WO2018169004A1 - Nickel-manganese-based composite oxide and method for producing same - Google Patents
Nickel-manganese-based composite oxide and method for producing same Download PDFInfo
- Publication number
- WO2018169004A1 WO2018169004A1 PCT/JP2018/010239 JP2018010239W WO2018169004A1 WO 2018169004 A1 WO2018169004 A1 WO 2018169004A1 JP 2018010239 W JP2018010239 W JP 2018010239W WO 2018169004 A1 WO2018169004 A1 WO 2018169004A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nickel
- composite oxide
- transition metal
- lithium
- manganese composite
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a nickel-containing lithium manganese composite oxide and a method for producing the same.
- Lithium ion secondary batteries used as power sources for Japanese notebook computers, mobile phones, smartphones, etc. are widely used as batteries with significantly higher electrical energy (energy density) per battery size and weight. It is utilized. Furthermore, it is a promising battery system that has recently begun to be used in large systems such as electric cars, plug-in hybrid vehicles, houses and power plants.
- lithium ion secondary battery it is the material used for the positive electrode that determines the battery capacity and voltage.
- lithium-containing transition metal oxides such as lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), and lithium manganate (LiMn 2 O 4 ).
- Price instability based on the scarcity of resources, low chemical stability during charging, low charge / discharge capacity, etc. are pointed out, and it is an urgent need to secure further material candidates.
- lithium nickel manganate (LiNi 1/2 Mn 1/2 O 2 ) has been proposed by Non-Patent Document 1 and has been studied as a promising positive electrode material.
- lithium nickel manganate has a problem that synthesis is not easy.
- a battery using nickel cobalt lithium manganate has cobalt, so there is a problem in low chemical stability during charging.
- This low chemical stability is due to the safety of the battery and the setting of a high upper limit potential. May cause problems with cycle characteristics (for example, 4.5V or more). Therefore, it can still be meaningful to develop an easy synthesis method for a battery using lithium nickel manganate, which is excellent in terms of battery safety and cycle characteristics.
- Co-substitution has been performed in the first place in order to facilitate synthesis and reduce the amount of transition metal ions in the Li layer, but cobalt-containing materials have the above-mentioned problems. Therefore, if a material that does not contain cobalt and has a small amount of transition metal ions in the Li layer can be obtained, it is considered to be extremely useful industrially.
- an object of the present invention is a nickel-containing lithium-manganese composite that can be suitably used for a lithium secondary ion battery having a small amount of transition metal ions in the Li layer and excellent cycle characteristics. It is to provide an oxide.
- the present inventors have determined that a nickel-containing lithium manganese composite oxide having a predetermined chemical formula including a layered rock salt type crystal phase, and further, the nickel-containing lithium manganese composite oxide. It has been found that a lithium ion secondary battery having excellent cycle characteristics can be obtained by using it. The present inventors have further studied based on such knowledge and have completed the present invention.
- the present invention provides the following nickel manganese composite oxide and a method for producing the same.
- Item 1 General formula (1): Li 1 + x (Ni y Mn 1-y ) 1-x O 2 (1) [Wherein, x and y represent 0.0 ⁇ x ⁇ 1/3 and 0.3 ⁇ y ⁇ 0.6, respectively. ] Represented by a layered rock salt type crystal phase, The lattice constant a is 2.870 ⁇ or less and the lattice volume is 102.0 ⁇ 3 or less, Nickel-containing lithium manganese composite oxide.
- Item 2. Item 2.
- the nickel-containing lithium manganese composite oxide according to Item 1 wherein in the layered rock salt type crystal phase, the amount of transition metal contained in the lithium layer is 5% or less.
- Item 3. Item 3. The nickel-containing lithium manganese composite oxide according to Item 1 or 2, wherein the amount of transition metal contained in the transition metal layer is 88% or less in the layered rock salt type crystal phase.
- Item 4. Item 4. The nickel-containing lithium manganese composite oxide according to any one of Items 1 to 3, wherein the average valence of nickel ions is 2.5 or more.
- Item 6. Item 6.
- a lithium ion secondary battery comprising the nickel-containing lithium manganese composite oxide according to any one of Items 1 to 5 as a positive electrode active material.
- Item 7. Step 1 of forming a precipitate under an alkaline condition of 20 ° C. or lower from a mixed aqueous solution containing a manganese compound and a nickel compound, Step 2 of performing wet oxidation treatment on the precipitate, And a step 3 of heat treatment in an oxidizing atmosphere in the presence of lithium salt, Item 6.
- the nickel-containing lithium manganese composite oxide according to the present invention can be suitably used for a lithium ion secondary battery having a small amount of transition metal ions in the Li layer and excellent cycle characteristics.
- FIG. 2 is a diagram showing an X-ray diffraction pattern of a sample of Example 1.
- FIG. 6 is a diagram showing an X-ray diffraction pattern of a sample of Comparative Example 1.
- FIG. Example 1 is a diagram showing a comparative example 1 and the valence standard material (Li 2 MnO 3, NiO and LiNiO 2) of Mn and K near edge X-ray absorption spectrum of Ni (XANES). It is a figure which shows the charging / discharging characteristic evaluation test result of the lithium ion secondary battery of Example 1. It is a figure which shows the charging / discharging characteristic evaluation test result of the lithium ion secondary battery of the comparative example 1.
- Example 6 is a diagram showing an X-ray diffraction pattern of a sample of Example 2.
- FIG. It is a figure which shows the X-ray-diffraction pattern of the sample of the comparative example 2.
- Example 2 is a diagram showing a comparative example 2 and the valence standard material (Li 2 MnO 3, NiO and LiNiO 2) of Mn and K near edge X-ray absorption spectrum of Ni (XANES). It is a figure which shows the charging / discharging characteristic evaluation test result of the lithium ion secondary battery of Example 2. It is a figure which shows the charging / discharging characteristic evaluation test result of the lithium ion secondary battery of the comparative example 2.
- 6 is a diagram showing an X-ray diffraction pattern of a sample of Example 3.
- FIG. It is a figure which shows the X-ray-diffraction pattern of the sample of the comparative example 3.
- Example 3 is a diagram showing a comparative example 3 and the valence standard material (Li 2 MnO 3, NiO and LiNiO 2) of Mn and K near edge X-ray absorption spectrum of Ni (XANES). It is a figure which shows the charging / discharging characteristic evaluation test result of the lithium ion secondary battery of Example 3. It is a figure which shows the charging / discharging characteristic evaluation test result of the lithium ion secondary battery of the comparative example 3.
- 6 is a diagram showing an X-ray diffraction pattern of a sample of Example 4.
- Example 4 is a diagram showing a comparative example 4 and the valence standard material (Li 2 MnO 3, NiO and LiNiO 2) of Mn and K near edge X-ray absorption spectrum of Ni (XANES). It is a figure which shows the charging / discharging characteristic-evaluation test result of the lithium ion secondary battery of Example 4.
- 6 is a diagram showing an X-ray diffraction pattern of a sample of Example 5.
- FIG. It is a figure which shows the charging / discharging characteristic evaluation test result of the lithium ion secondary battery of Example 5.
- Nickel-containing lithium manganese composite oxide The nickel-containing lithium manganese composite oxide of the present invention has the general formula (1): Li 1 + x (Ni y Mn 1-y ) 1-x O 2 (1) [Wherein, x and y represent 0.0 ⁇ x ⁇ 1/3 and 0.3 ⁇ y ⁇ 0.6, respectively. ] Represented by a layered rock salt type crystal phase, Lattice constant a 2.870 ⁇ or less, the lattice volume is equal to or is 102.0A 3 or less.
- x is 0.0 ⁇ x ⁇ 1/3, and more preferably 0.05 ⁇ x ⁇ 0.25.
- x is less than 1/3, generation of excess lithium as an impurity can be suppressed, and as a result, excellent cycle characteristics of the battery can be obtained.
- the nickel content y is 0.3 ⁇ y ⁇ 0.6, and more preferably 0.3 ⁇ y ⁇ 0.5.
- y is 0.3 or more, the occurrence of battery voltage drop can be suppressed.
- y is 0.6 or less, the structural stability of the nickel-containing lithium manganese composite oxide can be maintained well even during charging.
- the nickel-containing lithium manganese composite oxide of the present invention includes a layered rock salt type crystal phase.
- the layered rock-salt crystal structure constituting the layered rock-salt crystal phase is a crystal that frequently appears in inorganic compounds of ABO type 2 (A is an alkali metal and B is a transition metal) possessed by lithium cobaltate and lithium nickelate. Structure. It has a crystal structure in which transition metal layers and lithium layers are alternately stacked via oxide ions, and it is said that lithium ion desorption and insertion reactions are easy with charge and discharge.
- the layered rock-salt crystal phases are the space group:
- the nickel-containing lithium manganese composite oxide of the present invention preferably contains a crystal phase of the above hexagonal layered rock salt structure or a crystal phase of a monoclinic layered rock salt structure, and a crystal phase of another rock salt structure (for example, , Cubic rock salt structure, etc.).
- a mixed phase the ratio of the crystal phase of the hexagonal layered rock salt structure or the crystal phase of the monoclinic layered rock salt structure is preferably 50 to 90% by mass based on the entire mixed phase.
- the nickel-containing lithium manganese composite oxide of the present invention may be composed of only the crystal phase of the above hexagonal layered rock salt structure or the crystal phase of the monoclinic layered rock salt structure.
- the lattice constant a in the layered rock salt type crystal structure of the nickel-containing lithium manganese composite oxide of the present invention is calculated as the a-axis value in the hexagonal layered rock salt type lattice corresponding to the distance between transition metal ions, and is 2.870 ⁇ or less. Yes, it is more preferably 2.865cm or less, further preferably 2.860cm or less.
- the lower limit value of the lattice constant a is preferably 2.850% or more from the viewpoint of securing a certain amount of trivalent nickel.
- the lattice volume is at 102.0A 3 or less, and more preferably 101.0A 3 or less.
- the lower limit of the lattice volume is preferably 100.0 to 3 or more from the viewpoint of securing a transition metal ordered structure.
- the lattice constant a and the lattice volume in the present specification mean values calculated assuming a hexagonal layered rock salt lattice.
- the lattice constant a and the lattice volume by having the above-described configuration, more than half of the nickel ions contained in the nickel-containing lithium manganese composite oxide are oxidized to trivalent.
- the manganese ion valence remains tetravalent regardless of the production method, but the average valence of nickel ions can vary from divalent to trivalent. High reactivity with lithium ions tends to be trivalent. If the reactivity with lithium ions is low, it tends to remain divalent.
- the average valence of nickel ions in the nickel-containing lithium manganese composite oxide of the present invention is preferably 2.5 or more, and more preferably 2.6 or more. By having such a configuration, it is possible to improve the charge / discharge characteristics of a lithium ion secondary battery manufactured using such a nickel-containing lithium manganese composite oxide as a positive electrode material.
- the average valence of nickel ions is determined from the 1s ⁇ 4p transition of each sample using, for example, an X-ray absorption (Ni-K XANES) spectrum in the vicinity of the nickel K end described later, using LiNiO 2 as trivalent and NiO as divalent standard substances The position of the corresponding peak top can be determined by comparing it with that of the standard.
- the upper limit of the average valence of nickel ions in the nickel-containing lithium manganese composite oxide is trivalent from the viewpoint of securing as many trivalent nickel ions as possible as a result of incorporating a large amount of Li ions. preferable.
- the nickel-containing lithium manganese composite oxide of the present invention preferably has a large oxygen content (O / (Ni + Mn) molar ratio) with respect to the transition metal, and the composition formula: Li 1 + x (Ni y Mn 1-y ) 1-x
- O / (Ni + Mn) molar ratio a large oxygen content
- the composition formula Li 1 + x (Ni y Mn 1-y ) 1-x
- y 0.5 composition in O 2
- Ni if Ni is divalent, the composition formula is LiNi 1/2 Mn 1/2 O 2 and (O / (Ni + Mn) molar ratio) is 2.
- Ni is trivalent, the composition formula is Li 1.2 Ni 0.4 Mn 0.4 O 2 and (O / (Ni + Mn) molar ratio) is 2.5.
- the lower limit of the above value is 2.3.
- the lower limit is set. Is preferably 2.4.
- the upper limit of the above value is preferably 3.
- the (O / (Ni + Mn) molar ratio) can be determined by quantifying the amount of transition metal ions and the amount of oxygen in the sample with a fluorescent X-ray analyzer.
- the tetravalent Mn ion and the trivalent Ni ion are mainly distributed at the 3b position (001/2) in the transition metal layer. Ions or trivalent Mn ions are mainly present at the 3a position (000) in the Li layer.
- the amount of transition metal in the Li layer is preferably 7% or less, and preferably 5% or less, out of 100% of the total amount of transition metals in the hexagonal layered rock salt lattice. More preferably.
- the amount of transition metal contained in the transition metal layer is preferably 88% or less, more preferably 82% or less, out of 100% of the total amount of transition metal in the hexagonal layered rock salt lattice. % Or less is more preferable.
- the amount of transition metal contained in the transition metal layer is preferably 88% or less, more preferably 82% or less, out of 100% of the total amount of transition metal in the hexagonal layered rock salt lattice. % Or less is more preferable.
- the amount of transition metal in the Li layer of the nickel-containing lithium manganese composite oxide of the present invention is preferably 0.01% or more.
- the amount of transition metal contained in the transition metal layer is preferably 50% or more.
- the amount of transition metal ions in the Li layer was reduced by adding Co.
- the addition of Co reduces the cycle characteristics during high potential charging and the thermal stability of the positive electrode after charging.
- the substance of the present invention is characterized in that a substance having a low amount of transition metal in the Li layer was obtained without adding Co.
- Positive electrode material for lithium ion secondary battery and lithium ion secondary battery The nickel-containing lithium manganese composite oxide described above can be used as a positive electrode material for lithium ion secondary battery.
- a positive electrode can be produced by supporting a positive electrode mixture prepared by mixing such a positive electrode material with a known conductive agent and a binder on a positive electrode current collector such as Al, Ni, stainless steel, or carbon cloth.
- the conductive agent for example, carbon materials such as graphite, cokes, carbon black, and acicular carbon can be used.
- the negative electrode material is not particularly limited, and examples thereof include metallic lithium, graphite, Si—SiO-based negative electrode, and LTO (Li 4 Ti 5 O 12 ) -based negative electrode.
- These negative electrode materials may be supported on a negative electrode current collector made of Al, Cu, Ni, stainless steel, carbon or the like using a conductive agent, a binder, or the like, if necessary, to produce a negative electrode.
- the electrolyte is not particularly limited, and an organic electrolytic solution in which LiPF 6 or the like is used as an electrolyte salt and dissolved in various solvents such as ethyl carbonate (EC) or dimethyl carbonate (DMC), Li 2 S—P 2 S 5 , Li Examples thereof include inorganic sulfide solid electrolytes such as 2 S—GeS 2 —P 2 S 5 and Li 2 S—SiS 2 —Li 3 PO 4, and polymer polymers having lithium ion conductivity.
- the separator is not particularly limited, and examples thereof include polyethylene and polypropylene.
- the method for producing a nickel-containing lithium manganese composite oxide and the present invention further include the above-described method for producing a nickel-containing lithium manganese composite oxide.
- the method for producing the nickel-containing lithium manganese composite oxide of the present invention comprises: Step 1 of forming a precipitate under an alkaline condition of 20 ° C. or lower from a mixed aqueous solution containing a manganese compound and a nickel compound, Step 2 of performing wet oxidation treatment on the precipitate, And a step 3 of heat-treating in an oxidizing atmosphere in the presence of lithium salt.
- the manganese compound to be used is not particularly limited.
- Known products including manganese (III) acetate, potassium permanganate (VII) and the like can be widely used.
- Manganese oxide and manganese metal can also be used as a water-soluble salt by dissolving them with an appropriate acid.
- the nickel compound to be used is not particularly limited, and it is possible to use a wide variety of known compounds including hydrates such as nickel nitrate (II), nickel acetate (II), nickel chloride (II), nickel sulfate (II). it can. Nickel oxide and metallic nickel can also be used as a water-soluble salt by dissolving them with an appropriate acid.
- the alkali source used for the alkaline condition is not particularly limited, and a wide variety of known sources such as sodium hydroxide, lithium hydroxide (including hydrates thereof), aqueous ammonia and potassium hydroxide can be used. It is.
- the alkali source is added to a mixed aqueous solution obtained by mixing the manganese compound and the nickel compound to obtain an alkaline condition.
- a mixing method at this time a well-known mixing method can be widely adopted, and there is no particular limitation.
- water is usually used as the solvent of the mixed aqueous solution, but is not necessarily limited thereto, and alcohols such as ethanol and methanol may be used. These solvents may be used alone or in combination of two or more. Alcohols can also be used as a precipitating material when using potassium permanganate as a manganese source, and can also be used as an antifreeze at the time of dropping at a low temperature of 0 ° C. or lower as described later.
- Step 1 a precipitate is formed in a known container capable of adjusting and maintaining the temperature of the mixed aqueous solution, such as a thermostatic bath.
- the temperature of the mixed aqueous solution needs to be set to 20 ° C. or lower. If the temperature is higher than this, the primary particle size of the precipitate is increased, and the reactivity with lithium tends to be lowered.
- the upper limit of the set temperature of the mixed aqueous solution in step 1 is more preferably 25 ° C. or less, and further preferably 20 ° C. or less.
- the lower limit value of the set temperature is preferably ⁇ 10 ° C. or higher, more preferably 0 ° C. or higher, from the viewpoint of ease of production.
- the alkali concentration it is sufficient that the alkali concentration (pH 11 or more) is obtained at the end of the preparation of the precipitate in Step 1.
- Step 2 the precipitate obtained in Step 1 is subjected to wet oxidation treatment.
- an oxidizing gas such as air or oxygen gas is blown (bubbled) into an alkaline aqueous solution containing a precipitate to oxidize and precipitate the precipitate to produce a precursor having high reactivity with lithium.
- the gas to be blown is not particularly limited as long as oxygen gas is contained (for example, air), but oxygen gas is preferable from the viewpoint of shortening the oxidation time.
- oxygen gas an industrial oxygen generator may be used as well as a commonly used cylinder.
- the temperature of the wet oxidation is not particularly limited, and may be, for example, around room temperature.
- the wet oxidation time is preferably as long as possible from the viewpoint of allowing the reaction to proceed sufficiently, but is preferably 1 hour or longer, more preferably 24 hours or longer, and even more preferably 48 hours or longer.
- step 3 the aged product obtained in step 2 is subjected to heat treatment in the presence of a lithium salt.
- the aged product obtained in the step 2 is washed with distilled water or the like to remove the salts.
- the reaction product obtained in the above step 2 is used as it is as a heat treatment raw material in step 3. Further, heat treatment may be performed in an oxidizing atmosphere in the presence of a lithium salt.
- the reaction product obtained in Step 2 above and lithium The method of mixing with a salt can be mentioned. More specifically, if the lithium salt is insoluble in water, dry-mix and then pulverize well with a vibration mill or the like. If water-soluble, the precipitate is sufficiently dispersed in an aqueous solution containing the lithium salt and then uniformly applied to a mixer. It is desirable to make a simple slurry. The slurry or the like is preferably dried by a drier and pulverized again as necessary.
- a dried material may be used as the heat treatment raw material.
- a dried product it is preferable to mix with the lithium salt before drying from the viewpoint of solidifying with residual alkali during drying and avoiding difficulty in uniform mixing with the lithium salt.
- lithium salt known lithium salts can be widely used, and there is no particular limitation. Specifically, lithium acetate, lithium nitrate, lithium chloride, or the like can be used in addition to inexpensive lithium carbonate and lithium hydroxide having high reactivity with precipitation. In addition to the above lithium salt, lithium perchlorate and its hydrate can also be used as an oxidizing agent.
- the amount of lithium salt added to the heat treatment raw material is adjusted according to the nickel average valence assuming the lithium molar amount (Li / (Ni + Mn) ratio) relative to the number of moles of nickel and manganese in the heat treatment raw material. preferable. That is, as described above, since the nickel-containing lithium manganese composite oxide of the present invention has a valence of Mn of 4 and an average valence of Ni of 2.5 or more, the y value in the composition formula is 0.4 to In the case of 0.6, the Li / (Ni + Mn) ratio is preferably 1.25 or more, more preferably 1.5 or more.
- Li / (Ni + Mn) ratio there is no particular upper limit for the Li / (Ni + Mn) ratio, but an expensive lithium source is used, so that it is preferably 2.5 or less from the viewpoint of economy.
- the Li / (Ni + Mn) ratio can be set within the above range depending on the average valence of Mn and Ni constituting the material, but the (Li / (Ni + Mn) ratio) should be 1.25 or more (Li excess composition). Is preferred.
- a Li-excess composition it is possible to suppress the generation of impurity phases such as LiMn 2 O 4 spinel with a small amount of lithium in the sample, stabilization of high-value trivalent nickel ions during high-temperature heat treatment, and flux effects. Contributes to the improvement of the primary and secondary particle size of the heat-treated product.
- the lithium salt is insoluble in water, dry-mix and then pulverize well with a vibration mill or the like. If water-soluble, the precipitate is sufficiently dispersed in an aqueous solution containing the lithium salt, and then applied to a mixer to form a uniform slurry. It is desirable to produce it.
- the slurry or the like may be dried with a dryer and pulverized again as necessary.
- the drying temperature is preferably 100 ° C. or lower, and more preferably 60 ° C. or lower. When dried under a temperature condition exceeding 100 ° C., the slurry viscosity decreases due to the high temperature, and the precipitate is easily separated from the lithium salt. On the other hand, if the drying temperature is too low, it does not dry, so vacuum or freeze drying may be used.
- the heat treatment is not particularly limited as long as heat is applied, and widely known methods can be employed. Among them, it is preferable to perform the baking treatment from the viewpoint that the heat treatment can be easily performed.
- the baking treatment is performed in an oxidizing atmosphere.
- firing in an oxidizing atmosphere means firing in the air or in an oxygen stream.
- the lattice constant a and the lattice volume in the composite oxide of the present invention can be set to the above-described numerical ranges, and eventually the nickel-containing lithium manganese composite oxide finally obtained. It becomes possible to increase the average valence of nickel ions in the product.
- the lithium ion secondary battery using the nickel-containing lithium manganese composite oxide having a high average valence of nickel ions as the positive electrode material is excellent in charge / discharge characteristics.
- the firing temperature is preferably about 750 ° C. to 1000 ° C., although it depends on the composition of the heat treatment raw material.
- the firing temperature is preferably about 750 ° C. to 1000 ° C., although it depends on the composition of the heat treatment raw material.
- the firing time is preferably 30 minutes or longer, more preferably 3 hours or longer, while maintaining the temperature within the above-mentioned firing temperature range from the viewpoint of sufficient reaction.
- the upper limit of baking time it is preferable to set it within 30 hours from a viewpoint of suppressing an increase in manufacturing cost.
- step 3 may be repeated a plurality of times in order to obtain a nickel-containing lithium manganese composite oxide having more excellent charge / discharge characteristics.
- the number of repetitions is preferably 2 to 3 times from the viewpoint of simplifying the process and ensuring uniformity.
- Example 1 36.35 g of nickel (II) nitrate hexahydrate and 24.74 g of manganese (II) chloride tetrahydrate (0.25 mol / batch, Ni: Mn molar ratio 1: 1) were weighed into 500 ml of distilled water. It was completely dissolved. In another titanium beaker, 50 g of sodium hydroxide was added, and 500 ml of distilled water was added and completely dissolved. A sodium hydroxide aqueous solution was fixed in a thermostat kept at 20 ° C., and stirred and held until the solution reached the same temperature. A liquid feed pump was set in the metal salt solution, and the metal salt solution was gradually added to the alkali solution over 3 hours to form a precipitate.
- the pH of the alkaline solution was 11 or more even after completion of the precipitation.
- the beaker was taken out of the thermostatic bath and stirred at room temperature, and then wet oxidation and aging were performed for 2 days while blowing oxygen into the precipitate using an oxygen gas generator.
- the precipitate was washed with distilled water to remove alkali or salts and then filtered.
- 0.25 mol (18.47 g) of lithium carbonate was added to the precipitate and mixed with 200 ml of distilled water to prepare a slurry.
- the slurry was transferred to a polytetrafluoroethylene petri dish and dried at 50 ° C. for 2 days to produce a firing raw material.
- the raw material was pulverized by a vibration mill, spread thinly on an alumina crucible lid, subjected to primary firing at 650 ° C. in the atmosphere for 5 hours, and then cooled in a furnace.
- the fired raw material was pulverized again with a vibration mill and subjected to secondary firing in the air at 850 ° C. for 5 hours. After cooling in the furnace, a sample was taken out, washed with distilled water, filtered and dried to obtain the target composite oxide.
- Example 1 A sample was prepared in the same manner as in Example 1 except that the secondary firing was performed in nitrogen instead of in the air.
- Example 1 Evaluation by X-ray diffraction (Example 1) The actual measurement (+) of the sample of Example 1 obtained above and the calculated (curved) X-ray diffraction (XRD) pattern using a hexagonal layered rock salt unit cell (the following space group) are shown in FIG.
- the obtained XRD pattern could be attributed to a monoclinic Li 2 MnO 3 type structure (the following space group) phase having a hexagonal network regular arrangement in the transition metal layer.
- FIG. 2 shows an actual measurement (+) of the sample of Comparative Example 1 obtained above and a calculated (curved) X-ray diffraction (XRD) pattern using a hexagonal layered rock salt unit cell (the following space group).
- the obtained XRD pattern could be attributed to a monoclinic Li 2 MnO 3 type structure (the following space group) phase having a hexagonal network regular arrangement in the transition metal layer.
- FIGS. 3A and 3B show the X-ray absorption spectra (XANES) near the K-edge of Mn and Ni in the samples of Example 1 and Comparative Example 1, respectively.
- XANES X-ray absorption spectra
- Li 2 MnO 3 , NiO and LiNiO 2 were used as standard materials for tetravalent Mn, divalent Ni and trivalent Ni, respectively.
- the XANES data of Li 2 MnO 3 which is a tetravalent Mn standard substance, almost overlaps.
- there is no difference in the Mn valence there is no difference in the Mn valence, and it can be judged as tetravalent.
- the XANES data at the NiK end shows that the peak top position corresponding to the 1s ⁇ 4p transition differs greatly between Example 1 and Comparative Example 1.
- the sample of Example 1 is shifted to a higher energy side than the sample of Comparative Example 1, which reflects the higher Ni ion valence. Therefore, the Ni average valence was estimated using the following calculation formula.
- Ni average valence 2 + ⁇ (peak top energy value of example sample) ⁇ (peak top energy value of NiO) ⁇ ⁇ ⁇ (peak top energy value of LiNiO 2 sample) ⁇ (peak top energy value of NiO) ⁇
- Example 1 Since the energy values of NiO and LiNiO 2 were 8349.3 and 8351.3 eV, respectively, and the energy value of the example sample was estimated to be 8351 eV, the average valence of the obtained nickel ions was calculated to be 2.85. It was done.
- the charge capacity is limited to 80 mAh / g for the first cycle until 1-4 cycles, and the charge capacity is limited to 80 mAh / g for the second cycle after discharge.
- Charging / discharging was carried out while increasing the charging capacity by 40 mAh / g until the cycle, charging to 4.8 V at the fifth cycle, and then discharging. Thereafter, 29 cycles of charge and discharge were performed in the set potential range.
- a battery was produced under the same conditions, and a similar charge / discharge characteristic evaluation test was performed.
- Example 1 FIG. 4 shows a charge / discharge curve at 30 ° C. of a lithium secondary battery using the sample of Example 1 as a positive electrode.
- the curve that rises to the right corresponds to charge (c), and the curve that falls to the right corresponds to discharge (d).
- the number indicates the cycle number. From FIG. 4, the charge capacity and discharge capacity at the fifth cycle (corresponding to the initial stage after activation) were 226 mAh / g and 205 mAh / g, respectively, and the charge / discharge efficiency was 93%. Moreover, the average voltage at the time of the fifth cycle discharge is 3.69 V, and the energy density corresponding to the product of the discharge capacity is 757 mWh / g. The discharge capacity of 30 cycles after) was as high as 189 mAh / g, and the discharge capacity maintenance rate at 30 cycles with respect to 5 cycles was as high as 92%.
- FIG. 5 shows a charge / discharge curve at 30 ° C. of a lithium secondary battery using the sample of Comparative Example 1 as a positive electrode.
- the curve that rises to the right corresponds to charge (c), and the curve that falls to the right corresponds to discharge (d).
- the charge capacity and discharge capacity at the fifth cycle were 218 mAh / g and 205 mAh / g, respectively, and the charge / discharge efficiency was 93%.
- the average voltage at the fifth cycle discharge is 3.78 V and the energy density corresponding to the product of the discharge capacity is 773 mWh / g, which has sufficient initial characteristics as a high capacity positive electrode
- after 34 cycles (after activation 30 Discharge capacity) was as low as 30 mAh / g
- the discharge capacity retention rate at 30 cycles with respect to 5 cycles was 14%. That is, the comparative sample was not sufficient in cycle characteristics as a lithium ion secondary battery positive electrode material.
- Example 2 Weigh 29.08 g of nickel (II) nitrate hexahydrate and 29.69 g of manganese (II) chloride tetrahydrate (0.25 mol / batch, Ni: Mn molar ratio 4: 6) and completely dissolve in 500 ml of distilled water. Dissolved. An aqueous sodium hydroxide solution was fixed in a thermostatic bath maintained at + 5 ° C., and stirred and held until the solution reached the same temperature. Thereafter, a sample was prepared by the same process as in Example 1 to obtain the target composite oxide.
- Example 2 A sample was prepared in the same manner as in Example 2 except that the secondary firing was performed in nitrogen instead of in the air.
- Example 2 Evaluation by X-ray diffraction (Example 2) The actual measurement (+) of the sample of Example 2 obtained above and the calculated (curved) X-ray diffraction (XRD) pattern using the hexagonal layered rock salt type unit cell (the above space group) are shown in FIG.
- the obtained XRD pattern could be attributed to a monoclinic Li 2 MnO 3 type structure (the following space group) phase having a hexagonal network regular arrangement in the transition metal layer.
- FIG. 7 shows an actual measurement (+) of the sample of Comparative Example 2 obtained above and a calculated (curved) X-ray diffraction (XRD) pattern using a hexagonal layered rock salt unit cell (the following space group).
- the obtained XRD pattern could be attributed to a monoclinic Li 2 MnO 3 type structure (the following space group) phase having a hexagonal network regular arrangement in the transition metal layer.
- the x value is 0.090 (6).
- the y value was 0.398 (1) because it was the Ni / (Ni + Mn) molar ratio itself.
- FIGS. 8A and 8B show the X-ray absorption spectra (XANES) near the K-edge of Mn and Ni in the samples of Example 2 and Comparative Example 2, respectively.
- XANES X-ray absorption spectra
- the XANES data at the NiK end shows that the peak top position corresponding to the 1s ⁇ 4p transition differs greatly between Example 2 and Comparative Example 2.
- the sample of Example 2 is shifted to a higher energy side than the sample of Comparative Example 2, which reflects the higher Ni ion valence. Therefore, the Ni average valence was estimated using the following calculation formula.
- Ni average valence 2 + ⁇ (peak top energy value of example sample) ⁇ (peak top energy value of NiO) ⁇ ⁇ ⁇ (peak top energy value of LiNiO 2 sample) ⁇ (peak top energy value of NiO) ⁇ (Example 2)
- the energy values of NiO and LiNiO 2 were 8346.7 and 8348.8 eV, respectively, and the peak top energy value of the example sample was estimated to be 8348.5 eV. Therefore, the average valence of the obtained nickel ions was calculated to be 2.86. .
- Example 2 A lithium half battery was assembled in the same manner as in Example 1 using the obtained powder of Example 2 as a positive electrode active material, and a charge / discharge test at the start of charging was performed at 30 ° C.
- the charge / discharge test conditions are the same as in Example 1.
- a battery was prepared under the same conditions, and the same charge / discharge characteristic evaluation test was performed.
- FIG. 9 shows a charge / discharge curve at 30 ° C. of a lithium secondary battery using the sample of Example 2 as a positive electrode. The curve that rises to the right corresponds to charge (c), and the curve that falls to the right corresponds to discharge (d). The number indicates the cycle number. From FIG.
- the charge capacity and discharge capacity at the fifth cycle were 217 mAh / g and 209 mAh / g, respectively, and the charge / discharge efficiency was 96%.
- the average voltage at the fifth cycle discharge is 3.58V
- the energy density corresponding to the product of the discharge capacity is 749 mWh / g, and not only has sufficient initial characteristics as a high capacity positive electrode, but also after 34 cycles (after activation)
- the discharge capacity (corresponding to 30 cycles) was as high as 206 mAh / g, and the discharge capacity retention rate after 30 cycles with respect to 5 cycles was as high as 99%.
- FIG. 10 shows a charge / discharge curve at 30 ° C. of a lithium secondary battery using the sample of Comparative Example 2 as a positive electrode.
- the curve that rises to the right corresponds to charge (c), and the curve that falls to the right corresponds to discharge (d).
- the charge capacity and discharge capacity at the fifth cycle were 218 mAh / g and 206 mAh / g, respectively, and the charge / discharge efficiency was 94%.
- the average voltage at the time of the fifth cycle discharge is 3.65V and the energy density corresponding to the product of the discharge capacity is 749 mWh / g, it has sufficient initial characteristics as a high capacity positive electrode, but after 34 cycles (30 cycles after activation)
- the discharge capacity was as low as 126 mAh / g, and the discharge capacity retention rate after 30 cycles with respect to 5 cycles was 61%. That is, the comparative sample was not sufficient in cycle characteristics as a lithium ion secondary battery positive electrode material.
- Example 3 Weigh 43.62 g of nickel (II) nitrate hexahydrate and 19.79 g of manganese (II) chloride tetrahydrate (0.25 mol / batch, Ni: Mn molar ratio 6: 4) and completely weigh it in 500 ml of distilled water. Dissolved. A sodium hydroxide aqueous solution was fixed in a thermostat kept at 5 ° C., and stirred and held until the solution reached the same temperature. Thereafter, a sample was prepared by the same process as in Example 1 to obtain the target composite oxide. (Comparative Example 3) A sample was prepared in the same manner as in Example 3 except that the secondary firing was performed in nitrogen instead of in the air.
- FIG. 11 shows an actual measurement (+) of the sample of Example 3 obtained above and a calculated (curved) X-ray diffraction (XRD) pattern using a hexagonal layered rock salt unit cell (the following space group).
- the obtained XRD pattern could be attributed to a monoclinic Li 2 MnO 3 type structure (the following space group) phase having a hexagonal network regular arrangement in the transition metal layer.
- FIG. 12 shows an actual measurement (+) of the sample of Comparative Example 3 obtained above and a calculated (curved) X-ray diffraction (XRD) pattern using a hexagonal layered rock salt unit cell (the following space group).
- the obtained XRD pattern could be attributed to a monoclinic Li 2 MnO 3 type structure (the following space group) phase having a hexagonal network regular arrangement in the transition metal layer.
- the x value (Li / (Ni + Mn) molar ratio-1) ⁇ (Li / (Ni + Mn) molar ratio + 1) Therefore, the x value is -0.0493 (10). This x value was a negative value. On the other hand, the y value was 0.595 (1) because it was the Ni / (Ni + Mn) molar ratio itself.
- FIGS. 13A and 13B show the X-ray absorption spectra (XANES) near the K-edge of Mn and Ni in the samples of Example 3 and Comparative Example 3, respectively.
- XANES X-ray absorption spectra
- Li 2 MnO 3 , NiO and LiNiO 2 were used as standard materials for tetravalent Mn, divalent Ni and trivalent Ni, respectively.
- At the MnK end there is no difference between the spectra of Example 3 and Comparative Example 3, and almost overlaps with the XANES data of Li 2 MnO 3 which is a standard substance of tetravalent Mn.
- the XANES data at the NiK end shows that the peak top position corresponding to the 1s ⁇ 4p transition is greatly different between Example 3 and Comparative Example 3.
- the sample of Example 3 is shifted to a higher energy side than the sample of Comparative Example 3, which reflects that the Ni ion valence is high. Therefore, the Ni average valence was estimated using the following calculation formula.
- Ni average valence 2 + ⁇ (peak top energy value of example sample) ⁇ (peak top energy value of NiO) ⁇ ⁇ ⁇ (peak top energy value of LiNiO 2 sample) ⁇ (peak top energy value of NiO) ⁇ (Example 3)
- the energy values of NiO and LiNiO 2 were 8346.7 and 8348.8 eV, respectively, and the peak top energy value of the example sample was estimated to be 8348.2 V. Therefore, the average valence of the obtained nickel ions was calculated to be 2.71. .
- Example 3 As a positive electrode active material, a lithium half battery was assembled in the same manner as in Example 1, and a charge / discharge test at the start of charging was performed at 30 ° C.
- the charge / discharge test conditions are the same as in Example 1.
- a battery was prepared under the same conditions, and the same charge / discharge characteristic evaluation test was performed.
- FIG. 14 shows a charge / discharge curve at 30 ° C. of a lithium secondary battery using the sample of Example 3 as a positive electrode.
- the curve that rises to the right corresponds to charge (c), and the curve that falls to the right corresponds to discharge (d).
- the number indicates the cycle number. From FIG. 14, the charge capacity and discharge capacity at the fifth cycle (corresponding to the initial stage after activation) were 164 mAh / g and 156 mAh / g, respectively, and the charge / discharge efficiency was 95%.
- FIG. 15 shows a charge / discharge curve at 30 ° C. of a lithium secondary battery using the sample of Comparative Example 3 as a positive electrode.
- the curve that rises to the right corresponds to charge (c), and the curve that falls to the right corresponds to discharge (d).
- the charge capacity and discharge capacity at the fifth cycle were 175 mAh / g and 169 mAh / g, respectively, and the charge / discharge efficiency was 97%.
- the energy density corresponding to the product of the discharge voltage and the average voltage at the 5th cycle is 3.83 mWh / g, which has sufficient initial characteristics as a high capacity positive electrode, after 34 cycles (equivalent to 30 cycles after activation)
- the discharge capacity was as low as 105 mAh / g, and the discharge capacity retention rate after 30 cycles with respect to 5 cycles was as low as 62%. That is, the comparative sample was not sufficient in cycle characteristics as a lithium ion secondary battery positive electrode material.
- Example 4 Weigh 29.08 g of nickel (II) nitrate hexahydrate and 29.69 g of manganese chloride (II) tetrahydrate (0.25 mol / batch, Ni: Mn molar ratio 4: 6) in 500 ml of distilled water. It was completely dissolved. In another titanium beaker, 50 g of sodium hydroxide was added, and 500 ml of distilled water was added and completely dissolved. Thereafter, 200 ml of ethanol was added as an antifreeze and stirred well. The sodium hydroxide solution was fixed in a thermostat kept at ⁇ 10 ° C., and stirred and held until the solution reached the same temperature.
- a liquid feed pump was set in the metal salt solution, and the metal salt solution was gradually added to the alkali solution over 3 hours to form a precipitate. It was confirmed that the pH of the alkaline solution was 11 or more even after completion of the precipitation. After completion of the precipitation, the beaker was taken out of the thermostatic bath and stirred at room temperature, and then wet oxidation and aging were performed for 2 days while blowing oxygen into the precipitate using an oxygen gas generator. After aging, the precipitate was washed with distilled water to remove alkali or salts and then filtered.
- FIG. 16 shows the actual measurement (+) of the sample of Example 4 obtained above and the calculated (curved) X-ray diffraction (XRD) pattern using a hexagonal layered rock salt unit cell (the following space group).
- the obtained XRD pattern could be attributed to a monoclinic Li 2 MnO 3 type structure (the following space group) phase having a hexagonal network regular arrangement in the transition metal layer.
- FIGS. 17A and 17B show the X-ray absorption spectra (XANES) near the K-edge of Mn and Ni in the sample of Example 4.
- XANES X-ray absorption spectra
- Li 2 MnO 3 , NiO and LiNiO 2 were used as standard materials for tetravalent Mn, divalent Ni and trivalent Ni, respectively.
- the spectrum of the sample of Example 4 almost overlaps with the XANES data of Li 2 MnO 3 which is a standard substance of tetravalent Mn, so that the Mn valence can be determined to be tetravalent.
- the peak top value accompanying the 1s ⁇ 4p transition of the XANES data at the NiK edge of the sample of Example 4 was present at a position approximately in the middle between the two kinds of reference materials with known valences. Therefore, the Ni average valence was estimated using the following calculation formula.
- Ni average valence 2 + ⁇ (peak top energy value of example sample) ⁇ (peak top energy value of NiO) ⁇ ⁇ ⁇ (peak top energy value of LiNiO 2 sample) ⁇ (peak top energy value of NiO) ⁇ Since the energy values of NiO and LiNiO 2 were 8346.3 and 8348.4 eV, respectively, and the energy value of the sample of Example 4 was estimated to be 8347.5 eV, the average valence of the obtained nickel ions was calculated to be 2.57. From the above, it is shown that if an oxidizing atmosphere is selected as the primary firing, the target substance can be obtained even if an inert gas atmosphere such as in a nitrogen stream is selected during the secondary firing.
- FIG. 18 shows a charge / discharge curve at 30 ° C. of a lithium secondary battery using the sample of Example 4 as a positive electrode. The curve that rises to the right corresponds to charge (c), and the curve that falls to the right corresponds to discharge (d). The number indicates the cycle number. As shown in FIG.
- the charge capacity and discharge capacity at the fifth cycle were 240 mAh / g and 228 mAh / g, respectively, and the charge / discharge efficiency was 95%.
- the average voltage at the fifth cycle discharge is 3.67V
- the energy density corresponding to the product of the discharge capacity is 838 mWh / g, and not only has sufficient initial characteristics as a high capacity positive electrode, but also after 34 cycles (after activation)
- the discharge capacity (corresponding to 30 cycles) was also as high as 218 mAh / g, and the 34-cycle discharge capacity maintenance rate with respect to 5 cycles was as high as 96%.
- Example 5 A sample was prepared in the same manner as in Example 4 except that the secondary firing atmosphere was changed from nitrogen to air.
- Example 5 Evaluation by X-ray diffraction (Example 5) An actual measurement (+) of the sample of Example 5 obtained above and a calculated (curved) X-ray diffraction (XRD) pattern using a hexagonal layered rock salt unit cell (the following space group) are shown in FIG.
- the obtained XRD pattern could be attributed to a monoclinic Li 2 MnO 3 type structure (the following space group) phase having a hexagonal network regular arrangement in the transition metal layer.
- FIG. 20 shows a charge / discharge curve at 30 ° C. of a lithium secondary battery using the sample of Example 5 as a positive electrode. The curve that rises to the right corresponds to charge (c), and the curve that falls to the right corresponds to discharge (d). The number indicates the cycle number. From FIG.
- the charge capacity and discharge capacity at the fifth cycle were 231 mAh / g and 222 mAh / g, respectively, and the charge / discharge efficiency was 96%.
- the average voltage at the fifth cycle discharge is 3.50V
- the energy density corresponding to the product of the discharge capacity is 778 mWh / g and not only has sufficient initial characteristics as a high capacity positive electrode, but also after 34 cycles (after activation)
- the discharge capacity (corresponding to 30 cycles) was as high as 218 mAh / g, and the 34-cycle discharge capacity retention rate with respect to 5 cycles was as high as 98%, confirming that it had excellent characteristics as a positive electrode material for lithium ion secondary batteries.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Provided is a nickel-containing lithium-manganese composite oxide in which the amount of transition metal ions in a Li layer is small, which exhibits excellent cycle characteristics, and which can be advantageously used in a lithium ion secondary battery. The nickel-containing lithium-manganese composite oxide is represented by general formula (1): Li1+x(NiyMn1-y)1-xO2 [in the formula, x and y are such that 0.0 ≤ x < 1/3 and 0.3 ≤ y ≤ 0.6]. The nickel-containing lithium-manganese composite oxide contains a layered halite crystal phase, has a lattice constant a of 2.870 Å or less, and has a lattice volume of 102.0 Å3 or less.
Description
本発明は、ニッケル含有リチウムマンガン複合酸化物及びその製造方法に関する。
The present invention relates to a nickel-containing lithium manganese composite oxide and a method for producing the same.
我が国のノート型パソコンや携帯電話、スマートフォン等(小型民生用)の電源として使われているリチウムイオン二次電池は、電池サイズ、重量あたりの電気エネルギー量(エネルギー密度)が格段に高い電池として広く活用されている。さらに最近では電気自動車、プラグインハイブリッド車、住宅や発電所併設等の大型システムへの活用も始まっている有望な電池系である。
Lithium ion secondary batteries used as power sources for Japanese notebook computers, mobile phones, smartphones, etc. (for small consumer products) are widely used as batteries with significantly higher electrical energy (energy density) per battery size and weight. It is utilized. Furthermore, it is a promising battery system that has recently begun to be used in large systems such as electric cars, plug-in hybrid vehicles, houses and power plants.
リチウムイオン二次電池において、電池容量と電圧を決定づけるのが正極に使用される材料である。これらの多くはリチウム含有遷移金属酸化物であり、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn2O4)などが実用化されているが、それぞれ、Co資源の希少性に基づく価格の不安定性、充電時の化学的安定性の低さ、充放電容量の低さなどが指摘され、さらなる材料候補の確保が急務である。
In the lithium ion secondary battery, it is the material used for the positive electrode that determines the battery capacity and voltage. Many of these are lithium-containing transition metal oxides such as lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), and lithium manganate (LiMn 2 O 4 ). Price instability based on the scarcity of resources, low chemical stability during charging, low charge / discharge capacity, etc. are pointed out, and it is an urgent need to secure further material candidates.
かかる材料候補としてニッケルマンガン酸リチウム(LiNi1/2Mn1/2O2)が、非特許文献1により提案され、有望な正極用の材料として検討されてきた。しかしニッケルマンガン酸リチウムには、合成が容易ではないという課題があった。例えば、共沈-水熱-焼成法により、ニッケルマンガン酸リチウムが得られることを見いだされている(特許文献1)が、合成法が複雑でそのまま実用化製造プロセスに転用できないという問題があった。そこで最近ではより合成がしやすい3元系と呼ばれるニッケルコバルトマンガン酸リチウム(LiNi1/3Co1/3Mn1/3O2)に変わってきている。
As such a material candidate, lithium nickel manganate (LiNi 1/2 Mn 1/2 O 2 ) has been proposed by Non-Patent Document 1 and has been studied as a promising positive electrode material. However, lithium nickel manganate has a problem that synthesis is not easy. For example, it has been found that lithium nickel manganate can be obtained by a coprecipitation-hydrothermal-firing method (Patent Document 1), but there is a problem that the synthesis method is complicated and cannot be directly used for a practical production process. . Therefore, recently, it has been changed to a nickel cobalt lithium manganate (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) called a ternary system that is easier to synthesize.
しかしニッケルコバルトマンガン酸リチウムを使用した電池は、コバルトを有するため、充電時における化学安定性の低さに課題があり、かかる化学安定性の低さは、電池の安全性及び高上限電位設定時(例えば4.5V以上)のサイクル特性に問題をきたすことがある。したがって、電池の安全性及びサイクル特性の面で優れるニッケルマンガン酸リチウムを使用した電池の、容易な合成方法を開発することは、依然として有意義なことであるといえる。
However, a battery using nickel cobalt lithium manganate has cobalt, so there is a problem in low chemical stability during charging. This low chemical stability is due to the safety of the battery and the setting of a high upper limit potential. May cause problems with cycle characteristics (for example, 4.5V or more). Therefore, it can still be meaningful to develop an easy synthesis method for a battery using lithium nickel manganate, which is excellent in terms of battery safety and cycle characteristics.
そもそもCo置換が行われてきたのは、合成を容易にし、Li層内の遷移金属イオン量を低減させるためであるということが背景にあるものの、コバルト含有材料には上記のような課題があるため、コバルトを含まず、Li層内遷移金属イオン量の少ない材料を得ることができれば、産業上も極めて有用であると考えられる。
Co-substitution has been performed in the first place in order to facilitate synthesis and reduce the amount of transition metal ions in the Li layer, but cobalt-containing materials have the above-mentioned problems. Therefore, if a material that does not contain cobalt and has a small amount of transition metal ions in the Li layer can be obtained, it is considered to be extremely useful industrially.
そこで、Li層内の遷移金属イオン量の少ないニッケルマンガン系の正極材料であって、サイクル特性に優れた、リチウム二次イオン電池に使用可能な材料が求められていた。
Therefore, there has been a demand for a nickel manganese type positive electrode material with a small amount of transition metal ions in the Li layer, which has excellent cycle characteristics and can be used for a lithium secondary ion battery.
上記のような事情に鑑み、本発明の目的とするところは、Li層内の遷移金属イオン量が少なく、サイクル特性に優れた、リチウム二次イオン電池に好適に使用可能なニッケル含有リチウムマンガン複合酸化物を提供することにある。
In view of the circumstances as described above, an object of the present invention is a nickel-containing lithium-manganese composite that can be suitably used for a lithium secondary ion battery having a small amount of transition metal ions in the Li layer and excellent cycle characteristics. It is to provide an oxide.
本発明者らは上記目的を達成すべく鋭意研究を重ねた結果、層状岩塩型結晶相を含む所定の化学式を有するニッケル含有リチウムマンガン複合酸化物、さらには、該ニッケル含有リチウムマンガン複合酸化物を使用することによりサイクル特性に優れた、リチウムイオン二次電池を得ることができることを見出した。本発明者らは、かかる知見に基づきさらに研究を重ね、本発明を完成するに至った。
As a result of intensive studies to achieve the above object, the present inventors have determined that a nickel-containing lithium manganese composite oxide having a predetermined chemical formula including a layered rock salt type crystal phase, and further, the nickel-containing lithium manganese composite oxide. It has been found that a lithium ion secondary battery having excellent cycle characteristics can be obtained by using it. The present inventors have further studied based on such knowledge and have completed the present invention.
即ち、本発明は、以下のニッケルマンガン系複合酸化物及びその製造方法を提供する。
項1.
一般式(1):
Li1+x(NiyMn1-y)1-xO2 (1)
[式中、x及びyはそれぞれ0.0≦x<1/3、0.3≦y≦0.6を示す。]
で表わされ、層状岩塩型結晶相を含み、
格子定数aが2.870Å以下、格子体積が102.0Å3以下である、
ニッケル含有リチウムマンガン複合酸化物。
項2.
前記層状岩塩型結晶相において、リチウム層内に含まれる遷移金属量が5%以下である、項1に記載のニッケル含有リチウムマンガン複合酸化物。
項3.
前記層状岩塩型結晶相において、遷移金属層内に含まれる遷移金属量が88%以下である、項1又は2に記載のニッケル含有リチウムマンガン複合酸化物。
項4.
ニッケルイオンの平均価数が2.5価以上である、項1~3の何れかに記載のニッケル含有リチウムマンガン複合酸化物。
項5.
O/(Ni+Mn)原子比が2.3以上である、項1~4の何れかに記載のニッケル含有リチウムマンガン複合酸化物。
項6.
項1~5の何れかに記載のニッケル含有リチウムマンガン複合酸化物を正極活物質として含むリチウムイオン二次電池。
項7.
マンガン化合物及びニッケル化合物を含む混合水溶液から、20℃以下のアルカリ性条件下にて沈殿物を形成する工程1、
前記沈殿物に湿式酸化処理を行う工程2、
及びリチウム塩共存下酸化性雰囲気下で熱処理する工程3を有する、
項1~5の何れかに記載のニッケル含有リチウムマンガン複合酸化物の製造方法。 That is, the present invention provides the following nickel manganese composite oxide and a method for producing the same.
Item 1.
General formula (1):
Li 1 + x (Ni y Mn 1-y ) 1-x O 2 (1)
[Wherein, x and y represent 0.0 ≦ x <1/3 and 0.3 ≦ y ≦ 0.6, respectively. ]
Represented by a layered rock salt type crystal phase,
The lattice constant a is 2.870 Å or less and the lattice volume is 102.0 Å 3 or less,
Nickel-containing lithium manganese composite oxide.
Item 2.
Item 2. The nickel-containing lithium manganese composite oxide according to Item 1, wherein in the layered rock salt type crystal phase, the amount of transition metal contained in the lithium layer is 5% or less.
Item 3.
Item 3. The nickel-containing lithium manganese composite oxide according to Item 1 or 2, wherein the amount of transition metal contained in the transition metal layer is 88% or less in the layered rock salt type crystal phase.
Item 4.
Item 4. The nickel-containing lithium manganese composite oxide according to any one of Items 1 to 3, wherein the average valence of nickel ions is 2.5 or more.
Item 5.
Item 5. The nickel-containing lithium manganese composite oxide according to any one of Items 1 to 4, wherein the O / (Ni + Mn) atomic ratio is 2.3 or more.
Item 6.
Item 6. A lithium ion secondary battery comprising the nickel-containing lithium manganese composite oxide according to any one of Items 1 to 5 as a positive electrode active material.
Item 7.
Step 1 of forming a precipitate under an alkaline condition of 20 ° C. or lower from a mixed aqueous solution containing a manganese compound and a nickel compound,
Step 2 of performing wet oxidation treatment on the precipitate,
And astep 3 of heat treatment in an oxidizing atmosphere in the presence of lithium salt,
Item 6. A method for producing a nickel-containing lithium manganese composite oxide according to any one of Items 1 to 5.
項1.
一般式(1):
Li1+x(NiyMn1-y)1-xO2 (1)
[式中、x及びyはそれぞれ0.0≦x<1/3、0.3≦y≦0.6を示す。]
で表わされ、層状岩塩型結晶相を含み、
格子定数aが2.870Å以下、格子体積が102.0Å3以下である、
ニッケル含有リチウムマンガン複合酸化物。
項2.
前記層状岩塩型結晶相において、リチウム層内に含まれる遷移金属量が5%以下である、項1に記載のニッケル含有リチウムマンガン複合酸化物。
項3.
前記層状岩塩型結晶相において、遷移金属層内に含まれる遷移金属量が88%以下である、項1又は2に記載のニッケル含有リチウムマンガン複合酸化物。
項4.
ニッケルイオンの平均価数が2.5価以上である、項1~3の何れかに記載のニッケル含有リチウムマンガン複合酸化物。
項5.
O/(Ni+Mn)原子比が2.3以上である、項1~4の何れかに記載のニッケル含有リチウムマンガン複合酸化物。
項6.
項1~5の何れかに記載のニッケル含有リチウムマンガン複合酸化物を正極活物質として含むリチウムイオン二次電池。
項7.
マンガン化合物及びニッケル化合物を含む混合水溶液から、20℃以下のアルカリ性条件下にて沈殿物を形成する工程1、
前記沈殿物に湿式酸化処理を行う工程2、
及びリチウム塩共存下酸化性雰囲気下で熱処理する工程3を有する、
項1~5の何れかに記載のニッケル含有リチウムマンガン複合酸化物の製造方法。 That is, the present invention provides the following nickel manganese composite oxide and a method for producing the same.
Item 1.
General formula (1):
Li 1 + x (Ni y Mn 1-y ) 1-x O 2 (1)
[Wherein, x and y represent 0.0 ≦ x <1/3 and 0.3 ≦ y ≦ 0.6, respectively. ]
Represented by a layered rock salt type crystal phase,
The lattice constant a is 2.870 Å or less and the lattice volume is 102.0 Å 3 or less,
Nickel-containing lithium manganese composite oxide.
Item 6.
Item 6. A lithium ion secondary battery comprising the nickel-containing lithium manganese composite oxide according to any one of Items 1 to 5 as a positive electrode active material.
Item 7.
Step 1 of forming a precipitate under an alkaline condition of 20 ° C. or lower from a mixed aqueous solution containing a manganese compound and a nickel compound,
And a
Item 6. A method for producing a nickel-containing lithium manganese composite oxide according to any one of Items 1 to 5.
本発明に係るニッケル含有リチウムマンガン複合酸化物は、Li層内の遷移金属イオン量が少なく、また、サイクル特性に優れたリチウムイオン二次電池に好適に使用することができる。
The nickel-containing lithium manganese composite oxide according to the present invention can be suitably used for a lithium ion secondary battery having a small amount of transition metal ions in the Li layer and excellent cycle characteristics.
1.ニッケル含有リチウムマンガン複合酸化物
本発明のニッケル含有リチウムマンガン複合酸化物は、一般式(1):
Li1+x(NiyMn1-y)1-xO2 (1)
[式中、x及びyはそれぞれ0.0≦x<1/3、0.3≦y≦0.6を示す。]
で表わされ、層状岩塩型結晶相を含み、
格子定数aが2.870Å以下、格子体積が102.0Å3以下であることを特徴とする。 1. Nickel-containing lithium manganese composite oxide The nickel-containing lithium manganese composite oxide of the present invention has the general formula (1):
Li 1 + x (Ni y Mn 1-y ) 1-x O 2 (1)
[Wherein, x and y represent 0.0 ≦ x <1/3 and 0.3 ≦ y ≦ 0.6, respectively. ]
Represented by a layered rock salt type crystal phase,
Lattice constant a 2.870Å or less, the lattice volume is equal to or is 102.0A 3 or less.
本発明のニッケル含有リチウムマンガン複合酸化物は、一般式(1):
Li1+x(NiyMn1-y)1-xO2 (1)
[式中、x及びyはそれぞれ0.0≦x<1/3、0.3≦y≦0.6を示す。]
で表わされ、層状岩塩型結晶相を含み、
格子定数aが2.870Å以下、格子体積が102.0Å3以下であることを特徴とする。 1. Nickel-containing lithium manganese composite oxide The nickel-containing lithium manganese composite oxide of the present invention has the general formula (1):
Li 1 + x (Ni y Mn 1-y ) 1-x O 2 (1)
[Wherein, x and y represent 0.0 ≦ x <1/3 and 0.3 ≦ y ≦ 0.6, respectively. ]
Represented by a layered rock salt type crystal phase,
Lattice constant a 2.870Å or less, the lattice volume is equal to or is 102.0A 3 or less.
上記一般式(1)において、xは0.0≦x<1/3であり、0.05≦x≦0.25であることがより好ましい。xが1/3未満であることにより、余剰のリチウムが不純物として発生することを抑制でき、その結果、電池の優れたサイクル特性を得ることができる。
In the above general formula (1), x is 0.0 ≦ x <1/3, and more preferably 0.05 ≦ x ≦ 0.25. When x is less than 1/3, generation of excess lithium as an impurity can be suppressed, and as a result, excellent cycle characteristics of the battery can be obtained.
上記一般式(1)において、ニッケル含有量yは0.3≦y≦0.6であり、0.3≦y≦0.5であることがより好ましい。yが0.3以上であることにより、電池電圧低下の発生を抑止することができる。また、yが0.6以下であることにより、充電時においてもニッケル含有リチウムマンガン複合酸化物の構造安定性を、良好に維持することができる。
In the general formula (1), the nickel content y is 0.3 ≦ y ≦ 0.6, and more preferably 0.3 ≦ y ≦ 0.5. When y is 0.3 or more, the occurrence of battery voltage drop can be suppressed. Moreover, when y is 0.6 or less, the structural stability of the nickel-containing lithium manganese composite oxide can be maintained well even during charging.
また本発明のニッケル含有リチウムマンガン複合酸化物は、層状岩塩型結晶相を含んでいる。層状岩塩型結晶相を構成する層状岩塩型結晶構造とは、コバルト酸リチウムやニッケル酸リチウムが有するABO2型(Aはアルカリ金属、Bは遷移金属を示す。)の無機化合物に多く出現する結晶構造である。酸化物イオンを介して遷移金属層とリチウム層が交互に積層した結晶構造であり、充放電に伴って、リチウムイオンの脱離・挿入反応が容易であるといわれている。
The nickel-containing lithium manganese composite oxide of the present invention includes a layered rock salt type crystal phase. The layered rock-salt crystal structure constituting the layered rock-salt crystal phase is a crystal that frequently appears in inorganic compounds of ABO type 2 (A is an alkali metal and B is a transition metal) possessed by lithium cobaltate and lithium nickelate. Structure. It has a crystal structure in which transition metal layers and lithium layers are alternately stacked via oxide ions, and it is said that lithium ion desorption and insertion reactions are easy with charge and discharge.
さらに、層状岩塩型結晶相は、空間群:
In addition, the layered rock-salt crystal phases are the space group:
に帰属する六方晶層状岩塩型構造の結晶相、又は空間群:
Crystal phase of hexagonal layered rock salt structure belonging to, or space group:
に帰属する単斜晶層状岩塩型構造の結晶相を含むことが好ましい。本発明のニッケル含有リチウムマンガン複合酸化物は、上記の六方晶層状岩塩型構造の結晶相又は単斜晶層状岩塩型構造の結晶相を含むことが好ましく、他の岩塩型構造の結晶相(例えば、立方晶岩塩型構造等)を含む混合相であってもよい。混合相である場合、六方晶層状岩塩型構造の結晶相又は単斜晶層状岩塩型構造の結晶相の割合は、当該混合相全体を基準として、50~90質量%であることが好ましい。また、本発明のニッケル含有リチウムマンガン複合酸化物は、上記の六方晶層状岩塩型構造の結晶相又は単斜晶層状岩塩型構造の結晶相のみからなるものであってもよい。
It preferably includes a crystal phase of a monoclinic layered rock salt structure belonging to The nickel-containing lithium manganese composite oxide of the present invention preferably contains a crystal phase of the above hexagonal layered rock salt structure or a crystal phase of a monoclinic layered rock salt structure, and a crystal phase of another rock salt structure (for example, , Cubic rock salt structure, etc.). In the case of a mixed phase, the ratio of the crystal phase of the hexagonal layered rock salt structure or the crystal phase of the monoclinic layered rock salt structure is preferably 50 to 90% by mass based on the entire mixed phase. Further, the nickel-containing lithium manganese composite oxide of the present invention may be composed of only the crystal phase of the above hexagonal layered rock salt structure or the crystal phase of the monoclinic layered rock salt structure.
本発明のニッケル含有リチウムマンガン複合酸化物の層状岩塩型結晶構造における格子定数aは、遷移金属イオン間距離に相当する六方晶層状岩塩型格子におけるa軸値として算出して、2.870Å以下であり、2.865Å以下であることがより好ましく、2.860Å以下であることがさらに好ましい。また、かかる格子定数aの下限値は、一定量の3価ニッケルを確保するという観点から、2.850Å以上であることが好ましい。同様に、六方晶層状岩塩型格子と仮定して算出して、格子体積は102.0Å3以下であり、101.0Å3以下であることがより好ましい。一方、かかる格子体積の下限値は、遷移金属規則構造の確保という観点から、100.0Å3以上であることが好ましい。本明細書における格子定数a及び格子体積は、六方晶層状岩塩型格子として仮定して算出された値を意味する。
The lattice constant a in the layered rock salt type crystal structure of the nickel-containing lithium manganese composite oxide of the present invention is calculated as the a-axis value in the hexagonal layered rock salt type lattice corresponding to the distance between transition metal ions, and is 2.870Å or less. Yes, it is more preferably 2.865cm or less, further preferably 2.860cm or less. In addition, the lower limit value of the lattice constant a is preferably 2.850% or more from the viewpoint of securing a certain amount of trivalent nickel. Similarly, calculated assuming hexagonal layered rock-salt lattice, the lattice volume is at 102.0A 3 or less, and more preferably 101.0A 3 or less. On the other hand, the lower limit of the lattice volume is preferably 100.0 to 3 or more from the viewpoint of securing a transition metal ordered structure. The lattice constant a and the lattice volume in the present specification mean values calculated assuming a hexagonal layered rock salt lattice.
格子定数a及び格子体積に関して、上記の構成を有することにより、ニッケル含有リチウムマンガン複合酸化物に含まれるニッケルイオンの半分以上が、3価に酸化されることとなる。マンガンイオン価数は、製造方法によらず4価のままであるが、ニッケルイオンの平均価数は2価から3価までの間で変化しうる。リチウムイオンとの反応性が高いと3価になりやすい。リチウムイオンとの反応性が低いと、2価にとどまりやすい。
Regarding the lattice constant a and the lattice volume, by having the above-described configuration, more than half of the nickel ions contained in the nickel-containing lithium manganese composite oxide are oxidized to trivalent. The manganese ion valence remains tetravalent regardless of the production method, but the average valence of nickel ions can vary from divalent to trivalent. High reactivity with lithium ions tends to be trivalent. If the reactivity with lithium ions is low, it tends to remain divalent.
本発明のニッケル含有リチウムマンガン複合酸化物におけるニッケルイオンの平均価数は、2.5価以上となっていることが好ましく、2.6価以上となっていることがより好ましい。かかる構成を有することにより、かかるニッケル含有リチウムマンガン複合酸化物を正極材料として製造したリチウムイオン二次電池の充放電特性を向上させることができる。ニッケルイオンの平均価数は、例えば後述するニッケルK端近傍のX線吸収(Ni-K XANES)スペクトルにより、LiNiO2を3価、NiOを2価の標準物質として各試料の1s→4p遷移に相当するピークトップの位置を標準物質のそれと比較することにより決定できる。一方、ニッケル含有リチウムマンガン複合酸化物におけるニッケルイオンの平均価数の上限値としては、Liイオンを多く取りこんだ結果生じる3価ニッケルイオンをできる限り多く確保するという観点から、3価であることが好ましい。
The average valence of nickel ions in the nickel-containing lithium manganese composite oxide of the present invention is preferably 2.5 or more, and more preferably 2.6 or more. By having such a configuration, it is possible to improve the charge / discharge characteristics of a lithium ion secondary battery manufactured using such a nickel-containing lithium manganese composite oxide as a positive electrode material. The average valence of nickel ions is determined from the 1s → 4p transition of each sample using, for example, an X-ray absorption (Ni-K XANES) spectrum in the vicinity of the nickel K end described later, using LiNiO 2 as trivalent and NiO as divalent standard substances The position of the corresponding peak top can be determined by comparing it with that of the standard. On the other hand, the upper limit of the average valence of nickel ions in the nickel-containing lithium manganese composite oxide is trivalent from the viewpoint of securing as many trivalent nickel ions as possible as a result of incorporating a large amount of Li ions. preferable.
また、本発明のニッケル含有リチウムマンガン複合酸化物は、遷移金属に対する酸素量(O/(Ni+Mn)モル比)が大きいことも好ましく、組成式:Li1+x(NiyMn1-y)1-xO2におけるy=0.5組成では、仮にNiが2価とすると組成式がLiNi1/2Mn1/2O2となり、(O/(Ni+Mn)モル比)は2となる。一方Niが3価とすると組成式がLi1.2Ni0.4Mn0.4O2となり、(O/(Ni+Mn)モル比)は2.5となる。本発明物質はNi平均価数が2.5以上であることから、上記値の下限値は2.3となるが、放電容量やサイクル特性に優れた電池を構成するという観点からは、下限値は2.4であることが好ましい。一方、本発明物質のNi平均価数は、上述の如く3価に近いことが好ましいことから、上記値の上限値は、3とすることが好ましい。(O/(Ni+Mn)モル比)は蛍光X線分析装置にて、試料中の遷移金属イオン量と酸素量を定量することにより求めることができる。
In addition, the nickel-containing lithium manganese composite oxide of the present invention preferably has a large oxygen content (O / (Ni + Mn) molar ratio) with respect to the transition metal, and the composition formula: Li 1 + x (Ni y Mn 1-y ) 1-x In the case of y = 0.5 composition in O 2 , if Ni is divalent, the composition formula is LiNi 1/2 Mn 1/2 O 2 and (O / (Ni + Mn) molar ratio) is 2. On the other hand, when Ni is trivalent, the composition formula is Li 1.2 Ni 0.4 Mn 0.4 O 2 and (O / (Ni + Mn) molar ratio) is 2.5. Since the substance according to the present invention has an Ni average valence of 2.5 or more, the lower limit of the above value is 2.3. However, from the viewpoint of constituting a battery having excellent discharge capacity and cycle characteristics, the lower limit is set. Is preferably 2.4. On the other hand, since the Ni average valence of the substance of the present invention is preferably close to trivalent as described above, the upper limit of the above value is preferably 3. The (O / (Ni + Mn) molar ratio) can be determined by quantifying the amount of transition metal ions and the amount of oxygen in the sample with a fluorescent X-ray analyzer.
六方晶層状岩塩型格子内での遷移金属イオン分布に関しては、4価のMnイオンおよび3価のNiイオンは遷移金属層内3b位置(001/2)に主に分布するが、2価のNiイオンあるいは3価以下のMnイオンはLi層内3a位置(000)に主に存在する。本発明のニッケル含有リチウムマンガン複合酸化物は、Li層内の遷移金属量を、六方晶層状岩塩型格子内の全遷移金属量100%中、7%以下とすることが好ましく、5%以下とすることがより好ましい。また、遷移金属層内に含まれる遷移金属量は、六方晶層状岩塩型格子内の全遷移金属量100%中、88%以下とすることが好ましく、82%以下とすることがより好ましく、80%以下とすることがさらに好ましい。かかる遷移金属分布を有することにより、4価のMnイオン及び3価のNiイオンのイオン量が多くなるのみならず、層状岩塩型構造内でのLiイオン拡散が早くなるため、充放電特性改善が期待できる。また組成式あたりの全遷移金属量が低減されると遷移金属層内にLiイオンをより多く取り込ませることができ、そのLiがLi層内に充電時に移動可能なことから、高電位充電時の酸化物イオン間反発等に由来する特性劣化を抑制し、結果として充電時の正極活物質の化学的安定性向上に寄与する。一方、本発明のニッケル含有リチウムマンガン複合酸化物のLi層内の遷移金属量は、0.01%以上であることが好ましい。また同様に、遷移金属層内に含まれる遷移金属量は50%以上であることが好ましい。
Regarding the transition metal ion distribution in the hexagonal layered rock salt type lattice, the tetravalent Mn ion and the trivalent Ni ion are mainly distributed at the 3b position (001/2) in the transition metal layer. Ions or trivalent Mn ions are mainly present at the 3a position (000) in the Li layer. In the nickel-containing lithium manganese composite oxide of the present invention, the amount of transition metal in the Li layer is preferably 7% or less, and preferably 5% or less, out of 100% of the total amount of transition metals in the hexagonal layered rock salt lattice. More preferably. The amount of transition metal contained in the transition metal layer is preferably 88% or less, more preferably 82% or less, out of 100% of the total amount of transition metal in the hexagonal layered rock salt lattice. % Or less is more preferable. By having such a transition metal distribution, not only the amount of tetravalent Mn ions and trivalent Ni ions increases, but also the diffusion of Li ions in the layered rock salt structure is accelerated, so that the charge / discharge characteristics can be improved. I can expect. Further, when the total amount of transition metal per composition formula is reduced, more Li ions can be taken into the transition metal layer, and the Li can move into the Li layer during charging. It suppresses characteristic deterioration caused by repulsion between oxide ions, and contributes to improvement of chemical stability of the positive electrode active material during charging. On the other hand, the amount of transition metal in the Li layer of the nickel-containing lithium manganese composite oxide of the present invention is preferably 0.01% or more. Similarly, the amount of transition metal contained in the transition metal layer is preferably 50% or more.
従来技術では、Coを添加することによりLi層内遷移金属イオン量を低減していたが、Coを添加すると高電位充電時のサイクル特性や、充電後の正極の熱的安定性を低下させることが知られており、本発明物質は、Co無添加でLi層内遷移金属量の低い物質を得たという点で特徴がある。
In the prior art, the amount of transition metal ions in the Li layer was reduced by adding Co. However, the addition of Co reduces the cycle characteristics during high potential charging and the thermal stability of the positive electrode after charging. The substance of the present invention is characterized in that a substance having a low amount of transition metal in the Li layer was obtained without adding Co.
2.リチウムイオン二次電池用正極材料及びリチウムイオン二次電池
上記したニッケル含有リチウムマンガン複合酸化物は、リチウムイオン二次電池用正極材料として用いることができる。かかる正極材料に、公知の導電剤及びバインダーと混合することで作製した正極合剤をAl、Ni、ステンレス、カーボンクロス等の正極集電体に担持させることで、正極を製造することができる。導電剤としては、例えば、黒鉛、コークス類、カーボンブラック、針状カーボン等の炭素材料を用いることができる。負極材料としても特に限定的ではなく、例えば、金属リチウム、黒鉛、Si-SiO系負極、LTO(Li4Ti5O12)系負極などが挙げられる。これらの負極材料についても、必要に応じて、導電剤、バインダー等を用いて、Al、Cu、Ni、ステンレス、カーボン等からなる負極集電体に担持させて、負極を製造すればよい。電解質としては特に限定的ではなく、LiPF6等を電解質塩とし、炭酸エチル(EC)や炭酸ジメチル(DMC)などの各種溶媒に溶解させた有機電解液、Li2S-P2S5、Li2S-GeS2-P2S5、Li2S-SiS2-Li3PO4などの無機硫化物系固体電解質、リチウムイオン導電性を有する高分子ポリマーなどが挙げられる。セパレータとしては特に限定的ではなく、ポリエチレン、ポリプロピレンなどが挙げられる。 2. Positive electrode material for lithium ion secondary battery and lithium ion secondary battery The nickel-containing lithium manganese composite oxide described above can be used as a positive electrode material for lithium ion secondary battery. A positive electrode can be produced by supporting a positive electrode mixture prepared by mixing such a positive electrode material with a known conductive agent and a binder on a positive electrode current collector such as Al, Ni, stainless steel, or carbon cloth. As the conductive agent, for example, carbon materials such as graphite, cokes, carbon black, and acicular carbon can be used. The negative electrode material is not particularly limited, and examples thereof include metallic lithium, graphite, Si—SiO-based negative electrode, and LTO (Li 4 Ti 5 O 12 ) -based negative electrode. These negative electrode materials may be supported on a negative electrode current collector made of Al, Cu, Ni, stainless steel, carbon or the like using a conductive agent, a binder, or the like, if necessary, to produce a negative electrode. The electrolyte is not particularly limited, and an organic electrolytic solution in which LiPF 6 or the like is used as an electrolyte salt and dissolved in various solvents such as ethyl carbonate (EC) or dimethyl carbonate (DMC), Li 2 S—P 2 S 5 , Li Examples thereof include inorganic sulfide solid electrolytes such as 2 S—GeS 2 —P 2 S 5 and Li 2 S—SiS 2 —Li 3 PO 4, and polymer polymers having lithium ion conductivity. The separator is not particularly limited, and examples thereof include polyethylene and polypropylene.
上記したニッケル含有リチウムマンガン複合酸化物は、リチウムイオン二次電池用正極材料として用いることができる。かかる正極材料に、公知の導電剤及びバインダーと混合することで作製した正極合剤をAl、Ni、ステンレス、カーボンクロス等の正極集電体に担持させることで、正極を製造することができる。導電剤としては、例えば、黒鉛、コークス類、カーボンブラック、針状カーボン等の炭素材料を用いることができる。負極材料としても特に限定的ではなく、例えば、金属リチウム、黒鉛、Si-SiO系負極、LTO(Li4Ti5O12)系負極などが挙げられる。これらの負極材料についても、必要に応じて、導電剤、バインダー等を用いて、Al、Cu、Ni、ステンレス、カーボン等からなる負極集電体に担持させて、負極を製造すればよい。電解質としては特に限定的ではなく、LiPF6等を電解質塩とし、炭酸エチル(EC)や炭酸ジメチル(DMC)などの各種溶媒に溶解させた有機電解液、Li2S-P2S5、Li2S-GeS2-P2S5、Li2S-SiS2-Li3PO4などの無機硫化物系固体電解質、リチウムイオン導電性を有する高分子ポリマーなどが挙げられる。セパレータとしては特に限定的ではなく、ポリエチレン、ポリプロピレンなどが挙げられる。 2. Positive electrode material for lithium ion secondary battery and lithium ion secondary battery The nickel-containing lithium manganese composite oxide described above can be used as a positive electrode material for lithium ion secondary battery. A positive electrode can be produced by supporting a positive electrode mixture prepared by mixing such a positive electrode material with a known conductive agent and a binder on a positive electrode current collector such as Al, Ni, stainless steel, or carbon cloth. As the conductive agent, for example, carbon materials such as graphite, cokes, carbon black, and acicular carbon can be used. The negative electrode material is not particularly limited, and examples thereof include metallic lithium, graphite, Si—SiO-based negative electrode, and LTO (Li 4 Ti 5 O 12 ) -based negative electrode. These negative electrode materials may be supported on a negative electrode current collector made of Al, Cu, Ni, stainless steel, carbon or the like using a conductive agent, a binder, or the like, if necessary, to produce a negative electrode. The electrolyte is not particularly limited, and an organic electrolytic solution in which LiPF 6 or the like is used as an electrolyte salt and dissolved in various solvents such as ethyl carbonate (EC) or dimethyl carbonate (DMC), Li 2 S—P 2 S 5 , Li Examples thereof include inorganic sulfide solid electrolytes such as 2 S—GeS 2 —P 2 S 5 and Li 2 S—SiS 2 —Li 3 PO 4, and polymer polymers having lithium ion conductivity. The separator is not particularly limited, and examples thereof include polyethylene and polypropylene.
3.ニッケル含有リチウムマンガン複合酸化物の製造方法
また本発明は、さらに上述したニッケル含有リチウムマンガン複合酸化物の製造方法を包含する。本発明のニッケル含有リチウムマンガン複合酸化物の製造方法は、
マンガン化合物及びニッケル化合物を含む混合水溶液から、20℃以下のアルカリ性条件下にて沈殿物を形成する工程1、
前記沈殿物に湿式酸化処理を行う工程2、
及びリチウム塩共存下酸化性雰囲気下で熱処理する工程3を有する。 3. The method for producing a nickel-containing lithium manganese composite oxide and the present invention further include the above-described method for producing a nickel-containing lithium manganese composite oxide. The method for producing the nickel-containing lithium manganese composite oxide of the present invention comprises:
Step 1 of forming a precipitate under an alkaline condition of 20 ° C. or lower from a mixed aqueous solution containing a manganese compound and a nickel compound,
Step 2 of performing wet oxidation treatment on the precipitate,
And astep 3 of heat-treating in an oxidizing atmosphere in the presence of lithium salt.
また本発明は、さらに上述したニッケル含有リチウムマンガン複合酸化物の製造方法を包含する。本発明のニッケル含有リチウムマンガン複合酸化物の製造方法は、
マンガン化合物及びニッケル化合物を含む混合水溶液から、20℃以下のアルカリ性条件下にて沈殿物を形成する工程1、
前記沈殿物に湿式酸化処理を行う工程2、
及びリチウム塩共存下酸化性雰囲気下で熱処理する工程3を有する。 3. The method for producing a nickel-containing lithium manganese composite oxide and the present invention further include the above-described method for producing a nickel-containing lithium manganese composite oxide. The method for producing the nickel-containing lithium manganese composite oxide of the present invention comprises:
Step 1 of forming a precipitate under an alkaline condition of 20 ° C. or lower from a mixed aqueous solution containing a manganese compound and a nickel compound,
And a
3.1.工程1
使用するマンガン化合物としては、特に限定はなく、塩化マンガン(II)、硫酸マンガン(II)、酢酸マンガン(II)、酢酸マンガン(III)、硝酸マンガン(II)、アセチル酢酸マンガン(II)、アセチル酢酸マンガン(III)、過マンガン酸カリウム(VII)等水和物も含め、公知のものを広く使用することが可能である。また酸化マンガンや金属マンガンも適切な酸で溶解させることにより水溶性塩として用いることができる。 3.1. Process 1
The manganese compound to be used is not particularly limited. Manganese chloride (II), manganese sulfate (II), manganese acetate (II), manganese acetate (III), manganese nitrate (II), acetyl manganese acetate (II), acetyl Known products including manganese (III) acetate, potassium permanganate (VII) and the like can be widely used. Manganese oxide and manganese metal can also be used as a water-soluble salt by dissolving them with an appropriate acid.
使用するマンガン化合物としては、特に限定はなく、塩化マンガン(II)、硫酸マンガン(II)、酢酸マンガン(II)、酢酸マンガン(III)、硝酸マンガン(II)、アセチル酢酸マンガン(II)、アセチル酢酸マンガン(III)、過マンガン酸カリウム(VII)等水和物も含め、公知のものを広く使用することが可能である。また酸化マンガンや金属マンガンも適切な酸で溶解させることにより水溶性塩として用いることができる。 3.1. Process 1
The manganese compound to be used is not particularly limited. Manganese chloride (II), manganese sulfate (II), manganese acetate (II), manganese acetate (III), manganese nitrate (II), acetyl manganese acetate (II), acetyl Known products including manganese (III) acetate, potassium permanganate (VII) and the like can be widely used. Manganese oxide and manganese metal can also be used as a water-soluble salt by dissolving them with an appropriate acid.
使用するニッケル化合物としても特に限定はなく、硝酸ニッケル(II)、酢酸ニッケル(II)、塩化ニッケル(II)、硫酸ニッケル(II)等水和物も含め、公知のものを広く使用することができる。また酸化ニッケルや金属ニッケルも適切な酸で溶解させることにより水溶性塩として用いることができる。
The nickel compound to be used is not particularly limited, and it is possible to use a wide variety of known compounds including hydrates such as nickel nitrate (II), nickel acetate (II), nickel chloride (II), nickel sulfate (II). it can. Nickel oxide and metallic nickel can also be used as a water-soluble salt by dissolving them with an appropriate acid.
アルカリ性条件とするために用いるアルカリ源としても特に限定されず、水酸化ナトリウム、水酸化リチウム(その水和物も含む)、アンモニア水、水酸化カリウム等、公知のものを広く使用することが可能である。
The alkali source used for the alkaline condition is not particularly limited, and a wide variety of known sources such as sodium hydroxide, lithium hydroxide (including hydrates thereof), aqueous ammonia and potassium hydroxide can be used. It is.
上記マンガン化合物と、上記ニッケル化合物とを、混合して得られる混合水溶液に上記アルカリ源を加えてアルカリ性条件とする。この際の混合方法としても、公知の混合方法を広く採用することが可能であり、特に限定はない。また、上記混合水溶液の溶媒としては、通常は水を使用するが、必ずしもこれに限定されるものではなく、エタノール、メタノール等のアルコール類等を使用してもよい。これらの溶媒は、一種単独で使用してもよいし、二種以上を混合して使用してもよい。アルコール類はマンガン源として過マンガン酸カリウムを用いる際の沈殿材としても用いることができ、さらに後述のように0℃以下の低温滴下時の不凍液として用いることができる。
The alkali source is added to a mixed aqueous solution obtained by mixing the manganese compound and the nickel compound to obtain an alkaline condition. As a mixing method at this time, a well-known mixing method can be widely adopted, and there is no particular limitation. In addition, water is usually used as the solvent of the mixed aqueous solution, but is not necessarily limited thereto, and alcohols such as ethanol and methanol may be used. These solvents may be used alone or in combination of two or more. Alcohols can also be used as a precipitating material when using potassium permanganate as a manganese source, and can also be used as an antifreeze at the time of dropping at a low temperature of 0 ° C. or lower as described later.
また、工程1においては、恒温槽などの、上記混合水溶液の温度を調整及び保持することが可能な公知の容器において、沈殿物を形成させる。この際の混合水溶液の温度は、20℃以下に設定することが必要である。これよりも高温であると、沈殿の一次粒子径が大きくなり、リチウムとの反応性が低下しやすくなる。同様の観点から、工程1における上記混合水溶液の設定温度の上限としては、25℃以下がより好ましく、20℃以下がさらに好ましい。一方、設定温度の下限値としては、製造の容易さという観点から、-10℃以上が好ましく、0℃以上がより好ましい。ここで、設定温度を0℃以下とする場合には、アルカリ側に不凍液としてエタノールを入れておくことが好ましい。また、アルカリ濃度に関しても、工程1の沈殿作製終了時に強アルカリ性(pH11以上)になっていればよい。
In Step 1, a precipitate is formed in a known container capable of adjusting and maintaining the temperature of the mixed aqueous solution, such as a thermostatic bath. In this case, the temperature of the mixed aqueous solution needs to be set to 20 ° C. or lower. If the temperature is higher than this, the primary particle size of the precipitate is increased, and the reactivity with lithium tends to be lowered. From the same viewpoint, the upper limit of the set temperature of the mixed aqueous solution in step 1 is more preferably 25 ° C. or less, and further preferably 20 ° C. or less. On the other hand, the lower limit value of the set temperature is preferably −10 ° C. or higher, more preferably 0 ° C. or higher, from the viewpoint of ease of production. Here, when setting temperature is 0 degrees C or less, it is preferable to put ethanol as an antifreeze on the alkali side. Further, regarding the alkali concentration, it is sufficient that the alkali concentration (pH 11 or more) is obtained at the end of the preparation of the precipitate in Step 1.
3.2.工程2
工程2において、上記工程1において得られた沈殿物に、湿式酸化処理を施す。工程2は沈殿物を含むアルカリ水溶液に空気や酸素ガスなどの酸化性気体を吹き込む(バブリングする)ことにより沈殿を酸化熟成してリチウムとの反応性の高い前駆体を作るものである。吹き込む気体は、酸素ガスが含まれていれば良く(例えば、空気でもよい。)、特に限定されないが、酸化時間の短縮の観点から、酸素ガスが好ましい。酸素ガスの場合、通常用いるボンベのみならず、工業用の酸素発生機を用いても良い。湿式酸化の温度も特に限定はなく、例えば室温付近で良い。湿式酸化時間は、反応を充分に進行させるという観点から、長いほどよいが1時間以上が好ましく、24時間以上がより好ましく、48時間以上がさらに好ましい。 3.2.Process 2
InStep 2, the precipitate obtained in Step 1 is subjected to wet oxidation treatment. In step 2, an oxidizing gas such as air or oxygen gas is blown (bubbled) into an alkaline aqueous solution containing a precipitate to oxidize and precipitate the precipitate to produce a precursor having high reactivity with lithium. The gas to be blown is not particularly limited as long as oxygen gas is contained (for example, air), but oxygen gas is preferable from the viewpoint of shortening the oxidation time. In the case of oxygen gas, an industrial oxygen generator may be used as well as a commonly used cylinder. The temperature of the wet oxidation is not particularly limited, and may be, for example, around room temperature. The wet oxidation time is preferably as long as possible from the viewpoint of allowing the reaction to proceed sufficiently, but is preferably 1 hour or longer, more preferably 24 hours or longer, and even more preferably 48 hours or longer.
工程2において、上記工程1において得られた沈殿物に、湿式酸化処理を施す。工程2は沈殿物を含むアルカリ水溶液に空気や酸素ガスなどの酸化性気体を吹き込む(バブリングする)ことにより沈殿を酸化熟成してリチウムとの反応性の高い前駆体を作るものである。吹き込む気体は、酸素ガスが含まれていれば良く(例えば、空気でもよい。)、特に限定されないが、酸化時間の短縮の観点から、酸素ガスが好ましい。酸素ガスの場合、通常用いるボンベのみならず、工業用の酸素発生機を用いても良い。湿式酸化の温度も特に限定はなく、例えば室温付近で良い。湿式酸化時間は、反応を充分に進行させるという観点から、長いほどよいが1時間以上が好ましく、24時間以上がより好ましく、48時間以上がさらに好ましい。 3.2.
In
3.3.工程3
工程3において、上記工程2において得られた熟成物に、リチウム塩共存下で熱処理を行う。ここで、上記水溶性塩類由来の不純物低減という観点から、リチウム塩共存下での熱処理を行う前に、上記工程2において得られた熟成物を蒸留水等で洗浄し、塩類を除去したうえで濾過し、リチウム塩添加後、熱処理用原料としてリチウム塩共存下酸化性雰囲気下で、熱処理するのが好ましいが、もちろん上記工程2で得られた反応物をそのまま工程3において熱処理用原料として使用し、リチウム塩共存下酸化性雰囲気下で、熱処理してもよい。 3.3.Process 3
Instep 3, the aged product obtained in step 2 is subjected to heat treatment in the presence of a lithium salt. Here, from the viewpoint of reducing impurities derived from the water-soluble salts, before performing the heat treatment in the presence of the lithium salt, the aged product obtained in the step 2 is washed with distilled water or the like to remove the salts. After filtration and addition of lithium salt, it is preferable to heat-treat as a heat treatment raw material in an oxidizing atmosphere in the presence of lithium salt. Of course, the reaction product obtained in the above step 2 is used as it is as a heat treatment raw material in step 3. Further, heat treatment may be performed in an oxidizing atmosphere in the presence of a lithium salt.
工程3において、上記工程2において得られた熟成物に、リチウム塩共存下で熱処理を行う。ここで、上記水溶性塩類由来の不純物低減という観点から、リチウム塩共存下での熱処理を行う前に、上記工程2において得られた熟成物を蒸留水等で洗浄し、塩類を除去したうえで濾過し、リチウム塩添加後、熱処理用原料としてリチウム塩共存下酸化性雰囲気下で、熱処理するのが好ましいが、もちろん上記工程2で得られた反応物をそのまま工程3において熱処理用原料として使用し、リチウム塩共存下酸化性雰囲気下で、熱処理してもよい。 3.3.
In
熱処理の際に熱処理用原料とリチウム塩を共存させるための具体的な方法としては、公知の手法を用いることができ、特に限定はないが、例えば、上記工程2で得られた反応物とリチウム塩とを混合する方法を挙げることができる。より具体的には、リチウム塩が水に不溶の場合、乾式混合後、振動ミル等でよく粉砕すること、水溶性の場合はリチウム塩を含む水溶液中に沈殿を十分に分散後、ミキサーにかけて均一なスラリーを作製することが望ましい。スラリー等は、乾燥機により乾燥させ、必要に応じて再度粉砕処理を行うことよい。
As a specific method for causing the heat treatment raw material and the lithium salt to coexist during the heat treatment, a known method can be used, and there is no particular limitation. For example, the reaction product obtained in Step 2 above and lithium The method of mixing with a salt can be mentioned. More specifically, if the lithium salt is insoluble in water, dry-mix and then pulverize well with a vibration mill or the like. If water-soluble, the precipitate is sufficiently dispersed in an aqueous solution containing the lithium salt and then uniformly applied to a mixer. It is desirable to make a simple slurry. The slurry or the like is preferably dried by a drier and pulverized again as necessary.
また、熱処理用原料としては、乾燥させたものを用いてもよい。乾燥させたものを使用する場合には、乾燥時に残留アルカリにより固結し、リチウム塩との均一混合が困難になるのを回避するという観点から、乾燥前にリチウム塩と混合するのが好ましい。
Further, a dried material may be used as the heat treatment raw material. In the case of using a dried product, it is preferable to mix with the lithium salt before drying from the viewpoint of solidifying with residual alkali during drying and avoiding difficulty in uniform mixing with the lithium salt.
リチウム塩としては、公知のリチウム塩を広く使用することが可能であり、特に限定はない。具体的には、安価な炭酸リチウム、沈殿との反応性の高い水酸化リチウム以外に、酢酸リチウム、硝酸リチウム、塩化リチウムなどを用いることができる。また上記リチウム塩に加えて酸化剤として過塩素酸リチウム及びその水和物を用いることもできる。
As the lithium salt, known lithium salts can be widely used, and there is no particular limitation. Specifically, lithium acetate, lithium nitrate, lithium chloride, or the like can be used in addition to inexpensive lithium carbonate and lithium hydroxide having high reactivity with precipitation. In addition to the above lithium salt, lithium perchlorate and its hydrate can also be used as an oxidizing agent.
熱処理用原料に対するリチウム塩の添加量としては、熱処理用原料内のニッケルおよびマンガン量のモル数に対するリチウムモル量(Li/(Ni+Mn)比)を想定するニッケル平均価数に合わせて調節するのが好ましい。すなわち前述したように本発明のニッケル含有リチウムマンガン複合酸化物はMnの価数が4価、Niの平均価数が2.5価以上であるので、組成式中のy値が0.4~0.6の場合はLi/(Ni+Mn)比を1.25以上とすることが好ましく、1.5以上とすることがより好ましい。Li/(Ni+Mn)比の上限値は特にないが、高価なリチウム源を用いるので経済性の観点から2.5以下とすることが好ましい。上記Li/(Ni+Mn)比は構成するMnとNiの平均価数により上記範囲内で設定することができるが、(Li/(Ni+Mn)比)を1.25以上(Li過剰組成)とすることが好ましい。Li過剰組成とすることにより、リチウム量の少ないLiMn2O4スピネルなどの不純物相の試料内への生成を抑制したり、高価数の3価ニッケルイオンの高温熱処理時の安定化、フラックス効果による熱処理物の一次および二次粒子径向上に貢献する。
The amount of lithium salt added to the heat treatment raw material is adjusted according to the nickel average valence assuming the lithium molar amount (Li / (Ni + Mn) ratio) relative to the number of moles of nickel and manganese in the heat treatment raw material. preferable. That is, as described above, since the nickel-containing lithium manganese composite oxide of the present invention has a valence of Mn of 4 and an average valence of Ni of 2.5 or more, the y value in the composition formula is 0.4 to In the case of 0.6, the Li / (Ni + Mn) ratio is preferably 1.25 or more, more preferably 1.5 or more. There is no particular upper limit for the Li / (Ni + Mn) ratio, but an expensive lithium source is used, so that it is preferably 2.5 or less from the viewpoint of economy. The Li / (Ni + Mn) ratio can be set within the above range depending on the average valence of Mn and Ni constituting the material, but the (Li / (Ni + Mn) ratio) should be 1.25 or more (Li excess composition). Is preferred. By using a Li-excess composition, it is possible to suppress the generation of impurity phases such as LiMn 2 O 4 spinel with a small amount of lithium in the sample, stabilization of high-value trivalent nickel ions during high-temperature heat treatment, and flux effects. Contributes to the improvement of the primary and secondary particle size of the heat-treated product.
ここで、リチウム塩が水に不溶の場合、乾式混合後、振動ミル等でよく粉砕すること、水溶性の場合はリチウム塩を含む水溶液中に沈殿を十分に分散後、ミキサーにかけて均一なスラリーを作製することが望ましい。スラリー等は、乾燥機により乾燥させ、必要に応じて再度粉砕処理を行うとよい。乾燥温度は100℃以下が好ましく、60℃以下がより好ましい。100℃を超える温度条件で乾燥させた場合、高温によりスラリー粘度が下がり、沈殿がリチウム塩と分離しやすくなる。一方、乾燥温度が低すぎると乾燥しないので、真空や凍結乾燥などを用いてもよい。
Here, if the lithium salt is insoluble in water, dry-mix and then pulverize well with a vibration mill or the like. If water-soluble, the precipitate is sufficiently dispersed in an aqueous solution containing the lithium salt, and then applied to a mixer to form a uniform slurry. It is desirable to produce it. The slurry or the like may be dried with a dryer and pulverized again as necessary. The drying temperature is preferably 100 ° C. or lower, and more preferably 60 ° C. or lower. When dried under a temperature condition exceeding 100 ° C., the slurry viscosity decreases due to the high temperature, and the precipitate is easily separated from the lithium salt. On the other hand, if the drying temperature is too low, it does not dry, so vacuum or freeze drying may be used.
熱処理は、熱を加える処理であれば特に限定はなく、公知の方法を広く採用することが可能である。中でも、簡便に熱処理を行うことが可能であるという観点から、焼成処理を行うのが好適である。焼成処理は、酸化性雰囲気下にて行う。本明細書において酸化性雰囲気にて焼成を行うとは、大気中又は酸素気流中にて焼成を行うことを意味する。焼成処理を酸化性雰囲気下で行うことにより、本発明の複合酸化物における格子定数a及び格子体積を、上述した数値範囲とすることができ、ひいては、最終的に得られるニッケル含有リチウムマンガン複合酸化物中のニッケルイオンの平均価数を高めることが可能となる。上述の通り、含まれるニッケルイオンの平均価数の高いニッケル含有リチウムマンガン複合酸化物を正極材料として使用したリチウムイオン二次電池は、充放電特性に優れる。
The heat treatment is not particularly limited as long as heat is applied, and widely known methods can be employed. Among them, it is preferable to perform the baking treatment from the viewpoint that the heat treatment can be easily performed. The baking treatment is performed in an oxidizing atmosphere. In this specification, firing in an oxidizing atmosphere means firing in the air or in an oxygen stream. By performing the baking treatment in an oxidizing atmosphere, the lattice constant a and the lattice volume in the composite oxide of the present invention can be set to the above-described numerical ranges, and eventually the nickel-containing lithium manganese composite oxide finally obtained. It becomes possible to increase the average valence of nickel ions in the product. As described above, the lithium ion secondary battery using the nickel-containing lithium manganese composite oxide having a high average valence of nickel ions as the positive electrode material is excellent in charge / discharge characteristics.
焼成温度は、熱処理用原料の組成にもよるが、概ね750℃~1000℃が好ましい。750℃以上の温度で焼成を行うことにより、得られるニッケル含有リチウムマンガン複合酸化物の粒子径が所定の大きさ以上となる。これにより電解液との反応性が過多にならず、サイクル特性に優れた試料を得ることができる。一方、焼成温度を1000℃以下とすることにより、得られるニッケル含有リチウムマンガン複合酸化物の粒子径が過大になることを防ぐことができる。これにより電解液との間の一定のリチウムイオンのやりとりを確保し、放電レート特性に優れた試料を得ることが可能となる。また、焼成温度を1000℃以下とすることにより、Li源の揮発を抑制し、コスト面でのロスを防ぐことが可能となる。
The firing temperature is preferably about 750 ° C. to 1000 ° C., although it depends on the composition of the heat treatment raw material. By firing at a temperature of 750 ° C. or higher, the particle diameter of the obtained nickel-containing lithium manganese composite oxide becomes a predetermined size or more. Thereby, the reactivity with the electrolytic solution is not excessive, and a sample excellent in cycle characteristics can be obtained. On the other hand, by setting the firing temperature to 1000 ° C. or lower, it is possible to prevent the resulting nickel-containing lithium manganese composite oxide from having an excessively large particle size. As a result, it is possible to ensure a constant exchange of lithium ions with the electrolytic solution and obtain a sample having excellent discharge rate characteristics. Moreover, by setting the firing temperature to 1000 ° C. or less, it is possible to suppress the volatilization of the Li source and prevent cost loss.
焼成時間については、充分な反応を行うという観点から、上記焼成温度範囲内の温度に保持した状態で、30分以上とするのが好ましく、3時間以上とするのがより好ましい。焼成時間の上限については特に限定はないが、製造コストの上昇を抑えるという観点から、30時間以内とするのが好ましい。
The firing time is preferably 30 minutes or longer, more preferably 3 hours or longer, while maintaining the temperature within the above-mentioned firing temperature range from the viewpoint of sufficient reaction. Although there is no limitation in particular about the upper limit of baking time, it is preferable to set it within 30 hours from a viewpoint of suppressing an increase in manufacturing cost.
熱処理後、必要に応じて過剰のリチウム塩を水洗処理により除去し、濾過・乾燥を行ってもよい。また必要に応じ、より充放電性に優れたニッケル含有リチウムマンガン複合酸化物を得るために、工程3を複数回繰り返してもよい。繰り返す回数としては、工程の単純化と均一性の確保という観点から、2~3回が好ましい。
After heat treatment, if necessary, excess lithium salt may be removed by washing with water, followed by filtration and drying. Further, if necessary, step 3 may be repeated a plurality of times in order to obtain a nickel-containing lithium manganese composite oxide having more excellent charge / discharge characteristics. The number of repetitions is preferably 2 to 3 times from the viewpoint of simplifying the process and ensuring uniformity.
以上、本発明の実施形態について説明したが、本発明はこうした例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲において種々なる形態で実施し得ることは勿論である。
The embodiments of the present invention have been described above. However, the present invention is not limited to these examples, and it is needless to say that the present invention can be implemented in various forms without departing from the gist of the present invention.
以下、実施例に基づき、本発明の実施形態をより具体的に説明するが、本発明がこれらに限定されるものではない。
Hereinafter, the embodiments of the present invention will be described more specifically based on examples, but the present invention is not limited to these.
(実施例1)
硝酸ニッケル(II)6水和物36.35gおよび塩化マンガン(II)4水和物24.74g(0.25mol/バッチ、Ni:Mnモル比1:1)を秤量し、蒸留水500ml中に完全に溶解させた。別のチタン製ビーカーに水酸化ナトリウム50gを入れ、蒸留水500mlを加えて完全に溶解させた。水酸化ナトリウム水溶液を20℃に保持された恒温槽内に固定し、溶液が同じ温度になるまで攪拌保持した。上記金属塩溶液に送液ポンプをセットし、上記アルカリ溶液へ3時間かけて、金属塩溶液を徐々に加え、沈殿を形成させた。沈殿作製終了後もアルカリ溶液のpHが11以上あることを確認した。沈殿作製終了後、ビーカーを恒温槽より取り出し、室温にて攪拌しつつ、酸素ガス発生器を用いて、沈殿に酸素を吹き込みつつ二日間湿式酸化および熟成を行った。熟成後に沈殿を蒸留水で洗浄し、アルカリあるいは塩類を取り除いた後、濾過した。濾過後、沈殿に炭酸リチウム0.25mol(18.47g)を加え、蒸留水200mlとともにミキサー混合し、スラリーを作製した。スラリーをポリテトラフルオロエチレン製シャーレーに移し、50℃で2日間乾燥して焼成用原料を作製した。振動ミルにより原料を粉砕後、アルミナるつぼふた上に薄く広げ、大気中650℃で5時間一次焼成後、炉冷した。焼成後の原料は振動ミルにて再度粉砕し、850℃で5時間大気中二次焼成を行った。炉冷後試料を取り出し、蒸留水にて洗浄後、濾過および乾燥して、目的の複合酸化物を得た。 Example 1
36.35 g of nickel (II) nitrate hexahydrate and 24.74 g of manganese (II) chloride tetrahydrate (0.25 mol / batch, Ni: Mn molar ratio 1: 1) were weighed into 500 ml of distilled water. It was completely dissolved. In another titanium beaker, 50 g of sodium hydroxide was added, and 500 ml of distilled water was added and completely dissolved. A sodium hydroxide aqueous solution was fixed in a thermostat kept at 20 ° C., and stirred and held until the solution reached the same temperature. A liquid feed pump was set in the metal salt solution, and the metal salt solution was gradually added to the alkali solution over 3 hours to form a precipitate. It was confirmed that the pH of the alkaline solution was 11 or more even after completion of the precipitation. After completion of the precipitation, the beaker was taken out of the thermostatic bath and stirred at room temperature, and then wet oxidation and aging were performed for 2 days while blowing oxygen into the precipitate using an oxygen gas generator. After aging, the precipitate was washed with distilled water to remove alkali or salts and then filtered. After filtration, 0.25 mol (18.47 g) of lithium carbonate was added to the precipitate and mixed with 200 ml of distilled water to prepare a slurry. The slurry was transferred to a polytetrafluoroethylene petri dish and dried at 50 ° C. for 2 days to produce a firing raw material. The raw material was pulverized by a vibration mill, spread thinly on an alumina crucible lid, subjected to primary firing at 650 ° C. in the atmosphere for 5 hours, and then cooled in a furnace. The fired raw material was pulverized again with a vibration mill and subjected to secondary firing in the air at 850 ° C. for 5 hours. After cooling in the furnace, a sample was taken out, washed with distilled water, filtered and dried to obtain the target composite oxide.
硝酸ニッケル(II)6水和物36.35gおよび塩化マンガン(II)4水和物24.74g(0.25mol/バッチ、Ni:Mnモル比1:1)を秤量し、蒸留水500ml中に完全に溶解させた。別のチタン製ビーカーに水酸化ナトリウム50gを入れ、蒸留水500mlを加えて完全に溶解させた。水酸化ナトリウム水溶液を20℃に保持された恒温槽内に固定し、溶液が同じ温度になるまで攪拌保持した。上記金属塩溶液に送液ポンプをセットし、上記アルカリ溶液へ3時間かけて、金属塩溶液を徐々に加え、沈殿を形成させた。沈殿作製終了後もアルカリ溶液のpHが11以上あることを確認した。沈殿作製終了後、ビーカーを恒温槽より取り出し、室温にて攪拌しつつ、酸素ガス発生器を用いて、沈殿に酸素を吹き込みつつ二日間湿式酸化および熟成を行った。熟成後に沈殿を蒸留水で洗浄し、アルカリあるいは塩類を取り除いた後、濾過した。濾過後、沈殿に炭酸リチウム0.25mol(18.47g)を加え、蒸留水200mlとともにミキサー混合し、スラリーを作製した。スラリーをポリテトラフルオロエチレン製シャーレーに移し、50℃で2日間乾燥して焼成用原料を作製した。振動ミルにより原料を粉砕後、アルミナるつぼふた上に薄く広げ、大気中650℃で5時間一次焼成後、炉冷した。焼成後の原料は振動ミルにて再度粉砕し、850℃で5時間大気中二次焼成を行った。炉冷後試料を取り出し、蒸留水にて洗浄後、濾過および乾燥して、目的の複合酸化物を得た。 Example 1
36.35 g of nickel (II) nitrate hexahydrate and 24.74 g of manganese (II) chloride tetrahydrate (0.25 mol / batch, Ni: Mn molar ratio 1: 1) were weighed into 500 ml of distilled water. It was completely dissolved. In another titanium beaker, 50 g of sodium hydroxide was added, and 500 ml of distilled water was added and completely dissolved. A sodium hydroxide aqueous solution was fixed in a thermostat kept at 20 ° C., and stirred and held until the solution reached the same temperature. A liquid feed pump was set in the metal salt solution, and the metal salt solution was gradually added to the alkali solution over 3 hours to form a precipitate. It was confirmed that the pH of the alkaline solution was 11 or more even after completion of the precipitation. After completion of the precipitation, the beaker was taken out of the thermostatic bath and stirred at room temperature, and then wet oxidation and aging were performed for 2 days while blowing oxygen into the precipitate using an oxygen gas generator. After aging, the precipitate was washed with distilled water to remove alkali or salts and then filtered. After filtration, 0.25 mol (18.47 g) of lithium carbonate was added to the precipitate and mixed with 200 ml of distilled water to prepare a slurry. The slurry was transferred to a polytetrafluoroethylene petri dish and dried at 50 ° C. for 2 days to produce a firing raw material. The raw material was pulverized by a vibration mill, spread thinly on an alumina crucible lid, subjected to primary firing at 650 ° C. in the atmosphere for 5 hours, and then cooled in a furnace. The fired raw material was pulverized again with a vibration mill and subjected to secondary firing in the air at 850 ° C. for 5 hours. After cooling in the furnace, a sample was taken out, washed with distilled water, filtered and dried to obtain the target composite oxide.
(比較例1)
二次焼成を大気中ではなく窒素中で行うこと以外は、実施例1と同様にして試料の作製を行った。 (Comparative Example 1)
A sample was prepared in the same manner as in Example 1 except that the secondary firing was performed in nitrogen instead of in the air.
二次焼成を大気中ではなく窒素中で行うこと以外は、実施例1と同様にして試料の作製を行った。 (Comparative Example 1)
A sample was prepared in the same manner as in Example 1 except that the secondary firing was performed in nitrogen instead of in the air.
X線回折による評価(実施例1)
上記で得られた実施例1の試料の実測(+)及び六方晶層状岩塩型単位胞(下記空間群)を用いた計算(曲線)X線回折(XRD)パターンを、図1に示した。 Evaluation by X-ray diffraction (Example 1)
The actual measurement (+) of the sample of Example 1 obtained above and the calculated (curved) X-ray diffraction (XRD) pattern using a hexagonal layered rock salt unit cell (the following space group) are shown in FIG.
上記で得られた実施例1の試料の実測(+)及び六方晶層状岩塩型単位胞(下記空間群)を用いた計算(曲線)X線回折(XRD)パターンを、図1に示した。 Evaluation by X-ray diffraction (Example 1)
The actual measurement (+) of the sample of Example 1 obtained above and the calculated (curved) X-ray diffraction (XRD) pattern using a hexagonal layered rock salt unit cell (the following space group) are shown in FIG.
残差はパターンの下に表示した。2θ=20-25°付近には、本モデルではフィットできない単斜晶層状岩塩型単位胞(下記空間群)由来の超格子ピーク(2θ=20.5°および21.5°付近のブロードなピーク)の存在が確認された。
The residual is displayed below the pattern. Around 2θ = 20-25 °, a superlattice peak derived from a monoclinic layered rock-salt unit cell (the following space group) that cannot be fitted with this model (broad peaks around 2θ = 20.5 ° and 21.5 °) ) Was confirmed.
図1より、得られたXRDパターンは基本的に遷移金属層内に六角網目規則配列を有する単斜晶Li2MnO3型構造(下記空間群)相と帰属できた。
From FIG. 1, the obtained XRD pattern could be attributed to a monoclinic Li 2 MnO 3 type structure (the following space group) phase having a hexagonal network regular arrangement in the transition metal layer.
しかしながら今回フィットは、より単純な超格子のないα-NaFeO2型構造と呼ばれる六方晶層状岩塩型結晶相(下記空間群)に帰属して解析した。
However, this time the fit was analyzed by belonging to a hexagonal layered rock salt type crystal phase (the following space group) called α-NaFeO 2 type structure without a simpler superlattice.
X線リートベルト解析(解析プログラムRIETAN-FPを使用、F. Izumi and K. Momma, Solid State Phenom, 130 15-20 (2007).)より、格子定数a=2.86194(7)Å、c=14.2321(3)Å、格子体積V=100.953(4)Å3であった。
各格子位置での占有率は、Li層内遷移金属(3a)位置の占有率は4.75(6)%、遷移金属層内遷移金属(3b)位置の占有率は81.14(16)%であった。両者の総和が組成式あたり遷移金属量であり、その値は85.9(2)%(0.859(2))であった。 From the X-ray Rietveld analysis (using the analysis program Rietan-FP, F. Izumi and K. Momma, Solid State Phenom, 130 15-20 (2007).), The lattice constant a = 2.86194 (7) Å, c = 14.2321 (3) Å, lattice volume V = 100.953 (4) was Å 3.
The occupancy at each lattice position is 4.75 (6)% at the transition metal (3a) position in the Li layer, and 81.14 (16) at the transition metal (3b) position in the transition metal layer. %Met. The sum of both was the amount of transition metal per composition formula, and the value was 85.9 (2)% (0.859 (2)).
各格子位置での占有率は、Li層内遷移金属(3a)位置の占有率は4.75(6)%、遷移金属層内遷移金属(3b)位置の占有率は81.14(16)%であった。両者の総和が組成式あたり遷移金属量であり、その値は85.9(2)%(0.859(2))であった。 From the X-ray Rietveld analysis (using the analysis program Rietan-FP, F. Izumi and K. Momma, Solid State Phenom, 130 15-20 (2007).), The lattice constant a = 2.86194 (7) Å, c = 14.2321 (3) Å, lattice volume V = 100.953 (4) was Å 3.
The occupancy at each lattice position is 4.75 (6)% at the transition metal (3a) position in the Li layer, and 81.14 (16) at the transition metal (3b) position in the transition metal layer. %Met. The sum of both was the amount of transition metal per composition formula, and the value was 85.9 (2)% (0.859 (2)).
X線回折による評価(比較例1)
上記で得られた比較例1の試料の実測(+)及び六方晶層状岩塩型単位胞(下記空間群)を用いた計算(曲線)X線回折(XRD)パターンを、図2に示した。 Evaluation by X-ray diffraction (Comparative Example 1)
FIG. 2 shows an actual measurement (+) of the sample of Comparative Example 1 obtained above and a calculated (curved) X-ray diffraction (XRD) pattern using a hexagonal layered rock salt unit cell (the following space group).
上記で得られた比較例1の試料の実測(+)及び六方晶層状岩塩型単位胞(下記空間群)を用いた計算(曲線)X線回折(XRD)パターンを、図2に示した。 Evaluation by X-ray diffraction (Comparative Example 1)
FIG. 2 shows an actual measurement (+) of the sample of Comparative Example 1 obtained above and a calculated (curved) X-ray diffraction (XRD) pattern using a hexagonal layered rock salt unit cell (the following space group).
残差はパターンの下に表示した。2θ=20-25°付近には、本モデルではフィットできない単斜晶層状岩塩型単位胞(下記空間群)由来の超格子ピーク(2θ=20.5°および21.5°付近のブロードなピーク)の存在が確認された。
The residual is displayed below the pattern. Around 2θ = 20-25 °, a superlattice peak derived from a monoclinic layered rock-salt unit cell (the following space group) that cannot be fitted with this model (broad peaks around 2θ = 20.5 ° and 21.5 °) ) Was confirmed.
図2より、得られたXRDパターンは基本的に遷移金属層内に六角網目規則配列を有する単斜晶Li2MnO3型構造(下記空間群)相と帰属できた。
From FIG. 2, the obtained XRD pattern could be attributed to a monoclinic Li 2 MnO 3 type structure (the following space group) phase having a hexagonal network regular arrangement in the transition metal layer.
しかしながら今回フィットは、より単純な超格子のないα-NaFeO2型構造と呼ばれる六方晶層状岩塩型結晶相(下記空間群)に帰属して解析した。
However, this time the fit was analyzed by belonging to a hexagonal layered rock salt type crystal phase (the following space group) called α-NaFeO 2 type structure without a simpler superlattice.
X線リートベルト解析(解析プログラムRIETAN-FPを使用、F. Izumi and K. Momma, Solid State Phenom, 130 15-20 (2007).)より、格子定数a=2.88374(8)Å、c=14.2758(3)Å、格子体積V=102.812(4)Å3であった。
各格子位置での占有率は、Li層内遷移金属(3a)位置の占有率は8.79(6)%、遷移金属層内遷移金属(3b)位置の占有率は87.09(15)%であった。両者の総和が組成式あたり遷移金属量であり、その値は95.9(2)%(0.959(2))であった。 From the X-ray Rietveld analysis (using the analysis program Rietan-FP, F. Izumi and K. Momma, Solid State Phenom, 130 15-20 (2007)), the lattice constant a = 2.88374 (8) Å, c = 14.2758 (3) Å, and the lattice volume V = 102.812 (4) 3 3 .
As for the occupancy at each lattice position, the occupancy at the transition metal (3a) position in the Li layer is 8.79 (6)%, and the occupancy at the transition metal (3b) position in the transition metal layer is 87.09 (15). %Met. The sum of both was the amount of transition metal per composition formula, and the value was 95.9 (2)% (0.959 (2)).
各格子位置での占有率は、Li層内遷移金属(3a)位置の占有率は8.79(6)%、遷移金属層内遷移金属(3b)位置の占有率は87.09(15)%であった。両者の総和が組成式あたり遷移金属量であり、その値は95.9(2)%(0.959(2))であった。 From the X-ray Rietveld analysis (using the analysis program Rietan-FP, F. Izumi and K. Momma, Solid State Phenom, 130 15-20 (2007)), the lattice constant a = 2.88374 (8) Å, c = 14.2758 (3) Å, and the lattice volume V = 102.812 (4) 3 3 .
As for the occupancy at each lattice position, the occupancy at the transition metal (3a) position in the Li layer is 8.79 (6)%, and the occupancy at the transition metal (3b) position in the transition metal layer is 87.09 (15). %Met. The sum of both was the amount of transition metal per composition formula, and the value was 95.9 (2)% (0.959 (2)).
化学分析(実施例1)
Li量をICP発光分析により、実施例1の試料のMn量、Ni量およびO量を波長分散型蛍光X線分析にて見積もったところ、得られたLi/(Ni+Mn)モル比は1.30(1)であった。またNi/(Ni+Mn)モル比とO/(Ni+Mn)モル比はそれぞれ0.48(1)、2.62(5)であった。
組成式との対応からx値は以下の計算式で算出される。
x=(Li/(Ni+Mn)モル比-1)÷(Li/(Ni+Mn)モル比+1)
従ってx値は0.130(5)となった。
一方y値はNi/(Ni+Mn)モル比そのものであることから0.48(1)であった。 Chemical analysis (Example 1)
When the amount of Li was estimated by ICP emission analysis and the amount of Mn, Ni and O of the sample of Example 1 were estimated by wavelength dispersive X-ray fluorescence analysis, the resulting Li / (Ni + Mn) molar ratio was 1.30. (1). The Ni / (Ni + Mn) molar ratio and the O / (Ni + Mn) molar ratio were 0.48 (1) and 2.62 (5), respectively.
From the correspondence with the composition formula, the x value is calculated by the following formula.
x = (Li / (Ni + Mn) molar ratio-1) ÷ (Li / (Ni + Mn) molar ratio + 1)
Therefore, the x value was 0.130 (5).
On the other hand, the y value was 0.48 (1) because it was the Ni / (Ni + Mn) molar ratio itself.
Li量をICP発光分析により、実施例1の試料のMn量、Ni量およびO量を波長分散型蛍光X線分析にて見積もったところ、得られたLi/(Ni+Mn)モル比は1.30(1)であった。またNi/(Ni+Mn)モル比とO/(Ni+Mn)モル比はそれぞれ0.48(1)、2.62(5)であった。
組成式との対応からx値は以下の計算式で算出される。
x=(Li/(Ni+Mn)モル比-1)÷(Li/(Ni+Mn)モル比+1)
従ってx値は0.130(5)となった。
一方y値はNi/(Ni+Mn)モル比そのものであることから0.48(1)であった。 Chemical analysis (Example 1)
When the amount of Li was estimated by ICP emission analysis and the amount of Mn, Ni and O of the sample of Example 1 were estimated by wavelength dispersive X-ray fluorescence analysis, the resulting Li / (Ni + Mn) molar ratio was 1.30. (1). The Ni / (Ni + Mn) molar ratio and the O / (Ni + Mn) molar ratio were 0.48 (1) and 2.62 (5), respectively.
From the correspondence with the composition formula, the x value is calculated by the following formula.
x = (Li / (Ni + Mn) molar ratio-1) ÷ (Li / (Ni + Mn) molar ratio + 1)
Therefore, the x value was 0.130 (5).
On the other hand, the y value was 0.48 (1) because it was the Ni / (Ni + Mn) molar ratio itself.
化学分析(比較例1)
Li量をICP発光分析により、比較例1の試料のMn量、Ni量およびO量を波長分散型蛍光X線分析にて見積もったところ、得られたLi/(Ni+Mn)モル比は0.98(1)であった。またNi/(Ni+Mn)モル比とO/(Ni+Mn)モル比はそれぞれ0.50(1)、2.11(6)であった。
組成式との対応からx値は以下の計算式で算出される。
x=(Li/(Ni+Mn)モル比-1)÷(Li/(Ni+Mn)モル比+1)
従ってx値は-0.01(1)となった。
一方y値はNi/(Ni+Mn)モル比そのものであることから0.50(1)であった。 Chemical analysis (Comparative Example 1)
When the Li amount was estimated by ICP emission analysis, and the Mn amount, Ni amount, and O amount of the sample of Comparative Example 1 were estimated by wavelength dispersive X-ray fluorescence analysis, the obtained Li / (Ni + Mn) molar ratio was 0.98. (1). The Ni / (Ni + Mn) molar ratio and the O / (Ni + Mn) molar ratio were 0.50 (1) and 2.11 (6), respectively.
From the correspondence with the composition formula, the x value is calculated by the following formula.
x = (Li / (Ni + Mn) molar ratio-1) ÷ (Li / (Ni + Mn) molar ratio + 1)
Therefore, the x value was -0.01 (1).
On the other hand, the y value was 0.50 (1) because it was the Ni / (Ni + Mn) molar ratio itself.
Li量をICP発光分析により、比較例1の試料のMn量、Ni量およびO量を波長分散型蛍光X線分析にて見積もったところ、得られたLi/(Ni+Mn)モル比は0.98(1)であった。またNi/(Ni+Mn)モル比とO/(Ni+Mn)モル比はそれぞれ0.50(1)、2.11(6)であった。
組成式との対応からx値は以下の計算式で算出される。
x=(Li/(Ni+Mn)モル比-1)÷(Li/(Ni+Mn)モル比+1)
従ってx値は-0.01(1)となった。
一方y値はNi/(Ni+Mn)モル比そのものであることから0.50(1)であった。 Chemical analysis (Comparative Example 1)
When the Li amount was estimated by ICP emission analysis, and the Mn amount, Ni amount, and O amount of the sample of Comparative Example 1 were estimated by wavelength dispersive X-ray fluorescence analysis, the obtained Li / (Ni + Mn) molar ratio was 0.98. (1). The Ni / (Ni + Mn) molar ratio and the O / (Ni + Mn) molar ratio were 0.50 (1) and 2.11 (6), respectively.
From the correspondence with the composition formula, the x value is calculated by the following formula.
x = (Li / (Ni + Mn) molar ratio-1) ÷ (Li / (Ni + Mn) molar ratio + 1)
Therefore, the x value was -0.01 (1).
On the other hand, the y value was 0.50 (1) because it was the Ni / (Ni + Mn) molar ratio itself.
Mnイオン及びNiイオンの価数分析
図3(a)および(b)に、実施例1及び比較例1それぞれの試料におけるMnおよびNiのK端近傍X線吸収スペクトル(XANES)を示した。尚、4価Mn、2価Niおよび3価Niの標準物質としては、それぞれLi2MnO3、NiOおよびLiNiO2を使用した。
MnK端においては、実施例1と比較例1のスペクトルに差はなく、且つ4価Mnの標準物質であるLi2MnO3のXANESデータとほぼ重なることから、比較例1試料は実施例1試料と同様にMn価数に差はなく4価と判断できる。一方NiK端のXANESデータは実施例1と比較例1で1s→4p遷移に相当するピークトップ位置が大きく異なることがわかる。実施例1試料の方が比較例1試料より高エネルギー側にシフトしており、Niイオン価数が高いことを反映している。そこで以下の計算式を用いてNi平均価数を見積もった。
Ni平均価数=2+{(実施例試料のピークトップエネルギー値)-(NiOのピークトップエネルギー値)}
÷{(LiNiO2試料のピークトップエネルギー値)-(NiOのピークトップエネルギー値)}
(実施例1)
NiOとLiNiO2のエネルギー値はそれぞれ8349.3、8351.3eVであり、実施例試料のエネルギー値が8351eVと見積もられたので、得られたニッケルイオンの平均価数は2.85価と算出された。
(比較例1)
NiOとLiNiO2のエネルギー値はそれぞれ8349.3、8351.3eVであり、比較例試料のエネルギー値が8350eVと見積もられたので、得られたニッケルイオンの平均価数は2.35価と算出された。 Valence analysis of Mn ions and Ni ions FIGS. 3A and 3B show the X-ray absorption spectra (XANES) near the K-edge of Mn and Ni in the samples of Example 1 and Comparative Example 1, respectively. Incidentally, Li 2 MnO 3 , NiO and LiNiO 2 were used as standard materials for tetravalent Mn, divalent Ni and trivalent Ni, respectively.
At the MnK end, there is no difference between the spectra of Example 1 and Comparative Example 1, and the XANES data of Li 2 MnO 3 , which is a tetravalent Mn standard substance, almost overlaps. Similarly to the above, there is no difference in the Mn valence, and it can be judged as tetravalent. On the other hand, the XANES data at the NiK end shows that the peak top position corresponding to the 1s → 4p transition differs greatly between Example 1 and Comparative Example 1. The sample of Example 1 is shifted to a higher energy side than the sample of Comparative Example 1, which reflects the higher Ni ion valence. Therefore, the Ni average valence was estimated using the following calculation formula.
Ni average valence = 2 + {(peak top energy value of example sample) − (peak top energy value of NiO)}
÷ {(peak top energy value of LiNiO 2 sample) − (peak top energy value of NiO)}
Example 1
Since the energy values of NiO and LiNiO 2 were 8349.3 and 8351.3 eV, respectively, and the energy value of the example sample was estimated to be 8351 eV, the average valence of the obtained nickel ions was calculated to be 2.85. It was done.
(Comparative Example 1)
The energy values of NiO and LiNiO 2 were 8349.3 and 8351.3 eV, respectively, and the energy value of the comparative sample was estimated to be 8350 eV, so the average valence of the obtained nickel ions was calculated to be 2.35. It was done.
図3(a)および(b)に、実施例1及び比較例1それぞれの試料におけるMnおよびNiのK端近傍X線吸収スペクトル(XANES)を示した。尚、4価Mn、2価Niおよび3価Niの標準物質としては、それぞれLi2MnO3、NiOおよびLiNiO2を使用した。
MnK端においては、実施例1と比較例1のスペクトルに差はなく、且つ4価Mnの標準物質であるLi2MnO3のXANESデータとほぼ重なることから、比較例1試料は実施例1試料と同様にMn価数に差はなく4価と判断できる。一方NiK端のXANESデータは実施例1と比較例1で1s→4p遷移に相当するピークトップ位置が大きく異なることがわかる。実施例1試料の方が比較例1試料より高エネルギー側にシフトしており、Niイオン価数が高いことを反映している。そこで以下の計算式を用いてNi平均価数を見積もった。
Ni平均価数=2+{(実施例試料のピークトップエネルギー値)-(NiOのピークトップエネルギー値)}
÷{(LiNiO2試料のピークトップエネルギー値)-(NiOのピークトップエネルギー値)}
(実施例1)
NiOとLiNiO2のエネルギー値はそれぞれ8349.3、8351.3eVであり、実施例試料のエネルギー値が8351eVと見積もられたので、得られたニッケルイオンの平均価数は2.85価と算出された。
(比較例1)
NiOとLiNiO2のエネルギー値はそれぞれ8349.3、8351.3eVであり、比較例試料のエネルギー値が8350eVと見積もられたので、得られたニッケルイオンの平均価数は2.35価と算出された。 Valence analysis of Mn ions and Ni ions FIGS. 3A and 3B show the X-ray absorption spectra (XANES) near the K-edge of Mn and Ni in the samples of Example 1 and Comparative Example 1, respectively. Incidentally, Li 2 MnO 3 , NiO and LiNiO 2 were used as standard materials for tetravalent Mn, divalent Ni and trivalent Ni, respectively.
At the MnK end, there is no difference between the spectra of Example 1 and Comparative Example 1, and the XANES data of Li 2 MnO 3 , which is a tetravalent Mn standard substance, almost overlaps. Similarly to the above, there is no difference in the Mn valence, and it can be judged as tetravalent. On the other hand, the XANES data at the NiK end shows that the peak top position corresponding to the 1s → 4p transition differs greatly between Example 1 and Comparative Example 1. The sample of Example 1 is shifted to a higher energy side than the sample of Comparative Example 1, which reflects the higher Ni ion valence. Therefore, the Ni average valence was estimated using the following calculation formula.
Ni average valence = 2 + {(peak top energy value of example sample) − (peak top energy value of NiO)}
÷ {(peak top energy value of LiNiO 2 sample) − (peak top energy value of NiO)}
Example 1
Since the energy values of NiO and LiNiO 2 were 8349.3 and 8351.3 eV, respectively, and the energy value of the example sample was estimated to be 8351 eV, the average valence of the obtained nickel ions was calculated to be 2.85. It was done.
(Comparative Example 1)
The energy values of NiO and LiNiO 2 were 8349.3 and 8351.3 eV, respectively, and the energy value of the comparative sample was estimated to be 8350 eV, so the average valence of the obtained nickel ions was calculated to be 2.35. It was done.
充放電特性評価
得られた実施例1試料の粉末20mgをアセチレンブラック5mgとよく混合後、少量の結着剤(ポリテトラフルオロエチレン粉末)を加えて錠剤正極を作製した。120℃真空乾燥後グローブボックス内で負極を金属リチウム、電解液を1M-LiPF6相当の支持塩をEC(炭酸エチレン)+DMC(炭酸ジメチル)混合溶媒(体積比3:7)に溶解させたものを電解液として、リチウム半電池を組み立て、30℃にて充電開始の充放電試験を行った。なお電位範囲は2.0-4.6Vとした。1-4サイクルまでは予備充放電として充電容量を1サイクル目は80mAh/gに制限し、放電後さらに2サイクル目は40mAh/g高い120mAh/gまでの充電容量規制充放電を行い、以後4サイクル目まで40mAh/gずつ充電容量を増やしながら充放電を行い、5サイクル目に4.8Vまで充電し、その後放電させた。以後は設定した電位範囲で29サイクル充放電を行った。比較例1試料についても、同様の条件で電池を作製し、同様の充放電特性評価試験を実施した。
(実施例1)
図4に、実施例1の試料を正極としたリチウム二次電池の30℃における充放電曲線を示した。右上がりの曲線が充電(c)に、右下がりの曲線が放電(d)に対応する。数字はサイクル数を示す。図4より、5サイクル目(活性化後初期に相当)充電容量と放電容量がそれぞれ226mAh/g、205mAh/gであり、充放電効率は93%であった。また5サイクル目放電時の平均電圧が3.69V、その放電容量との積に相当するエネルギー密度が757mWh/gと高容量正極として十分な初期特性を有するのみならず、34サイクル後(活性化後30サイクル相当)の放電容量も189mAh/gと高く、5サイクル時に対する30サイクル時放電容量維持率は92%と高かった。また24サイクル目以降からの電位および容量低下がほとんどないことも判明し、リチウムイオン二次電池正極材料として優れた特性を有することが確認できた。
(比較例1)
また、図5に、比較例1の試料を正極としたリチウム二次電池の30℃における充放電曲線を示した。右上がりの曲線が充電(c)に、右下がりの曲線が放電(d)に対応する。図5より、5サイクル目(活性化後初期に相当)充電容量と放電容量がそれぞれ218mAh/g、205mAh/gであり、充放電効率は93%であった。また5サイクル目放電時の平均電圧が3.78V、その放電容量との積に相当するエネルギー密度が773mWh/gと高容量正極として十分な初期特性を有するものの、34サイクル後(活性化後30サイクル相当)の放電容量が30mAh/gと低く、5サイクル時に対する30サイクル時放電容量維持率は14%と低かった。すなわち比較例試料はリチウムイオン二次電池正極材料として、サイクル特性が十分なものではなかった。 Evaluation of charge / discharge characteristics After 20 mg of the obtained powder of Example 1 obtained sample was mixed well with 5 mg of acetylene black, a small amount of binder (polytetrafluoroethylene powder) was added to prepare a tablet positive electrode. After vacuum drying at 120 ° C, the negative electrode is metallic lithium and the electrolyte is dissolved in 1M-LiPF 6 supporting salt in EC (ethylene carbonate) + DMC (dimethyl carbonate) mixed solvent (volume ratio 3: 7) in the glove box A lithium half battery was assembled using the electrolyte solution, and a charge / discharge test for starting charging was performed at 30 ° C. The potential range was 2.0-4.6V. The charge capacity is limited to 80 mAh / g for the first cycle until 1-4 cycles, and the charge capacity is limited to 80 mAh / g for the second cycle after discharge. Charging / discharging was carried out while increasing the charging capacity by 40 mAh / g until the cycle, charging to 4.8 V at the fifth cycle, and then discharging. Thereafter, 29 cycles of charge and discharge were performed in the set potential range. For the sample of Comparative Example 1 as well, a battery was produced under the same conditions, and a similar charge / discharge characteristic evaluation test was performed.
Example 1
FIG. 4 shows a charge / discharge curve at 30 ° C. of a lithium secondary battery using the sample of Example 1 as a positive electrode. The curve that rises to the right corresponds to charge (c), and the curve that falls to the right corresponds to discharge (d). The number indicates the cycle number. From FIG. 4, the charge capacity and discharge capacity at the fifth cycle (corresponding to the initial stage after activation) were 226 mAh / g and 205 mAh / g, respectively, and the charge / discharge efficiency was 93%. Moreover, the average voltage at the time of the fifth cycle discharge is 3.69 V, and the energy density corresponding to the product of the discharge capacity is 757 mWh / g. The discharge capacity of 30 cycles after) was as high as 189 mAh / g, and the discharge capacity maintenance rate at 30 cycles with respect to 5 cycles was as high as 92%. Further, it was also found that there was almost no decrease in potential and capacity from the 24th cycle onwards, and it was confirmed that the lithium ion secondary battery positive electrode material had excellent characteristics.
(Comparative Example 1)
FIG. 5 shows a charge / discharge curve at 30 ° C. of a lithium secondary battery using the sample of Comparative Example 1 as a positive electrode. The curve that rises to the right corresponds to charge (c), and the curve that falls to the right corresponds to discharge (d). From FIG. 5, the charge capacity and discharge capacity at the fifth cycle (corresponding to the initial stage after activation) were 218 mAh / g and 205 mAh / g, respectively, and the charge / discharge efficiency was 93%. In addition, although the average voltage at the fifth cycle discharge is 3.78 V and the energy density corresponding to the product of the discharge capacity is 773 mWh / g, which has sufficient initial characteristics as a high capacity positive electrode, after 34 cycles (afteractivation 30 Discharge capacity) was as low as 30 mAh / g, and the discharge capacity retention rate at 30 cycles with respect to 5 cycles was 14%. That is, the comparative sample was not sufficient in cycle characteristics as a lithium ion secondary battery positive electrode material.
得られた実施例1試料の粉末20mgをアセチレンブラック5mgとよく混合後、少量の結着剤(ポリテトラフルオロエチレン粉末)を加えて錠剤正極を作製した。120℃真空乾燥後グローブボックス内で負極を金属リチウム、電解液を1M-LiPF6相当の支持塩をEC(炭酸エチレン)+DMC(炭酸ジメチル)混合溶媒(体積比3:7)に溶解させたものを電解液として、リチウム半電池を組み立て、30℃にて充電開始の充放電試験を行った。なお電位範囲は2.0-4.6Vとした。1-4サイクルまでは予備充放電として充電容量を1サイクル目は80mAh/gに制限し、放電後さらに2サイクル目は40mAh/g高い120mAh/gまでの充電容量規制充放電を行い、以後4サイクル目まで40mAh/gずつ充電容量を増やしながら充放電を行い、5サイクル目に4.8Vまで充電し、その後放電させた。以後は設定した電位範囲で29サイクル充放電を行った。比較例1試料についても、同様の条件で電池を作製し、同様の充放電特性評価試験を実施した。
(実施例1)
図4に、実施例1の試料を正極としたリチウム二次電池の30℃における充放電曲線を示した。右上がりの曲線が充電(c)に、右下がりの曲線が放電(d)に対応する。数字はサイクル数を示す。図4より、5サイクル目(活性化後初期に相当)充電容量と放電容量がそれぞれ226mAh/g、205mAh/gであり、充放電効率は93%であった。また5サイクル目放電時の平均電圧が3.69V、その放電容量との積に相当するエネルギー密度が757mWh/gと高容量正極として十分な初期特性を有するのみならず、34サイクル後(活性化後30サイクル相当)の放電容量も189mAh/gと高く、5サイクル時に対する30サイクル時放電容量維持率は92%と高かった。また24サイクル目以降からの電位および容量低下がほとんどないことも判明し、リチウムイオン二次電池正極材料として優れた特性を有することが確認できた。
(比較例1)
また、図5に、比較例1の試料を正極としたリチウム二次電池の30℃における充放電曲線を示した。右上がりの曲線が充電(c)に、右下がりの曲線が放電(d)に対応する。図5より、5サイクル目(活性化後初期に相当)充電容量と放電容量がそれぞれ218mAh/g、205mAh/gであり、充放電効率は93%であった。また5サイクル目放電時の平均電圧が3.78V、その放電容量との積に相当するエネルギー密度が773mWh/gと高容量正極として十分な初期特性を有するものの、34サイクル後(活性化後30サイクル相当)の放電容量が30mAh/gと低く、5サイクル時に対する30サイクル時放電容量維持率は14%と低かった。すなわち比較例試料はリチウムイオン二次電池正極材料として、サイクル特性が十分なものではなかった。 Evaluation of charge / discharge characteristics After 20 mg of the obtained powder of Example 1 obtained sample was mixed well with 5 mg of acetylene black, a small amount of binder (polytetrafluoroethylene powder) was added to prepare a tablet positive electrode. After vacuum drying at 120 ° C, the negative electrode is metallic lithium and the electrolyte is dissolved in 1M-LiPF 6 supporting salt in EC (ethylene carbonate) + DMC (dimethyl carbonate) mixed solvent (volume ratio 3: 7) in the glove box A lithium half battery was assembled using the electrolyte solution, and a charge / discharge test for starting charging was performed at 30 ° C. The potential range was 2.0-4.6V. The charge capacity is limited to 80 mAh / g for the first cycle until 1-4 cycles, and the charge capacity is limited to 80 mAh / g for the second cycle after discharge. Charging / discharging was carried out while increasing the charging capacity by 40 mAh / g until the cycle, charging to 4.8 V at the fifth cycle, and then discharging. Thereafter, 29 cycles of charge and discharge were performed in the set potential range. For the sample of Comparative Example 1 as well, a battery was produced under the same conditions, and a similar charge / discharge characteristic evaluation test was performed.
Example 1
FIG. 4 shows a charge / discharge curve at 30 ° C. of a lithium secondary battery using the sample of Example 1 as a positive electrode. The curve that rises to the right corresponds to charge (c), and the curve that falls to the right corresponds to discharge (d). The number indicates the cycle number. From FIG. 4, the charge capacity and discharge capacity at the fifth cycle (corresponding to the initial stage after activation) were 226 mAh / g and 205 mAh / g, respectively, and the charge / discharge efficiency was 93%. Moreover, the average voltage at the time of the fifth cycle discharge is 3.69 V, and the energy density corresponding to the product of the discharge capacity is 757 mWh / g. The discharge capacity of 30 cycles after) was as high as 189 mAh / g, and the discharge capacity maintenance rate at 30 cycles with respect to 5 cycles was as high as 92%. Further, it was also found that there was almost no decrease in potential and capacity from the 24th cycle onwards, and it was confirmed that the lithium ion secondary battery positive electrode material had excellent characteristics.
(Comparative Example 1)
FIG. 5 shows a charge / discharge curve at 30 ° C. of a lithium secondary battery using the sample of Comparative Example 1 as a positive electrode. The curve that rises to the right corresponds to charge (c), and the curve that falls to the right corresponds to discharge (d). From FIG. 5, the charge capacity and discharge capacity at the fifth cycle (corresponding to the initial stage after activation) were 218 mAh / g and 205 mAh / g, respectively, and the charge / discharge efficiency was 93%. In addition, although the average voltage at the fifth cycle discharge is 3.78 V and the energy density corresponding to the product of the discharge capacity is 773 mWh / g, which has sufficient initial characteristics as a high capacity positive electrode, after 34 cycles (after
(実施例2)
硝酸ニッケル(II)6水和物29.08gおよび塩化マンガン(II)4水和物29.69g(0.25mol/バッチ、Ni:Mnモル比4:6)を秤量し、蒸留水500ml中に完全に溶解させた。水酸化ナトリウム水溶液を+5℃に保持された恒温槽内に固定し、溶液が同じ温度になるまで攪拌保持した。以後は実施例1と同様のプロセスにて試料作製を行い、目的の複合酸化物を得た。 (Example 2)
Weigh 29.08 g of nickel (II) nitrate hexahydrate and 29.69 g of manganese (II) chloride tetrahydrate (0.25 mol / batch, Ni: Mn molar ratio 4: 6) and completely dissolve in 500 ml of distilled water. Dissolved. An aqueous sodium hydroxide solution was fixed in a thermostatic bath maintained at + 5 ° C., and stirred and held until the solution reached the same temperature. Thereafter, a sample was prepared by the same process as in Example 1 to obtain the target composite oxide.
硝酸ニッケル(II)6水和物29.08gおよび塩化マンガン(II)4水和物29.69g(0.25mol/バッチ、Ni:Mnモル比4:6)を秤量し、蒸留水500ml中に完全に溶解させた。水酸化ナトリウム水溶液を+5℃に保持された恒温槽内に固定し、溶液が同じ温度になるまで攪拌保持した。以後は実施例1と同様のプロセスにて試料作製を行い、目的の複合酸化物を得た。 (Example 2)
Weigh 29.08 g of nickel (II) nitrate hexahydrate and 29.69 g of manganese (II) chloride tetrahydrate (0.25 mol / batch, Ni: Mn molar ratio 4: 6) and completely dissolve in 500 ml of distilled water. Dissolved. An aqueous sodium hydroxide solution was fixed in a thermostatic bath maintained at + 5 ° C., and stirred and held until the solution reached the same temperature. Thereafter, a sample was prepared by the same process as in Example 1 to obtain the target composite oxide.
(比較例2)
二次焼成を大気中ではなく窒素中で行うこと以外は、実施例2と同様にして試料の作製を行った。 (Comparative Example 2)
A sample was prepared in the same manner as in Example 2 except that the secondary firing was performed in nitrogen instead of in the air.
二次焼成を大気中ではなく窒素中で行うこと以外は、実施例2と同様にして試料の作製を行った。 (Comparative Example 2)
A sample was prepared in the same manner as in Example 2 except that the secondary firing was performed in nitrogen instead of in the air.
X線回折による評価(実施例2)
上記で得られた実施例2の試料の実測(+)及び六方晶層状岩塩型単位胞(上記空間群)を用いた計算(曲線)X線回折(XRD)パターンを、図6に示した。 Evaluation by X-ray diffraction (Example 2)
The actual measurement (+) of the sample of Example 2 obtained above and the calculated (curved) X-ray diffraction (XRD) pattern using the hexagonal layered rock salt type unit cell (the above space group) are shown in FIG.
上記で得られた実施例2の試料の実測(+)及び六方晶層状岩塩型単位胞(上記空間群)を用いた計算(曲線)X線回折(XRD)パターンを、図6に示した。 Evaluation by X-ray diffraction (Example 2)
The actual measurement (+) of the sample of Example 2 obtained above and the calculated (curved) X-ray diffraction (XRD) pattern using the hexagonal layered rock salt type unit cell (the above space group) are shown in FIG.
残差はパターンの下に表示した。2θ=20-25°付近には、本モデルではフィットできない単斜晶層状岩塩型単位胞(下記空間群)由来の超格子ピーク(2θ=20.5°および21.5°付近のブロードなピーク)の存在が確認された。
The residual is displayed below the pattern. Around 2θ = 20-25 °, a superlattice peak derived from a monoclinic layered rock-salt unit cell (the following space group) that cannot be fitted with this model (broad peaks around 2θ = 20.5 ° and 21.5 °) ) Was confirmed.
図6より、得られたXRDパターンは基本的に遷移金属層内に六角網目規則配列を有する単斜晶Li2MnO3型構造(下記空間群)相と帰属できた。
From FIG. 6, the obtained XRD pattern could be attributed to a monoclinic Li 2 MnO 3 type structure (the following space group) phase having a hexagonal network regular arrangement in the transition metal layer.
しかしながら今回フィットは、より単純な超格子のないα-NaFeO2型構造と呼ばれる六方晶層状岩塩型結晶相(下記空間群)に帰属して解析した。
However, this time the fit was analyzed by belonging to a hexagonal layered rock salt type crystal phase (the following space group) called α-NaFeO 2 type structure without a simpler superlattice.
X線リートベルト解析(解析プログラムRIETAN-FPを使用、F. Izumi and K. Momma, Solid State Phenom, 130 15-20 (2007).)より、格子定数a=2.85599(8)Å、c=14.2254(3)Å、格子体積V=100.487(5)Å3であった。
各格子位置での占有率は、Li層内遷移金属(3a)位置の占有率は4.03(8)%、遷移金属層内遷移金属(3b)位置の占有率は76.6(2)%であった。両者の総和が組成式あたり遷移金属量であり、その値は80.6(3)%(0.806(3))であった。 From X-ray Rietveld analysis (using the analysis program Rietan-FP, F. Izumi and K. Momma, Solid State Phenom, 130 15-20 (2007)), lattice constant a = 2.85599 (8) Å, c = 14.2254 (3) Å, lattice volume V = 100.487 (5) 3 3 .
The occupancy at each lattice position was 4.03 (8)% for the transition metal (3a) position in the Li layer and 76.6 (2)% for the transition metal (3b) position in the transition metal layer. . The sum of both was the amount of transition metal per composition formula, and the value was 80.6 (3)% (0.806 (3)).
各格子位置での占有率は、Li層内遷移金属(3a)位置の占有率は4.03(8)%、遷移金属層内遷移金属(3b)位置の占有率は76.6(2)%であった。両者の総和が組成式あたり遷移金属量であり、その値は80.6(3)%(0.806(3))であった。 From X-ray Rietveld analysis (using the analysis program Rietan-FP, F. Izumi and K. Momma, Solid State Phenom, 130 15-20 (2007)), lattice constant a = 2.85599 (8) Å, c = 14.2254 (3) Å, lattice volume V = 100.487 (5) 3 3 .
The occupancy at each lattice position was 4.03 (8)% for the transition metal (3a) position in the Li layer and 76.6 (2)% for the transition metal (3b) position in the transition metal layer. . The sum of both was the amount of transition metal per composition formula, and the value was 80.6 (3)% (0.806 (3)).
X線回折による評価(比較例2)
上記で得られた比較例2の試料の実測(+)及び六方晶層状岩塩型単位胞(下記空間群)を用いた計算(曲線)X線回折(XRD)パターンを、図7に示した。 Evaluation by X-ray diffraction (Comparative Example 2)
FIG. 7 shows an actual measurement (+) of the sample of Comparative Example 2 obtained above and a calculated (curved) X-ray diffraction (XRD) pattern using a hexagonal layered rock salt unit cell (the following space group).
上記で得られた比較例2の試料の実測(+)及び六方晶層状岩塩型単位胞(下記空間群)を用いた計算(曲線)X線回折(XRD)パターンを、図7に示した。 Evaluation by X-ray diffraction (Comparative Example 2)
FIG. 7 shows an actual measurement (+) of the sample of Comparative Example 2 obtained above and a calculated (curved) X-ray diffraction (XRD) pattern using a hexagonal layered rock salt unit cell (the following space group).
残差はパターンの下に表示した。2θ=20-25°付近には、本モデルではフィットできない単斜晶層状岩塩型単位胞(下記空間群)由来の超格子ピーク(2θ=20.5°および21.5°付近のブロードなピーク)の存在が確認された。
The residual is displayed below the pattern. Around 2θ = 20-25 °, a superlattice peak derived from a monoclinic layered rock-salt unit cell (the following space group) that cannot be fitted with this model (broad peaks around 2θ = 20.5 ° and 21.5 °) ) Was confirmed.
図7より、得られたXRDパターンは基本的に遷移金属層内に六角網目規則配列を有する単斜晶Li2MnO3型構造(下記空間群)相と帰属できた。
From FIG. 7, the obtained XRD pattern could be attributed to a monoclinic Li 2 MnO 3 type structure (the following space group) phase having a hexagonal network regular arrangement in the transition metal layer.
しかしながら今回フィットは、より単純な超格子のないα-NaFeO2型構造と呼ばれる六方晶層状岩塩型結晶相(下記空間群)に帰属して解析した。
However, this time the fit was analyzed by belonging to a hexagonal layered rock salt type crystal phase (the following space group) called α-NaFeO 2 type structure without a simpler superlattice.
X線リートベルト解析(解析プログラムRIETAN-FPを使用、F. Izumi and K. Momma, Solid State Phenom, 130 15-20 (2007).)より、格子定数a=2.87164(10)Å、c=14.2729(4)Å、格子体積V=101.930(5)Å3であった。
各格子位置での占有率は、Li層内遷移金属(3a)位置の占有率は6.41(6)%、遷移金属層内遷移金属(3b)位置の占有率は82.20(17)%であった。両者の総和が組成式あたり遷移金属量であり、その値は88.6(2)%(0.886(2))であった。 From X-ray Rietveld analysis (using the analysis program Rietan-FP, F. Izumi and K. Momma, Solid State Phenom, 130 15-20 (2007)), lattice constant a = 2.71664 (10) Å, c = 14.2729 (4) Å, was lattice volume V = 101.930 (5) Å 3 .
The occupancy at each lattice position was 6.41 (6)% for the transition metal (3a) position in the Li layer and 82.20 (17)% for the transition metal (3b) position in the transition metal layer. . The sum of both was the amount of transition metal per composition formula, and the value was 88.6 (2)% (0.886 (2)).
各格子位置での占有率は、Li層内遷移金属(3a)位置の占有率は6.41(6)%、遷移金属層内遷移金属(3b)位置の占有率は82.20(17)%であった。両者の総和が組成式あたり遷移金属量であり、その値は88.6(2)%(0.886(2))であった。 From X-ray Rietveld analysis (using the analysis program Rietan-FP, F. Izumi and K. Momma, Solid State Phenom, 130 15-20 (2007)), lattice constant a = 2.71664 (10) Å, c = 14.2729 (4) Å, was lattice volume V = 101.930 (5) Å 3 .
The occupancy at each lattice position was 6.41 (6)% for the transition metal (3a) position in the Li layer and 82.20 (17)% for the transition metal (3b) position in the transition metal layer. . The sum of both was the amount of transition metal per composition formula, and the value was 88.6 (2)% (0.886 (2)).
化学分析(実施例2)
Li量をICP発光分析により、実施例2の試料のMn量、Ni量およびO量を波長分散型蛍光X線分析にて見積もったところ、得られたLi/(Ni+Mn)モル比は1.361(8)であった。またNi/(Ni+Mn)モル比とO/(Ni+Mn)モル比はそれぞれ0.398(1)、2.43(3)であった。組成式との対応からx値は以下の計算式で算出される。
x=(Li/(Ni+Mn)モル比-1)÷(Li/(Ni+Mn)モル比+1)
従ってx値は0.153(4)であった。
一方y値はNi/(Ni+Mn)モル比そのものであることから0.398(1)であった。 Chemical analysis (Example 2)
When the Li amount was estimated by ICP emission analysis, and the Mn amount, Ni amount, and O amount of the sample of Example 2 were estimated by wavelength dispersive X-ray fluorescence analysis, the obtained Li / (Ni + Mn) molar ratio was 1.361. (8). The Ni / (Ni + Mn) molar ratio and the O / (Ni + Mn) molar ratio were 0.398 (1) and 2.43 (3), respectively. From the correspondence with the composition formula, the x value is calculated by the following formula.
x = (Li / (Ni + Mn) molar ratio-1) ÷ (Li / (Ni + Mn) molar ratio + 1)
Therefore, the x value was 0.153 (4).
On the other hand, the y value was 0.398 (1) because it was the Ni / (Ni + Mn) molar ratio itself.
Li量をICP発光分析により、実施例2の試料のMn量、Ni量およびO量を波長分散型蛍光X線分析にて見積もったところ、得られたLi/(Ni+Mn)モル比は1.361(8)であった。またNi/(Ni+Mn)モル比とO/(Ni+Mn)モル比はそれぞれ0.398(1)、2.43(3)であった。組成式との対応からx値は以下の計算式で算出される。
x=(Li/(Ni+Mn)モル比-1)÷(Li/(Ni+Mn)モル比+1)
従ってx値は0.153(4)であった。
一方y値はNi/(Ni+Mn)モル比そのものであることから0.398(1)であった。 Chemical analysis (Example 2)
When the Li amount was estimated by ICP emission analysis, and the Mn amount, Ni amount, and O amount of the sample of Example 2 were estimated by wavelength dispersive X-ray fluorescence analysis, the obtained Li / (Ni + Mn) molar ratio was 1.361. (8). The Ni / (Ni + Mn) molar ratio and the O / (Ni + Mn) molar ratio were 0.398 (1) and 2.43 (3), respectively. From the correspondence with the composition formula, the x value is calculated by the following formula.
x = (Li / (Ni + Mn) molar ratio-1) ÷ (Li / (Ni + Mn) molar ratio + 1)
Therefore, the x value was 0.153 (4).
On the other hand, the y value was 0.398 (1) because it was the Ni / (Ni + Mn) molar ratio itself.
化学分析(比較例2)
Li量をICP発光分析により、比較例2の試料のMn量、Ni量およびO量を波長分散型蛍光X線分析にて見積もったところ、得られたLi/(Ni+Mn)モル比は1.20(1)であった。またNi/(Ni+Mn)モル比とO/(Ni+Mn)モル比はそれぞれ0.398(1)、2.36(5)であった。組成式との対応からx値は以下の計算式で算出される。
x=(Li/(Ni+Mn)モル比-1)÷(Li/(Ni+Mn)モル比+1)
従ってx値は0.090(6)となる。
一方y値はNi/(Ni+Mn)モル比そのものであることから0.398(1)であった。 Chemical analysis (Comparative Example 2)
When the amount of Li was estimated by ICP emission analysis, and the amount of Mn, Ni and O of the sample of Comparative Example 2 were estimated by wavelength dispersive fluorescent X-ray analysis, the obtained Li / (Ni + Mn) molar ratio was 1.20 (1 )Met. The Ni / (Ni + Mn) molar ratio and the O / (Ni + Mn) molar ratio were 0.398 (1) and 2.36 (5), respectively. From the correspondence with the composition formula, the x value is calculated by the following formula.
x = (Li / (Ni + Mn) molar ratio-1) ÷ (Li / (Ni + Mn) molar ratio + 1)
Therefore, the x value is 0.090 (6).
On the other hand, the y value was 0.398 (1) because it was the Ni / (Ni + Mn) molar ratio itself.
Li量をICP発光分析により、比較例2の試料のMn量、Ni量およびO量を波長分散型蛍光X線分析にて見積もったところ、得られたLi/(Ni+Mn)モル比は1.20(1)であった。またNi/(Ni+Mn)モル比とO/(Ni+Mn)モル比はそれぞれ0.398(1)、2.36(5)であった。組成式との対応からx値は以下の計算式で算出される。
x=(Li/(Ni+Mn)モル比-1)÷(Li/(Ni+Mn)モル比+1)
従ってx値は0.090(6)となる。
一方y値はNi/(Ni+Mn)モル比そのものであることから0.398(1)であった。 Chemical analysis (Comparative Example 2)
When the amount of Li was estimated by ICP emission analysis, and the amount of Mn, Ni and O of the sample of Comparative Example 2 were estimated by wavelength dispersive fluorescent X-ray analysis, the obtained Li / (Ni + Mn) molar ratio was 1.20 (1 )Met. The Ni / (Ni + Mn) molar ratio and the O / (Ni + Mn) molar ratio were 0.398 (1) and 2.36 (5), respectively. From the correspondence with the composition formula, the x value is calculated by the following formula.
x = (Li / (Ni + Mn) molar ratio-1) ÷ (Li / (Ni + Mn) molar ratio + 1)
Therefore, the x value is 0.090 (6).
On the other hand, the y value was 0.398 (1) because it was the Ni / (Ni + Mn) molar ratio itself.
Mnイオン及びNiイオンの価数分析
図8(a)および(b)に、実施例2及び比較例2それぞれの試料におけるMnおよびNiのK端近傍X線吸収スペクトル(XANES)を示した。尚、4価Mn、2価Niおよび3価Niの標準物質としては、それぞれLi2MnO3、NiOおよびLiNiO2を使用した。
MnK端においては、実施例2と比較例2のスペクトルに差はなく、且つ4価Mnの標準物質であるLi2MnO3のXANESデータとほぼ重なることから、比較例2試料は実施例2試料と同様にMn価数に差はなく4価と判断できる。一方NiK端のXANESデータは実施例2と比較例2で1s→4p遷移に相当するピークトップ位置が大きく異なることがわかる。実施例2試料の方が比較例2試料より高エネルギー側にシフトしており、Niイオン価数が高いことを反映している。そこで以下の計算式を用いてNi平均価数を見積もった。
Ni平均価数=2+{(実施例試料のピークトップエネルギー値)-(NiOのピークトップエネルギー値)}÷{(LiNiO2試料のピークトップエネルギー値)-(NiOのピークトップエネルギー値)}
(実施例2)
NiOとLiNiO2のエネルギー値はそれぞれ8346.7、8348.8eVであり、実施例試料のピークトップエネルギー値が8348.5eVと見積もられたので、得られたニッケルイオンの平均価数は2.86価と算出された。
(比較例2)
NiOとLiNiO2のエネルギー値はそれぞれ8346.7、8348.8eVであり、比較例試料のエネルギー値が8347.6eVと見積もられたので、得られたニッケルイオンの平均価数は2.43価と算出された。 Valence analysis of Mn ions and Ni ions FIGS. 8A and 8B show the X-ray absorption spectra (XANES) near the K-edge of Mn and Ni in the samples of Example 2 and Comparative Example 2, respectively. Incidentally, Li 2 MnO 3 , NiO and LiNiO 2 were used as standard materials for tetravalent Mn, divalent Ni and trivalent Ni, respectively.
At the MnK edge, there is no difference between the spectra of Example 2 and Comparative Example 2 and almost overlaps with the XANES data of Li 2 MnO 3 which is a standard material of tetravalent Mn. Similarly to the above, there is no difference in the Mn valence, and it can be judged as tetravalent. On the other hand, the XANES data at the NiK end shows that the peak top position corresponding to the 1s → 4p transition differs greatly between Example 2 and Comparative Example 2. The sample of Example 2 is shifted to a higher energy side than the sample of Comparative Example 2, which reflects the higher Ni ion valence. Therefore, the Ni average valence was estimated using the following calculation formula.
Ni average valence = 2 + {(peak top energy value of example sample) − (peak top energy value of NiO)} ÷ {(peak top energy value of LiNiO 2 sample) − (peak top energy value of NiO)}
(Example 2)
The energy values of NiO and LiNiO 2 were 8346.7 and 8348.8 eV, respectively, and the peak top energy value of the example sample was estimated to be 8348.5 eV. Therefore, the average valence of the obtained nickel ions was calculated to be 2.86. .
(Comparative Example 2)
Since the energy values of NiO and LiNiO 2 were 8346.7 and 8348.8 eV, respectively, and the energy value of the comparative sample was estimated to be 8347.6 eV, the average valence of the obtained nickel ions was calculated to be 2.43.
図8(a)および(b)に、実施例2及び比較例2それぞれの試料におけるMnおよびNiのK端近傍X線吸収スペクトル(XANES)を示した。尚、4価Mn、2価Niおよび3価Niの標準物質としては、それぞれLi2MnO3、NiOおよびLiNiO2を使用した。
MnK端においては、実施例2と比較例2のスペクトルに差はなく、且つ4価Mnの標準物質であるLi2MnO3のXANESデータとほぼ重なることから、比較例2試料は実施例2試料と同様にMn価数に差はなく4価と判断できる。一方NiK端のXANESデータは実施例2と比較例2で1s→4p遷移に相当するピークトップ位置が大きく異なることがわかる。実施例2試料の方が比較例2試料より高エネルギー側にシフトしており、Niイオン価数が高いことを反映している。そこで以下の計算式を用いてNi平均価数を見積もった。
Ni平均価数=2+{(実施例試料のピークトップエネルギー値)-(NiOのピークトップエネルギー値)}÷{(LiNiO2試料のピークトップエネルギー値)-(NiOのピークトップエネルギー値)}
(実施例2)
NiOとLiNiO2のエネルギー値はそれぞれ8346.7、8348.8eVであり、実施例試料のピークトップエネルギー値が8348.5eVと見積もられたので、得られたニッケルイオンの平均価数は2.86価と算出された。
(比較例2)
NiOとLiNiO2のエネルギー値はそれぞれ8346.7、8348.8eVであり、比較例試料のエネルギー値が8347.6eVと見積もられたので、得られたニッケルイオンの平均価数は2.43価と算出された。 Valence analysis of Mn ions and Ni ions FIGS. 8A and 8B show the X-ray absorption spectra (XANES) near the K-edge of Mn and Ni in the samples of Example 2 and Comparative Example 2, respectively. Incidentally, Li 2 MnO 3 , NiO and LiNiO 2 were used as standard materials for tetravalent Mn, divalent Ni and trivalent Ni, respectively.
At the MnK edge, there is no difference between the spectra of Example 2 and Comparative Example 2 and almost overlaps with the XANES data of Li 2 MnO 3 which is a standard material of tetravalent Mn. Similarly to the above, there is no difference in the Mn valence, and it can be judged as tetravalent. On the other hand, the XANES data at the NiK end shows that the peak top position corresponding to the 1s → 4p transition differs greatly between Example 2 and Comparative Example 2. The sample of Example 2 is shifted to a higher energy side than the sample of Comparative Example 2, which reflects the higher Ni ion valence. Therefore, the Ni average valence was estimated using the following calculation formula.
Ni average valence = 2 + {(peak top energy value of example sample) − (peak top energy value of NiO)} ÷ {(peak top energy value of LiNiO 2 sample) − (peak top energy value of NiO)}
(Example 2)
The energy values of NiO and LiNiO 2 were 8346.7 and 8348.8 eV, respectively, and the peak top energy value of the example sample was estimated to be 8348.5 eV. Therefore, the average valence of the obtained nickel ions was calculated to be 2.86. .
(Comparative Example 2)
Since the energy values of NiO and LiNiO 2 were 8346.7 and 8348.8 eV, respectively, and the energy value of the comparative sample was estimated to be 8347.6 eV, the average valence of the obtained nickel ions was calculated to be 2.43.
充放電特性評価
得られた実施例2試料の粉末を正極活物質として用いて実施例1と同様にリチウム半電池を組み立て、30℃にて充電開始の充放電試験を行った。充放電試験条件も実施例1と同じである。比較例2試料についても、同様の条件で電池を作製し、同様の充放電特性評価試験を実施した。
(実施例2)
図9に、実施例2の試料を正極としたリチウム二次電池の30℃における充放電曲線を示した。右上がりの曲線が充電(c)に、右下がりの曲線が放電(d)に対応する。数字はサイクル数を示す。図9より、5サイクル目(活性化後初期に相当)充電容量と放電容量がそれぞれ217mAh/g、209mAh/gであり、充放電効率は96%であった。また5サイクル目放電時の平均電圧が3.58V、その放電容量との積に相当するエネルギー密度が749mWh/gと高容量正極として十分な初期特性を有するのみならず、34サイクル後(活性化後30サイクル相当)の放電容量も206mAh/gと高く、5サイクル時に対する30サイクル後の放電容量維持率は99%と高かった。また14サイクル目以降からの電位および容量低下がほとんどないことも判明し、リチウムイオン二次電池正極材料として優れた特性を有することが確認できた。
(比較例2)
また、図10に、比較例2の試料を正極としたリチウム二次電池の30℃における充放電曲線を示した。右上がりの曲線が充電(c)に、右下がりの曲線が放電(d)に対応する。図10より、5サイクル目(活性化後初期に相当)充電容量と放電容量がそれぞれ218mAh/g、206mAh/gであり、充放電効率は94%であった。また5サイクル目放電時の平均電圧が3.65V、その放電容量との積に相当するエネルギー密度が749mWh/gと高容量正極として十分な初期特性を有するものの、34サイクル後(活性化後30サイクル相当)の放電容量が126mAh/gと低く、5サイクル時に対する30サイクル後の放電容量維持率は61%と低かった。すなわち比較例試料はリチウムイオン二次電池正極材料として、サイクル特性が十分なものではなかった。 Evaluation of Charge / Discharge Characteristics A lithium half battery was assembled in the same manner as in Example 1 using the obtained powder of Example 2 as a positive electrode active material, and a charge / discharge test at the start of charging was performed at 30 ° C. The charge / discharge test conditions are the same as in Example 1. For the sample of Comparative Example 2, a battery was prepared under the same conditions, and the same charge / discharge characteristic evaluation test was performed.
(Example 2)
FIG. 9 shows a charge / discharge curve at 30 ° C. of a lithium secondary battery using the sample of Example 2 as a positive electrode. The curve that rises to the right corresponds to charge (c), and the curve that falls to the right corresponds to discharge (d). The number indicates the cycle number. From FIG. 9, the charge capacity and discharge capacity at the fifth cycle (corresponding to the initial stage after activation) were 217 mAh / g and 209 mAh / g, respectively, and the charge / discharge efficiency was 96%. In addition, the average voltage at the fifth cycle discharge is 3.58V, the energy density corresponding to the product of the discharge capacity is 749 mWh / g, and not only has sufficient initial characteristics as a high capacity positive electrode, but also after 34 cycles (after activation) The discharge capacity (corresponding to 30 cycles) was as high as 206 mAh / g, and the discharge capacity retention rate after 30 cycles with respect to 5 cycles was as high as 99%. It was also found that there was almost no decrease in potential and capacity after the 14th cycle, and it was confirmed that it had excellent characteristics as a positive electrode material for lithium ion secondary batteries.
(Comparative Example 2)
FIG. 10 shows a charge / discharge curve at 30 ° C. of a lithium secondary battery using the sample of Comparative Example 2 as a positive electrode. The curve that rises to the right corresponds to charge (c), and the curve that falls to the right corresponds to discharge (d). From FIG. 10, the charge capacity and discharge capacity at the fifth cycle (corresponding to the initial stage after activation) were 218 mAh / g and 206 mAh / g, respectively, and the charge / discharge efficiency was 94%. Moreover, although the average voltage at the time of the fifth cycle discharge is 3.65V and the energy density corresponding to the product of the discharge capacity is 749 mWh / g, it has sufficient initial characteristics as a high capacity positive electrode, but after 34 cycles (30 cycles after activation) The discharge capacity was as low as 126 mAh / g, and the discharge capacity retention rate after 30 cycles with respect to 5 cycles was 61%. That is, the comparative sample was not sufficient in cycle characteristics as a lithium ion secondary battery positive electrode material.
得られた実施例2試料の粉末を正極活物質として用いて実施例1と同様にリチウム半電池を組み立て、30℃にて充電開始の充放電試験を行った。充放電試験条件も実施例1と同じである。比較例2試料についても、同様の条件で電池を作製し、同様の充放電特性評価試験を実施した。
(実施例2)
図9に、実施例2の試料を正極としたリチウム二次電池の30℃における充放電曲線を示した。右上がりの曲線が充電(c)に、右下がりの曲線が放電(d)に対応する。数字はサイクル数を示す。図9より、5サイクル目(活性化後初期に相当)充電容量と放電容量がそれぞれ217mAh/g、209mAh/gであり、充放電効率は96%であった。また5サイクル目放電時の平均電圧が3.58V、その放電容量との積に相当するエネルギー密度が749mWh/gと高容量正極として十分な初期特性を有するのみならず、34サイクル後(活性化後30サイクル相当)の放電容量も206mAh/gと高く、5サイクル時に対する30サイクル後の放電容量維持率は99%と高かった。また14サイクル目以降からの電位および容量低下がほとんどないことも判明し、リチウムイオン二次電池正極材料として優れた特性を有することが確認できた。
(比較例2)
また、図10に、比較例2の試料を正極としたリチウム二次電池の30℃における充放電曲線を示した。右上がりの曲線が充電(c)に、右下がりの曲線が放電(d)に対応する。図10より、5サイクル目(活性化後初期に相当)充電容量と放電容量がそれぞれ218mAh/g、206mAh/gであり、充放電効率は94%であった。また5サイクル目放電時の平均電圧が3.65V、その放電容量との積に相当するエネルギー密度が749mWh/gと高容量正極として十分な初期特性を有するものの、34サイクル後(活性化後30サイクル相当)の放電容量が126mAh/gと低く、5サイクル時に対する30サイクル後の放電容量維持率は61%と低かった。すなわち比較例試料はリチウムイオン二次電池正極材料として、サイクル特性が十分なものではなかった。 Evaluation of Charge / Discharge Characteristics A lithium half battery was assembled in the same manner as in Example 1 using the obtained powder of Example 2 as a positive electrode active material, and a charge / discharge test at the start of charging was performed at 30 ° C. The charge / discharge test conditions are the same as in Example 1. For the sample of Comparative Example 2, a battery was prepared under the same conditions, and the same charge / discharge characteristic evaluation test was performed.
(Example 2)
FIG. 9 shows a charge / discharge curve at 30 ° C. of a lithium secondary battery using the sample of Example 2 as a positive electrode. The curve that rises to the right corresponds to charge (c), and the curve that falls to the right corresponds to discharge (d). The number indicates the cycle number. From FIG. 9, the charge capacity and discharge capacity at the fifth cycle (corresponding to the initial stage after activation) were 217 mAh / g and 209 mAh / g, respectively, and the charge / discharge efficiency was 96%. In addition, the average voltage at the fifth cycle discharge is 3.58V, the energy density corresponding to the product of the discharge capacity is 749 mWh / g, and not only has sufficient initial characteristics as a high capacity positive electrode, but also after 34 cycles (after activation) The discharge capacity (corresponding to 30 cycles) was as high as 206 mAh / g, and the discharge capacity retention rate after 30 cycles with respect to 5 cycles was as high as 99%. It was also found that there was almost no decrease in potential and capacity after the 14th cycle, and it was confirmed that it had excellent characteristics as a positive electrode material for lithium ion secondary batteries.
(Comparative Example 2)
FIG. 10 shows a charge / discharge curve at 30 ° C. of a lithium secondary battery using the sample of Comparative Example 2 as a positive electrode. The curve that rises to the right corresponds to charge (c), and the curve that falls to the right corresponds to discharge (d). From FIG. 10, the charge capacity and discharge capacity at the fifth cycle (corresponding to the initial stage after activation) were 218 mAh / g and 206 mAh / g, respectively, and the charge / discharge efficiency was 94%. Moreover, although the average voltage at the time of the fifth cycle discharge is 3.65V and the energy density corresponding to the product of the discharge capacity is 749 mWh / g, it has sufficient initial characteristics as a high capacity positive electrode, but after 34 cycles (30 cycles after activation) The discharge capacity was as low as 126 mAh / g, and the discharge capacity retention rate after 30 cycles with respect to 5 cycles was 61%. That is, the comparative sample was not sufficient in cycle characteristics as a lithium ion secondary battery positive electrode material.
(実施例3)
硝酸ニッケル(II)6水和物43.62gおよび塩化マンガン(II)4水和物19.79g(0.25mol/バッチ、Ni:Mnモル比6:4)を秤量し、蒸留水500ml中に完全に溶解させた。水酸化ナトリウム水溶液を5℃に保持された恒温槽内に固定し、溶液が同じ温度になるまで攪拌保持した。以後は実施例1と同様のプロセスにて試料作製を行い、目的の複合酸化物を得た。
(比較例3)
二次焼成を大気中ではなく窒素中で行うこと以外は、実施例3と同様にして試料の作製を行った。 (Example 3)
Weigh 43.62 g of nickel (II) nitrate hexahydrate and 19.79 g of manganese (II) chloride tetrahydrate (0.25 mol / batch, Ni: Mn molar ratio 6: 4) and completely weigh it in 500 ml of distilled water. Dissolved. A sodium hydroxide aqueous solution was fixed in a thermostat kept at 5 ° C., and stirred and held until the solution reached the same temperature. Thereafter, a sample was prepared by the same process as in Example 1 to obtain the target composite oxide.
(Comparative Example 3)
A sample was prepared in the same manner as in Example 3 except that the secondary firing was performed in nitrogen instead of in the air.
硝酸ニッケル(II)6水和物43.62gおよび塩化マンガン(II)4水和物19.79g(0.25mol/バッチ、Ni:Mnモル比6:4)を秤量し、蒸留水500ml中に完全に溶解させた。水酸化ナトリウム水溶液を5℃に保持された恒温槽内に固定し、溶液が同じ温度になるまで攪拌保持した。以後は実施例1と同様のプロセスにて試料作製を行い、目的の複合酸化物を得た。
(比較例3)
二次焼成を大気中ではなく窒素中で行うこと以外は、実施例3と同様にして試料の作製を行った。 (Example 3)
Weigh 43.62 g of nickel (II) nitrate hexahydrate and 19.79 g of manganese (II) chloride tetrahydrate (0.25 mol / batch, Ni: Mn molar ratio 6: 4) and completely weigh it in 500 ml of distilled water. Dissolved. A sodium hydroxide aqueous solution was fixed in a thermostat kept at 5 ° C., and stirred and held until the solution reached the same temperature. Thereafter, a sample was prepared by the same process as in Example 1 to obtain the target composite oxide.
(Comparative Example 3)
A sample was prepared in the same manner as in Example 3 except that the secondary firing was performed in nitrogen instead of in the air.
X線回折による評価(実施例3)
上記で得られた実施例3の試料の実測(+)及び六方晶層状岩塩型単位胞(下記空間群)を用いた計算(曲線)X線回折(XRD)パターンを、図11に示した。 Evaluation by X-ray diffraction (Example 3)
FIG. 11 shows an actual measurement (+) of the sample of Example 3 obtained above and a calculated (curved) X-ray diffraction (XRD) pattern using a hexagonal layered rock salt unit cell (the following space group).
上記で得られた実施例3の試料の実測(+)及び六方晶層状岩塩型単位胞(下記空間群)を用いた計算(曲線)X線回折(XRD)パターンを、図11に示した。 Evaluation by X-ray diffraction (Example 3)
FIG. 11 shows an actual measurement (+) of the sample of Example 3 obtained above and a calculated (curved) X-ray diffraction (XRD) pattern using a hexagonal layered rock salt unit cell (the following space group).
残差はパターンの下に表示した。2θ=20-25°付近には、本モデルではフィットできない単斜晶層状岩塩型単位胞(上記空間群)由来の超格子ピーク(2θ=20.5°および21.5°付近のブロードなピーク)の存在が確認された。
The residual is displayed below the pattern. Around 2θ = 20-25 °, a superlattice peak derived from a monoclinic layered rock salt unit cell (the above space group) that cannot be fitted with this model (broad peaks near 2θ = 20.5 ° and 21.5 °) ) Was confirmed.
図11より、得られたXRDパターンは基本的に遷移金属層内に六角網目規則配列を有する単斜晶Li2MnO3型構造(下記空間群)相と帰属できた。
From FIG. 11, the obtained XRD pattern could be attributed to a monoclinic Li 2 MnO 3 type structure (the following space group) phase having a hexagonal network regular arrangement in the transition metal layer.
しかしながら今回フィットは、より単純な超格子のないα-NaFeO2型構造と呼ばれる六方晶層状岩塩型結晶相(下記空間群)に帰属して解析した。
However, this time the fit was analyzed by belonging to a hexagonal layered rock salt type crystal phase (the following space group) called α-NaFeO 2 type structure without a simpler superlattice.
X線リートベルト解析(解析プログラムRIETAN-FPを使用、F. Izumi and K. Momma, Solid State Phenom, 130 15-20 (2007).)より、格子定数a=2.86563(6)Å、c=14.2291(2)Å、格子体積V=101.192(3)Å3であった。
各格子位置での占有率は、Li層内遷移金属(3a)位置の占有率は4.17(5)%、遷移金属層内遷移金属(3b)位置の占有率は84.72(15)%であった。両者の総和が組成式あたり遷移金属量であり、その値は88.9(2)%(0.889(2))であった。 From X-ray Rietveld analysis (using the analysis program Rietan-FP, F. Izumi and K. Momma, Solid State Phenom, 130 15-20 (2007).), The lattice constant a = 2.86563 (6) Å, c = 14.2291 (2) Å, lattice volume V = 101.192 (3) was Å 3.
The occupancy at each lattice position was 4.17 (5)% for the transition metal (3a) position in the Li layer and 84.72 (15)% for the transition metal (3b) position in the transition metal layer. . The sum of both was the amount of transition metal per composition formula, and its value was 88.9 (2)% (0.889 (2)).
各格子位置での占有率は、Li層内遷移金属(3a)位置の占有率は4.17(5)%、遷移金属層内遷移金属(3b)位置の占有率は84.72(15)%であった。両者の総和が組成式あたり遷移金属量であり、その値は88.9(2)%(0.889(2))であった。 From X-ray Rietveld analysis (using the analysis program Rietan-FP, F. Izumi and K. Momma, Solid State Phenom, 130 15-20 (2007).), The lattice constant a = 2.86563 (6) Å, c = 14.2291 (2) Å, lattice volume V = 101.192 (3) was Å 3.
The occupancy at each lattice position was 4.17 (5)% for the transition metal (3a) position in the Li layer and 84.72 (15)% for the transition metal (3b) position in the transition metal layer. . The sum of both was the amount of transition metal per composition formula, and its value was 88.9 (2)% (0.889 (2)).
X線回折による評価(比較例3)
上記で得られた比較例3の試料の実測(+)及び六方晶層状岩塩型単位胞(下記空間群)を用いた計算(曲線)X線回折(XRD)パターンを、図12に示した。 Evaluation by X-ray diffraction (Comparative Example 3)
FIG. 12 shows an actual measurement (+) of the sample of Comparative Example 3 obtained above and a calculated (curved) X-ray diffraction (XRD) pattern using a hexagonal layered rock salt unit cell (the following space group).
上記で得られた比較例3の試料の実測(+)及び六方晶層状岩塩型単位胞(下記空間群)を用いた計算(曲線)X線回折(XRD)パターンを、図12に示した。 Evaluation by X-ray diffraction (Comparative Example 3)
FIG. 12 shows an actual measurement (+) of the sample of Comparative Example 3 obtained above and a calculated (curved) X-ray diffraction (XRD) pattern using a hexagonal layered rock salt unit cell (the following space group).
残差はパターンの下に表示した。2θ=20-25°付近には、本モデルではフィットできない単斜晶層状岩塩型単位胞(下記空間群)由来の超格子ピーク(2θ=20.5°および21.5°付近のブロードなピーク)の存在が確認された。
The residual is displayed below the pattern. Around 2θ = 20-25 °, a superlattice peak derived from a monoclinic layered rock-salt unit cell (the following space group) that cannot be fitted with this model (broad peaks around 2θ = 20.5 ° and 21.5 °) ) Was confirmed.
図12より、得られたXRDパターンは基本的に遷移金属層内に六角網目規則配列を有する単斜晶Li2MnO3型構造(下記空間群)相と帰属できた。
From FIG. 12, the obtained XRD pattern could be attributed to a monoclinic Li 2 MnO 3 type structure (the following space group) phase having a hexagonal network regular arrangement in the transition metal layer.
しかしながら今回フィットは、より単純な超格子のないα-NaFeO2型構造と呼ばれる六方晶層状岩塩型結晶相(上記空間群)に帰属して解析した。
However, this time the fit was analyzed by belonging to a hexagonal layered rock salt type crystal phase (the above space group) called α-NaFeO 2 type structure without a simpler superlattice.
X線リートベルト解析(解析プログラムRIETAN-FPを使用、F. Izumi and K. Momma, Solid State Phenom, 130 15-20 (2007).)より、格子定数a=2.89131(5)Å、c=14.2840(2)Å、格子体積V=103.412(3)Å3であった。
各格子位置での占有率は、Li層内遷移金属(3a)位置の占有率は11.11(5)%、遷移金属層内遷移金属(3b)位置の占有率は90.32(14)%であった。両者の総和が組成式あたり遷移金属量であり、その値は101.43(19)%(1.0143(19))であった。 From the X-ray Rietveld analysis (using the analysis program Rietan-FP, F. Izumi and K. Momma, Solid State Phenom, 130 15-20 (2007).), The lattice constant a = 2.89131 (5) Å, c = 14.2840 (2) Å, lattice volume V = 103.412 (3) was Å 3.
The occupancy at each lattice position was 11.11 (5)% for the transition metal (3a) position in the Li layer and 90.32 (14)% for the transition metal (3b) position in the transition metal layer. . The sum of both was the amount of transition metal per composition formula, and the value was 101.43 (19)% (1.0143 (19)).
各格子位置での占有率は、Li層内遷移金属(3a)位置の占有率は11.11(5)%、遷移金属層内遷移金属(3b)位置の占有率は90.32(14)%であった。両者の総和が組成式あたり遷移金属量であり、その値は101.43(19)%(1.0143(19))であった。 From the X-ray Rietveld analysis (using the analysis program Rietan-FP, F. Izumi and K. Momma, Solid State Phenom, 130 15-20 (2007).), The lattice constant a = 2.89131 (5) Å, c = 14.2840 (2) Å, lattice volume V = 103.412 (3) was Å 3.
The occupancy at each lattice position was 11.11 (5)% for the transition metal (3a) position in the Li layer and 90.32 (14)% for the transition metal (3b) position in the transition metal layer. . The sum of both was the amount of transition metal per composition formula, and the value was 101.43 (19)% (1.0143 (19)).
化学分析(実施例3)
Li量をICP発光分析により、実施例3の試料のMn量、Ni量およびO量を波長分散型蛍光X線分析にて見積もったところ、得られたLi/(Ni+Mn)モル比は1.119(18)であった。またNi/(Ni+Mn)モル比とO/(Ni+Mn)モル比はそれぞれ0.596(1)、2.40(10)であった。
組成式との対応からx値は以下の計算式で算出される。
x=(Li/(Ni+Mn)モル比-1)÷(Li/(Ni+Mn)モル比+1)
従ってx値は0.056(9)であった。
一方y値はNi/(Ni+Mn)モル比そのものであることから0.596(1)であった。 Chemical analysis (Example 3)
When the amount of Li was estimated by ICP emission analysis and the amount of Mn, Ni and O of the sample of Example 3 were estimated by wavelength dispersive X-ray fluorescence analysis, the resulting Li / (Ni + Mn) molar ratio was 1.119 (18 )Met. The Ni / (Ni + Mn) molar ratio and the O / (Ni + Mn) molar ratio were 0.596 (1) and 2.40 (10), respectively.
From the correspondence with the composition formula, the x value is calculated by the following formula.
x = (Li / (Ni + Mn) molar ratio-1) ÷ (Li / (Ni + Mn) molar ratio + 1)
Therefore, the x value was 0.056 (9).
On the other hand, the y value was 0.596 (1) because it was the Ni / (Ni + Mn) molar ratio itself.
Li量をICP発光分析により、実施例3の試料のMn量、Ni量およびO量を波長分散型蛍光X線分析にて見積もったところ、得られたLi/(Ni+Mn)モル比は1.119(18)であった。またNi/(Ni+Mn)モル比とO/(Ni+Mn)モル比はそれぞれ0.596(1)、2.40(10)であった。
組成式との対応からx値は以下の計算式で算出される。
x=(Li/(Ni+Mn)モル比-1)÷(Li/(Ni+Mn)モル比+1)
従ってx値は0.056(9)であった。
一方y値はNi/(Ni+Mn)モル比そのものであることから0.596(1)であった。 Chemical analysis (Example 3)
When the amount of Li was estimated by ICP emission analysis and the amount of Mn, Ni and O of the sample of Example 3 were estimated by wavelength dispersive X-ray fluorescence analysis, the resulting Li / (Ni + Mn) molar ratio was 1.119 (18 )Met. The Ni / (Ni + Mn) molar ratio and the O / (Ni + Mn) molar ratio were 0.596 (1) and 2.40 (10), respectively.
From the correspondence with the composition formula, the x value is calculated by the following formula.
x = (Li / (Ni + Mn) molar ratio-1) ÷ (Li / (Ni + Mn) molar ratio + 1)
Therefore, the x value was 0.056 (9).
On the other hand, the y value was 0.596 (1) because it was the Ni / (Ni + Mn) molar ratio itself.
化学分析(比較例3)
Li量をICP発光分析により、比較例3の試料のMn量、Ni量およびO量を波長分散型蛍光X線分析にて見積もったところ、得られたLi/(Ni+Mn)モル比は0.906(2)であった。またNi/(Ni+Mn)モル比とO/(Ni+Mn)モル比はそれぞれ0.595(1)、2.20(2)であった。
組成式との対応からx値は以下の計算式で算出される。
x=(Li/(Ni+Mn)モル比-1)÷(Li/(Ni+Mn)モル比+1)
従ってx値は-0.0493(10)となる。本x値は負の値となった。
一方y値はNi/(Ni+Mn)モル比そのものであることから0.595(1)であった。 Chemical analysis (Comparative Example 3)
When the amount of Li was estimated by ICP emission analysis and the amount of Mn, Ni and O of the sample of Comparative Example 3 were estimated by wavelength dispersive X-ray fluorescence analysis, the obtained Li / (Ni + Mn) molar ratio was 0.906 (2 )Met. The Ni / (Ni + Mn) molar ratio and the O / (Ni + Mn) molar ratio were 0.595 (1) and 2.20 (2), respectively.
From the correspondence with the composition formula, the x value is calculated by the following formula.
x = (Li / (Ni + Mn) molar ratio-1) ÷ (Li / (Ni + Mn) molar ratio + 1)
Therefore, the x value is -0.0493 (10). This x value was a negative value.
On the other hand, the y value was 0.595 (1) because it was the Ni / (Ni + Mn) molar ratio itself.
Li量をICP発光分析により、比較例3の試料のMn量、Ni量およびO量を波長分散型蛍光X線分析にて見積もったところ、得られたLi/(Ni+Mn)モル比は0.906(2)であった。またNi/(Ni+Mn)モル比とO/(Ni+Mn)モル比はそれぞれ0.595(1)、2.20(2)であった。
組成式との対応からx値は以下の計算式で算出される。
x=(Li/(Ni+Mn)モル比-1)÷(Li/(Ni+Mn)モル比+1)
従ってx値は-0.0493(10)となる。本x値は負の値となった。
一方y値はNi/(Ni+Mn)モル比そのものであることから0.595(1)であった。 Chemical analysis (Comparative Example 3)
When the amount of Li was estimated by ICP emission analysis and the amount of Mn, Ni and O of the sample of Comparative Example 3 were estimated by wavelength dispersive X-ray fluorescence analysis, the obtained Li / (Ni + Mn) molar ratio was 0.906 (2 )Met. The Ni / (Ni + Mn) molar ratio and the O / (Ni + Mn) molar ratio were 0.595 (1) and 2.20 (2), respectively.
From the correspondence with the composition formula, the x value is calculated by the following formula.
x = (Li / (Ni + Mn) molar ratio-1) ÷ (Li / (Ni + Mn) molar ratio + 1)
Therefore, the x value is -0.0493 (10). This x value was a negative value.
On the other hand, the y value was 0.595 (1) because it was the Ni / (Ni + Mn) molar ratio itself.
Mnイオン及びNiイオンの価数分析
図13(a)および(b)に、実施例3及び比較例3それぞれの試料におけるMnおよびNiのK端近傍X線吸収スペクトル(XANES)を示した。尚、4価Mn、2価Niおよび3価Niの標準物質としては、それぞれLi2MnO3、NiOおよびLiNiO2を使用した。
MnK端においては、実施例3と比較例3のスペクトルに差はなく、且つ4価Mnの標準物質であるLi2MnO3のXANESデータとほぼ重なることから、比較例3試料は実施例3試料と同様にMn価数に差はなく4価と判断できる。一方NiK端のXANESデータは実施例3と比較例3で1s→4p遷移に相当するピークトップ位置が大きく異なることがわかる。実施例3試料の方が比較例3試料より高エネルギー側にシフトしており、Niイオン価数が高いことを反映している。そこで以下の計算式を用いてNi平均価数を見積もった。
Ni平均価数=2+{(実施例試料のピークトップエネルギー値)-(NiOのピークトップエネルギー値)}÷{(LiNiO2試料のピークトップエネルギー値)-(NiOのピークトップエネルギー値)}
(実施例3)
NiOとLiNiO2のエネルギー値はそれぞれ8346.7、8348.8eVであり、実施例試料のピークトップエネルギー値が8348.2Vと見積もられたので、得られたニッケルイオンの平均価数は2.71価と算出された。
(比較例3)
NiOとLiNiO2のエネルギー値はそれぞれ8346.7、8348.8eVであり、比較例試料のエネルギー値が8347.2eVと見積もられたので、得られたニッケルイオンの平均価数は2.24価と算出された。 Valence analysis of Mn ion and Ni ion FIGS. 13A and 13B show the X-ray absorption spectra (XANES) near the K-edge of Mn and Ni in the samples of Example 3 and Comparative Example 3, respectively. Incidentally, Li 2 MnO 3 , NiO and LiNiO 2 were used as standard materials for tetravalent Mn, divalent Ni and trivalent Ni, respectively.
At the MnK end, there is no difference between the spectra of Example 3 and Comparative Example 3, and almost overlaps with the XANES data of Li 2 MnO 3 which is a standard substance of tetravalent Mn. Similarly to the above, there is no difference in the Mn valence, and it can be judged as tetravalent. On the other hand, the XANES data at the NiK end shows that the peak top position corresponding to the 1s → 4p transition is greatly different between Example 3 and Comparative Example 3. The sample of Example 3 is shifted to a higher energy side than the sample of Comparative Example 3, which reflects that the Ni ion valence is high. Therefore, the Ni average valence was estimated using the following calculation formula.
Ni average valence = 2 + {(peak top energy value of example sample) − (peak top energy value of NiO)} ÷ {(peak top energy value of LiNiO 2 sample) − (peak top energy value of NiO)}
(Example 3)
The energy values of NiO and LiNiO 2 were 8346.7 and 8348.8 eV, respectively, and the peak top energy value of the example sample was estimated to be 8348.2 V. Therefore, the average valence of the obtained nickel ions was calculated to be 2.71. .
(Comparative Example 3)
Since the energy values of NiO and LiNiO 2 were 8346.7 and 8348.8 eV, respectively, and the energy value of the comparative sample was estimated to be 8347.2 eV, the average valence of the obtained nickel ions was calculated to be 2.24.
図13(a)および(b)に、実施例3及び比較例3それぞれの試料におけるMnおよびNiのK端近傍X線吸収スペクトル(XANES)を示した。尚、4価Mn、2価Niおよび3価Niの標準物質としては、それぞれLi2MnO3、NiOおよびLiNiO2を使用した。
MnK端においては、実施例3と比較例3のスペクトルに差はなく、且つ4価Mnの標準物質であるLi2MnO3のXANESデータとほぼ重なることから、比較例3試料は実施例3試料と同様にMn価数に差はなく4価と判断できる。一方NiK端のXANESデータは実施例3と比較例3で1s→4p遷移に相当するピークトップ位置が大きく異なることがわかる。実施例3試料の方が比較例3試料より高エネルギー側にシフトしており、Niイオン価数が高いことを反映している。そこで以下の計算式を用いてNi平均価数を見積もった。
Ni平均価数=2+{(実施例試料のピークトップエネルギー値)-(NiOのピークトップエネルギー値)}÷{(LiNiO2試料のピークトップエネルギー値)-(NiOのピークトップエネルギー値)}
(実施例3)
NiOとLiNiO2のエネルギー値はそれぞれ8346.7、8348.8eVであり、実施例試料のピークトップエネルギー値が8348.2Vと見積もられたので、得られたニッケルイオンの平均価数は2.71価と算出された。
(比較例3)
NiOとLiNiO2のエネルギー値はそれぞれ8346.7、8348.8eVであり、比較例試料のエネルギー値が8347.2eVと見積もられたので、得られたニッケルイオンの平均価数は2.24価と算出された。 Valence analysis of Mn ion and Ni ion FIGS. 13A and 13B show the X-ray absorption spectra (XANES) near the K-edge of Mn and Ni in the samples of Example 3 and Comparative Example 3, respectively. Incidentally, Li 2 MnO 3 , NiO and LiNiO 2 were used as standard materials for tetravalent Mn, divalent Ni and trivalent Ni, respectively.
At the MnK end, there is no difference between the spectra of Example 3 and Comparative Example 3, and almost overlaps with the XANES data of Li 2 MnO 3 which is a standard substance of tetravalent Mn. Similarly to the above, there is no difference in the Mn valence, and it can be judged as tetravalent. On the other hand, the XANES data at the NiK end shows that the peak top position corresponding to the 1s → 4p transition is greatly different between Example 3 and Comparative Example 3. The sample of Example 3 is shifted to a higher energy side than the sample of Comparative Example 3, which reflects that the Ni ion valence is high. Therefore, the Ni average valence was estimated using the following calculation formula.
Ni average valence = 2 + {(peak top energy value of example sample) − (peak top energy value of NiO)} ÷ {(peak top energy value of LiNiO 2 sample) − (peak top energy value of NiO)}
(Example 3)
The energy values of NiO and LiNiO 2 were 8346.7 and 8348.8 eV, respectively, and the peak top energy value of the example sample was estimated to be 8348.2 V. Therefore, the average valence of the obtained nickel ions was calculated to be 2.71. .
(Comparative Example 3)
Since the energy values of NiO and LiNiO 2 were 8346.7 and 8348.8 eV, respectively, and the energy value of the comparative sample was estimated to be 8347.2 eV, the average valence of the obtained nickel ions was calculated to be 2.24.
充放電特性評価
得られた実施例3試料の粉末を正極活物質として用いて実施例1と同様にリチウム半電池を組み立て、30℃にて充電開始の充放電試験を行った。充放電試験条件も実施例1と同じである。比較例3試料についても、同様の条件で電池を作製し、同様の充放電特性評価試験を実施した。 Evaluation of Charge / Discharge Characteristics Using the obtained powder of Example 3 as a positive electrode active material, a lithium half battery was assembled in the same manner as in Example 1, and a charge / discharge test at the start of charging was performed at 30 ° C. The charge / discharge test conditions are the same as in Example 1. For the sample of Comparative Example 3, a battery was prepared under the same conditions, and the same charge / discharge characteristic evaluation test was performed.
得られた実施例3試料の粉末を正極活物質として用いて実施例1と同様にリチウム半電池を組み立て、30℃にて充電開始の充放電試験を行った。充放電試験条件も実施例1と同じである。比較例3試料についても、同様の条件で電池を作製し、同様の充放電特性評価試験を実施した。 Evaluation of Charge / Discharge Characteristics Using the obtained powder of Example 3 as a positive electrode active material, a lithium half battery was assembled in the same manner as in Example 1, and a charge / discharge test at the start of charging was performed at 30 ° C. The charge / discharge test conditions are the same as in Example 1. For the sample of Comparative Example 3, a battery was prepared under the same conditions, and the same charge / discharge characteristic evaluation test was performed.
(実施例3)
図14に、実施例3の試料を正極としたリチウム二次電池の30℃における充放電曲線を示した。右上がりの曲線が充電(c)に、右下がりの曲線が放電(d)に対応する。数字はサイクル数を示す。図14より、5サイクル目(活性化後初期に相当)充電容量と放電容量がそれぞれ164mAh/g、156mAh/gであり、充放電効率は95%であった。また5サイクル目放電時の平均電圧が3.80V、その放電容量との積に相当するエネルギー密度が592mWh/gと高容量正極として十分な初期特性を有するのみならず、34サイクル後(活性化後30サイクル相当)の放電容量も142mAh/gと高く、5サイクル時に対する30サイクル後の放電容量維持率は91%と高かった。また14サイクル目以降からの電位および容量低下が小さいことも判明し、リチウムイオン二次電池正極材料として優れた特性を有することが確認できた。
(比較例3)
また、図15に、比較例3の試料を正極としたリチウム二次電池の30℃における充放電曲線を示した。右上がりの曲線が充電(c)に、右下がりの曲線が放電(d)に対応する。図15より、5サイクル目(活性化後初期に相当)充電容量と放電容量がそれぞれ175mAh/g、169mAh/gであり、充放電効率は97%であった。また5サイクル目放電時の平均電圧が3.83その放電容量との積に相当するエネルギー密度が647mWh/gと高容量正極として十分な初期特性を有するものの、34サイクル後(活性化後30サイクル相当)の放電容量が105mAh/gと低く、5サイクル時に対する30サイクル後の放電容量維持率は62%と低かった。すなわち比較例試料はリチウムイオン二次電池正極材料として、サイクル特性が十分なものではなかった。 (Example 3)
FIG. 14 shows a charge / discharge curve at 30 ° C. of a lithium secondary battery using the sample of Example 3 as a positive electrode. The curve that rises to the right corresponds to charge (c), and the curve that falls to the right corresponds to discharge (d). The number indicates the cycle number. From FIG. 14, the charge capacity and discharge capacity at the fifth cycle (corresponding to the initial stage after activation) were 164 mAh / g and 156 mAh / g, respectively, and the charge / discharge efficiency was 95%. In addition, the average voltage during the fifth cycle discharge is 3.80 V, and the energy density corresponding to the product of the discharge capacity is 592 mWh / g, which is not only a sufficient initial characteristic as a high capacity positive electrode, but also after 34 cycles (after activation) The discharge capacity of 30 cycles) was as high as 142 mAh / g, and the discharge capacity retention rate after 30 cycles with respect to 5 cycles was as high as 91%. It was also found that the potential and capacity decrease from the 14th cycle onward were small, and it was confirmed that the lithium ion secondary battery positive electrode material had excellent characteristics.
(Comparative Example 3)
FIG. 15 shows a charge / discharge curve at 30 ° C. of a lithium secondary battery using the sample of Comparative Example 3 as a positive electrode. The curve that rises to the right corresponds to charge (c), and the curve that falls to the right corresponds to discharge (d). From FIG. 15, the charge capacity and discharge capacity at the fifth cycle (corresponding to the initial stage after activation) were 175 mAh / g and 169 mAh / g, respectively, and the charge / discharge efficiency was 97%. Moreover, although the energy density corresponding to the product of the discharge voltage and the average voltage at the 5th cycle is 3.83 mWh / g, which has sufficient initial characteristics as a high capacity positive electrode, after 34 cycles (equivalent to 30 cycles after activation) The discharge capacity was as low as 105 mAh / g, and the discharge capacity retention rate after 30 cycles with respect to 5 cycles was as low as 62%. That is, the comparative sample was not sufficient in cycle characteristics as a lithium ion secondary battery positive electrode material.
図14に、実施例3の試料を正極としたリチウム二次電池の30℃における充放電曲線を示した。右上がりの曲線が充電(c)に、右下がりの曲線が放電(d)に対応する。数字はサイクル数を示す。図14より、5サイクル目(活性化後初期に相当)充電容量と放電容量がそれぞれ164mAh/g、156mAh/gであり、充放電効率は95%であった。また5サイクル目放電時の平均電圧が3.80V、その放電容量との積に相当するエネルギー密度が592mWh/gと高容量正極として十分な初期特性を有するのみならず、34サイクル後(活性化後30サイクル相当)の放電容量も142mAh/gと高く、5サイクル時に対する30サイクル後の放電容量維持率は91%と高かった。また14サイクル目以降からの電位および容量低下が小さいことも判明し、リチウムイオン二次電池正極材料として優れた特性を有することが確認できた。
(比較例3)
また、図15に、比較例3の試料を正極としたリチウム二次電池の30℃における充放電曲線を示した。右上がりの曲線が充電(c)に、右下がりの曲線が放電(d)に対応する。図15より、5サイクル目(活性化後初期に相当)充電容量と放電容量がそれぞれ175mAh/g、169mAh/gであり、充放電効率は97%であった。また5サイクル目放電時の平均電圧が3.83その放電容量との積に相当するエネルギー密度が647mWh/gと高容量正極として十分な初期特性を有するものの、34サイクル後(活性化後30サイクル相当)の放電容量が105mAh/gと低く、5サイクル時に対する30サイクル後の放電容量維持率は62%と低かった。すなわち比較例試料はリチウムイオン二次電池正極材料として、サイクル特性が十分なものではなかった。 (Example 3)
FIG. 14 shows a charge / discharge curve at 30 ° C. of a lithium secondary battery using the sample of Example 3 as a positive electrode. The curve that rises to the right corresponds to charge (c), and the curve that falls to the right corresponds to discharge (d). The number indicates the cycle number. From FIG. 14, the charge capacity and discharge capacity at the fifth cycle (corresponding to the initial stage after activation) were 164 mAh / g and 156 mAh / g, respectively, and the charge / discharge efficiency was 95%. In addition, the average voltage during the fifth cycle discharge is 3.80 V, and the energy density corresponding to the product of the discharge capacity is 592 mWh / g, which is not only a sufficient initial characteristic as a high capacity positive electrode, but also after 34 cycles (after activation) The discharge capacity of 30 cycles) was as high as 142 mAh / g, and the discharge capacity retention rate after 30 cycles with respect to 5 cycles was as high as 91%. It was also found that the potential and capacity decrease from the 14th cycle onward were small, and it was confirmed that the lithium ion secondary battery positive electrode material had excellent characteristics.
(Comparative Example 3)
FIG. 15 shows a charge / discharge curve at 30 ° C. of a lithium secondary battery using the sample of Comparative Example 3 as a positive electrode. The curve that rises to the right corresponds to charge (c), and the curve that falls to the right corresponds to discharge (d). From FIG. 15, the charge capacity and discharge capacity at the fifth cycle (corresponding to the initial stage after activation) were 175 mAh / g and 169 mAh / g, respectively, and the charge / discharge efficiency was 97%. Moreover, although the energy density corresponding to the product of the discharge voltage and the average voltage at the 5th cycle is 3.83 mWh / g, which has sufficient initial characteristics as a high capacity positive electrode, after 34 cycles (equivalent to 30 cycles after activation) The discharge capacity was as low as 105 mAh / g, and the discharge capacity retention rate after 30 cycles with respect to 5 cycles was as low as 62%. That is, the comparative sample was not sufficient in cycle characteristics as a lithium ion secondary battery positive electrode material.
(実施例4)
硝酸ニッケル(II)6水和物29.08gおよび塩化マンガン(II)4水和物29.69g(0.25mol/バッチ、Ni:Mnモル比4:6)を秤量し、蒸留水500ml中に完全に溶解させた。別のチタン製ビーカーに水酸化ナトリウム50gを入れ、蒸留水500mlを加えて完全に溶解させた。その後不凍液としてエタノール200mlを加えてよく攪拌した。水酸化ナトリウム溶液を-10℃に保持された恒温槽内に固定し、溶液が同じ温度になるまで攪拌保持した。上記金属塩溶液に送液ポンプをセットし、上記アルカリ溶液へ3時間かけて、金属塩溶液を徐々に加え、沈殿を形成させた。沈殿作製終了後もアルカリ溶液のpHが11以上あることを確認した。沈殿作製終了後、ビーカーを恒温槽より取り出し、室温にて攪拌しつつ、酸素ガス発生器を用いて、沈殿に酸素を吹き込みつつ二日間湿式酸化および熟成を行った。熟成後に沈殿を蒸留水で洗浄し、アルカリあるいは塩類を取り除いた後、濾過した。濾過後、沈殿に水酸化リチウム1水和物0.5mol(20.98g)を加え、蒸留水200mlに溶解後、熟成沈殿とミキサー混合し、スラリーを作製した。スラリーをポリテトラフルオロエチレン製シャーレーに移し、50℃で2日間乾燥して焼成用原料を作製した。振動ミルにより原料を粉砕後、アルミナるつぼふた上に薄く広げ、酸素気流中500℃で20時間一次焼成後、炉冷した。焼成後の原料は振動ミルにて再度粉砕し、850℃で5時間窒素中二次焼成を行った。炉冷後試料を取り出し、蒸留水にて洗浄後、濾過および乾燥して、目的の複合酸化物を得た。 Example 4
Weigh 29.08 g of nickel (II) nitrate hexahydrate and 29.69 g of manganese chloride (II) tetrahydrate (0.25 mol / batch, Ni: Mn molar ratio 4: 6) in 500 ml of distilled water. It was completely dissolved. In another titanium beaker, 50 g of sodium hydroxide was added, and 500 ml of distilled water was added and completely dissolved. Thereafter, 200 ml of ethanol was added as an antifreeze and stirred well. The sodium hydroxide solution was fixed in a thermostat kept at −10 ° C., and stirred and held until the solution reached the same temperature. A liquid feed pump was set in the metal salt solution, and the metal salt solution was gradually added to the alkali solution over 3 hours to form a precipitate. It was confirmed that the pH of the alkaline solution was 11 or more even after completion of the precipitation. After completion of the precipitation, the beaker was taken out of the thermostatic bath and stirred at room temperature, and then wet oxidation and aging were performed for 2 days while blowing oxygen into the precipitate using an oxygen gas generator. After aging, the precipitate was washed with distilled water to remove alkali or salts and then filtered. After filtration, 0.5 mol (20.98 g) of lithium hydroxide monohydrate was added to the precipitate, dissolved in 200 ml of distilled water, and then mixed with the aged precipitate and a mixer to prepare a slurry. The slurry was transferred to a polytetrafluoroethylene petri dish and dried at 50 ° C. for 2 days to produce a firing raw material. The raw material was pulverized by a vibration mill, spread thinly on an alumina crucible lid, subjected to primary firing in an oxygen stream at 500 ° C. for 20 hours, and then cooled in a furnace. The fired raw material was pulverized again with a vibration mill and subjected to secondary firing in nitrogen at 850 ° C. for 5 hours. After cooling in the furnace, a sample was taken out, washed with distilled water, filtered and dried to obtain the target composite oxide.
硝酸ニッケル(II)6水和物29.08gおよび塩化マンガン(II)4水和物29.69g(0.25mol/バッチ、Ni:Mnモル比4:6)を秤量し、蒸留水500ml中に完全に溶解させた。別のチタン製ビーカーに水酸化ナトリウム50gを入れ、蒸留水500mlを加えて完全に溶解させた。その後不凍液としてエタノール200mlを加えてよく攪拌した。水酸化ナトリウム溶液を-10℃に保持された恒温槽内に固定し、溶液が同じ温度になるまで攪拌保持した。上記金属塩溶液に送液ポンプをセットし、上記アルカリ溶液へ3時間かけて、金属塩溶液を徐々に加え、沈殿を形成させた。沈殿作製終了後もアルカリ溶液のpHが11以上あることを確認した。沈殿作製終了後、ビーカーを恒温槽より取り出し、室温にて攪拌しつつ、酸素ガス発生器を用いて、沈殿に酸素を吹き込みつつ二日間湿式酸化および熟成を行った。熟成後に沈殿を蒸留水で洗浄し、アルカリあるいは塩類を取り除いた後、濾過した。濾過後、沈殿に水酸化リチウム1水和物0.5mol(20.98g)を加え、蒸留水200mlに溶解後、熟成沈殿とミキサー混合し、スラリーを作製した。スラリーをポリテトラフルオロエチレン製シャーレーに移し、50℃で2日間乾燥して焼成用原料を作製した。振動ミルにより原料を粉砕後、アルミナるつぼふた上に薄く広げ、酸素気流中500℃で20時間一次焼成後、炉冷した。焼成後の原料は振動ミルにて再度粉砕し、850℃で5時間窒素中二次焼成を行った。炉冷後試料を取り出し、蒸留水にて洗浄後、濾過および乾燥して、目的の複合酸化物を得た。 Example 4
Weigh 29.08 g of nickel (II) nitrate hexahydrate and 29.69 g of manganese chloride (II) tetrahydrate (0.25 mol / batch, Ni: Mn molar ratio 4: 6) in 500 ml of distilled water. It was completely dissolved. In another titanium beaker, 50 g of sodium hydroxide was added, and 500 ml of distilled water was added and completely dissolved. Thereafter, 200 ml of ethanol was added as an antifreeze and stirred well. The sodium hydroxide solution was fixed in a thermostat kept at −10 ° C., and stirred and held until the solution reached the same temperature. A liquid feed pump was set in the metal salt solution, and the metal salt solution was gradually added to the alkali solution over 3 hours to form a precipitate. It was confirmed that the pH of the alkaline solution was 11 or more even after completion of the precipitation. After completion of the precipitation, the beaker was taken out of the thermostatic bath and stirred at room temperature, and then wet oxidation and aging were performed for 2 days while blowing oxygen into the precipitate using an oxygen gas generator. After aging, the precipitate was washed with distilled water to remove alkali or salts and then filtered. After filtration, 0.5 mol (20.98 g) of lithium hydroxide monohydrate was added to the precipitate, dissolved in 200 ml of distilled water, and then mixed with the aged precipitate and a mixer to prepare a slurry. The slurry was transferred to a polytetrafluoroethylene petri dish and dried at 50 ° C. for 2 days to produce a firing raw material. The raw material was pulverized by a vibration mill, spread thinly on an alumina crucible lid, subjected to primary firing in an oxygen stream at 500 ° C. for 20 hours, and then cooled in a furnace. The fired raw material was pulverized again with a vibration mill and subjected to secondary firing in nitrogen at 850 ° C. for 5 hours. After cooling in the furnace, a sample was taken out, washed with distilled water, filtered and dried to obtain the target composite oxide.
X線回折による評価(実施例4)
上記で得られた実施例4の試料の実測(+)及び六方晶層状岩塩型単位胞(下記空間群)を用いた計算(曲線)X線回折(XRD)パターンを、図16に示した。 Evaluation by X-ray diffraction (Example 4)
FIG. 16 shows the actual measurement (+) of the sample of Example 4 obtained above and the calculated (curved) X-ray diffraction (XRD) pattern using a hexagonal layered rock salt unit cell (the following space group).
上記で得られた実施例4の試料の実測(+)及び六方晶層状岩塩型単位胞(下記空間群)を用いた計算(曲線)X線回折(XRD)パターンを、図16に示した。 Evaluation by X-ray diffraction (Example 4)
FIG. 16 shows the actual measurement (+) of the sample of Example 4 obtained above and the calculated (curved) X-ray diffraction (XRD) pattern using a hexagonal layered rock salt unit cell (the following space group).
残差はパターンの下に表示した。2θ=20-25°付近には、本モデルではフィットできない単斜晶層状岩塩型単位胞(下記空間群)由来の超格子ピーク(2θ=20.5°および21.5°付近のブロードなピーク)の存在が確認された。
The residual is displayed below the pattern. Around 2θ = 20-25 °, a superlattice peak derived from a monoclinic layered rock-salt unit cell (the following space group) that cannot be fitted with this model (broad peaks around 2θ = 20.5 ° and 21.5 °) ) Was confirmed.
図16より、得られたXRDパターンは基本的に遷移金属層内に六角網目規則配列を有する単斜晶Li2MnO3型構造(下記空間群)相と帰属できた。
From FIG. 16, the obtained XRD pattern could be attributed to a monoclinic Li 2 MnO 3 type structure (the following space group) phase having a hexagonal network regular arrangement in the transition metal layer.
しかしながら今回フィットは、より単純な超格子のないα-NaFeO2型構造と呼ばれる六方晶層状岩塩型結晶相(下記空間群)に帰属して解析した。
However, this time the fit was analyzed by belonging to a hexagonal layered rock salt type crystal phase (the following space group) called α-NaFeO 2 type structure without a simpler superlattice.
X線リートベルト解析(解析プログラムRIETAN-FPを使用、F. Izumi and K. Momma, Solid State Phenom, 130 15-20 (2007).)より、格子定数a=2.86135(8)Å、c=14.2379(3)Å、格子体積V=100.953(4)Å3であった。
各格子位置での占有率は、Li層内遷移金属(3a)位置の占有率は4.85(6)%、遷移金属層内遷移金属(3b)位置の占有率は79.78(17)%であった。両者の総和が組成式あたり遷移金属量であり、その値は84.6(2)%(0.846(2))であった。 From X-ray Rietveld analysis (using the analysis program Rietan-FP, F. Izumi and K. Momma, Solid State Phenom, 130 15-20 (2007)), the lattice constant a = 2.86135 (8) 8, c = 14.2379 (3) Å, lattice volume V = 100.953 (4) was Å 3.
The occupancy at each lattice position is 4.85 (6)% for the transition metal (3a) position in the Li layer and 79.78 (17) for the transition metal (3b) position within the transition metal layer. %Met. The sum of both was the amount of transition metal per composition formula, and the value was 84.6 (2)% (0.846 (2)).
各格子位置での占有率は、Li層内遷移金属(3a)位置の占有率は4.85(6)%、遷移金属層内遷移金属(3b)位置の占有率は79.78(17)%であった。両者の総和が組成式あたり遷移金属量であり、その値は84.6(2)%(0.846(2))であった。 From X-ray Rietveld analysis (using the analysis program Rietan-FP, F. Izumi and K. Momma, Solid State Phenom, 130 15-20 (2007)), the lattice constant a = 2.86135 (8) 8, c = 14.2379 (3) Å, lattice volume V = 100.953 (4) was Å 3.
The occupancy at each lattice position is 4.85 (6)% for the transition metal (3a) position in the Li layer and 79.78 (17) for the transition metal (3b) position within the transition metal layer. %Met. The sum of both was the amount of transition metal per composition formula, and the value was 84.6 (2)% (0.846 (2)).
化学分析(実施例4)
Li量をICP発光分析により、実施例4の試料のMn量、Ni量およびO量を波長分散型蛍光X線分析にて見積もったところ、得られたLi/(Ni+Mn)モル比は1.32(5)であった。またNi/(Ni+Mn)モル比とO/(Ni+Mn)モル比はそれぞれ0.395(10)、2.7(2)であった。
組成式との対応からx値は以下の計算式で算出される。
x=(Li/(Ni+Mn)モル比-1)÷(Li/(Ni+Mn)モル比+1)
従ってx値は0.14(2)となった。
一方y値はNi/(Ni+Mn)モル比そのものであることから0.395(10)であった。 Chemical analysis (Example 4)
When the amount of Li was estimated by ICP emission analysis, and the amount of Mn, Ni and O of the sample of Example 4 were estimated by wavelength dispersive X-ray fluorescence analysis, the obtained Li / (Ni + Mn) molar ratio was 1.32. (5). The Ni / (Ni + Mn) molar ratio and the O / (Ni + Mn) molar ratio were 0.395 (10) and 2.7 (2), respectively.
From the correspondence with the composition formula, the x value is calculated by the following formula.
x = (Li / (Ni + Mn) molar ratio-1) ÷ (Li / (Ni + Mn) molar ratio + 1)
Therefore, the x value was 0.14 (2).
On the other hand, the y value was 0.395 (10) because it was the Ni / (Ni + Mn) molar ratio itself.
Li量をICP発光分析により、実施例4の試料のMn量、Ni量およびO量を波長分散型蛍光X線分析にて見積もったところ、得られたLi/(Ni+Mn)モル比は1.32(5)であった。またNi/(Ni+Mn)モル比とO/(Ni+Mn)モル比はそれぞれ0.395(10)、2.7(2)であった。
組成式との対応からx値は以下の計算式で算出される。
x=(Li/(Ni+Mn)モル比-1)÷(Li/(Ni+Mn)モル比+1)
従ってx値は0.14(2)となった。
一方y値はNi/(Ni+Mn)モル比そのものであることから0.395(10)であった。 Chemical analysis (Example 4)
When the amount of Li was estimated by ICP emission analysis, and the amount of Mn, Ni and O of the sample of Example 4 were estimated by wavelength dispersive X-ray fluorescence analysis, the obtained Li / (Ni + Mn) molar ratio was 1.32. (5). The Ni / (Ni + Mn) molar ratio and the O / (Ni + Mn) molar ratio were 0.395 (10) and 2.7 (2), respectively.
From the correspondence with the composition formula, the x value is calculated by the following formula.
x = (Li / (Ni + Mn) molar ratio-1) ÷ (Li / (Ni + Mn) molar ratio + 1)
Therefore, the x value was 0.14 (2).
On the other hand, the y value was 0.395 (10) because it was the Ni / (Ni + Mn) molar ratio itself.
Mnイオン及びNiイオンの価数分析
図17(a)および(b)に、実施例4試料におけるMnおよびNiのK端近傍X線吸収スペクトル(XANES)を示した。尚、4価Mn、2価Niおよび3価Niの標準物質としては、それぞれLi2MnO3、NiOおよびLiNiO2を使用した。
MnK端においては、実施例4試料のスペクトルは4価Mnの標準物質であるLi2MnO3のXANESデータとほぼ重なることから、Mn価数は4価と判断できる。一方実施例4試料のNiK端のXANESデータの1s→4p遷移に伴うピークトップ値は、二種の価数既知の標準物質のほぼ中間の位置に存在した。そこで以下の計算式を用いてNi平均価数を見積もった。
Ni平均価数=2+{(実施例試料のピークトップエネルギー値)-(NiOのピークトップエネルギー値)}
÷{(LiNiO2試料のピークトップエネルギー値)-(NiOのピークトップエネルギー値)}
NiOとLiNiO2のエネルギー値はそれぞれ8346.3、8348.4eVであり、実施例4試料のエネルギー値が8347.5eVと見積もられたので、得られたニッケルイオンの平均価数は2.57価と算出された。以上のことから一次焼成として酸化性雰囲気を選択すれば、二次焼成時に窒素気流中などの不活性ガス雰囲気を選択しても目的物質が得られることを示している。 Valence analysis of Mn ion and Ni ion FIGS. 17A and 17B show the X-ray absorption spectra (XANES) near the K-edge of Mn and Ni in the sample of Example 4. Incidentally, Li 2 MnO 3 , NiO and LiNiO 2 were used as standard materials for tetravalent Mn, divalent Ni and trivalent Ni, respectively.
At the MnK end, the spectrum of the sample of Example 4 almost overlaps with the XANES data of Li 2 MnO 3 which is a standard substance of tetravalent Mn, so that the Mn valence can be determined to be tetravalent. On the other hand, the peak top value accompanying the 1s → 4p transition of the XANES data at the NiK edge of the sample of Example 4 was present at a position approximately in the middle between the two kinds of reference materials with known valences. Therefore, the Ni average valence was estimated using the following calculation formula.
Ni average valence = 2 + {(peak top energy value of example sample) − (peak top energy value of NiO)}
÷ {(peak top energy value of LiNiO 2 sample) − (peak top energy value of NiO)}
Since the energy values of NiO and LiNiO 2 were 8346.3 and 8348.4 eV, respectively, and the energy value of the sample of Example 4 was estimated to be 8347.5 eV, the average valence of the obtained nickel ions was calculated to be 2.57. From the above, it is shown that if an oxidizing atmosphere is selected as the primary firing, the target substance can be obtained even if an inert gas atmosphere such as in a nitrogen stream is selected during the secondary firing.
図17(a)および(b)に、実施例4試料におけるMnおよびNiのK端近傍X線吸収スペクトル(XANES)を示した。尚、4価Mn、2価Niおよび3価Niの標準物質としては、それぞれLi2MnO3、NiOおよびLiNiO2を使用した。
MnK端においては、実施例4試料のスペクトルは4価Mnの標準物質であるLi2MnO3のXANESデータとほぼ重なることから、Mn価数は4価と判断できる。一方実施例4試料のNiK端のXANESデータの1s→4p遷移に伴うピークトップ値は、二種の価数既知の標準物質のほぼ中間の位置に存在した。そこで以下の計算式を用いてNi平均価数を見積もった。
Ni平均価数=2+{(実施例試料のピークトップエネルギー値)-(NiOのピークトップエネルギー値)}
÷{(LiNiO2試料のピークトップエネルギー値)-(NiOのピークトップエネルギー値)}
NiOとLiNiO2のエネルギー値はそれぞれ8346.3、8348.4eVであり、実施例4試料のエネルギー値が8347.5eVと見積もられたので、得られたニッケルイオンの平均価数は2.57価と算出された。以上のことから一次焼成として酸化性雰囲気を選択すれば、二次焼成時に窒素気流中などの不活性ガス雰囲気を選択しても目的物質が得られることを示している。 Valence analysis of Mn ion and Ni ion FIGS. 17A and 17B show the X-ray absorption spectra (XANES) near the K-edge of Mn and Ni in the sample of Example 4. Incidentally, Li 2 MnO 3 , NiO and LiNiO 2 were used as standard materials for tetravalent Mn, divalent Ni and trivalent Ni, respectively.
At the MnK end, the spectrum of the sample of Example 4 almost overlaps with the XANES data of Li 2 MnO 3 which is a standard substance of tetravalent Mn, so that the Mn valence can be determined to be tetravalent. On the other hand, the peak top value accompanying the 1s → 4p transition of the XANES data at the NiK edge of the sample of Example 4 was present at a position approximately in the middle between the two kinds of reference materials with known valences. Therefore, the Ni average valence was estimated using the following calculation formula.
Ni average valence = 2 + {(peak top energy value of example sample) − (peak top energy value of NiO)}
÷ {(peak top energy value of LiNiO 2 sample) − (peak top energy value of NiO)}
Since the energy values of NiO and LiNiO 2 were 8346.3 and 8348.4 eV, respectively, and the energy value of the sample of Example 4 was estimated to be 8347.5 eV, the average valence of the obtained nickel ions was calculated to be 2.57. From the above, it is shown that if an oxidizing atmosphere is selected as the primary firing, the target substance can be obtained even if an inert gas atmosphere such as in a nitrogen stream is selected during the secondary firing.
充放電特性評価
得られた実施例4試料の粉末20mgをアセチレンブラック5mgとよく混合後、少量の結着剤(ポリテトラフルオロエチレン粉末)を加えて錠剤正極を作製した。以後は実施例1と同様の条件で電池を作製し、同様の試験条件で充放電特性評価試験を実施した。
図18に、実施例4の試料を正極としたリチウム二次電池の30℃における充放電曲線を示した。右上がりの曲線が充電(c)に、右下がりの曲線が放電(d)に対応する。数字はサイクル数を示す。図18より、5サイクル目(活性化後初期に相当)充電容量と放電容量がそれぞれ240mAh/g、228mAh/gであり、充放電効率は95%であった。また5サイクル目放電時の平均電圧が3.67V、その放電容量との積に相当するエネルギー密度が838mWh/gと高容量正極として十分な初期特性を有するのみならず、34サイクル後(活性化後30サイクル相当)の放電容量も218mAh/gと高く、5サイクル時に対する34サイクル時放電容量維持率は96%と高かった。また14サイクル目以降からの容量低下がほとんどなく、14サイクル目以降のサイクル経過に伴い放電時3.5-3.0V付近でわずかに電位低下が起こるものの、リチウムイオン二次電池正極材料として優れた特性を有することが確認できた。 Evaluation of Charge / Discharge Characteristics After 20 mg of the obtained powder of Example 4 sample was mixed well with 5 mg of acetylene black, a small amount of binder (polytetrafluoroethylene powder) was added to prepare a tablet positive electrode. Thereafter, a battery was produced under the same conditions as in Example 1, and a charge / discharge characteristic evaluation test was performed under the same test conditions.
FIG. 18 shows a charge / discharge curve at 30 ° C. of a lithium secondary battery using the sample of Example 4 as a positive electrode. The curve that rises to the right corresponds to charge (c), and the curve that falls to the right corresponds to discharge (d). The number indicates the cycle number. As shown in FIG. 18, the charge capacity and discharge capacity at the fifth cycle (corresponding to the initial stage after activation) were 240 mAh / g and 228 mAh / g, respectively, and the charge / discharge efficiency was 95%. In addition, the average voltage at the fifth cycle discharge is 3.67V, the energy density corresponding to the product of the discharge capacity is 838 mWh / g, and not only has sufficient initial characteristics as a high capacity positive electrode, but also after 34 cycles (after activation) The discharge capacity (corresponding to 30 cycles) was also as high as 218 mAh / g, and the 34-cycle discharge capacity maintenance rate with respect to 5 cycles was as high as 96%. In addition, there is almost no decrease in capacity from the 14th cycle onwards, and the potential drops slightly in the vicinity of 3.5-3.0V during discharge as the cycles from the 14th cycle onwards, but it has excellent characteristics as a positive electrode material for lithium ion secondary batteries. It was confirmed that it had.
得られた実施例4試料の粉末20mgをアセチレンブラック5mgとよく混合後、少量の結着剤(ポリテトラフルオロエチレン粉末)を加えて錠剤正極を作製した。以後は実施例1と同様の条件で電池を作製し、同様の試験条件で充放電特性評価試験を実施した。
図18に、実施例4の試料を正極としたリチウム二次電池の30℃における充放電曲線を示した。右上がりの曲線が充電(c)に、右下がりの曲線が放電(d)に対応する。数字はサイクル数を示す。図18より、5サイクル目(活性化後初期に相当)充電容量と放電容量がそれぞれ240mAh/g、228mAh/gであり、充放電効率は95%であった。また5サイクル目放電時の平均電圧が3.67V、その放電容量との積に相当するエネルギー密度が838mWh/gと高容量正極として十分な初期特性を有するのみならず、34サイクル後(活性化後30サイクル相当)の放電容量も218mAh/gと高く、5サイクル時に対する34サイクル時放電容量維持率は96%と高かった。また14サイクル目以降からの容量低下がほとんどなく、14サイクル目以降のサイクル経過に伴い放電時3.5-3.0V付近でわずかに電位低下が起こるものの、リチウムイオン二次電池正極材料として優れた特性を有することが確認できた。 Evaluation of Charge / Discharge Characteristics After 20 mg of the obtained powder of Example 4 sample was mixed well with 5 mg of acetylene black, a small amount of binder (polytetrafluoroethylene powder) was added to prepare a tablet positive electrode. Thereafter, a battery was produced under the same conditions as in Example 1, and a charge / discharge characteristic evaluation test was performed under the same test conditions.
FIG. 18 shows a charge / discharge curve at 30 ° C. of a lithium secondary battery using the sample of Example 4 as a positive electrode. The curve that rises to the right corresponds to charge (c), and the curve that falls to the right corresponds to discharge (d). The number indicates the cycle number. As shown in FIG. 18, the charge capacity and discharge capacity at the fifth cycle (corresponding to the initial stage after activation) were 240 mAh / g and 228 mAh / g, respectively, and the charge / discharge efficiency was 95%. In addition, the average voltage at the fifth cycle discharge is 3.67V, the energy density corresponding to the product of the discharge capacity is 838 mWh / g, and not only has sufficient initial characteristics as a high capacity positive electrode, but also after 34 cycles (after activation) The discharge capacity (corresponding to 30 cycles) was also as high as 218 mAh / g, and the 34-cycle discharge capacity maintenance rate with respect to 5 cycles was as high as 96%. In addition, there is almost no decrease in capacity from the 14th cycle onwards, and the potential drops slightly in the vicinity of 3.5-3.0V during discharge as the cycles from the 14th cycle onwards, but it has excellent characteristics as a positive electrode material for lithium ion secondary batteries. It was confirmed that it had.
(実施例5)
二次焼成雰囲気を窒素中から大気中に変更した他は、実施例4と同様に試料作製を行った。 (Example 5)
A sample was prepared in the same manner as in Example 4 except that the secondary firing atmosphere was changed from nitrogen to air.
二次焼成雰囲気を窒素中から大気中に変更した他は、実施例4と同様に試料作製を行った。 (Example 5)
A sample was prepared in the same manner as in Example 4 except that the secondary firing atmosphere was changed from nitrogen to air.
X線回折による評価(実施例5)
上記で得られた実施例5の試料の実測(+)及び六方晶層状岩塩型単位胞(下記空間群)を用いた計算(曲線)X線回折(XRD)パターンを、図19に示した。 Evaluation by X-ray diffraction (Example 5)
An actual measurement (+) of the sample of Example 5 obtained above and a calculated (curved) X-ray diffraction (XRD) pattern using a hexagonal layered rock salt unit cell (the following space group) are shown in FIG.
上記で得られた実施例5の試料の実測(+)及び六方晶層状岩塩型単位胞(下記空間群)を用いた計算(曲線)X線回折(XRD)パターンを、図19に示した。 Evaluation by X-ray diffraction (Example 5)
An actual measurement (+) of the sample of Example 5 obtained above and a calculated (curved) X-ray diffraction (XRD) pattern using a hexagonal layered rock salt unit cell (the following space group) are shown in FIG.
残差はパターンの下に表示した。2θ=20-25°付近には、本モデルではフィットできない単斜晶層状岩塩型単位胞(下記空間群)由来の超格子ピーク(2θ=20.5°および21.5°付近のブロードなピーク)の存在が確認された。
The residual is displayed below the pattern. Around 2θ = 20-25 °, a superlattice peak derived from a monoclinic layered rock-salt unit cell (the following space group) that cannot be fitted with this model (broad peaks around 2θ = 20.5 ° and 21.5 °) ) Was confirmed.
図19より、得られたXRDパターンは基本的に遷移金属層内に六角網目規則配列を有する単斜晶Li2MnO3型構造(下記空間群)相と帰属できた。
From FIG. 19, the obtained XRD pattern could be attributed to a monoclinic Li 2 MnO 3 type structure (the following space group) phase having a hexagonal network regular arrangement in the transition metal layer.
X線リートベルト解析(解析プログラムRIETAN-FPを使用、F. Izumi and K. Momma, Solid State Phenom, 130 15-20 (2007).)より、格子定数a=2.85259(9)Å、c=14.2235(4)Å、格子体積V=100.234(5)Å3であった。
各格子位置での占有率は、Li層内遷移金属(3a)位置の占有率は3.65(8)%、遷移金属層内遷移金属(3b)位置の占有率は77.7(2)%であった。両者の総和が組成式あたり遷移金属量であり、その値は81.4(3)%(0.814(3))であった。 From X-ray Rietveld analysis (using the analysis program Rietan-FP, F. Izumi and K. Momma, Solid State Phenom, 130 15-20 (2007)), lattice constant a = 2.85259 (9) Å, c = 14.2235 (4) Å, lattice volume V = 100.234 (5) 3 3 .
The occupancy at each lattice position was 3.65 (8)% for the transition metal (3a) position in the Li layer, and 77.7 (2)% for the transition metal (3b) position in the transition metal layer. . The sum of both was the amount of transition metal per composition formula, and its value was 81.4 (3)% (0.814 (3)).
各格子位置での占有率は、Li層内遷移金属(3a)位置の占有率は3.65(8)%、遷移金属層内遷移金属(3b)位置の占有率は77.7(2)%であった。両者の総和が組成式あたり遷移金属量であり、その値は81.4(3)%(0.814(3))であった。 From X-ray Rietveld analysis (using the analysis program Rietan-FP, F. Izumi and K. Momma, Solid State Phenom, 130 15-20 (2007)), lattice constant a = 2.85259 (9) Å, c = 14.2235 (4) Å, lattice volume V = 100.234 (5) 3 3 .
The occupancy at each lattice position was 3.65 (8)% for the transition metal (3a) position in the Li layer, and 77.7 (2)% for the transition metal (3b) position in the transition metal layer. . The sum of both was the amount of transition metal per composition formula, and its value was 81.4 (3)% (0.814 (3)).
化学分析(実施例5)
Li量をICP発光分析により、実施例5の試料のMn量、Ni量およびO量を波長分散型蛍光X線分析にて見積もったところ、得られたLi/(Ni+Mn)モル比は1.37(5)であった。またNi/(Ni+Mn)モル比とO/(Ni+Mn)モル比はそれぞれ0.400(5)、2.64(9)であった。
組成式との対応からx値は以下の計算式で算出される。
x=(Li/(Ni+Mn)モル比-1)÷(Li/(Ni+Mn)モル比+1)
従ってx値は0.16(2)となった。
一方y値はNi/(Ni+Mn)モル比そのものであることから0.400(5)であった。 Chemical analysis (Example 5)
When the Li amount was estimated by ICP emission analysis, and the Mn amount, Ni amount, and O amount of the sample of Example 5 were estimated by wavelength dispersive X-ray fluorescence analysis, the obtained Li / (Ni + Mn) molar ratio was 1.37 (5 )Met. The Ni / (Ni + Mn) molar ratio and the O / (Ni + Mn) molar ratio were 0.400 (5) and 2.64 (9), respectively.
From the correspondence with the composition formula, the x value is calculated by the following formula.
x = (Li / (Ni + Mn) molar ratio-1) ÷ (Li / (Ni + Mn) molar ratio + 1)
Therefore, the x value was 0.16 (2).
On the other hand, the y value was 0.400 (5) because it was the Ni / (Ni + Mn) molar ratio itself.
Li量をICP発光分析により、実施例5の試料のMn量、Ni量およびO量を波長分散型蛍光X線分析にて見積もったところ、得られたLi/(Ni+Mn)モル比は1.37(5)であった。またNi/(Ni+Mn)モル比とO/(Ni+Mn)モル比はそれぞれ0.400(5)、2.64(9)であった。
組成式との対応からx値は以下の計算式で算出される。
x=(Li/(Ni+Mn)モル比-1)÷(Li/(Ni+Mn)モル比+1)
従ってx値は0.16(2)となった。
一方y値はNi/(Ni+Mn)モル比そのものであることから0.400(5)であった。 Chemical analysis (Example 5)
When the Li amount was estimated by ICP emission analysis, and the Mn amount, Ni amount, and O amount of the sample of Example 5 were estimated by wavelength dispersive X-ray fluorescence analysis, the obtained Li / (Ni + Mn) molar ratio was 1.37 (5 )Met. The Ni / (Ni + Mn) molar ratio and the O / (Ni + Mn) molar ratio were 0.400 (5) and 2.64 (9), respectively.
From the correspondence with the composition formula, the x value is calculated by the following formula.
x = (Li / (Ni + Mn) molar ratio-1) ÷ (Li / (Ni + Mn) molar ratio + 1)
Therefore, the x value was 0.16 (2).
On the other hand, the y value was 0.400 (5) because it was the Ni / (Ni + Mn) molar ratio itself.
充放電特性評価
得られた実施例5試料の粉末20mgをアセチレンブラック5mgとよく混合後、少量の結着剤(ポリテトラフルオロエチレン粉末)を加えて錠剤正極を作製した。以後は実施例1と同様の条件で電池を作製し、同様の試験条件で充放電特性評価試験を実施した。
図20に、実施例5の試料を正極としたリチウム二次電池の30℃における充放電曲線を示した。右上がりの曲線が充電(c)に、右下がりの曲線が放電(d)に対応する。数字はサイクル数を示す。図20より、5サイクル目(活性化後初期に相当)充電容量と放電容量がそれぞれ231mAh/g、222mAh/gであり、充放電効率は96%であった。また5サイクル目放電時の平均電圧が3.50V、その放電容量との積に相当するエネルギー密度が778mWh/gと高容量正極として十分な初期特性を有するのみならず、34サイクル後(活性化後30サイクル相当)の放電容量も218mAh/gと高く、5サイクル時に対する34サイクル時放電容量維持率は98%と高く、リチウムイオン二次電池正極材料として優れた特性を有することが確認できた。 Evaluation of Charge / Discharge Characteristics After mixing 20 mg of the obtained powder of Example 5 sample well with 5 mg of acetylene black, a small amount of binder (polytetrafluoroethylene powder) was added to prepare a tablet positive electrode. Thereafter, a battery was produced under the same conditions as in Example 1, and a charge / discharge characteristic evaluation test was performed under the same test conditions.
FIG. 20 shows a charge / discharge curve at 30 ° C. of a lithium secondary battery using the sample of Example 5 as a positive electrode. The curve that rises to the right corresponds to charge (c), and the curve that falls to the right corresponds to discharge (d). The number indicates the cycle number. From FIG. 20, the charge capacity and discharge capacity at the fifth cycle (corresponding to the initial stage after activation) were 231 mAh / g and 222 mAh / g, respectively, and the charge / discharge efficiency was 96%. In addition, the average voltage at the fifth cycle discharge is 3.50V, and the energy density corresponding to the product of the discharge capacity is 778 mWh / g and not only has sufficient initial characteristics as a high capacity positive electrode, but also after 34 cycles (after activation) The discharge capacity (corresponding to 30 cycles) was as high as 218 mAh / g, and the 34-cycle discharge capacity retention rate with respect to 5 cycles was as high as 98%, confirming that it had excellent characteristics as a positive electrode material for lithium ion secondary batteries.
得られた実施例5試料の粉末20mgをアセチレンブラック5mgとよく混合後、少量の結着剤(ポリテトラフルオロエチレン粉末)を加えて錠剤正極を作製した。以後は実施例1と同様の条件で電池を作製し、同様の試験条件で充放電特性評価試験を実施した。
図20に、実施例5の試料を正極としたリチウム二次電池の30℃における充放電曲線を示した。右上がりの曲線が充電(c)に、右下がりの曲線が放電(d)に対応する。数字はサイクル数を示す。図20より、5サイクル目(活性化後初期に相当)充電容量と放電容量がそれぞれ231mAh/g、222mAh/gであり、充放電効率は96%であった。また5サイクル目放電時の平均電圧が3.50V、その放電容量との積に相当するエネルギー密度が778mWh/gと高容量正極として十分な初期特性を有するのみならず、34サイクル後(活性化後30サイクル相当)の放電容量も218mAh/gと高く、5サイクル時に対する34サイクル時放電容量維持率は98%と高く、リチウムイオン二次電池正極材料として優れた特性を有することが確認できた。 Evaluation of Charge / Discharge Characteristics After mixing 20 mg of the obtained powder of Example 5 sample well with 5 mg of acetylene black, a small amount of binder (polytetrafluoroethylene powder) was added to prepare a tablet positive electrode. Thereafter, a battery was produced under the same conditions as in Example 1, and a charge / discharge characteristic evaluation test was performed under the same test conditions.
FIG. 20 shows a charge / discharge curve at 30 ° C. of a lithium secondary battery using the sample of Example 5 as a positive electrode. The curve that rises to the right corresponds to charge (c), and the curve that falls to the right corresponds to discharge (d). The number indicates the cycle number. From FIG. 20, the charge capacity and discharge capacity at the fifth cycle (corresponding to the initial stage after activation) were 231 mAh / g and 222 mAh / g, respectively, and the charge / discharge efficiency was 96%. In addition, the average voltage at the fifth cycle discharge is 3.50V, and the energy density corresponding to the product of the discharge capacity is 778 mWh / g and not only has sufficient initial characteristics as a high capacity positive electrode, but also after 34 cycles (after activation) The discharge capacity (corresponding to 30 cycles) was as high as 218 mAh / g, and the 34-cycle discharge capacity retention rate with respect to 5 cycles was as high as 98%, confirming that it had excellent characteristics as a positive electrode material for lithium ion secondary batteries.
Claims (7)
- 一般式(1):
Li1+x(NiyMn1-y)1-xO2 (1)
[式中、x及びyはそれぞれ0.0≦x<1/3、0.3≦y≦0.6を示す。]
で表わされ、層状岩塩型結晶相を含み、
格子定数aが2.870Å以下、格子体積が102.0Å3以下である、
ニッケル含有リチウムマンガン複合酸化物。 General formula (1):
Li 1 + x (Ni y Mn 1-y ) 1-x O 2 (1)
[Wherein, x and y represent 0.0 ≦ x <1/3 and 0.3 ≦ y ≦ 0.6, respectively. ]
Represented by a layered rock salt type crystal phase,
The lattice constant a is 2.870 Å or less and the lattice volume is 102.0 Å 3 or less,
Nickel-containing lithium manganese composite oxide. - 層状岩塩型結晶構造において、リチウム層内に含まれる遷移金属量が5%以下である、請求項1に記載のニッケル含有リチウムマンガン複合酸化物。 The nickel-containing lithium manganese composite oxide according to claim 1, wherein the amount of transition metal contained in the lithium layer is 5% or less in the layered rock salt type crystal structure.
- 層状岩塩型結晶構造において、遷移金属層内に含まれる遷移金属量が88%以下である、請求項1又は2に記載のニッケル含有リチウムマンガン複合酸化物。 The nickel-containing lithium manganese composite oxide according to claim 1 or 2, wherein in the layered rock salt type crystal structure, the amount of transition metal contained in the transition metal layer is 88% or less.
- ニッケルイオンの価数が2.5価以上である、請求項1~3の何れか1項に記載のニッケル含有リチウムマンガン複合酸化物。 The nickel-containing lithium manganese composite oxide according to any one of claims 1 to 3, wherein the valence of nickel ions is 2.5 or more.
- O/(Ni+Mn)原子比が2.3以上である、請求項1~4の何れか1項に記載のニッケル含有リチウムマンガン複合酸化物。 The nickel-containing lithium manganese composite oxide according to any one of claims 1 to 4, wherein the O / (Ni + Mn) atomic ratio is 2.3 or more.
- 請求項1~5の何れか1項に記載のニッケル含有リチウムマンガン複合酸化物を正極活物質として含むリチウムイオン二次電池。 A lithium ion secondary battery comprising the nickel-containing lithium manganese composite oxide according to any one of claims 1 to 5 as a positive electrode active material.
- マンガン化合物及びニッケル化合物を含む混合水溶液から、20℃以下のアルカリ性条件下にて沈殿物を形成する工程1、
前記沈殿物に湿式酸化処理を行う工程2、
及びリチウム塩共存下酸化性雰囲気下で熱処理する工程3を有する、
請求項1~5の何れか1項に記載のニッケル含有リチウムマンガン複合酸化物の製造方法。 Step 1 of forming a precipitate under an alkaline condition of 20 ° C. or lower from a mixed aqueous solution containing a manganese compound and a nickel compound,
Step 2 of performing wet oxidation treatment on the precipitate,
And a step 3 of heat treatment in an oxidizing atmosphere in the presence of lithium salt,
The method for producing a nickel-containing lithium manganese composite oxide according to any one of claims 1 to 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019506265A JP6872816B2 (en) | 2017-03-16 | 2018-03-15 | Nickel-manganese-based composite oxide and its manufacturing method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017050947 | 2017-03-16 | ||
JP2017-050947 | 2017-03-16 | ||
JP2017-217608 | 2017-11-10 | ||
JP2017217608 | 2017-11-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018169004A1 true WO2018169004A1 (en) | 2018-09-20 |
Family
ID=63522264
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/010239 WO2018169004A1 (en) | 2017-03-16 | 2018-03-15 | Nickel-manganese-based composite oxide and method for producing same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6872816B2 (en) |
WO (1) | WO2018169004A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111063881A (en) * | 2019-12-23 | 2020-04-24 | 北京理工大学重庆创新中心 | A preparation method of NCM ternary cathode material modified by regulating lithium source oxidation |
WO2020209239A1 (en) * | 2019-04-11 | 2020-10-15 | Jfeミネラル株式会社 | Precursor, method for manufacturing precursor, positive electrode material, method for manufacturing positive electrode material, and lithium-ion secondary cell |
JP2021017397A (en) * | 2019-07-23 | 2021-02-15 | 国立研究開発法人産業技術総合研究所 | Monoclinic lithium nickel manganese-based complex oxide and its manufacturing method |
CN112751006A (en) * | 2021-01-18 | 2021-05-04 | 北京大学深圳研究生院 | Cobalt-free lithium ion battery layered positive electrode material and preparation method and application thereof |
CN116322983A (en) * | 2020-10-15 | 2023-06-23 | 国立大学法人京都大学 | Anode for alkaline water electrolysis and its manufacturing method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05283076A (en) * | 1992-02-07 | 1993-10-29 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte secondary battery and manufacture of positive electrode active material thereof |
JP2003017049A (en) * | 2001-06-27 | 2003-01-17 | Toyota Central Res & Dev Lab Inc | Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery and method for producing the same |
JP2003068298A (en) * | 2001-08-24 | 2003-03-07 | Seimi Chem Co Ltd | Lithium containing transition metal composite oxide and its producing method |
JP2007184145A (en) * | 2006-01-06 | 2007-07-19 | Hitachi Vehicle Energy Ltd | Lithium secondary battery |
-
2018
- 2018-03-15 WO PCT/JP2018/010239 patent/WO2018169004A1/en active Application Filing
- 2018-03-15 JP JP2019506265A patent/JP6872816B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05283076A (en) * | 1992-02-07 | 1993-10-29 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte secondary battery and manufacture of positive electrode active material thereof |
JP2003017049A (en) * | 2001-06-27 | 2003-01-17 | Toyota Central Res & Dev Lab Inc | Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery and method for producing the same |
JP2003068298A (en) * | 2001-08-24 | 2003-03-07 | Seimi Chem Co Ltd | Lithium containing transition metal composite oxide and its producing method |
JP2007184145A (en) * | 2006-01-06 | 2007-07-19 | Hitachi Vehicle Energy Ltd | Lithium secondary battery |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020209239A1 (en) * | 2019-04-11 | 2020-10-15 | Jfeミネラル株式会社 | Precursor, method for manufacturing precursor, positive electrode material, method for manufacturing positive electrode material, and lithium-ion secondary cell |
JPWO2020209239A1 (en) * | 2019-04-11 | 2021-05-06 | Jfeミネラル株式会社 | Precursor, precursor manufacturing method, positive electrode material, positive electrode material manufacturing method, and lithium ion secondary battery |
JP7160930B2 (en) | 2019-04-11 | 2022-10-25 | Jfeミネラル株式会社 | Precursor, method for producing precursor, positive electrode material, method for producing positive electrode material, and lithium ion secondary battery |
JP2021017397A (en) * | 2019-07-23 | 2021-02-15 | 国立研究開発法人産業技術総合研究所 | Monoclinic lithium nickel manganese-based complex oxide and its manufacturing method |
JP7557191B2 (en) | 2019-07-23 | 2024-09-27 | 国立研究開発法人産業技術総合研究所 | Monoclinic lithium nickel manganese composite oxide and its manufacturing method |
CN111063881A (en) * | 2019-12-23 | 2020-04-24 | 北京理工大学重庆创新中心 | A preparation method of NCM ternary cathode material modified by regulating lithium source oxidation |
CN116322983A (en) * | 2020-10-15 | 2023-06-23 | 国立大学法人京都大学 | Anode for alkaline water electrolysis and its manufacturing method |
CN116322983B (en) * | 2020-10-15 | 2024-03-15 | 国立大学法人京都大学 | Anode for alkaline water electrolysis and method for producing same |
CN112751006A (en) * | 2021-01-18 | 2021-05-04 | 北京大学深圳研究生院 | Cobalt-free lithium ion battery layered positive electrode material and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP6872816B2 (en) | 2021-05-19 |
JPWO2018169004A1 (en) | 2020-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101762980B1 (en) | Positive electrode active material powder, method for producing same, and nonaqueous electrolyte secondary battery | |
KR101989632B1 (en) | Positive electrode active material granular powder and method for producing same, and nonaqueous electrolyte secondary battery | |
KR101989760B1 (en) | Positive electrode active material precursor particulate powder and positive electrode active material particulate powder, and non-aqueous electrolyte secondary battery | |
US8021783B2 (en) | Lithium manganese-based composite oxide and method for preparing the same | |
JP6872816B2 (en) | Nickel-manganese-based composite oxide and its manufacturing method | |
JP2009274940A (en) | Monoclinic lithium manganese-based compound oxide having cation ordered structure and method for producing the same | |
JP5958926B2 (en) | Lithium manganese composite oxide and method for producing the same | |
JP5737513B2 (en) | Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery | |
JP2016103477A (en) | Positive electrode material for sodium secondary battery | |
JPWO2014061654A1 (en) | Li-Ni composite oxide particle powder and non-aqueous electrolyte secondary battery | |
JP5674055B2 (en) | Method for producing composite oxide, positive electrode active material for secondary battery, and secondary battery | |
US20160301072A1 (en) | Spinel-Type Lithium Cobalt Manganese-Containing Complex Oxide | |
JP4997609B2 (en) | Method for producing lithium manganese composite oxide | |
WO2018096999A1 (en) | Lithium-manganese complex oxide and method for producing same | |
US11417881B2 (en) | Lithium-manganese complex oxide and method for producing same | |
JP2006036621A (en) | Method for producing lithium ferrite composite oxide | |
WO2018043436A1 (en) | Dissimilar metal-containing lithium-nickel composite oxide and production method therefor | |
JP2012209242A (en) | Lithium manganese titanium nickel composite oxide and production method therefor, and lithium secondary battery using the same as member | |
JP4431785B2 (en) | Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same | |
WO2018066633A1 (en) | Titanium- and/or germanium-substituted lithium manganese composite oxide and method for producing same | |
KR20050047291A (en) | Cathode material for lithium secondary battery and method for preparing the same | |
JP7302826B2 (en) | Lithium-manganese composite oxide and method for producing the same | |
JP7133215B2 (en) | Nickel-manganese composite oxide and method for producing the same | |
JP7192397B2 (en) | Lithium-cobalt-manganese composite oxide and lithium secondary battery containing the same | |
KR101458505B1 (en) | The maufacturing method of Lithium-Nickel-Cobalt-Manganese complex oxide by using thermal degradation of oxalate anion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18768710 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019506265 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18768710 Country of ref document: EP Kind code of ref document: A1 |