WO2018170180A1 - Neuromuscular junction - Google Patents
Neuromuscular junction Download PDFInfo
- Publication number
- WO2018170180A1 WO2018170180A1 PCT/US2018/022511 US2018022511W WO2018170180A1 WO 2018170180 A1 WO2018170180 A1 WO 2018170180A1 US 2018022511 W US2018022511 W US 2018022511W WO 2018170180 A1 WO2018170180 A1 WO 2018170180A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cells
- chip
- shows
- channel
- muscle
- Prior art date
Links
- 210000000715 neuromuscular junction Anatomy 0.000 title claims abstract description 91
- 210000001087 myotubule Anatomy 0.000 claims abstract description 162
- 230000008602 contraction Effects 0.000 claims abstract description 108
- 210000000663 muscle cell Anatomy 0.000 claims abstract description 73
- 238000012258 culturing Methods 0.000 claims abstract description 32
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 22
- 201000010099 disease Diseases 0.000 claims abstract description 19
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 claims description 115
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 claims description 115
- 210000002569 neuron Anatomy 0.000 claims description 79
- 238000000034 method Methods 0.000 claims description 55
- 210000004263 induced pluripotent stem cell Anatomy 0.000 claims description 45
- 108010085895 Laminin Proteins 0.000 claims description 39
- 230000006698 induction Effects 0.000 claims description 35
- 210000003205 muscle Anatomy 0.000 claims description 23
- 210000003098 myoblast Anatomy 0.000 claims description 19
- 108010082117 matrigel Proteins 0.000 claims description 14
- 102000003745 Hepatocyte Growth Factor Human genes 0.000 claims description 12
- 108090000100 Hepatocyte Growth Factor Proteins 0.000 claims description 12
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 claims description 11
- 102000014429 Insulin-like growth factor Human genes 0.000 claims description 11
- 230000035800 maturation Effects 0.000 claims description 11
- 230000001939 inductive effect Effects 0.000 claims description 10
- 239000000758 substrate Substances 0.000 claims description 10
- 210000001519 tissue Anatomy 0.000 claims description 10
- CDOVNWNANFFLFJ-UHFFFAOYSA-N 4-[6-[4-(1-piperazinyl)phenyl]-3-pyrazolo[1,5-a]pyrimidinyl]quinoline Chemical compound C1CNCCN1C1=CC=C(C2=CN3N=CC(=C3N=C2)C=2C3=CC=CC=C3N=CC=2)C=C1 CDOVNWNANFFLFJ-UHFFFAOYSA-N 0.000 claims description 9
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 claims description 9
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 claims description 9
- 210000001704 mesoblast Anatomy 0.000 claims description 8
- 230000004913 activation Effects 0.000 claims description 7
- AQGNHMOJWBZFQQ-UHFFFAOYSA-N CT 99021 Chemical compound CC1=CNC(C=2C(=NC(NCCNC=3N=CC(=CC=3)C#N)=NC=2)C=2C(=CC(Cl)=CC=2)Cl)=N1 AQGNHMOJWBZFQQ-UHFFFAOYSA-N 0.000 claims description 5
- 208000029578 Muscle disease Diseases 0.000 claims description 4
- 210000002966 serum Anatomy 0.000 claims description 4
- 210000004027 cell Anatomy 0.000 abstract description 318
- 210000002161 motor neuron Anatomy 0.000 abstract description 113
- 210000002363 skeletal muscle cell Anatomy 0.000 abstract description 74
- 238000003501 co-culture Methods 0.000 abstract description 54
- 230000015572 biosynthetic process Effects 0.000 abstract description 44
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 abstract description 25
- 230000003993 interaction Effects 0.000 abstract description 11
- 238000005259 measurement Methods 0.000 abstract description 11
- 230000035899 viability Effects 0.000 abstract description 6
- 230000003278 mimic effect Effects 0.000 abstract description 5
- 108091006146 Channels Proteins 0.000 description 221
- 210000002744 extracellular matrix Anatomy 0.000 description 107
- 238000001000 micrograph Methods 0.000 description 86
- 102000005604 Myosin Heavy Chains Human genes 0.000 description 83
- 108010084498 Myosin Heavy Chains Proteins 0.000 description 83
- 230000001537 neural effect Effects 0.000 description 62
- 230000002269 spontaneous effect Effects 0.000 description 62
- 238000002474 experimental method Methods 0.000 description 61
- 238000010899 nucleation Methods 0.000 description 53
- 239000012528 membrane Substances 0.000 description 52
- 239000000835 fiber Substances 0.000 description 43
- 210000002027 skeletal muscle Anatomy 0.000 description 43
- 210000001611 motor endplate Anatomy 0.000 description 38
- 238000003384 imaging method Methods 0.000 description 37
- 230000004069 differentiation Effects 0.000 description 35
- 239000002609 medium Substances 0.000 description 29
- 108020004414 DNA Proteins 0.000 description 28
- 102000053602 DNA Human genes 0.000 description 28
- 238000010186 staining Methods 0.000 description 28
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 27
- 238000004458 analytical method Methods 0.000 description 27
- 210000000130 stem cell Anatomy 0.000 description 26
- UPNUQQDXHCUWSG-UHFFFAOYSA-N 1-[6-(4-azido-2-nitroanilino)hexanoyloxy]-2,5-dioxopyrrolidine-3-sulfonic acid Chemical compound O=C1C(S(=O)(=O)O)CC(=O)N1OC(=O)CCCCCNC1=CC=C(N=[N+]=[N-])C=C1[N+]([O-])=O UPNUQQDXHCUWSG-UHFFFAOYSA-N 0.000 description 23
- 230000008045 co-localization Effects 0.000 description 23
- 230000036982 action potential Effects 0.000 description 22
- 238000012360 testing method Methods 0.000 description 21
- OIPILFWXSMYKGL-UHFFFAOYSA-N acetylcholine Chemical compound CC(=O)OCC[N+](C)(C)C OIPILFWXSMYKGL-UHFFFAOYSA-N 0.000 description 20
- 210000003050 axon Anatomy 0.000 description 19
- 239000011575 calcium Substances 0.000 description 19
- 229960004373 acetylcholine Drugs 0.000 description 18
- 210000005036 nerve Anatomy 0.000 description 18
- 238000011282 treatment Methods 0.000 description 18
- 229910052791 calcium Inorganic materials 0.000 description 17
- 239000003795 chemical substances by application Substances 0.000 description 17
- 238000000576 coating method Methods 0.000 description 17
- 239000001963 growth medium Substances 0.000 description 16
- 102000004169 proteins and genes Human genes 0.000 description 16
- 108090000623 proteins and genes Proteins 0.000 description 16
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 15
- 239000011248 coating agent Substances 0.000 description 15
- 230000000694 effects Effects 0.000 description 14
- 230000004118 muscle contraction Effects 0.000 description 14
- 210000000518 sarcolemma Anatomy 0.000 description 14
- 239000004971 Cross linker Substances 0.000 description 13
- 239000000306 component Substances 0.000 description 13
- 210000005056 cell body Anatomy 0.000 description 12
- 239000012530 fluid Substances 0.000 description 12
- 238000003364 immunohistochemistry Methods 0.000 description 12
- 239000000203 mixture Substances 0.000 description 12
- 239000000126 substance Substances 0.000 description 12
- -1 Sulpho Chemical class 0.000 description 11
- 230000003185 calcium uptake Effects 0.000 description 11
- 238000004113 cell culture Methods 0.000 description 11
- 239000004205 dimethyl polysiloxane Substances 0.000 description 11
- 239000003550 marker Substances 0.000 description 11
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 11
- 230000001242 postsynaptic effect Effects 0.000 description 11
- 230000000946 synaptic effect Effects 0.000 description 11
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 10
- 210000000805 cytoplasm Anatomy 0.000 description 10
- 230000006870 function Effects 0.000 description 10
- 238000010859 live-cell imaging Methods 0.000 description 10
- 239000012071 phase Substances 0.000 description 10
- 229910001415 sodium ion Inorganic materials 0.000 description 10
- 101150026222 TUBB3 gene Proteins 0.000 description 9
- 230000008901 benefit Effects 0.000 description 9
- 230000001413 cellular effect Effects 0.000 description 9
- 238000004132 cross linking Methods 0.000 description 9
- 238000002372 labelling Methods 0.000 description 9
- 230000014511 neuron projection development Effects 0.000 description 9
- 238000003556 assay Methods 0.000 description 8
- 230000001965 increasing effect Effects 0.000 description 8
- 230000003068 static effect Effects 0.000 description 8
- 238000013528 artificial neural network Methods 0.000 description 7
- 208000015114 central nervous system disease Diseases 0.000 description 7
- 239000002858 neurotransmitter agent Substances 0.000 description 7
- 229910001414 potassium ion Inorganic materials 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- MXNRLFUSFKVQSK-UHFFFAOYSA-N 2-Amino-6-(trimethylazaniumyl)hexanoate Chemical compound C[N+](C)(C)CCCCC(N)C([O-])=O MXNRLFUSFKVQSK-UHFFFAOYSA-N 0.000 description 6
- 241001031135 Aristea ecklonii Species 0.000 description 6
- 102100036912 Desmin Human genes 0.000 description 6
- 108010044052 Desmin Proteins 0.000 description 6
- 240000007817 Olea europaea Species 0.000 description 6
- 238000001994 activation Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 238000004891 communication Methods 0.000 description 6
- 210000005045 desmin Anatomy 0.000 description 6
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 6
- 238000011534 incubation Methods 0.000 description 6
- 210000000107 myocyte Anatomy 0.000 description 6
- 108010091047 neurofilament protein H Proteins 0.000 description 6
- 230000010412 perfusion Effects 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- 230000000750 progressive effect Effects 0.000 description 6
- 210000001908 sarcoplasmic reticulum Anatomy 0.000 description 6
- 208000002320 spinal muscular atrophy Diseases 0.000 description 6
- 239000007858 starting material Substances 0.000 description 6
- CFMYXEVWODSLAX-QOZOJKKESA-N tetrodotoxin Chemical compound O([C@@]([C@H]1O)(O)O[C@H]2[C@@]3(O)CO)[C@H]3[C@@H](O)[C@]11[C@H]2[C@@H](O)N=C(N)N1 CFMYXEVWODSLAX-QOZOJKKESA-N 0.000 description 6
- 229950010357 tetrodotoxin Drugs 0.000 description 6
- CFMYXEVWODSLAX-UHFFFAOYSA-N tetrodotoxin Natural products C12C(O)NC(=N)NC2(C2O)C(O)C3C(CO)(O)C1OC2(O)O3 CFMYXEVWODSLAX-UHFFFAOYSA-N 0.000 description 6
- 101000713578 Rattus norvegicus Tubulin beta-3 chain Proteins 0.000 description 5
- 101710202239 Tubulin beta-3 chain Proteins 0.000 description 5
- 102100036790 Tubulin beta-3 chain Human genes 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000000975 dye Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000036541 health Effects 0.000 description 5
- 238000001727 in vivo Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000003387 muscular Effects 0.000 description 5
- 210000002241 neurite Anatomy 0.000 description 5
- 108090000765 processed proteins & peptides Proteins 0.000 description 5
- 102000005962 receptors Human genes 0.000 description 5
- 108020003175 receptors Proteins 0.000 description 5
- 230000003252 repetitive effect Effects 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- 102100029433 Homeobox protein Hox-B9 Human genes 0.000 description 4
- 101000989000 Homo sapiens Homeobox protein Hox-B9 Proteins 0.000 description 4
- 101000599951 Homo sapiens Insulin-like growth factor I Proteins 0.000 description 4
- 102100037852 Insulin-like growth factor I Human genes 0.000 description 4
- 239000012697 Mn precursor Substances 0.000 description 4
- 102000003505 Myosin Human genes 0.000 description 4
- 108060008487 Myosin Proteins 0.000 description 4
- 229930040373 Paraformaldehyde Natural products 0.000 description 4
- NIJJYAXOARWZEE-UHFFFAOYSA-N Valproic acid Chemical compound CCCC(C(O)=O)CCC NIJJYAXOARWZEE-UHFFFAOYSA-N 0.000 description 4
- IYOZTVGMEWJPKR-IJLUTSLNSA-N Y-27632 Chemical compound C1C[C@@H]([C@H](N)C)CC[C@@H]1C(=O)NC1=CC=NC=C1 IYOZTVGMEWJPKR-IJLUTSLNSA-N 0.000 description 4
- 230000003376 axonal effect Effects 0.000 description 4
- 230000024245 cell differentiation Effects 0.000 description 4
- 230000011748 cell maturation Effects 0.000 description 4
- 210000000170 cell membrane Anatomy 0.000 description 4
- 230000001595 contractor effect Effects 0.000 description 4
- 230000002354 daily effect Effects 0.000 description 4
- 210000001787 dendrite Anatomy 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 4
- 239000000834 fixative Substances 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 230000002706 hydrostatic effect Effects 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000012092 media component Substances 0.000 description 4
- 238000000386 microscopy Methods 0.000 description 4
- 210000004126 nerve fiber Anatomy 0.000 description 4
- 210000003061 neural cell Anatomy 0.000 description 4
- 229920002866 paraformaldehyde Polymers 0.000 description 4
- 230000036961 partial effect Effects 0.000 description 4
- 239000002953 phosphate buffered saline Substances 0.000 description 4
- 210000000063 presynaptic terminal Anatomy 0.000 description 4
- 239000011435 rock Substances 0.000 description 4
- 210000002504 synaptic vesicle Anatomy 0.000 description 4
- RUVJFMSQTCEAAB-UHFFFAOYSA-M 2-[3-[5,6-dichloro-1,3-bis[[4-(chloromethyl)phenyl]methyl]benzimidazol-2-ylidene]prop-1-enyl]-3-methyl-1,3-benzoxazol-3-ium;chloride Chemical compound [Cl-].O1C2=CC=CC=C2[N+](C)=C1C=CC=C(N(C1=CC(Cl)=C(Cl)C=C11)CC=2C=CC(CCl)=CC=2)N1CC1=CC=C(CCl)C=C1 RUVJFMSQTCEAAB-UHFFFAOYSA-M 0.000 description 3
- IYMAXBFPHPZYIK-BQBZGAKWSA-N Arg-Gly-Asp Chemical compound NC(N)=NCCC[C@H](N)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(O)=O IYMAXBFPHPZYIK-BQBZGAKWSA-N 0.000 description 3
- 229940127291 Calcium channel antagonist Drugs 0.000 description 3
- 102000004310 Ion Channels Human genes 0.000 description 3
- 108090000862 Ion Channels Proteins 0.000 description 3
- 108010083687 Ion Pumps Proteins 0.000 description 3
- 102000029749 Microtubule Human genes 0.000 description 3
- 108091022875 Microtubule Proteins 0.000 description 3
- 102000034337 acetylcholine receptors Human genes 0.000 description 3
- 108020000715 acetylcholine receptors Proteins 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 239000000480 calcium channel blocker Substances 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 208000035475 disorder Diseases 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 230000028023 exocytosis Effects 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 230000001976 improved effect Effects 0.000 description 3
- 210000004688 microtubule Anatomy 0.000 description 3
- 238000009343 monoculture Methods 0.000 description 3
- 230000012106 negative regulation of microtubule depolymerization Effects 0.000 description 3
- 230000004770 neurodegeneration Effects 0.000 description 3
- 208000015122 neurodegenerative disease Diseases 0.000 description 3
- 230000003389 potentiating effect Effects 0.000 description 3
- 102000004196 processed proteins & peptides Human genes 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 210000002807 slow-twitch muscle fiber Anatomy 0.000 description 3
- 210000001057 smooth muscle myoblast Anatomy 0.000 description 3
- 239000003195 sodium channel blocking agent Substances 0.000 description 3
- 210000002948 striated muscle cell Anatomy 0.000 description 3
- 239000013589 supplement Substances 0.000 description 3
- 238000012800 visualization Methods 0.000 description 3
- 102000038650 voltage-gated calcium channel activity Human genes 0.000 description 3
- 108091023044 voltage-gated calcium channel activity Proteins 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- FUOJEDZPVVDXHI-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 5-azido-2-nitrobenzoate Chemical compound [O-][N+](=O)C1=CC=C(N=[N+]=[N-])C=C1C(=O)ON1C(=O)CCC1=O FUOJEDZPVVDXHI-UHFFFAOYSA-N 0.000 description 2
- NGXDNMNOQDVTRL-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 6-(4-azido-2-nitroanilino)hexanoate Chemical compound [O-][N+](=O)C1=CC(N=[N+]=[N-])=CC=C1NCCCCCC(=O)ON1C(=O)CCC1=O NGXDNMNOQDVTRL-UHFFFAOYSA-N 0.000 description 2
- QJGDGUBLGKFNDB-UHFFFAOYSA-N 1-azido-2-nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1N=[N+]=[N-] QJGDGUBLGKFNDB-UHFFFAOYSA-N 0.000 description 2
- ZOOGRGPOEVQQDX-UUOKFMHZSA-N 3',5'-cyclic GMP Chemical compound C([C@H]1O2)OP(O)(=O)O[C@H]1[C@@H](O)[C@@H]2N1C(N=C(NC2=O)N)=C2N=C1 ZOOGRGPOEVQQDX-UUOKFMHZSA-N 0.000 description 2
- 101710195183 Alpha-bungarotoxin Proteins 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 102000004219 Brain-derived neurotrophic factor Human genes 0.000 description 2
- 108090000715 Brain-derived neurotrophic factor Proteins 0.000 description 2
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 2
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 2
- 108010031111 EBV-encoded nuclear antigen 1 Proteins 0.000 description 2
- 102000034615 Glial cell line-derived neurotrophic factor Human genes 0.000 description 2
- 108091010837 Glial cell line-derived neurotrophic factor Proteins 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- 101100396066 Mus musculus Hoxb9 gene Proteins 0.000 description 2
- 102100032970 Myogenin Human genes 0.000 description 2
- 108010056785 Myogenin Proteins 0.000 description 2
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical class ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 2
- 102000004257 Potassium Channel Human genes 0.000 description 2
- 108010052164 Sodium Channels Proteins 0.000 description 2
- 102000018674 Sodium Channels Human genes 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- GLNADSQYFUSGOU-GPTZEZBUSA-J Trypan blue Chemical compound [Na+].[Na+].[Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(/N=N/C3=CC=C(C=C3C)C=3C=C(C(=CC=3)\N=N\C=3C(=CC4=CC(=CC(N)=C4C=3O)S([O-])(=O)=O)S([O-])(=O)=O)C)=C(O)C2=C1N GLNADSQYFUSGOU-GPTZEZBUSA-J 0.000 description 2
- 108010076089 accutase Proteins 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 239000001045 blue dye Substances 0.000 description 2
- 229940077737 brain-derived neurotrophic factor Drugs 0.000 description 2
- 150000001669 calcium Chemical class 0.000 description 2
- 230000008568 cell cell communication Effects 0.000 description 2
- 239000006143 cell culture medium Substances 0.000 description 2
- 239000006285 cell suspension Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000000368 destabilizing effect Effects 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 230000003203 everyday effect Effects 0.000 description 2
- 230000007717 exclusion Effects 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000003102 growth factor Substances 0.000 description 2
- 238000012744 immunostaining Methods 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000028161 membrane depolarization Effects 0.000 description 2
- XLTANAWLDBYGFU-UHFFFAOYSA-N methyllycaconitine hydrochloride Natural products C1CC(OC)C2(C3C4OC)C5CC(C(C6)OC)C(OC)C5C6(O)C4(O)C2N(CC)CC31COC(=O)C1=CC=CC=C1N1C(=O)CC(C)C1=O XLTANAWLDBYGFU-UHFFFAOYSA-N 0.000 description 2
- 210000003470 mitochondria Anatomy 0.000 description 2
- 210000003365 myofibril Anatomy 0.000 description 2
- 230000008035 nerve activity Effects 0.000 description 2
- 210000000653 nervous system Anatomy 0.000 description 2
- 230000008555 neuronal activation Effects 0.000 description 2
- 230000007514 neuronal growth Effects 0.000 description 2
- 230000009207 neuronal maturation Effects 0.000 description 2
- 230000003957 neurotransmitter release Effects 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- 238000009832 plasma treatment Methods 0.000 description 2
- 210000001778 pluripotent stem cell Anatomy 0.000 description 2
- 108020001213 potassium channel Proteins 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 150000003141 primary amines Chemical class 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 210000004116 schwann cell Anatomy 0.000 description 2
- 239000004017 serum-free culture medium Substances 0.000 description 2
- 229920005573 silicon-containing polymer Polymers 0.000 description 2
- 230000012232 skeletal muscle contraction Effects 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000009987 spinning Methods 0.000 description 2
- 230000008064 spontaneous neuronal effect Effects 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- 229960000604 valproic acid Drugs 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- LYTCVQQGCSNFJU-LKGYBJPKSA-N α-bungarotoxin Chemical compound C(/[C@H]1O[C@H]2C[C@H]3O[C@@H](CC(=C)C=O)C[C@H](O)[C@]3(C)O[C@@H]2C[C@@H]1O[C@@H]1C2)=C/C[C@]1(C)O[C@H]1[C@@]2(C)O[C@]2(C)CC[C@@H]3O[C@@H]4C[C@]5(C)O[C@@H]6C(C)=CC(=O)O[C@H]6C[C@H]5O[C@H]4C[C@@H](C)[C@H]3O[C@H]2C1 LYTCVQQGCSNFJU-LKGYBJPKSA-N 0.000 description 2
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- UZOVYGYOLBIAJR-UHFFFAOYSA-N 4-isocyanato-4'-methyldiphenylmethane Chemical compound C1=CC(C)=CC=C1CC1=CC=C(N=C=O)C=C1 UZOVYGYOLBIAJR-UHFFFAOYSA-N 0.000 description 1
- 102000012440 Acetylcholinesterase Human genes 0.000 description 1
- 108010022752 Acetylcholinesterase Proteins 0.000 description 1
- 239000012583 B-27 Supplement Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 102000012422 Collagen Type I Human genes 0.000 description 1
- 108010022452 Collagen Type I Proteins 0.000 description 1
- 102000004266 Collagen Type IV Human genes 0.000 description 1
- 108010042086 Collagen Type IV Proteins 0.000 description 1
- DWJXYEABWRJFSP-XOBRGWDASA-N DAPT Chemical compound N([C@@H](C)C(=O)N[C@H](C(=O)OC(C)(C)C)C=1C=CC=CC=1)C(=O)CC1=CC(F)=CC(F)=C1 DWJXYEABWRJFSP-XOBRGWDASA-N 0.000 description 1
- 102100031758 Extracellular matrix protein 1 Human genes 0.000 description 1
- 108010067306 Fibronectins Proteins 0.000 description 1
- 102000016359 Fibronectins Human genes 0.000 description 1
- OUVXYXNWSVIOSJ-UHFFFAOYSA-N Fluo-4 Chemical compound CC1=CC=C(N(CC(O)=O)CC(O)=O)C(OCCOC=2C(=CC=C(C=2)C2=C3C=C(F)C(=O)C=C3OC3=CC(O)=C(F)C=C32)N(CC(O)=O)CC(O)=O)=C1 OUVXYXNWSVIOSJ-UHFFFAOYSA-N 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 239000007756 Ham's F12 Nutrient Mixture Substances 0.000 description 1
- 101000866526 Homo sapiens Extracellular matrix protein 1 Proteins 0.000 description 1
- 101001094700 Homo sapiens POU domain, class 5, transcription factor 1 Proteins 0.000 description 1
- 101000713275 Homo sapiens Solute carrier family 22 member 3 Proteins 0.000 description 1
- 101000687905 Homo sapiens Transcription factor SOX-2 Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 208000001089 Multiple system atrophy Diseases 0.000 description 1
- 206010028347 Muscle twitching Diseases 0.000 description 1
- 239000012580 N-2 Supplement Substances 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 208000025966 Neurological disease Diseases 0.000 description 1
- 102100035423 POU domain, class 5, transcription factor 1 Human genes 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 description 1
- 208000026214 Skeletal muscle atrophy Diseases 0.000 description 1
- 102100024270 Transcription factor SOX-2 Human genes 0.000 description 1
- FPIPGXGPPPQFEQ-BOOMUCAASA-N Vitamin A Natural products OC/C=C(/C)\C=C\C=C(\C)/C=C/C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-BOOMUCAASA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229940022698 acetylcholinesterase Drugs 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 108010072041 arginyl-glycyl-aspartic acid Proteins 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 125000000852 azido group Chemical group *N=[N+]=[N-] 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 239000012503 blood component Substances 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000009460 calcium influx Effects 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 230000004956 cell adhesive effect Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 239000000512 collagen gel Substances 0.000 description 1
- 229940096422 collagen type i Drugs 0.000 description 1
- JNGZXGGOCLZBFB-IVCQMTBJSA-N compound E Chemical compound N([C@@H](C)C(=O)N[C@@H]1C(N(C)C2=CC=CC=C2C(C=2C=CC=CC=2)=N1)=O)C(=O)CC1=CC(F)=CC(F)=C1 JNGZXGGOCLZBFB-IVCQMTBJSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000000942 confocal micrograph Methods 0.000 description 1
- 239000012531 culture fluid Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000009509 drug development Methods 0.000 description 1
- 238000011977 dual antiplatelet therapy Methods 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 230000007831 electrophysiology Effects 0.000 description 1
- 238000002001 electrophysiology Methods 0.000 description 1
- 210000001671 embryonic stem cell Anatomy 0.000 description 1
- 239000003797 essential amino acid Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000002608 insulinlike Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000002438 mitochondrial effect Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000000626 neurodegenerative effect Effects 0.000 description 1
- 208000018360 neuromuscular disease Diseases 0.000 description 1
- 230000003955 neuronal function Effects 0.000 description 1
- 239000012038 nucleophile Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 239000013610 patient sample Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000006303 photolysis reaction Methods 0.000 description 1
- 230000015843 photosynthesis, light reaction Effects 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 230000003518 presynaptic effect Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000001566 pro-viral effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 210000004129 prosencephalon Anatomy 0.000 description 1
- 230000010069 protein adhesion Effects 0.000 description 1
- FYBHCRQFSFYWPY-UHFFFAOYSA-N purmorphamine Chemical compound C1CCCCC1N1C2=NC(OC=3C4=CC=CC=C4C=CC=3)=NC(NC=3C=CC(=CC=3)N3CCOCC3)=C2N=C1 FYBHCRQFSFYWPY-UHFFFAOYSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000006049 ring expansion reaction Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 230000025185 skeletal muscle atrophy Effects 0.000 description 1
- 210000004683 skeletal myoblast Anatomy 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 210000000278 spinal cord Anatomy 0.000 description 1
- 230000008925 spontaneous activity Effects 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 210000000225 synapse Anatomy 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 235000019155 vitamin A Nutrition 0.000 description 1
- 239000011719 vitamin A Substances 0.000 description 1
- 229940045997 vitamin a Drugs 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0652—Cells of skeletal and connective tissues; Mesenchyme
- C12N5/0658—Skeletal muscle cells, e.g. myocytes, myotubes, myoblasts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/34—Muscles; Smooth muscle cells; Heart; Cardiac stem cells; Myoblasts; Myocytes; Cardiomyocytes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/105—Insulin-like growth factors [IGF]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/115—Basic fibroblast growth factor (bFGF, FGF-2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/12—Hepatocyte growth factor [HGF]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/999—Small molecules not provided for elsewhere
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2506/00—Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
- C12N2506/45—Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2531/00—Microcarriers
Definitions
- the invention relates to culturing motor neuron cells together with skeletal muscle cells in a microfluidic device under conditions whereby the interaction of these cells mimic the structure and function of the neuromuscular junction (NMJ) providing a MJ-on-chip.
- NMJ neuromuscular junction
- Good viability, formation of myo-fibers and function of skeletal muscle cells on fluidic chips allow for measurements of muscle cell contractions.
- Embodiments of motor neurons co-cultures with contractile myo-fibers are contemplated for use with modeling diseases affecting MJ's, e.g. Amyotrophic lateral sclerosis (ALS).
- ALS Amyotrophic lateral sclerosis
- the neuromuscular junction is of major clinical relevance.
- dysfunction of the NMJ leads to degeneration of motor neuron- skeletal muscle unit.
- drugs that are supposed to treat neurological disorders often fail to restore the end plate potential to activate the muscle fibers.
- ALS Amyotrophic lateral sclerosis
- iPSCs induced pluripotent stem cells
- a method of generating myotubes including providing a quantity of induced pluripotent stem cells (iPSCs), culturing the iPSCs in the presence of a first induction media to generate mesoderm cells, further culturing mesoderm cells in the presence of a second induction media to generate myoblasts, and maturing the myoblasts into myotybes by culturing in the presence of a maturation media.
- the first induction media includes CHIR99021 and/or LDN193189.
- the first induction media includes bFGF (basic fibroblast growth factor).
- culturing the iPSCs in the presence of a first induction media includes about 6, 7, 8, or 9 days.
- the second induction media includes CHIR99021 and/or LDN193189.
- the second induction media includes bFGF, HGF (hepatocyte growth factor) and/or IGF (insulin-like growth factor).
- further culturing mesoderm cells in the presence of a second induction media includes about 2, 3, 4, or 5 days.
- the maturation media includes serum replacement.
- the maturation media includes HGF and/or IGF.
- maturing the myoblasts by culturing in the presence of a maturation media includes about 25, 26, 27, 28, 29, 30, 31, 32, or 33 days.
- the myotubes form contractile tissue.
- the myotubes form polynucleated myo-fibers.
- culturing the iPSCS, further culturing mesoderm cells, and/or maturing the myoblasts is on a coated substrate.
- the coated substrate includes one or more extracellular matrix proteins.
- the one or more extracellular matrix proteins includes Matrigel.
- the one or more extracellular matrix proteins includes laminin.
- the iPSCS are derived from a human.
- the human is diagnosed with a neuron disease and/or condition. In other embodiments, the human is diagnosed with a muscle disease and/or condition. Also described herein is a neuromuscular junction including one or more neurons, and one or more muscle cells, wherein the one or more neurons and one or more muscle are fixed on a substrate, and the one or more neurons are capable of generating activation potential and/or inducing contraction in the one or more muscle cells.
- the substrate includes a surface of a microfluidic device.
- the one or more neurons are differentiated from induced pluripotent stem cells (iPSCs).
- the human is diagnosed with a neuron disease and/or condition.
- the one or more muscle cells are differentiated from induced pluripotent stem cells (iPSCs).
- the human is diagnosed with a muscle disease and/or condition. Described herein is culturing motor neuron cells together with skeletal muscle cells in a fluidic device under conditions whereby the interaction of these cells mimic the structure and function of the neuromuscular junction (NMJ). Good viability, formation of myo-fibers and function of skeletal muscle cells on fluidic chips allow for measurements of muscle cell contractions.
- Embodiments of motor neurons co-cultures with contractile myo-fibers are contemplated for use with modeling diseases affecting MJ's, e.g. Amyotrophic lateral sclerosis (ALS).
- ALS Amyotrophic lateral sclerosis
- the present invention contemplates a method of culturing cells, including: a) providing a microfluidic device including a membrane, said membrane including a top surface and a bottom surface; b) seeding induced motor neuron cells on said top surface and skeletal muscle cells on said bottom surface so as to create seeded cells; c) exposing said seeded cells to a flow of culture media for a period of time; and d) culturing said seeded cells under conditions such that a neuromuscular junction forms within said microfluidic device.
- the formation of the neuromuscular junction can be detected in a number of ways. It is not intended that the present invention be limited to how the neuromuscular junction is detected or measured.
- a color label e.g. fluorescent label
- the present invention contemplates additional approaches including but not limited to functional measurement/detection of the NMJ.
- Such functional embodiments include measuring and/or detecting the formation of the NMJ as demonstrated by measuring and/or detecting nerve action potential, neurotransmitter release, muscle cell membrane activation potential and/or myofiber contraction.
- these events occur in sequence and are synchronized (e.g. with synchronization comparable to an in vivo neuromuscular junction response as understood to one of ordinary skill).
- said skeletal muscle cells are induced to differentiate.
- said skeletal muscle cells form contractile tissue.
- said skeletal muscle cells form polynucleated myo-fibers.
- said seeded cells are cultured for more than ten days.
- said induced motor neuron cells are derived from induced pluripotent stem cells from a human.
- said human is diagnosed with a CNS disorder.
- the present invention contemplates that the method further includes the step of e) assessing the health and/or integrity of the neuromuscular junction.
- the present invention also contemplates and embodiment where the method further includes the step of e) electrically stimulating said motor neurons and/or said skeletal muscle cells.
- the present invention contemplates a method of culturing cells, including: a) providing a microfluidic device including a channel; b) seeding skeletal muscle cells into said channel; c) inducing said skeletal muscle cells to differentiate; and d) detecting myo-fiber formation.
- Motor neurons can be (optionally) added before or after the muscle cells (or not at all).
- said detecting of myo-fiber formation includes detecting myo-fiber contractions.
- said seeded cells are exposed to a flow of culture media for a period of time.
- the cells are seeded onto covalently attached ECM protein(s).
- the present invention also contemplates seeding on both patterned surfaces and/or gels.
- the present invention contemplates a method of culturing cells, including: a) providing a microfluidic device including a patterned surface and a gel, b) seeding induced motor neuron cells on said patterned surface and skeletal muscle cells on said gel.
- the present invention contemplates that the method further includes c) detecting myo-fiber formation by said skeletal muscle cells.
- said detecting of myo- fiber formation includes detecting myo-fiber contractions.
- said skeletal muscle cells and/or said motor neurons are exposed to a flow of culture media for a period of time.
- the present invention also contemplates microfluidic devices with cells.
- a microfluidic device including a) a membrane, said membrane including a top surface and a bottom surface; and b) induced motor neuron cells on said top surface and skeletal muscle cells on said bottom surface.
- said induced motor neuron cells are derived from induced pluripotent stem cells from a human.
- said human is diagnosed with a CNS disorder.
- said CNS disorder is ALS.
- said membrane includes covalently attached ECM protein(s).
- the present invention also contemplates systems including microfluidic devices with cells under flow conditions.
- the present invention contemplates a system including a microfluidic device, said microfluidic device including a) a membrane, said membrane including a top surface and a bottom surface; and b) induced motor neuron cells on said top surface and skeletal muscle cells on said bottom surface, wherein either one of said cell types or both are exposed to culture media at a flow rate.
- said induced motor neuron cells are derived from induced pluripotent stem cells from a human.
- said human is diagnosed with a CNS disorder.
- said CNS disorder is ALS.
- said membrane includes covalently attached ECM protein(s).
- the membrane is in a channel, said channel is in fluidic communication with a reservoir including culture media.
- MN refers to motor neurons.
- the letter “i” indicates “induced.”
- iMN indicates induced motor neurons, i.e. motor neurons that were induced or generated from other cells, e.g. stem cells.
- diMN indicates direct induced motor neurons.
- iMNP indicates induced motor neuron progenitor cells, which are not fully differentiated into mature neurons.
- microfluidic as used herein relates to components where moving fluid is constrained in or directed through one or more channels wherein one or more dimensions are 10 mm or smaller (microscale). Microfluidic channels may be larger than microscale in one or more directions, though the channel(s) may be on the microscale in at least one direction. In some instances the geometry of a microfluidic channel may be configured to control the fluid flow rate through the channel. Microfluidic channels can be formed of various geometries to facilitate a wide range of flow rates through the channels. However, it is important to note that while the present disclosure makes frequent reference to "microfluidic" devices, much of what is taught applies similarly or equally to larger fluidic devices.
- MJ-on-chip Larger devices may be especially relevant if the " MJ-on-chip" is intended for therapeutic application.
- applications that may make advantage of larger fluidic devices include the use of the device for the generation of highly differentiated cells (e.g. the device can used to drive cell differentiation and/or maturation, whereupon the cells are extracted for downstream use, which may include implantation, use in an extracorporeal device, or research use), or use of the device for implantation or extracorporeal use, for example, as an artificial MJ.
- the present invention contemplates microfluidic devices where the cells are exposed to a constant flow of media providing nutrients and removing waste.
- first and second channels in a microfluidic device are in fluidic communication with a fluid reservoir.
- Two components may be coupled to each other even though they are not in direct contact with each other.
- two components may be coupled to each other through an intermediate component (e.g. tubing or other conduit).
- Figure 1 shows schematics of neuromuscular junctions (NMJs) as interfaces between spinal motor neurons and skeletal muscle cells.
- NMJs neuromuscular junctions
- Figure 1A shows a schematic illustration of the exterior of neuromuscular junctions where the yellow axon of a motor nerve at the motor junction has non-myelinated terminal nerve branches forming neuromuscular junctions (one example of an NMJ is outlined by a square).
- the neuronal terminal nerve branches have synaptic end bulbs or boutons (see Figure IB) located opposite of a muscular fiber end plate (see Figure IB).
- Figure 1A also shows a schematic of an interior view of a muscle fiber composed of numerous myo-fibers interspersed with mitochondria (blue), sarcoplasmic reticulum (yellow tubes) within the sarcoplasm of a muscle fiber cell (myocyte).
- Figure IB shows a cut-out schematic illustration of the interface between spinal motor neurons and skeletal muscle cells, e.g., a NMJ, for demonstrating the steps of normal motor neuronal activation of muscle fibers.
- Step 1) An action potential of a myelinated axon reaches the non-myelinated axon terminal branch.
- Step 2) Voltage-dependent calcium gates open allow Ca++ to enter the end bulb which in Step 3) induces the movement of neurotransmitter containing vesicles to merge with the cell membrane at the end of the synaptic bulb opposite muscle cell acetylcholine (ACh) receptors located in the motor end plates.
- ACh acetylcholine
- Neurotransmitter vesicles containing acetylcholine (ACh) are emptied (by exocytosis) into the synaptic cleft.
- Freed ACh from the vesicles then diffuses across the cleft to bind to postsynaptic receptors on the sarcolemma of the muscle fiber in the motor end plate area.
- This ACh binding causes ion channel pumps to open which allows sodium ions to flow across the membrane into the muscle cell while fewer K+ ions are transported out of the cell i.e. (3) Na+ ions enter the cell cytoplasm while (2) K+ ions are transported out, thus triggering a post synaptic action potential (end plate potential) in the NMJ, i.e.
- Step 6) the postsynaptic action potential (AP) generated at the end plate, Step 7) AP wave, i.e., sarcolemma membrane depolarization, travels across the muscle cell membrane.
- AP wave i.e., sarcolemma membrane depolarization
- FIG 1C shows a schematic illustration of a muscle cell (myocyte) depicting how the postsynaptic action potential (AP), triggered by the NMJ, in the sarcolemma of the motor end plate, in Step 6) travels to nearby areas of the T-tubules (i.e. a wave of ion pump activation that travels along the membrane whereby (3) Na+ ions enter the cell cytoplasm while (2) K+ ions are transported out of the cell cytoplasm.
- myocyte shows a schematic illustration of a muscle cell (myocyte) depicting how the postsynaptic action potential (AP), triggered by the NMJ, in the sarcolemma of the motor end plate, in Step 6) travels to nearby areas of the T-tubules (i.e. a wave of ion pump activation that travels along the membrane whereby (3) Na+ ions enter the cell cytoplasm while (2) K+ ions are transported out of the cell cytoplasm.
- AP postsynaptic action potential
- Step 7) When the AP reaches areas of the T-tubule portion of the sarcolemma, destabilizing this area of the membrane, the AP in the sarcolemma of the T-tubule area causes the T-tubule to induce the release of Ca++ from the sarcoplasmic reticulum.
- Step 8) The destabilized sarcolemma then triggers a wave of Ca++ release across the sarcoplasmic reticulum membrane inside of the myocyte.
- Step 9) The rise in intracellular Ca++ activates contraction of myofibrils, i.e. myosin-actin interactions.
- FIG. 1 shows 2-Dimensional (2D) motor neurons (MN) and muscle cell co-cultures grown in static plates, on day 37 of culture.
- Figure 2A shows a micrograph of healthy human muscle skeletal cells (hSkMCs).
- Figure 2B shows a higher magnification of cells in Figure 2A, where the green arrow points to one exemplary multi -nucleated myotube;
- Figure 2C shows a micrograph of a co-culture of direct induced motor neurons (diMNs) on top of hSkMCs where white arrows point to rounded cell bodies, a green arrow points to an exemplary myotube and a red arrow points to an exemplary neuron on top of said myotube; and
- diMNs direct induced motor neurons
- Figure 2D shows a higher magnification of cells in Figure 2C where the red arrow points to neuronal branches on top of a myotube identified by a green arrow.
- White boxes outline the areas shown in higher magnification.
- Figure 3 shows exemplary phase contrast images for embodiments of neuronal growth.
- Figure 3 A shows iMNs seeded on a plain (un-patterned) surface
- Figure 3B shows a duplicate sample of cells (as in Figure 3 A) that were seeded on a nanopatterned surface, resulting in directed neurite growth.
- Figure 4 Shows one embodiment of a human skeletal muscle cell culture hSkMC-In-Chip: Extracellular Matrix for fluidic hSkMCs-In-Chip.
- the chip is a Quad chip.
- Figure 4A shows a picture of a single channel (Quad) Chip with pipette tips used to block channels for coating the inside surfaces with an ECM layer then seeded with human skeletal muscle cells (hSKMCs).
- hSKMCs human skeletal muscle cells
- Figure 4B shows a schematic illustration of a cross-sectional view of the quad channel with ECM as Laminine (purple and blue stars) with hSkMCs as blue spotted yellow blocks.
- Figure 4C shows a schematic illustration of a cross-sectional view of the quad channel with ECM as Laminine (purple and blue stars) with hSkMCs as blue spotted yellow blocks and a representative cross linking of ECM as yellow stars, e.g. with Sulfo-SANPAH.
- Figure 5 shows one embodiment of a human muscle cell culture in-chip: Set Up and Time Course for producing multinucleated myofibers that are not contracting.
- Figure 5A Single channels of Quad Chips were seeded with human skeletal muscle cells (hSKMCs).
- Group 1 and Group 2 5 x 10 6 /ml cells;
- Group 3 and Group 4 1.6 x 10 6 /ml cells.
- Groups 1 and 3 do not have cross (X)-linked ECM while Groups 2 and 4 have exemplary Sulpho SA PA X-linked ECM.
- Figure 5B shows a schematic experimental timeline: Seeding cells on Day (D) 0.
- Dl Inducing differentiation.
- D5 observing fusion of myoblast cells.
- D10 Screening for myo-fiber contraction in cultures that were not stained for analysis; observing polynucleated fibers but no myofiber contractions.
- D14 Fixing cells and fusion-index-analysis.
- Figure 5C Day 14: Fixation and fusion-index-analysis based upon staining for myosin heavy chain (MHC) (red) and nuclei (DNA) (shown in blue).
- MHC myosin heavy chain
- DNA nuclei
- Figure 5D Shows a schematic illustration of multinucleated myofibers in MHC (red) and nuclei (DNA) (blue).
- Figure 6 shows Human Skeletal Myoblast-Derived Poly-Nucleated Fibers growing in microfluidic chips where Sulfo-SANPAH cross-linked ECM enables formation of almost 2- fold more MHC positive multinucleated fibers.
- Figure 6 A, Figure 6B, Figure 6C, Figure 6D show fluorescent micrographs of immunostained myosin heavy chain (MHC) (red) myo-fibers and DAPI stained nuclei (DNA) (shown in blue) comparing cultures started at the 2 different densities ( Figures 6A-B: 5 x 10 6 /ml cells and Figures 6C-6D: 1.6 x 10 6 /ml cells) with and without cross-lined (X-link) ECM- Laminin (Lam).
- MHC myosin heavy chain
- DNA DAPI stained nuclei
- Figures 6E-6F show phase contrast micrographs of Day 14 cells grown on Laminin (Lam) and cross-linked (X-Link) ECM-Laminin (Lam), respectively. More MHC positive multinucleated fibers are observed with X-Linked Laminin after 14 days. White arrows point to 2 exemplary multinucleated myotubes
- Figure 6G shows a graph comparing number MHC+ myo-fibers to the treatments shown in Figures 6A-6D where at both cell densities the number of myofibers growing on x- Linked ECM is almost 2-fold more than fibers grown on regular, non-cross-linked, ECM.
- Figure 7 shows Human Skeletal Myoblast-Derived Poly-Nucleated Fibers growing in microfluidic chips comparing non-cross-linked to cross-linked ECM (Laminin) where more nuclei per myo-tubes are observed growing on cross-linked ECM.
- Figure 7 A, Figure 7B, Figure 7C, Figure 7D show fluorescent micrographs of immunostained myosin heavy chain (MHC) (red) myo-fibers and DAPI stained nuclei (DNA) (shown in blue) comparing cultures started at the 2 different densities with inserts showing higher magnifications of presumptive myo-fibers for each treatment.
- MHC immunostained myosin heavy chain
- DNA DAPI stained nuclei
- Figures 7A-7B 5 x 10 6 /ml cells and Figures 6C-D: 1.6 x 10 6 /ml cells) with Laminin
- Figures 7E-7F Show a 3 -fold higher number of nuclei in MHC myo-fibers seeded on exemplary Sulfo-SANPAH cross-linked ECM by graphical comparisons.
- Figures 7E shows a graph comparing DAPI+ nuclei per MHC+ fiber for determining myo-fiber at the 4 treatments shown.
- Figures 7F shows a graph comparing percentage of total DAPI+ per channel, i.e. percentage of DAPI in myo-fibers at the 4 treatments shown in Figure 7A-D.
- Figure 8 shows one embodiment of a Human iPS-Derived MN and Muscle Cell Co-Culture in-a Tall Channel Microfluidic Chip.
- Figure 8 A shows a picture of a tall channel microfluidic chip (16) in one embodiment seeded with MNs at day 12 of culture into the port (2) of the upper (blue) channel (thick arrow) (1) and human skeletal muscle cells into the port (3) of the lower (red) channel (1) at the end of the other channel (thin arrow).
- the arrowhead points to a vacuum chamber (4), for optional use.
- Figure 8B shows iPSC-derived MNs seeded into the upper channel forming a neural network stained with TUJ1 (green); Isletl (ISL1) (blue); indicating early motor neurons, and Isletl (ISL1) (blue); HoxB9 (red); indicating more mature motor neurons, while the third frame is a superimposed image showing both early and more mature motor neurons.
- Figure 8C shows skeletal muscle cells seeded into the lower channel stained with myosin heavy chain (MHC) (green) with an insert showing myofibers at a higher magnification; a-bungarotoxin BTX (pre-BTX) (red), for identifying AchR in the motor end plate, with an insert showing stained cells at a higher magnification; and DNA in nuclei stained then fluoresced in the blue range, with an insert showing myofibers (green) at a higher magnification with unstained regions that likely correspond to multinuclear areas in the myofibers; and
- MHC myosin heavy chain
- Figure 8D shows a schematic illustration of a vertical cross section of a tall channel microfluidic chip where MNs from a Day 12 culture seeded onto the chip develop cell bodies containing nuclei (purple circles), axons and terminal areas next to the membrane separating the top from the bottom channel containing human skeletal muscle cells growing around the edge of the channel.
- Figure 9 Shows one embodiment of a Human iPS-Derived MN and Muscle Cell Co-Culture in-a microfluidic Chip.
- Figure 9A is a picture of an exemplary microfluidic chip where day 12 MNs are seeded into the top (upper-blue) channel and hSkMCs are in the bottom (lower-red) channel;
- Figure 9B shows a schematic illustration of an exemplary cross section of MJ microfluidic chip with day 12 MNs in the top channel and hSkMCs in the bottom channel with 3 sets of Experimental Chips for comparing cell densities at the time of seeding: Chip 1 : top: 3 x 10 6 /ml diMN cells and bottom: 5 x 10 6 /ml hSkMC cells; Chip 2: top: 3 x 10 6 /ml diMN cells and bottom: 10 x 10 6 /ml hSkMC cells; and Chip 3 : top: 3 x 10 6 /ml diMN cells and bottom: 20 x 10 6 /ml hSkMC cells.
- Figure 9C shows a schematic illustration of a timeline showing co-culture of hSkMCs seeded Day (D) 0 with differentiation (diff) initiated on Dl, Day 12 MNs seeded Dl, Myofiber formation on D5, myofiber contractions observed D10, a loss of myofibers observed on Dl l, with fixation and analysis by ICC on D14.
- Figure 10 shows one embodiment of an experimental system (Experiment 1) as a schematic illustration for testing medium to reduce spontaneous contractions of cells in the microfluidic tall channel chip.
- Experimental Groups 1-3 directly compare medium harvested from diMNs/hSkMC cultures with coM media in chips containing induced motor neurons (diMNs: Motor-neuron-on Chip) and human Skeletal Muscle Cells (hSkMCs-on-Chip), each cell type growing alone on chips then combined in the same chip in the same media (upper and lower channel) for providing a neuronal-muscular-junction (NMJ-on-Chip).
- diMNs Motor-neuron-on Chip
- hSkMCs-on-Chip human Skeletal Muscle Cells
- Figure 10A Group 1 : shows a schematic illustration of the tall channel chip, with vacuum chambers (4), diMNs in the top channel but no cells in the bottom channel.
- Group 2 shows a schematic illustration of the tall channel chip with no cells in the top channel but with hSkMCs in the bottom channel.
- Group 3 shows a schematic illustration of the tall channel chip with diMNs in the top channel and hSkMCs in the bottom channel for providing a NMJ-on- Chip.
- Figure 10B shows a schematic illustration of cells numbers and media used for growing cells: Group 1 : Top: 3xl0 6 diMNs Bottom: none. Group 2: Top: none. Bottom: lOxlO 6 hSkMCs. Group 3 : Top: 3xl0 6 diMNs. Bottom: 20xl0 6 hSkMCs.
- Figure 11 Shows human skeletal muscle cells (hSkMCs) forming myofibers within 8 days post seeding (co-cultures) having spontaneous myo-tube contractions at Day (D) 10 culture that are reduced by using conM culture medium in a microfluidic chip.
- Figure 11 A shows micrographs of hSkMCs growing in chips.
- White arrows in the magnified region point to multinucleated muscle cell fibers, of which there appears to be more nuclei per fiber in the coM medium.;
- FIG. 1 IB shows micrographs of diMNs growing in chips.
- Figure 11C shows micrographs of shSkMCs/diMNs grown in MN/hSkMCs media (upper row of micrographs) and coM medium (lower row of micrographs) growing in chips. Spontaneous myo-tube contraction was observed only in diMNs/hSkMC co-cultures. White arrows in the magnified region point to contacts of MN with a muscle cell fiber.
- Inserts show higher magnified areas of cells outlined in the white box for each micrograph.
- Figure 12 Shows human skeletal muscle cells (hSkMCs) as myofibers with spontaneous myotube contractions at Day (D) 10 (Experiment 3).
- Figure 12 A shows a micrograph of hSkMCs as myotubes growing on top of a membrane of the microfluidic chip in coM media.
- Figure 12B shows a graph comparing contractions per minute for a myofiber contraction frequency with an average of fibers in two experiments (Experiment 1 and 3) that were combined for a total estimation of myofiber contraction frequency.
- Figure 12C shows a graph comparing contractions per minute for myofibers having an increased myofiber contraction frequency of myotubes grown on cross linked Laminin ECM over non-cross-linked Laminin covered surfaces.
- Figure 12D shows a graph comparing contractions per minute for myofibers grown in regular media compared to a culture grown in coM media. When cultured in coM, contraction frequency is around 25% less compared to regular medium conditions.
- Figure 13 shows schematic illustrations of experimental timelines for comparing co-cultures of hSkMCs with MNs, with and without coM media.
- Figure 13 A shows a schematic illustration of a timeline and cell densities for Group 1 and Group 2 in coM: hSkMCs seeded at 5 x 10 6 /ml cells and MNs seeded at 3 x 10 6 /ml cells.
- Figure 13B shows a schematic illustration of a timeline and cell densities for Group3 : hSkMCs seeded with MNs: Day 0: seeding hSkMCs; Day 1 : (18h later) seeded diMNs (dl2); Day 5: formation of myotubes, no medium switch; Day 10: observation of myofiber contraction; Day 11 : observing progressive loss of myofibers; Day 14: fixation and analysis by ICC; in chip cultures left to D20, there is almost a complete loss of myofibers.
- Figure 14 Shows schematic illustrations of embodiments of a microfluidic device.
- Figure 14 A is a schematic illustration showing one embodiment of the microfluidic device or chip (16), including two microchannels (1), each with an inlet and outlet port for the upper channel (2) and lower channel (3), as well as (optional) vacuum ports (4).
- Figure 14B is a topside schematic of an embodiment of the perfusion disposable or "pod" (10) featuring the transparent (or translucent) cover (11) over the reservoirs (12), with the chip (16) inserted in the carrier (17).
- the chip can be seeded with cells and then placed in a carrier for insertion into the perfusion disposable or pod, whereupon culture media in the reservoirs flows into the microchannels and perfuses the cells (e.g. both MNs and hSMCs).
- Figure 15 Shows schematic illustrations showing one embodiment of microfluidic devices, including for providing an "air dam” for isolating one channel.
- Figure 15 A is a schematic illustration showing one embodiment of a microfluidic device or chip (16) (viewed from above), the device includes top (apical; dotted line) and bottom (basal; solid line) channels.
- motor neurons are seeded into the upper (apical) channel and human skeletal muscle cells are seeded into the lower (basal) channel.
- an "air dam" is created for part of a protocol, described below, where the two Xs are indicating that channels are blocked during at least part of the protocol.
- Figure 15B is a schematic illustration showing one embodiment of how ports, upper (2) and lower (3) of a microfluidic device or chip (16) can be utilized to deposit fluids carrying surface coatings (e.g. dissolved proteins) and/or seed the cells using pipette tips.
- This image shows one embodiment of a modification to the typical chip ECM coating protocol based on the need in some embodiments to coat the top and/or bottom channels with different ECM solutions in wet and/or dry conditions.
- Figure 16 shows schematic illustrations of tall channel microfluidic MJ-on-chip with one embodiment of an experimental timeline (Experiment 4) set up and time course for comparing co-cultures of hSkMCs with MNs under flow for longer culture times.
- Figure 16 A shows a schematic illustration of a tall channel microfluidic chip, from left to right, view of vertical 2-channel chip (i.e. the top channel is above the bottom channel as shown in Stage 1, with hSkMCs covering the entire surface of the bottom channel, and Stage 2 with diMNs seeded into the top channel.
- Figure 16B shows a schematic illustration of one embodiment of a timeline where hSkMCs are seeded Day (D) 0 with differentiation (diff) initiated on Dl, D5: formation of myotubes & medium switch to coM media, then Day 7-10: no myofiber contraction, on Day 20 start muscle cells under flow at lOul/hour, continued to D29 when flow is stopped.
- Day 30 seed diMNs (dl2) (not in coM media for observing baseline contractions).
- Day 37 myotubes are spontaneously contracting: fixation and analysis (including ICC).
- Figure 17 shows an exemplary co-localization study of iPS-Derived MNs and Muscle Cells showing formation of NMJs between diMNs and hSkMCs (Experiment 4).
- Cells were stained with a-bungarotoxin (BTX) for identifying suggestive NMJ areas where motor end plate (green), neurons are stained with Tubulin beta-3 chain (Tubb3) (red) and muscle myosin heavy chain (MHC) (blue) were fluorescently imaged on individual channels then merged. The blue channel of MHC staining is not shown in Figure 17A-17D.
- BTX a-bungarotoxin
- Tubb3 Tubulin beta-3 chain
- MHC muscle myosin heavy chain
- Figure 17 A shows a low power fluorescent micrograph where Tubb3 (red) neuronal staining shows neurite extension along myotubes with oval areas (green) suggestive of lower motor nerve termini whose distribution over a myotube suggests motor end plates.
- Figure 17B, Figure 17C, Figure 17D, Figure 17E, Figure 17F, Figure 17G shows higher power fluorescent micrographs of the suggestive NMJ areas (white arrows) are identified by superimposed staining i.e. co-localization, where the red stained nerve terminal neuron bulb is co-localized with BTX green staining of motor end plates producing a yellow NMJ.
- Figure 17E-17G The blue channel of MHC staining is shown showing a MHC containing muscle fiber at the yellow stained NMJ.
- Figure 18 shows florescent micrographs of stained cells in a microfluidic chip.
- FIG 18A and Figure 18B a-bungarotoxin (BTX) for identifying the motor end plate (green), skeletal muscle marker, desmin, (red) and DNA (DAPI) (shown in blue).
- BTX a-bungarotoxin
- DAPI DNA
- Figure 18B a higher magnification of Figure 18 A, 3 white arrows point to co- localization of a-bungarotoxin (BTX) for identifying the motor end plate (green) and skeletal muscle marker, desmin, (red) as olive, white dark orange areas depending upon concentration of stain.
- BTX a-bungarotoxin
- FIG 18C and Figure 18D motor end plate (green) BTX and neurofilament H non- phosphorylated (SMI 32) (red) and DNA (DAPI) (shown in blue).
- SMI 32 neurofilament H non- phosphorylated
- DAPI DNA
- Figure 18D a higher magnification of Figure 18C, 3 white arrows point to co-localization of a motor end plate (green) BTX, neurofilament H non-phosphorylated (SMI 32) (red) as olive - white areas depending upon concentration of stain.
- SMI 32 neurofilament H non-phosphorylated
- Figure 19 shows schematic illustrations of one embodiment of experimental timelines for using NMJ-on-chips (Experiment 5) as a set up and time course for using co-cultures of hSkMCs with MNs for live imaging and pharmacology studies.
- Figure 19 A shows a schematic illustration of a tall channel microfluidic chip, seeded with hSkMCs at Day 0 (DO) in the bottom channel, culting up to D9, without observing muscle contractions, then D9 seeding diMNs (dl2). In one embodiment only in Group 2. In some embodiments, more than one group of hSkMCs receive MNs. On days 15, 16 and/or 17, live imaging of pharmacology assays are done as shown schematically, for one example, in Figure 19B.
- Figure 19B shows a schematic illustration of one embodiment of a timeline where a
- NMJ-On-Chip with spontaneous contracting muscle fibers is used for a pharmacology study, i.e. testing agents for inducing or reducing muscle contractions on a baseline chip with or without spontaneously contracting myofibers, in one embodiment, treating NMJ chip with 75uM Glutamine (Glut) in the NM (upper) channel), in one embodiment, treating NMJ chip with 12uM alpha-turbocurarine in the hSkMC (lower) channel), in one embodiment, washing out alpha-turbocurarine, in one embodiment, treating NMJ chip with lOOuM Glutamine (Glut) in the NM (upper) channel).
- Figure 20 Shows exemplary High Content Imaging as immunohistochemistry of iPSC derived Myo-fibers, on fixed cells (Experiment 5).
- Figure 20A shows a fluorescent micrograph of the entire width and length of immunostained cells in a microfluidic MJ chip, a-bungarotoxin BTX (green), Neuron- specific Class III ⁇ -tubulin (TuJl) (red) and myosin heavy chain (MHC) (blue).
- Figure 20B shows a higher power fluorescent micrograph of the channel in the chip shown in Figure 20A.
- Figure 21 shows micrographs of cells grown as shown in Experiment 5 for pharmacology and in-chip imaging for NMJ-On-Chip.
- Figure 21A shows phase contrast micrographs of myotubes and neurons in chips, higher magnified areas are shown below the larger micrograph white arrows point to potential NMJs where myotubes are adjacent to neurons.
- Figure 2 IB shows fluorescent micrographs of superimposed (co-localized images) of neurons stained with a neuronal microtubule marker, Tau, (green) a microtubule stabilization protein, for identifying neurons and motor end plates with BTX (red) (labeling AChRs) for identifying NMJs, where neuronal braches co-localize with end plates.
- Smaller micrographs show higher magnified areas outlined by corresponding white boxes.
- White arrows point to motor end plates of myotubes, some of which are in close proximity to neuronal axons.
- Figure 22 shows an exemplary method of growing motor neurons in a microfluidic chip where the MN cells of neural networks have spontaneous calcium bursts.
- Figure 22 AA shows a microfluidic chip seeded with MNs at day 12 of culture.
- Figure 22BB shows an exemplary timeline where MN precursor cells from Day 12 cultures are seeded at Day 0 in the microfluidic chip, MN network formation is observed a Day 10 on the chip (Day 18 overall from the start of the original MN culture).
- Figure 22CC shows exemplary images produced by high content life imaging of cells in chips showing Ca++ imaging of diMN cells on Day 12 after seeding onto the microfluidic chip; at high magnification (20x).
- diMNs show repetitive calcium bursts as visualized via Flou4 labeling in color within the cellular areas, e.g. cell bodies, axons and terminal bulbs, in neuronal networks, where the concentrations of Ca++ are shown by yellow-lower levels, red-higher than yellow areas and highest levels in white areas within the red areas, as shown in the neuron cell bodies.
- Figure 22A shows exemplary Ca++ imaging of Figure 22CC in black and white, where the highest amounts of Ca++ are white areas in black and white micrographs, white arrowheads point to cellular areas with concentrated Ca++.
- Figure 22B shows a higher magnification of a cell in the center of the micrograph in Figure 22CC/ Figure 22A with two white arrowhead markers used to identify the same area through the different planes of focus.
- Figure 22D, Figure 22E, Figure 22F, Figure 22G, Figure 22H, Figure 221, and Figure 22J shows exemplary Ca++ imaging in color from confocal high content micrograph z-stack layers through the cell (shown in Figure 22B) where higher concentrations of Ca++ are shown by yellow/red/white areas in the neuronal cytoplasm, which discharge and recharge then discharge over time.
- White arrowheads mark the same location of the cell shown in Figure 22B- Figure 22J.
- Figure 22K shows a graph of average intensity of Ca++ vs. elapsed time (seconds).
- Figure 23 shows exemplary fluorescent micrographs of MJ-On-Chips using iPSC derived Myo-fibers (iSKMCs) as superimposed (co-localized images) of neurons and myotubes.
- iSKMCs iPSC derived Myo-fibers
- Figure 23A shows a fluorescent micrograph of nerve axons (red) parallel to multinucleated (blue) muscle heavy chains within muscle myofibers (green) showing separation between internal myosin and external nerve fibers.
- Myosin MHC: myosin heavy chain
- TuJl red
- DAPI DNA
- Figure 23B shows a fluorescent micrograph view on end (as compared to the orientation in Figure 23 A) for a different view, i.e. x-z image, of muscle Myogenin (green), nerve TuJl (red) and DNA (DAPI) (shown in blue) where nuclei superimposed on the muscle staining shows light blue, see example at the white arrow.
- Figure 24 iPSC derived motor neurons on XONA microfluidic device. Cells were labeled using MitoTracker green.
- Figure 25 iPSC derived motor neurons on XONA microfluidic device. Cells were labeled using MitoTracker green.
- Figure 26 iPSC derived motor neurons on XONA microfluidic device. Cells were exhibited capacity for axonal retraction.
- Figure 27 Timelapse of axonal retraction at approximately 1, 2, 3, 4, 6, 9, 11, 13 and 16 hour timepoints as indicated.
- FIG 28 iPSC-motor neurons "co-culture" in microfluidic device: control (CTR).
- Microfluidic device such as optically transparent and biologically inert Polydimethylsiloxane (PDMS) possesses multiple chambers connected by microgrooves. The chamber allows fluidic communication with different cell types. Hydrostatic pressure between the two chambers separated by the microgrooves can allow one to fluidically isolate each chamber by keeping the volumes in the wells on one side of the device higher than the other side of the device. The difference in volume creates hydrostatic pressure, thus fluidically isolating each compartment. Control cells are seeded here for illustration.
- PDMS optically transparent and biologically inert Polydimethylsiloxane
- Figure 29 iPSC-motor neurons "co-culture” in microfluidic device: spinal muscular atrophy (SMA).
- SMA spinal muscular atrophy
- Figure 30 iPSC-motor neurons "co-culture” in microfluidic device: control (CTR).
- CTR microfluidic device
- labeling agents including a-bungarotoxin (BTX), synaptic vesicle 2 (SV2) can aid visualization of the neuromuscular junction including co-localization of these markers as depicted.
- BTX a-bungarotoxin
- SV2 synaptic vesicle 2
- FIG. 31 iPSC-motor neurons "co-culture” in microfluidic device: control (CTR).
- CTR control
- Figure 32 iPSC-motor neurons "co-culture” in microfluidic device: spinal muscular atrophy (SMA). As shown, muscle cells are observed as aggregating at the exist of channels in fluidic connection with motor neuron cells.
- SMA spinal muscular atrophy
- Figure 33 Exemplary factors and a timeline for differentiation used herein for the generation of motor neurons are provided (using iPSCs as the starting material).
- Figure 34 Induced pluripotent stem cells (iPSCs) differentiated into motor neurons.
- the invention relates to culturing motor neuron cells together with skeletal muscle cells in a fluidic device under conditions whereby the interaction of these cells mimic the structure and function of the neuromuscular junction (NMJ) providing a MJ-on-chip.
- NMJ neuromuscular junction
- Good viability, formation of myo-fibers and function of skeletal muscle cells on fluidic chips allow for measurements of muscle cell contractions.
- Embodiments of motor neurons co-cultures with contractile myo-fibers are contemplated for use with modeling diseases affecting MJ's, e.g. Amyotrophic lateral sclerosis (ALS).
- ALS Amyotrophic lateral sclerosis
- the present invention contemplates a NMJ-on-chip where at least one population of cells is derived from a patient diagnosed with a disorder of the nervous system. While it is not intended that the present invention be limited to a particular CNS disorder, in one embodiment, the disorder is ALS.
- Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative condition characterized by loss of motor neurons in the brain and spinal cord.
- the present invention contemplates generating induced pluripotent stem cells (iPSCs) from patients with ALS and differentiating them into motor neurons progenitors nd/or skeletal cell progenitors for seeding on a microfluidic device.
- iPSCs induced pluripotent stem cells
- ALS a progressive deterioration of the neurons, alterations of skeletal muscle fibres are observed in patients with ALS, including but not limited to accumulation of abnormal protein inclusions, mitochondrial changes, skeletal muscle atrophy, etc..
- the present invention contemplates the NMJ- on-chip as a model system for testing drugs so as to predict success in subsequent clinical trials.
- diseases where skeletal muscle abnormalities are found include multiple system atrophy.
- iPSC technology can be used together with microfluidic chips to mimic patient-specific phenotypes in disease states.
- iMNs are derived from a patient diagnosed with or at risk for a disease.
- ihSkMCs are derived from a patient diagnosed with or at risk for a disease.
- the iMNs and ihSkMCs are generated from the same patient line, e.g. the same patient stem cells.
- the patient has symptoms of a CNS disorder, and more specifically, a neurodegenerative disease.
- the neurodegenerative disease is ALS.
- NMJ-on- Chip i.e. NMJ-on-chip (diMNs/hSkMCs) with reduced spontaneous muscle contractions
- 2D co-cultures of MN and muscle cells
- hSkMCs human skeletal muscle cells grown on microfluidic chips as described herein, i.e. SkMCs-on-chip, are superior over plate cultures of muscle cells.
- NMJ-on-Chip in one embodiment, includes a motor neuron-on-chip, e.g. patient iPSC-derived MNs, expressing neuronal markers, are combined with a human skeletal muscle-on-chip: containing contractile tissue.
- a motor neuron-on-chip e.g. patient iPSC-derived MNs, expressing neuronal markers
- a human skeletal muscle-on-chip containing contractile tissue.
- human skeletal cells co- cultured with human MNs showed spontaneous muscle fiber contractions resulting in a loss of myotube structure beginning within 24-48 hours.
- the myotubes remain viable longer over time.
- reduction of spontaneous contractions allows the controlled addition of pharmacology agents on older co- cultures.
- cultures of muscle cells without neurons there was little spontaneous twitching, i.e. contractions, and these cultures remained viable over longer time periods.
- a Human Muscle Cell Culture in-Chip was first developed in a single channel (Quad) chips.
- HSkMCs were seeded into an upper channel at 2 different cell densities; differentiation was induced then muscle cells were screened for myo-fiber contraction.
- hSkMCs human skeletal myoblast
- d5 poly-nucleated myofibers
- dlO spontaneous myofiber contractions
- hSkMCs were seeded into the lower channel of a 2-channel microfluidic chip, including a tall chip.
- a NMJ-on-chip was provided by combining the 2 chips, i.e. human iPS-derived MN and skeletal muscle cell-on-chip.
- hSkMCs were seeded into the lower channel of a tall channel chip, then diMNs (day 12) were added to the upper channel.
- diMNs day 12
- Medium optimization was done in order to reduce spontaneous contractions in chips with diMNs & hSkMCs.
- exemplary steps for providing a functional NMJ-on-Chip by combining motor- neurons on a chip (upper blue channel) with skeletal muscle cells on a chip (lower-red) channel include: Seeding the bottom (lower-blue) channel as a skeletal muscle-on-chip capable of producing contractile muscle tissue expressing markers myosin heavy chain (MHC) (green), pre-BTX (a-bungarotoxin) (red) identified by immunohistochemistry and stained for DNA (blue) shown by fluorescent microscopy.
- MHC myosin heavy chain
- pre-BTX a-bungarotoxin
- Seeding the upper channel of the microfluidic chip with patient iPSC-derived MNs that under chip culture conditions will express neuronal expressing markers Neuron-specific Class III ⁇ -tubulin (TuJl) (red), selectivity/selective factor 1 complex (for RNA polymerase) (SL1) (blue), homeobox B9 (HOXB9) (red), identified by immunohistochemistry (IHC) as shown by fluorescent microscopy.
- spontaneous contractions may be stopped by adding calcium channel blockers or sodium channel blockers to the culture media.
- Experiment (Exp) 1 showed that hSkMC seeding density at 3xl0 6 cells/ml, but loss of cells 24h after contracting activity.
- Experiment 2 showed that Sulfo-SA PAH cross-linked ECM provides more stability to hSkMCs.
- Experiment 3 showed improved hSkMCs in-chip integrity. However, this was lost 48h after contraction activity.
- Experiment 4 showed that hSkMC integrity in chip is expandable over time (in monoculture).
- Experiment 5 showed that pharmacology and imaging was possible for measuring functional MJ interactions.
- pharmacological testing of agents for treating diseases such as ALS MJs, is contemplated. Including using cells derived from ALS patients.
- contemplative embodiments include, but are not limited to increasing cell in-chip longevity; anchoring hSkMCs; further reducing spontaneous activity of neurons and/or NMJs; changing cell separation, for example, increasing and/or decreasing pore size of the membrane.
- anchoring hSkMCs further reducing spontaneous activity of neurons and/or NMJs
- changing cell separation for example, increasing and/or decreasing pore size of the membrane.
- the Neuromuscular Junction refers to the interface between spinal motor neurons and skeletal muscle cells. As each myelinated motor axon reaches its target muscle, it may divide into 20-100 unmyelinated terminal fibers where each terminal fiber innervates a single muscle fiber. The combination of the terminal fibers from a motor axon and the muscle fibers they serve is called a motor unit.
- the terminal fibers contain both potassium (K+) and sodium (Na+) channels, which control the duration and amplitude of the action potential.
- the nerve terminals i.e. multiple synaptic end bulbs of each terminal fiber, have a paucity of Na+ channels and the action potential continues passively into this area.
- the nerve terminal contains synaptic vesicles (SVs), each of which contains approximately 5000-10,000 molecules of the neurotransmitter acetylcholine (ACh).
- the mature NMJ can be divided into presynaptic, synaptic, and postsynaptic phases. The following sections describe components and function of NMJs for reference.
- Figure 1A shows a schematic illustration of the exterior of neuromuscular junctions where the yellow axon of a motor nerve at the motor junction has non-myelinated terminal nerve branches forming neuromuscular junctions (one example of an NMJ is outlined by a square).
- the neuronal terminal nerve branches have synaptic end bulbs (see Figure IB) located opposite of a muscular fiber end plate (see Figure IB).
- Figure 1 A also shows a schematic of an interior view of a muscle fiber composed of numerous myo-fibers interspersed with mitochondria (blue), sarcoplasmic reticulum (yellow tubes) within the sarcoplasm of a muscle fiber cell (myocyte).
- AP Action Potential
- Figure IB shows a cut-out schematic illustration of the interface between spinal motor neurons and skeletal muscle cells, e.g., a NMJ, for demonstrating the steps of normal motor neuronal activation of muscle fibers.
- Step 1) An action potential of a myelinated axon reaches the non-myelinated axon terminal branch.
- Step 2) Voltage-dependent calcium gates open allow Ca++ to enter the end bulb which in Step 3) induces the movement of neurotransmitter containing vesicles to merge with the cell membrane at the end of the synaptic bulb opposite muscle cell acetylcholine (ACh) receptors located in the motor end plates.
- ACh acetylcholine
- Neurotransmitter vesicles containing acetylcholine (ACh) are emptied (by exocytosis) into the synaptic cleft.
- Freed ACh from the vesicles then diffuses across the cleft to bind to postsynaptic receptors on the sarcolemma of the muscle fiber in the motor end plate area.
- This ACh binding causes ion channel pumps to open which allows sodium ions to flow across the membrane into the muscle cell while fewer K+ ions are transported out of the cell i.e. (3) Na+ ions enter the cell cytoplasm while (2) K+ ions are transported out, thus triggering a post synaptic action potential (end plate potential) in the NMJ, i.e.
- Step 6) the postsynaptic action potential (AP) generated at the end plate, Step 7) AP wave, i.e., sarcolemma membrane depolarization, travels across the muscle cell membrane.
- AP wave i.e., sarcolemma membrane depolarization
- Step 2N Voltage-dependent calcium gates in the synaptic end bulb open allowing Ca++ to enter the terminal branch which induces the movement of neurotransmitter containing vesicles to merge with the cell membrane at the end of the synaptic bulb opposite the dendrites of an adjacent neuron.
- Step 3N) Neurotransmitter vesicles containing acetylcholine (ACh) are emptied (by exocytosis) into the synaptic cleft, i.e. the fluidic space in between the cells.
- ACh acetylcholine
- Step 4N Freed ACh from the vesicles then diffuses across the cleft to bind to postsynaptic receptors on the dendrites.
- Step 5N) This ACh binding causes ion channel pumps to open which allows sodium ions to flow across the membrane into the neuronal cell while fewer K+ ions are transported out of the cell, thus triggering a postsynaptic action potential in the dendrites of the receiving neuron which travels to across the cell membrane to the opposite axon terminal end for triggering an AP in the next cell, starting a Step Nl .
- C In vivo Neuronal Induction of Skeletal Muscle Contraction as a Myofiber (Myotube) Contraction.
- FIG 1C shows a schematic illustration of a muscle cell (myocyte) depicting how the postsynaptic action potential (AP), triggered by the MJ, in the sarcolemma of the motor end plate, in Step 6) travels to nearby areas of the T-tubules (i.e. a wave of ion pump activation that travels along the membrane whereby (3) Na+ ions enter the cell cytoplasm while (2) K+ ions are transported out of the cell cytoplasm.
- myocyte shows a schematic illustration of a muscle cell (myocyte) depicting how the postsynaptic action potential (AP), triggered by the MJ, in the sarcolemma of the motor end plate, in Step 6) travels to nearby areas of the T-tubules (i.e. a wave of ion pump activation that travels along the membrane whereby (3) Na+ ions enter the cell cytoplasm while (2) K+ ions are transported out of the cell cytoplasm.
- AP postsynaptic action potential
- Step 7) When the AP reaches areas of the T-tubule portion of the sarcolemma, destabilizing this area of the membrane, the AP in the sarcolemma of the T-tubule area causes the T-tubule to induce the release of Ca++ from the sarcoplasmic reticulum.
- Step 8) The destabilized sarcolemma then triggers a wave of Ca++ release across the sarcoplasmic reticulum membrane inside of the myocyte.
- Step 9) The rise in intracellular Ca++ activates contraction of myofibrils, i.e. myosin-actin interactions.
- Ach activates the ion pump, it diffuses away to be broken down by endogenous Acetylcholinesterase (ACFIE), i.e. inactivates Ach.
- ACFIE Acetylcholinesterase
- FIG. 1 shows 2-Dimensional (2D) motor neurons (MN) and muscle cell co-cultures grown in static plates, on day 37 of culture.
- Figure 2A shows a micrograph of healthy human muscle skeletal cells (hSkMCs).
- Figure 2B shows a higher magnification of cells in Figure 2A, where the green arrow points to one exemplary multi -nucleated myotube;
- Figure 2C shows a micrograph of a co-culture of direct induced motor neurons (diMNs) on top of hSkMCs where white arrows point to rounded cell bodies, a green arrow points to an exemplary myotube and a red arrow points to an exemplary neuron on top of said myotube; and
- Figure 2D shows a higher magnification of cells in Figure 2C where the red arrow points to neuronal branches on top of a myotube identified by a green arrow.
- White boxes outline the areas shown in higher magnification.
- a MN-on-chip is provided with MNs seeded into the upper channel of a microfluidic chip.
- MNs are seeded into the upper channel of a NMJ-On-Chip.
- Cells are prepared either directly from cultured iPSCs or from frozen lots of pre- differentiated cells. Cells are thawed (or dissociated fresh) and seeded into the chip at day 12 (in the case of iMN differentiation) and at various points in neural differentiation. See, Figures 33 and 34 for one embodiment for preparing iMN cells.
- iPSC-derived forebrain neural progenitor cultures were cultured in chip either dissociated or as neural spheres that attached and extended in 3 dimensions.
- MNs for example, cells are seeded into microfluidic chips at day 12 of differentiation either from freshly differentiated cultures or directly from a thawed vial.
- EZ spheres and iMNPs Conditions were tested for seeding neural (EZ spheres and iMNPs) from frozen stocks of cells on surfaces treated with different extracellular matrices (ECMs). While frozen stocks of cells can be used (particular for the neural cells), it was found that better results can be obtained when fresh cells are used for seeding chips.
- Schwann cells as precursors or mature cells, may be added to provide a mylin sheath for MNs.
- Schwann cells are derived from patient cells, such as patients having a neuromuscular disease.
- a mature electrophysiology of the neurons includes negative sodium channel current, positive potassium channel current, and/or action potential spikes of amplitude, duration and frequency similar to neurons in a physiological environment or when compared to static culture neurons, static culture neurons lack one or more of the aforementioned features.
- Observed characteristics of the in vitro " MJ-on-chip" of the present invention include: (1) neuronal networks including motor neurons; (2) optional cell-to-cell communication between neurons exemplified by contact of the neuronal dendrites with neuronal terminal bulbs; (3) optional extended neurite projections exemplified by contact of the neuronal terminal bulbs with muscle cells (e.g. terminal bulb contact by partial transmigration of the membrane separating these cells); (4) optional fluid flow that influences cell differentiation and neuronal muscular junction formation; and (5) high electrical resistance representing the maturity and integrity of the MJ components.
- the present invention contemplates hSkMCs which form a lumen on the chip (for example, completely lining the bottom, sides and top of a flow channel, at least for a portion of its length).
- hSkMCs layer stability this potentially enables the use of the device with blood or blood components.
- selective permeability the present invention contemplates, in one embodiment, introducing substances in a channel with the hSkMCs such that at least one substance passes through the membrane (e.g. hSkMCs on the bottom side of the membrane) and into a channel above the membrane, and detecting said at least one substance (e.g. with antibodies, mass spec, etc.).
- NMJ-on- chip can make advantage of not only human-derived cells but also cells from other organisms.
- all cell types used originate from the same species for example, in order to ensure that cell-cell communication is effective
- it may be desirable at time to mix species for example, if a desired cell type is scarce or possess technical challenges.
- the present invention contemplates seeding on nanopatterned surfaces which promote extended and direct (e.g. along a relatively linear path) neurite growth.
- the preferred nanopattern is linear valleys and ridges, but alternatives such as circular, curved, or any other desired shape or combination thereof are also contemplated.
- Figure 3 shows a first image ( Figure 3 A) where iMNPs were seeded on a plain (un-patterned) surface, as well as a second image ( Figure 3B) where the same cells were seeded on a nanopatterned surface, resulting in directed neurite growth.
- the nanopatterned surface results in directed neurite growth (e.g. in a line pattern).
- Figure 3 shows exemplary phase contrast images for embodiments of neuronal growth.
- Figure 3 A shows iMNs seeded on a plain (un-patterned) surface
- Figure 3B shows a duplicate sample of cells (as in Figure3 A) that were seeded on a nanopatterned surface, resulting in directed neurite growth.
- Such nanopatterning can be applied to the membrane or any surface of the MJ-on- chip.
- the nanopatterning is applied to the top surface of the membrane to direct neurite growth for neuron seeded on said surface. It is desired in some uses to direct neurite growth, for example, in studying neuron biology or disease (e.g. conditions that disturb neurite growth or its directionality), as a readout of neuron or MJ health (e.g. by monitoring neurite growth or its directionality) or in facilitating measurements (e.g. using calcium imaging, IHC or number and/or quality of MJs, or using a multi-electrode array or patch clamping).
- Linear nanopattem is linear valleys and ridges, but alternatives such as circular, curved, or any other desired shape or combination thereof are also contemplated.
- Linear nanopatterning can include, for example, line spacing ranging from lOnm to lum, 0.5um to lOum or 5um to 50um, and line depth ranging from lOnm to lOOnm, 50nm to lOOOnm, 200nm to 5um or 2um to 50um.
- Calcium (Ca) imaging or imaging using voltage-sensitive dyes or proteins offer similar advantages to electrophysiological readouts but offers the advantage that no electrodes are necessary.
- Ca imaging may occur in the presence of calcium or voltage-sensitive dyes or proteins, to allow the potential recording and optional manipulation of neuronal excitations. These measurements can be used, for example, to provide an indication of neuronal maturation or as a readout of neuron health. Accordingly, some aspects of the present invention include methods of measuring spontaneous, or induced by adding an agent, neuronal excitation.
- neuronal maturation or health can be used as indicators of MJ-on-chip quality (for example, before starting an experiment) or as an experimental endpoint indicating, for example, that an agent has affected creation of APs, a disease condition has emerged, the MJ has been modified or compromised, or conversely, that the NMJ or neural function or health have improved.
- This type of imaging allows observations of neuronal function in the microfluidic chips in real-time.
- TTX tetrodotoxin
- addition of tetrodotoxin (TTX) which is a potent blocker of voltage-gated calcium channels, ablates this activity.
- a photograph showing Ca++ hot spots and changes in Ca++ concentrations is a single fluorescent image from a movie of such images.
- a movie includes z-stacks from confocal microscopy images.
- High content imaging refers to imaging fixed or live cells within a chip.
- Ca flux assays on neurons are imaged within the cultures growing in chips.
- Negative sodium channel currents (Na + ) and positive potassium channel (K + ) are necessary for normal neuron function and become more pronounced as a neuron matures. In fact, highly complex and repetitive bursts of neuronal activity are indicative of neuronal networks being established in the chip. When induced to fire by injecting current into the neuron at day 6 in chip, more resolved action potentials are observed in these chips as compared to traditional neuronal cultures.
- Figure 22 shows an exemplary method of growing motor neurons in a microfluidic chip where the MN cells of neural networks have spontaneous calcium bursts.
- Figure 22 AA shows a microfluidic chip seeded with MNs at day 12 of culture.
- Figure 22BB shows an exemplary timeline where MN precursor cells from Day 12 cultures are seeded at Day 0 in the microfluidic chip, MN network formation is observed a Day 10 on the chip (Day 18 overall from the start of the original MN culture).
- Figure 22CC shows exemplary images produced by high content life imaging of cells in chips showing Ca++ imaging of diMN cells on Day 12 after seeding onto the microfluidic chip; at high magnification (20x).
- diMNs show repetitive calcium bursts as visualized via Flou4 labeling in color within the cellular areas, e.g. cell bodies, axons and terminal bulbs, in neuronal networks, where the concentrations of Ca++ are shown by yellow-lower levels, red- higher than yellow areas and highest levels in white areas within the red areas, as shown in the neuron cell bodies.
- Figure 22A shows exemplary Ca++ imaging of Figure 22CC in black and white, where the highest amounts of Ca++ are white areas in black and white micrographs, white arrowheads point to cellular areas with concentrated Ca++.
- Figure 22B shows a higher magnification of a cell in the center of the micrograph in Figure 22CC/ Figure 22A with two white arrowhead markers used to identify the same area through the different planes of focus.
- Figures 22D-22J shows exemplary Ca++ imaging in color from confocal high content micrograph z-stack layers through the cell (shown in Figure 22B) where higher concentrations of Ca++ are shown by yellow/red/white areas in the neuronal cytoplasm, which discharge and recharge then discharge over time.
- White arrowheads mark the same location of the cell shown in Figure 22B - Figure 22 J.
- Figure 22K shows a graph of average intensity of Ca++ vs. elapsed time (seconds).
- hSkMC-on-chip is provided where hSkMCs may be seeded on the upper or the lower channel of the chip.
- hSkMCs are seeded and used in quadruple (Quad) single channel chips.
- myoblasts are derived from patient samples for seeding chips.
- iPS cells derived from patient cells are used for seeding chips.
- induced skeletal muscle progenitor cells are derived from induced pluripotent stem cells, but they are not fully differentiated. In one embodiment, induced skeletal muscle progenitor cells are differentiated on-chip to generate multinucleated myotubes, and ultimately mature striated skeletal muscle myotubes.
- the present invention contemplates a method of culturing cells, including: a) providing a microfluidic device (optionally including a membrane, said membrane including a top surface and a bottom surface); b) seeding induced skeletal muscle progenitor cells (on said bottom surface so as to create seeded cells); c) exposing said seeded cells to a flow of culture media for a period of time (days to weeks to months) under conditions such that said at least a portion of said progenitor cells differentiate into multinucleated myotubes (and preferably wherein said hSkMCs display a mature phenotype based on testing described herein or staining).
- Muscle tissue develops from specialized mesodermal cells called myoblasts. Several myoblasts fuse together to form a myotube. Myotubes are immature multinucleated muscle fibers. Myotubes mature into striated skeletal muscle fibers. Satellite cells are found along the outside of the fibers in vivo. Satellite cells refer to precursors to skeletal muscle cells, able to give rise to satellite cells or differentiated skeletal muscle cells. They have the potential to provide additional myonuclei to their parent muscle fiber, or return to a quiescent state.
- the following describes exemplary methods, e.g. for differentiating iPSCs, providing a Muscle Cell Culture-on-Chip.
- the starting density of cells affects the success of skeletal muscle cell differentiation.
- the starting iPSc density described herein is exemplary for the cell lines described herein. However, each iPSC line is different so the optimal density should be determined according to each individual cell line's growth (e.g. doubling) rate.
- an exemplary recommended cell density and volume of media 12 or 24 wells 15,000-18000 cells/cm 2 and for 96 wells 5000 cells/cm 2 .
- One embodiment for a method providing human induced pluripotent stem cells (iPSCs) for use in providing induced hSkMCs is described as follows.
- Coat plates with ECM e.g. Matrigel. Add appropriate volume, see e.g. below, in a sterile tissue culture hood. For a 6 well plate - 1 mL/well; 24 well plate -250 L/well; and 96 well plate - 50 ⁇ , ⁇ . Leave Matrigel in wells for at least lhr at room temperature for coating surfaces. Coating may also be done for more than an hour.
- hiPSC human iPSC
- hiPSC human iPSC
- Y-27632 Rock Inhibitor (Y-27632) (such as from Sigma-Aldrich, St. Louis, MO 63103-USA)
- concentrations from 2.0 uM, 2.5 uM, 5 uM. 10 uM, up to 20 uM, for one day.
- Nonlimiting examples of mTeSR Media include, cGMP mTeSRTM!, mTeSRTM!, TeSRTM2, TeSRTM-E7TM, TeSRTM-E5, TeSRTM-E6, ReproTeSRTM, mTeSRTM3D, etc., defined, serum-free media for culture of human ES, iPS, pluripotent stem cells, and the like). Clean iPSCs cells daily by removing differentiated cells to maintain a spontaneous differentiation free culture for optimal skeletal muscle differentiation. In one embodiment, 3 wells of a 96 well plate containing iPSCs, maintained at 70-80% confluence is suggested for use to start differentiation.
- Stage 1 skeletal muscle induction Step 1. Dissociate iPSCs with Accutase (e.g. of a cell detachment solution) for 5 min.; Step 2. Resuspend cells in phosphate buffered saline (PBS) in a 15mL conical tube.; Step 3. Centrifuge the cells for 5 min (minutes) at 1000 RPM (revolutions per minute) for spinning cells gently to the bottom of the tube.; Step 4. Aspirate media without disturbing the cell pellet in the bottom of the tube, then resuspend cells in skeletal muscle induction media 1, DMEM/F12, (see, Table 1).; Step 5. Count the number of live cells (in part by exclusion staining the dead cells), e.g.
- Step 7 Take out lOul of cell suspension from the tube, mix with lOul of dye (1 : 1), e.g. in Trypan blue dye for staining dead cells, mix well, load mixture in cell counter chamber to count.; Determine live cell numbers per ml, then Step 6. Plate single cells with appropriate number of cells, as suggested herein, on a Matrigel coated plate in mTeSR Media supplemented with Rock Inhibitor (Y-27632), see exemplary materials and concentrations above, for one day.; Step 7. On the next day, switch the Stage 1 media to DMEM/F12 (1 : 1) supplemented with exemplary concentrations of 3uM CHIR99021, 05uM LDN193189.; Step 8. Change media every day until day three.; then Step 9. On Day three, supplement the existing media with an exemplary concentration of 20ng/mL bFGF and continue feeding for additional seven days. Media should be change on a daily basis.
- Stage 2- Commitment to Myoblasts.
- 10 days of incubation e.g. 7 days incubation in complete skeletal muscle induction media 1
- the media is changed to a DMEM/F12 (1 : 1) supplemented with exemplary concentrations of lOng/ml HGF, 2ng/ml IGF and 0.5uM LDN193189 (Skeletal Muscle Induction Media 2) for two days of incubation, see Table 2; If cells are too confluent by day 12-14, cells should be dissociated and replated on ECM, e.g. Matrigel coated surfaces at recommended cell densities, mentioned above, for optimal results.; and 2.
- ECM e.g. Matrigel coated surfaces at recommended cell densities, mentioned above, for optimal results.
- HGF hepatocyte lO ng/mL NA R&D Systems, Minneapolis, growth factor
- IGF insulin-like 2ng/mL PeproTech, Rocky Hill, NJ growth factor
- Stage 3 Maturation For differentiation of myoblasts into myotubes and for maintenance of Skeletal muscles: 1. On Day 12, 13 or 14, media was changed to DMEM/F12 (1 : 1), with exemplary concentrations of 15% KSOR supplemented with lOng/mL HGF and lOng/mL IGF-1 (complete Skeletal Muscle Induction Media 3); 2. Change Media every other Day until used, up to day 40; and 3.
- IGF-1 insulin-like growth factor 1 10 ng/mL NA PeproTech
- ECM coated substrates such as plates and microfluidic channels.
- plates and channels were coated with Matrigel, while microfluidic channels were coated with Laminin (non-cross-linked) and cross-Linked Laminin, as described herein. Seeding densities for the chips were used as described for the experiments, where either ihSkMCs were differentiated as described here, as one example, starting myotube differentiation on Dl in Stage 1 Skeletal Muscle Induction Media (incomplete).
- ECM Extracellular Matrix
- a single channel chip (e.g. Quad chip: as a 4 single channel chip) was used initially for determining stages of muscle cell maturation on a chip and numbers of seeded cells that provide viable cultures in relation to chips coated with ECM.
- an extracellular matrix (ECM) layer is provided to coat (cover) the entire surface of the lower channel (bottom, sides and top) for growing human skeletal striated muscle cells.
- Laminin was used as an exemplary ECM component for coating the surface.
- a cross-linker chemical was used for cross- linking Laminin molecules.
- Sulfo-SANPAH was used as an exemplary cross-linker chemical.
- Sulfo-SANPAH cross linked ECM provides more stability to hSkMCs.
- Sulfo-SANPAH cross-linked ECM enables formation of almost 2-fold more MHC positive multinucleated fibers. Further, more nuclei per myo-tubes with cross-linked ECM. In fact, a 3 -fold higher number of nuclei in MHC myo-fibers seeded on Sulfo-SA PAH cross- linked ECM-Laminin was observed over Laminin alone.
- ECM Extracellular Matrix
- an extracellular matrix (ECM) layer is provided to coat (cover) the entire surface (bottom, sides and top) of the lower channel for growing human skeletal striated muscle cells.
- ECM extracellular matrix
- laminin was used as an exemplary ECM component for coating the surface.
- a cross-linker chemical was used for cross- linking laminin molecules.
- Sulfo-SANPAH was used as an exemplary cross-linker chemical.
- Sulfo-SANPAH cross-linked ECM enables formation of almost 2-fold more MHC positive multinucleated fibers. Further, more nuclei per myo-tubes with cross-linked ECM. In fact, a 3 -fold higher number of nuclei in MHC myo-fibers seeded on Sulfo-SANPAH cross- linked ECM-laminin was observed over laminin alone.
- Figure 4 Shows one embodiment of a human skeletal muscle cell culture hSkMC-In-Chip: Extracellular Matrix (ECM) use for hSkMCs-In-Chip.
- the chip is a Quad chip.
- Figure 4A shows a picture of a single channel (Quad) Chip with pipette tips used to block channels for coating the inside surfaces with an ECM layer then seeded with human skeletal muscle cells (hSKMCs).
- hSKMCs human skeletal muscle cells
- Figure 4B shows a schematic illustration of a cross-sectional view of the quad channel with ECM as Laminine (purple and blue stars) with hSkMCs as yellow-spotted blocks.
- Figure 4C shows a schematic illustration of a cross-sectional view of the quad channel with ECM as Laminine (purple and blue stars) with hSkMCs as yellow-spotted blocks and a representative cross linking of ECM as yellow stars, e.g. with Sulfo-SANPAH.
- ECM Extracellular Matrix
- Muscle Cells in-Chip providing non-contracting myotubes on ECM coated chips.
- a single channel chip e.g. Quad chip: as a 4 single channel chip
- muscle cells grown without nerve cells present did not show spontaneous contractions of myotubes.
- Sulfo-SA PAH cross-linked ECM enables formation of almost 2-fold more MHC positive multinucleated fibers. Further, more nuclei per myo-tubes with cross- linked ECM. In fact, a 3 -fold higher number of nuclei in MHC myo-fibers seeded on Sulfo- SANPAH cross-linked ECM-Laminin was observed over a Laminin coating without the use of a cross-linker.
- Figure 5 shows one embodiment of a human muscle cell culture in-chip: Set Up and Time Course for producing multinucleated myofibers that are not contracting.
- Figure 5A Single channels of Quad Chips were seeded with human skeletal muscle cells (hSKMCs).
- Group 1 and Group 2 5 x 10 6 /ml cells;
- Group 3 and Group 4 1.6 x 10 6 /ml cells.
- Groups 1 and 3 do not have cross (X)-linked ECM while Groups 2 and 4 have exemplary Sulpho SANPA X-linked ECM.
- Figure 5B shows a schematic experimental timeline: Seeding cells on Day (D) 0.
- Dl Inducing differentiation.
- D5 observing fusion of myoblast cells.
- D10 Screening for myo-fiber contraction in cultures that were not stained for analysis; observing polynucleated fibers but no myofiber contractions.
- D14 Fixing cells and fusion-index-analysis.
- Figure 5C Day 14: Fixation and fusion-index-analysis based upon staining for myosin heavy chain (MHC) (red) and nuclei (DNA) (shown in blue).
- MHC myosin heavy chain
- DNA nuclei
- Figure 5D Shows a schematic illustration of multinucleated myofibers in MHC (red) and nuclei (DNA) (blue).
- Figure 6 shows Human Skeletal Myoblast-Derived Poly-Nucleated Fibers growing in microfluidic chips where Sulfo-SANPAH cross-linked ECM enables formation of almost 2- fold more MHC positive multinucleated fibers.
- Figure 6A-6D show fluorescent micrographs of immunostained myosin heavy chain (MHC) (red) myo-fibers and DAPI stained nuclei (DNA) (shown in blue) comparing cultures started at the 2 different densities ( Figures 6A-B: 5 x 10 6 /ml cells and Figures 6C-6D: 1.6 x 10 6 /ml cells) with and without cross-lined (X-link) ECM-Laminin (Lam).
- MHC myosin heavy chain
- DNA DAPI stained nuclei
- Figures 6E-6F show phase contrast micrographs of Day 14 cells grown on Laminin (Lam) and cross-linked (X-Link) ECM-Laminin (Lam), respectively. More MHC positive multinucleated fibers are observed with X-Linked Laminin after 14 days. White arrows point to 2 exemplary multinucleated myotubes
- Figure 6G shows a graph comparing number MHC+ myo-fibers to the treatments shown in Figures 6A-6D where at both cell densities the number of myofibers growing on x- Linked ECM is almost 2-fold more than fibers grown on regular, non-cross-linked, ECM.
- Figure 7 shows Human Skeletal Myoblast-Derived Poly-Nucleated Fibers growing in microfluidic chips comparing non-cross-linked to cross-linked ECM (Laminin) where more nuclei per myo-tubes are observed growing on cross-linked ECM.
- Figure 7A-7D show fluorescent micrographs of immunostained myosin heavy chain
- MHC myo-fibers
- DNA DAPI stained nuclei
- Figures 7A-7B 5 x 10 6 /ml cells and Figures 6C-D: 1.6 x 10 6 /ml cells) with Laminin (Lam) and with cross-linked (X-linked) Laminin-ECM.
- Figures 7E-7F Show a 3 -fold higher number of nuclei in MHC myo-fibers seeded on exemplary Sulfo-SANPAH cross-linked ECM by graphical comparisons.
- Figures 7E shows a graph comparing DAPI+ nuclei per MHC+ fiber for determining myo-fiber at the 4 treatments shown.
- Figures 7F shows a graph comparing percentage of total DAPI+ per channel, i.e. percentage of DAPI in myo-fibers at the 4 treatments shown in Figure 7A-D.
- the starting material for generating at least one cellular component for the NMJ generated on a microfluidic device includes stem cells (e.g. see the protocols in Examples, and below).
- these stem cells may include, for example, induced pluripotent stem cells (iPS cells) or embryonic stem cells.
- iPS cells induced pluripotent stem cells
- progenitor cells derived from stem cells related to neural lineages or cells directly reprogrammed into motor neurons, neural lineage progenitors, and the like, are employ ed/seeded on the chip.
- progenitor cells derived from stem cells
- stem cells derived from stem cells
- skeletal muscle multinucleated myotubes skeletal muscle lineage progenitors, and the like
- progenitor cells are employ ed/seeded on the chip. It is important to note that not all cell types involved in the NMJ- on-chip must be generated from stem cells.
- the MJ-on-chip may employ primary skeletal muscle cells. Techniques are known in the art to reprogram, expand and characterize human iPS cells from human skin or blood tissues of healthy subjects and diseased patients.
- a non-integrating system based on the oriP/EBNAl (Epstein-Barr nuclear antigen-1) episomal plasmid vector system can be used to avoid potential deleterious effects of random insertion of proviral sequences into the genome.
- the iPSC lines so generated express the pluripotency markers (SSEA4, TRA-1-81, OCT3/4, SOX2) along with a normal karyotype.
- iPS cells are used to generate components of the NMJ-on-chip, e.g. neurons, etc. While in many cases, the iPS cells are from normal subjects, it is also contemplated that the iPS cells can be derived from patients exhibiting symptoms of disease.
- the NMJ-on-chip is populated with cells derived from iPS cells from a patient diagnosed with a disorder of the nervous system, including but not limited to iPSC-derived motor neurons from Amyotrophic lateral sclerosis (ALS) patients.
- a disorder of the nervous system including but not limited to iPSC-derived motor neurons from Amyotrophic lateral sclerosis (ALS) patients.
- ALS Amyotrophic lateral sclerosis
- Figure 23 shows exemplary fluorescent micrographs of NMJ-On- Chips using iPSC derived Myo-fibers (iSKMCs) as superimposed (co-localized images) of neurons and myotubes. (Experiment 5).
- iSKMCs iPSC derived Myo-fibers
- Figure 23A shows a fluorescent micrograph of nerve axons (red) parallel to multinucleated (blue) muscle heavy chains within muscle myofibers (green) showing separation between internal myosin and external nerve fibers.
- Myosin MHC: myosin heavy chain
- TuJl red
- DAPI DNA
- Figure 23B shows a fluorescent micrograph view on end (as compared to the orientation in Figure 23A) for a different view, i.e. x-z image, of muscle Myogenin (green), nerve TuJl (red) and DNA (DAPI) (shown in blue) where nuclei superimposed on the muscle staining shows light blue, see example at the white arrow.
- the present invention contemplates differentiating "stem-cell derived cells" on the chip, i.e. in a microfluidic environment.
- stem-cell derived cells refers to cells derived from stem cells that fall on a spectrum of differentiation.
- induced motor neuron progenitor cells including but not limited to, iPSC- derived spinal neural progenitors
- induced motor neuron progenitor cells are differentiated on-chip to generate motor neurons, and ultimately mature motor neurons.
- the present invention contemplates a method of culturing cells, including: a) providing a microfluidic device (optionally including a membrane, said membrane including a top surface and a bottom surface); b) seeding induced motor neuron progenitor cells (optionally on said top surface and optionally skeletal muscle cells on said bottom surface so as to create seeded cells); c) exposing said seeded cells to a flow of culture media for a period of time (days to weeks to months) under conditions such that said at least a portion of said progenitor cells differentiate into motor neurons (and preferably wherein said motor neurons display a mature phenotype based on testing described herein or staining).
- the progenitor cells differentiate into skeletal muscle cells (and preferably wherein said skeletal muscle cells display a mature phenotype based on testing described herein or staining).
- at least a portion of the skeletal muscle cells form multinucleated myotubes.
- at least a portion of the multinucleated myotubes are striated.
- the method (optionally) further includes e) culturing said seeded cells under conditions such that said skeletal muscle cells on said bottom surface form neural muscular junctions.
- neural cell cultures were seeded into chips following the seeding of hSMCs, described above, either on the same day, 18 hours later, the following day, or up to 9 days after hSMCs had been seeded onto the chip.
- the chips were cultured for 14 days and fixed and stained for relevant markers.
- confocal microscope imaging shows proximity of cells in a z-stack image.
- neural cells in the top channel of the microfluidic device and hSMCs on the bottom channel of the microfluidic device are shown in close proximity.
- ICC overlay data By overlaying images taken after staining the cells, specific cell identification can be combined with original activity traces (e.g. calcium flux images, etc) to determine specific activities of individual cell types in the chip.
- MN are shown in red against the green stained hSMCs.
- a vertical 2D projection of a 3D confocal stack of images slices is imaged, which allows for visualization of the neurons and hSMCs together, even though they are not in the same imaginary plane on the microfluidic device.
- hSMCs display a MHC marker, while the neurons are positive for TUJ1, for example.
- DAPI (4',6-diamidino-2- phenylindole) is used as a fluorescent stain for DNA (deoxyribonucleic acid) in nuclei.
- Figure 8 shows one embodiment of a Human iPS-Derived MN and Muscle Cell Co-Culture in-a Tall Channel Microfluidic Chip.
- Figure 8 A shows a picture of a tall channel microfluidic chip (16) in one embodiment seeded with MNs at day 12 of culture into the port (2) of the upper (blue) channel (thick arrow) (1) and human skeletal muscle cells into the port (3) of the lower (red) channel (1) at the end of the other channel (thin arrow).
- the arrowhead points to a vacuum chamber (4), for optional use.
- Figure 8B shows iPSC-derived MNs seeded into the upper channel forming a neural network stained with TUJ1 (green); Isletl (ISL1) (blue); indicating early motor neurons, and Isletl (ISL1) (blue); HoxB9 (red); indicating more mature motor neurons, while the third frame is a superimposed image showing both early and more mature motor neurons.
- Figure 8C shows skeletal muscle cells seeded into the lower channel stained with myosin heavy chain (MHC) (green) with an insert showing myofibers at a higher magnification; a-bungarotoxin BTX (pre-BTX) (red), for identifying AchR in the motor end plate, with an insert showing stained cells at a higher magnification; and DNA in nuclei stained then fluoresced in the blue range, with an insert showing myofibers (green) at a higher magnification with unstained regions that likely correspond to multinuclear areas in the myofibers; and
- MHC myosin heavy chain
- Figure 8D shows a schematic illustration of a vertical cross section of a tall channel microfluidic chip where MNs from a Day 12 culture seeded onto the chip develop cell bodies containing nuclei (purple circles), axons and terminal areas next to the membrane separating the top from the bottom channel containing human skeletal muscle cells growing around the edge of the channel.
- a media for lowering contraction rates was developed, e.g. CoM media was developed and used for perfusing MJ-on-chips.
- "COM" or “coM” or “CoM” or “co-media” refers to a culture media as formulated in Figure 33, Day 12- xx (see above), which in addition to Iscove's Modified Dulbecco's Media/Ham's F-12 Nutrient Mixture (IMDM/F12), Non-Essential Amino Acids (NEAA), B27 supplement (B27), e.g. GibcoTM B-27 Serum Free Supplement (plus vitamin A), N-2 Supplement (N2), e.g.
- GibcoTM, PSA, Compound E and DAPT e.g. STEMCELL Technologies Inc., Cambridge, MA 02142- USA, all-trans RA, e.g. STEMCELL Technologies Inc., purmorphamine (or SAG), both available, e.g. STEMCELL Technologies Inc., Cambridge, MA 02142-USA, db-cAMP, Ascorbic Acid, e.g. STEMCELL Technologies Inc., Cambridge, MA 02142-USA, Glial cell- derived neurotrophic factor (GDNF), Promega Corporation, Brain-derived neurotrophic factor (BDNF), e.g. (Sigma-Aldrich), and VPA (valproic acid), e.g. (Sigma-Aldrich), includes 2% FBS serum, as one example of a media for reducing spontaneous skeletal muscle contractions in co-cultures of MNs and hSkMCs. Media components are listed with an example of an exemplary source.
- exemplary embodiments are provided for a Human iPS-Derived MN and Muscle Cell Co-Culture in-Chip for use in testing for variable effecting longer term viability of cells and for using chips in testing pharmacology agents, i.e. for use in treating NMJ related diseases.
- Figure 9 Shows one embodiment of a Human iPS-Derived MN and Muscle Cell Co-Culture in-a microfluidic Chip.
- Figure 9A is a picture of an exemplary microfluidic chip where day 12 MNs are seeded into the top (upper-blue) channel and hSkMCs are in the bottom (lower-red) channel;
- Figure 9B shows a schematic illustration of an exemplary cross section of NMJ microfluidic chip with day 12 MNs in the top channel and hSkMCs in the bottom channel with 3 sets of Experimental Chips for comparing cell densities at the time of seeding: Chip 1 : top: 3 x 10 6 /ml diMN cells and bottom: 5 x 10 6 /ml hSkMC cells; Chip 2: top: 3 x 10 6 /ml diMN cells and bottom: 10 x 10 6 /ml hSkMC cells; and Chip 3 : top: 3 x 10 6 /ml diMN cells and bottom: 20 x 10 6 /ml hSkMC cells.
- Figure 9C shows a schematic illustration of a timeline showing co-culture of hSkMCs seeded Day (D) 0 with differentiation (diff) initiated on Dl, Day 12 MNs seeded Dl, Myofiber formation on D5, myofiber contractions observed D10, a loss of myofibers observed on Dl l, with fixation and analysis by ICC on D14.
- Experiment 3 Testing media components for reducing spontaneous muscle contractions. Top: 3xl0 6 diMNs and Bottom: 20xl0 6 hSkMCs, as tested in 3 different groups of either cells seeded on top, bottom or both, in media harvested from diMNs/hSkMCs cultures or coM.
- Figure 10 shows one embodiment of an experimental system (Experiment 1) as a schematic illustration for testing medium to reduce spontaneous contractions of cells in the microfluidic tall channel chip.
- Experimental Groups 1-3 directly compare medium harvested from diMNs/hSkMC cultures with coM media in chips containing induced motor neurons (diMNs: Motor-neuron-on Chip) and human Skeletal Muscle Cells (hSkMCs-on-Chip), each cell type growing alone on chips then combined in the same chip in the same media (upper and lower channel) for providing a neuronal-muscular-junction ( MJ-on-Chip).
- diMNs Motor-neuron-on Chip
- hSkMCs-on-Chip human Skeletal Muscle Cells
- Figure 10A Group 1 : shows a schematic illustration of the tall channel chip, with vacuum chambers (4), diMNs in the top channel but no cells in the bottom channel.
- Group 2 shows a schematic illustration of the tall channel chip with no cells in the top channel but with hSkMCs in the bottom channel.
- Group 3 shows a schematic illustration of the tall channel chip with diMNs in the top channel and hSkMCs in the bottom channel for providing a NMJ-on- Chip.
- Figure 10B shows a schematic illustration of cells numbers and media used for growing cells: Group 1 : Top: 3xl0 6 diMNs Bottom: none. Group 2: Top: none. Bottom: lOxlO 6 hSkMCs. Group 3 : Top: 3xl0 6 diMNs. Bottom: 20xl0 6 hSkMCs.
- Figure 11 Shows human skeletal muscle cells (hSkMCs) forming myofibers within 8 days post seeding (co-cultures) having spontaneous myo-tube contractions at Day (D) 10 culture that are reduced by using conM culture medium in a microfluidic chip.
- hSkMCs human skeletal muscle cells
- Figure 11 A shows micrographs of hSkMCs growing in chips.
- White arrows in the magnified region point to multinucleated muscle cell fibers, of which there appears to be more nuclei per fiber in the coM medium.;
- FIG. 1 IB shows micrographs of diMNs growing in chips.
- Figure 11C shows micrographs of shSkMCs/diMNs grown in MN/hSkMCs media
- Inserts show higher magnified areas of cells outlined in the white box for each micrograph.
- Figure 12 Shows human skeletal muscle cells (hSkMCs) as myofibers with spontaneous myotube contraction at Day (D) 10 (Experiment 3).
- Figure 12 A shows a micrograph of hSkMCs as myotubes growing on top of a membrane of the microfluidic chip in coM media.
- Figure 12B shows a graph comparing contractions per minute for a myofiber contraction frequency with an average of fibers in two experiments (Experiment 1 and 3) that were combined for a total estimation of myofiber contraction frequency.
- Figure 12C shows a graph comparing contractions per minute for myofibers having an increased myofiber contraction frequency between Laminin vs. cross linked Laminin ECM, at about the same frequency as shown in Figure 12B.
- Figure 12D shows a graph comparing contractions per minute for myofibers grown in regular media compared to a culture grown in coM media. When cultured in coM, contraction frequency is around 25% less compared to regular medium conditions.
- Figure 13 Shows schematic illustrations of experimental timelines for comparing co-cultures of hSkMCs with MNs, with and without coM media.
- the use of coM media allows the control of myofiber structure and function over time.
- Figure 1A3 shows a schematic illustration of a timeline and cell densities for Group 1 and Group 2 in coM: hSkMCs seeded at 5 x 10 6 /ml cells and MNs seeded at 3 x 10 6 /ml cells. hSkMCs seeded Day (D) 0 with differentiation (diff) initiated on Dl, Day 12 MNs seeded Dl
- Figure 13B shows a schematic illustration of a timeline and cell densities for Group3 : hSkMCs seeded with MNs: Day 0: seeding hSkMCs; Day 1 : (18h later) seeded diMNs (dl2);
- a successful motor neuron-on-chip is as follows: obtain patient iPSC-derived MNs, grown under conditions for inducing expression of certain neuronal markers by day 12, develop a successful skeletal muscle-on-chip: containing contractile tissue (i.e. myofibers), then co- culture skeletal muscle cells and neuronal cells on microfluidic chips under conditions to stop spontaneous contraction by adding blockers, such as calcium channel blockers, sodium channel blockers, tetrodotoxin (TTX), which is a potent blocker of voltage-gated calcium channels, and the like, to the media.
- blockers such as calcium channel blockers, sodium channel blockers, tetrodotoxin (TTX), which is a potent blocker of voltage-gated calcium channels, and the like.
- blockers such as calcium channel blockers, sodium channel blockers, tetrodotoxin (TTX), which is a potent blocker of voltage-gated calcium channels, and the like.
- ICH immunohistochemistry
- the following embodiments are provided for identifying NMJs on functional NMJ-on-chips, e.g., using co-localization of neuronal bulb markers, e.g. BTX, e.g. Tubb3 with muscle cells e.g. MHC.
- neuronal bulb markers e.g. BTX, e.g. Tubb3
- muscle cells e.g. MHC.
- Figure 16 shows schematic illustrations of tall channel microfluidic NMJ-on-chip with one embodiment of an experimental timeline (Experiment 4) set up and time course for comparing co-cultures of hSkMCs with MNs under flow.
- Figure 16 A shows a schematic illustration of a tall channel microfluidic chip, from left to right, view of vertical 2-channel chip (i.e. the top channel is above the bottom channel as shown in Stage 1, with hSkMCs covering the entire surface of the bottom channel, and Stage 2 with diMNs seeded into the top channel.
- Figure 16B shows a schematic illustration of one embodiment of a timeline where hSkMCs are seeded Day (D) 0 with differentiation (diff) initiated on Dl, D5: formation of myotubes & medium switch to coM media, then Day 7-10: no myofiber contraction, on Day 20 start muscle cells under flow at lOul/hour, continued to D29 when flow is stopped.
- Day 30 seed diMNs (dl2) (not in coM media for observing baseline contractions).
- Day 37 shows a schematic illustration of one embodiment of a timeline where hSkMCs are seeded Day (D) 0 with differentiation (diff) initiated on Dl, D5: formation of myotubes & medium switch to coM media, then Day 7-10: no myofiber contraction, on Day 20 start muscle cells under flow at lOul/hour, continued to D29 when flow is stopped.
- Day 30 seed diMNs (dl2) (not in coM media for observing baseline contractions).
- myotubes are spontaneously contracting: fixation and analysis (including ICC).
- Figure 17 shows an exemplary co-localization study of iPS-Derived MNs and Muscle Cells showing formation of NMJs between diMNs and hSkMCs (Experiment 4).
- Cells were stained with a-bungarotoxin (BTX) for identifying suggestive NMJ areas where motor end plate (green), neurons are stained with Tubulin beta-3 chain (Tubb3) (red) and muscle myosin heavy chain (MHC) (blue) were fluorescently imaged on individual channels then merged.
- the blue channel of MHC staining is not shown in Figure 17A-17D.
- Figure 17 A shows a low power fluorescent micrograph where Tubb3 (red) neuronal staining shows neurite extension along myotubes with oval areas (green) suggestive of lower motor nerve termini whose distribution over a myotube suggests motor end plates.
- Figure 17B-G shows higher power fluorescent micrographs of the suggestive MJ areas (white arrows) are identified by superimposed staining i.e. co-localization, where the red stained nerve terminal neuron bulb is co-localized with BTX green staining of motor end plates producing a yellow NMJ.
- Figure 17E-17G The blue channel of MHC staining is shown showing a MHC containing muscle fiber at the yellow stained NMJ.
- Figure 18 shows fl orescent micrographs of stained cells in a microfluidic chip.
- FIG 18A and Figure 18B a-bungarotoxin (BTX) for identifying the motor end plate (green), skeletal muscle marker, desmin, (red) and DNA (DAPI) (shown in blue).
- BTX a-bungarotoxin
- DAPI DNA
- Figure 18B a higher magnification of Figure 18 A, 3 white arrows point to co- localization of a-bungarotoxin (BTX) for identifying the motor end plate (green) and skeletal muscle marker, desmin, (red) as olive, white dark orange areas depending upon concentration of stain.
- BTX a-bungarotoxin
- FIG 18C and Figure 18D motor end plate (green) BTX and neurofilament H non- phosphorylated (SMI 32) (red) and DNA (DAPI) (shown in blue).
- SMI 32 neurofilament H non- phosphorylated
- DAPI DNA
- Figure 18D a higher magnification of Figure 18C, 3 white arrows point to co-localization of a motor end plate (green) BTX, neurofilament H non-phosphorylated (SMI 32) (red) as olive - white areas depending upon concentration of stain.
- SMI 32 neurofilament H non-phosphorylated
- an experimental time line (course) is described for seeding hSkMCs up to 9 days prior to seeding MNs in the upper channel. Spontaneous contractions are allowed to begin by removing CoM media at the start of the pharmacology assay. Experiment 5 showed that pharmacology and imaging was possible for measuring functional MJ interactions.
- Figure 19 shows schematic illustrations of one embodiment of experimental timelines for using MJ-on-chips (Experiment 5) as a set up and time course for using co-cultures of hSkMCs with MNs for live imaging and pharmacology studies.
- Figure 19 A shows a schematic illustration of a tall channel microfluidic chip, seeded with hSkMCs at Day 0 (DO) in the bottom channel, culting up to D9, without observing muscle contractions, then D9 seeding diMNs (dl2). In one embodiment only in Group 2. In some embodiments, more than one group of hSkMCs receive MNs. On days 15, 16 and/or 17, live imaging of pharmacology assays are done as shown schematically, for one example, in Figure 19B.
- Figure 19B shows a schematic illustration of one embodiment of a timeline where a NMJ-On-Chip with spontaneous contracting muscle fibers is used for a pharmacology study, i.e. testing agents for inducing or reducing muscle contractions on a baseline chip with or without spontaneously contracting myofibers, in one embodiment, treating NMJ chip with 75uM Glutamine (Glut) in the NM (upper) channel), in one embodiment, treating NMJ chip with 12uM alpha-turbocurarine in the hSkMC (lower) channel), in one embodiment, washing out alpha-turbocurarine, in one embodiment, treating NMJ chip with lOOuM Glutamine (Glut) in the NM (upper) channel).
- Glut 75uM Glutamine
- hSkMC lower
- washing out alpha-turbocurarine in one embodiment, treating NMJ chip with lOOuM Glutamine (Glut) in the NM (upper) channel).
- Figure 20 Shows exemplary High Content Imaging as immunohistochemistry of iPSC derived Myo-fibers, on fixed cells (Experiment 5).
- Figure 20A shows a fluorescent micrograph of the entire width and length of immunostained cells in a microfluidic NMJ chip, a-bungarotoxin BTX (green), Neuron- specific Class III ⁇ -tubulin (TuJl) (red) and myosin heavy chain (MHC) (blue).
- Figure 20B shows a higher power fluorescent micrograph of the channel in the chip shown in Figure 20A.
- Figure 21 shows micrographs of cells grown as shown in Experiment 5 for pharmacology and in-chip imaging for NMJ-On-Chip.
- Figure 21A shows phase contrast micrographs of myotubes and neurons in chips, higher magnified areas are shown below the larger micrograph white arrows point to potential NMJs where myotubes are adjacent to neurons.
- Figure 2 IB shows fluorescent micrographs of superimposed (co-localized images) of neurons stained with a neuronal microtubule marker, Tau, (green) a microtubule stabilization protein, for identifying neurons and motor end plates with BTX (red) (labeling AChRs) for identifying MJs, where neuronal braches co-localize with end plates. Smaller micrographs show higher magnified areas outlined by corresponding white boxes. White arrows point to motor end plates of myotubes, some of which are in close proximity to neuronal axons.
- Figure 22 shows an exemplary method of growing motor neurons in a microfluidic chip where the MN cells of neural networks have spontaneous calcium bursts.
- Figure 22 AA shows a microfluidic chip seeded with MNs at day 12 of culture.
- Figure 22BB shows an exemplary timeline where MN precursor cells from Day 12 cultures are seeded at Day 0 in the microfluidic chip, MN network formation is observed a Day 10 on the chip (Day 18 overall from the start of the original MN culture).
- Figure 22CC shows exemplary images produced by high content life imaging of cells in chips showing Ca++ imaging of diMN cells on Day 12 after seeding onto the microfluidic chip; at high magnification (20x).
- diMNs show repetitive calcium bursts as visualized via Flou4 labeling in color within the cellular areas, e.g. cell bodies, axons and terminal bulbs, in neuronal networks, where the concentrations of Ca++ are shown by yellow-lower levels, red- higher than yellow areas and highest levels in white areas within the red areas, as shown in the neuron cell bodies.
- Figure 22A shows exemplary Ca++ imaging of Figure 22CC in black and white, where the highest amounts of Ca++ are white areas in black and white micrographs, white arrowheads point to cellular areas with concentrated Ca++.
- Figure 22B shows a higher magnification of a cell in the center of the micrograph in Figure 22CC/ Figure 22A with two white arrowhead markers used to identify the same area through the different planes of focus.
- Figures 22D-22J shows exemplary Ca++ imaging in color from confocal high content micrograph z-stack layers through the cell (shown in Figure 22B) where higher concentrations of Ca++ are shown by yellow/red/white areas in the neuronal cytoplasm, which discharge and recharge then discharge over time.
- White arrowheads mark the same location of the cell shown in Figure 22B - Figure 22 J.
- Figure 22K shows a graph of average intensity of Ca++ vs. elapsed time (seconds).
- microfluidic device or "chip.”
- preferred microfluidic devices and chips are described in U.S. Patent No. 8,647,861, hereby incorporated by reference, and they are microfluidic "organ-on- chip” devices including living cells in microchannels, e.g. cells on membranes in microchannels exposed to culture fluid at a flow rate. It is important to note that the features enabling the actuation of strain or mechanical forces on the cells within the "organ-on-chip” device are optional with regards to the "NMJ-on-chip” and may be omitted.
- Figure 14 Shows schematic illustrations of embodiments of a microfluidic device.
- Figure 14 A is a schematic illustration showing one embodiment of the microfluidic device or chip (16), including two microchannels (1), each with an inlet and outlet port for the upper channel (2) and lower channel (3), as well as (optional) vacuum ports (4).
- Microfluidic devices are conveniently made of polydimethylsiloxane (PDMS), polyurethane, polycarbonate, polystyrene, polymethyl methacrylate, polyimide, styrene- ethylene-butylene-styrene (SEBS), polypropylene, or any combinations thereof.
- PDMS polydimethylsiloxane
- SEBS styrene- ethylene-butylene-styrene
- SEBS styrene- ethylene-butylene-styrene
- the present invention contemplates treatment of such substances to promote cell adhesion, selection or differentiation or fluid wetting such as treatments selected from the group consisting of plasma treatment, ion treatment, gas-phase deposition, liquid-phase deposition, adsorption, absorption or chemical reaction with one or more agents.
- Figure 14B is a topside schematic of an embodiment of the perfusion disposable or "pod" (10) featuring the transparent (or translucent) cover (11) over the reservoirs (12), with the chip (16) inserted in the carrier (17).
- the chip can be seeded with cells and then placed in a carrier for insertion into the perfusion disposable or pod, whereupon culture media in the reservoirs flows into the microchannels and perfuses the cells (e.g. both MNs and hSMCs).
- the microchannel includes a surface including a silicone polymer.
- the silicone polymer is polydimethylsiloxane or "PDMS.”
- the ECM protein is covalently coupled to a PDMS surface using a crosslinker.
- one or more proteins e.g. ECM proteins
- peptides e.g. RGD
- the covalently attached protein is laminin or collagen.
- a mixture of proteins are covalently attached, e,g. a mixture of collagen type I, fibronectin and collagen type IV.
- the RGD peptide is attached (or a peptide including the RGD motif is attached).
- the present invention contemplates a method of culturing skeletal muscle cells, including: a) providing a microfluidic device including a microchannel including a surface, said microchannel in fluidic communication with a fluid source including fluid; b) covalently attaching one or more proteins or peptides to said microchannel surface so as to create a treated surface; c) seeding viable skeletal muscle cells on said treated surface so as to create attached cells; c) flowing fluid from said fluid source through said microchannel so as to create flowing conditions; and d) culturing said attached cells under said flow conditions such that said cells remain attached and viable.
- a crosslinker is used.
- a bifunctional crosslinker is used.
- crosslinkers are available commercially, including (but not limited to) the following compounds:
- ANB-NOS N-5-azido-2-nitrobenzoyloxysuccinimide
- sulfosuccinimidyl 6-(4'-azido-2'-nitrophenyl-amino) hexanoate or "Sulfo-SANPAH” is a long-arm (18.2 angstrom) crosslinker that contains an amine-reactive N-hydroxysuccinimide (NHS) ester and a photoactivatable nitrophenyl azide.
- NHS esters react efficiently with primary amino groups (- NH2) in pH 7-9 buffers to form stable amide bonds. The reaction results in the release of N- hydroxy-succinimide.
- nitrophenyl azides When exposed to UV light, nitrophenyl azides form a nitrene group that can initiate addition reactions with double bonds, insertion into C-H and N-H sites, or subsequent ring expansion to react with a nucleophile (e.g., primary amines). The latter reaction path dominates when primary amines are present.
- a nucleophile e.g., primary amines
- Sulfo-SANPAH should be used with non-amine-containing buffers at pH 7-9 such as 20mM sodium phosphate, 0.15M NaCl; 20mM HEPES; lOOmM carbonate/bicarbonate; or 50mM borate. Tris, glycine or sulfhydryl-containing buffers should not be used. Tris and glycine will compete with the intended reaction and thiols can reduce the azido group.
- a UV lamp that irradiates at 300-460nm. High wattage lamps are more effective and require shorter exposure times than low wattage lamps. UV lamps that emit light at 254nm should be avoided; this wavelength causes proteins to photodestruct. Filters that remove light at wavelengths below 300nm are ideal. Using a second filter that removes wavelengths above 370 nm could be beneficial but is not essential.
- one embodiment of a method for preparing and seeding a microfluidic chip includes: first, the chip (or regions thereof) are treated to promote wetting or protein adhesion (e.g. by plasma treatment). Second, one or more channels are then plugged (see the top schematic of Figure 15 A, where an "X" indicates a channel is blocked in a microfluidic device or chip with top and bottom channels).
- Figure 15B shows how the ports of a microfluidic device can be utilized to introduce fluid (e.g. with ECMs) or cells using pipette tips.
- the ECM mixture for the bottom channel is introduced before coating the top of the membrane, with the excess removed, and the remainder dried. Thereafter, the ECM for the top channel is introduced.
- the hSMCs can be seeded on the bottom channel.
- the top channel can be washed.
- the neural cells can be introduced and incubated for attachment.
- the surfaces of the microchannels and/or the membrane can be coated with cell adhesive, selective or promotive molecules to support the attachment of cells and promote their organization into tissues.
- tissue can form on either the upper surface of the membrane, the lower surface of the membrane, any of the surfaces of the channels or cavities present on either side of the membrane or any combination thereof.
- Figure 15 Shows schematic illustrations showing one embodiment of microfluidic devices, including for providing an "air dam” for isolating one channel.
- Figure 15 A is a schematic illustration showing one embodiment of a microfluidic device or chip (16) (viewed from above), the device includes top (apical; dotted line) and bottom (basal; solid line) channels.
- motor neurons are seeded into the upper (apical) channel and human skeletal muscle cells are seeded into the lower (basal) channel.
- an "air dam" is created for part of a protocol, described below, where the two Xs are indicating that channels are blocked during at least part of the protocol.
- Figure 15B is a schematic illustration showing one embodiment of how ports, upper (2) and lower (3) of a microfluidic device or chip (16) can be utilized to deposit fluids carrying surface coatings (e.g. dissolved proteins) and/or seed the cells using pipette tips.
- This image shows one embodiment of a modification to the typical chip ECM coating protocol based on the need in some embodiments to coat the top and/or bottom channels with different ECM solutions in wet and/or dry conditions.
- the upper channel port (2) is blocked, while ECM or cells are added to the lower channel port (3).
- the procedure developed involved an "air dam" by which perfusion of ECM1, for example, loaded into the top channel (apical; dotted line) was prevented from perfusing through the membrane to the bottom channel (basal; solid line) by clamping flexible tubing and trapping air in the bottom channel, Figure 16 A.
- the ports of a second microfluidic channel can be air- filled and plugged up using clips, for example.
- the ports (2) for the top channel are plugged for preventing perfusing of ECM, such as laminin, through the membrane into the upper channel.
- different cells are living on the upper and lower surfaces, thereby creating one or more tissue-tissue interfaces separated by the membrane.
- the membrane may be porous, flexible, elastic, or a combination thereof with pores large enough to only permit exchange of gases and/or small chemicals, or large enough to permit migration and transchannel passage of large proteins, as well as whole living cells and/or portions thereof (e.g. forming neuronal terminal synapses with muscle cells).
- the pores may be defined, for example, using lithography, molding, laser-drilling or track-etching, intrinsic to a selected material (for example, polyacrylamide gel, collagen gel, paper, cellulose) or engineered into the material (e.g. by generating an open-cell polymer or matrix).
- Flow is important and stands in contrast to static 2D culture.
- Using a flow in the microchannel(s) allows for the perfusion of cell culture medium throughout the cell culture during in vitro studies and as such offer a more in v/vo-like physical environment.
- an inlet port (2 and 3) allows injection of cell culture medium, test agents, etc. into a cell-laden microfluidic channel (1) or chamber (1), thus delivering nutrients and oxygen to cells.
- An outlet port (2 and 3) then permits the exit of remaining liquid as well as harmful metabolic by-products. While continuous flow is preferable due to its application of controlled shear forces, either of the device's fluidic paths could also be cultured under "stop flow" conditions, where the flow is engaged intermittently, interspersed by static culture.
- pressure is applied through the lid and the lid seals against the reservoir(s). For example, when one applies 1 kPa, this nominal pressure results, in one embodiment, in a flow rate of approximately 30-40 uL/hr. When one applies a pressure of between 0.5 kPa, this nominal pressure results, in one embodiment, in a flow rate of between 15 uL/hr and 30 uL/hr.
- a tall 2 chamber (upper and lower) PDMS microfluidic Chip has a membrane separating the two chambers having a pore diameter of 7 ⁇ , spacing: 40 ⁇ Hex packed, thickness: 50 ⁇ , extracellular matrix (ECM) provided is laminin (250 ⁇ g/ml).
- a MN-on-chip is provided with MNs seeded into the upper channel of a microfluidic chip.
- MNs are seeded into the upper channel of a NMJ- On-Chip.
- Cells are prepared either directly from cultured iPSCs or from frozen lots of pre- differentiated cells. Cells are thawed (or dissociated fresh) and seeded into the chip at day 12 (in the case of iMN differentiation) and at various points in neural differentiation.
- MN cells are seeded at day 12 of differentiation either from freshly differentiated cultures or directly from a thawed vial into a microfluidic chip described herein.
- Figure 22 show the results of calcium flux imaging in the upper neural channel.
- a fl orescent calcium influx-activated dye Fluo-4
- neurons seeded in chip were imaged using a high-resolution high frame-rate camera.
- Florescence intensity changes of up to hundreds of neurons were analyzed simultaneously by recording average pixel intensity over time (dF/F). These values were plotted with respect to time and are analyzed for waveform properties, which correlate spontaneous neural activity and neural network formation. This is accomplished through multi-step video post-processing and signal analysis (including video compression, signal cleanup, automatic or manual ROI detection, etc. which can be implemented from open-source MATLAB software packages).
- the photograph ( Figure 22CC) is a single fluorescent image from a movie of such images.
- the colored areas indicate areas of Ca++ hot spots, i.e. higher concentrations of Ca++.
- TTX tetrodotoxin
- hSkMCs on microfluidic chips for skeletal muscle cells-on-chips (and then for MJ-On- Chips), using myoblasts and/or iPSCs as the starting material.
- the following describes exemplary methods, e.g. for differentiating iPSCs, providing a Muscle Cell Culture-on-Chip.
- the starting density of cells affects the success of skeletal muscle cell differentiation.
- the starting iPSc density described herein is exemplary for the cell lines described herein. However each iPSC line is different so the optimal density should be determined according to each individual cell line's growth (e.g. doubling) rate.
- an exemplary recommended cell density and volume of media 12 or 24 wells 15,000-18000 cells/cm 2 and for 96 wells 5000 cells/cm 2 .
- One embodiment for a method providing human induced pluripotent stem cells (iPSCs) for use in providing induced hSkMCs is described as follows.
- Coat plates with ECM e.g. Matrigel. Add appropriate volume, see e.g. below, in a sterile tissue culture hood. For a 6 well plate - 1 mL/well; 24 well plate -250 L/well; and 96 well plate - 50 ⁇ . Leave Matrigel in wells for at least lhr at room temperature for coating surfaces. Coating may also be done for more than an hour.
- hiPSC human iPSC
- hiPSC human iPSC
- Y-27632 Rock Inhibitor (Y-27632) (such as from Sigma-Aldrich, St. Louis, MO 63103-USA)
- concentrations from 2.0 uM, 2.5 uM, 5 uM. 10 uM, up to 20 uM, for one day.
- Nonlimiting examples of mTeSR Media include, cGMP mTeSRTM!, mTeSRTM!, TeSRTM2, TeSRTM-E7TM, TeSRTM-E5, TeSRTM-E6, ReproTeSRTM, mTeSRTM3D, etc., defined, serum-free media for culture of human ES, iPS, pluripotent stem cells, and the like). Clean iPSCs cells daily by removing differentiated cells to maintain a spontaneous differentiation free culture for optimal skeletal muscle differentiation. In one embodiment, 3 wells of a 96 well plate containing iPSCs, maintained at 70-80% confluence is suggested for use to start differentiation.
- Stage 1 skeletal muscle induction Step 1. Dissociate iPSCs with Accutase (e.g. of a cell detachment solution) for 5 min.; Step 2. Resuspend cells in phosphate buffered saline (PBS) in a 15mL conical tube.; Step 3. Centrifuge the cells for 5 min (minutes) at 1000 RPM (revolutions per minute) for spinning cells gently to the bottom of the tube.; Step 4. Aspirate media without disturbing the cell pellet in the bottom of the tube, then resuspend cells in skeletal muscle induction media 1, DMEM/F12, (see, Table 1).; Step 5. Count the number of live cells (in part by exclusion staining the dead cells), e.g.
- Step 7 Take out lOul of cell suspension from the tube, mix with lOul of dye (1 : 1), e.g. in Trypan blue dye for staining dead cells, mix well, load mixture in cell counter chamber to count.; Determine live cell numbers per ml, then Step 6. Plate single cells with appropriate number of cells, as suggested herein, on a Matrigel coated plate in mTeSR Media supplemented with Rock Inhibitor (Y-27632), see exemplary materials and concentrations above, for one day.; Step 7. On the next day, switch the Stage 1 media to DMEM/F12 (1 : 1) supplemented with exemplary concentrations of 3uM CHIR99021, 05uM LDN193189.; Step 8. Change media everyday until day three.; then Step 9. On Day three, supplement the existing media with an exemplary concentration of 20ng/mL bFGF and continue feeding for additional seven days. Media should be change on a daily basis.
- Stage 2- Commitment to Myoblasts.
- 10 days of incubation e.g. 7 days incubation in complete skeletal muscle induction media 1
- the media is changed to a DMEM/F12 (1 : 1) supplemented with exemplary concentrations of lOng/ml HGF, 2ng/ml IGF and 0.5uM LDN193189 (Skeletal Muscle Induction Media 2) for two days of incubation, see Table 2; If cells are too confluent by day 12-14, cells should be dissociated and replated on ECM, e.g. Matrigel coated surfaces at recommended cell densities, mentioned above, for optimal results.; and 2.
- ECM e.g. Matrigel coated surfaces at recommended cell densities, mentioned above, for optimal results.
- Stage 3 Maturation For differentiation of myoblasts into myotubes and for maintenance of skeletal muscles: 1. On Day 12, 13 or 14, media was changed to DMEM/F12 (1 : 1), with exemplary concentrations of 15% KSOR supplemented with lOng/mL HGF and lOng/mL IGF-1 (complete Skeletal Muscle Induction Media 3), see Table 3; 2. Change Media every other Day until used, up to day 40; and 3.
- ECM coated substrates such as plates and microfluidic channels.
- plates and channels were coated with Matrigel, while microfluidic channels were coated with Laminin (non-cross-linked) and cross-Linked Laminin, as described herein. Seeding densities for the chips were used as described for the experiments, where either ihSkMCs were differentiated as described here, as one example, starting myotube differentiation on Dl in Stage 1 Skeletal Muscle Induction Media (incomplete).
- ECM Extracellular Matrix
- an extracellular matrix (ECM) layer is provided to coat (cover) the entire surface (bottom, sides and top) of the lower channel for growing human skeletal striated muscle cells.
- ECM extracellular matrix
- Laminin was used as an exemplary ECM component for coating the surface.
- a cross-linker chemical was used for cross- linking Laminin molecules.
- Sulfo-SA PAH was used as an exemplary cross-linker chemical.
- Figure 4 Shows one embodiment of a human skeletal muscle cell culture hSkMC-In-Chip: Extracellular Matrix (ECM) use for hSkMCs-In-Chip.
- the chip is a Quad chip.
- Figure 4A shows a picture of a single channel (Quad) Chip with pipette tips used to block channels for coating the inside surfaces with an ECM layer then seeded with human skeletal muscle cells (hSKMCs).
- hSKMCs human skeletal muscle cells
- Figure 4B shows a schematic illustration of a cross-sectional view of the quad channel with ECM as Laminine (purple and blue stars) with hSkMCs as yellow-spotted blocks.
- Figure 4C shows a schematic illustration of a cross-sectional view of the quad channel with ECM as Laminine (purple and blue stars) with hSkMCs as yellow-spotted blocks and a representative cross linking of ECM as yellow stars, e.g. with Sulfo-SA PAH.
- ECM Extracellular Matrix
- This example shows one embodiment of a set up and time course for culturing Human Muscle Cells in-Chip: providing non-contracting myotubes on ECM coated chips.
- a single channel chip e.g. Quad chip: as a 4 single channel chip
- muscle cells grown without nerve cells present did not show spontaneous contractions of myotubes.
- Sulfo-SANPAH cross linked ECM provides more stability to hSkMCs.
- Sulfo-SANPAH cross-linked ECM enables formation of almost 2-fold more MHC positive multinucleated fibers.
- more nuclei per myo-tubes with cross-linked ECM more nuclei per myo-tubes with cross-linked ECM.
- a 3 -fold higher number of nuclei in MHC myo-fibers seeded on Sulfo-SANPAH cross-linked ECM-Laminin was observed over a Laminin coating without the use of a cross-linker.
- Figure 5 shows one embodiment of a human muscle cell culture in-chip: Set Up and Time Course for producing multinucleated myofibers that are not contracting.
- Figure 5A Single channels of Quad Chips were seeded with human skeletal muscle cells (hSKMCs).
- Group 1 and Group 2 5 x 10 6 /ml cells;
- Group 3 and Group 4 1.6 x 10 6 /ml cells.
- Groups 1 and 3 do not have cross (X)-linked ECM while Groups 2 and 4 have exemplary Sulpho-SANPAH X-linked ECM.
- Figure 5B shows a schematic experimental timeline: Seeding cells on Day (D) 0.
- Dl Inducing differentiation.
- D5 observing fusion of myoblast cells.
- D10 Screening for myo-fiber contraction in cultures that were not stained for analysis; observing polynucleated fibers but no myofiber contractions.
- D14 Fixing cells and fusion-index-analysis.
- Figure 5C Day 14: Fixation and fusion-index-analysis based upon staining for myosin heavy chain (MHC) (red) and nuclei (DNA) (shown in blue).
- MHC myosin heavy chain
- DNA nuclei
- Figure 5D Shows a schematic illustration of multinucleated myofibers in MHC (red) and nuclei (DNA) (blue).
- Figure 6 shows Human Skeletal Myoblast-Derived Poly-Nucleated Fibers growing in microfluidic chips where Sulfo-SANPAH cross-linked ECM enables formation of almost 2- fold more MHC positive multinucleated fibers.
- Figure 6A-6D show fluorescent micrographs of immunostained myosin heavy chain (MHC) (red) myo-fibers and DAPI stained nuclei (DNA) (shown in blue) comparing cultures started at the 2 different densities ( Figures 6A-B: 5 x 10 6 /ml cells and Figures 6C-6D: 1.6 x 10 6 /ml cells) with and without cross-lined (X-link) ECM-Laminin (Lam).
- MHC myosin heavy chain
- DNA DAPI stained nuclei
- Figures 6E-6F show phase contrast micrographs of Day 14 cells grown on Laminin (Lam) and cross-linked (X-Link) ECM-Laminin (Lam), respectively. More MHC positive multinucleated fibers are observed with X-Linked Laminin after 14 days. White arrows point to 2 exemplary multinucleated myotubes
- Figure 6G shows a graph comparing number MHC+ myo-fibers to the treatments shown in Figures 6A-6D where at both cell densities the number of myofibers growing on x- Linked ECM is almost 2-fold more than fibers grown on regular, non-cross-linked, ECM.
- Figure 7 shows Human Skeletal Myoblast-Derived Poly-Nucleated Fibers growing in microfluidic chips comparing non-cross-linked to cross-linked ECM (Laminin) where more nuclei per myo-tubes are observed growing on cross-linked ECM.
- Figure 7A-7D show fluorescent micrographs of immunostained myosin heavy chain (MHC) (red) myo-fibers and DAPI stained nuclei (DNA) (shown in blue) comparing cultures started at the 2 different densities with inserts showing higher magnifications of presumptive myo-fibers for each treatment.
- MHC immunostained myosin heavy chain
- DNA DAPI stained nuclei
- Figures 7A-7B 5 x 10 6 /ml cells and Figures 6C-D: 1.6 x 10 6 /ml cells) with Laminin (Lam) and with cross-linked (X-linked) Laminin-ECM.
- Figures 7E-7F Show a 3 -fold higher number of nuclei in MHC myo-fibers seeded on exemplary Sulfo-SANPAH cross-linked ECM by graphical comparisons.
- Figures 7E shows a graph comparing DAPI+ nuclei per MHC+ fiber for determining myo-fiber at the 4 treatments shown.
- Figures 7F shows a graph comparing percentage of total DAPI+ per channel, i.e. percentage of DAPI in myo-fibers at the 4 treatments shown in Figure 7A-D.
- exemplary embodiments are provided for a Human iPS-Derived MN and Muscle Cell Co-Culture in-Chip showing a loss of myotubes starting around 24 hours after start of spontaneous contractions.
- Figure 9 Shows one embodiment of a Human iPS-Derived MN and Muscle Cell Co-Culture in-a microfluidic Chip.
- Figure 9A is a picture of an exemplary microfluidic chip where day 12 MNs are seeded into the top (upper-blue) channel and hSkMCs are in the bottom (lower-red) channel;
- Figure 9B shows a schematic illustration of an exemplary cross section of NMJ microfluidic chip with day 12 MNs in the top channel and hSkMCs in the bottom channel with 3 sets of Experimental Chips for comparing cell densities at the time of seeding: Chip 1 : top: 3 x 10 6 /ml diMN cells and bottom: 5 x 10 6 /ml hSkMC cells; Chip 2: top: 3 x 10 6 /ml diMN cells and bottom: 10 x 10 6 /ml hSkMC cells; and Chip 3 : top: 3 x 10 6 /ml diMN cells and bottom: 20 x 10 6 /ml hSkMC cells.
- Figure 9C shows a schematic illustration of a timeline showing co-culture of hSkMCs seeded Day (D) 0 with differentiation (diff) initiated on Dl, Day 12 MNs seeded Dl, Myofiber formation on D5, myofiber contractions observed D10, a loss of myofibers observed on Dl l, with fixation and analysis by ICC on D14.
- This example describes one embodiment of method steps for providing a functional NMJ-on-chip with reduced spontaneous myotube contractions.
- the following experiments were designed for identifying media components that would lower spontaneous contraction rates.
- Media was tested that included at least one agent for reducing spontaneous myotube contraction rates. In part, rates were artificially reduced in order to allow testing of agents for altering muscle contractions, e.g. increasing muscle contraction rates.
- FIG. 10 shows one embodiment of an experimental system (Experiment 1) as a schematic illustration for testing medium to reduce spontaneous contractions of cells in the microfluidic tall channel chip.
- Experimental Groups 1-3 directly compare medium harvested from diMNs/hSkMC cultures with coM media in chips containing induced motor neurons (diMNs: Motor-neuron-on Chip) and human Skeletal Muscle Cells (hSkMCs-on-Chip), each cell type growing alone on chips then combined in the same chip in the same media (upper and lower channel) for providing a neuronal-muscular-junction ( MJ-on-Chip).
- diMNs Motor-neuron-on Chip
- hSkMCs-on-Chip human Skeletal Muscle Cells
- Figure 10A Group 1 : shows a schematic illustration of the tall channel chip, with vacuum chambers (4), diMNs in the top channel but no cells in the bottom channel.
- Group 2 shows a schematic illustration of the tall channel chip with no cells in the top channel but with hSkMCs in the bottom channel.
- Group 3 shows a schematic illustration of the tall channel chip with diMNs in the top channel and hSkMCs in the bottom channel for providing a NMJ-on- Chip.
- Figure 10B shows a schematic illustration of cells numbers and media used for growing cells: Group 1 : Top: 3xl0 6 diMNs Bottom: none. Group 2: Top: none. Bottom: lOxlO 6 hSkMCs. Group 3 : Top: 3xl0 6 diMNs. Bottom: 20xl0 6 hSkMCs.
- Figure 11 Shows human skeletal muscle cells (hSkMCs) forming myofibers within 8 days post seeding (co-cultures) having spontaneous myo-tube contractions at Day (D) 10 culture that are reduced by using conM culture medium in a microfluidic chip.
- hSkMCs human skeletal muscle cells
- Figure 11 A shows micrographs of hSkMCs growing in chips.
- White arrows in the magnified region point to multinucleated muscle cell fibers, of which there appears to be more nuclei per fiber in the coM medium.;
- Figure 1 IB shows micrographs of diMNs growing in chips
- Figure 11C shows micrographs of shSkMCs/diMNs grown in MN/hSkMCs media (upper row of micrographs) and coM medium (lower row of micrographs) growing in chips.
- Spontaneous myo-tube contraction was observed only in diMNs/hSkMC co-cultures.
- White arrows in the magnified region point to contacts of MN with a muscle cell fiber.
- Inserts show higher magnified areas of cells outlined in the white box for each micrograph.
- Figure 12 Shows human skeletal muscle cells (hSkMCs) as myofibers with spontaneous myotube contraction at Day (D) 10 (Experiment 3).
- Figure 12 A shows a micrograph of hSkMCs as myotubes growing on top of a membrane of the microfluidic chip in coM media.
- Figure 12B shows a graph comparing contractions per minute for a myofiber contraction frequency with an average of fibers in two experiments (Experiment 1 and 3) that were combined for a total estimation of myofiber contraction frequency.
- Figure 12C shows a graph comparing contractions per minute for myofibers having an increased myofiber contraction frequency between Laminin vs. cross linked Laminin ECM, at about the same frequency as shown in Figure 12B.
- Figure 12D shows a graph comparing contractions per minute for myofibers grown in regular media compared to a culture grown in coM media. When cultured in coM, contraction frequency is around 25% less compared to regular medium conditions.
- Figure 13 shows schematic illustrations of experimental timelines for comparing co-cultures of hSkMCs with MNs, with and without coM media.
- Figure 13 A shows a schematic illustration of a timeline and cell densities for Group 1 and Group 2 in coM: hSkMCs seeded at 5 x 10 6 /ml cells and MNs seeded at 3 x 10 6 /ml cells.
- Figure 13B shows a schematic illustration of a timeline and cell densities for Group3 : hSkMCs seeded with MNs: Day 0: seeding hSkMCs; Day 1 : (18h later) seeded diMNs (dl2); Day 5: formation of myotubes, no medium switch; Day 10: observation of myofiber contraction; Day 11 : observing progressive loss of myofibers; Day 14: fixation and analysis by ICC; in chip cultures left to D20, there is almost a complete loss of myofibers.
- exemplary steps for providing a functional MJ-on-Chip by combining motor- neurons on a chip (upper blue channel) with skeletal muscle cells on a chip (lower-red) channel include: Seeding the bottom (lower-blue) channel as a skeletal muscle-on-chip capable of producing contractile muscle tissue expressing markers myosin heavy chain (MHC) (green), pre-BTX (a-bungarotoxin) (red) identified by immunohistochemistry and stained for DNA (blue) shown by fluorescent microscopy.
- MHC myosin heavy chain
- pre-BTX a-bungarotoxin
- Seeding the upper channel of the microfluidic chip with patient iPSC-derived MNs that under chip culture conditions will express neuronal expressing markers Neuron-specific Class III ⁇ -tubulin (TuJl) (red), selectivity/selective factor 1 complex (for RNA polymerase) (SL1) (blue), homeobox B9 (HOXB9) (red), identified by immunohistochemistry (IHC) as shown by fluorescent microscopy.
- spontaneous contractions may be stopped by adding calcium channel blockers or sodium channel blockers to the culture media.
- This example shows embodiments of exemplary co-localization of MNs and muscle cells showing potential formation of NMJs in microfluidic NMJ-on-chip.
- Figure 14 shows florescent micrographs of stained cells in a microfluidic chip.
- FIG 14A and Figure 14B ⁇ -bungarotoxin (BTX) for identifying the motor end plate (green), skeletal muscle marker, desmin, (red) and DNA (DAPI) (shown in blue).
- BTX ⁇ -bungarotoxin
- DAPI DNA
- Figure 14B a higher magnification of Figure 14 A, 3 white arrows point to co- localization of ⁇ -bungarotoxin (BTX) for identifying the motor end plate (green) and skeletal muscle marker, desmin, (red) as olive, white dark orange areas depending upon concentration of stain.
- BTX ⁇ -bungarotoxin
- FIG 14C and Figure 14D motor end plate (green) BTX and neurofilament H non- phosphorylated (SMI 32) (red) and DNA (DAPI) (shown in blue).
- SMI 32 neurofilament H non- phosphorylated
- DAPI DNA
- Figure 14D a higher magnification of Figure 14C, 3 white arrows point to co- localization of a motor end plate (green) BTX, neurofilament H non-phosphorylated (SMI 32) (red) as olive - white areas depending upon concentration of stain.
- SMI 32 neurofilament H non-phosphorylated
- Figure 17 shows schematic illustrations of tall channel microfluidic NMJ-on-chip with one embodiment of an experimental timeline (Experiment 4) set up and time course for comparing co-cultures of hSkMCs with MNs under flow.
- Figure 17 A shows a schematic illustration of a tall channel microfluidic chip, from left to right, view of vertical 2-channel chip (i.e. the top channel is above the bottom channel as shown in Stage 1, with hSkMCs covering the entire surface of the bottom channel, and Stage 2 with diMNs seeded into the top channel.
- Figure 17B shows a schematic illustration of one embodiment of a timeline where hSkMCs are seeded Day (D) 0 with differentiation (diff) initiated on Dl, D5: formation of myotubes & medium switch to coM media, then Day 7-10: no myofiber contraction, on Day 20 start muscle cells under flow at lOul/hour, continued to D29 when flow is stopped.
- Day 30 seed diMNs (dl2) (not in coM media for observing baseline contractions).
- Day 37 shows a schematic illustration of one embodiment of a timeline where hSkMCs are seeded Day (D) 0 with differentiation (diff) initiated on Dl, D5: formation of myotubes & medium switch to coM media, then Day 7-10: no myofiber contraction, on Day 20 start muscle cells under flow at lOul/hour, continued to D29 when flow is stopped.
- Day 30 seed diMNs (dl2) (not in coM media for observing baseline contractions).
- myotubes are spontaneously contracting: fixation and analysis (including ICC).
- Figure 18 shows an exemplary co-localization study of iPS-Derived MNs and Muscle Cells showing formation of NMJs between diMNs and hSkMCs (Experiment 4).
- Cells were stained with a-bungarotoxin (BTX) for identifying suggestive NMJ areas where motor end plate (green), neurons are stained with Tubulin beta-3 chain (Tubb3) (red) and muscle myosin heavy chain (MHC) (blue) were fluorescently imaged on individual channels then merged. The blue channel of MHC staining is not shown in Figure 12A-12D.
- BTX a-bungarotoxin
- Tubb3 Tubulin beta-3 chain
- MHC muscle myosin heavy chain
- Figure 18 A shows a low power fluorescent micrograph where Tubb3 (red) neuronal staining shows neurite extension along myotubes with oval areas (green) suggestive of lower motor nerve termini whose distribution over a myotube suggests motor end plates.
- Figure 18B-G shows higher power fluorescent micrographs of the suggestive NMJ areas (white arrows) are identified by superimposed staining i.e. co-localization, where the red stained nerve terminal neuron bulb is co-localized with BTX green staining of motor end plates producing a yellow NMJ.
- Figure 18E-18G The blue channel of MHC staining is shown showing a MHC containing muscle fiber at the yellow stained MJ.
- an experimental time line (course) is described for seeding hSkMCs up to 9 days prior to seeding MNs in the upper channel. Spontaneous contractions are allowed to begin by removing CoM media at the start of the pharmacology assay.
- Figure 19 shows schematic illustrations of one embodiment of experimental timelines for using NMJ-on-chips (Experiment 5) as a set up and time course for using co-cultures of hSkMCs with MNs for live imaging and pharmacology studies.
- Figure 19 A shows a schematic illustration of a tall channel microfluidic chip, seeded with hSkMCs at Day 0 (DO) in the bottom channel, culting up to D9, without observing muscle contractions, then D9 seeding diMNs (dl2). In one embodiment only in Group 2. In some embodiments, more than one group of hSkMCs receive MNs. On days 15, 16 and/or 17, live imaging of pharmacology assays are done as shown schematically, for one example, in Figure 19B.
- Figure 19B shows a schematic illustration of one embodiment of a timeline where a NMJ-On-Chip with spontaneous contracting muscle fibers is used for a pharmacology study, i.e. testing agents for inducing or reducing muscle contractions on a baseline chip with or without spontaneously contracting myofibers, in one embodiment, treating NMJ chip with 75uM Glutamine (Glut) in the NM (upper) channel), in one embodiment, treating NMJ chip with 12uM alpha-turbocurarine in the hSkMC (lower) channel), in one embodiment, washing out alpha-turbocurarine, in one embodiment, treating NMJ chip with lOOuM Glutamine (Glut) in the NM (upper) channel).
- Glut 75uM Glutamine
- hSkMC lower
- washing out alpha-turbocurarine in one embodiment, treating NMJ chip with lOOuM Glutamine (Glut) in the NM (upper) channel).
- Figure 20 Shows exemplary High Content Imaging as immunohistochemistry of iPSC derived Myo-fibers, on fixed cells (Experiment 5).
- Figure 20A shows a fluorescent micrograph of the entire width and length of immunostained cells in a microfluidic MJ chip, a-bungarotoxin BTX (green), Neuron- specific Class III ⁇ -tubulin (TuJl) (red) and myosin heavy chain (MHC) (blue).
- Figure 20B shows a higher power fluorescent micrograph of the channel in the chip shown in Figure 20A.
- Figure 21 shows micrographs of cells grown as shown in Experiment 5 for pharmacology and in-chip imaging for NMJ-On-Chip.
- Figure 21A shows phase contrast micrographs of myotubes and neurons in chips, higher magnified areas are shown below the larger micrograph white arrows point to potential
- Figure 2 IB shows fluorescent micrographs of superimposed (co-localized images) of neurons stained with a neuronal microtubule marker, Tau, (green) a microtubule stabilization protein, for identifying neurons and motor end plates with BTX (red) (labeling AChRs) for identifying NMJs, where neuronal braches co-localize with end plates.
- Smaller micrographs show higher magnified areas outlined by corresponding white boxes.
- White arrows point to motor end plates of myotubes, some of which are in close proximity to neuronal axons.
- Figure 22 shows an exemplary method of growing motor neurons in a microfluidic chip where the MN cells of neural networks have spontaneous calcium bursts.
- Figure 22 AA shows a microfluidic chip seeded with MNs at day 12 of culture.
- Figure 22BB shows an exemplary timeline where MN precursor cells from Day 12 cultures are seeded at Day 0 in the microfluidic chip, MN network formation is observed a Day 10 on the chip (Day 18 overall from the start of the original MN culture).
- Figure 22CC shows exemplary images produced by high content life imaging of cells in chips showing Ca++ imaging of diMN cells on Day 12 after seeding onto the microfluidic chip; at high magnification (20x).
- diMNs show repetitive calcium bursts as visualized via Flou4 labeling in color within the cellular areas, e.g. cell bodies, axons and terminal bulbs, in neuronal networks, where the concentrations of Ca++ are shown by yellow-lower levels, red- higher than yellow areas and highest levels in white areas within the red areas, as shown in the neuron cell bodies.
- Figure 22A shows exemplary Ca++ imaging of Figure 22CC in black and white, where the highest amounts of Ca++ are white areas in black and white micrographs, white arrowheads point to cellular areas with concentrated Ca++.
- Figure 22B shows a higher magnification of a cell in the center of the micrograph in Figure 22CC/ Figure 22A with two white arrowhead markers used to identify the same area through the different planes of focus.
- Figures 22D-22J shows exemplary Ca++ imaging in color from confocal high content micrograph z-stack layers through the cell (shown in Figure 22B) where higher concentrations of Ca++ are shown by yellow/red/white areas in the neuronal cytoplasm, which discharge and recharge then discharge over time.
- White arrowheads mark the same location of the cell shown in Figure 22B - Figure 22 J.
- Figure 22K shows a graph of average intensity of Ca++ vs. elapsed time (seconds).
- iPSC derived motor neurons can be introduced into a XONATM microfluidic device.
- Cells were labeled using MitoTracker green as shown in Figures 24 and 25.
- iPSC derived motor neurons seeded in this manner in the microfluidic device exhibited capacity for axonal retraction.with timelapse of axonal retraction at approximately 1, 2, 3, 4, 6, 9, 11, 13 and 16 hour timepoints as indicated as in Figure 26 and 27.
- Microfluidic device such as optically transparent and biologically inert Polydimethylsiloxane (PDMS) possesses multiple chambers connected by microgrooves. The chamber allows PDMS.
- iPSC-motor neurons derived from spinal muscular atrophy (SMA) patients can be "co-culture” in microfluidic device as shown in Figure 29.
- Various labeling agents including a- bungarotoxin (BTX), synaptic vesicle 2 (SV2) can aid visualization of the neuromuscular junction including co-localization of these markers as depicted.
- BTX a- bungarotoxin
- SV2 synaptic vesicle 2
- iPSC- motor neurons "co-culture" in microfluidic device results in formation of muscular cells aggregated and in connection with neuron projections, across microgrooves.
- the numbers expressing quantities of ingredients, properties such as concentration, reaction conditions, and so forth, used to describe and claim certain embodiments of the invention are to be understood as being modified in some instances by the term "about.” Accordingly, in some embodiments, the numerical parameters set forth in the written description and attached claims are approximations that can vary depending upon the desired properties sought to be obtained by a particular embodiment. In some embodiments, the numerical parameters should be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of some embodiments of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as practicable. The numerical values presented in some embodiments of the invention may contain certain errors necessarily resulting from the standard deviation found in their respective testing measurements.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Cell Biology (AREA)
- Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Developmental Biology & Embryology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Rheumatology (AREA)
- Veterinary Medicine (AREA)
- Cardiology (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Immunology (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Vascular Medicine (AREA)
- Microbiology (AREA)
- Animal Behavior & Ethology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Virology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA3056089A CA3056089A1 (en) | 2017-03-14 | 2018-03-14 | Neuromuscular junction |
GB1914656.2A GB2575574B (en) | 2017-03-14 | 2018-03-14 | Neuromuscular junction |
US16/492,906 US11767513B2 (en) | 2017-03-14 | 2018-03-14 | Neuromuscular junction |
AU2018236273A AU2018236273A1 (en) | 2017-03-14 | 2018-03-14 | Neuromuscular junction |
SG11201908358P SG11201908358PA (en) | 2017-03-14 | 2018-03-14 | Neuromuscular junction |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762471273P | 2017-03-14 | 2017-03-14 | |
US15/458,185 US20170226478A1 (en) | 2015-10-19 | 2017-03-14 | Neuromuscular Junction: NMJ-ON-CHIP |
US15/458,185 | 2017-03-14 | ||
US62/471,273 | 2017-03-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018170180A1 true WO2018170180A1 (en) | 2018-09-20 |
Family
ID=63523848
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2018/022511 WO2018170180A1 (en) | 2017-03-14 | 2018-03-14 | Neuromuscular junction |
Country Status (5)
Country | Link |
---|---|
AU (1) | AU2018236273A1 (en) |
CA (1) | CA3056089A1 (en) |
GB (1) | GB2575574B (en) |
SG (1) | SG11201908358PA (en) |
WO (1) | WO2018170180A1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021074126A1 (en) * | 2019-10-14 | 2021-04-22 | Georg-August-Universität Göttingen Stiftung Öffentlichen Rechts, Universitätsmedizin | Production of skeletal muscle cells and skeletal muscle tissue from pluripotent stem cells |
CN112877282A (en) * | 2021-02-09 | 2021-06-01 | 南通大学 | Method for culturing primary neuromuscular junction in vitro |
WO2022008757A1 (en) * | 2020-07-10 | 2022-01-13 | Max-Delbrück-Centrum Für Molekulare Medizin In Der Helmholtz-Gemeinschaft | A method for generating a three-dimensional neuromuscular organoid in vitro |
US11414648B2 (en) | 2017-03-24 | 2022-08-16 | Cedars-Sinai Medical Center | Methods and compositions for production of fallopian tube epithelium |
US11473061B2 (en) | 2016-02-01 | 2022-10-18 | Cedars-Sinai Medical Center | Systems and methods for growth of intestinal cells in microfluidic devices |
EP3936604A4 (en) * | 2019-03-04 | 2022-12-21 | Nissin Foods Holdings Co., Ltd. | THREE-DIMENSIONAL MUSCLE TISSUE AND PROCESS FOR PRODUCTION THEREOF |
US11767513B2 (en) | 2017-03-14 | 2023-09-26 | Cedars-Sinai Medical Center | Neuromuscular junction |
US11913022B2 (en) | 2017-01-25 | 2024-02-27 | Cedars-Sinai Medical Center | In vitro induction of mammary-like differentiation from human pluripotent stem cells |
US11981918B2 (en) | 2018-04-06 | 2024-05-14 | Cedars-Sinai Medical Center | Differentiation technique to generate dopaminergic neurons from induced pluripotent stem cells |
US12042791B2 (en) | 2016-01-12 | 2024-07-23 | Cedars-Sinai Medical Center | Method of osteogenic differentiation in microfluidic tissue culture systems |
US12161676B2 (en) | 2018-03-23 | 2024-12-10 | Cedars-Sinai Medical Center | Methods of use of islet cells |
US12241085B2 (en) | 2018-04-06 | 2025-03-04 | Cedars-Sinai Medical Center | Human pluripotent stem cell derived neurodegenerative disease models on a microfluidic chip |
-
2018
- 2018-03-14 WO PCT/US2018/022511 patent/WO2018170180A1/en active Application Filing
- 2018-03-14 SG SG11201908358P patent/SG11201908358PA/en unknown
- 2018-03-14 CA CA3056089A patent/CA3056089A1/en active Pending
- 2018-03-14 AU AU2018236273A patent/AU2018236273A1/en not_active Abandoned
- 2018-03-14 GB GB1914656.2A patent/GB2575574B/en active Active
Non-Patent Citations (4)
Title |
---|
BOYER ET AL.: "More than a bystander: the contributions of intrinsic skeletal muscle defects in motor neuron diseases", FRONTIERS IN PHYSIOLOGY, vol. 4, no. 356, 18 December 2013 (2013-12-18), pages 1 - 12 * |
CHAL ET AL.: "Differentiation of pluripotent stem cells to muscle fiber to model Duchenne muscular dystrophy", NATURE BIOTECHNOLOGY, vol. 33, no. 9, 3 August 2015 (2015-08-03), pages 962 - 969, XP055281323 * |
HUGHES ET AL.: "Matrigel: A complex protein mixture required for optimal growth of cell culture", PROTEOMICS, vol. 10, no. 9, 2010, pages 1886 - 1890, XP055178806 * |
JANG ET AL.: "JAK-STAT pathway and myogenic differentiation", JAKSTAT, vol. 2, 1 April 2013 (2013-04-01), pages 1 - 6, Retrieved from the Internet <URL:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3710318/pdf/jkst-2-e23282.pdf> [retrieved on 20180710] * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12042791B2 (en) | 2016-01-12 | 2024-07-23 | Cedars-Sinai Medical Center | Method of osteogenic differentiation in microfluidic tissue culture systems |
US11473061B2 (en) | 2016-02-01 | 2022-10-18 | Cedars-Sinai Medical Center | Systems and methods for growth of intestinal cells in microfluidic devices |
US11913022B2 (en) | 2017-01-25 | 2024-02-27 | Cedars-Sinai Medical Center | In vitro induction of mammary-like differentiation from human pluripotent stem cells |
US11767513B2 (en) | 2017-03-14 | 2023-09-26 | Cedars-Sinai Medical Center | Neuromuscular junction |
US11414648B2 (en) | 2017-03-24 | 2022-08-16 | Cedars-Sinai Medical Center | Methods and compositions for production of fallopian tube epithelium |
US12161676B2 (en) | 2018-03-23 | 2024-12-10 | Cedars-Sinai Medical Center | Methods of use of islet cells |
US11981918B2 (en) | 2018-04-06 | 2024-05-14 | Cedars-Sinai Medical Center | Differentiation technique to generate dopaminergic neurons from induced pluripotent stem cells |
US12241085B2 (en) | 2018-04-06 | 2025-03-04 | Cedars-Sinai Medical Center | Human pluripotent stem cell derived neurodegenerative disease models on a microfluidic chip |
EP3936604A4 (en) * | 2019-03-04 | 2022-12-21 | Nissin Foods Holdings Co., Ltd. | THREE-DIMENSIONAL MUSCLE TISSUE AND PROCESS FOR PRODUCTION THEREOF |
WO2021074126A1 (en) * | 2019-10-14 | 2021-04-22 | Georg-August-Universität Göttingen Stiftung Öffentlichen Rechts, Universitätsmedizin | Production of skeletal muscle cells and skeletal muscle tissue from pluripotent stem cells |
WO2022008757A1 (en) * | 2020-07-10 | 2022-01-13 | Max-Delbrück-Centrum Für Molekulare Medizin In Der Helmholtz-Gemeinschaft | A method for generating a three-dimensional neuromuscular organoid in vitro |
CN112877282A (en) * | 2021-02-09 | 2021-06-01 | 南通大学 | Method for culturing primary neuromuscular junction in vitro |
Also Published As
Publication number | Publication date |
---|---|
GB2575574B (en) | 2022-08-17 |
SG11201908358PA (en) | 2019-10-30 |
AU2018236273A1 (en) | 2019-10-31 |
GB201914656D0 (en) | 2019-11-27 |
GB2575574A (en) | 2020-01-15 |
CA3056089A1 (en) | 2018-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11767513B2 (en) | Neuromuscular junction | |
AU2018235950B2 (en) | Neuromuscular junction: NMJ-on-chip | |
WO2018170180A1 (en) | Neuromuscular junction | |
US20170226478A1 (en) | Neuromuscular Junction: NMJ-ON-CHIP | |
EP3504319B1 (en) | Development of spinal cord on a microfluidic chip | |
US20240228954A1 (en) | Microfluidic model of the blood brain barrier | |
US12091650B2 (en) | Development of spinal cord on a microfluidic chip | |
EP3280797A1 (en) | Generation of functional cells from stem cells | |
Tong et al. | Engineering a functional neuro-muscular junction model in a chip | |
JP2013512671A (en) | Selection of stem cell clones with defined differentiation potential | |
US20150329825A1 (en) | Compositions and methods employing stem cell-derived cardiomyocytes | |
Bakooshli et al. | A 3D model of human skeletal muscle innervated with stem cell-derived motor neurons enables epsilon-subunit targeted myasthenic syndrome studies | |
US10662409B2 (en) | Methods of generating neural stem cells | |
Mazzantini | Functional neural differentiation of adult hippocampus derived stem cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18767333 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3056089 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 201914656 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20180314 |
|
ENP | Entry into the national phase |
Ref document number: 2018236273 Country of ref document: AU Date of ref document: 20180314 Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18767333 Country of ref document: EP Kind code of ref document: A1 |