS pattern of the terminal 1 in accordance with an embodiment of the present invention.
  • the number of DMRS ports is 8, so the content of the bitmap mapping is 8 bits of [1, 0, 1, 0, 1, 0, 1, 0].
  • the DMRS port corresponding to terminal 1 is port 1 and port 2
  • the DMRS port corresponding to terminal 2 is port 3 and port 4
  • the DMRS port corresponding to terminal 3 is port 5 and port 6
  • the DMRS port corresponding to terminal 4 is port 7 and Port 8, in this case, each terminal obtains a corresponding PTRS port resource set as [1, 3, 5, 7], and the position of the zero-power PTRS can be obtained according to the correspondence relationship of the DMRS ports.
  • phase tracking reference signal ports of different subsets correspond to demodulation reference signal partial ports or all ports of the same subset.
  • the base station performs grouping according to the PTRS requirement of the terminal, that is, the port in the first subset of the DMRS corresponds to a terminal with a higher MCS level and a larger PTRS requirement, and the second subset is followed by the other subsets.
  • the subset of PTRS ports corresponds to a subset of different DMRS ports, as shown in FIG. 14a, and FIG. 14a is a PTRS pattern a of the embodiment of the present invention.
  • the first subset of the PTRS port corresponds to the first subset of the DMRS port
  • the second subset of the PTRS port corresponds to the first subset of the DMRS port and the second subset of the DMRS port
  • the PTRS port 1 and port 7 correspond to the DMRS.
  • Port 1, PTRS port 2 and PTRS port 8 correspond to DMRS port 2.
  • both terminal 1 and terminal 2 use DMRS port 1 and DMRS port 2
  • both terminal 1 and terminal 2 can use high-density PTRS, so terminal 1 and Terminal 2 requires two DMRS ports to perform phase compensation, and some ports in the second subset of DMRS do not need PTRS compensation.
  • two terminals correspond to DMRS port 1 and DMRS port 2
  • PTRS corresponds to PTRS port 1, port 2, PTRS port 7, and port 8, where port 7 and port 8 also correspond to DMRS port 1 and port 2, but here Port 7 and port 8 correspond to DMRS port 1 and port 2 on different subcarriers.
  • FIG. 14b is a PTRS pattern b according to an embodiment of the present invention, and the first subset of PTRS [1, 2, 3, 4] and the second subset [5, 6, 7, 8] correspond to the DMRS.
  • a subset, and the ports in the second subset of PTRS correspond to ports in the first subset of DMRSs in other frequency domain transmission periods, and more pseudo-orthogonal terminals can be solved.
  • the design of the PTRS can be as shown in FIG. 15, and FIG. 15 is a multi-column DMRS corresponding to the embodiment of the present invention. PTRS pattern.
  • the base station allocates different sets of phase tracking reference signal resources for different demodulation reference signal patterns.
  • the configuration of the P value may be a semi-static value of the high layer signaling configuration, for example, configured as 4.
  • the base station is configured with four PTRS ports, which means that when there are four DMRS ports, four PTRS ports are available; when less than four DMRS ports, two of the four PTRS ports can be used;
  • the P value may be a set of higher layer signaling configurations, that is, the base station configures different P values according to the pattern type of the DMRS. For example, if [2, 4, 4] is configured, it means that two PTRS ports are configured for two orthogonal DMRS ports; for four DMRS ports, four PTRS ports are configured for base stations; for eight orthogonal DMRS ports, for base station configuration 4 PTRS ports;
  • Fig. 16 is a diagram corresponding to the orthogonal port DMRS of the embodiment 12 of the present invention.
  • FIG. 17a is a PTRS pattern of occupying 7 time domain symbols per subframe according to an embodiment of the present invention.
  • FIG. 17b is a DMRS in each PRB that does not occupy 12 in the embodiment of the present invention.
  • PTRS pattern of subcarriers is shown in FIG. 17b.
  • the first communication node utilizes a first subset of the demodulation reference signal resources to indicate a first subset of the phase tracking reference signal resources, utilizing a second subset of the demodulation reference signal resources Instructing a second subset of the phase tracking reference signal resources; the ports of the first subset of demodulation reference signal resources and the ports of the second subset are code division multiplexed or time division multiplexed in the time domain, and The ports of the first subset of the second type of noise reference signal resources and the ports of the second subset are frequency division multiplexed. And, in each of the subset frequency domain of the phase tracking reference signal port resource, the first subset and the second subset of the demodulation reference signal resources are transmitted.
  • FIG. 18 is a pattern of reference ports each having eight ports in the embodiment of the present invention.
  • the demodulation reference signal has eight ports, ports 1, 5 occupy the same subcarrier, and ports 2 and 6 occupy the same subcarrier.
  • Carriers, 3, 7 occupy the same subcarrier, and 4, 8 occupy the same subcarrier.
  • Ports of the first subset of demodulation reference signal resources and ports of the second subset are code division multiplexed or time division multiplexed in the time domain, requiring corresponding ports and second ports in the first subset of demodulation reference signals
  • the corresponding port in the subset is time division multiplexing or code division multiplexing, and the corresponding ports in different subsets may be on the same subcarrier. As shown in FIG.
  • the first subset of the first reference signal includes the port ⁇ 1, 2, 3, 4 ⁇ , and the second subset may include the port ⁇ 5, 6, 7, 8 ⁇ , then the first subset Port 1 and port 5 in the second subset are time division multiplexed or code division multiplexed; port 2 in the first subset and port 6 in the second subset are time division multiplexed or code division multiplexed; Port 3 in a subset and port 7 in a second subset are time division multiplexed or code division multiplexed; port 4 in the first subset and port 8 in the second subset are time division multiplexed or code division multiplexed use.
  • the first subset of the first reference signal includes ports ⁇ 1, 6, 3, 8 ⁇
  • the second subset can include ports ⁇ 5, 2, 7, 4 ⁇ , then port 1 in the first subset Port 5 in the second subset is time division multiplexed or code division multiplexed; port 2 in the first subset and port 6 in the second subset are time division multiplexed or code division multiplexed; the first subset Port 3 and port 7 in the second subset are time division multiplexed or code division multiplexed; port 4 in the first subset and port 8 in the second subset are time division multiplexed or code division multiplexed.
  • the phase tracking reference signal is also divided into two subsets, and the two subsets are frequency division multiplexed.
  • the eight ports included in the phase tracking reference signal are also divided into two subsets, the first subset includes ports ⁇ 1, 2, 3, 4 ⁇ of the phase tracking reference signal, and the second subset includes phases.
  • the port of the reference signal is tracked ⁇ 5, 6, 7, 8 ⁇ , at which time ports 1, 2, 3, 4 and ports 5, 6, 7, 8 are frequency division multiplexed.
  • a first subset of demodulation reference signal resources indicates a first subset of the phase tracking reference signal resources
  • a second subset of the demodulation reference signal resources is utilized to indicate the phase tracking reference signal The second subset of resources.
  • the first subset of port resources of the demodulation reference signal corresponds to the first port resource subset of the phase tracking reference signal
  • the second subset of port resources of the demodulation reference signal corresponds to the second port resource subset of the phase tracking reference signal.
  • the first subset of demodulation reference signals includes demodulation reference signal ports ⁇ 1, 2, 3, 4 ⁇
  • the first subset of phase tracking reference signals includes ports ⁇ 1, 2, 3, 4 of phase tracking reference signals ⁇
  • the second subset of demodulation reference signals includes demodulation reference signal ports ⁇ 5, 6, 7, 8 ⁇
  • the second subset of phase tracking reference signals includes ports for phase tracking reference signals ⁇ 5, 6, 7, 8 ⁇
  • the base station can use the port information of the notification demodulation reference signal to indicate the port information of the phase tracking reference signal. For example, if the base station notifies the user that the port of the demodulation reference signal used is 5, 6, the user can know that the port of the phase tracking reference signal is also one or more of ⁇ 5, 6 ⁇ .
  • the first subset and the second subset of the demodulation reference signal resources are transmitted within a frequency range of each subset of the phase tracking reference signal port resources.
  • the first subset of the phase tracking reference signals that is, the subcarriers corresponding to the ports 1, 2, 3, and 4 of the phase tracking reference signal
  • demodulation of the reference signal Both ports contain ports that transmit, that is, all ports that demodulate the reference signal are transmitted; likewise, in the frequency domain of the second subset of phase tracking reference signals, that is, port 5 of the phase tracking reference signal.
  • the ports included in the two subsets of the demodulation reference signal are transmitted, that is, all ports of the demodulation reference signal are transmitted.
  • the port included in the first subset of the demodulation reference signal can be regarded as a port mapped on the first OFDM symbol in the demodulation reference signal region, and the second subset of the demodulation reference signal is included.
  • the port can be thought of as a port mapped on the second OFDM symbol within the demodulation reference signal region.
  • phase tracking reference signal port numbers are different for different second communication nodes.
  • the port of U0 can be as shown in FIG. 18, and the port of U1 can be as shown in FIG. 18a.
  • FIG. 18a is a sequence diagram of the phase tracking reference signal port according to the embodiment of the present invention.
  • the first subset of the phase tracking reference signal The included port ⁇ 1, 5, 3, 7 ⁇ corresponds to the first subset of the demodulation reference signal ⁇ 1, 2, 3, 4 ⁇ , that is, the port 1 of the phase tracking reference signal, corresponding to the port of the demodulation reference signal 1; port 5 of the phase tracking reference signal, port 2 corresponding to the demodulation reference signal; port 3 of the phase tracking reference signal, port 3 corresponding to the demodulation reference signal, port 7 of the phase tracking reference signal, corresponding to the demodulation reference signal Port 4;
  • the second subset of phase tracking reference signals contains ports ⁇ 2, 6, 4, 8 ⁇ corresponding to the first subset of demodulation reference signals ⁇ 5, 6, 7, 8 ⁇ , ie the port of the phase tracking reference signal 2, port 5 corresponding to the demodulation reference signal; port 6 of the phase tracking reference signal, port 6 corresponding to the demodulation reference signal; port 4 of the phase tracking reference signal, port 7 corresponding to the demodulation reference signal; phase tracking reference signal Port 8, corresponding to port 8 of the demodulation reference signal.
  • the port correspondence relationship described in this embodiment refers to the same precoding.
  • the first communication node is configured by the high-level signaling to the second communication node to phase-track the reference signal port resource set;
  • the reference signal port resource includes at least one of the following parameters: port number, port serial number, and time domain density. , frequency domain density, pattern, and multiplexing between ports.
  • the high-level signaling here refers to RRC signaling or MAC signaling
  • the base station configures a port set of the user phase tracking reference signal through high-level signaling, and the port set includes a port number that is often smaller than that of the phase tracking reference signal.
  • the number of ports As shown in FIG. 19, FIG. 19 is a sequence diagram of four phase tracking reference signal ports according to an embodiment of the present invention.
  • the base station can configure four phase tracking reference signal ports to the user through high layer signaling. At this point, the maximum number of ports for the phase tracking reference signal is still eight, as shown in Figure 18a.
  • the base station can use the higher layer signaling to notify the user of the maximum number of ports of the phase tracking reference signal, for example, 4, then the user can know that the port 1, 2, 3, 4 of the phase tracking reference signal is configured to the user, that is,
  • the resource set of the phase tracking reference signal includes ports 1, 2, 3, and 4.
  • the base station can use a bit map to notify the port set of the phase tracking reference signal, for example, there are 8 phase tracking reference signal ports, and the 8bits map can be used to indicate whether the corresponding port is included, for example, 10000001 represents the first port. And the 8th port is included in the resource collection.
  • the first communication node indicates usage of the phase tracking reference signal port resource set by demodulating the reference signal resource allocation condition.
  • the resource set configured by the base station to the user phase tracking reference signal by using the high layer signaling includes the phase tracking reference signal ports 1, 2, 3, 4.
  • port 1 of DMRS demodulation reference signal
  • PTRS phase tracking reference signal
  • port 3 of DMRS corresponds to PTRS
  • port 5 of DMRS corresponds to PTRS
  • port 2 Port 7 of the DMRS corresponds to PTRS, port 4.
  • the port of the corresponding phase tracking reference signal is sent, and the rest of the port resource set A zero-power reference signal is sent on the port.
  • the base station configures the port for demodulating the reference signal to the user through the signaling, including the DMRS port 5, 6, and the two DMRS ports correspond to one PTRS, since the DMRS port 5 corresponds to the PTRS port 2, the user You can know that PTRS is sent on port 2 of PTRS.
  • PTRS port 2 belongs to the port resource set ⁇ 1, 2, 3, 4 ⁇ , then port 2 is to be transmitted, and the remaining ports 1, 3, 4 will not transmit reference signals or transmit zero-power reference signals.
  • This zero-power reference signal can be understood as a zero-power phase tracking reference signal or other reference signal.
  • the first communication node transmits or receives data on a phase tracking reference signal resource outside of the set of phase tracking reference signal port resources. In an embodiment, the first communication node does not transmit any signal or transmit a reference signal of zero power on the phase tracking reference signal resource outside the set of phase tracking reference signal port resources. Based on the number of ports of the phase tracking reference signal in this example, and the port resource set includes PTRS ports 1, 2, 3, 4, the default tracking port 5, 6, 7, 8 can be used. transfer data. Of course, by default, it is also possible to transmit nothing or a zero-power reference signal.
  • this embodiment can save the overhead of dynamic signaling. For example, if multiple users are performing multi-user scheduling, the base station semi-statically allocates a set of resources to the users with high-level signaling. For a certain user, the port of the phase tracking reference signal can be determined according to the configured port of the demodulation reference signal. (The MCS corresponding to the port can be greater than one threshold), and other ports in the resource set send zero-power reference signals.
  • the default configuration on the port included in the semi-statically configured resource set is to transmit a zero-power reference signal unless certain ports in the set are identical to the phase tracking reference signal port corresponding to the user-configured demodulation reference signal. In this way, when multiple users are scheduling, different reference signal ports corresponding to different users may be used to track the reference signal ports according to different phases, so that the multi-ports of the phase tracking reference signals belonging to different users may be orthogonal.
  • the number of data layers or demodulation reference signal ports generally configured for one user may be greater than one threshold.
  • the zero-power reference signal is not needed at this time, that is, the resource set of the phase tracking reference signal has no meaning, that is, the user does not need to consider the port included in the resource set, even if the base station configures the resource set at this time. That is, when the number of ports of the demodulation reference signal is greater than a threshold, the second type of noise reference signal port resource set is not enabled.
  • the base station high-level configuration gives a user PTRS, the user can use the MCS level to notify the PTRS of the presence or absence of the dynamic.
  • the PTRS if the MCS is higher than a threshold, the PTRS exists; if the MCS is lower than a threshold, the PTRS does not exist.
  • the PTRS if a high-level configuration of a user PTRS does not exist, then even if the MCS is higher, the PTRS does not exist.
  • the base station may use the MCS level, the actual scheduled bandwidth, and the like to implicitly indicate the time-frequency domain density of the user PTRS in the case of single-user scheduling, and may not consider phase tracking.
  • the PTRS port actually sent at this time is the PTRS port corresponding to the DMRS port.
  • the number of ports of the demodulation reference signal is less than a threshold, that is, it is considered as multi-user scheduling, and the second type of noise reference signal port resource set is enabled.
  • phase tracking reference signal resources are hopped on different time units or frequency domain units.
  • the relative position of the phase tracking reference signal pattern is related to the sequence number of the time unit or the frequency domain unit.
  • the PTRS may hopping on different slots or different sub-bands.
  • FIG. 20 is a schematic diagram of ports of a phase tracking reference signal corresponding to different demodulation reference signal ports in different time units according to an embodiment of the present invention
  • N demodulation reference signal ports are associated with one phase tracking reference signal port, there are N types of precoding methods of the phase tracking reference signal, wherein N ⁇ 1 error! The reference source was not found. ;
  • the first communication node separately configures a correspondence relationship between the demodulation reference signal and the phase tracking reference signal for different time units or different frequency domain units;
  • the port corresponding to the demodulation reference signal port of the phase tracking reference signal means that the phase tracking reference signal port and the demodulation reference signal port use the same precoding.
  • the correspondence between the phase tracking reference signal port and the demodulation reference signal port is related to the sequence number of the time unit or the frequency domain unit.
  • FIG. 21 is a diagram of hopping on different slots or sub-bands according to an embodiment of the present invention.
  • the user's PTRS may have two situations:
  • the base station allocates one PTRS port for the X DMRS ports.
  • the PTRS port 1 allocated by the base station corresponds to the DMRS port 1
  • the PTRS port 1 allocated by the base station corresponds to the DMRS port 2;
  • the X DMRS ports correspond to X PTRS ports, but the base station selects one of the X PTRS ports for the user. In the first slot or subband, the base station selects PTRS port 1, and in the second slot or subband, the base station selects PTRS port 2;
  • the rules for phase tracking reference signal resource hopping are different for different first communication nodes or second communication nodes.
  • Different base stations can configure different hopping rules for users. Assume that the base station 1 is configured with hopping rules for users. As described above, different base stations can configure different hopping rules for different users:
  • the PTRS is sent in the first PRB in the first slot or subband configured for the user of the base station 1, and the PTRS is sent in the second PRB in the second slot or the subband.
  • the base station 2 can be configured for the user. Sending a PTRS on the first PRB in the first slot or subband, and transmitting a PTRS on the third PRB in the second slot or subband;
  • the base station 1 configures the user to configure the PTRS port in the first slot or subband corresponding to the DMRS port 1, and configures in the second slot or subband.
  • the PTRS port corresponds to the DMRS port 2; and the base station 2 can be configured for the user in the first slot or the in-band PTRS port corresponding to the DMRS port 1, and the PTRS port corresponding to the DMRS port 3 in the second slot or subband.
  • the frequency of the PTRS of the user is different, the number of ports of the DMRS associated with one PTRS port is different, and the time domain resources of the base station are different.
  • the PTRS hopping has different rules, and the number of DMRS ports mentioned above, The number of PTRS ports and the number of PRBs are examples, and there is no limit on the number;
  • Embodiments of the present invention also provide a storage medium.
  • the above storage medium may be configured to store program code for performing the following steps:
  • S2. Indicate, by using an allocation of demodulation reference signal resources, usage of each resource in the phase tracking reference signal resource set.
  • the foregoing storage medium may include, but is not limited to, a USB flash drive, a read-only memory (ROM), a random access memory (RAM), a mobile hard disk, a magnetic disk, or an optical disk.
  • ROM read-only memory
  • RAM random access memory
  • mobile hard disk a magnetic disk
  • optical disk a variety of media that can store program code.
  • the processor performs configuration to the second communication node phase tracking reference signal resource set according to the stored program code in the storage medium
  • the processor performs an indication of the allocation of the demodulated reference signal resource according to the stored program code in the storage medium to indicate the usage of each resource in the set of phase tracking reference signal resources.
  • modules or steps of the above-described embodiments of the present invention can be implemented by a general-purpose computing device, which can be centralized on a single computing device or distributed among multiple computing devices. Composed on the network. In an embodiment, they may be implemented in program code executable by a computing device such that they may be stored in a storage device for execution by the computing device and, in some cases, may be different than the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • embodiments of the invention are not limited to any specific combination of hardware and software.
  • the method and device for processing a reference signal provided by the present disclosure can design a corresponding phase tracking reference signal for specific information of a demodulation reference signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了一种参考信号的处理方法及装置,包括:第一通信节点配置给第二通信节点相位跟踪参考信号资源集合;第一通信节点通过解调参考信号资源的分配情况指示相位跟踪参考信号资源集合内每个资源的使用情况;其中,相位跟踪参考信号资源包括以下参数至少之一:端口数、端口序号、时域密度、频域密度、图样、以及端口间的复用方式。

Description

参考信号的处理方法及装置 技术领域
本公开涉及通信领域,例如涉及一种参考信号的处理方法及装置。
背景技术
随着新无线(New Radio,NR)技术的不断讨论与演进,高频段的利用也成为NR技术的重点研究领域,而随着多波束赋形的应用,多用户复用的场景也成为研究的重点。由于数据解调的能力极大地影响多用户的输出传输质量,而和解调相关的参考信号的设计也在很大的程度上影响数据解调的能力,且由于高频段不同程度的存在相位噪声或者多普勒频域等严重影响数据解调的因素,因此对于相位噪声或者多普勒频域的补偿也是高频段的研究重点。
第三代合作伙伴计划(The 3rd Generation Partnership Project,3GPP)会议上已经通过了利用相位跟踪参考信号来进行相位噪声的补偿,且存在多种灵活设计的相位跟踪参考信号图样设计。但是目前3GPP会议上通过了更多端口解调参考信号的设计,且解调参考信号的图样设计存在更多的灵活性,那么为了实现更多的针对解调参考信号相位噪声的补偿,需要针对更多端口的解调参考信号设计相应的相位跟踪参考信号。
单用户场景和多用户复用场景的相位跟踪参考信号的图样不同,多用户复用场景的相位跟踪参考信号的设计需要考虑对其他用户的干扰影响。此时,在多用户场景中,根据不同用户的不同相位跟踪参考信号的需求,基站需要分配不同的相位跟踪参考信号资源给不同的用户。但是,在多用户复用场景下,根据相关的解调参考信号的信息设计的相位跟踪参考信号,不能有效避免多用户之间的相位跟踪参考信号的影响,对于更多解调参考信号端口,相位跟踪参考信号的开销也不能得到控制。
发明内容
本发明实施例提供了一种参考信号的处理方法及装置,能够针对解调参考信号的具体信息,设计相应的相位跟踪参考信号。
根据本发明的一个实施例,提供了一种参考信号的处理方法,包括:
第一通信节点使用解调参考信号资源的第M子集指示相位跟踪参考信号资 源的第M子集;其中,所述解调参考信号资源包括M个子集,M为正整数,并且在所述相位跟踪参考信号资源的每个子集频域范围内,传输所述解调参考信号资源的所述M个子集。
根据本发明的一个实施例,提供了另一种参考信号的处理方法,包括:第一通信节点配置给第二通信节点相位跟踪参考信号资源集合;所述第一通信节点通过解调参考信号资源的分配情况指示所述相位跟踪参考信号资源集合内每个资源的使用情况;其中,所述相位跟踪参考信号资源包括以下参数至少之一:端口数、端口序号、时域密度、频域密度、图样、以及端口间的复用方式。
根据本发明的一个实施例,提供了一种参考信号的处理方法,相位跟踪参考信号在不同的资源上跳变,其中,所述资源包括以下至少之一:时间单元,频域单元,端口,以及预编码方式。
根据本发明的一个实施例,提供了又一种参考信号的处理方法,包括:第二通信节点接收第一通信节点配置的相位跟踪参考信号资源集合;所述第二通信节点接收所述第一通信节点通过解调参考信号资源的分配情况对所述相位跟踪参考信号资源集合内每个资源的使用情况的指示;其中,所述参考信号资源包括以下参数至少之一:端口数、端口序号、时域密度、频域密度、图样、端口间的复用方式。
根据本发明的另一个实施例,提供了一种参考信号的处理装置,应用在第一通信节点,包括:配置模块,设置为配置给第二通信节点相位跟踪参考信号资源集合;指示模块,设置为通过解调参考信号资源的分配情况指示所述相位跟踪参考信号资源集合内每个资源的使用情况;其中,所述相位跟踪参考信号资源包括以下参数至少之一:端口数、端口序号、时域密度、频域密度、图样、端口间的复用方式。
根据本发明的另一个实施例,提供了另一种参考信号的处理装置,应用在第一通信节点,包括:指示模块,设置使用解调参考信号资源的第M子集指示相位跟踪参考信号资源的第M子集;其中,所述解调参考信号资源包括M个子集,M为正整数,并且在所述相位跟踪参考信号资源的每个子集频域范围内,传输所述解调参考信号资源的M个子集。
根据本发明的另一个实施例,提供了又一种参考信号的处理装置,应用在第二通信节点,包括:第一接收模块,设置为接收第一通信节点配置的相位跟 踪参考信号资源集合;第二接收模块,设置为接收所述第一通信节点通过解调参考信号资源的分配情况对所述相位跟踪参考信号资源集合内每个资源的使用情况的指示;其中,所述相位跟踪参考信号资源包括以下参数至少之一:端口数、端口序号、时域密度、频域密度、图样、以及端口间的复用方式。
根据本发明的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:
配置给第二通信节点相位跟踪参考信号资源集合;
通过解调参考信号资源的分配情况指示所述相位跟踪参考信号资源集合内每个资源的使用情况。
本发明实施例提供了一种参考信号的处理方法及装置,通过第一通信节点配置给第二通信节点相位跟踪参考信号资源集合;所述第一通信节点通过解调参考信号资源的分配情况指示所述相位跟踪参考信号资源集合内每个资源的使用情况;其中,所述解调参考信号资源包括以下参数至少之一:端口数、端口序号、时域密度、频域密度、图样、以及端口间的复用方式,解决了相关技术中不能针对解调参考信号的具体信息设计相应相位跟踪参考信号的技术问题。
附图说明
此处所说明的附图用来提供对本文的进一步理解,构成本申请的一部分,本文的示意性实施例及其说明用于解释本文,并不构成对本文的不当限定。在附图中:
图1是根据本发明实施例的一种参考信号的处理方法的流程图;
图2是根据本发明实施例的另一种参考信号的处理方法的流程图;
图3是根据本发明实施例的一种参考信号的处理装置的结构框图;
图4是根据本发明实施例的另一种参考信号的处理装置的结构框图;
图5a为本发明实施例不存在零功率相位跟踪参考信号图样;
图5b为本发明实施例存在零功率相位跟踪参考信号图样;
图5c是本发明实施例不同子集的相位跟踪参考信号的映射关系图;
图5d是本发明实施例相位跟踪参考信号的一种端口集合示意图;
图5e是本发明实施例不同密度的相位跟踪参考信号图样示意图;
图6是本发明实施例PTRS资源集合外的PTRS资源使用情况示意图;
图7是本发明实施例PTRS端口子集交叉映射示意图;
图8是本发明实施例码分复用的DMRS对应的PTRS图样;
图9是本发明实施例两个终端DMRS伪正交时的PTRS图样;
图10a是本发明实施例非端口集合指示的PTRS图样a;
图10b是本发明实施例非端口集合指示的PTRS图样b;
图11是本发明实施例的不同密度的相位跟踪参考信号图样;
图12是本发明实施例伪正交终端的PTRS图样;
图13是本发明实施例终端1的PTRS图样;
图14a是本发明实施例的PTRS图样a;
图14b是本发明实施例的PTRS图样b;
图15是本发明实施例多列DMRS对应的PTRS图样;
图16是本发明实施例12正交端口DMRS对应的图样;
图17a是本发明实施例每个子帧占用7个时域符号的PTRS图样;
图17b是本发明实施例每个PRB内DMRS不占满12个子载波的PTRS图样;
图18是本发明实施例参考信号各有8个端口的图样;
图18a是本发明实施例的相位跟踪参考信号端口序号图;
图19是本发明实施例的4个相位跟踪参考信号端口序号图;
图20是本发明实施例的相位跟踪参考信号的端口在不同的时间单元上对应不同的解调参考信号端口的示意图;
图21是本发明实施例的在不同的slot或者子带上进行hopping的图样。
具体实施方式
下述说明书、权利要求书及附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本实施例提供了一种参考信号的处理方法,图1是本发明实施例的一种参考信号的处理方法的流程图,如图1所示,该流程包括如下步骤:
步骤S102,第一通信节点配置给第二通信节点相位跟踪参考信号资源集合。
在一实施例中,相位跟踪参考信号资源集合可以是通过高层信令配置的。
步骤S104,第一通信节点通过解调参考信号资源的分配情况指示相位跟踪 参考信号资源集合内每个资源的使用情况。
在一实施例中,相位跟踪参考信号资源包括以下参数至少之一:端口数、端口序号、时域密度、频域密度、图样、以及端口间的复用方式。参考信号资源包括相位跟踪参考信号资源和解调参考信号资源。
在一实施例中,第一通信节点配置给第二通信节点相位跟踪参考信号资源集合;所述第一通信节点通过解调参考信号资源的分配情况指示所述相位跟踪参考信号资源集合内每个资源的使用情况;其中,所述解调参考信号资源包括以下参数至少之一:端口数、端口序号、时域密度、频域密度、图样、以及端口间的复用方式,解决了相关技术中不能针对解调参考信号的具体信息设计相应相位跟踪参考信号的技术问题。
本实施例提供了另一种参考信号的处理方法,图2是本发明实施例的另一种参考信号的处理方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,第二通信节点接收第一通信节点配置的相位跟踪参考信号资源集合;
步骤S204,第二通信节点接收第一通信节点通过解调参考信号资源的分配情况对相位跟踪参考信号资源集合内每个资源的使用情况的指示;在一实施例中,相位跟踪参考信号资源包括以下参数至少之一:端口数、端口序号、时域密度、频域密度、图样、以及端口间的复用方式。
在本实施例中,相位跟踪参考信号也可称为相位噪声参考信号,或者用于相位跟踪或者相位补偿的参考信号。
本实施例还提供了另一种参考信号的处理方法,包括:
第一通信节点使用解调参考信号资源的第M子集指示相位跟踪参考信号资源的第M子集;其中,所述解调参考信号资源包括M个子集,M为正整数,并且在所述相位跟踪参考信号资源的每个子集频域范围内,都传输所述解调参考信号资源的所述M个子集。
在一实施例中,第一通信节点使用所述解调参考信号资源的第一子集指示所述相位跟踪参考信号资源的第一子集,以及使用所述解调参考信号资源的第M子集指示所述相位跟踪参考信号资源的第M子集,其中,所述解调参考信号资源包括M个子集,在所述相位跟踪参考信号资源的每个子集频域范围内,都传输所述解调参考信号资源的M个子集。M为正整数。
在一实施例中,所述解调参考信号资源的M个子集的端口在时域上码分复用或者在时域上时分复用,以及所述相位跟踪参考信号资源的M个子集的端口频分复用。
在一实施例中,在所述解调参考信号资源的M个子集的端口在时域上时分复用时,所述解调参考信号资源的M个子集的端口占用不同的时域符号。
在一实施例中,不同的第二通信节点可以对应不同端口序号的相位跟踪参考信号。
在一实施例中,所述相位跟踪参考信号资源集合内的每个相位跟踪参考信号或者每组相位跟踪参考信号的时域频域密度是所述第一通信节点配置的。
在一实施例中,上述步骤的执行主体可以为基站等,但不限于此。
在一实施例中,第一通信节点在相位跟踪参考信号资源集合外的相位跟踪参考信号资源上,发送或者接收数据。第一通信节点在相位跟踪参考信号资源集合外的相位跟踪参考信号资源上,不发送信号或者发送零功率的参考信号。
在根据本实施例的可选实施方式中,在解调参考信号资源的端口数大于第一门限时,相位跟踪参考信号资源集合不使能,或,解调参考信号资源的端口数小于第二门限时,相位跟踪参考信号资源集合使能。
在根据本实施例的可选实施方式中,在相位跟踪参考信号资源集合使能时,第一通信节点利用解调参考信号资源的指示信令通知第二通信节点相位跟踪参考信号资源集合内对应的非零功率相位跟踪参考信号的发送资源。
在一实施例中,第一通信节点在相位跟踪参考信号资源集合内,发送非零功率和零功率的相位跟踪参考信号。
在一实施例中,第一通信节点配置给第二通信节点相位跟踪参考信号资源集合,包括:第一通信节点使用动态信令通知第二通信节点在相位跟踪参考信号资源集合的位置,其中,所述动态信令通知包含以下至少一项:准共址QCL指示信息,加扰序列,以及物理层动态信令。
在一实施例中,第一通信节点配置给第二通信节点相位跟踪参考信号资源集合中包含的端口个数为使用相位跟踪参考信号端口数,或者根据为相位跟踪参考信号端口数与解调参考信号端口数的比例值计算得到,所述解调参考信号端口数为大于等于1的整数。如果解调参考信号的端口数为8,P值如果配置为1/2,可以得到相位跟踪参考信号的端口数为4。
在一实施例中,相位跟踪参考信号资源集合内的每个相位跟踪参考信号或者每组相位跟踪参考信号的时域频域密度是可以配置的,如第一通信节点配置。
在一实施例中,相位跟踪参考信号资源集合包括:预定义的资源配置。
在一实施例中,相位跟踪参考信号资源集合由第一通信节点通过位图bitmap方式映射不同的资源集合。
本实施例还提供一种参考信号的处理方法,包括:相位跟踪参考信号在不同的资源上跳变,其中,所述资源包括以下至少之一:时间单元,频域单元,端口,以及预编码方式。
在一实施例中,所述相位跟踪参考信号的图样的相对位置跟时间单元或者频域单元的序号相关联。对于不同的第一通信节点或者第二通信节点,相位跟踪参考信号资源跳变的规则不同。
在根据本实施例的可选实施方式中,当N个解调参考信号端口关联一个相位跟踪参考信号端口时,相位跟踪参考信号的预编码方式有N种,其中,错误!未找到引用源。;其中,第一通信节点为不同的时间单元或者不同的频域单元分别配置解调参考信号端口和相位跟踪参考信号端口的对应关系;其中,所述相位跟踪参考信号端口和解调参考信号端口的对应关系是指相位跟踪参考信号端口和解调参考信号端口使用相同的预编码方式,所述相位跟踪参考信号端口和解调参考信号端口的对应关系跟时间单元或者频域单元的序号有关。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM或RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例的方法。
本发明实施例,提供了一种参考信号的处理装置,该装置用于实现上述实施例及实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和硬件中至少之一的组合。尽管以下实施例所描述的装置以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图3是本发明实施例的一种参考信号的处理装置的结构框图,应用在第一通信节点,如图3所示,该装置包括:
配置模块30,设置为配置给第二通信节点相位跟踪参考信号资源集合;
指示模块32,设置为通过解调参考信号资源的分配情况指示相位跟踪参考信号资源集合内每个资源的使用情况;
其中,相位跟踪参考信号资源包括以下参数至少之一:端口数、端口序号、时域密度、频域密度、图样、以及端口间的复用方式。
本实施例还提供另一种参考信号的处理装置,应用在第一通信节点,包括:指示模块,设置为使用解调参考信号资源的第M子集指示相位跟踪参考信号资源的第M子集。其中,所述解调参考信号资源包括M个子集,M为正整数,并且在所述相位跟踪参考信号资源的每个子集频域范围内,都传输所述解调参考信号资源的M个子集。
在一实施例中,指示模块还设置为使用所述解调参考信号资源的第一子集指示所述相位跟踪参考信号资源的第一子集,以及使用所述解调参考信号资源的第M子集指示所述相位跟踪参考信号资源的第M子集,其中,所述解调参考信号资源包括M个子集,在所述相位跟踪参考信号资源的每个子集频域范围内,都传输所述解调参考信号资源的M个子集。M为正整数。
图4是本发明实施例的另一种参考信号的处理装置的结构框图,如图4所示,该装置包括:
第一接收模块40,设置为接收第一通信节点配置的相位跟踪参考信号资源集合;
第二接收模块42,设置为接收第一通信节点通过解调参考信号资源的分配情况对相位跟踪参考信号资源集合内每个资源的使用情况的指示;
其中,相位跟踪参考信号资源包括以下参数至少之一:端口数、端口序号、时域密度、频域密度、图样、以及端口间的复用方式。
在一实施例中,第一通信节点在相位跟踪参考信号资源集合外的相位跟踪参考信号资源上,发送或者接收数据。
在一实施例中,第一通信节点在相位跟踪参考信号资源集合外的相位跟踪参考信号资源上,不发送信号或者发送零功率的参考信号。
在一实施例中,不同的第二通信节点对应不同端口序号的相位跟踪参考信 号。
在一实施例中,在解调参考信号资源的端口数大于第一门限时,相位跟踪参考信号资源集合不使能,或,解调参考信号资源的端口数小于第二门限时,相位跟踪参考信号资源集合使能。
在一实施例中,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
本实施例提供了一种相位跟踪参考信号的设计方法和装置,涉及到相位跟踪参考信号的多种资源集合、图样、时频域密度、端口的复用方式以及端口数阈值等内容,可以解决多用户复用时相位跟踪参考信号的设计中的细节问题。
实施例1
在本发明实施例中,按照3GPP对NR的定义,包括解调参考信号(Demodulation Reference Signal,DMRS)和相位跟踪参考信号(Phase Tracking Reference Signal,PTRS),其他信令或者名称同长期演进技术(Long Term Evolution,LTE)保持一致,所有实施例中的所述的无线资源控制(Radio Resource Contro,RRC)信令还可以为MAC控制元素(MAC Control Element,MAC CE)、下行控制信息(Downlink Control Information,DCI)等信令,且所述的DMRS和PTRS的图样以及端口资源集合主要是在1个物理资源块(Physical Resource Block,PRB)内的示例。
在一实施例中,服务于同一个基站下的用户根据调制与编码策略(Modulation and Coding Scheme,MCS)等级确认是否需要进行PTRS补偿,当MCS等级较高时,例如256相正交振幅调制(Quadrature Amplitude Modulation,QAM)或者更高的调制方式时,用户需要PTRS进行相位补偿,从而更好的进行数据解调,提高频谱效率等,MCS等级较低的用户则可以不用PTRS进行相位补偿。因为MCS等级较高时,传输信息对射频天线晶振影响较为敏感,MCS等级较低时,则影响不大。因此在MCS等级较高时更需要进行相位的补偿。且随着中心频率的增大,用户受到相位噪声的影响也越大。因此在高频段,使用PTRS进行相位补偿,可以提高用户频谱效率。
在多用户复用的场景中,因为基站和每个用户传输信息会用到多个射频天线,每个天线的晶振存在一定的差异,且每个用户的MCS等级不尽相同,所以 每个用户的PTRS需求情况不同。PTRS需求情况表现为是否需要PTRS、PTRS的端口数以及每个PTRS端口对应的图样等,这些参数表现为一定程度的差别。所以,基站需要根据每个用户的PTRS需求情况确认是否需要针对某个或者某几个用户进行PTRS相位补偿。
在一实施例中,用户根据基站发送的层数信息,判断此时是否存在零功率PTRS。如果此时层数信息大于某个值(以LTE时,此值为2为例),此时为单用户场景,则不存在零功率PTRS。如图5a所示,图5a为本发明实施例不存在零功率相位跟踪参考信号图样。如果此时层数信息小于某个值,则可以按照多用户场景进行处理。如果存在多用户需要PTRS进行相位补偿时,即认为存在零功率PTRS以及非零功率PTRS,如图5b所示,图5b存在零功率相位跟踪参考信号图样。
在一实施例中,假设遵循LTE的设定,当基站侧分配的层数大于2时,认为是单用户场景;当基站侧分配的层数小于等于2时,根据基站侧分配的DMRS端口数可以判断。当DMRS端口数较多时,可以认为是多用户复用场景;当DMRS端口数较少时(例如等于层数2),则认为可能是单用户场景或者多用户复用场景,因为可能存在一定的非正交DMRS端口,但是此时可以按照是多用户复用场景来处理。
在一实施例中,基站根据多个用户需要的PTRS数,设定最大PTRS端口数量参考系数P,P值表示基站设定的相位跟踪参考信号端口数同解调参考信号端口数的比值。P值最大可以取1,例如取P为1/2,高层信令基站通过无线资源控制(Radio Resource Control,RRC)配置的DMRS的端口数M,例如M=8,基站则可以通过RRC设定最大PTRS端口数N。最大PTRS端口数N的计算公式为:N=P×M=4。
在一实施例中,基站侧设定一定数量的PTRS端口集合,每个集合包含不同的PTRS端口。其中,每组集合代表了针对不同场景中PTRS的需求情况,且根据上面提到的设定最大PTRS端口数N表示所设定的PTRS端口集合中,每组端口的最多数量为N,可以存在小于N的端口集合。例如,根据N=4,可以选取基站通过RRC配置的PTRS的端口集合中每组PTRS端口数的维度最大为4。例如可以设定端口集合为{[1,2,3,4],[5,7,6,8]},或者{[1,2,3,5],[6,7,4,8]},或者维度小于4的{[1,2],[3,4],[5,6],[7,8]}等多个可选端口集合,设定维度小于4可 以保证在PTRS的用户数减小时能够调整端口集合的大小,从而能够有效的提高频谱效率。
在一实施例中,当存在占用两个或者多个时域符号DMRS时,由于会有一些DMRS的不同端口占用相同的子载波,所以此时PTRS的映射,直接影响到PTRS端口集合的映射关系。在一实施例中,若存在超过两个时域符号的DMRS的情况,则可以通过判断不同符号间相同子载波位置上的DMRS的端口是否一致。如果一致,则可以认为相同多个符号的DMRS后面几个符号位置是对第一个符号位置的重复发送,此时可以认为这几个符号位置上对应的DMRS为一个子集。如果不同时域符号位置上相同子载波位置对应的DMRS的端口不相同,则认为存在不同的子集,且每个子集在频域上对应的不同端口的DMRS个数可以称为一个频域发送周期。
在一实施例中,不同子集对应的PTRS端口通过子载波位置不同来区分,且在上述第一个频域发送周期内传输第一个子集的PTRS,在第二个频域发送周期内传输第二个子集的PTRS,依次类推,直至所有的PTRS传输完成。如图5c所示,图5c是本发明实施例不同子集的相位跟踪参考信号的映射关系图。
在一实施例中,如果此时用户中存在一个用户配置了两个DMRS端口,且两个DMRS不能共享同一个PTRS端口,则可以由基站通过RRC配置PTRS端口为[1,2,3,5]。其中,两个DMRS不能共享同一个PTRS端口的情况,可以是此两个DMRS端口不使用同一个基站测射频端的同一天线发送信息或者使用的两个天线间的晶振差别较大,且用户设备(User Equipment,UE)的MCS等级较高(例如为256QAM),所以此UE需要占用两个PTRS端口。如附图5d所示,图5d是本发明实施例相位跟踪参考信号的一种端口集合示意图。
在一实施例中,PTRS端口可以和DMRS端口一一对应,即PTRS和DMRS的相同端口占用相同的子载波。假设用户1占用两个PTRS端口,同时还存在另外两个用户,每个用户分别对应1个PTRS端口,此时我们可以对照端口集合的配置情况,为用户1配置了端口1和端口2,另外的两个用户分别配置了端口3和端口5。
在一实施例中,资源集合可以采用资源映射(bitmap)映射,如图5d所示,基站通过RRC配置了4个PTRS端口,且存在8个DMRS端口,资源映射(bitmap)的内容为[1,1,1,0,1,0,0,0],其中1表示此DMRS端口对应的子载波内传输PTRS, 0表示此DMRS端口对应的子载波传输数据。
在一实施例中,分配给每个用户的PTRS图样可以通过上面资源映射(bitmap)的映射结果和PTRS端口集合的端口对应信息来指示该用户的PTRS位置、零功率位置以及数据位置。用户1、用户2和用户3分别被配置了PTRS端口1和端口2、端口3,端口5,分别对应DMRS端口1和端口2、端口3以及端口5,此时根据资源映射(bitmap)的映射内容和DMRS端口的对应关系取交集,即可以得到用户1的PTRS端口和资源映射(bitmap)的交集为前两个PTRS端口,所以可以得到用户1PTRS端口对应的4个子载波位置上,端口1和端口2对应的子载波位置为非零功率参考信号,而其余两个子载波位置为零功率位置;相似的,对于用户2可以得到其对应的资源映射(bitmap)和PTRS交集的端口3的子载波为非零功率端口,其余3个端口为零功率端口;相似的,对于用户3,可以得到对应的资源映射(bitmap)和PTRS交集的端口5的子载波为非零功率端口,其余3个端口为零功率端口。
由于多用户场景中,可能存在多个用户的MCS等级以及带宽信息不尽相同,所以不同的PTRS端口图样可能存在不同的时频域密度。基站通过RRC或者DCI信令可以配置参数指示PTRS的时频域密度,例如默认时域密度为1。RRC信令或者DCI信令不做通知的情况下,PTRS的密度按照占满整个时域符号处理。如果PTRS密度不是1,则可以通过DCI发送1bit信息通知用户,该端口对应的PTRS在时域的密度为占满整个时域符号时密度的1/2,或者1/4。同样频域密度可以采取相似的方法进行映射。
在一实施例中,在没有高层RRC信令指示的情况下,DCI通知的时频域密度根据MCS等级的变化可以做相应的调整,但是不能超过高层信令通知的时频域密度阈值。例如,当某个用户的PTRS的时频域密度减小时,DCI信令通知该用户新的图样。由于PTRS占用的时频域资源减少,可以由该用户在变化的资源上发送数据,其他的用户不做调整。如果某个用户的时频域密度增大时,DCI信令不通知新的图样,该用户的PTRS仍然使用旧的图样。
在一实施例中,基站通过RRC信令将端口集合,根据资源映射(bitmap)映射关系等信息发送给用户,针对得到的DMRS和PTRS图样进行参考信号和数据的解调。当用户在解调过程中MCS等级发生变化,即PTRS图样也可能会发生变化,此时基站可以通过DCI信令告知该用户新的PTRS图样,如图5d所示。 当用户2对应的PTRS3端口的图样为占满整个时域符号,以及此时MCS等级降低时,DCI则可以通过1bit信息告知用户此时的PTRS时域上的密度变化。其中,上述1bit信息表示,密度变为1/2或者1/4。在一实施例中,此1bit信息可以通知给PTRS图样中发生变化的端口,其他的端口不发生变化。如图5e所示,图5e是本发明实施例不同密度的相位跟踪参考信号图样示意图。用户2可以在DMRS端口位置对应的子载波上发送一半符号数的PTRS以及一半符号数的数据,能提高频谱效率。同时,其他的两个用户不会收到相关信令,仍然按照RRC配置的PTRS端口3占满整个时域符号情况,全部记为零功率PTRS,这样可以节约一部分开销,同时不会对频谱效率造成很大的影响。
实施例2
在一实施例中,第一通信节点在所述相位跟踪参考信号资源集合外的相位跟踪参考信号资源上发送或者接收数据。
在一实施例中,第一通信节点在所述相位跟踪参考信号资源集合外的相位跟踪参考信号资源上不发送任何信号或者发送零功率的参考信号。
在一实施例中,基站高层信令配置的PTRS资源集合为全部PTRS资源的一个子集。例如,此时DMRS端口数为8个,全部的PTRS资源数为8个。如果取某一个PTRS资源集合为PTRS端口[1,2,3,5]的PTRS资源,那么此时PTRS资源集合外的PTRS端口为[4,6,7,8]。如图5d所示,PTRS端口[4,6,7,8]位置可以发送或者接收数据。如图6所示,图6是本发明实施例PTRS资源集合外的PTRS资源使用情况示意图,在PTRS端口[4,6,7,8]位置也可以不发送任何信号或者零功率的参考信号。
实施例3
第一通信节点利用所述解调参考信号资源的第一子集指示所述相位跟踪参考信号资源的第一子集,利用所述解调参考信号资源的第M子集指示所述相位跟踪参考信号资源的第M子集。所述解调参考信号资源M个子集的端口在时域上码分复用或者时分复用,而所述相位跟踪参考信号资源M个子集的端口频分复用。所述解调参考信号资源M个子集的端口在时域上时分复用时,M个子集的端口占用不同的时域符号。
例如,M取值可以为2,3,4等。此时的DMRS第一子集为时域第一个DMRS符号位上的DMRS端口,DMRS第二子集为时域第二个DMRS符号位上的 DMRS端口,且此时PTRS的子集同DMRS的子集一一对应,如图5c所示。
在一实施例中,在所述相位跟踪参考信号资源的每个子集频域范围内,所述解调参考信号资源的第一子集和第二子集都有传输。
在一实施例中,PTRS的每个子集内的资源可以对应于DMRS多个子集内的DMRS端口资源。
在一实施例中,占用相同子载波的DMRS端口对应不同的PTRS子集内的端口资源,每个DMRS端口子集内的所有端口有相应的PTRS端口与之对应。这是一种更灵活的PTRS端口图样的设计方法。
图7是本发明实施例PTRS端口子集交叉映射示意图。如图7所示,DMRS的两个子集内分别包括4个DMRS端口,映射在不同的PTRS端口位置。例如,DMRS第一子集内的2端口可以映射到PTRS的第二子集内。如果DMRS端口1和端口2、端口3和端口4分别对应同一个用户,且每个用户对应的两个DMRS端口可以做频域的正交覆盖码(Orthogonal Covering Code,OCC),那么此时DMRS端口1和端口2可以不用对应两个PTRS进行相位补偿。例如可以是,空出的DMRS2端口可以被其他用户使用,例如可以提供给DMRS端口7对应的用户使用。
此时PTRS的第一端口子集内就可以传输4个用户的PTRS资源。而DMRS第一子集内的端口2可以在PTRS第二个子集对应的频域位置传输,也可以选择DMRS端口2不存在PTRS相位补偿,不对应任何PTRS端口。
实施例4
在一实施例中,所述解调参考信号资源第一子集的端口和第二子集的端口在时域上码分复用或者时分复用,而所述相位跟踪参考信号资源第一子集的端口和第二子集的端口频分复用。
在一实施例中,DMRS的第一子集内的端口和第二子集的端口为时分复用方式。如图5c所示,此时DMRS端口1为DMRS第一子集内的端口,端口5为DMRS第二子集内的端口,且这两个端口数是时分的。此时这两个端口分别配置了PTRS端口1和端口5,PTRS端口1对应第一个频域传输周期的DMRS端口1和端口5位置,PTRS端口5对应第一个频域传输周期的DMRS端口1和端口5位置。分配的PTRS端口1和端口5分别对应PTRS第一子集和PTRS第二子集,PTRS端口1和端口5为频分复用,此时可以保证这对应同一子载波 位置的两个DMRS端口都可以有对应的PTRS进行相位补偿。
在一实施例中,DMRS第一子集内的端口和第二子集的端口为码分复用方式。图8是本发明实施例码分复用的DMRS对应的PTRS图样。如图8所示,此时DMRS端口1和端口5存在码分复用,对应的码分的两个终端的DMRS端口占用相同的子载波位置,因此配置PTRS第一子集内的端口1对应第一子集的DMRS端口1和端口5,配置PTRS第二子集内的端口5对应码分的第二子集的DMRS端口1和端口5。
实施例5
在一实施例中,对于不同的第二通信节点,所述相位跟踪参考信号端口序号不同。
在一实施例中,对于多个终端存在伪正交的DMRS端口,即多个终端的DMRS占用相同的端口,此时需要设计正交的PTRS对应与伪正交的DMRS。以2个终端存在伪正交DMRS端口为例,此时这两个终端都分配了DMRS端口1和端口2,且这两个终端都需要PTRS来进行相位补偿,此时需要基站为这两个终端区分PTRS端口。
图9是本发明实施例两个终端DMRS伪正交时的PTRS图样。如图9所示,此时基站针对终端1PTRS端口集合对应DMRS端口序号为[1,2,3,4,5,6,7,8],基站针对终端2PTRS集合对应的DMRS端口序号为[2,1,4,3,5,7,6,8]。此时存在伪正交的终端,映射的第一个和DMRS对应的PTRS资源集合中的端口,即终端1的PTRS端口对应于DMRS端口1,终端2的PTRS端口对应于DMRS端口2。
实施例6
在一实施例中,所述解调参考信号的端口数大于一个门限时,所述相位跟踪参考信号资源集合不使能。
在一实施例中,所述解调参考信号的端口数小于一个门限时,所述相位跟踪参考信号资源集合使能。
在一实施例中,根据解调参考信号或者终端MCS等级或者基站RRC信令,确认PTRS资源集合的使能。
在一实施例中,基站可以根据用户的MCS等级或者DMRS端口数等,为用户分配PTRS资源,且可以根据此时是否存在多用户复用,通过RRC信令来告知用户是否分配了PTRS资源。
当终端MCS等级较高时,例如64QAM、256QAM或者更高等级,受相位噪声影响比较大;在MCS等级较低时,例如16QAM、正交相移键控(Quadrature Phase Shift Keying,QPSK)或者更低的等级,相位噪声对数据解调不会产生很大的影响,因此基站可以根据终端的MCS等级确认PTRS资源集合的使能。
例如可以是设定配置给1个用户的DMRS端口数的门限值为2。当DMRS端口数大于2时,可以认为是单用户场景,基站不设定PTRS资源集合,可以为该用户配置DMRS端口对应的PTRS资源。当DMRS端口数小于2时,则认为可能存在多用户复用,基站触发PTRS资源集合使能,同时用户根据分配的DMRS端口数可以判断基站侧是否发送PTRS资源集合。或者,设定配置给1个用户的DMRS端口数的门限值为4。当DMRS端口数大于4时,可以认为是单用户场景,基站不设定PTRS资源集合,可以为该用户配置DMRS端口对应的PTRS资源。当DMRS端口数小于4时,则认为可能存在多用户复用,基站触发PTRS资源集合使能,同时用户根据分配的DMRS端口数可以判断基站侧是否发送PTRS资源集合。
实施例7
在一实施例中,相位跟踪参考信号资源集合使能时,第一通信节点利用所述解调参考信号资源的指示信令,通知第二通信节点所述相位跟踪参考信号资源集合内对应的非零功率相位跟踪参考信号的发送资源。
基站配置了PTRS资源集合给用户,复用的多个用户接收到PTRS资源时,判断哪个或者哪些PTRS是分配给该用户的,此时基站可以利用DMRS端口的资源来指示。假设此时的基站配置的PTRS资源集合为[1,3,5,7],分别对应DMRS端口[1,3,5,7],且此时给用户1配置DMRS端口1和端口2,则根据DMRS和PTRS端口集合的分配情况,得到给用户1分配PTRS端口1,资源集合中的其他的PTRS端口可以发送零功率参考信号或者不发送任何信号。
当存在伪正交的DMRS端口时,例如分配给用户1和用户2的DMRS端口都是端口1和端口2,且此时基站分配的PTRS端口资源集合为[1,2,3,5],此时没有其他指示信息的话。当用户1和用户2会认为PTRS端口1和端口2都是分配给自己时,不利于相位补偿。此时可以通过实施例5中所述的方法来区分两个PTRS的分配情况。或者针对上述情况,基站通过DCI发送1bit的信令,通知这两个用户,其PTRS端口1和PTRS端口2的分配情况,如图9所示。
在一实施例中,第一通信节点在所述相位跟踪参考信号资源集合内只发送非零功率的和零功率的相位跟踪参考信号。
如图5b所示,基站配置的PTRS资源集合为[1,2,3,4]。对于用户1来说,和DMRS端口对应的PTRS端口为1,即此时基站给用户1发送的物理资源块内的PTRS端口[1,2,3,4]处,PTRS端口1为非零功率PTRS,端口2,3,4为零功率PTRS。因此,在基站配置的PTRS资源集合[1,2,3,4]内给用户1只发送了非零功率PTRS的端口1和零功率的PTRS端口2,3,4。同理,假设为用户2配置的是PTRS端口2,则基站发送给用户2的PTRS端口2为非零功率的PTRS,其他3个端口发送零功率的PTRS。无论基站配置的PTRS资源集合为哪种,在资源集合内,基站在对应该用户的PTRS上发送非零功率的参考信号,在资源集合内其他端口上发送零功率的PTRS。
实施例8
在一实施例中,第一通信节点通过高层信令配置给第二通信节点多个相位跟踪参考信号资源集合,并且第一通信节点用以下至少之一的动态信令通知第二通信节点是哪个资源集合。
准共站址(Quasi co-location,QCL)指示信息,加扰序列,物理层动态信令。
基站配置了多种的PTRS资源集合,基站可以通过QCL信息,类似LTE的数据速率匹配和准共站址指示(PDSCH RE Mapping and Quasi-Co-Location Indicator,PQI),针对不同的QCL,可以分配不同的PTRS端口集合;
对于不同的DMRS加扰序列,不同的DMRS端口,存在不同的PTRS端口与之对应,所以可以通过DMRS的加扰序列来通知PTRS的资源集合;
基站可以通过DCI信令来通知PTRS资源集合,不同的资源集合对应不同的编号,可以通过DCI信令通知各编号的资源集合,DCI通过1bit信令通知终端。此时基站发送的资源池的集合为[1,2,3,4]。
实施例9
在一实施例中,所述相位跟踪参考信号资源集合通过高层信令配置给第二通信节点所述相位跟踪参考信号资源集合中包含的端口个数P。
其中P值是使用的相位跟踪参考信号端口数,或者为解调参考信号端口数比例值,M为大于等于1的整数;
此时的P存在两种表示,其中P值无论为直接配置PTRS端口个数,还是DMRS端口数的1/M,都可以获得基站配置的PTRS端口个数。
其中P值可以为基站配置的PTRS资源集合的端口个数,如实施例1中所述,或者端口数P可以直接由基站通过信令配置给用户的直接端口数,不需要配置端口集合。
基站根据终端的MCS等级来映射PTRS和DMRS之间的关系,将DMRS中MCS等级较高的端口分配为第一子集,依次类推。此时基站的高层信令可以不配置PTRS端口集合的详细信息,只需要告知终端最终的PTRS端口数P,且P个端口在频域上占用连续的P个子载波。
此时能够有效的减少基站需要通知PTRS的信令开销。如图10a所示,图10a是本发明实施例非端口集合指示的PTRS图样a。
PTRS端口的编号可以不与所对应的DMRS端口编号一一对应。
图10b是本发明实施例非端口集合指示的PTRS图样b,如图10b所示的PTRS的端口编号设计,此时PTRS的编号也代表的是端口数,此时的图样能够解决存在占用4个DMRS端口的终端,且该4个DMRS端口使用同一个码本,所以终端1的DMRS端口1、2、3、4,可以用一个PTRS端口就可以完成相位补偿,此时PTRS端口1对应的是该4个DMRS端口。PTRS端口2对应DMRS端口5,用于补偿其他终端的相位。此时基站可以不发送端口集合,而发送端口数。
实施例10
在一实施例中,相位跟踪参考信号资源集合内的每个相位跟踪参考信号或者每组相位跟踪参考信号的时域频域密度是可配的;相位跟踪参考信号的资源集合中包括一种预定义的资源配置;
由于多用户场景中,可能存在多个用户的MCS等级以及带宽信息不尽相同,所以不同的PTRS端口图样可能存在不同的时频域密度。基站通过RRC或者DCI信令可以配置参数指示PTRS的时频域密度,例如预定义时域密度为1,RRC信令或者DCI信令不做通知的情况下,PTRS的密度按照占满整个时域符号处理。如果PTRS密度不是1,则可以通过DCI发送1bit信息通知用户,该端口对应的PTRS在时域的密度为占满整个时域符号时密度的1/2,或者1/4。同样频域密度可以采取相似的方法进行映射。
在一实施例中,在没有高层RRC信令指示的情况下,DCI通知的时频域密度根据MCS等级的变化可以做相应的调整,但是不能超过高层信令通知的时频域密度阈值。例如,当某个用户的PTRS的时频域密度减小时,DCI信令通知该用户新的图样。由于PTRS占用的时频域资源减少,可以由该用户在变化的资源上发送数据,其他的用户不做调整。如果某个用户的时频域密度增大时,DCI信令不通知新的图样,该用户的PTRS仍然使用旧的图样。
在一实施例中,基站通过RRC信令将端口集合,根据资源映射bitmap发送给用户,针对得到的DMRS和PTRS图样进行参考信号和数据的解调,当用户在解调过程中MCS等级发生变化,即PTRS图样也可能发生变化,此时基站可以通过DCI信令告知该用户新的PTRS图样。当用户1对应的PTRS 1和2端口的图样为占满整个时域符号,以及此时MCS等级降低时,DCI可以通过1bit信息告知用户此时的PTRS时域上的密度变化。其中,上述1bit信息表示,密度变为1/4,此1bit信息只通知给PTRS图样发生变化的端口,其他的端口不发生变化。如图11所示,图11是本发明实施例的不同密度的相位跟踪参考信号图样。此时用户2可以在DMRS端口位置对应的子载波上发送一半符号数的PTRS以及一半符号数的数据,能提高频谱效率。同时,其他的两个用户不会收到相关信令,仍然按照RRC配置的PTRS端口3占满整个时域符号情况,全部记为零功率PTRS,这样可以节约一部分开销,同时不会对频谱效率造成很大的影响。
实施例11
在一实施例中,相位跟踪参考信号资源集合内的每个相位跟踪参考信号或者每组相位跟踪参考信号的时域频域密度是可配的;
基站配置多用户的PTRS资源集合,且预定义时域密度为1,即占满整个时域符号,如果时域密度变为1/2或者1/4,DCI则可以通过1bit信息通知此端口的密度变化。
如果存在两个伪正交的终端,基站配置了DMRS端口1以实施两个终端分配的一个PTRS端口1。当此时两个终端对应的MCS等级降低时,PTRS密度也降低,此时两个终端的PTRS需求都变为了1/2时,两个PTRS图样可以通过时分的方式来实现,如图12所示。图12是本发明实施例伪正交终端的PTRS图样。此时可以通过nscid来指示PTRS两个端口的分配情况,nscid为0的终端使用PTRS端口1,nscid为1的终端使用PTRS端口2。
实施例12
在一实施例中,所述相位跟踪参考信号资源集合由第一通信节点通过bitmap的方式通知给第二通信节点。
bitmap的维度为解调参考信号的端口数;
bitmap中每个bit位的两种状态分别表示该位置为相位跟踪参考信号或者数据位。
Bitmap设置为DMRS端口数的维度,此时bitmap的维度和PTRS没有关系。而bitmap映射的内容表示DMRS对应的端口位置为传输PTRS还是数据。例如可以是bitmap中某bit位为0时表示此处传输数据,为1时表示此位置传输PTRS。
图13是本发明实施例终端1的PTRS图样。如图13所示,假设DMRS端口数为8,所以bitmap映射的内容为8bit的[1,0,1,0,1,0,1,0]。假设终端1对应的DMRS端口为端口1和端口2,终端2对应的DMRS端口为端口3和端口4,终端3对应的DMRS端口为端口5和端口6,终端4对应的DMRS端口为端口7和端口8,此时每个终端就得到了对应的PTRS端口资源集合为[1,3,5,7],且根据DMRS端口的对应关系可以得到零功率PTRS的位置。
实施例13
在一实施例中,不同子集的相位跟踪参考信号端口对应同一子集的解调参考信号部分端口或者全部端口。
在一实施例中,基站根据终端的PTRS需求进行分组,即DMRS第一子集内的端口对应MCS等级较高以及PTRS需求更大的终端,第二子集次之,其他子集依次类推。而PTRS端口的子集与不同DMRS端口的子集一一对应,如图14a所示,图14a是本发明实施例的PTRS图样a。此时PTRS端口第一子集对应DMRS端口第一子集,PTRS端口第二子集对应部分DMRS端口第一子集和部分DMRS端口第二子集,且此时PTRS端口1和端口7对应DMRS端口1,PTRS端口2和PTRS端口8对应DMRS端口2。此时如果不同的终端存在伪正交的DMRS端口,终端1和终端2都对应使用DMRS端口1和DMRS端口2,且此时终端1和终端2都可以使用高密度的PTRS,所以终端1和终端2都需要两个DMRS端口能进行相应的相位补偿,而此时DMRS第二子集内的一些端口不需要进行PTRS补偿。此时两个终端对应DMRS端口1和DMRS端口2,而PTRS对应PTRS端口1、端口2、PTRS端口7以及端口8,其中端口7和端口 8也对应于DMRS端口1和端口2,但是此处的端口7和端口8对应的是不同子载波上的DMRS端口1和端口2。
在一实施例中,DMRS第一子集内存在更多的伪正交端口,对应DMRS第二子集的终端的MCS等级较低,可以不分配PTRS对其进行相位补偿,此时如图14b所示的情况,图14b是本发明实施例的PTRS图样b,PTRS第一子集[1,2,3,4]和第二子集[5,6,7,8]都对应DMRS的第一子集,且PTRS第二子集内的端口对应与其他频域传输周期内的DMRS第一子集内的端口,可以解决更多的伪正交终端。
实施例14
在一实施例中,在高频段,除了front loaded模式的DMRS外,可能存在其他时域符号上的DMRS端口,后面的DMRS端口对应子载波位置和front loaded DMRS具有相同的DMRS端口。此时的DMRS端口更容易受到终端的移动速度,相位噪声等因素的影响,为了得到更好的解调效果,PTRS的设计可以如图15所示,图15是本发明实施例多列DMRS对应的的PTRS图样。
实施例15
在一实施例中,基站针对不同的解调参考信号图样分配不同的相位跟踪参考信号资源集合。
P值的配置可以是高层信令配置一个半静态的值,例如配置为4。基站配置4个PTRS端口,表示大于等于4个DMRS端口时,有4个PTRS端口可用;小于4个DMRS端口时,可以从4个PTRS端口中选择两个使用;
在一实施例中,P值可以是高层信令配置的一个集合,即基站根据DMRS的图样种类配置不同的P值。例如配置[2,4,4],则表示针对2个正交DMRS端口时配置两个PTRS端口;针对4个DMRS端口时基站配置4个PTRS端口;针对8个正交DMRS端口,基站配置4个PTRS端口;
目前3GPP通过DMRS最多支持12个正交端口,但是该场景一般同于低频情况,而低频时相位噪声的影响不大,所以在DMRS存在12个正交端口的应用中,一般不存在PTRS进行补偿。如16所示,图16是本发明实施例12正交端口DMRS对应的图样。
实施例16
上面所述的实施例都是物理资源块时域占用14个正交频分复用(Orthogonal  Frequency Division Multiplexing,OFDM)符号,但是也不排除存在7个OFDM符号的情况,如图17a所示,图17a是本发明实施例每个子帧占用7个时域符号的PTRS图样。
上面所述的实施例都是DMRS占用12个子载波,但是也不排除存在不占满12个子载波的情况,如图17b所示,图17b是本发明实施例每个PRB内DMRS不占满12个子载波的PTRS图样。
实施例17
在一实施例中,第一通信节点利用所述解调参考信号资源的第一子集指示所述相位跟踪参考信号资源的第一子集,利用所述解调参考信号资源的第二子集指示所述相位跟踪参考信号资源的第二子集;所述解调参考信号资源第一子集的端口和第二子集的端口在时域上码分复用或者时分复用,而所述第二类噪声参考信号资源第一子集的端口和第二子集的端口频分复用。并且,在所述相位跟踪参考信号端口资源的每个子集频域范围内,所述解调参考信号资源的第一子集和第二子集都有传输。
当存在占用两个或者多个时域符号解调参考信号时,由于会有一些解调参考信号的不同端口占用相同的子载波。如图18所示,图18是本发明实施例参考信号各有8个端口的图样,解调参考信号有8个端口,端口1,5占用相同的子载波,端口2,6占用相同的子载波,3,7占用相同的子载波,4,8占用相同的子载波。所述解调参考信号资源第一子集的端口和第二子集的端口在时域上码分复用或者时分复用,要求解调参考信号的第一子集中的对应的端口和第二子集中对应的端口是时分复用或者码分复用,那么不同子集中对应的端口可以是在相同的子载波上。如图18所示,第一参考信号的第一子集包含端口{1,2,3,4},第二子集可以包含端口{5,6,7,8},那么第一子集中的端口1和第二子集中的端口5是时分复用的或者码分复用的;第一子集中的端口2和第二子集中的端口6是时分复用的或者码分复用的;第一子集中的端口3和第二子集中的端口7是时分复用的或者码分复用的;第一子集中的端口4和第二子集中的端口8是时分复用的或者码分复用的。又比如,第一参考信号的第一子集包含端口{1,6,3,8},第二子集可以包含端口{5,2,7,4},那么第一子集中的端口1和第二子集中的端口5是时分复用的或者码分复用的;第一子集中的端口2和第二子集中的端口6是时分复用的或者码分复用的;第一子集中的端口3和第二子集中的端口7是时 分复用的或者码分复用的;第一子集中的端口4和第二子集中的端口8是时分复用的或者码分复用的。
此时,相位跟踪参考信号也分为2个子集,且这两个子集是频分复用的。如图18所示,相位跟踪参考信号包含的8个端口也分为两个子集,第一子集包含相位跟踪参考信号的端口{1,2,3,4},而第二子集包含相位跟踪参考信号的端口{5,6,7,8},此时端口1,2,3,4和端口5,6,7,8是频分复用的。
在一实施例中,解调参考信号资源的第一子集指示所述相位跟踪参考信号资源的第一子集,利用所述解调参考信号资源的第二子集指示所述相位跟踪参考信号资源的第二子集。解调参考信号的端口资源第一子集和相位跟踪参考信号的第一端口资源子集对应,解调参考信号的端口资源第二子集和相位跟踪参考信号的第二端口资源子集对应。如果解调参考信号的第一子集包括解调参考信号端口{1,2,3,4},相位跟踪参考信号的第一子集包括相位跟踪参考信号的端口{1,2,3,4},那么解调参考信号的第一子集的端口和相位跟踪参考信号的第一子集的端口一一对应,即解调参考信号的端口i对应相位跟踪参考信号的端口i,i=1,2,3,4。如果解调参考信号的第二子集包括解调参考信号端口{5,6,7,8},相位跟踪参考信号的第二子集包括相位跟踪参考信号的端口{5,6,7,8},那么解调参考信号的第二子集的端口和相位跟踪参考信号的第二子集的端口一一对应,即解调参考信号的端口j对应相位跟踪参考信号的端口j,j=5,6,7,8。根据上述对应关系,基站可以利用通知解调参考信号的端口信息来指示相位跟踪参考信号的端口信息。比如基站通知用户所用的解调参考信号的端口是5,6,那么用户即可知道相位跟踪参考信号的端口也在{5,6}中的一个或者多个。
在一实施例中,在所述相位跟踪参考信号端口资源的每个子集频域范围内,所述解调参考信号资源的第一子集和第二子集都有传输。从图18中可以看出,在相位跟踪参考信号的第一个子集的频域范围内,即相位跟踪参考信号的端口1,2,3,4对应的子载波上,解调参考信号的两个子集包含的端口都有传输,即解调参考信号的所有端口都有传输;同样的,在相位跟踪参考信号的第二个子集的频域范围内,即相位跟踪参考信号的端口5,6,7,8对应的子载波上,解调参考信号的两个子集包含的端口都有传输,即解调参考信号的所有端口都有传输。
在一实施例中,解调参考信号第一个子集包含的端口可以看做是在解调参考信号区域内第一个OFDM符号上映射的端口,而解调参考信号第二个子集包 含的端口可以看做是在解调参考信号区域内是在第二个OFDM符号上映射的端口。
对于不同的第二通信节点,所述相位跟踪参考信号端口序号不同。比如对于不同的用户终端U0和U1,U0的端口可以如图18所述,而U1的端口可以如图18a所示,图18a是本发明实施例的相位跟踪参考信号端口序号图。
此时如果解调参考信号的两个子集包含的端口分别是{1,2,3,4}和{5,6,7,8},那么对于U1,相位跟踪参考信号的第一个子集包含的端口{1,5,3,7},对应解调参考信号的第一个子集{1,2,3,4},即相位跟踪参考信号的端口1,对应解调参考信号的端口1;相位跟踪参考信号的端口5,对应解调参考信号的端口2;相位跟踪参考信号的端口3,对应解调参考信号的端口3,相位跟踪参考信号的端口7,对应解调参考信号的端口4;
相位跟踪参考信号的第二个子集包含的端口{2,6,4,8},对应解调参考信号的第一个子集{5,6,7,8},即相位跟踪参考信号的端口2,对应解调参考信号的端口5;相位跟踪参考信号的端口6,对应解调参考信号的端口6;相位跟踪参考信号的端口4,对应解调参考信号的端口7;相位跟踪参考信号的端口8,对应解调参考信号的端口8。
本实施例所述的端口对应关系,指的是用相同的预编码。
实施例18
在一实施例中,第一通信节点通过高层信令配置给第二通信节点相位跟踪参考信号端口资源集合;所述参考信号端口资源至少包括下列参数之一:端口数、端口序号、时域密度、频域密度、图样、端口间的复用方式。
这里的高层信令指的是RRC信令或者MAC信令,基站通过高层信令配置给用户相位跟踪参考信号的一个端口集合,这个端口集合包含的端口个数往往小于相位跟踪参考信号所包含的端口个数。如图19所示,图19是本发明实施例的4个相位跟踪参考信号端口序号图,基站可通过高层信令配置给用户4个相位跟踪参考信号端口。此时实际上相位跟踪参考信号的最大的端口个数仍然是8个,如图18a所示。所以此时基站可利用高层信令通知用户相位跟踪参考信号最大的端口数即可,比如是4,那么用户即可知道相位跟踪参考信号的端口1,2,3,4配置给了用户,即相位跟踪参考信号的资源集合中包括端口1,2,3,4。可选的,基站可利用一个bit map来通知相位跟踪参考信号的端口集合,比如有8 个相位跟踪参考信号端口,那么8bits map可用来指示相应的端口是否被包括,例如10000001表示第一个端口和第8个端口被包括在资源集合中。
在一实施例中,第一通信节点通过解调参考信号资源分配情况指示相位跟踪参考信号端口资源集合内的使用情况。如图19所示,基站利用高层信令配置给用户相位跟踪参考信号的资源集合包括相位跟踪参考信号端口1,2,3,4。根据所阐述的端口对应关系,即DMRS(解调参考信号)的端口1对应PTRS(相位跟踪参考信号)端口1;DMRS的端口3对应PTRS,端口3,DMRS的端口5对应PTRS,端口2;DMRS的端口7对应PTRS,端口4。
在一实施例中,如果配置的解调参考信号端口对应的相位跟踪参考信号端口存在于所述端口资源集合内,那么所述对应的相位跟踪参考信号的端口发送,所述端口资源集合内其余端口上发送零功率的参考信号。如图19所示,如果基站通过信令配置给用户解调参考信号的端口包括DMRS端口5,6,且这两个DMRS端口对应一个PTRS,由于DMRS端口5对应的是PTRS端口2,那么用户即可知道PTRS的端口2上要发送PTRS。在PTRS端口2属于端口资源集合{1,2,3,4}内,那么端口2要发送,而其余端口1,3,4上将不传输参考信号或者说传输零功率的参考信号。此零功率的参考信号可以理解为零功率的相位跟踪参考信号或者其他参考信号。
在一实施例中,第一通信节点在所述相位跟踪参考信号端口资源集合外的相位跟踪参考信号资源上发送或者接收数据。在一实施例中,第一通信节点在所述相位跟踪参考信号端口资源集合外的相位跟踪参考信号资源上不发送任何信号或者发送零功率的参考信号。基于本例相位跟踪参考信号的端口数有8个,而端口资源集合内包括PTRS端口1,2,3,4,那么相位跟踪参考信号的端口5,6,7,8上默认的可以用来传输数据。当然,默认的,也可以不传输任何东西或者说是零功率的参考信号。
在多用户调度时,本实施例可以节省动态信令的开销。比如多个用户在进行多用户调度,那么基站用高层信令半静态地分配给这些用户一个资源集合,对于某个用户,根据配置的解调参考信号的端口即可确定相位跟踪参考信号的端口(该端口对应的MCS可以大于一个门限),资源集合内的其他端口即发送零功率的参考信号。在一实施例中,半静态配置的资源集合包含的端口上默认的是传输零功率的参考信号,除非集合内某些端口跟用户配置的解调参考信号 对应的相位跟踪参考信号端口相同。这样,多个用户在做调度时,由于不同的用户对应的不同的解调参考信号端口,可以对应不同相位跟踪参考信号端口,可以使得属于不同用户的相位跟踪参考信号的多端口间正交。
在一实施例中,如果用户是单用户调度时,一般配置给一个用户的数据层数或者解调参考信号端口数会大于一个门限。此时不需要零功率的参考信号,即相位跟踪参考信号的资源集合没有意义,即用户无需考虑资源集合内包含的端口,即使此时基站配置了资源集合。即所述解调参考信号的端口数大于一个门限时,所述第二类噪声参考信号端口资源集合不使能。此时,如果基站高层配置给了一个用户PTRS存在,用户可以利用MCS等级来通知PTRS动态存在与否。例如可以是,如果MCS高于一个门限,此时PTRS存在;如果MCS低于一个门限,此时PTRS不存在。当然如果高层配置一个用户PTRS不存在,那么即使MCS再高,PTRS也不存在。如果高层配置PTRS存在,且MCS等级较高,那么在单用户调度的情况下,基站可利用MCS等级,实际调度的带宽等隐含地指示用户PTRS的时频域密度等,可以不考虑相位跟踪参考信号的资源集合。此时实际发送的PTRS端口就是DMRS端口对应的PTRS端口。
在一实施例中,所述解调参考信号的端口数小于一个门限时,即被认为是多用户调度,所述第二类噪声参考信号端口资源集合使能。
实施例19
在一实施例中,相位跟踪参考信号资源在不同的时间单元或者频域单元上跳变(hopping)。相位跟踪参考信号图样的相对位置跟时间单元或者频域单元的序号有关。
为了减小可能存在的相邻小区对于PTRS的干扰,在基站一次调度多个时隙slot时,PTRS可以在不同的slot上或者不同的子带上发生hopping。
此时,假设基站配置了PTRS的频域密度为每4个PRB发送一次PTRS,而没有hopping的情况下,可能在这4个PRB中的第一个PRB上发送PTRS,而此时为了减小可能存在的临区的PTRS干扰,基站配置PTRS的hopping规则。例如,基站配置第一个slot或者子带内在第一个PRB上发送PTRS,在第二个slot或者子带内的第二个PRB上发送PTRS,如果存在全部在第一个PRB发送PTRS的相邻小区基站,这样就能减小相邻小区的PTRS干扰。如图20所示,图20是本发明实施例的相位跟踪参考信号的端口在不同的时间单元上对应不同 的解调参考信号端口的示意图;
在一实施例中,当N个解调参考信号端口关联一个相位跟踪参考信号端口时,相位跟踪参考信号的预编码方式有N种,其中,N≥1错误!未找到引用源。;
在一实施例中,第一通信节点为不同的时间单元或者不同的频域单元分别配置解调参考信号和相位跟踪参考信号的对应关系;
在一实施例中,所述相位跟踪参考信号的端口对应解调参考信号端口是指相位跟踪参考信号端口和解调参考信号端口使用相同的预编码。其中,相位跟踪参考信号端口和解调参考信号端口的对应关系跟时间单元或者频域单元的序号有关。
假设此时用户1的X个DMRS使用X种预编码方式,这X个DMRS端口关联一个PTRS端口。针对不同的slot或者子带,给该用户分配的PTRS端口位置是固定的,为了减小PTRS干扰,可以在不同的slot或者子带上进行hopping。如图21所示,图21是本发明实施例的在不同的slot或者子带上进行hopping的图样。此时该用户的PTRS可能存在两种情况:
基站为这X个DMRS端口分配一个PTRS端口。在第一个slot或者子带内,基站分配的PTRS端口1对应DMRS端口1,在第二个slot或者子带内,基站分配的PTRS端口1对应DMRS端口2;
这X个DMRS端口对应X个PTRS端口,但是基站从这X个PTRS端口中选择一个配置给该用户。在第一个slot或者子带内,基站选择PTRS端口1,在第二个slot或者子带内,基站选择PTRS端口2;
在一实施例中,对于不同的第一通信节点或者第二通信节点,相位跟踪参考信号资源跳变的规则不同。不同的基站可以给用户配置不同的hopping规则,假设基站1为用户配置的hopping规则如上面所述的情况此时不同的基站可以为不同的用户配置不同的hopping规则:
针对基站1为用户配置的在第一个slot或者子带内的第一个PRB发送PTRS,在第二个slot或者子带内的第二个PRB发送PTRS,此时基站2可以为用户配置在第一个slot或者子带内的第一个PRB上发送PTRS,在第二个slot或者子带内的第三个PRB上发送PTRS;
在一实施例中,针对存在多个DMRS关联一个PTRS的情况,基站1为用户配置在第一个slot或者子带内配置PTRS端口对应于DMRS端口1,在第二 个slot或者子带内配置PTRS端口对应于DMRS端口2;而基站2可以为用户配置在第一个slot或者自带内PTRS端口对应于DMRS端口1,在第二个slot或者子带内配置PTRS端口对应与DMRS端口3。
在一实施例中,针对用户PTRS频域密度不同,关联一个PTRS端口的DMRS的端口数不同以及基站一次调度的时域资源不同,PTRS hopping存在多用不同的规则,上面提到的DMRS端口数,PTRS端口数以及PRB数都是举例说明,不存在数量的限制;
本发明的实施例还提供了一种存储介质。在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,配置给第二通信节点相位跟踪参考信号资源集合;
S2,通过解调参考信号资源的分配情况指示所述相位跟踪参考信号资源集合内各个资源的使用情况。
在一实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
在一实施例中,处理器根据存储介质中已存储的程序代码执行配置给第二通信节点相位跟踪参考信号资源集合;
在一实施例中,处理器根据存储介质中已存储的程序代码执行通过解调参考信号资源的分配情况指示所述相位跟踪参考信号资源集合内各个资源的使用情况。
本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明实施例中的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上。在一实施例中,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明实施例不限制于任何特定的硬件和软件结合。
工业实用性
本公开提供的一种参考信号的处理方法及装置,能够针对解调参考信号的具体信息设计相应相位跟踪参考信号。

Claims (30)

  1. 一种参考信号的处理方法,包括:
    第一通信节点使用解调参考信号资源的第M子集指示相位跟踪参考信号资源的第M子集;
    其中,所述解调参考信号资源包括M个子集,M为正整数,并且在所述相位跟踪参考信号资源的每个子集频域范围内,传输所述解调参考信号资源的所述M个子集。
  2. 根据权利要求1所述的方法,其中,所述解调参考信号资源的M个子集的端口在时域上码分复用或者在时域上时分复用,以及所述相位跟踪参考信号资源的M个子集的端口频分复用。
  3. 根据权利要求2所述的方法,其中,在所述解调参考信号资源的M个子集的端口在时域上时分复用时,所述解调参考信号资源的M个子集的端口占用不同的时域符号。
  4. 根据权利要求1-3任一项所述的方法,其中,不同的所述第二通信节点对应不同端口序号的所述相位跟踪参考信号。
  5. 根据权利要求1-4任一项所述的方法,其中,相位跟踪参考信号资源集合内的每个相位跟踪参考信号或者每组相位跟踪参考信号的时域频域密度是所述第一通信节点配置的。
  6. 一种参考信号的处理方法,包括:
    第一通信节点配置给第二通信节点相位跟踪参考信号资源集合;
    所述第一通信节点通过解调参考信号资源的分配情况指示所述相位跟踪参考信号资源集合内每个资源的使用情况;
    其中,所述相位跟踪参考信号资源包括以下参数至少之一:端口数、端口序号、时域密度、频域密度、图样、以及端口间的复用方式。
  7. 根据权利要求6所述的方法,其中,所述第一通信节点在所述相位跟踪参考信号资源集合外的相位跟踪参考信号资源上,发送或者接收数据。
  8. 根据权利要求6所述的方法,其中,所述第一通信节点在所述相位跟踪参考信号资源集合外的相位跟踪参考信号资源上,不发送信号或者发送零功率的参考信号。
  9. 根据权利要求6-8任一项所述的方法,其中,在所述解调参考信号资源的端口数大于第一门限时,所述相位跟踪参考信号资源集合不使能,或,所述解 调参考信号资源的端口数小于第二门限时,所述相位跟踪参考信号资源集合使能。
  10. 根据权利要求9所述的方法,其中,在所述相位跟踪参考信号资源集合使能时,所述第一通信节点利用所述解调参考信号资源的指示信令,通知所述第二通信节点所述相位跟踪参考信号资源集合内对应的非零功率相位跟踪参考信号的发送资源。
  11. 根据权利要求6或10所述的方法,其中,所述第一通信节点在所述相位跟踪参考信号资源集合内,发送非零功率和零功率的相位跟踪参考信号。
  12. 根据权利要求6所述的方法,其中,所述第一通信节点配置给第二通信节点相位跟踪参考信号资源集合,包括:所述第一通信节点使用动态信令通知所述第二通信节点在相位跟踪参考信号资源集合的位置,其中,所述动态信令通知包括以下至少一项:准共址QCL指示信息,加扰序列,以及物理层动态信令。
  13. 根据权利要求6或10所述的方法,其中,所述第一通信节点配置给第二通信节点所述相位跟踪参考信号资源集合中包含的端口个数为使用相位跟踪参考信号端口数,或者根据为相位跟踪参考信号端口数与解调参考信号端口数的比例值计算得到,所述解调参考信号端口数为大于等于1的整数。
  14. 根据权利要求6所述的方法,其中,所述相位跟踪参考信号资源集合包括:预定义的资源配置。
  15. 根据权利要求6所述的方法,其中,所述相位跟踪参考信号资源集合由所述第一通信节点通过位图bitmap方式映射不同的资源集合。
  16. 根据权利要求6-15任一所述的方法,其中,所述相位跟踪参考信号资源集合内的每个相位跟踪参考信号或者每组相位跟踪参考信号的时域频域密度是所述第一通信节点配置的。
  17. 一种参考信号的处理方法,包括:相位跟踪参考信号在不同的资源上跳变,其中,所述资源包括以下至少之一:时间单元,频域单元,端口,以及预编码方式。
  18. 根据权利要求17所述的方法,其中,
    所述相位跟踪参考信号的图样的相对位置跟时间单元或者频域单元的序号相关联。
  19. 根据权利要求17所述的方法,其中,
    当N个解调参考信号端口关联一个相位跟踪参考信号端口时,相位跟踪参考信号的预编码方式有N种,其中,N≥1;
    其中,第一通信节点为不同的时间单元或者不同的频域单元分别配置解调参考信号端口和相位跟踪参考信号端口的对应关系;
    其中,所述相位跟踪参考信号端口和解调参考信号端口的对应关系是指相位跟踪参考信号端口和解调参考信号端口使用相同的预编码方式,所述相位跟踪参考信号端口和解调参考信号端口的对应关系跟时间单元或者频域单元的序号有关。
  20. 根据权利要求17至19任一项所述的方法,其中:
    对于不同的第一通信节点或者第二通信节点,相位跟踪参考信号资源跳变的规则不同。
  21. 一种参考信号的处理方法,包括:
    第二通信节点接收第一通信节点配置的相位跟踪参考信号资源集合;
    所述第二通信节点接收所述第一通信节点通过解调参考信号资源的分配情况对所述相位跟踪参考信号资源集合内每个资源的使用情况的指示;
    其中,所述相位跟踪参考信号资源包括以下参数至少之一:端口数、端口序号、时域密度、频域密度、图样、以及端口间的复用方式。
  22. 根据权利要求21项所述的方法,其中,不同的第二通信节点对应不同端口序号的所述相位跟踪参考信号。
  23. 根据权利要求21或22所述的方法,其中,在所述解调参考信号资源的端口数大于第一门限时,所述相位跟踪参考信号资源集合不使能,或,所述解调参考信号资源的端口数小于第二门限时,所述相位跟踪参考信号资源集合使能。
  24. 一种参考信号的处理装置,应用在第一通信节点,包括:
    配置模块,设置为配置给第二通信节点相位跟踪参考信号资源集合;
    指示模块,设置为通过解调参考信号资源的分配情况,指示所述相位跟踪参考信号资源集合内每个资源的使用情况;
    其中,所述相位跟踪参考信号资源包括以下参数至少之一:端口数、端口序号、时域密度、频域密度、图样、以及端口间的复用方式。
  25. 根据权利要求24所述的装置,其中,所述第一通信节点在所述相位跟踪参考信号资源集合外的相位跟踪参考信号资源上,发送或者接收数据。
  26. 根据权利要求24所述的装置,其中,所述第一通信节点在所述相位跟踪参考信号资源集合外的相位跟踪参考信号资源上,不发送信号或者发送零功率的参考信号。
  27. 一种参考信号的处理装置,应用在第一通信节点,包括:
    指示模块,设置为使用解调参考信号资源的第M子集指示相位跟踪参考信号资源的第M子集;
    其中,所述解调参考信号资源包括M个子集,M为正整数,并且在所述相位跟踪参考信号资源的每个子集频域范围内,传输所述解调参考信号资源的所述M个子集。
  28. 一种参考信号的处理装置,应用在第二通信节点,包括:
    第一接收模块,设置为接收第一通信节点配置的相位跟踪参考信号资源集合;
    第二接收模块,设置为接收所述第一通信节点通过解调参考信号资源的分配情况对所述相位跟踪参考信号资源集合内每个资源的使用情况的指示;
    其中,所述相位跟踪参考信号资源包括以下参数至少之一:端口数、端口序号、时域密度、频域密度、图样、以及端口间的复用方式。
  29. 根据权利要求28项所述的装置,其中,不同的第二通信节点对应不同端口序号的所述相位跟踪参考信号。
  30. 根据权利要求28所述的装置,其中,在所述解调参考信号资源的端口数大于第一门限时,所述相位跟踪参考信号资源集合不使能,或,所述解调参考信号资源的端口数小于第二门限时,所述相位跟踪参考信号资源集合使能。
PCT/CN2018/080499 2017-03-24 2018-03-26 参考信号的处理方法及装置 WO2018171800A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710184627.0 2017-03-24
CN201710184627.0A CN108631987B (zh) 2017-03-24 2017-03-24 参考信号的处理方法及装置

Publications (1)

Publication Number Publication Date
WO2018171800A1 true WO2018171800A1 (zh) 2018-09-27

Family

ID=63586219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080499 WO2018171800A1 (zh) 2017-03-24 2018-03-26 参考信号的处理方法及装置

Country Status (2)

Country Link
CN (1) CN108631987B (zh)
WO (1) WO2018171800A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111800865A (zh) * 2019-08-12 2020-10-20 维沃移动通信有限公司 一种信号发送方法及发送设备
CN111818639A (zh) * 2019-04-11 2020-10-23 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN111836368A (zh) * 2019-04-16 2020-10-27 华为技术有限公司 用于数据传输的方法和装置
US20210258200A1 (en) * 2018-06-07 2021-08-19 Lg Electronics Inc. Method for transmitting or receiving phase tracking reference signal between terminal and base station in wireless communication system and apparatus supporting same
CN113660073A (zh) * 2019-01-11 2021-11-16 华为技术有限公司 一种通信方法及装置
CN114208087A (zh) * 2019-08-14 2022-03-18 华为技术有限公司 用于将ptrs天线端口关联到dmrs天线端口的客户端设备和服务设备
US20220166565A1 (en) * 2017-04-28 2022-05-26 Panasonic Intellectual Property Corporation Of America Measurement apparatus and measurement method
US11469846B2 (en) * 2018-04-05 2022-10-11 Samsung Electronics Co., Ltd. Method and device for decoding data in wireless communication system
CN115189845A (zh) * 2021-04-06 2022-10-14 维沃移动通信有限公司 Pucch资源的分配方法、装置及设备
US20220360387A1 (en) * 2021-05-05 2022-11-10 Qualcomm Incorporated Techniques for aligning clustered reference signal tones in wireless communications

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10708024B2 (en) * 2018-11-15 2020-07-07 Qualcomm Incorporated Determination of demodulation reference signal and phase tracking reference signal parameters
CN111464473B (zh) * 2019-01-18 2021-08-03 成都华为技术有限公司 配置信息的方法与装置
US12003444B2 (en) 2019-01-18 2024-06-04 Lenovo (Beijing) Limited Determining resources for phase tracking reference signals
CN113891469A (zh) * 2019-05-23 2022-01-04 上海朗帛通信技术有限公司 一种用于无线通信的通信节点中的方法和装置
CN111294189B (zh) * 2019-07-24 2023-07-11 展讯半导体(南京)有限公司 Pt-rs的映射、解映射方法及装置、基站、终端
CN112448908B (zh) * 2019-09-03 2022-12-13 维沃移动通信有限公司 Pts的发送方法、接收方法、发送端设备及接收端设备
CN115276902A (zh) * 2019-10-06 2022-11-01 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
EP4040890B1 (en) 2019-11-08 2025-01-08 Huawei Technologies Co., Ltd. Reference signal transmission method and apparatus
CN114902774B (zh) * 2019-12-27 2025-02-11 华为技术有限公司 一种确定参考信号的方法及装置
WO2021159447A1 (zh) * 2020-02-14 2021-08-19 华为技术有限公司 跟踪参考信号的方法和装置
CN111934729B (zh) * 2020-08-07 2024-10-25 中兴通讯股份有限公司 一种上行元素发送功率确定方法、装置、设备和存储介质
US11621815B1 (en) 2021-11-02 2023-04-04 Qualcomm Incorporated Tracking reference signal availability indication
US12224884B2 (en) 2022-04-04 2025-02-11 Charter Communications Operating, Llc DMRS-free operation of new radio (NR) shared channels
WO2024113611A1 (en) * 2023-04-07 2024-06-06 Zte Corporation Associations between antenna ports and port groups

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016000915A1 (en) * 2014-06-30 2016-01-07 Telefonaktiebolaget L M Ericsson (Publ) Phase noise estimation and compensation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013049769A1 (en) * 2011-09-30 2013-04-04 Interdigital Patent Holdings, Inc. Multipoint transmission in wireless communication
US9900872B2 (en) * 2013-04-17 2018-02-20 Futurewei Technologies, Inc. Systems and methods for adaptive transmissions in wireless network

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016000915A1 (en) * 2014-06-30 2016-01-07 Telefonaktiebolaget L M Ericsson (Publ) Phase noise estimation and compensation

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On PTRS Design", 3GPP TSG RAN WG1 MEETING #88 R1-1703220, 13 February 2017 (2017-02-13), Athens, Greece, XP051221886, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_88/Docs/> *
ETRI: "Discussion on Phase Tracking RS Design", 3GPP TSG RAN WG1 MEETING #88 R1-1702345, 13 February 2017 (2017-02-13), Athens, Greece, XP051221224, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_88/Docs/> *
LG ELECTRONICS: "Discussion on Phase Tracking RS for DL", 3GPP TSG RAN WG1 MEETING #88 R1-1702463, 13 February 2017 (2017-02-13), Athens, Greece, XP051221323, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_88/Docs/> *
ZTE ET AL.: "Discussion on RS for Phase Tracking", 3GPP TSG RAN WG1 MEETING #88 R1-1701817, 13 February 2017 (2017-02-13), Athens, Greece, XP051220883, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_88/Docs/> *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11711178B2 (en) * 2017-04-28 2023-07-25 Panasonic Intellectual Property Corporation Of America Measurement apparatus and measurement method
US20220166565A1 (en) * 2017-04-28 2022-05-26 Panasonic Intellectual Property Corporation Of America Measurement apparatus and measurement method
US11469846B2 (en) * 2018-04-05 2022-10-11 Samsung Electronics Co., Ltd. Method and device for decoding data in wireless communication system
US20210258200A1 (en) * 2018-06-07 2021-08-19 Lg Electronics Inc. Method for transmitting or receiving phase tracking reference signal between terminal and base station in wireless communication system and apparatus supporting same
US11558234B2 (en) * 2018-06-07 2023-01-17 Lg Electronics Inc. Method for transmitting or receiving phase tracking reference signal between terminal and base station in wireless communication system and apparatus supporting same
CN113660073A (zh) * 2019-01-11 2021-11-16 华为技术有限公司 一种通信方法及装置
US11424885B2 (en) 2019-04-11 2022-08-23 Shanghai Langbo Communication Technology Company Limited Method and device used in UE and base station for wireless communication
CN111818639A (zh) * 2019-04-11 2020-10-23 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
US12034665B2 (en) 2019-04-11 2024-07-09 Honor Device Co., Ltd. Method and device used in UE and base station for wireless communication
US20220337366A1 (en) * 2019-04-11 2022-10-20 Shanghai Langbo Communication Technology Company Limited Method and device used in ue and base station for wireless communication
CN111818639B (zh) * 2019-04-11 2022-12-27 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
US11652593B2 (en) 2019-04-11 2023-05-16 Shanghai Langbo Communication Technology Company Limited Method and device used in UE and base station for wireless communication
CN111836368A (zh) * 2019-04-16 2020-10-27 华为技术有限公司 用于数据传输的方法和装置
CN111836368B (zh) * 2019-04-16 2024-06-07 华为技术有限公司 用于数据传输的方法和装置
CN111800865A (zh) * 2019-08-12 2020-10-20 维沃移动通信有限公司 一种信号发送方法及发送设备
CN114208087A (zh) * 2019-08-14 2022-03-18 华为技术有限公司 用于将ptrs天线端口关联到dmrs天线端口的客户端设备和服务设备
CN114208087B (zh) * 2019-08-14 2023-07-18 华为技术有限公司 用于将ptrs天线端口关联到dmrs天线端口的客户端设备和服务设备
US12143320B2 (en) 2019-08-14 2024-11-12 Huawei Technologies Co., Ltd. Client device and serving device for associating PTRS antenna ports to DMRS antenna ports
CN115189845A (zh) * 2021-04-06 2022-10-14 维沃移动通信有限公司 Pucch资源的分配方法、装置及设备
US11777677B2 (en) * 2021-05-05 2023-10-03 Qualcomm Incorporated Techniques for aligning clustered reference signal tones in wireless communications
US20220360387A1 (en) * 2021-05-05 2022-11-10 Qualcomm Incorporated Techniques for aligning clustered reference signal tones in wireless communications

Also Published As

Publication number Publication date
CN108631987A (zh) 2018-10-09
CN108631987B (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
WO2018171800A1 (zh) 参考信号的处理方法及装置
CN113489577B (zh) 参考信号配置信息的指示方法、基站及终端
KR102498564B1 (ko) 구성 정보를 송신하는 방법, 제어 채널 자원들을 검출하는 방법, 및 이를 위한 장치들
KR101943174B1 (ko) 비직교 다중 접속(noma) 무선 시스템 및 방법
US20190090142A1 (en) Reference signal sequence configuration method and network device
EP3396886B9 (en) Method and apparatus for transmitting pilot signal
US20140044064A1 (en) Resource allocation including a dc sub-carrier in a wireless communication system
US20160212746A1 (en) Method and base station for mu-mimo transmission in wireless communication system
WO2017115609A1 (ja) 装置及び方法
CN108289017B (zh) 信号接收、发送方法、控制信道的接收、发送方法及装置
CN103944665A (zh) 上行解调参考信号的发送方法、装置和系统
WO2013067345A1 (en) Pusch reference signal design for high doppler frequency
EP3716708B1 (en) Data transmission method and apparatus, and computer storage medium
CN102404854A (zh) 一种上行解调参考信号的资源配置方法及系统
CN109964466B (zh) 参数集相关的下行链路控制信道映射
EP2274886A2 (en) Permuting slots to logical distributed resource units
WO2018040884A1 (zh) 信道估计方法、参考信号发送方法、装置及系统
CN107404365A (zh) 发送和接收控制信息的方法及装置
WO2014208426A1 (ja) 基地局装置、端末装置および通信方法
US20240031210A1 (en) Configuration method for tone reservation
CN108811131B (zh) 资源配置方法及装置,基站和终端
KR20160096388A (ko) 필터뱅크 기반의 멀티 캐리어 신호 송수신을 위한 필터 재사용 방법
CN118679817A (zh) 用于针对无线通信的参考信令的系统和方法
CN108809492A (zh) 数据传输方法和装置
CN113940040B (zh) 通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18771483

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载