+

WO2018170749A1 - 微创骨组织手术设备 - Google Patents

微创骨组织手术设备 Download PDF

Info

Publication number
WO2018170749A1
WO2018170749A1 PCT/CN2017/077590 CN2017077590W WO2018170749A1 WO 2018170749 A1 WO2018170749 A1 WO 2018170749A1 CN 2017077590 W CN2017077590 W CN 2017077590W WO 2018170749 A1 WO2018170749 A1 WO 2018170749A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutter head
bone tissue
minimally invasive
cutter
sleeve
Prior art date
Application number
PCT/CN2017/077590
Other languages
English (en)
French (fr)
Inventor
肖杰
Original Assignee
浙江复润医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江复润医疗科技有限公司 filed Critical 浙江复润医疗科技有限公司
Priority to PCT/CN2017/077590 priority Critical patent/WO2018170749A1/zh
Priority to JP2020500938A priority patent/JP6864945B2/ja
Publication of WO2018170749A1 publication Critical patent/WO2018170749A1/zh

Links

Images

Definitions

  • the present invention relates to a medical device, and more particularly to a minimally invasive electric (or pneumatic) bone tissue surgical device for performing a cutting (grinding) operation on bone tissue and a cancellous bone particle for cutting (grinding) Perform directional transmission.
  • a minimally invasive electric (or pneumatic) bone tissue surgical device for performing a cutting (grinding) operation on bone tissue and a cancellous bone particle for cutting (grinding) Perform directional transmission.
  • Bone grafting is a bone defect that needs to be strengthened or fused by transplanting bone tissue into a patient. It is commonly used for bone defects, nonunion of bone fracture, cavity filling or cavity filling after bone tumor scraping, spine and joint fusion, etc. happening.
  • Autologous bone grafts commonly used in clinical practice have many advantages, such as good histocompatibility, no graft rejection, strong bone induction, etc., and have a good effect of promoting bone fusion.
  • Common bone grafting sites for autologous bone grafting include the humerus, humerus, upper humerus and ribs. Autologous bone grafting removes the bone from these parts of the patient's body and then returns it to the patient's bone defect. .
  • the invention provides a minimally invasive bone tissue surgery device, in order to overcome the deficiencies of the prior art, and solve the technical problem that the original bone taking method has a large incision, inconvenience in taking bone, and is easy to cause harm to the patient, and is easy to leave sequelae.
  • Only a small skin incision and a tiny bone window (a few millimeters in diameter) are used to cut (or grind) the bone pulp and then transport it through the threaded channel to orient the cut (or ground) bone. Transmitting, easy to operate, and rapid operation, can greatly reduce the harm to the patient during the operation, reduce the occurrence of sequelae, and improve the safety of the operation.
  • a minimally invasive bone tissue surgical device a cutter, a sleeve, and a drive control system
  • the cutter includes a cutter head and a screw conveying portion; the surface of the screw conveying portion is provided with an external thread, wherein the sleeve is sleeved on the cutter, the cutter At least a portion of the threads on the surface of the head and the screw conveyor expose the sleeve;
  • the drive control system drives the control tool to work through the combined action of the cutter head and the screw conveyor while simultaneously cutting or grinding the bone and directional feed.
  • the shape of the cutter head is spherical, ellipsoidal, umbrella-shaped, hemispherical, semi-ellipsoidal, hemispherical + cylindrical, semi-ellipsoidal + cylindrical, conical or cylindrical and other contact with bone is blunt contact One of the face cutters.
  • the bone contact surface of the cutter head and the bone tissue is a passive contact surface.
  • the cutter head is a blunt tip that is not edged.
  • the cutter head when the cutter head is a blunt tip that is not edged, the bone tissue is cut by the front section of the screw conveying portion.
  • the front end of the spiral conveying portion is adjacent to the cutter head, and at least one spiral blade capable of cutting bone tissue is provided.
  • the surface of the blade that is not edged is a smooth surface or a frosted surface.
  • the cutter head is provided with a cutting edge, and the center of the end of the cutter head is a blunt surface.
  • the cutter head is provided with a cutting edge, and the cutting edge is a shallow cutting edge or a non-sharp cutting edge.
  • the surface of the screw conveying portion is provided with an external thread.
  • the externally threaded structure is refined into a plurality of spiral blades and spiral blades and spiral grooves.
  • the spiral conveying portion is provided with a plurality of spiral blades, and a spiral groove is formed between the spiral blade and the main body of the spiral conveying portion.
  • the pitch of the spiral conveying portion is 1 to 30 mm.
  • the spiral conveying portion has a helix angle of 10 to 89°.
  • the first spiral blade of the screw conveying portion near the cutter head is connected to the cutter head.
  • the spiral conveying portion has a certain distance between the first spiral blade and the cutter head near the cutter head portion, and the distance can be ensured.
  • the lower bone tissue is smoothly transported backward along the spiral groove of the spiral conveying portion.
  • the cross-sectional diameter of the sleeve gradually increases from the position of the cutter head toward the direction away from the cutter head.
  • the sleeve can also be in a straight cylinder mode, that is, the cross-sectional diameter of the sleeve remains constant from the position of the cutter head away from the cutter head.
  • the sleeve is divided into two parts, a first portion and a second portion, wherein the first portion is adjacent to the cutter head and the second portion is away from the cutter head; the cross-sectional diameter of the second portion is greater than the cross-sectional diameter of the first portion; A safety limited depth step is provided at the junction of the second part and the first part.
  • the cross-sectional diameter of the sleeve gradually increases from the position of the cutter head toward the direction away from the cutter head; the front end surface of the sleeve is chamfered or the front end surface is provided as a sloped surface, and the edge portion of the front end surface of the sleeve is contracted backward, or The front edge gradually increases in thickness.
  • the minimally invasive electric bone extractor is further provided with a safety pressure limiting device.
  • the safety pressure limiting device is a spring, and when the front end pressure of the cutter head exceeds a set range, the spring is compressed or bounced to control the motor to stop rotating.
  • the safety voltage limiting device is a current detecting device, and the motor is controlled to stop rotating by detecting a motor current when the current exceeds or is less than a set range;
  • the safety pressure limiting device is a pressure sensor, and when the front end pressure of the cutter head exceeds or falls below a set range, the control motor stops rotating.
  • the present invention has the following advantages:
  • the basic working principle of the minimally invasive bone tissue surgical device of the present invention drives the cutter to rotate into the cancellous bone such as the humerus and the humeral bone end, cuts (or grinds) the cancellous bone, and then passes the bone through the spiral of the cutter.
  • the conveying section realizes a directional rapid conveying function of the solid matter (bone particles).
  • Specific operation process first make a minimally invasive incision in the skin of the surgical site, such as the humerus, the ends of the tibia, etc., and then use a puncture hole opener (or drill bit) to open the cortical bone at the surgical site, and then the microscopic invention
  • the bone tissue surgical device inserts into the hole and opens the minimally invasive bone tissue surgery device.
  • the cutter cuts (or grinds) the bone under the drive of the motor (or pneumatic), and cuts the granular or muddy bone.
  • Quickly directional transmission is carried out through a screw conveying portion connected behind the cutter head, and the minimally invasive bone tissue surgical device is closed after the operation is completed, and the cutter head is pulled out.
  • the directional transport of granular or muddy bone can be collected in different ways for the patient's autograft surgery.
  • the cancellous bone can be cut (or ground) under the minimally invasive incision, the surgical trauma is small, and the surgical effect is good.
  • the minimally invasive bone tissue surgical device has a small tip end (a few millimeters in the diameter of the head) for facilitating minimally invasive surgery under minimally invasive incisions, requiring only a tiny skin incision in the patient.
  • the spiral conveying portion connected to the cutter head performs rapid directional transmission. Different collection methods can be used for autogenous bone grafting. The operation is fast, convenient, and the wound is small, and the operation effect is good.
  • Tiny surgical incisions greatly reduce the risk of lateral femoral cutaneous nerve injury, reduce the incidence of pain, fractures and diarrhea in the surgical field, and greatly reduce the postoperative infection rate of the surgical site.
  • the minimally invasive bone tissue surgical device of the invention has simple operation, saves time and labor, saves valuable operation time, and brings great convenience for clinical operation operation.
  • FIG. 1 is a schematic view showing the structure of a minimally invasive bone tissue surgical apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing the structure of a cutter of a minimally invasive bone tissue surgical device according to another embodiment of the present invention.
  • FIG. 3 is a schematic view showing the structure of a cutter of a minimally invasive bone tissue surgical apparatus according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic view showing the structure of a cutter head of a minimally invasive bone tissue surgical device tool according to Embodiment 2 of the present invention.
  • Fig. 5 is a schematic view showing the structure of a cutter head of a minimally invasive bone tissue surgical device tool according to a third embodiment of the present invention.
  • Fig. 6 is a schematic view showing the structure of a cutter head of a minimally invasive bone tissue surgical device tool according to a fourth embodiment of the present invention.
  • Fig. 7 is a schematic view showing the structure of a cutter head of a minimally invasive bone tissue surgical device tool according to a fifth embodiment of the present invention.
  • Fig. 8 is a schematic view showing the structure of a cutter head of a minimally invasive bone tissue surgical device tool according to a sixth embodiment of the present invention.
  • Fig. 9 is a schematic view showing the structure of a cutter head of a minimally invasive bone tissue surgical device tool according to a seventh embodiment of the present invention.
  • Fig. 10 is a schematic view showing the structure of a cutter head of a minimally invasive bone tissue surgical device tool according to Embodiment 8 of the present invention.
  • Fig. 1 is a schematic view showing the structure of a minimally invasive bone tissue surgical apparatus according to an embodiment of the present invention.
  • the minimally invasive bone tissue surgical device of the present invention comprises a cutter 1, a sleeve 2, a material collection device 3 and a drive control system 5.
  • the cutter 1 includes a cutter head 11 and a screw conveying portion 12.
  • the cutter head 11 mainly serves to guide the cutter into the bone tissue, and the cutter head 11 can be a grinding head or a drill bit or the like.
  • the cutter head 11 may be a small diameter blunt tip that is not edged, or may be provided with a plurality of blades.
  • the shape and surface characteristics of the cutter head 11 can be designed differently as needed.
  • the shape of the cutter head is mostly centrally symmetrical.
  • the cutter head The shape may be spherical, ellipsoidal, umbrella-shaped, hemispherical, semi-ellipsoidal, hemispherical + cylindrical, semi-ellipsoidal + cylindrical, conical or cylindrical and other contact with the bone as a passive contact surface.
  • the width of the most blunt cross section at the widest point is generally 1.2-15 mm.
  • the surface of the cutter head 11 may be a smooth surface or a frosted surface.
  • the cutting head 11 may also be provided with a cutting edge, which may be a centrally symmetrical spiral cutting edge, or a transverse blade, a longitudinal edge, a beveled edge or the like which is irregularly arranged on the surface of the cutting head.
  • the cutting edge of the cutter head 11 may be a straight tooth, a spiral tooth or a helical tooth. To avoid damage to the dermal bone, a shallow or non-sharp edge is preferred when setting the blade.
  • the screw conveying portion 12 is disposed behind the cutter head 11 and is coaxial with the cutter head 11.
  • 2 is a schematic view showing the structure of a cutter of a minimally invasive bone tissue surgical device in an embodiment of the present invention.
  • the screw conveying portion 12 is provided with a plurality of spiral blades 121 in the cutter 1, and a plurality of spiral grooves 122 are formed.
  • the cancellous bone obtained by the cutter head 11 is transported backward by the screw conveying portion 12.
  • the length of the spiral of the spiral conveying portion 12 can be set according to actual needs.
  • the screw conveying portion 12 mainly undertakes the conveying work of the bone tissue after cutting.
  • the cutting of the bone tissue is mainly performed by the screw conveying portion 12, and the front end of the screw conveying portion 12 is adjacent to the cutter head 11, and at least one spiral blade 121 capable of cutting the bone tissue is provided.
  • the first spiral blade 121 of the screw conveying portion 12 adjacent to the cutter head portion is connected to the cutter head 11 or the first spiral blade 121 of the screw conveying portion near the cutter portion has a certain distance from the cutter head 11, and Setting an appropriate distance ensures that the removed bone tissue is smoothly transported backward along the spiral groove 122 of the spiral conveying portion 12.
  • the spiral blade 121 of the spiral conveying portion 12 has a small thickness, the groove width of the spiral groove 122 is large, and the removed bone tissue is transported through the spiral groove 122.
  • the cutter head 11 of the present invention rotates the cancellous bone, and the screw conveying portion 12 transfers the cancellous bone to the rear.
  • the spiral conveying portion 12 rotates, due to the gravity of the material, and the friction between the material and the groove wall of the spiral groove 122 of the screw conveying portion 12 and the inner wall of the positioning sleeve 2, the material can only be pushed under the screw blade 121. It moves rearward along the groove bottom of the spiral groove 122.
  • the transportation of the material in the middle section mainly depends on the thrust of the material which is advanced in the backward direction, so the conveyance of the material in the conveying passage of the spiral conveying portion 12 is a kind of sliding movement.
  • the rotating spiral blade 121 transports the material for transport, and the material does not rotate together with the spiral blade 121.
  • the key lies in the gravity of the material itself, and the friction of the positioning sleeve 2 against the material and the cancellous bone when the cutter 1 is advanced. Reverse pressure of extrusion.
  • the above materials and the materials that may be mentioned below are the cancellous bone obtained by the tools of the minimally invasive bone tissue surgical equipment.
  • the present invention has been proved by a large number of experiments that the pitch of the spiral conveying portion 12 is 1-30 mm, and the helix angle is 10°-89°.
  • the sleeve 2 is sleeved on the cutter 1, and during operation, at least part of the threads of the surface of the cutter head 11 and the screw conveying portion 12 expose the sleeve 2.
  • the screw conveying portion 12 exposes at least the half-thread of the sleeve 2, and the blade 11 that satisfies the non-blade is required to cut the spiral blade 121 of the screw conveying portion 12, so that at least a part of the thread is required to expose the sleeve 2 Can be achieved.
  • the exposed thread or the spiral blade should not be too much, because it is necessary to ensure that the cut bone tissue is smoothly transported backward.
  • the sleeve 2 is divided into two parts, a first portion 21 and a second portion 22, wherein the first portion 21 is adjacent to the cutter head 11 and the second portion 22 is remote from the cutter head 11.
  • the cross-sectional diameter of the second portion 22 is greater than the cross-sectional diameter of the first portion 21.
  • a safety depth limit step 221 is provided at the junction of the sleeve second portion 22 and the first portion 21. Setting this safety depth limit step 221 can limit the depth of the tool 1 into the bone and prevent the danger of piercing the cortical bone.
  • the sleeve 2 has a hollow structure inside, and the cross-sectional diameter of the sleeve gradually increases from the position of the cutter head 11 away from the cutter head 11.
  • the cross-sectional diameter of the sleeve 2 is from the front end to the rear end (the front end of the cutter head 11 is used as the front end). ) Gradually increasing, the increase in diameter can reduce the resistance of material transportation, and can transport materials more timely and effectively.
  • the front end face of the sleeve 2 is chamfered or the front end face is provided as a bevel, the edge portion of the front end face of the sleeve 2 is contracted rearward, or the front edge is gradually increased in thickness.
  • the material collecting device 3 is connected to the sleeve 2, and is provided with a cavity, the cavity is connected with the hollow cavity of the sleeve 2, and the material conveyed by the screw conveying portion 12 is temporarily stored in the material collecting device 3, After the bone tissue of the set value is taken out once, the material collecting device 3 is taken out, and the bone tissue is taken out.
  • the drive control system 5 drives and controls the operation of the tool 1. It mainly includes motors and control systems.
  • the present invention also provides a coupling 4 for coupling the output shaft of the motor and the rotating shaft of the tool 1 for common rotation to transmit torque.
  • the minimally invasive bone tissue surgical device is further provided with a safety pressure limiting device 6.
  • the safety pressure limiting device 6 is a spring, and the spring pressure at the front end of the cutter head exceeds or falls below a set range, the spring Compressed or bounced to control the motor to stop rotating.
  • the safety pressure limiting device 6 can be in the position shown or between the tool and the motor or inside the tool.
  • the safety pressure limiting device 6 is a pressure sensor.
  • the control motor stops rotating, thereby preventing the cutter head 11 from continuing to advance.
  • a current control system may also be employed. When the current exceeds or falls below the set range, the control motor stops rotating, thereby preventing the advancement of the cutter head 11.
  • FIG. 3 is a schematic view showing the structure of a cutter of a minimally invasive bone tissue surgical apparatus according to Embodiment 1 of the present invention.
  • the cutter head of this embodiment is not edged, and the cutter head has a small diameter, which is the same as or slightly smaller than the diameter of the base of the screw conveying portion.
  • the direction of rotation of the spiral blade of the screw conveying portion is opposite to that of FIG. 2.
  • the cutting of the bone tissue is realized by using the first spiral blade of the screw conveying portion.
  • Fig. 4 is a schematic view showing the structure of a cutter head of a second embodiment of the present invention.
  • the cutter head 11 is provided with a plurality of spiral blades 111, each of which does not open to the center of the end face of the cutter head 11. That is, the center of the end of the cutter head 11 is a blunt surface, and there is no edge. This point is an important invention of the invention.
  • the cutting edge of the cutter head is not open to the center of the end of the cutter head 11, so that the end portion of the cutter head 11 is provided with a blunt surface of a certain size, so that the cutter is in the course of surgery. It has the function of protecting the cortical bone from being penetrated.
  • the front ends of the spiral blades 111 of the cutter head 11 are all acute angles.
  • the present invention is directed to the characteristics of autologous bone graft surgery, and the cutter heads 11 are all small diameter cutter heads.
  • the front end of the spiral blade 111 is a full acute angle, so that the end portion of the cutter head 11 can have a certain puncture capability for the cancellous bone.
  • the tool can penetrate the cancellous bone during the operation to ensure that it does not penetrate the cortical bone.
  • Fig. 5 is a schematic view showing the structure of a cutter head of a tool for a minimally invasive bone tissue surgery apparatus according to a third embodiment of the present invention.
  • the cutter head of the present embodiment has a spherical shape, and the cutter head is provided with a plurality of spiral cutter edges, and the spiral cutter edges are inclined blades, and each of the spiral cutter edges is not open to the center of the cutter head end surface.
  • Fig. 6 is a schematic view showing the structure of a cutter head of a cutter for a minimally invasive bone tissue surgical apparatus according to a fourth embodiment of the present invention.
  • the shape of the cutter head of the present embodiment is approximately ellipsoidal, and the cutter head is provided with a single cutting edge, and the cutting edge is longitudinally disposed.
  • the front end of the cutter head and other surfaces in contact with the bone tissue are blunt contact surfaces.
  • Fig. 7 is a schematic view showing the structure of a cutter head of a cutter for a minimally invasive bone tissue surgical apparatus according to a fifth embodiment of the present invention.
  • the shape of the cutter head of the embodiment is spherical and not edged, and the surface may be a rough matte surface or a smooth surface.
  • the cutter head diameter is slightly smaller than the same type of open cutter head.
  • Fig. 8 is a schematic view showing the structure of a cutter head of a cutter for a minimally invasive bone tissue surgical apparatus according to a sixth embodiment of the present invention.
  • the cutter head of the present embodiment has a nearly cylindrical shape, and the cutter head surface is provided with a plurality of cutting edges, and the cutting edge is a straight edge. Each blade does not open to the center of the end face of the cutter head.
  • Fig. 9 is a schematic view showing the structure of a cutter head of a cutter for a minimally invasive bone tissue surgical apparatus according to a seventh embodiment of the present invention.
  • the cutter head has a cylindrical shape, and the cutter head surface is provided with a plurality of cutting edges, and the cutting edge is a non-sharp cutting edge.
  • Fig. 10 is a schematic view showing the structure of a cutter head of a cutter for a minimally invasive bone tissue surgical apparatus according to Embodiment 8 of the present invention.
  • the cutter head of this embodiment has a cylindrical shape and is not edged.
  • the surface can be a rough matte surface or a smooth surface.

Landscapes

  • Surgical Instruments (AREA)

Abstract

一种微创骨组织手术设备,包括刀具(1)、套筒(2)、驱动控制系统(5);刀具(1)包括刀头(11)和螺旋输送部(12);螺旋输送部(12)表面设有外螺纹,其中套筒(2)套设在刀具(1)上,刀头(11)和螺旋输送部(12)表面的至少部分螺纹露出套筒(2);驱动控制系统(5)驱动控制刀具(1)工作。微创骨组织手术设备只需微小的皮肤切口及微小的骨窗,将骨松质切削或磨削成骨屑后再经螺纹通道传输,实现切削或磨削的骨质定向传送,操作方便,快速,大大降低骨骼切取手术过程中对病人造成的伤害,减少后遗症的发生,提高手术的安全性。

Description

微创骨组织手术设备 技术领域
本发明涉及一种医疗器械,特别涉及一种微创电动(或气动)骨组织手术设备,用于对骨组织实施切削(磨削)操作,及对切削(磨削)下来的松质骨颗粒进行定向传输。
背景技术
植骨术是通过手术将骨组织移植到病人体内需要加强或融合的骨胳缺损部位,常用于骨质缺损、骨折不愈合、骨病或骨肿瘤刮除后空腔填充、脊柱及关节融合等情况。
临床常用的自体骨移植具有较多的优点,如组织相容性好、无移植排斥反应、骨诱导作用较强等,有着良好的促骨融合的效果。自体骨移植常用的取骨部位包括髂骨、胫骨、腓骨上段及肋骨等部位,自体骨移植就是将病人自己身上这些部位的骨质取下来,再经过处理,返回移植到病人的骨质缺损部位。以取自体髂骨移植为例,目前通常需作长达数厘米的皮肤软组织切口,及较为广泛的骨膜下剥离,然后通过骨凿在髂骨上开窗或直接凿取髂骨。
然而使用这种取骨方法,在切取髂骨的过程中,可有较高的的股外侧皮神经损伤的发生,从而导致病人大腿前外侧区麻木、疼痛、烧灼或酸胀感的发生。切取的骨块越大,相应的切口越大,则神经损伤的发生率就越高。另外还易发生取骨区疼痛、取骨区骨折、血肿、感染、腹疝及髂腹股沟神经损伤。
发明内容
本发明为了克服现有技术的不足,解决原有取骨方法切口较大,取骨不便,而且易对病人造成伤害,易留下后遗症的技术问题,提供一种微创骨组织手术设备,其只需微小的皮肤切口及微小的骨窗(数毫米直径),将骨松质切削(或磨削)骨屑后再经螺纹通道传输,实现对切削(或磨削)下来的骨质进行定向传送,操作方便,手术操作快速,可大大降低手术过程中对病人造成的伤害,减少后遗症的发生,提高手术的安全性的目的。
为了实现上述目的,本发明采用以下技术方案:
微创骨组织手术设备,刀具,套筒,和驱动控制系统;所述刀具包括刀头和螺旋输送部;所述螺旋输送部表面设有外螺纹,其中套筒套设在刀具上,刀 头和螺旋输送部表面的至少部分螺纹露出套筒;驱动控制系统驱动控制刀具工作通过刀头的与螺旋输送部的联合作用,同时实现切削或磨削骨质及定向传送。
本发明中刀头形状为球形、椭球形、伞型、半球形、半椭球形、半球形+圆柱形、半椭球形+圆柱形、锥形或圆柱形及其他与骨质接触为钝性接触面刀头中的一种。
进一步,作为本发明的一种实施方式,于本发明一个实施例中,所述刀头与骨组织的骨质接触面为钝性接触面。
进一步,作为本发明的一种实施方式,于本发明一个实施例中,所述刀头为不开刃的钝头。
进一步,作为本发明的一种实施方式,于本发明一个实施例中,所述刀头为不开刃的钝头时,采用螺旋输送部的前段切割骨组织。螺旋输送部前端靠近刀头处,至少设置一个能够切割骨组织的螺旋叶片。
进一步,作为本发明的一种实施方式,于本发明一个实施例中,所述不开刃的刀头的表面为光滑面或磨砂面。
进一步,作为本发明的一种实施方式,于本发明一个实施例中,所述刀头设有刀刃,刀头端部中心为钝面。
进一步,作为本发明的一种实施方式,于本发明一个实施例中,所述刀头设有刀刃,刀刃为浅刀刃或非锐利刃口。
所述螺旋输送部的表面设有外螺纹。具体的,本发明中为了更形象的表征,将所述外螺纹结构细化为多个螺旋叶片和螺旋叶片和螺旋槽。所述螺旋输送部设有多个螺旋叶片,螺旋叶片与螺旋输送部主体之间形成螺旋槽。
进一步,所述螺旋输送部的螺距为1-30mm。
进一步,所述螺旋输送部的螺旋角为10-89°。
进一步,作为本发明的一种实施方式,于本发明一个实施例中,所述螺旋输送部靠近刀头部位的第一个螺旋叶片与刀头相连。
进一步,作为本发明的一种实施方式,于本发明一个实施例中,所述螺旋输送部靠近刀头部位的第一个螺旋叶片与刀头之间具有一定距离,所述距离可以保证取下的骨组织沿螺旋输送部的螺旋槽顺利向后输送。
进一步,作为本发明的一种实施方式,于本发明一个实施例中,所述套筒的横截面直径自刀头位置向远离刀头方向逐渐增大。当然,在本发明另一个实施例中,套筒亦可以采用直筒模式,即套筒的横截面直径自刀头位置向远离刀头方向保持不变。
所述套筒分为两部分,第一部分和第二部分,其中第一部分靠近刀头,第二部分远离刀头;第二部分的横截面直径大于第一部分的横截面直径;所述套筒第二部分与第一部分连接处设有安全限深台阶。
所述套筒的横截面直径自刀头位置向远离刀头方向逐渐增大;套筒的前端面设置倒角或者前端面设置为斜面,所述套筒前端面的边缘部分向后收缩,或者前边缘向后厚度逐渐增大。
进一步,作为本发明的一种实施方式,于本发明一个实施例中,所述微创电动取骨器还设有安全限压装置。
进一步,作为本发明的一种实施方式,于本发明一个实施例中,所述安全限压装置为弹簧,刀头前端压力超过设定范围时,弹簧被压缩或弹开,控制电机停止转动。
进一步,作为本发明的一种实施方式,于本发明一个实施例中,所述安全限压装置为电流检测装置,通过检测电机电流,电流超过或小于设定范围时,控制电机停止转动;
进一步,作为本发明的一种实施方式,于本发明一个实施例中,所述安全限压装置为压力传感器,刀头前端压力超过或小于设定范围时,控制电机停止转动。
与现有技术相比,本发明具有以下优点:
本发明的微创骨组织手术设备的基本工作原理:由电机驱动刀具旋转进入髂骨、胫骨骨端等松质骨内,切削(或磨削)松质骨,然后将骨质通过刀具的螺旋输送部实现固形物(骨质颗粒)的定向快速传送功能。
具体操作过程:首先在手术部位皮肤做一微创切口,如髂骨、胫骨两端等处,然后在手术部位利用穿刺开孔器(或钻头)在皮质骨开孔,然后将本发明的微创骨组织手术设备刀头伸入孔内,开启微创骨组织手术设备,刀具在电机(或气动)的驱动下切削(或磨削)骨质,切下的颗粒状或泥状的骨质通过刀头后面连接的螺旋输送部进行快速定向传输,手术完成后关闭微创骨组织手术设备),拔出刀头。定向传输的颗粒状或泥状的骨质,可采用不同的方式收集,用于病人的自体植骨手术。采用本发明细直径的套筒及刀头,可以在微创切口下对骨松质骨骼进行切削(或磨削),手术创伤小,手术效果好。
使用本发明进行手术操作,微创骨组织手术设备的头端细小(刀头头部直径数个毫米),便于在微创切口下进行微创手术操作,病人身上只需一个微小的皮肤切口及微小的骨窗,将骨质切削(或磨削)成颗粒状或泥状的碎骨质,通 过与刀头连接的螺旋输送部进行快速定向传输。可采用不同的收集方式,用于自体植骨手术。操作快速、便捷、创伤小,手术效果好。微小的手术切口大大降低股外侧皮神经损伤的风险,降低手术区的疼痛、骨折和腹疝的发生率,也大大降低手术部位术后的感染率。本发明的微创骨组织手术设备,操作简单,省时省力,节省宝贵的手术时间,为临床手术操作带来极大便利。
为让本发明的上述和其它目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合附图,作详细说明如下。
附图说明
图1是本发明一个实施例中微创骨组织手术设备的结构示意图。
图2是本发明另一个实施例中微创骨组织手术设备的刀具结构示意图。
图3是本发明实施例1中微创骨组织手术设备的刀具结构示意图。
图4是本发明实施例2中微创骨组织手术设备刀具的刀头结构示意图。
图5是本发明实施例3中微创骨组织手术设备刀具的刀头结构示意图。
图6是本发明实施例4中微创骨组织手术设备刀具的刀头结构示意图。
图7是本发明实施例5中微创骨组织手术设备刀具的刀头结构示意图。
图8是本发明实施例6中微创骨组织手术设备刀具的刀头结构示意图。
图9是本发明实施例7中微创骨组织手术设备刀具的刀头结构示意图。
图10是本发明实施例8中微创骨组织手术设备刀具的刀头结构示意图。
具体实施方式
实施例
图1是本发明一个实施例中微创骨组织手术设备的结构示意图。如图1所示,本发明的微创骨组织手术设备,包括刀具1,套筒2,物料收集装置3和驱动控制系统5。
图2是本发明另一个实施例中微创骨组织手术设备的刀具结构示意图。如图2所示,所述刀具1包括刀头11和螺旋输送部12。
所述刀头11主要起到引导刀具深入骨组织的作用,刀头11可以为磨头或钻头等。刀头11可以为小直径的不开刃的钝头,也可以设置有多个刀刃。
刀头11的形状和表面特性设计可以根据需要进行不同的设计。本发明中,刀头11为了更好地实现旋转切割,刀头的形状多为中心对称形。具体的,刀头 形状可以选择球形、椭球形、伞型、半球形、半椭球形、半球形+圆柱形、半椭球形+圆柱形、锥形或圆柱形及其他与骨质接触为钝性接触面刀头。
如果刀头11为小直径的不开刃的钝头,比较合适的钝头横截面的最宽处的宽度一般为1.2-15mm。
刀头11的表面可以是光滑面的也可以是磨砂面。
刀头11也可以设有刀刃,所述刀刃可以为中心对称的螺旋刀刃,也可以为刀头表面不规则的设置的横刃,纵刃、斜刃等。刀头11的刀刃可以为直齿、螺旋齿或斜齿。为避免损伤皮骨质,设置刀刃时优选的浅刀刃或非锐利刃口。
螺旋输送部12设置在刀头11后方,与刀头11同轴。图2是本c发明一个实施例中微创骨组织手术设备的刀具结构示意图。如图2所示,所述螺旋输送部12在刀具1的设有多个螺旋叶片121,形成多个螺旋槽122。刀头11取到的骨松质通过螺旋输送部12向后输送。螺旋输送部12的螺旋的长度可以根据实际需要设置。
当刀头11开刃时,螺旋输送部12主要承担切割后的骨组织的输送工作。而当刀头11为不开刃的钝头时,骨组织的切割主要依靠螺旋输送部12来完成,螺旋输送部12前端靠近刀头11处,至少设置一个能够切割骨组织的螺旋叶片121。
螺旋输送部12靠近刀头部位的第一个螺旋叶片121与刀头11相连或者所述螺旋输送部靠近刀头部位的第一个螺旋叶片121与刀头11之间具有一定距离,而设定适当的距离可以保证取下的骨组织沿螺旋输送部12的螺旋槽122顺利向后输送。
本实施例中,螺旋输送部12的螺旋叶片121厚度较小,螺旋槽122的槽宽较大,取下的骨组织通过螺旋槽122输送。
具体的,本发明的刀头11旋转绞碎骨松质,螺旋输送部12将骨松质向后方传递。当螺旋输送部12旋转时,由于物料的重力,及物料与螺旋输送部12的螺旋槽122的槽壁和定位套筒2内壁所产生的摩擦力,使得物料只能在螺旋叶片121的推送下沿着螺旋槽122的槽底向后移动。物料在中间段的运送,主要依靠后面前进的物料的推力,因此物料在螺旋输送部12的输送通道的运送,为一种滑移运动。旋转的螺旋叶片121将物料推移进行输送,而物料不是随着螺旋叶片121一起旋转,关键在于物料自身的重力,以及定位套筒2对物料的摩擦力以及刀具1向前推进时对骨松质挤压的反向压力。
上述物料及下文可能提到的物料均为微创骨组织手术设备的刀具取得的骨松质。
为实现物料的及时传输,本发明经过大量实验证明,螺旋输送部12的螺距为1-30mm,螺旋角为10°-89°。
套筒2套设在刀具1上,工作时,刀头11和螺旋输送部12表面的至少部分螺纹露出套筒2。一般来说,螺旋输送部12至少露出套筒2半道螺纹,此处主要为满足不开刃的刀头11需要螺旋输送部12的螺旋叶片121进行切割,因此至少需要部分螺纹露出套筒2方能实现。但是露出的螺纹或者说螺旋叶片也不宜太多,因为需要保证切割下来的骨组织顺利向后输送。
所述套筒2分为两部分,第一部分21和第二部分22,其中第一部分21靠近刀头11,第二部分22远离刀头11。第二部分22的横截面直径大于第一部分21的横截面直径。所述套筒第二部分22与第一部分21连接处设有安全限深台阶221。设置此安全限深台阶221可以限制刀具1进入骨头内的深度,防止刺穿骨皮质等危险。
所述套筒2内部为中空结构,套筒横截面直径自刀头11位置向远离刀头11方向逐渐增大,套筒2的横截面直径自前端向后端(以刀头11位置为前端)逐渐增大,直径的增大可以减少物料输送的阻力,可以更及时有效地输送物料。
为了进一步减少阻力,套筒2的前端面设置倒角或者前端面设置为斜面,所述套筒2前端面的边缘部分向后收缩,或者前边缘向后厚度逐渐增大。
物料收集装置3与套筒2相连接,其设有一个空腔,所述空腔与套筒2的中空腔体相连接,螺旋输送部12输送来的物料进入物料收集装置3中暂时储存,待一次取出设定值的骨组织后取下物料收集装置3,取出骨组织。
驱动控制系统5驱动和控制刀具1工作。主要包括电机和控制系统。本发明还设有联轴器4,用于用来联接电机的输出轴和刀具1的旋转轴,使之共同旋转以传递扭矩。
此外,所述微创骨组织手术设备还设有安全限压装置6,本发明一个实施例中,所述安全限压装置6为弹簧,刀头前端压力超过或低于设定范围时,弹簧被压缩或弹开,控制电机停止转动。安全限压装置6可以是在图示位置也可以是在刀具和电机之间或是刀具内部。
而于本发明一个实施例中,所述安全限压装置6为压力传感器,刀头11前端压力超过或小于设定范围时,控制电机停止转动,从而阻止刀头11的继续前进。
而于本发明一个实施例中,也可以采用电流控制系统,当电流超过或小于设定范围时,控制电机停止转动,从而阻止刀头11的继续前进。
通过设置此安全限压装置6可以进一步保证刀头11不会刺穿皮质骨。
实施例1
图3是本发明实施例1中微创骨组织手术设备的刀具结构示意图。如图3所示,本实施例刀头不开刃,刀头直径较小,与螺旋输送部的基体直径相同或略小。螺旋输送部的螺旋叶片的旋转方向与图2中相反,本实施例中由于刀头不开刃,此时采用螺旋输送部的第一道螺旋叶片实现对骨组织的切割。
实施例2
图4是本发明实施例2中刀具的刀头结构示意图。刀头11设置有多个螺旋刀刃111,每个螺旋刀刃111均没有开到刀头11端面的中心。即刀头11端部中心为钝面,没有开刃。此点为本发明的一个重要发明点,刀头开刃没有开至刀头11端部的中心,这样可以保证刀头11端部均设有一定尺寸大小的钝面,使得刀具在手术过程中具有保护皮质骨不被穿透的作用。
刀头11的螺旋刀刃111的前端均为锐角。本发明针对自体骨移植手术的特点,刀头11均为小直径的刀头。螺旋刀刃111的前端为全锐角,这样可以保证刀头11端部对骨松质具有一定的穿刺能力。然而由于皮质骨的硬度远大于松质骨,因此刀具在手术过程中可以穿透松质骨进行手术,同时又保证不会穿透皮质骨。
实施例3
图5是本发明实施例3中微创骨组织手术设备的刀具的刀头结构示意图。如图5所示,本实施例刀头的形状为圆球形,刀头设置有多个螺旋刀刃,所述螺旋刀刃为斜刃,每个螺旋刀刃均没有开到刀头端面的中心。
实施例4
图6是本发明实施例4中微创骨组织手术设备的刀具的刀头结构示意图。如图6所示,本实施例刀头的形状为近似椭球形,刀头设置有单个刀刃,所述刀刃纵向设置。刀头的前端及其他于骨组织相接触的面均为钝性接触面。
实施例5
图7是本发明实施例5中微创骨组织手术设备的刀具的刀头结构示意图。如图7所示,本实施例刀头的形状为圆球形,不开刃,表面可以为粗糙的磨砂面,也可以为光滑面。刀头直径与同类型的开刃刀头相比略小。
实施例6
图8是本发明实施例6中微创骨组织手术设备的刀具的刀头结构示意图。如图8所示,本实施例刀头的形状为近圆柱形,刀头表面设有多个刀刃,所述刀刃为直刃。每个刀刃均没有开到刀头端面的中心。
实施例7
图9是本发明实施例7中微创骨组织手术设备的刀具的刀头结构示意图。本实施例刀头的形状为圆柱形,刀头表面设有多个刀刃,所述刀刃为非尖锐刃口。
实施例8
图10是本发明实施例8中微创骨组织手术设备的刀具的刀头结构示意图。本实施例刀头的形状为圆柱形,不开刃。表面可以为粗糙的磨砂面,也可以为光滑面。
虽然本发明已由较佳实施例揭露如上,然而并非用以限定本发明,任何熟知此技艺者,在不脱离本发明的精神和范围内,可作些许的更动与润饰,因此本发明的保护范围当视权利要求书所要求保护的范围为准。

Claims (10)

  1. 微创骨组织手术设备,其特征在于,所述微创骨组织手术设备包括刀具,套筒,和驱动控制系统;所述刀具包括刀头和螺旋输送部;所述螺旋输送部表面设有外螺纹,其中套筒套设在刀具上,刀头和螺旋输送部表面的至少部分螺纹露出套筒;驱动控制系统驱动控制刀具工作。
  2. 根据权利要求1所述的微创骨组织手术设备,其特征在于,所述刀头与骨组织的骨质接触面为钝性接触面。
  3. 根据权利要求1所述的微创骨组织手术设备,其特征在于,所述刀头为不开刃的钝头。
  4. 根据权利要求3所述的微创骨组织手术设备,其特征在于,所述刀具利用螺旋输送部的前段切割骨组织,螺旋输送部前端靠近刀头处,至少设置一个能够切割骨组织的螺旋叶片。
  5. 根据权利要求1所述的微创骨组织手术设备,其特征在于,所述刀头设有刀刃,刀头端部中心为钝面。
  6. 根据权利要求1所述的微创骨组织手术设备,其特征在于,所述刀头设有刀刃,刀刃为浅刀刃或非锐利刃口。
  7. 根据权利要求1所述的微创骨组织手术设备,其特征在于,所述螺旋输送部设有多个螺旋叶片,螺旋叶片与螺旋输送部主体之间形成螺旋槽;所述螺旋输送部靠近刀头部位的第一个螺旋叶片与刀头相连或者所述螺旋输送部靠近刀头部位的第一个螺旋叶片与刀头之间具有一定距离,所述距离可以保证取下的骨组织沿螺旋输送部的螺旋槽顺利向后输送。
  8. 根据权利要求1所述的微创骨组织手术设备,其特征在于,所述套筒内部为中空结构,套筒分为两部分,第一部分和第二部分,其中第一部分靠近刀头,第二部分远离刀头;第二部分的横截面直径大于第一部分的横截面直径;所述套筒第二部分与第一部分连接处设有安全限深台阶。
  9. 根据权利要求8所述的微创骨组织手术设备,其特征在于,所述套筒的横截面直径自刀头位置向远离刀头方向逐渐增大;套筒的前端面设置倒角或者前端面设置为斜面,所述套筒前端面的边缘部分向后收缩,或者前边缘向后厚度逐渐增大。
  10. 根据权利要求1所述的微创骨组织手术设备,其特征在于,所述微创骨组织手术设备还设有安全限压装置;所述安全限压装置选自下面任意一种:
    所述安全限压装置为弹簧,刀头前端压力超过或低于设定范围时,弹簧被压缩或弹开,控制电机停止转动;
    所述安全限压装置为电流检测装置,通过检测电机电流,电流超过或低于设定范围时,控制电机停止转动;
    所述安全限压装置为压力传感器,刀头前端压力超过或低于设定范围时,控制电机停止转动。
PCT/CN2017/077590 2017-03-21 2017-03-21 微创骨组织手术设备 WO2018170749A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/077590 WO2018170749A1 (zh) 2017-03-21 2017-03-21 微创骨组织手术设备
JP2020500938A JP6864945B2 (ja) 2017-03-21 2017-03-21 低侵襲骨組織手術器具

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/077590 WO2018170749A1 (zh) 2017-03-21 2017-03-21 微创骨组织手术设备

Publications (1)

Publication Number Publication Date
WO2018170749A1 true WO2018170749A1 (zh) 2018-09-27

Family

ID=63584891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/077590 WO2018170749A1 (zh) 2017-03-21 2017-03-21 微创骨组织手术设备

Country Status (2)

Country Link
JP (1) JP6864945B2 (zh)
WO (1) WO2018170749A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111494068A (zh) * 2020-06-11 2020-08-07 牛宁奎 一种医用自动化碎骨器
CN111588420A (zh) * 2020-04-23 2020-08-28 合肥市第二人民医院 一种钻井式取骨装置
CN112842453A (zh) * 2021-02-06 2021-05-28 蒋二波 一种轴向微创取骨装置
CN113440210A (zh) * 2021-05-25 2021-09-28 孙涛 微创手术用骨内病灶刮除组件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040191897A1 (en) * 2003-03-31 2004-09-30 The Cleveland Clinic Foundation Apparatus and method for harvesting bone marrow
US20070055282A1 (en) * 2003-03-31 2007-03-08 The Cleveland Clinic Foundation Apparatus and method for harvesting bone marrow
WO2009030942A1 (en) * 2007-09-08 2009-03-12 Health Enterprise East Guard for bone collection
CN203852396U (zh) * 2013-12-18 2014-10-01 广州聚生生物科技有限公司 一种取骨器
CN105361932A (zh) * 2015-11-18 2016-03-02 陈华 一种取骨装置
CN206526078U (zh) * 2016-09-18 2017-09-29 西安市红会医院 一种微创式取骨器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6846314B2 (en) * 1997-07-01 2005-01-25 Ira L. Shapira Method and apparatus for extracting bone marrow
JP4058614B2 (ja) * 2001-08-09 2008-03-12 株式会社Jimro 骨髄針
JP6020908B2 (ja) * 2012-12-06 2016-11-02 国立研究開発法人産業技術総合研究所 内視鏡用組織片採取装置
EP3116415B1 (en) * 2014-03-11 2020-12-02 Stryker European Holdings I, LLC Intramedullary autograft harvester
CN204542282U (zh) * 2014-12-31 2015-08-12 李万里 微创快速取骨器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040191897A1 (en) * 2003-03-31 2004-09-30 The Cleveland Clinic Foundation Apparatus and method for harvesting bone marrow
US20070055282A1 (en) * 2003-03-31 2007-03-08 The Cleveland Clinic Foundation Apparatus and method for harvesting bone marrow
WO2009030942A1 (en) * 2007-09-08 2009-03-12 Health Enterprise East Guard for bone collection
CN203852396U (zh) * 2013-12-18 2014-10-01 广州聚生生物科技有限公司 一种取骨器
CN105361932A (zh) * 2015-11-18 2016-03-02 陈华 一种取骨装置
CN206526078U (zh) * 2016-09-18 2017-09-29 西安市红会医院 一种微创式取骨器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111588420A (zh) * 2020-04-23 2020-08-28 合肥市第二人民医院 一种钻井式取骨装置
CN111588420B (zh) * 2020-04-23 2024-05-24 合肥市第二人民医院 一种钻井式取骨装置
CN111494068A (zh) * 2020-06-11 2020-08-07 牛宁奎 一种医用自动化碎骨器
CN112842453A (zh) * 2021-02-06 2021-05-28 蒋二波 一种轴向微创取骨装置
CN112842453B (zh) * 2021-02-06 2022-06-21 南京汉尔斯生物科技有限公司 一种轴向微创取骨装置
CN113440210A (zh) * 2021-05-25 2021-09-28 孙涛 微创手术用骨内病灶刮除组件

Also Published As

Publication number Publication date
JP2020511288A (ja) 2020-04-16
JP6864945B2 (ja) 2021-04-28

Similar Documents

Publication Publication Date Title
CN108618825B (zh) 微创骨组织手术设备
CN108742768A (zh) 微创取骨设备
US11337709B2 (en) Drill bit and method for producing a drill bit
WO2018170749A1 (zh) 微创骨组织手术设备
US3633583A (en) Orthopedic single-blade bone cutter
US6022354A (en) Bone harvesting collection and delivery system
US8523866B2 (en) Modular tapered hollow reamer for medical applications
DE60018712T2 (de) Chirurgischer bohrer
AU758769B2 (en) Device with a flexible shaft for removing bone grafts
US11020159B2 (en) Differential compression bone screw
CA2502009A1 (en) Compression bone fragment wire
US20100069907A1 (en) Modular tapered hollow reamer for medical applications
CN104161562A (zh) 微创取骨器
CN207575191U (zh) 微创骨组织手术设备
US9456900B2 (en) Method and apparatus for harvesting cartilage for treatment of a cartilage defect
CN103181811B (zh) 一种穿刺套件及可调型椎间盘切除刀套件
US10912573B2 (en) Intramedullary canal reamer
CN210009092U (zh) 微创取骨设备
CN207575190U (zh) 微创骨组织手术设备的刀具
EP3463105B1 (en) Differential compression bone screw
CN205658949U (zh) 微创取骨器
US20200046378A1 (en) A surgical rotational cutting tool and method
CN108618824A (zh) 微创骨组织手术设备的刀具
US20230355267A1 (en) Frustoconical hair punch
CN115644981B (zh) 一种微创手术刀具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902418

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020500938

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17902418

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载