WO2018168986A1 - Gene testing method and gene testing kit - Google Patents
Gene testing method and gene testing kit Download PDFInfo
- Publication number
- WO2018168986A1 WO2018168986A1 PCT/JP2018/010136 JP2018010136W WO2018168986A1 WO 2018168986 A1 WO2018168986 A1 WO 2018168986A1 JP 2018010136 W JP2018010136 W JP 2018010136W WO 2018168986 A1 WO2018168986 A1 WO 2018168986A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- filter
- sample
- genetic
- genetic test
- detected
- Prior art date
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 92
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 38
- 238000001914 filtration Methods 0.000 claims abstract description 67
- 239000000126 substance Substances 0.000 claims abstract description 24
- 239000000523 sample Substances 0.000 claims description 130
- 230000002068 genetic effect Effects 0.000 claims description 75
- 239000011148 porous material Substances 0.000 claims description 48
- 238000001514 detection method Methods 0.000 claims description 43
- 239000003153 chemical reaction reagent Substances 0.000 claims description 28
- 244000005700 microbiome Species 0.000 claims description 27
- 238000010998 test method Methods 0.000 claims description 24
- -1 polypropylene Polymers 0.000 claims description 20
- 229920000742 Cotton Polymers 0.000 claims description 14
- 239000004743 Polypropylene Substances 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 12
- 229920001155 polypropylene Polymers 0.000 claims description 12
- 238000005119 centrifugation Methods 0.000 claims description 11
- 239000000725 suspension Substances 0.000 claims description 11
- 210000003756 cervix mucus Anatomy 0.000 claims description 10
- 241000588652 Neisseria gonorrhoeae Species 0.000 claims description 9
- 241001263478 Norovirus Species 0.000 claims description 9
- 239000004698 Polyethylene Substances 0.000 claims description 8
- 244000000010 microbial pathogen Species 0.000 claims description 8
- 229920000573 polyethylene Polymers 0.000 claims description 8
- 241000204031 Mycoplasma Species 0.000 claims description 7
- 239000012472 biological sample Substances 0.000 claims description 7
- 241000588832 Bordetella pertussis Species 0.000 claims description 6
- 206010012735 Diarrhoea Diseases 0.000 claims description 6
- 239000004793 Polystyrene Substances 0.000 claims description 6
- 102000054765 polymorphisms of proteins Human genes 0.000 claims description 6
- 241000701161 unidentified adenovirus Species 0.000 claims description 6
- 206010035664 Pneumonia Diseases 0.000 claims description 5
- 238000003556 assay Methods 0.000 claims description 5
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 5
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 5
- 238000007790 scraping Methods 0.000 claims description 5
- 241000606161 Chlamydia Species 0.000 claims description 4
- 108010021809 Alcohol dehydrogenase Proteins 0.000 claims description 3
- 108090000790 Enzymes Proteins 0.000 claims description 3
- 241001465754 Metazoa Species 0.000 claims description 3
- 206010057190 Respiratory tract infections Diseases 0.000 claims description 3
- 241000702670 Rotavirus Species 0.000 claims description 3
- 241000369757 Sapovirus Species 0.000 claims description 3
- 208000019802 Sexually transmitted disease Diseases 0.000 claims description 3
- 241000580858 Simian-Human immunodeficiency virus Species 0.000 claims description 3
- 241000202898 Ureaplasma Species 0.000 claims description 3
- 241000700605 Viruses Species 0.000 claims description 3
- 108010081577 aldehyde dehydrogenase (NAD(P)+) Proteins 0.000 claims description 3
- 239000003814 drug Substances 0.000 claims description 3
- 229940079593 drug Drugs 0.000 claims description 3
- 229920005553 polystyrene-acrylate Polymers 0.000 claims description 3
- 241000712461 unidentified influenza virus Species 0.000 claims description 3
- 206010046901 vaginal discharge Diseases 0.000 claims description 3
- 241001647372 Chlamydia pneumoniae Species 0.000 claims description 2
- 206010071602 Genetic polymorphism Diseases 0.000 claims description 2
- 241001505901 Streptococcus sp. 'group A' Species 0.000 claims description 2
- QYNUQALWYRSVHF-ABLWVSNPSA-N 5,10-methylenetetrahydrofolic acid Chemical compound C1N2C=3C(=O)NC(N)=NC=3NCC2CN1C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 QYNUQALWYRSVHF-ABLWVSNPSA-N 0.000 claims 1
- 101150010487 are gene Proteins 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 26
- 230000035945 sensitivity Effects 0.000 abstract description 6
- 108020004707 nucleic acids Proteins 0.000 description 24
- 102000039446 nucleic acids Human genes 0.000 description 24
- 150000007523 nucleic acids Chemical class 0.000 description 24
- 230000003321 amplification Effects 0.000 description 23
- 238000003199 nucleic acid amplification method Methods 0.000 description 23
- 239000007788 liquid Substances 0.000 description 22
- 238000011880 melting curve analysis Methods 0.000 description 17
- 239000000835 fiber Substances 0.000 description 15
- 241000202934 Mycoplasma pneumoniae Species 0.000 description 12
- 238000004458 analytical method Methods 0.000 description 12
- 239000002245 particle Substances 0.000 description 10
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 9
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 7
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 230000000717 retained effect Effects 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 6
- 239000000706 filtrate Substances 0.000 description 5
- 238000007689 inspection Methods 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000000356 contaminant Substances 0.000 description 4
- 239000013642 negative control Substances 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 201000005702 Pertussis Diseases 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 206010022000 influenza Diseases 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 238000010839 reverse transcription Methods 0.000 description 3
- 238000003757 reverse transcription PCR Methods 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 235000009161 Espostoa lanata Nutrition 0.000 description 2
- 240000001624 Espostoa lanata Species 0.000 description 2
- 108010030837 Methylenetetrahydrofolate Reductase (NADPH2) Proteins 0.000 description 2
- 208000001572 Mycoplasma Pneumonia Diseases 0.000 description 2
- 201000008235 Mycoplasma pneumoniae pneumonia Diseases 0.000 description 2
- 241000204003 Mycoplasmatales Species 0.000 description 2
- 239000000020 Nitrocellulose Substances 0.000 description 2
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000012491 analyte Substances 0.000 description 2
- 239000012620 biological material Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229920001903 high density polyethylene Polymers 0.000 description 2
- 239000004700 high-density polyethylene Substances 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 208000037797 influenza A Diseases 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 238000003973 irrigation Methods 0.000 description 2
- 230000002262 irrigation Effects 0.000 description 2
- 229920001684 low density polyethylene Polymers 0.000 description 2
- 239000004702 low-density polyethylene Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000001471 micro-filtration Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229920001220 nitrocellulos Polymers 0.000 description 2
- 239000002504 physiological saline solution Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000003753 real-time PCR Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 239000011345 viscous material Substances 0.000 description 2
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 108700028369 Alleles Proteins 0.000 description 1
- 0 CCCC(CC(*C)C1C)[C@@]1C=CCCC Chemical compound CCCC(CC(*C)C1C)[C@@]1C=CCCC 0.000 description 1
- 101150051438 CYP gene Proteins 0.000 description 1
- 102000002004 Cytochrome P-450 Enzyme System Human genes 0.000 description 1
- 108010015742 Cytochrome P-450 Enzyme System Proteins 0.000 description 1
- 230000004543 DNA replication Effects 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- IKWOQYSBHRZITG-UHFFFAOYSA-N FC(=C(F)F)F.[Si] Chemical group FC(=C(F)F)F.[Si] IKWOQYSBHRZITG-UHFFFAOYSA-N 0.000 description 1
- 101150019793 G2 gene Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000829171 Hypocrea virens (strain Gv29-8 / FGSC 10586) Effector TSP1 Proteins 0.000 description 1
- 241000712431 Influenza A virus Species 0.000 description 1
- 241000713196 Influenza B virus Species 0.000 description 1
- 125000002066 L-histidyl group Chemical group [H]N1C([H])=NC(C([H])([H])[C@](C(=O)[*])([H])N([H])[H])=C1[H] 0.000 description 1
- 101150019913 MTHFR gene Proteins 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 238000011529 RT qPCR Methods 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 241000194017 Streptococcus Species 0.000 description 1
- 101150067366 adh gene Proteins 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 101150055425 aldh gene Proteins 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000027455 binding Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000003935 denaturing gradient gel electrophoresis Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 239000002984 plastic foam Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 238000012755 real-time RT-PCR analysis Methods 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 238000007894 restriction fragment length polymorphism technique Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229940031000 streptococcus pneumoniae Drugs 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 230000005758 transcription activity Effects 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
- C12M1/12—Apparatus for enzymology or microbiology with sterilisation, filtration or dialysis means
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
- C12M1/26—Inoculator or sampler
- C12M1/28—Inoculator or sampler being part of container
- C12M1/30—Sampler being a swab
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6806—Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/569—Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
Definitions
- the present invention relates to a genetic testing method and a genetic testing kit.
- Non-Patent Document 1 and Patent Document 1 Various gene testing methods are known (for example, Non-Patent Document 1 and Patent Document 1). Various substances are mixed in samples used for genetic testing. These contaminants affect the inspection method, reduce the sensitivity, cause false positives, and cause troubles in the equipment used for inspection (for example, clogging of the flow path system). There is a possibility. Conventionally, a centrifugal separation method or the like has been used to remove the contaminants, but a dedicated device is required, and the operation is complicated and takes time.
- Patent Document 2 false positives and clogging are prevented while maintaining sensitivity in an inspection method using a membrane assay method intended for detection with a capture reagent having a specific binding ability (for example, an antibody against a specific antigen, etc.).
- a capture reagent having a specific binding ability for example, an antibody against a specific antigen, etc.
- An object of the present invention is to provide a method for preventing false positives and clogging while maintaining sensitivity in a genetic testing method, and enabling highly accurate detection or quantification of an object to be detected, and in such a method It is to provide a kit to be used.
- the present inventor has found that in the genetic testing method, the above problem can be solved by detecting or quantifying the presence of the analyte in the sample after filtering the sample containing the analyte with a filtration filter. Completed the invention.
- the outline of the present invention is as follows.
- [Item 1] A genetic test method characterized by detecting or quantifying the presence of a target to be detected in the sample after filtering the sample containing the target to be detected by a filtration filter.
- [Item 2] The genetic testing method according to Item 1, wherein the filtration filter is a sintered filter.
- the sintered filter material is selected from the group consisting of polypropylene, polyethylene, polystyrene, and polymethylmethacrylate.
- the pore size of the sintered filter is 10 to 100 ⁇ m.
- the sample is a human or other animal's oral scrapings, pharyngeal wipe, nasal wipe, nasal suction, nasal wash, alveolar wash, stool suspension, rectal wipe, vaginal discharge, uterus Item 8.
- the genetic test method according to Item 7 which is a sample selected from the group consisting of cervical mucus and urethral scrapings.
- the genetic test method according to Item 8 wherein the matter that can be examined by detecting or quantifying the presence of the target to be detected is a microorganism causing respiratory infection or a substance derived from the microorganism.
- the genetic test method according to Item 9 which is a microorganism or a substance derived from the microorganism.
- the genetic test method according to Item 8 wherein the matter that can be examined by detecting or quantifying the presence of the target to be detected is a causative microorganism of diarrhea or a substance derived from the microorganism.
- the item that can be examined by detecting or quantifying the presence of the detection target is a pathogenic microorganism selected from the group consisting of norovirus, rotavirus, sapovirus, and diarrhea adenovirus, or a substance derived from the microorganism. 11.
- ITEM 13 The genetic test
- the item that can be examined by detecting or quantifying the presence of the detection target is a pathogenic microorganism selected from the group consisting of Neisseria gonorrhoeae, Chlamydia, Mycoplasma, Ureaplasma, HIV and HPV, or a substance derived from the microorganism. 14.
- Items that can be examined by detecting or quantifying the presence of the detection target include gene polymorphisms of drug metabolizing enzyme genes, gene polymorphisms of alcohol dehydrogenase genes, gene polymorphisms of acetaldehyde dehydrogenase genes, and Item 16.
- a genetic testing method for testing the presence of an object to be detected in a specimen sample comprising: (1) A specimen sample filtration tube provided with a filtration filter constituted by a filter including a sintered filter. [Item 20] The genetic test kit according to Item 19, further comprising a cotton swab or swab as a specimen collection device. [Item 21] The gene test kit according to item 19, further comprising a container filled with a gene test reagent capable of detecting or quantifying the presence of the detection target.
- the specimen is an intraoral scratch, throat wiping liquid, nasal wiping liquid, nasal suction liquid, alveolar lavage liquid, vaginal secretion, Even for a sample containing a large amount of impurities such as cervical mucus and urethral scrapings, impurities can be removed without reducing the amount of the sample using a sample collection device and / or a filtration filter. As a result, accurate results can be obtained without being affected by impurities.
- the dedicated equipment and the trouble of operation required for performing the centrifugal separation are unnecessary, and it is easier and more accurate in a short time. The result can be obtained.
- FIG. It is a figure which shows the gene detection result of Neisseria gonorrhoeae of Example 1. It is a figure which shows the detection result of the internal control in the pertussis detection of Example 2.
- FIG. It is a figure which shows the gene detection result (contrast in the case of using the sintered filter and membrane filter from which a hole diameter differs) in the mycoplasma * pneumoniae in Example 3.
- FIG. It is a figure which shows the gene detection result of the internal control in the Mycoplasma pneumoniae detection of Example 3 (comparison when using a sintered filter and a membrane filter with different pore sizes). It is a figure which shows the detection result (comparison with a sintered filter and the centrifugation method) of the gene of Mycoplasma pneumoniae in Example 4.
- Example 5 it is the figure which showed the real-time RT-PCR analysis result of the influenza A gene.
- Example 6 it is the figure which showed the detection result of norovirus RNA contained in a stool sample. It is a figure which shows the structure of the genetic test kit of one embodiment of this invention.
- One embodiment of the present invention is a genetic test method characterized by detecting or quantifying the presence of a target to be detected in the sample after filtering the sample including the target to be detected by a filtration filter. Specifically, after collecting a test object using a sampling tool, put the sampling tool containing the test target in a container, suspend in the liquid in the container, and then remove the sampling tool from the container, A genetic test method characterized in that the filter of the present invention is attached to a container, the liquid inside the container is passed through the filter and eluted out of the container, and the presence of the target to be detected in the eluate is detected or quantified. is there.
- the gene testing method is not particularly limited, and may be any method that can test a disease or infection based on gene sequence information. Specifically, for example, a partial sequence of a base (eg, DNA, RNA, etc.) peculiar to a specific infection source or disease is detected from a sample, or a polymorphism (eg, single nucleotide polymorphism (SNP)) is detected. The mode to do is mentioned.
- the detection principle used in the genetic testing method is not particularly limited. For example, PCR methods using allele-specific primers, denaturing gradient gel electrophoresis methods, SSCP methods, RFLP methods, TaqMan PCR methods, invader methods, PCR methods, etc.
- Various known methods such as a method of performing a melting curve analysis by hybridizing an appropriate probe (for example, Q probe) to the sample amplified in (1) can be used.
- the detection target is not particularly limited.
- a specific nucleic acid, a specific oligonucleotide part, a specific polynucleotide part, etc. present in a part of a genome, a structural gene, a regulatory gene, a gene transcript (such as mRNA or a precursor thereof), or a fragment thereof.
- They may be either DNA or RNA, or both chimeras.
- the sample including the target to be detected may be a sample collected from a living body (for example, the sample itself including the target to be detected), or DNA or RNA included in the sample may be replicated or amplified by any means. It may be what was done.
- the method used for replication or amplification is not particularly limited, and various known methods such as PCR, SDA, ICAN, and LAMP can be used.
- the sample including the detection target may be a sample in which DNA, RNA, or the like included in the specimen is modified or decomposed by some physicochemical means.
- DNA replication or amplification is performed by the PCR method
- ⁇ -type DNA polymerase or DNA polymerase belonging to family B
- KOD DNA polymerase is used.
- the presence of the target to be detected can be detected or quantified only by a simple filtration operation without extracting or purifying DNA from the sample.
- RNA is detected by the RT-PCR method
- the sample including the detection target is filtered using a filtration filter.
- the filtration filter is not only one type, but also a combination of different materials, different pore sizes or different retained particle sizes However, in the present invention, it is necessary to include at least one type of filtration filter.
- the filtration filter is not particularly limited, but a sintered filter is preferably used.
- the material of the sintered filter is not particularly limited, but is preferably selected from the group consisting of polypropylene, polyethylene, polystyrene, and polymethyl methacrylate.
- the filtration filter is preferably a filter (strong rigidity filter) that is not easily deformed by an external force.
- a specimen sample suspended in a specimen suspension is placed in a filtration tube, filtered through a filtration filter including a rigid filter attached to the tip, and the filtrate is added with a genetic test reagent (eg, a tube, etc.)
- a genetic test reagent eg, a tube, etc.
- the filter receives the pressure of a liquid such as a specimen sample in the filtration tube or air.
- the tube is made of an elastic material, a person receives pressure by directly pressing the container with his hand.
- the filtration filter used in the present invention is a container in which a specimen sample suspended in a specimen suspension is placed in a filtration tube, filtered through a filtration filter including a rigid filter attached to the tip, and the filtrate is added with a genetic test reagent. It is preferable that the filter has a rigidity that is difficult to be crushed in the thickness direction of the filter or difficult to be deformed such as a curve when dropped onto (for example, a tube or the like). In other words, it is preferable that the filter has a rigidity that makes it difficult to block the flow path of the filtrate inside the filter even by the pressure of the filtrate.
- the filtration filter Since the filtration filter is not easily deformed, clogging is unlikely to occur. Further, since it can be laminated or processed to a thickness of about several millimeters to several centimeters, the effective filtration area can be increased thereby, and clogging hardly occurs.
- the filter is rigid enough not to be crushed in the thickness direction of the filter. For example, even when the pressure applied to the filter by liquid or air when the specimen sample is filtered exceeds 0.2 MPa, The amount of change in thickness does not become 5% or more, preferably 2% or more, and it has rigidity that is difficult to deform such as bending. This means that the radius of curvature of the filter does not become 2 cm or less.
- filtration filter various metal fibers wound, metal fiber non-woven fabric, plastic foam, metal mesh layered, metal, plastics, ceramic powder, etc. And sintered filters in which metal fibers are bonded with heat or pressure, and any of them can be used in the present invention.
- the sintered filter can be manufactured, for example, by directly bonding (sintering) powder particles such as metal, ceramic, plastic, and metal fibers by heat and pressure.
- the sintered filter used in the present invention can be obtained, for example, by sintering a material such as a fiber as a filter raw material by a heat treatment of the melting point of the filter raw material ⁇ 0.3 to 0.7 ° C., Preferably, it can be obtained by sintering by heat treatment of the melting point of the filter material ⁇ 0.5 ° C.
- sintered filters are 1) inexpensive, 2) pore size can be controlled by particle size, 3) suitable for mass production, and 4) low affinity with biological materials.
- polypropylene polyethylene (low density polyethylene, high density polyethylene, ultra high molecular weight polyethylene), polystyrene, polymethyl methacrylate resin, alumina, zirconia, silicon, silicon tetrafluoroethylene polymer,
- resin such as a polypropylene, polyethylene, a polystyrene, a polymethylmethacrylate, is preferable from the surface of workability, and a polypropylene and polyethylene are especially preferable.
- the filtration filter may be produced by combining two or more types of strong rigidity filters. Moreover, you may combine with filters other than a rigid filter and a rigid filter.
- the filtration filter can be used for both microfiltration and coarse filtration, but at least one type of filtration filter preferably has a pore size or retained particle size of 200 ⁇ m or less.
- the filtration filter is configured by stacking a plurality of filters having different pore diameters, the pore diameter of the filter having the smallest pore diameter is 1 ⁇ m or more, and the pore diameter of the filter having the largest pore diameter is What is necessary is just to use the filtration filter which is 200 micrometers or less.
- the filter having the minimum pore size is 5 ⁇ m or more
- the filter having the maximum pore size is 150 ⁇ m or less
- more preferably the filter having the minimum pore size is 10 ⁇ m or more
- the filter has the maximum pore size.
- the pore diameter is 100 ⁇ m.
- the specimen sample containing the detection target may be first passed through a filter having a maximum pore size and then passed through a filter having a smaller pore size.
- the pore diameter of a polypropylene rigid filter is 5 to 200 ⁇ m
- the pore diameter of a low density polyethylene rigid filter is 10 to 70 ⁇ m
- the diameter of a high density polyethylene rigid filter is 10 to 50 ⁇ m
- an ultrahigh molecular weight polyethylene rigid filter The pore size of the polystyrene rigid filter is 100 to 200 ⁇ m
- the pore size of the tetrafluoroethylene polymer strong filter is 30 to 100 ⁇ m.
- a plurality of strong rigidity filters having different materials and / or hole diameters may be used in combination.
- the pore diameter is not particularly limited, but it can be, for example, 1 ⁇ m to 200 ⁇ m, preferably 5 ⁇ m to 150 ⁇ m, and preferably 10 ⁇ m to 100 ⁇ m. More preferred.
- a membrane filter can be used as a filter for microfiltration.
- the material is cellulose, glass fiber, silica fiber, nitrocellulose, cellulose ester, a mixture of nitrocellulose and cellulose ester, polyethersulfone, polysulfone, tetrafluoride.
- Suitable materials can be selected from ethylene resin, vinylidene fluoride resin, polycarbonate, polypropylene, polyamide, nylon 6,6, polyester, cotton, stainless steel fiber, etc. Therefore, it is necessary to make the amount of absorption of the sample suspension liquid not large.
- the minimum pore diameter or the retained particle diameter of the filter having the smallest pore diameter or the retained particle diameter among the filters constituting the filtration filter is about 10 ⁇ m.
- the filter when two filters are used in combination with another type of filter (hereinafter also referred to as a non-rigid filter) other than the rigid filter and the rigid filter, the filter is used for filtration of a filtration tube described later.
- the first-stage filter and the second-stage filter are formed from the bottom of the nozzle (in this case, the first-stage filter is the first-stage filter that comes into contact with the specimen sample first, and the specimen sample passes through the first-stage filter.
- the first stage filter and the second stage filter there are a combination of a strong filter and a strong filter, and a combination of a strong filter and a non-rigid filter.
- a filter close to the nozzle tip is sometimes referred to as a downstream filter, and a filter that comes into contact with a specimen sample earlier is sometimes referred to as an upstream filter.
- filters it is preferable to combine filters having different pore sizes. Since all of the strong filters trap contaminants not only on the filter surface but also inside, a certain thickness is required. The required thickness varies naturally depending on the amount of contaminants and the pore size and size of the filter. In general, when 100 to 2000 ⁇ l of a sample sample required for genetic testing is filtered with a sample filtration filter with a diameter of about 5 to 20 mm.
- the thickness of the rigid filter or non-rigid filter is not limited, but is preferably 0.5 mm to 7 mm, more preferably 1 mm to 5 mm.
- the total thickness of the sample filtration filter is preferably about 2 mm to 10 mm.
- a filter having a large pore diameter or retained particle diameter When combining several filtration filters having different pore diameters or retained particle diameters, it is possible to arrange a filter having a large pore diameter or retained particle diameter on the upstream side, a small filter on the downstream side, and so that both filters overlap. It is preferable for avoiding clogging of the specimen sample during filtration. For example, when two filters are combined, it is preferable to use a filter having a large pore diameter or retained particle diameter as the first-stage filter and a filter having a small pore diameter as the second-stage filter.
- the size of the filter used depends on the size of the sample suspension tube used in the assay, but is, for example, circular and has a diameter of 0.5 to 1.5 cm.
- the filter described in Patent Document 2 may be used.
- a sample containing a detection target can be collected using a cotton swab, platinum ear, dropper, spoon tool, or the like as an instrument for collecting the sample and used for the assay.
- a cotton swab or swab it is preferable to use a cotton swab or swab to collect a specimen and use it for the assay.
- the swab is mainly used as a sample collection device.
- the cotton swab is not particularly limited.
- tip of one side of a axial part is mentioned.
- the cotton ball portion corresponds to the specimen collection portion.
- a cotton swab of a type called a brush-like swab in which fibers made of a natural product or an artificial product are arranged in a brush shape and a liquid is collected by using a capillary phenomenon, is commercially available.
- the brush-like swab can be particularly preferably used in the present invention for the following reasons.
- the brush-like swab can be produced by, for example, a method called flocking, in which short cut fibers (floc) are attached to the handle of a swab to which an adhesive is applied by static electricity. Also, with this type of swab, it is possible to collect a solid or viscous substance that is a dissolved or mixed material in a liquid. In this case, not only the capillary phenomenon but also a solid or viscous substance is collected in the sample collection site of the instrument in the present invention. It is collected by using the binding by adsorption.
- the surface area is significantly increased as compared with a conventional cotton swab, the amount of sample collected is large, and it is possible to adsorb more samples including the detection target in the sample. Also, when floating in suspension, unlike conventional cotton swabs, suspension can easily enter between fibers, so the sample is easily released and the sample can be efficiently collected in suspension. Can do. From the above viewpoints, in the genetic testing method of the present invention, it is preferable to use a brush-like swab (also referred to as a brush-like swab), and particularly preferably a flox swab to which short fibers are attached, for collecting a specimen.
- a brush-like swab also referred to as a brush-like swab
- flox swab to which short fibers are attached
- Patent Document 2 As the sample collection device as described above, the one described in Patent Document 2 may be used.
- matters that can be inspected by detecting or quantifying the presence of the detection target are not particularly limited.
- examples include microorganisms causing respiratory infections or substances derived from these microorganisms. More specifically, influenza viruses (for example, influenza A virus, influenza B virus, etc.), RS viruses, adenoviruses, group A Examples include pathogenic microorganisms selected from the group consisting of Streptococcus and Mycoplasma pneumoniae, Bordetella pertussis, Chlamydia pneumoniae, or substances derived from the microorganisms.
- a microorganism causing diarrhea or a substance derived from the microorganism can be mentioned, and more specifically, a pathogenic microorganism selected from the group consisting of norovirus, rotavirus, sapovirus and diarrhea adenovirus or a substance derived from the microorganism Is mentioned.
- a microorganism causing causative sexually transmitted disease or a substance derived from the microorganism can be mentioned, and more specifically, a pathogenic microorganism selected from the group consisting of Neisseria gonorrhoeae, Chlamydia, Mycoplasma, Ureaplasma, HIV and HPV Substances.
- the gene testing method of the present invention can also test human gene polymorphism, more specifically, drug resistance gene polymorphism (for example, gene polymorphism of drug metabolizing enzyme cytochrome P450 gene (CYP gene)), Used to examine gene polymorphism of alcohol dehydrogenase gene (ADH gene), gene polymorphism of acetaldehyde dehydrogenase gene (ALDH gene), gene polymorphism of methylenetetrahydrofolate reductase gene (MTHFR gene), etc. It is possible.
- drug resistance gene polymorphism for example, gene polymorphism of drug metabolizing enzyme cytochrome P450 gene (CYP gene)
- ADH gene alcohol dehydrogenase gene
- ADH gene polymorphism of acetaldehyde dehydrogenase gene ADH gene
- gene polymorphism of methylenetetrahydrofolate reductase gene MTHFR gene
- Specimens to be analyzed by the inspection method of the present invention are not particularly limited.
- biological samples obtained from humans or other animals can be mentioned.
- oral rubs, pharyngeal wiping liquid, nasal wiping liquid, nasal aspirate, nasal irrigation liquid, alveolar irrigation liquid, stool suspension and rectal wiping liquid, vaginal discharge, cervical mucus, urethral rub What is necessary is just to select from the group which consists of things.
- the gene testing method of the present invention does not need to be pretreated by a centrifugation method, which is normally considered essential in the conventional gene testing method.
- a centrifugation method which is normally considered essential in the conventional gene testing method.
- the centrifugation method is performed as a pretreatment, in addition to the necessity for a dedicated device, there is a problem that the operation of the centrifugation is complicated and takes time and effort.
- the genetic testing method of the present invention it is not necessary to prepare a dedicated device for performing such centrifugation, and it is possible to omit complicated operations.
- the time required for the centrifugation method can be shortened, it is possible to shorten the time from collection of a sample from a subject to obtaining a genetic test result. For example, until the genetic test result is obtained from sample collection.
- This time can be within 1 day, preferably within half a day, more preferably within 6 hours, even more preferably within 3 hours, and particularly preferably within 2 hours (for example, within 1 hour and a half
- kits for testing the presence of a target to be detected in a specimen sample comprising a specimen sample filtration tube provided with a filtration filter constituted by a filter including a rigid filter. is there.
- the kit of the present invention may further include a cotton swab or swab as a specimen collecting device.
- the kit of the present invention naturally includes a genetic test reagent that can detect or quantify the presence of the detection target. This genetic test reagent is filled in a reagent container such as a tube or bottle, and is included in the kit of the present invention in a form that can be opened at the time of use.
- FIG. 8 shows an example of a configuration diagram of the genetic test kit of this embodiment.
- the specimen sample filtration tube 2 includes a sintered filter (21-a, 21-b) inside.
- the sintered filter (21-a, 21-b) Filtration can be performed.
- the pore diameters of the sintered filters 21-a and 21-b may be the same or different.
- the number of sheets of a sintered filter is not limited to this, Three or more sheets may be piled up, or only one sheet may be piled up. Good.
- tip part containing a sintered filter and the tube main-body part may be comprised separately so that attachment or detachment is possible, and you may make it attach at the time of filtration operation.
- a tube made of a material having elasticity so that a person can directly press the container with his / her hand to apply pressure can be used.
- the short fibers are attached to the specimen collecting portion 31 provided at the tip of the swab shaft portion 32.
- the genetic test reagent 4 is filled in a container body 41 and is sealed with a lid 42 or the like during storage.
- the genetic test kit of the present invention can be provided by being housed in the packaging box 1, but it may be a kit that is supplied in separate packaging and used as a set at the time of use. Note that the configuration of the genetic test kit of the present invention is not limited to the example shown in FIG. 8, and can include any other than those exemplified above (for example, instruction manuals).
- Example 1 Detection of Neisseria gonorrhoeae
- sample A DNA sample extracted from Neisseria gonorrhoeae was prepared with 10 mM Tris-HCl (pH 7.5) to 100 (copy / ⁇ L), and mixed with cervical mucus to prepare a sample. .
- This sample was passed through a filtration filter containing a sintered filter (made of polypropylene, pore size 100 ⁇ m) to prepare a sample.
- water was used as a negative control (NC).
- Reagents A solution containing the following reagents was prepared. 10 ⁇ M forward primer (SEQ ID NO: 1) 0.4 ⁇ L 100 ⁇ M reverse primer (SEQ ID NO: 2) 0.2 ⁇ L 10 ⁇ M probe (SEQ ID NO: 3, 5 ′ end labeled BODIPY-FL) 0.3 ⁇ L KOD Mix (Gen Cube (R) Test Basic, manufactured by Toyobo) 3 ⁇ L PPD Mix (Gen Cube (R) Test Basic, manufactured by Toyobo) 3 ⁇ L Sample 3 ⁇ L
- Nucleic acid amplification and melting curve analysis 94 ° C, 2 minutes (1 cycle or more) 97 ° C ⁇ 1 second 58 ° C ⁇ 3 seconds 63 ° C ⁇ 6 seconds (over 60 cycles) 94 ° C, 30 seconds 39 ° C, 30 seconds 39 ° C to 75 ° C (temperature rises at 0.09 ° C / second)
- FIG. 1 is a graph showing the results of analysis of the change in fluorescence intensity with the subsequent temperature rise, with the temperature on the horizontal axis of the graph and the differential value of the fluorescent signal on the vertical axis.
- NG DNA indicates the analysis result of the Neisseria gonorrhoeae DNA sample
- Water indicates the analysis result of water which is NC.
- Neisseria gonorrhoeae is detected.
- the same result was obtained even if it used the sample which extract
- Example 2 Detection of Bordetella pertussis
- a DNA sample extracted from Bordetella pertussis was prepared with 10 mM Tris-HCl (pH 7.5) to 5 (copy / ⁇ L), and mixed with a pharyngeal wipe suspended in physiological saline. Thus, a pseudo biological sample was obtained. This sample was passed through a filtration filter containing a sintered filter (made of polypropylene, pore size 20 ⁇ m) to prepare a sample. Moreover, the liquid which is not filtered with a sintered filter was also used as a sample.
- a sintered filter made of polypropylene, pore size 20 ⁇ m
- Reagents A solution containing the following reagents was prepared. 10 ⁇ M forward primer (SEQ ID NO: 4) 0.4 ⁇ L 100 ⁇ M reverse primer (SEQ ID NO: 5) 0.3 ⁇ L 0.3 ⁇ L of 10 ⁇ M probe (SEQ ID NO: 6, 5 ′ end labeled with BODIPY-FL) KOD Mix (Gen Cube (R) Test Basic, manufactured by Toyobo) 3 ⁇ L PPD Mix (Gen Cube (R) Test Basic, manufactured by Toyobo) 3 ⁇ L IC Mix (Gen Cube Test Basic, manufactured by Toyobo) 1 ⁇ L Sample 3 ⁇ L
- FIG. 2 shows the results of analysis of the change in the fluorescence intensity of the internal control as the temperature rises after the nucleic acid amplification under the above conditions, with the horizontal axis of the graph being the temperature and the vertical axis being the differential value of the fluorescence signal.
- FIG. The graph shows the result of the internal control, with the filter, the analysis result obtained by filtering the sample with the sintered filter, and without the filter, the analysis result obtained when the sample was not filtered with the sintered filter.
- an internal control is detected when there is a filter.
- internal control is not detected due to PCR inhibition of a substance contained in the sample. From this result, it was clarified that in the genetic test for Bordetella pertussis, a high-sensitivity test result can be obtained only by pretreatment with a sintered filter.
- Example 3 Detection of pneumonia mycoplasma
- a DNA sample extracted from Mycoplasma pneumoniae was prepared to 5 (copy / ⁇ L) with 10 mM Tris-HCl (pH 7.5), and mucin was prepared to a final concentration of 0.2%.
- a pseudo-pharyngeal wipe liquid biological sample was prepared by mixing with the liquid.
- Sintered filters made of polypropylene with pore sizes of 300 ⁇ m, 100 ⁇ m, and 20 ⁇ m and filters other than sintered filters (commercially used filters for removing dust before nucleic acid extraction: mesh filter (filter for nucleic acid extraction) pore size of 0.45 ⁇ m, membrane A sample was prepared by passing through a filtration filter containing a filter pore size of 0.8 ⁇ m or less. Moreover, the liquid which is not filtered with a sintered filter was also used as a sample.
- Reagent KOD Mix (Gen Cube (R) Test Basic, Toyobo) 4 ⁇ L 10 ⁇ M forward primer (SEQ ID NO: 7) 0.2 ⁇ L 100 ⁇ M reverse primer (SEQ ID NO: 8) 0.3 ⁇ L 0.4 ⁇ L of 10 ⁇ M probe (SEQ ID NO: 9, 5 ′ end labeled with BODIPY-FL) PPD Mix (Gen Cube (R) Test Basic, manufactured by Toyobo) 3 ⁇ L IC Mix (Gen Cube Test Basic, manufactured by Toyobo) 1.3 ⁇ L Sample 4 ⁇ L
- Nucleic acid amplification and melting curve analysis 94 ° C, 2 minutes (1 cycle or more) 97 ° C ⁇ 1 second 58 ° C ⁇ 3 seconds 63 ° C ⁇ 6 seconds (over 60 cycles) 94 ° C, 30 seconds 39 ° C, 30 seconds 39 ° C to 75 ° C (temperature rises at 0.09 ° C / second)
- Mycoplasma pneumonia cutoff value 7.5 Internal control cutoff value: 1.5
- FIGS. 3 and 4 show results obtained by performing nucleic acid amplification under the above-mentioned conditions, and regarding the change in fluorescence intensity as the temperature rises, the results of various filters are plotted on the horizontal axis and the vertical axis of the graph is the differential value of the fluorescence signal
- FIG. 3 shows the results of Mycoplasma pneumoniae
- FIG. 4 shows the results of internal control.
- Mycoplasma pneumoniae is detected when there is a filter.
- no filter Mycoplasma pneumoniae has not been detected due to PCR inhibition of the substance contained in the sample.
- no internal control was detected except for the sintered filters of 20, 100 ⁇ m. From this result, it has been clarified that it is important to use a sintered filter having a specific pore size in order to obtain a highly sensitive test result in the genetic test of Mycoplasma pneumoniae.
- Example 4 Detection of pneumonia mycoplasma
- Sample preparation A DNA sample extracted from Mycoplasma pneumoniae was prepared to 10 (copy / ⁇ L) with 10 mM Tris-HCl (pH 7.5) and suspended in physiological saline. A pseudo biological sample was prepared by mixing. This sample was passed through a sintered filter (made of polyethylene, pore size 20 ⁇ m) to prepare a sample. Moreover, the supernatant which was not filtered but centrifuged according to the conventional method (13,000 rpm for 3 minutes) was used as a sample of a comparative example.
- (2) Nucleic acid amplification and melting curve analysis The sample was added to the following reagents, and Mycoplasma pneumoniae was detected under the following conditions. GENECUBE (registered trademark) manufactured by Toyobo was used for nucleic acid amplification and melting curve analysis.
- Reagent KOD Mix (Gen Cube (R) Test Basic, Toyobo) 4 ⁇ L 10 ⁇ M forward primer (SEQ ID NO: 7) 0.2 ⁇ L 100 ⁇ M reverse primer (SEQ ID NO: 8) 0.3 ⁇ L 0.4 ⁇ L of 10 ⁇ M probe (SEQ ID NO: 9, 5 ′ end labeled with BODIPY-FL) PPD Mix (Gen Cube (R) Test Basic, manufactured by Toyobo) 3 ⁇ L IC Mix (Gen Cube Test Basic, manufactured by Toyobo) 1.3 ⁇ L Sample 4 ⁇ L
- Nucleic acid amplification and melting curve analysis 94 ° C, 2 minutes (1 cycle or more) 97 ° C ⁇ 1 second 58 ° C ⁇ 3 seconds 63 ° C ⁇ 6 seconds (over 60 cycles) 94 ° C, 30 seconds 39 ° C, 30 seconds 39 ° C to 75 ° C (temperature rises at 0.09 ° C / second)
- Mycoplasma pneumonia cutoff value 7.5 Internal control cutoff value: 1.5
- FIG. 5 is a graph showing the results of analysis of the change in fluorescence intensity with the temperature rise after the nucleic acid amplification under the above conditions, with the horizontal axis of the graph being the temperature and the vertical axis being the differential value of the fluorescence signal. .
- the graph shows the results of Mycoplasma pneumoniae.
- Filter filtration is the analysis result obtained by filtering the sample with a sintered filter. Centrifugation is performed by centrifuging the sample at 13,000 rpm for 3 minutes with a centrifuge and using the supernatant as the sample. The analysis results are shown.
- the fluorescence value of Mycoplasma pneumoniae treated by sintering filter filtration is higher than that of the case treated by centrifugation. Therefore, it has been clarified that the genetic testing method of the present invention can be detected with higher sensitivity while being a simpler method than the conventional centrifugation method.
- Example 5 Detection of influenza
- a purified biological sample was prepared by diluting influenza purified RNA 1000-fold and 2000-fold with nasal wiping liquid suspended in sterilized water. This sample was passed through a sintered filter (made of polypropylene, pore size 20 ⁇ m) to prepare a sample. A sample not filtered with a sintered filter was also used as a comparison.
- (2) Nucleic acid amplification and melting curve analysis The above samples were added to the following reagents, and influenza A was detected under the following conditions. As nucleic acid amplification, Rotor-Gene Q (registered trademark) was used for real-time RT-PCR using TaqMan probe.
- a solution containing the following reagents was prepared. 1 ⁇ L of 10 ⁇ M forward primer (SEQ ID NO: 10) 10 ⁇ M reverse primer (SEQ ID NO: 11) 1 ⁇ L 0.4 ⁇ L of 10 ⁇ M probe (SEQ ID NO: 12, 5 ′ end is FAM, 3 ′ end is BHQ1), QRZ-101 (THUNDERBIRD (R) Probe One-step qRT-PCR Kit, manufactured by Toyobo) Sample 4 ⁇ L
- RT-PCR conditions 50 ° C, 10 minutes, 95 ° C, 1 minute (more than one cycle) 95 ° C / 15 seconds 60 ° C / 45 seconds (over 50 cycles)
- FIG. 6 is a table showing the analysis results of real-time RT-PCR under the above conditions. With the filter, the analysis result when the sample is filtered with the sintered filter is shown, and without the filter, the analysis result when the sample is not filtered with the sintered filter is shown. As is clear from FIG. 6, the cut-off value (Ct value) of the influenza sample when treated by sintered filter filtration rises faster than when the filter is not filtered. From this result, it became clear that a high-sensitivity test result can be obtained only by pretreatment with a sintered filter.
- Example 6 Detection of Norovirus RNA
- a sample prepared by suspending a stool sample containing Norovirus G2 type collected by Phloxwav in purified water was passed through a filtration filter containing a sintered filter (made of polyethylene, pore size 100 ⁇ m) to prepare a sample. .
- a sample not filtered with a sintered filter was also used as a comparison.
- Nucleic acid amplification and melting curve analysis The above sample was added to the following reagents, and Norovirus G2 type was detected under the following conditions. GENECUBE (registered trademark) manufactured by Toyobo was used for nucleic acid amplification and melting curve analysis.
- a reaction solution containing the components shown below was prepared using GeneCube (registered trademark) Test Basic (Toyobo Co., Ltd.). The reaction solution was prepared in accordance with the instruction manual for GeneCube (registered trademark) Test Basic.
- 0.5 ⁇ M COG2F primer (SEQ ID NO: 13) 1.5 ⁇ M COG2R primer (SEQ ID NO: 14) 0.3 ⁇ M hybridization probe (SEQ ID NO: 15, 3 ′ end labeled with BODIPY-FL) 0.05 unit / ⁇ L Reverse Ace (Toyobo) Sample 3 ⁇ L
- Reverse transcription reaction, nucleic acid amplification and melting curve analysis 42 ° C. 180 seconds (reverse transcription reaction) 94 ° C, 30 seconds (more than one cycle) 98 ° C ⁇ 1 second 60 ° C ⁇ 10 seconds 63 ° C ⁇ 10 seconds (over 60 cycles) 94 ° C, 30 seconds 39 ° C, 30 seconds 39 ° C to 75 ° C (temperature rises at 0.09 ° C / second)
- G2 cutoff value 7 Internal control cutoff value: 1.5
- FIG. 7 is a graph showing the change in fluorescence intensity as the temperature rises after the RT-PCR under the above conditions, with the horizontal axis of the graph representing the temperature and the vertical axis representing the differential value of the fluorescence signal. is there.
- norovirus G2 is detected when there is a filter.
- the fluorescence value is low and below the cut-off value, which is weakly positive. From this result, it was revealed that it is important to use a sintered filter in order to obtain a highly sensitive test result in the Norovirus G2 gene test.
- the method and kit of the present invention can be used for disease detection and diagnosis.
- Genetic test kit body Packaging box
- Specimen filter tube 21-a, 21-b: Sintered filter 3: Swab (Flox wab with short fibers attached)
- Specimen collection part with short fibers attached 32: Swab shaft part 4: Genetic test reagent 41: Container body of genetic test reagent 42: Cover part of genetic test reagent
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Immunology (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- General Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Genetics & Genomics (AREA)
- Physics & Mathematics (AREA)
- Sustainable Development (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Food Science & Technology (AREA)
- Cell Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Virology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biophysics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
The purpose of the present invention is to provide: a gene testing method whereby a substance to be detected can be detected or quantified at a high accuracy while preventing generation of false positive or clogging and keeping a high sensitivity; and a kit to be used in the method. Accordingly, the present invention provides a gene testing method characterized by comprising filtering a specimen containing a substance to be detected through a filter and then detecting or quantifying the substance present in the specimen. In a specific embodiment, a sintered filter is used as the filter in the gene testing method and kit according to the present invention.
Description
本発明は、遺伝子検査方法及び遺伝子検査キットに関する。
The present invention relates to a genetic testing method and a genetic testing kit.
種々の遺伝子検査方法が知られている(たとえば、非特許文献1および特許文献1)。遺伝子検査に用いる試料の中には種々の物質が混入している。これらの混入物は、検査方法に影響を与えて感度を低下させたり、偽陽性等の結果をもたらしたり、さらには、検査に用いる機器のトラブル(たとえば、流路系の詰まり)の原因となったりする可能性がある。従来、この混入物を除去するために遠心分離法などを用いていたが、専用機器が必要であり、操作が煩雑で時間を要する。
Various gene testing methods are known (for example, Non-Patent Document 1 and Patent Document 1). Various substances are mixed in samples used for genetic testing. These contaminants affect the inspection method, reduce the sensitivity, cause false positives, and cause troubles in the equipment used for inspection (for example, clogging of the flow path system). There is a possibility. Conventionally, a centrifugal separation method or the like has been used to remove the contaminants, but a dedicated device is required, and the operation is complicated and takes time.
特許文献2には、特異的結合能を有する捕捉試薬(例えば、特定の抗原に対する抗体等)による検出を意図したメンブレンアッセイ法を用いた検査方法において、感度を保ちながら偽陽性や詰まりを防止し、被検出物の精度の高い検出又は定量を可能にする方法が開示されている。
In Patent Document 2, false positives and clogging are prevented while maintaining sensitivity in an inspection method using a membrane assay method intended for detection with a capture reagent having a specific binding ability (for example, an antibody against a specific antigen, etc.). A method that enables highly accurate detection or quantification of an object to be detected is disclosed.
本発明の目的は、遺伝子検査方法において、感度を保ちながら偽陽性や詰まりを防止し、被検出物の精度の高い検出又は定量を可能にする方法を提供すること、及び、そのような方法において使用されるキットを提供することである。
An object of the present invention is to provide a method for preventing false positives and clogging while maintaining sensitivity in a genetic testing method, and enabling highly accurate detection or quantification of an object to be detected, and in such a method It is to provide a kit to be used.
本発明者は、遺伝子検査方法において、被検出物を含む試料をろ過フィルターによってろ過した後に、前記試料中の被測定物の存在を検出又は定量することにより、上記課題を解決できることを見出し、本発明を完成させた。
The present inventor has found that in the genetic testing method, the above problem can be solved by detecting or quantifying the presence of the analyte in the sample after filtering the sample containing the analyte with a filtration filter. Completed the invention.
すなわち、本発明の概要は以下のとおりである。
[項1] 被検出対象を含む試料をろ過フィルターによってろ過した後に、前記試料中の被検出対象の存在を検出又は定量することを特徴とする遺伝子検査方法。
[項2] ろ過フィルターが焼結フィルターである項1に記載の遺伝子検査方法。
[項3] 焼結フィルターの素材がポリプロピレン、ポリエチレン、ポリスチレン及びポリメチルメタクリレートからなる群から選択される項2に記載の遺伝子検査方法。
[項4] 焼結フィルターの孔径が10~100μmである項2に記載の遺伝子検査方法。
[項5] 遠心分離による前処理を必要としない項1に記載の遺伝子検査方法。
[項6] 検体採取器具として綿棒またはスワブを用いて被検出対象を含む検体を採取して試料とし、アッセイに用いる、項1に記載の遺伝子検査方法。
[項7] 検体が生体試料である項6に記載の遺伝子検査方法。
[項8] 検体がヒト又は他の動物の口腔内擦過物、咽頭拭い液、鼻腔拭い液、鼻腔吸引液、鼻腔洗浄液、肺胞洗浄液、便懸濁液、直腸拭い液、膣分泌物、子宮頸管粘液、及び尿道擦過物からなる群から選択される検体である項7に記載の遺伝子検査方法。
[項9] 被検出対象の存在を検出又は定量することにより検査できる事項が呼吸器感染症の原因微生物若しくは該微生物由来の物質である項8に記載の遺伝子検査方法。
[項10] 被検出対象の存在を検出又は定量することにより検査できる事項がインフルエンザウイルス、RSウイルス、アデノウイルス、A群溶連菌、肺炎マイコプラズマ、百日咳菌、及び肺炎クラミジアからなる群から選択される病原微生物若しくは該微生物由来の物質である項9に記載の遺伝子検査方法。
[項11] 被検出対象の存在を検出又は定量することにより検査できる事項が下痢症の原因微生物若しくは該微生物由来の物質である項8に記載の遺伝子検査方法。
[項12] 被検出対象の存在を検出又は定量することにより検査できる事項がノロウイルス、ロタウイルス、サポウイルス及び下痢症アデノウイルスからなる群から選択される病原微生物若しくは該微生物由来の物質である項11に記載の遺伝子検査方法。
[項13] 被検出対象の存在を検出又は定量することにより検査できる事項が性感染症の原因微生物若しくは該微生物由来の物質である項8に記載の遺伝子検査方法。
[項14] 被検出対象の存在を検出又は定量することにより検査できる事項が淋菌、クラミジア、マイコプラズマ、ウレアプラズマ、HIV及びHPVからなる群から選択される病原微生物若しくは該微生物由来の物質である項13に記載の遺伝子検査方法。
[項15] 被検出対象の存在を検出又は定量することにより検査できる事項がヒト遺伝子多型の検出である項8に記載の遺伝子検査方法。
[項16] 被検出対象の存在を検出又は定量することにより検査できる事項が薬剤代謝酵素遺伝子の遺伝子多型、アルコール脱水素酵素遺伝子の遺伝子多型、アセトアルデヒド脱水素酵素遺伝子の遺伝子多型、及びメチレンテトラヒドロ葉酸還元酵素遺伝子の遺伝子多型からなる群から選択されるヒト遺伝子多型である項15に記載の遺伝子検査方法。
[項17] ろ過フィルターが孔径の異なる複数のフィルターを重ねて構成されている、項1~16のいずれか1項に記載の遺伝子検査方法。
[項18] 被検出対象を含む検体試料を最初に最大孔径を有するフィルターを通過させ、次いでより小さい孔径を有するフィルターを通過させる項17記載の遺伝子検査方法。
[項19] 以下を含む、検体試料中の被検出対象の存在を検査するための遺伝子検査キット。
(1)焼結フィルターを含むフィルターにより構成されたろ過フィルターを備えた検体試料用ろ過チューブ。
[項20] さらに、検体採取器具として綿棒またはスワブを含む項19記載の遺伝子検査キット。
[項21] さらに、被検出対象の存在を検出又は定量することができる遺伝子検査試薬が充填されている容器を含む項19記載の遺伝子検査キット。 That is, the outline of the present invention is as follows.
[Item 1] A genetic test method characterized by detecting or quantifying the presence of a target to be detected in the sample after filtering the sample containing the target to be detected by a filtration filter.
[Item 2] The genetic testing method according toItem 1, wherein the filtration filter is a sintered filter.
[Item 3] The gene testing method according toItem 2, wherein the sintered filter material is selected from the group consisting of polypropylene, polyethylene, polystyrene, and polymethylmethacrylate.
[Item 4] The gene testing method according toItem 2, wherein the pore size of the sintered filter is 10 to 100 μm.
[Item 5] The genetic test method according toItem 1, which does not require pretreatment by centrifugation.
[Item 6] The genetic testing method according toItem 1, wherein a sample containing a detection target is collected using a cotton swab or swab as a sample collecting device and used as a sample.
[Item 7] The genetic test method according toItem 6, wherein the specimen is a biological sample.
[Claim 8] The sample is a human or other animal's oral scrapings, pharyngeal wipe, nasal wipe, nasal suction, nasal wash, alveolar wash, stool suspension, rectal wipe, vaginal discharge,uterus Item 8. The genetic test method according to Item 7, which is a sample selected from the group consisting of cervical mucus and urethral scrapings.
[Item 9] The genetic test method according toItem 8, wherein the matter that can be examined by detecting or quantifying the presence of the target to be detected is a microorganism causing respiratory infection or a substance derived from the microorganism.
[Item 10] A pathogen selected from the group consisting of influenza virus, RS virus, adenovirus, group A streptococci, pneumonia mycoplasma, pertussis and pneumonia chlamydia, which can be examined by detecting or quantifying the presence of the target to be detectedItem 10. The genetic test method according to Item 9, which is a microorganism or a substance derived from the microorganism.
[Item 11] The genetic test method according toItem 8, wherein the matter that can be examined by detecting or quantifying the presence of the target to be detected is a causative microorganism of diarrhea or a substance derived from the microorganism.
[Item 12] The item that can be examined by detecting or quantifying the presence of the detection target is a pathogenic microorganism selected from the group consisting of norovirus, rotavirus, sapovirus, and diarrhea adenovirus, or a substance derived from the microorganism. 11. The genetic test method according to 11.
CLAIM | ITEM 13 The genetic test | inspection method of claim |item 8 whose matter which can be test | inspected by detecting or quantifying the presence of a to-be-detected object is the causative microorganism of a sexually transmitted disease or the substance derived from this microorganism.
[Item 14] The item that can be examined by detecting or quantifying the presence of the detection target is a pathogenic microorganism selected from the group consisting of Neisseria gonorrhoeae, Chlamydia, Mycoplasma, Ureaplasma, HIV and HPV, or a substance derived from the microorganism. 14. The genetic test method according to 13.
[Item 15] The genetic testing method according toItem 8, wherein the matter that can be examined by detecting or quantifying the presence of the detection target is detection of a human genetic polymorphism.
[Item 16] Items that can be examined by detecting or quantifying the presence of the detection target include gene polymorphisms of drug metabolizing enzyme genes, gene polymorphisms of alcohol dehydrogenase genes, gene polymorphisms of acetaldehyde dehydrogenase genes, andItem 16. The genetic test method according to Item 15, which is a human gene polymorphism selected from the group consisting of gene polymorphisms of a methylenetetrahydrofolate reductase gene.
[Item 17] The genetic testing method according to any one ofItems 1 to 16, wherein the filtration filter is formed by stacking a plurality of filters having different pore sizes.
[Item 18] The genetic test method according to item 17, wherein the specimen sample containing the detection target is first passed through a filter having a maximum pore size, and then passed through a filter having a smaller pore size.
[Item 19] A genetic test kit for testing the presence of an object to be detected in a specimen sample, comprising:
(1) A specimen sample filtration tube provided with a filtration filter constituted by a filter including a sintered filter.
[Item 20] The genetic test kit according to Item 19, further comprising a cotton swab or swab as a specimen collection device.
[Item 21] The gene test kit according to item 19, further comprising a container filled with a gene test reagent capable of detecting or quantifying the presence of the detection target.
[項1] 被検出対象を含む試料をろ過フィルターによってろ過した後に、前記試料中の被検出対象の存在を検出又は定量することを特徴とする遺伝子検査方法。
[項2] ろ過フィルターが焼結フィルターである項1に記載の遺伝子検査方法。
[項3] 焼結フィルターの素材がポリプロピレン、ポリエチレン、ポリスチレン及びポリメチルメタクリレートからなる群から選択される項2に記載の遺伝子検査方法。
[項4] 焼結フィルターの孔径が10~100μmである項2に記載の遺伝子検査方法。
[項5] 遠心分離による前処理を必要としない項1に記載の遺伝子検査方法。
[項6] 検体採取器具として綿棒またはスワブを用いて被検出対象を含む検体を採取して試料とし、アッセイに用いる、項1に記載の遺伝子検査方法。
[項7] 検体が生体試料である項6に記載の遺伝子検査方法。
[項8] 検体がヒト又は他の動物の口腔内擦過物、咽頭拭い液、鼻腔拭い液、鼻腔吸引液、鼻腔洗浄液、肺胞洗浄液、便懸濁液、直腸拭い液、膣分泌物、子宮頸管粘液、及び尿道擦過物からなる群から選択される検体である項7に記載の遺伝子検査方法。
[項9] 被検出対象の存在を検出又は定量することにより検査できる事項が呼吸器感染症の原因微生物若しくは該微生物由来の物質である項8に記載の遺伝子検査方法。
[項10] 被検出対象の存在を検出又は定量することにより検査できる事項がインフルエンザウイルス、RSウイルス、アデノウイルス、A群溶連菌、肺炎マイコプラズマ、百日咳菌、及び肺炎クラミジアからなる群から選択される病原微生物若しくは該微生物由来の物質である項9に記載の遺伝子検査方法。
[項11] 被検出対象の存在を検出又は定量することにより検査できる事項が下痢症の原因微生物若しくは該微生物由来の物質である項8に記載の遺伝子検査方法。
[項12] 被検出対象の存在を検出又は定量することにより検査できる事項がノロウイルス、ロタウイルス、サポウイルス及び下痢症アデノウイルスからなる群から選択される病原微生物若しくは該微生物由来の物質である項11に記載の遺伝子検査方法。
[項13] 被検出対象の存在を検出又は定量することにより検査できる事項が性感染症の原因微生物若しくは該微生物由来の物質である項8に記載の遺伝子検査方法。
[項14] 被検出対象の存在を検出又は定量することにより検査できる事項が淋菌、クラミジア、マイコプラズマ、ウレアプラズマ、HIV及びHPVからなる群から選択される病原微生物若しくは該微生物由来の物質である項13に記載の遺伝子検査方法。
[項15] 被検出対象の存在を検出又は定量することにより検査できる事項がヒト遺伝子多型の検出である項8に記載の遺伝子検査方法。
[項16] 被検出対象の存在を検出又は定量することにより検査できる事項が薬剤代謝酵素遺伝子の遺伝子多型、アルコール脱水素酵素遺伝子の遺伝子多型、アセトアルデヒド脱水素酵素遺伝子の遺伝子多型、及びメチレンテトラヒドロ葉酸還元酵素遺伝子の遺伝子多型からなる群から選択されるヒト遺伝子多型である項15に記載の遺伝子検査方法。
[項17] ろ過フィルターが孔径の異なる複数のフィルターを重ねて構成されている、項1~16のいずれか1項に記載の遺伝子検査方法。
[項18] 被検出対象を含む検体試料を最初に最大孔径を有するフィルターを通過させ、次いでより小さい孔径を有するフィルターを通過させる項17記載の遺伝子検査方法。
[項19] 以下を含む、検体試料中の被検出対象の存在を検査するための遺伝子検査キット。
(1)焼結フィルターを含むフィルターにより構成されたろ過フィルターを備えた検体試料用ろ過チューブ。
[項20] さらに、検体採取器具として綿棒またはスワブを含む項19記載の遺伝子検査キット。
[項21] さらに、被検出対象の存在を検出又は定量することができる遺伝子検査試薬が充填されている容器を含む項19記載の遺伝子検査キット。 That is, the outline of the present invention is as follows.
[Item 1] A genetic test method characterized by detecting or quantifying the presence of a target to be detected in the sample after filtering the sample containing the target to be detected by a filtration filter.
[Item 2] The genetic testing method according to
[Item 3] The gene testing method according to
[Item 4] The gene testing method according to
[Item 5] The genetic test method according to
[Item 6] The genetic testing method according to
[Item 7] The genetic test method according to
[Claim 8] The sample is a human or other animal's oral scrapings, pharyngeal wipe, nasal wipe, nasal suction, nasal wash, alveolar wash, stool suspension, rectal wipe, vaginal discharge,
[Item 9] The genetic test method according to
[Item 10] A pathogen selected from the group consisting of influenza virus, RS virus, adenovirus, group A streptococci, pneumonia mycoplasma, pertussis and pneumonia chlamydia, which can be examined by detecting or quantifying the presence of the target to be detected
[Item 11] The genetic test method according to
[Item 12] The item that can be examined by detecting or quantifying the presence of the detection target is a pathogenic microorganism selected from the group consisting of norovirus, rotavirus, sapovirus, and diarrhea adenovirus, or a substance derived from the microorganism. 11. The genetic test method according to 11.
CLAIM | ITEM 13 The genetic test | inspection method of claim |
[Item 14] The item that can be examined by detecting or quantifying the presence of the detection target is a pathogenic microorganism selected from the group consisting of Neisseria gonorrhoeae, Chlamydia, Mycoplasma, Ureaplasma, HIV and HPV, or a substance derived from the microorganism. 14. The genetic test method according to 13.
[Item 15] The genetic testing method according to
[Item 16] Items that can be examined by detecting or quantifying the presence of the detection target include gene polymorphisms of drug metabolizing enzyme genes, gene polymorphisms of alcohol dehydrogenase genes, gene polymorphisms of acetaldehyde dehydrogenase genes, and
[Item 17] The genetic testing method according to any one of
[Item 18] The genetic test method according to item 17, wherein the specimen sample containing the detection target is first passed through a filter having a maximum pore size, and then passed through a filter having a smaller pore size.
[Item 19] A genetic test kit for testing the presence of an object to be detected in a specimen sample, comprising:
(1) A specimen sample filtration tube provided with a filtration filter constituted by a filter including a sintered filter.
[Item 20] The genetic test kit according to Item 19, further comprising a cotton swab or swab as a specimen collection device.
[Item 21] The gene test kit according to item 19, further comprising a container filled with a gene test reagent capable of detecting or quantifying the presence of the detection target.
本発明の方法又は装置を用いて検体試料中の被検出対象を検出・定量する場合、検体が口腔内擦過物、咽頭拭い液、鼻腔拭い液、鼻腔吸引液、肺胞洗浄液、膣分泌物、子宮頸管粘液、尿道擦過物等の不純物を多く含む検体であっても、検体採取器具及び/又はろ過フィルターにより検体量を減らすことなく、不純物を除去することができる。その結果、不純物に影響されることなく、正確な結果を得ることができる。また、本発明によれば、遠心分離法による前処理を行う必要がないので、遠心分離を行う場合に必要となる専用機器や操作の手間が不要となり、より簡便に、短時間に、正確な結果を得ることが可能となる。
When detecting and quantifying a target to be detected in a specimen sample using the method or apparatus of the present invention, the specimen is an intraoral scratch, throat wiping liquid, nasal wiping liquid, nasal suction liquid, alveolar lavage liquid, vaginal secretion, Even for a sample containing a large amount of impurities such as cervical mucus and urethral scrapings, impurities can be removed without reducing the amount of the sample using a sample collection device and / or a filtration filter. As a result, accurate results can be obtained without being affected by impurities. In addition, according to the present invention, since it is not necessary to perform a pretreatment by a centrifugal separation method, the dedicated equipment and the trouble of operation required for performing the centrifugal separation are unnecessary, and it is easier and more accurate in a short time. The result can be obtained.
本発明の実施態様のひとつは、被検出対象を含む試料をろ過フィルターによってろ過した後に、前記試料中の被検出対象の存在を検出又は定量することを特徴とする遺伝子検査方法である。また、具体的には、採取器具を用いて被検対象を採取した後、当該被検対象を含む採取器具を容器に入れ、容器内の液に懸濁したのち、採取器具を容器から取り出し、容器に本発明のフィルターを取り付け、容器内部の液をフィルターに通過させて容器外へと溶出させ、当該溶出液中の被検出対象の存在を検出又は定量することを特徴とする遺伝子検査方法である。
One embodiment of the present invention is a genetic test method characterized by detecting or quantifying the presence of a target to be detected in the sample after filtering the sample including the target to be detected by a filtration filter. Specifically, after collecting a test object using a sampling tool, put the sampling tool containing the test target in a container, suspend in the liquid in the container, and then remove the sampling tool from the container, A genetic test method characterized in that the filter of the present invention is attached to a container, the liquid inside the container is passed through the filter and eluted out of the container, and the presence of the target to be detected in the eluate is detected or quantified. is there.
本発明において遺伝子検査方法は特に限定されず、たとえば、遺伝子の配列情報を根拠に病気や感染などを検査できる方法であればよい。具体的には、たとえば、試料から特定の感染源や病気に特有の塩基(たとえば、DNA、RNAなど)の部分配列を検出したり、多型(たとえば、一塩基多型(SNP))を検出する態様が挙げられる。
前記の遺伝子検査方法に用いる検出原理は特に限定されず、たとえば、対立遺伝子特異的プライマーによるPCR法、変性勾配ゲル電気泳動法、SSCP法、RFLP法、TaqMan PCR法、インベーダー法、PCRなどの方法で増幅させた試料に適当なプローブ(たとえば、Qプローブ)をハイブリダイズさせて融解曲線分析を行う方法など種々の公知の方法を用いることができる。 In the present invention, the gene testing method is not particularly limited, and may be any method that can test a disease or infection based on gene sequence information. Specifically, for example, a partial sequence of a base (eg, DNA, RNA, etc.) peculiar to a specific infection source or disease is detected from a sample, or a polymorphism (eg, single nucleotide polymorphism (SNP)) is detected. The mode to do is mentioned.
The detection principle used in the genetic testing method is not particularly limited. For example, PCR methods using allele-specific primers, denaturing gradient gel electrophoresis methods, SSCP methods, RFLP methods, TaqMan PCR methods, invader methods, PCR methods, etc. Various known methods such as a method of performing a melting curve analysis by hybridizing an appropriate probe (for example, Q probe) to the sample amplified in (1) can be used.
前記の遺伝子検査方法に用いる検出原理は特に限定されず、たとえば、対立遺伝子特異的プライマーによるPCR法、変性勾配ゲル電気泳動法、SSCP法、RFLP法、TaqMan PCR法、インベーダー法、PCRなどの方法で増幅させた試料に適当なプローブ(たとえば、Qプローブ)をハイブリダイズさせて融解曲線分析を行う方法など種々の公知の方法を用いることができる。 In the present invention, the gene testing method is not particularly limited, and may be any method that can test a disease or infection based on gene sequence information. Specifically, for example, a partial sequence of a base (eg, DNA, RNA, etc.) peculiar to a specific infection source or disease is detected from a sample, or a polymorphism (eg, single nucleotide polymorphism (SNP)) is detected. The mode to do is mentioned.
The detection principle used in the genetic testing method is not particularly limited. For example, PCR methods using allele-specific primers, denaturing gradient gel electrophoresis methods, SSCP methods, RFLP methods, TaqMan PCR methods, invader methods, PCR methods, etc. Various known methods such as a method of performing a melting curve analysis by hybridizing an appropriate probe (for example, Q probe) to the sample amplified in (1) can be used.
本発明において被検出対象は特に限定されない。たとえば、ゲノム、構造遺伝子、調節遺伝子、遺伝子転写産物(mRNAまたはその前駆体など)、あるいはそれらの断片などの一部に存在する特定の核酸、特定のオリゴヌクレオチド部分、特定のポリヌクレオチド部分などが挙げられる。それらはDNA、RNAのいずれであっても良いし、両者のキメラであっても良い。
前記被検出対象を含む試料は、生体などから採取されたもの(たとえば、被検出対象を含む検体そのもの)であっても良いし、何らかの手段で前記検体に含まれるDNA、RNA等が複製または増幅などされたものであっても良い。複製または増幅に用いる方法は特に限定されず、PCR法、SDA法、ICAN法、LAMP法など種々の公知の方法を用いることができる。
また、前記被検出対象を含む試料は、何らかの物理化学的手段により前記検体に含まれるDNA、RNA等が修飾または分解などされたものであっても良い。 In the present invention, the detection target is not particularly limited. For example, a specific nucleic acid, a specific oligonucleotide part, a specific polynucleotide part, etc. present in a part of a genome, a structural gene, a regulatory gene, a gene transcript (such as mRNA or a precursor thereof), or a fragment thereof. Can be mentioned. They may be either DNA or RNA, or both chimeras.
The sample including the target to be detected may be a sample collected from a living body (for example, the sample itself including the target to be detected), or DNA or RNA included in the sample may be replicated or amplified by any means. It may be what was done. The method used for replication or amplification is not particularly limited, and various known methods such as PCR, SDA, ICAN, and LAMP can be used.
In addition, the sample including the detection target may be a sample in which DNA, RNA, or the like included in the specimen is modified or decomposed by some physicochemical means.
前記被検出対象を含む試料は、生体などから採取されたもの(たとえば、被検出対象を含む検体そのもの)であっても良いし、何らかの手段で前記検体に含まれるDNA、RNA等が複製または増幅などされたものであっても良い。複製または増幅に用いる方法は特に限定されず、PCR法、SDA法、ICAN法、LAMP法など種々の公知の方法を用いることができる。
また、前記被検出対象を含む試料は、何らかの物理化学的手段により前記検体に含まれるDNA、RNA等が修飾または分解などされたものであっても良い。 In the present invention, the detection target is not particularly limited. For example, a specific nucleic acid, a specific oligonucleotide part, a specific polynucleotide part, etc. present in a part of a genome, a structural gene, a regulatory gene, a gene transcript (such as mRNA or a precursor thereof), or a fragment thereof. Can be mentioned. They may be either DNA or RNA, or both chimeras.
The sample including the target to be detected may be a sample collected from a living body (for example, the sample itself including the target to be detected), or DNA or RNA included in the sample may be replicated or amplified by any means. It may be what was done. The method used for replication or amplification is not particularly limited, and various known methods such as PCR, SDA, ICAN, and LAMP can be used.
In addition, the sample including the detection target may be a sample in which DNA, RNA, or the like included in the specimen is modified or decomposed by some physicochemical means.
前記において、DNAの複製または増幅をPCR法で行う場合は、特に限定はされないが、α型のDNAポリメラーゼ(または、ファミリーBに属するDNAポリメラーゼ)を用いることが好ましく、KOD DNAポリメラーゼを用いることがさらに好ましい。これらのDNAポリメラーゼを用いれば、試料からのDNAの抽出または精製を行うことなく、簡便なろ過操作のみで、被検出対象の存在を検出又は定量することができる。
また前記において、RNAの検出をRT-PCR法で行う場合は、特に限定はされないが、PolI型のDNAポリメラーゼ(または、ファミリーAに属するDNAポリメラーゼ)を用いることが好ましく、逆転写活性を有するTthポリメラーゼを用いることがさらに好ましい。これらのDNAポリメラーゼを用いれば、試料からのRNAの抽出または精製を行うことなく、簡便なろ過操作のみで、被検出対象の存在を検出又は定量することができる。 In the above, when DNA replication or amplification is performed by the PCR method, it is not particularly limited, but α-type DNA polymerase (or DNA polymerase belonging to family B) is preferably used, and KOD DNA polymerase is used. Further preferred. If these DNA polymerases are used, the presence of the target to be detected can be detected or quantified only by a simple filtration operation without extracting or purifying DNA from the sample.
In the above, when RNA is detected by the RT-PCR method, it is not particularly limited, but it is preferable to use a PolI type DNA polymerase (or a DNA polymerase belonging to family A), and Tth having reverse transcription activity. More preferably, a polymerase is used. If these DNA polymerases are used, the presence of the target to be detected can be detected or quantified only by a simple filtration operation without extracting or purifying RNA from the sample.
また前記において、RNAの検出をRT-PCR法で行う場合は、特に限定はされないが、PolI型のDNAポリメラーゼ(または、ファミリーAに属するDNAポリメラーゼ)を用いることが好ましく、逆転写活性を有するTthポリメラーゼを用いることがさらに好ましい。これらのDNAポリメラーゼを用いれば、試料からのRNAの抽出または精製を行うことなく、簡便なろ過操作のみで、被検出対象の存在を検出又は定量することができる。 In the above, when DNA replication or amplification is performed by the PCR method, it is not particularly limited, but α-type DNA polymerase (or DNA polymerase belonging to family B) is preferably used, and KOD DNA polymerase is used. Further preferred. If these DNA polymerases are used, the presence of the target to be detected can be detected or quantified only by a simple filtration operation without extracting or purifying DNA from the sample.
In the above, when RNA is detected by the RT-PCR method, it is not particularly limited, but it is preferable to use a PolI type DNA polymerase (or a DNA polymerase belonging to family A), and Tth having reverse transcription activity. More preferably, a polymerase is used. If these DNA polymerases are used, the presence of the target to be detected can be detected or quantified only by a simple filtration operation without extracting or purifying RNA from the sample.
本発明において、被検出対象を含む試料は、ろ過フィルターを用いてろ過される。ろ過フィルターは遺伝子検査装置のシリカモノリス等の目詰まりや偽陽性及びろ過フィルター自身の目詰まりを防ぐため、1種類だけではなく、材質の異なるもの、孔径又は保留粒子径の異なるものをいくつか組み合わせても良いが、本発明においては、少なくとも1種のろ過フィルターを含むことが必要である。
In the present invention, the sample including the detection target is filtered using a filtration filter. In order to prevent clogging of silica monoliths and false positives in the genetic testing device and clogging of the filtration filter itself, the filtration filter is not only one type, but also a combination of different materials, different pore sizes or different retained particle sizes However, in the present invention, it is necessary to include at least one type of filtration filter.
前記ろ過フィルターとしては、特に限定されないが、焼結フィルターを用いることが好ましい。焼結フィルターの素材は特に限定されないが、ポリプロピレン、ポリエチレン、ポリスチレン及びポリメチルメタクリレートからなる群から選択されることが好ましい。
The filtration filter is not particularly limited, but a sintered filter is preferably used. The material of the sintered filter is not particularly limited, but is preferably selected from the group consisting of polypropylene, polyethylene, polystyrene, and polymethyl methacrylate.
前記ろ過フィルターは、外部からの力に対して変形しにくいフィルター(強剛性フィルター)であることが好ましい。
たとえば、ろ過チューブ中に検体浮遊液に浮遊させた検体試料を入れて、先端に取り付けた強剛性フィルターを含むろ過フィルターを通してろ過し、ろ液を遺伝子検査試薬を添加した容器(例えば、チューブ等)等に滴下する際に、フィルターはろ過チューブ内の検体試料等の液体や空気の圧力を受ける。または、チューブが弾力のある素材のものであれば人が直接手で容器を押えることにより圧力を受ける。このとき、フィルターの厚さ方向の潰れや湾曲等の変形が発生する可能性があるが、これらの現象はフィルター内部のろ液の流路を塞ぎ、フィルター自身が目詰まりする原因となる。本発明に用いるろ過フィルターは、ろ過チューブ中に検体浮遊液に浮遊させた検体試料を入れて、先端に取り付けた強剛性フィルターを含むろ過フィルターを通してろ過し、ろ液を遺伝子検査試薬を添加した容器(例えば、チューブ等)等に滴下する際に、フィルターの厚さ方向に潰れにくく、または、湾曲等の変形をしにくい剛性を備えているフィルターであることが好ましい。別の言い方では、ろ液の圧力によってもフィルター内部のろ液の流路を塞ぎ難い剛性を備えたフィルターであることが好ましい。 The filtration filter is preferably a filter (strong rigidity filter) that is not easily deformed by an external force.
For example, a specimen sample suspended in a specimen suspension is placed in a filtration tube, filtered through a filtration filter including a rigid filter attached to the tip, and the filtrate is added with a genetic test reagent (eg, a tube, etc.) When dripping, etc., the filter receives the pressure of a liquid such as a specimen sample in the filtration tube or air. Alternatively, if the tube is made of an elastic material, a person receives pressure by directly pressing the container with his hand. At this time, the filter may be crushed or deformed in the thickness direction, but these phenomena block the flow path of the filtrate inside the filter and cause the filter itself to be clogged. The filtration filter used in the present invention is a container in which a specimen sample suspended in a specimen suspension is placed in a filtration tube, filtered through a filtration filter including a rigid filter attached to the tip, and the filtrate is added with a genetic test reagent. It is preferable that the filter has a rigidity that is difficult to be crushed in the thickness direction of the filter or difficult to be deformed such as a curve when dropped onto (for example, a tube or the like). In other words, it is preferable that the filter has a rigidity that makes it difficult to block the flow path of the filtrate inside the filter even by the pressure of the filtrate.
たとえば、ろ過チューブ中に検体浮遊液に浮遊させた検体試料を入れて、先端に取り付けた強剛性フィルターを含むろ過フィルターを通してろ過し、ろ液を遺伝子検査試薬を添加した容器(例えば、チューブ等)等に滴下する際に、フィルターはろ過チューブ内の検体試料等の液体や空気の圧力を受ける。または、チューブが弾力のある素材のものであれば人が直接手で容器を押えることにより圧力を受ける。このとき、フィルターの厚さ方向の潰れや湾曲等の変形が発生する可能性があるが、これらの現象はフィルター内部のろ液の流路を塞ぎ、フィルター自身が目詰まりする原因となる。本発明に用いるろ過フィルターは、ろ過チューブ中に検体浮遊液に浮遊させた検体試料を入れて、先端に取り付けた強剛性フィルターを含むろ過フィルターを通してろ過し、ろ液を遺伝子検査試薬を添加した容器(例えば、チューブ等)等に滴下する際に、フィルターの厚さ方向に潰れにくく、または、湾曲等の変形をしにくい剛性を備えているフィルターであることが好ましい。別の言い方では、ろ液の圧力によってもフィルター内部のろ液の流路を塞ぎ難い剛性を備えたフィルターであることが好ましい。 The filtration filter is preferably a filter (strong rigidity filter) that is not easily deformed by an external force.
For example, a specimen sample suspended in a specimen suspension is placed in a filtration tube, filtered through a filtration filter including a rigid filter attached to the tip, and the filtrate is added with a genetic test reagent (eg, a tube, etc.) When dripping, etc., the filter receives the pressure of a liquid such as a specimen sample in the filtration tube or air. Alternatively, if the tube is made of an elastic material, a person receives pressure by directly pressing the container with his hand. At this time, the filter may be crushed or deformed in the thickness direction, but these phenomena block the flow path of the filtrate inside the filter and cause the filter itself to be clogged. The filtration filter used in the present invention is a container in which a specimen sample suspended in a specimen suspension is placed in a filtration tube, filtered through a filtration filter including a rigid filter attached to the tip, and the filtrate is added with a genetic test reagent. It is preferable that the filter has a rigidity that is difficult to be crushed in the thickness direction of the filter or difficult to be deformed such as a curve when dropped onto (for example, a tube or the like). In other words, it is preferable that the filter has a rigidity that makes it difficult to block the flow path of the filtrate inside the filter even by the pressure of the filtrate.
前記ろ過フィルターは変形しにくいため、目詰まりが起こりにくい。また、積層したり、あるいは厚さを数mm~数cm程度に厚く加工することができるため、それにより有効ろ過面積が大きくできるため、目詰まりが起こりにくい。
フィルターの厚さ方向に潰れにくい剛性を備えているとは、例えば、検体試料をろ過する時の液体や空気によるフィルターにかかる圧力が0.2[MPa]を超えても、ろ過前対ろ過時の厚さの変化量が5%以上とならず、好ましくは2%以上とならず、また、湾曲等の変形をしにくい剛性を備えているとは、上記同様の圧力がかかってもろ過時のフィルターの曲率半径が2cm以下とならないことをいう。 Since the filtration filter is not easily deformed, clogging is unlikely to occur. Further, since it can be laminated or processed to a thickness of about several millimeters to several centimeters, the effective filtration area can be increased thereby, and clogging hardly occurs.
For example, the filter is rigid enough not to be crushed in the thickness direction of the filter. For example, even when the pressure applied to the filter by liquid or air when the specimen sample is filtered exceeds 0.2 MPa, The amount of change in thickness does not become 5% or more, preferably 2% or more, and it has rigidity that is difficult to deform such as bending. This means that the radius of curvature of the filter does not become 2 cm or less.
フィルターの厚さ方向に潰れにくい剛性を備えているとは、例えば、検体試料をろ過する時の液体や空気によるフィルターにかかる圧力が0.2[MPa]を超えても、ろ過前対ろ過時の厚さの変化量が5%以上とならず、好ましくは2%以上とならず、また、湾曲等の変形をしにくい剛性を備えているとは、上記同様の圧力がかかってもろ過時のフィルターの曲率半径が2cm以下とならないことをいう。 Since the filtration filter is not easily deformed, clogging is unlikely to occur. Further, since it can be laminated or processed to a thickness of about several millimeters to several centimeters, the effective filtration area can be increased thereby, and clogging hardly occurs.
For example, the filter is rigid enough not to be crushed in the thickness direction of the filter. For example, even when the pressure applied to the filter by liquid or air when the specimen sample is filtered exceeds 0.2 MPa, The amount of change in thickness does not become 5% or more, preferably 2% or more, and it has rigidity that is difficult to deform such as bending. This means that the radius of curvature of the filter does not become 2 cm or less.
前記ろ過フィルターとしては各種の金属繊維をワインドしたもの、金属繊維の不織布を用いたもの、プラスチックスを発泡させたもの、金属メッシュを層状に重ね合わせたもの、金属、プラスチックス、セラミック等の粉末や金属繊維を熱や圧力で接着した焼結フィルターが挙げられ、いずれも本発明において使用可能である。
As the filtration filter, various metal fibers wound, metal fiber non-woven fabric, plastic foam, metal mesh layered, metal, plastics, ceramic powder, etc. And sintered filters in which metal fibers are bonded with heat or pressure, and any of them can be used in the present invention.
前記焼結フィルターは、たとえば、金属、セラミック、プラスチック等の粉末粒子や金属繊維を熱及び圧力により直接接着(焼結)することにより製造できる。本発明に用いられる焼結フィルターは、例えば、フィルターの原料となる繊維等の素材をフィルター原料の融点×0.3~0.7℃程度の加熱処理により焼結することで得ることができ、好ましくはフィルター原料の融点×0.5℃程度の加熱処理により焼結することにより得ることができる。強剛性フィルターの中でも焼結フィルターは、1)安価である、2)粒子の大きさにより孔径を制御することが可能である、3)大量製造に向く、4)生体物質との親和性が低いため被検出対象を含む試料と特異的に結合しない、5)液体中の水分の吸収がほとんどない、6)粒子の大きさにより様々な孔径のものを作製できる、という特徴を有するので、生体物質を含む検体試料のろ過に好ましい。
The sintered filter can be manufactured, for example, by directly bonding (sintering) powder particles such as metal, ceramic, plastic, and metal fibers by heat and pressure. The sintered filter used in the present invention can be obtained, for example, by sintering a material such as a fiber as a filter raw material by a heat treatment of the melting point of the filter raw material × 0.3 to 0.7 ° C., Preferably, it can be obtained by sintering by heat treatment of the melting point of the filter material × 0.5 ° C. Among strong filters, sintered filters are 1) inexpensive, 2) pore size can be controlled by particle size, 3) suitable for mass production, and 4) low affinity with biological materials. Therefore, it does not specifically bind to the sample containing the target to be detected, 5) it has almost no absorption of moisture in the liquid, and 6) it can be produced with various pore sizes depending on the size of the particles, so that it is a biological material. It is preferable for the filtration of the specimen sample containing
前記焼結フィルターの素材としては、ポリプロピレン、ポリエチレン(低密度ポリエチレン、高密度ポリエチレン、超高分子量ポリエチレン)、ポリスチレン、ポリメチルメタクリレート等の樹脂、アルミナ、ジルコニア、ケイ素、ケイ素四フッ化エチレン重合体、ステンレス鋼等を挙げることができるが、ポリプロピレン、ポリエチレン、ポリスチレン、ポリメチルメタクリレート等の樹脂を用いたものが加工性の面から好ましく、なかでもポリプロピレン、ポリエチレンが好ましい。
As the material of the sintered filter, polypropylene, polyethylene (low density polyethylene, high density polyethylene, ultra high molecular weight polyethylene), polystyrene, polymethyl methacrylate resin, alumina, zirconia, silicon, silicon tetrafluoroethylene polymer, Although stainless steel etc. can be mentioned, the thing using resin, such as a polypropylene, polyethylene, a polystyrene, a polymethylmethacrylate, is preferable from the surface of workability, and a polypropylene and polyethylene are especially preferable.
前記ろ過フィルターは、2種類以上の強剛性フィルターを組み合わせて作製してもよい。また、強剛性フィルターと強剛性フィルター以外のフィルターと組み合わせてもよい。
The filtration filter may be produced by combining two or more types of strong rigidity filters. Moreover, you may combine with filters other than a rigid filter and a rigid filter.
前記ろ過フィルターは精密ろ過用としても、粗ろ過用としても用いることができるが、少なくとも1種類のろ過フィルターの孔径又は保留粒子径は200μm以下が好ましい。
The filtration filter can be used for both microfiltration and coarse filtration, but at least one type of filtration filter preferably has a pore size or retained particle size of 200 μm or less.
本発明の遺伝子検査方法においては、たとえば、ろ過フィルターが孔径の異なる複数のフィルターを重ねて構成されており、最小孔径を有するフィルターの孔径が、1μm以上であり、最大孔径を有するフィルターの孔径が200μm以下である、ろ過フィルターを用いればよい。好ましくは、最小孔径を有するフィルターの孔径が5μm以上であり、最大孔径を有するフィルターの孔径が150μm以下であり、より好ましくは最小孔径を有するフィルターの孔径が10μm以上であり、最大孔径を有するフィルターの孔径が100μmである。また、被検出対象を含む検体試料を最初に最大孔径を有するフィルターを通過させ、次いでより小さい孔径を有するフィルターを通過させても良い。
In the genetic testing method of the present invention, for example, the filtration filter is configured by stacking a plurality of filters having different pore diameters, the pore diameter of the filter having the smallest pore diameter is 1 μm or more, and the pore diameter of the filter having the largest pore diameter is What is necessary is just to use the filtration filter which is 200 micrometers or less. Preferably, the filter having the minimum pore size is 5 μm or more, the filter having the maximum pore size is 150 μm or less, more preferably the filter having the minimum pore size is 10 μm or more, and the filter has the maximum pore size. The pore diameter is 100 μm. Alternatively, the specimen sample containing the detection target may be first passed through a filter having a maximum pore size and then passed through a filter having a smaller pore size.
例えば、ポリプロピレン製強剛性フィルターの孔径は5~200μm、低密度ポリエチレン製強剛性フィルターの孔径は10~70μm、高密度ポリエチレン製強剛性フィルターの孔径は10~50μm、超高分子量ポリエチレン製強剛性フィルターの孔径は10~20μm、ポリスチレン製強剛性フィルターの孔径は100~200μm、四フッ化エチレン重合体製強剛性フィルターの孔径は30~100μmである。素材及び/孔径の異なる複数の強剛性フィルターを組合せて用いてもよい。また、ろ過フィルターとして焼結フィルターを用いる場合には、必ずしも複数の強剛性フィルターを組み合わせて用いる必要はなく、1種類の素材の強剛性フィルターを焼結フィルターとして用いても良い。
1種類の素材の強剛性フィルターを焼結フィルターとして用いる場合、孔径は特に限定されないが、例えば、1μm~200μmとすることができ、5μm~150μmであることが好ましく、10μm~100μmであることがより好ましい。 For example, the pore diameter of a polypropylene rigid filter is 5 to 200 μm, the pore diameter of a low density polyethylene rigid filter is 10 to 70 μm, the diameter of a high density polyethylene rigid filter is 10 to 50 μm, and an ultrahigh molecular weight polyethylene rigid filter The pore size of the polystyrene rigid filter is 100 to 200 μm, and the pore size of the tetrafluoroethylene polymer strong filter is 30 to 100 μm. A plurality of strong rigidity filters having different materials and / or hole diameters may be used in combination. Further, when a sintered filter is used as a filtration filter, it is not always necessary to use a combination of a plurality of strong rigidity filters, and one kind of strong rigidity filter may be used as the sintered filter.
In the case of using one kind of high-rigidity filter as a sintered filter, the pore diameter is not particularly limited, but it can be, for example, 1 μm to 200 μm, preferably 5 μm to 150 μm, and preferably 10 μm to 100 μm. More preferred.
1種類の素材の強剛性フィルターを焼結フィルターとして用いる場合、孔径は特に限定されないが、例えば、1μm~200μmとすることができ、5μm~150μmであることが好ましく、10μm~100μmであることがより好ましい。 For example, the pore diameter of a polypropylene rigid filter is 5 to 200 μm, the pore diameter of a low density polyethylene rigid filter is 10 to 70 μm, the diameter of a high density polyethylene rigid filter is 10 to 50 μm, and an ultrahigh molecular weight polyethylene rigid filter The pore size of the polystyrene rigid filter is 100 to 200 μm, and the pore size of the tetrafluoroethylene polymer strong filter is 30 to 100 μm. A plurality of strong rigidity filters having different materials and / or hole diameters may be used in combination. Further, when a sintered filter is used as a filtration filter, it is not always necessary to use a combination of a plurality of strong rigidity filters, and one kind of strong rigidity filter may be used as the sintered filter.
In the case of using one kind of high-rigidity filter as a sintered filter, the pore diameter is not particularly limited, but it can be, for example, 1 μm to 200 μm, preferably 5 μm to 150 μm, and preferably 10 μm to 100 μm. More preferred.
精密ろ過用フィルターとして例えば膜状のフィルターを用いることができ、その材質はセルロース、ガラス繊維、シリカ繊維、ニトロセルロース、セルロースエステル、ニトロセルロースとセルロースエステルの混合物、ポリエーテルスルホン、ポリスルホン、四フッ化エチレン樹脂、フッ化ビニリデン樹脂、ポリカーボネート、ポリプロピレン、ポリアミド、ナイロン6,6、ポリエステル、コットン、ステンレススチール繊維等の中から好適なものを適宜選択することができるが、被検出対象を含む試料を結合させず、検体浮遊液の吸収量が多くないものにすることが必要である。
For example, a membrane filter can be used as a filter for microfiltration. The material is cellulose, glass fiber, silica fiber, nitrocellulose, cellulose ester, a mixture of nitrocellulose and cellulose ester, polyethersulfone, polysulfone, tetrafluoride. Suitable materials can be selected from ethylene resin, vinylidene fluoride resin, polycarbonate, polypropylene, polyamide, nylon 6,6, polyester, cotton, stainless steel fiber, etc. Therefore, it is necessary to make the amount of absorption of the sample suspension liquid not large.
前記ろ過フィルターを構成するフィルターの中で最小の孔径又は保留粒子径を有するフィルターの最小の孔径又は保留粒子径は、孔径10μm程度であることが好ましい。
It is preferable that the minimum pore diameter or the retained particle diameter of the filter having the smallest pore diameter or the retained particle diameter among the filters constituting the filtration filter is about 10 μm.
前記強剛性フィルター及び強剛性フィルター以外の別の種類のフィルター(以下、非強剛性フィルターということがある)の組合せ方は、例えば、フィルターを2つ用いる場合、フィルターを後記のろ過チューブのろ過用ノズルの底面から1段目フィルター、2段目フィルターとすると(この場合、最初に検体試料と接触するのは、1段目フィルターであり、検体試料は1段目フィルターを通過して、アッセイ装置に添加される)、1段目フィルターと2段目フィルターの組合せとして、強剛性フィルターと強剛性フィルター、強剛性フィルターと非強剛性フィルターの組合せがある。なお、ノズル先端部に近いフィルターを下流側フィルターと呼び、より早く検体試料に接触するフィルターを上流側フィルターと呼ぶことがある。フィルターを組合せる場合、孔径が異なるフィルターを組合せることが好ましい。強剛性フィルターはいずれもフィルターの表面だけでなく、その内部でも混入物をトラップするため、ある程度の厚さが必要である。必要な厚みは混入物の量やフィルターの孔径や大きさにより当然異なるが、一般に遺伝子検査法での検査に必要な検体試料100~2000μlを直径が5~20mm程度の試料ろ過フィルターでろ過する場合、強剛性フィルター又は非強剛性フィルターの厚さは、限定されないが、好ましくは、0.5mm~7mm、さらに好ましくは1mm~5mmである。また、試料ろ過フィルターの厚さの合計は2mm~10mm程度が好ましい。
For example, when two filters are used in combination with another type of filter (hereinafter also referred to as a non-rigid filter) other than the rigid filter and the rigid filter, the filter is used for filtration of a filtration tube described later. When the first-stage filter and the second-stage filter are formed from the bottom of the nozzle (in this case, the first-stage filter is the first-stage filter that comes into contact with the specimen sample first, and the specimen sample passes through the first-stage filter, As a combination of the first stage filter and the second stage filter, there are a combination of a strong filter and a strong filter, and a combination of a strong filter and a non-rigid filter. A filter close to the nozzle tip is sometimes referred to as a downstream filter, and a filter that comes into contact with a specimen sample earlier is sometimes referred to as an upstream filter. When combining filters, it is preferable to combine filters having different pore sizes. Since all of the strong filters trap contaminants not only on the filter surface but also inside, a certain thickness is required. The required thickness varies naturally depending on the amount of contaminants and the pore size and size of the filter. In general, when 100 to 2000 μl of a sample sample required for genetic testing is filtered with a sample filtration filter with a diameter of about 5 to 20 mm. The thickness of the rigid filter or non-rigid filter is not limited, but is preferably 0.5 mm to 7 mm, more preferably 1 mm to 5 mm. The total thickness of the sample filtration filter is preferably about 2 mm to 10 mm.
前記ろ過フィルターに孔径又は保留粒子径の異なるものをいくつか組み合わせる場合は、孔径又は保留粒子径の大きなフィルターを上流側に、小さなフィルターを下流側に、両フィルターが重なるように配置することが、ろ過時における検体試料の目詰まりを回避する上で好ましい。例えば、2つのフィルターを組合わせる場合、1段目のフィルターに孔径又は保留粒子径が大きいフィルターを用い、2段目のフィルターに孔径が小さいフィルターを用いることが好ましい。
When combining several filtration filters having different pore diameters or retained particle diameters, it is possible to arrange a filter having a large pore diameter or retained particle diameter on the upstream side, a small filter on the downstream side, and so that both filters overlap. It is preferable for avoiding clogging of the specimen sample during filtration. For example, when two filters are combined, it is preferable to use a filter having a large pore diameter or retained particle diameter as the first-stage filter and a filter having a small pore diameter as the second-stage filter.
用いるフィルターのサイズは、アッセイに用いる検体浮遊液チューブのサイズによるが、例えば、円形で直径0.5~1.5cmである。
The size of the filter used depends on the size of the sample suspension tube used in the assay, but is, for example, circular and has a diameter of 0.5 to 1.5 cm.
上記で述べたようなフィルターとして、特許文献2に記載されているものを使用してもよい。
As the filter described above, the filter described in Patent Document 2 may be used.
本発明においては、検体採取するための器具として綿棒、白金耳、スポイト又はさじ形状の用具等を用いて被検出対象を含む検体を採取し、アッセイに用いることができる。中でも、綿棒またはスワブを用い、検体を採取しアッセイに用いることが好ましい。特に人体を被験体とし、鼻腔ぬぐい液、鼻腔吸引液、咽頭ぬぐい液、口腔内擦過物、肺胞洗浄液、便懸濁液又は直腸拭い液、を検体とする場合は、検体採取器具として主として綿棒またはスワブを用いることが好ましい。
In the present invention, a sample containing a detection target can be collected using a cotton swab, platinum ear, dropper, spoon tool, or the like as an instrument for collecting the sample and used for the assay. Among them, it is preferable to use a cotton swab or swab to collect a specimen and use it for the assay. Especially when the subject is a human body and the specimen is nasal wipes, nasal aspirates, throat swabs, oral scrapings, alveolar lavage fluid, stool suspension or rectal wiping fluid, the swab is mainly used as a sample collection device. Or it is preferable to use a swab.
前記綿棒は特に限定されない。たとえば、軸部の片方の先端にある頭部に綿を巻き付けた綿球から形成される態様が挙げられる。この態様において綿球部分が検体採取部分に該当する。あるいは、ブラシ状綿棒と呼ばれる、天然物又は人工物でできた繊維がブラシ状に配置され、毛細管現象を利用し液体を採取する方式の綿棒が市販されており、これを用いても良い。前記ブラシ状綿棒は、以下の理由により本発明に特に好適に使用することができる。ブラシ状綿棒は、例えばフロック加工と呼ばれる、短く切った繊維(フロック)を、静電気により接着剤を塗布した綿棒の柄に付着させる方法により作製することができる。また、この方式の綿棒では、液体中の溶解物や混合物である固体や粘性物質も採取可能であり、この場合毛細管現象だけではなく、固体や粘性物質が本発明に器具の被分析試料採取部位に吸着等により結合することを利用して採取する。従来の綿棒と比較して表面積が大幅に増えるので、それだけ検体の採取量が大きく、検体中の被検出対象を含む試料をより多く吸着することが可能である。また浮遊液に浮遊させる際にも従来の綿棒とは異なり、浮遊液は容易に繊維間に入り込むことができるため、前記試料が放出されやすく、効率的に前記試料を浮遊液中に回収することができる。以上のような観点から、本発明の遺伝子検査方法では検体採取のために、ブラシ状綿棒(ブラシ状スワブともいう)を用いることが好ましく、短繊維を付着したフロックスワブを用いることが特に好ましい。
The cotton swab is not particularly limited. For example, the aspect formed from the cotton ball which wound cotton on the head in the front-end | tip of one side of a axial part is mentioned. In this embodiment, the cotton ball portion corresponds to the specimen collection portion. Alternatively, a cotton swab of a type called a brush-like swab, in which fibers made of a natural product or an artificial product are arranged in a brush shape and a liquid is collected by using a capillary phenomenon, is commercially available. The brush-like swab can be particularly preferably used in the present invention for the following reasons. The brush-like swab can be produced by, for example, a method called flocking, in which short cut fibers (floc) are attached to the handle of a swab to which an adhesive is applied by static electricity. Also, with this type of swab, it is possible to collect a solid or viscous substance that is a dissolved or mixed material in a liquid. In this case, not only the capillary phenomenon but also a solid or viscous substance is collected in the sample collection site of the instrument in the present invention. It is collected by using the binding by adsorption. Since the surface area is significantly increased as compared with a conventional cotton swab, the amount of sample collected is large, and it is possible to adsorb more samples including the detection target in the sample. Also, when floating in suspension, unlike conventional cotton swabs, suspension can easily enter between fibers, so the sample is easily released and the sample can be efficiently collected in suspension. Can do. From the above viewpoints, in the genetic testing method of the present invention, it is preferable to use a brush-like swab (also referred to as a brush-like swab), and particularly preferably a flox swab to which short fibers are attached, for collecting a specimen.
上記で述べたような検体採取器具として、特許文献2に記載されているものを使用してもよい。
As the sample collection device as described above, the one described in Patent Document 2 may be used.
本発明において、被検出対象の存在を検出又は定量することにより検査できる事項(matter)は特に限定されない。たとえば、呼吸器感染症の原因微生物若しくは該微生物由来の物質が挙げられ、さらに具体的には、インフルエンザウイルス(例えば、A型インフルエンザウイルス、B型インフルエンザウイルス等)、RSウイルス、アデノウイルス、A群溶連菌及び肺炎マイコプラズマ、百日咳菌、肺炎クラミジアからなる群から選択される病原微生物若しくは該微生物由来の物質が挙げられる。また、下痢症の原因微生物若しくは該微生物由来の物質が挙げられ、さらに具体的には、ノロウイルス、ロタウイルス、サポウイルス及び下痢症アデノウイルスからなる群から選択される病原微生物若しくは該微生物由来の物質が挙げられる。また、性感染症の原因微生物若しくは該微生物由来の物質が挙げられ、さらに具体的には、淋菌、クラミジア、マイコプラズマ、ウレアプラズマ、HIV及びHPVからなる群から選択される病原微生物若しくは該微生物由来の物質が挙げられる。また、本発明の遺伝子検査方法はヒト遺伝子多型を検査することもでき、さらに具体的には、薬剤耐性遺伝子多型(例えば、薬剤代謝酵素シトクロムP450遺伝子(CYP遺伝子)の遺伝子多型)、アルコール脱水素酵素遺伝子(ADH遺伝子)の遺伝子多型、アセトアルデヒド脱水素酵素遺伝子(ALDH遺伝子)の遺伝子多型、メチレンテトラヒドロ葉酸還元酵素遺伝子(MTHFR遺伝子)の遺伝子多型等を検査するために使用することが可能である。
In the present invention, matters that can be inspected by detecting or quantifying the presence of the detection target are not particularly limited. Examples include microorganisms causing respiratory infections or substances derived from these microorganisms. More specifically, influenza viruses (for example, influenza A virus, influenza B virus, etc.), RS viruses, adenoviruses, group A Examples include pathogenic microorganisms selected from the group consisting of Streptococcus and Mycoplasma pneumoniae, Bordetella pertussis, Chlamydia pneumoniae, or substances derived from the microorganisms. In addition, a microorganism causing diarrhea or a substance derived from the microorganism can be mentioned, and more specifically, a pathogenic microorganism selected from the group consisting of norovirus, rotavirus, sapovirus and diarrhea adenovirus or a substance derived from the microorganism Is mentioned. In addition, a microorganism causing causative sexually transmitted disease or a substance derived from the microorganism can be mentioned, and more specifically, a pathogenic microorganism selected from the group consisting of Neisseria gonorrhoeae, Chlamydia, Mycoplasma, Ureaplasma, HIV and HPV Substances. The gene testing method of the present invention can also test human gene polymorphism, more specifically, drug resistance gene polymorphism (for example, gene polymorphism of drug metabolizing enzyme cytochrome P450 gene (CYP gene)), Used to examine gene polymorphism of alcohol dehydrogenase gene (ADH gene), gene polymorphism of acetaldehyde dehydrogenase gene (ALDH gene), gene polymorphism of methylenetetrahydrofolate reductase gene (MTHFR gene), etc. It is possible.
本発明の検査方法により分析するための検体は、特に限定されない。たとえばヒト又は他の動物などから得られる生体試料が挙げられる。具体的には、たとえば、口腔内擦過物、咽頭拭い液、鼻腔拭い液、鼻腔吸引液、鼻腔洗浄液、肺胞洗浄液、便懸濁液及び直腸拭い液、膣分泌物、子宮頸管粘液、尿道擦過物からなる群から選択すればよい。
Specimens to be analyzed by the inspection method of the present invention are not particularly limited. For example, biological samples obtained from humans or other animals can be mentioned. Specifically, for example, oral rubs, pharyngeal wiping liquid, nasal wiping liquid, nasal aspirate, nasal irrigation liquid, alveolar irrigation liquid, stool suspension and rectal wiping liquid, vaginal discharge, cervical mucus, urethral rub What is necessary is just to select from the group which consists of things.
特定の実施態様において、本発明の遺伝子検査方法は、従来の遺伝子検査方法において通常は必須と考えられていた遠心分離法による前処理を行う必要が無い。遠心分離法を前処理として行う場合、専用機器が必要であることに加えて、遠心分離の操作が煩雑で手間と時間がかかるという問題がある。しかし、本発明の遺伝子検査方法によれば、そのような遠心分離法を行うための専用機器を準備する必要がなく、煩雑な操作を省くことが可能である。更に、遠心分離法にかかる時間も短縮することができるので、被験体からの検体採取から遺伝子検査結果を得るまでの時間を短縮することができ、例えば、検体採取から遺伝子検査結果が得られるまでの時間を1日以内、好ましくは半日以内、より好ましくは6時間以内、更に好ましくは3時間以内、なかでも好ましくは2時間以内(例えば、1時間半以内)とすることが可能となり得る。
In a specific embodiment, the gene testing method of the present invention does not need to be pretreated by a centrifugation method, which is normally considered essential in the conventional gene testing method. When the centrifugation method is performed as a pretreatment, in addition to the necessity for a dedicated device, there is a problem that the operation of the centrifugation is complicated and takes time and effort. However, according to the genetic testing method of the present invention, it is not necessary to prepare a dedicated device for performing such centrifugation, and it is possible to omit complicated operations. Furthermore, since the time required for the centrifugation method can be shortened, it is possible to shorten the time from collection of a sample from a subject to obtaining a genetic test result. For example, until the genetic test result is obtained from sample collection. This time can be within 1 day, preferably within half a day, more preferably within 6 hours, even more preferably within 3 hours, and particularly preferably within 2 hours (for example, within 1 hour and a half).
本発明の別の実施態様は、強剛性フィルターを含むフィルターにより構成されたろ過フィルターを備えた検体試料用ろ過チューブを含む、検体試料中の被検出対象の存在を検査するための遺伝子検査キットである。本発明のキットは、さらに、検体採取器具として綿棒またはスワブを含んでも良い。また、本発明のキットは、被検出対象の存在を検出又は定量することができる遺伝子検査試薬等を当然含む。この遺伝子検査試薬は、チューブや瓶等の試薬容器に充填され、使用時に開封可能な形態として本発明のキットに含まれる。
Another embodiment of the present invention is a genetic test kit for testing the presence of a target to be detected in a specimen sample, comprising a specimen sample filtration tube provided with a filtration filter constituted by a filter including a rigid filter. is there. The kit of the present invention may further include a cotton swab or swab as a specimen collecting device. The kit of the present invention naturally includes a genetic test reagent that can detect or quantify the presence of the detection target. This genetic test reagent is filled in a reagent container such as a tube or bottle, and is included in the kit of the present invention in a form that can be opened at the time of use.
本実施態様の遺伝子検査キットの構成図の例を、図8に示す。検体試料用ろ過チューブ2は内部に焼結フィルター(21-a、21-b)を含み、検体を含む試料を本ろ過チューブ2に通すことで焼結フィルター(21-a、21-b)のろ過処理を行うことができる。なお、焼結フィルター21-a、21-bの孔径は、同じであってもよいし異なっても良い。また、本図面では、焼結フィルターを2枚重ねているろ過チューブを例示しているが、焼結フィルターの枚数はこれに限定されず、3枚以上重ねてもよいし、又は1枚だけでもよい。また、焼結フィルターを含む先端部とチューブ本体部は脱着可能に別々に構成し、ろ過操作時に取り付けるようにしてもよい。また、溶出を速やかにするために、人が直接手で容器を押えて圧力がかけられるよう弾力がある素材のチューブを用いることができる。スワブ(短繊維を付着したフロックスワブ)3は、スワブ軸部32の先端に設けた検体採取部分31に短繊維が付着されている。遺伝子検査試薬4は、容器本体41に充填されており、保管時は蓋部42等で密閉されている。なお、本図面では、遺伝子検査試薬を充填した容器を1つだけ例示しているが、遺伝子検査に用いる試薬を充填した容器は2つ以上であり得る。本発明の遺伝子検査キットは、包装箱1に収納されて提供することもできるが、別々の包装で供給されて使用時にセットで用いるキットであってもよい。なお、本発明の遺伝子検査キットの構成は、図8で示す例に限定されず、上記で例示したもの以外のもの(例えば、取扱説明書)等も任意に含むことができる。
FIG. 8 shows an example of a configuration diagram of the genetic test kit of this embodiment. The specimen sample filtration tube 2 includes a sintered filter (21-a, 21-b) inside. By passing the specimen-containing sample through the main filtration tube 2, the sintered filter (21-a, 21-b) Filtration can be performed. The pore diameters of the sintered filters 21-a and 21-b may be the same or different. Moreover, in this drawing, although the filtration tube which has laminated | stacked two sheets of sintered filters is illustrated, the number of sheets of a sintered filter is not limited to this, Three or more sheets may be piled up, or only one sheet may be piled up. Good. Moreover, the front-end | tip part containing a sintered filter and the tube main-body part may be comprised separately so that attachment or detachment is possible, and you may make it attach at the time of filtration operation. Further, in order to speed up the elution, a tube made of a material having elasticity so that a person can directly press the container with his / her hand to apply pressure can be used. In the swab (Flox swab to which short fibers are attached) 3, the short fibers are attached to the specimen collecting portion 31 provided at the tip of the swab shaft portion 32. The genetic test reagent 4 is filled in a container body 41 and is sealed with a lid 42 or the like during storage. In the drawing, only one container filled with the genetic test reagent is illustrated, but there may be two or more containers filled with the reagent used for the genetic test. The genetic test kit of the present invention can be provided by being housed in the packaging box 1, but it may be a kit that is supplied in separate packaging and used as a set at the time of use. Note that the configuration of the genetic test kit of the present invention is not limited to the example shown in FIG. 8, and can include any other than those exemplified above (for example, instruction manuals).
以下、本発明の実施例に基づき具体的に説明する。本発明は下記実施例に限定されるものではない。
Hereinafter, specific description will be given based on examples of the present invention. The present invention is not limited to the following examples.
〔実施例1:ナイセリアゴノレア(淋菌)の検出〕
(1)試料の調製
ナイセリアゴノレアから抽出したDNA試料を10mMのTris-HCl(pH7.5)で100(コピー/μL)となるように調製し、子宮頸管粘液と混合して試料とした。この試料を焼結フィルター(ポリプロピレン製、孔径100μm)を含むろ過フィルターを通過させて試料を調製した。また、陰性コントロール(NC)として水を使用した。
(2)核酸増幅および融解曲線解析
上記試料および陰性コントロールにそれぞれ下記試薬を添加して、下記条件によりナイセリアゴノレアを検出した。核酸増幅および融解曲線解析には東洋紡製GENECUBE(登録商標)を使用した。 [Example 1: Detection of Neisseria gonorrhoeae]
(1) Preparation of sample A DNA sample extracted from Neisseria gonorrhoeae was prepared with 10 mM Tris-HCl (pH 7.5) to 100 (copy / μL), and mixed with cervical mucus to prepare a sample. . This sample was passed through a filtration filter containing a sintered filter (made of polypropylene, pore size 100 μm) to prepare a sample. Moreover, water was used as a negative control (NC).
(2) Nucleic acid amplification and melting curve analysis The following reagents were added to the sample and negative control, respectively, and Neisseria gonorrhoeae was detected under the following conditions. GENECUBE (registered trademark) manufactured by Toyobo was used for nucleic acid amplification and melting curve analysis.
(1)試料の調製
ナイセリアゴノレアから抽出したDNA試料を10mMのTris-HCl(pH7.5)で100(コピー/μL)となるように調製し、子宮頸管粘液と混合して試料とした。この試料を焼結フィルター(ポリプロピレン製、孔径100μm)を含むろ過フィルターを通過させて試料を調製した。また、陰性コントロール(NC)として水を使用した。
(2)核酸増幅および融解曲線解析
上記試料および陰性コントロールにそれぞれ下記試薬を添加して、下記条件によりナイセリアゴノレアを検出した。核酸増幅および融解曲線解析には東洋紡製GENECUBE(登録商標)を使用した。 [Example 1: Detection of Neisseria gonorrhoeae]
(1) Preparation of sample A DNA sample extracted from Neisseria gonorrhoeae was prepared with 10 mM Tris-HCl (pH 7.5) to 100 (copy / μL), and mixed with cervical mucus to prepare a sample. . This sample was passed through a filtration filter containing a sintered filter (made of polypropylene, pore size 100 μm) to prepare a sample. Moreover, water was used as a negative control (NC).
(2) Nucleic acid amplification and melting curve analysis The following reagents were added to the sample and negative control, respectively, and Neisseria gonorrhoeae was detected under the following conditions. GENECUBE (registered trademark) manufactured by Toyobo was used for nucleic acid amplification and melting curve analysis.
試薬
以下の試薬を含む溶液を調製した。
10μM フォワードプライマー(配列番号1)0.4μL
100μM リバースプライマー(配列番号2)0.2μL
10μM プローブ(配列番号3、5’末端をBODIPY-FL標識)0.3μL
KOD Mix(ジーンキューブ(R)テストベーシック、東洋紡製)3μL
PPD Mix(ジーンキューブ(R)テストベーシック、東洋紡製)3μL
試料3μL Reagents A solution containing the following reagents was prepared.
10 μM forward primer (SEQ ID NO: 1) 0.4 μL
100 μM reverse primer (SEQ ID NO: 2) 0.2 μL
10 μM probe (SEQ ID NO: 3, 5 ′ end labeled BODIPY-FL) 0.3 μL
KOD Mix (Gen Cube (R) Test Basic, manufactured by Toyobo) 3μL
PPD Mix (Gen Cube (R) Test Basic, manufactured by Toyobo) 3μL
Sample 3μL
以下の試薬を含む溶液を調製した。
10μM フォワードプライマー(配列番号1)0.4μL
100μM リバースプライマー(配列番号2)0.2μL
10μM プローブ(配列番号3、5’末端をBODIPY-FL標識)0.3μL
KOD Mix(ジーンキューブ(R)テストベーシック、東洋紡製)3μL
PPD Mix(ジーンキューブ(R)テストベーシック、東洋紡製)3μL
試料3μL Reagents A solution containing the following reagents was prepared.
10 μM forward primer (SEQ ID NO: 1) 0.4 μL
100 μM reverse primer (SEQ ID NO: 2) 0.2 μL
10 μM probe (SEQ ID NO: 3, 5 ′ end labeled BODIPY-FL) 0.3 μL
KOD Mix (Gen Cube (R) Test Basic, manufactured by Toyobo) 3μL
PPD Mix (Gen Cube (R) Test Basic, manufactured by Toyobo) 3μL
Sample 3μL
核酸増幅および融解曲線解析
94℃・2分
(以上1サイクル)
97℃・1秒
58℃・3秒
63℃・6秒
(以上60サイクル)
94℃・30秒
39℃・30秒
39℃~75℃(0.09℃/秒で温度上昇) Nucleic acid amplification and melting curve analysis 94 ° C, 2 minutes (1 cycle or more)
97 ° C · 1 second 58 ° C · 3 seconds 63 ° C · 6 seconds (over 60 cycles)
94 ° C, 30 seconds 39 ° C, 30 seconds 39 ° C to 75 ° C (temperature rises at 0.09 ° C / second)
94℃・2分
(以上1サイクル)
97℃・1秒
58℃・3秒
63℃・6秒
(以上60サイクル)
94℃・30秒
39℃・30秒
39℃~75℃(0.09℃/秒で温度上昇) Nucleic acid amplification and melting curve analysis 94 ° C, 2 minutes (1 cycle or more)
97 ° C · 1 second 58 ° C · 3 seconds 63 ° C · 6 seconds (over 60 cycles)
94 ° C, 30 seconds 39 ° C, 30 seconds 39 ° C to 75 ° C (temperature rises at 0.09 ° C / second)
結果
図1は、上記の条件で核酸増幅を行い、その後の温度上昇にともなう蛍光強度の変化を、グラフの横軸を温度、縦軸を蛍光シグナルの微分値として解析結果を表した図である。グラフのうちNG DNAはナイセリアゴノレアDNA試料の解析結果を、WaterはNCである水の解析結果を示している。図1より明らかなように、ナイセリアゴノレアが検出されている。なお、上記実施例で、頭部がナイロン繊維からなるブラシ状綿棒(COPAN社製、フロックスワブTR100)を用いて検体を採取した試料を用いても、同様の結果を得た。 Results FIG. 1 is a graph showing the results of analysis of the change in fluorescence intensity with the subsequent temperature rise, with the temperature on the horizontal axis of the graph and the differential value of the fluorescent signal on the vertical axis. . In the graph, NG DNA indicates the analysis result of the Neisseria gonorrhoeae DNA sample, and Water indicates the analysis result of water which is NC. As is clear from FIG. 1, Neisseria gonorrhoeae is detected. In addition, in the said Example, the same result was obtained even if it used the sample which extract | collected the specimen using the brush-like cotton swab (COPAN company make, Phloxwab TR100) which a head consists of nylon fiber.
図1は、上記の条件で核酸増幅を行い、その後の温度上昇にともなう蛍光強度の変化を、グラフの横軸を温度、縦軸を蛍光シグナルの微分値として解析結果を表した図である。グラフのうちNG DNAはナイセリアゴノレアDNA試料の解析結果を、WaterはNCである水の解析結果を示している。図1より明らかなように、ナイセリアゴノレアが検出されている。なお、上記実施例で、頭部がナイロン繊維からなるブラシ状綿棒(COPAN社製、フロックスワブTR100)を用いて検体を採取した試料を用いても、同様の結果を得た。 Results FIG. 1 is a graph showing the results of analysis of the change in fluorescence intensity with the subsequent temperature rise, with the temperature on the horizontal axis of the graph and the differential value of the fluorescent signal on the vertical axis. . In the graph, NG DNA indicates the analysis result of the Neisseria gonorrhoeae DNA sample, and Water indicates the analysis result of water which is NC. As is clear from FIG. 1, Neisseria gonorrhoeae is detected. In addition, in the said Example, the same result was obtained even if it used the sample which extract | collected the specimen using the brush-like cotton swab (COPAN company make, Phloxwab TR100) which a head consists of nylon fiber.
遺伝子検査方法においてろ過フィルターで子宮頸管粘液から調製した検体試料をろ過することにより目詰まりによる無効や偽陽性を防ぎ、さらにブラシ状綿棒との組み合わせによっても感度・特異性が共に高い測定が可能となることが判明した。
By filtering the specimen sample prepared from cervical mucus with a filtration filter in the genetic testing method, it is possible to prevent invalidity and false positives due to clogging, and also possible to measure with high sensitivity and specificity by combining with a brush-like swab Turned out to be.
〔実施例2:百日咳菌の検出〕
(1)試料の調製
百日咳菌から抽出したDNA試料を10mMのTris-HCl(pH7.5)で5(コピー/μL)となるように調製し、生理食塩水で懸濁した咽頭拭い液と混合して疑似生体試料とした。この試料を焼結フィルター(ポリプロピレン製、孔径20μm)を含むろ過フィルターを通過させて試料を調製した。また、焼結フィルターでろ過しない液も試料として使用した。
(2)核酸増幅および融解曲線解析
上記試料をそれぞれ下記試薬を添加して、下記条件により百日咳菌を検出した。核酸増幅および融解曲線解析には東洋紡製GENECUBE(登録商標)を使用した。 [Example 2: Detection of Bordetella pertussis]
(1) Preparation of sample A DNA sample extracted from Bordetella pertussis was prepared with 10 mM Tris-HCl (pH 7.5) to 5 (copy / μL), and mixed with a pharyngeal wipe suspended in physiological saline. Thus, a pseudo biological sample was obtained. This sample was passed through a filtration filter containing a sintered filter (made of polypropylene,pore size 20 μm) to prepare a sample. Moreover, the liquid which is not filtered with a sintered filter was also used as a sample.
(2) Nucleic acid amplification and melting curve analysis The following reagents were added to each of the above samples, and Bordetella pertussis was detected under the following conditions. GENECUBE (registered trademark) manufactured by Toyobo was used for nucleic acid amplification and melting curve analysis.
(1)試料の調製
百日咳菌から抽出したDNA試料を10mMのTris-HCl(pH7.5)で5(コピー/μL)となるように調製し、生理食塩水で懸濁した咽頭拭い液と混合して疑似生体試料とした。この試料を焼結フィルター(ポリプロピレン製、孔径20μm)を含むろ過フィルターを通過させて試料を調製した。また、焼結フィルターでろ過しない液も試料として使用した。
(2)核酸増幅および融解曲線解析
上記試料をそれぞれ下記試薬を添加して、下記条件により百日咳菌を検出した。核酸増幅および融解曲線解析には東洋紡製GENECUBE(登録商標)を使用した。 [Example 2: Detection of Bordetella pertussis]
(1) Preparation of sample A DNA sample extracted from Bordetella pertussis was prepared with 10 mM Tris-HCl (pH 7.5) to 5 (copy / μL), and mixed with a pharyngeal wipe suspended in physiological saline. Thus, a pseudo biological sample was obtained. This sample was passed through a filtration filter containing a sintered filter (made of polypropylene,
(2) Nucleic acid amplification and melting curve analysis The following reagents were added to each of the above samples, and Bordetella pertussis was detected under the following conditions. GENECUBE (registered trademark) manufactured by Toyobo was used for nucleic acid amplification and melting curve analysis.
試薬
以下の試薬を含む溶液を調製した。
10μM フォワードプライマー(配列番号4)0.4μL
100μM リバースプライマー(配列番号5)0.3μL
10μM プローブ(配列番号6、5’末端をBODIPY-FL標識)0.3μL
KOD Mix(ジーンキューブ(R)テストベーシック、東洋紡製)3μL
PPD Mix(ジーンキューブ(R)テストベーシック、東洋紡製)3μL
IC Mix(ジーンキューブ(R)テストベーシック、東洋紡製)1μL
試料3μL Reagents A solution containing the following reagents was prepared.
10 μM forward primer (SEQ ID NO: 4) 0.4 μL
100 μM reverse primer (SEQ ID NO: 5) 0.3 μL
0.3 μL of 10 μM probe (SEQ ID NO: 6, 5 ′ end labeled with BODIPY-FL)
KOD Mix (Gen Cube (R) Test Basic, manufactured by Toyobo) 3μL
PPD Mix (Gen Cube (R) Test Basic, manufactured by Toyobo) 3μL
IC Mix (Gen Cube Test Basic, manufactured by Toyobo) 1 μL
Sample 3μL
以下の試薬を含む溶液を調製した。
10μM フォワードプライマー(配列番号4)0.4μL
100μM リバースプライマー(配列番号5)0.3μL
10μM プローブ(配列番号6、5’末端をBODIPY-FL標識)0.3μL
KOD Mix(ジーンキューブ(R)テストベーシック、東洋紡製)3μL
PPD Mix(ジーンキューブ(R)テストベーシック、東洋紡製)3μL
IC Mix(ジーンキューブ(R)テストベーシック、東洋紡製)1μL
試料3μL Reagents A solution containing the following reagents was prepared.
10 μM forward primer (SEQ ID NO: 4) 0.4 μL
100 μM reverse primer (SEQ ID NO: 5) 0.3 μL
0.3 μL of 10 μM probe (SEQ ID NO: 6, 5 ′ end labeled with BODIPY-FL)
KOD Mix (Gen Cube (R) Test Basic, manufactured by Toyobo) 3μL
PPD Mix (Gen Cube (R) Test Basic, manufactured by Toyobo) 3μL
IC Mix (Gen Cube Test Basic, manufactured by Toyobo) 1 μL
Sample 3μL
核酸増幅および融解曲線解析
94℃・2分
(以上1サイクル)
97℃・1秒
58℃・3秒
63℃・6秒
(以上60サイクル)
94℃・30秒
39℃・30秒
39℃~75℃(0.09℃/秒で温度上昇)
百日咳菌のカットオフ値:10
内部コントロールのカットオフ値:1.5 Nucleic acid amplification and melting curve analysis 94 ° C, 2 minutes (1 cycle or more)
97 ° C · 1 second 58 ° C · 3 seconds 63 ° C · 6 seconds (over 60 cycles)
94 ° C, 30 seconds 39 ° C, 30 seconds 39 ° C to 75 ° C (temperature rises at 0.09 ° C / second)
Pertussis cutoff value: 10
Internal control cutoff value: 1.5
94℃・2分
(以上1サイクル)
97℃・1秒
58℃・3秒
63℃・6秒
(以上60サイクル)
94℃・30秒
39℃・30秒
39℃~75℃(0.09℃/秒で温度上昇)
百日咳菌のカットオフ値:10
内部コントロールのカットオフ値:1.5 Nucleic acid amplification and melting curve analysis 94 ° C, 2 minutes (1 cycle or more)
97 ° C · 1 second 58 ° C · 3 seconds 63 ° C · 6 seconds (over 60 cycles)
94 ° C, 30 seconds 39 ° C, 30 seconds 39 ° C to 75 ° C (temperature rises at 0.09 ° C / second)
Pertussis cutoff value: 10
Internal control cutoff value: 1.5
結果
図2は、上記の条件で核酸増幅を行い、その後の温度上昇にともなう内部コントロールの蛍光強度の変化を、グラフの横軸を温度、縦軸を蛍光シグナルの微分値として解析結果を表した図である。グラフは内部コントロールの結果を示しており、フィルターありは焼結フィルターで試料をろ過した解析結果を、フィルターなしは試料を焼結フィルターでろ過していない解析結果を示している。図2より明らかなように、フィルターありの場合で内部コントロールが検出されている。しかし、フィルターなしの場合、試料に含まれる物質のPCR阻害により内部コンロトールが検出されていない。この結果から、百日咳菌の遺伝子検査では、焼結フィルターで前処理するだけで高感度な検査結果が得られることが明らかとなった。 Results FIG. 2 shows the results of analysis of the change in the fluorescence intensity of the internal control as the temperature rises after the nucleic acid amplification under the above conditions, with the horizontal axis of the graph being the temperature and the vertical axis being the differential value of the fluorescence signal. FIG. The graph shows the result of the internal control, with the filter, the analysis result obtained by filtering the sample with the sintered filter, and without the filter, the analysis result obtained when the sample was not filtered with the sintered filter. As is clear from FIG. 2, an internal control is detected when there is a filter. However, when there is no filter, internal control is not detected due to PCR inhibition of a substance contained in the sample. From this result, it was clarified that in the genetic test for Bordetella pertussis, a high-sensitivity test result can be obtained only by pretreatment with a sintered filter.
図2は、上記の条件で核酸増幅を行い、その後の温度上昇にともなう内部コントロールの蛍光強度の変化を、グラフの横軸を温度、縦軸を蛍光シグナルの微分値として解析結果を表した図である。グラフは内部コントロールの結果を示しており、フィルターありは焼結フィルターで試料をろ過した解析結果を、フィルターなしは試料を焼結フィルターでろ過していない解析結果を示している。図2より明らかなように、フィルターありの場合で内部コントロールが検出されている。しかし、フィルターなしの場合、試料に含まれる物質のPCR阻害により内部コンロトールが検出されていない。この結果から、百日咳菌の遺伝子検査では、焼結フィルターで前処理するだけで高感度な検査結果が得られることが明らかとなった。 Results FIG. 2 shows the results of analysis of the change in the fluorescence intensity of the internal control as the temperature rises after the nucleic acid amplification under the above conditions, with the horizontal axis of the graph being the temperature and the vertical axis being the differential value of the fluorescence signal. FIG. The graph shows the result of the internal control, with the filter, the analysis result obtained by filtering the sample with the sintered filter, and without the filter, the analysis result obtained when the sample was not filtered with the sintered filter. As is clear from FIG. 2, an internal control is detected when there is a filter. However, when there is no filter, internal control is not detected due to PCR inhibition of a substance contained in the sample. From this result, it was clarified that in the genetic test for Bordetella pertussis, a high-sensitivity test result can be obtained only by pretreatment with a sintered filter.
〔実施例3:肺炎マイコプラズマの検出〕
(1)試料の調製
マイコプラズマ・ニューモニエから抽出したDNA試料を10mMのTris-HCl(pH7.5)で5(コピー/μL)となるように調製し、終濃度0.2%となるようにムチン液と混合して疑似咽頭拭い液生体試料とした。この試料を孔径300μm、100μm、20μmの焼結フィルター(ポリプロピレン製)や焼結フィルター以外のフィルター(核酸抽出前ゴミ取り用として市販のフィルター:メッシュフィルター(核酸抽出用フィルター)孔径0.45μm、メンブレンフィルター孔径0.8μm以下など)を含むろ過フィルターを通過させて試料を調製した。また、焼結フィルターでろ過しない液も試料として使用した。 [Example 3: Detection of pneumonia mycoplasma]
(1) Preparation of sample A DNA sample extracted from Mycoplasma pneumoniae was prepared to 5 (copy / μL) with 10 mM Tris-HCl (pH 7.5), and mucin was prepared to a final concentration of 0.2%. A pseudo-pharyngeal wipe liquid biological sample was prepared by mixing with the liquid. Sintered filters ( made of polypropylene) with pore sizes of 300 μm, 100 μm, and 20 μm and filters other than sintered filters (commercially used filters for removing dust before nucleic acid extraction: mesh filter (filter for nucleic acid extraction) pore size of 0.45 μm, membrane A sample was prepared by passing through a filtration filter containing a filter pore size of 0.8 μm or less. Moreover, the liquid which is not filtered with a sintered filter was also used as a sample.
(1)試料の調製
マイコプラズマ・ニューモニエから抽出したDNA試料を10mMのTris-HCl(pH7.5)で5(コピー/μL)となるように調製し、終濃度0.2%となるようにムチン液と混合して疑似咽頭拭い液生体試料とした。この試料を孔径300μm、100μm、20μmの焼結フィルター(ポリプロピレン製)や焼結フィルター以外のフィルター(核酸抽出前ゴミ取り用として市販のフィルター:メッシュフィルター(核酸抽出用フィルター)孔径0.45μm、メンブレンフィルター孔径0.8μm以下など)を含むろ過フィルターを通過させて試料を調製した。また、焼結フィルターでろ過しない液も試料として使用した。 [Example 3: Detection of pneumonia mycoplasma]
(1) Preparation of sample A DNA sample extracted from Mycoplasma pneumoniae was prepared to 5 (copy / μL) with 10 mM Tris-HCl (pH 7.5), and mucin was prepared to a final concentration of 0.2%. A pseudo-pharyngeal wipe liquid biological sample was prepared by mixing with the liquid. Sintered filters ( made of polypropylene) with pore sizes of 300 μm, 100 μm, and 20 μm and filters other than sintered filters (commercially used filters for removing dust before nucleic acid extraction: mesh filter (filter for nucleic acid extraction) pore size of 0.45 μm, membrane A sample was prepared by passing through a filtration filter containing a filter pore size of 0.8 μm or less. Moreover, the liquid which is not filtered with a sintered filter was also used as a sample.
(2)核酸増幅および融解曲線解析
上記試料をそれぞれ下記試薬に添加して、下記条件によりマイコプラズマ・ニューモニエを検出した。核酸増幅および融解曲線解析には東洋紡製GENECUBE(登録商標)を使用した。 (2) Nucleic acid amplification and melting curve analysis Each of the above samples was added to the following reagents, and Mycoplasma pneumoniae was detected under the following conditions. GENECUBE (registered trademark) manufactured by Toyobo was used for nucleic acid amplification and melting curve analysis.
上記試料をそれぞれ下記試薬に添加して、下記条件によりマイコプラズマ・ニューモニエを検出した。核酸増幅および融解曲線解析には東洋紡製GENECUBE(登録商標)を使用した。 (2) Nucleic acid amplification and melting curve analysis Each of the above samples was added to the following reagents, and Mycoplasma pneumoniae was detected under the following conditions. GENECUBE (registered trademark) manufactured by Toyobo was used for nucleic acid amplification and melting curve analysis.
試薬
KOD Mix(ジーンキューブ(R)テストベーシック、東洋紡製)4μL
10μM フォワードプライマー(配列番号7)0.2μL
100μM リバースプライマー(配列番号8)0.3μL
10μM プローブ(配列番号9、5’末端をBODIPY-FL標識)0.4μL
PPD Mix(ジーンキューブ(R)テストベーシック、東洋紡製)3μL
IC Mix(ジーンキューブ(R)テストベーシック、東洋紡製)1.3μL
試料4μL Reagent KOD Mix (Gen Cube (R) Test Basic, Toyobo) 4μL
10 μM forward primer (SEQ ID NO: 7) 0.2 μL
100 μM reverse primer (SEQ ID NO: 8) 0.3 μL
0.4 μL of 10 μM probe (SEQ ID NO: 9, 5 ′ end labeled with BODIPY-FL)
PPD Mix (Gen Cube (R) Test Basic, manufactured by Toyobo) 3μL
IC Mix (Gen Cube Test Basic, manufactured by Toyobo) 1.3μL
Sample 4μL
KOD Mix(ジーンキューブ(R)テストベーシック、東洋紡製)4μL
10μM フォワードプライマー(配列番号7)0.2μL
100μM リバースプライマー(配列番号8)0.3μL
10μM プローブ(配列番号9、5’末端をBODIPY-FL標識)0.4μL
PPD Mix(ジーンキューブ(R)テストベーシック、東洋紡製)3μL
IC Mix(ジーンキューブ(R)テストベーシック、東洋紡製)1.3μL
試料4μL Reagent KOD Mix (Gen Cube (R) Test Basic, Toyobo) 4μL
10 μM forward primer (SEQ ID NO: 7) 0.2 μL
100 μM reverse primer (SEQ ID NO: 8) 0.3 μL
0.4 μL of 10 μM probe (SEQ ID NO: 9, 5 ′ end labeled with BODIPY-FL)
PPD Mix (Gen Cube (R) Test Basic, manufactured by Toyobo) 3μL
IC Mix (Gen Cube Test Basic, manufactured by Toyobo) 1.3μL
Sample 4μL
核酸増幅および融解曲線解析
94℃・2分
(以上1サイクル)
97℃・1秒
58℃・3秒
63℃・6秒
(以上60サイクル)
94℃・30秒
39℃・30秒
39℃~75℃(0.09℃/秒で温度上昇)
マイコプラズマ・ニューモニエのカットオフ値:7.5
内部コントロールのカットオフ値:1.5 Nucleic acid amplification and melting curve analysis 94 ° C, 2 minutes (1 cycle or more)
97 ° C · 1 second 58 ° C · 3 seconds 63 ° C · 6 seconds (over 60 cycles)
94 ° C, 30 seconds 39 ° C, 30 seconds 39 ° C to 75 ° C (temperature rises at 0.09 ° C / second)
Mycoplasma pneumonia cutoff value: 7.5
Internal control cutoff value: 1.5
94℃・2分
(以上1サイクル)
97℃・1秒
58℃・3秒
63℃・6秒
(以上60サイクル)
94℃・30秒
39℃・30秒
39℃~75℃(0.09℃/秒で温度上昇)
マイコプラズマ・ニューモニエのカットオフ値:7.5
内部コントロールのカットオフ値:1.5 Nucleic acid amplification and melting curve analysis 94 ° C, 2 minutes (1 cycle or more)
97 ° C · 1 second 58 ° C · 3 seconds 63 ° C · 6 seconds (over 60 cycles)
94 ° C, 30 seconds 39 ° C, 30 seconds 39 ° C to 75 ° C (temperature rises at 0.09 ° C / second)
Mycoplasma pneumonia cutoff value: 7.5
Internal control cutoff value: 1.5
結果
図3、4は、上記の条件で核酸増幅を行い、その後の温度上昇にともなう蛍光強度の変化について種々のフィルターの結果を横軸に、グラフの縦軸を蛍光シグナルの微分値として解析結果を表した図である。図3はマイコプラズマ・ニューモニエの結果を示しており、図4は内部コントロールの結果を示している。図3より明らかなように、フィルターありの場合でマイコプラズマ・ニューモニエが検出されている。しかし、フィルターなしの場合は、試料に含まれる物質のPCR阻害によりマイコプラズマ・ニューモニエが検出されていない。また、図4より、20、100μmの焼結フィルター以外で内部コントロールが検出されていない。この結果から、マイコプラズマ・ニューモニエの遺伝子検査において、高感度な検査結果を得るには、特定の大きさの孔径の焼結フィルターを用いることが重要であることが明らかとなった。 Results FIGS. 3 and 4 show results obtained by performing nucleic acid amplification under the above-mentioned conditions, and regarding the change in fluorescence intensity as the temperature rises, the results of various filters are plotted on the horizontal axis and the vertical axis of the graph is the differential value of the fluorescence signal FIG. FIG. 3 shows the results of Mycoplasma pneumoniae, and FIG. 4 shows the results of internal control. As is apparent from FIG. 3, Mycoplasma pneumoniae is detected when there is a filter. However, in the case of no filter, Mycoplasma pneumoniae has not been detected due to PCR inhibition of the substance contained in the sample. Further, from FIG. 4, no internal control was detected except for the sintered filters of 20, 100 μm. From this result, it has been clarified that it is important to use a sintered filter having a specific pore size in order to obtain a highly sensitive test result in the genetic test of Mycoplasma pneumoniae.
図3、4は、上記の条件で核酸増幅を行い、その後の温度上昇にともなう蛍光強度の変化について種々のフィルターの結果を横軸に、グラフの縦軸を蛍光シグナルの微分値として解析結果を表した図である。図3はマイコプラズマ・ニューモニエの結果を示しており、図4は内部コントロールの結果を示している。図3より明らかなように、フィルターありの場合でマイコプラズマ・ニューモニエが検出されている。しかし、フィルターなしの場合は、試料に含まれる物質のPCR阻害によりマイコプラズマ・ニューモニエが検出されていない。また、図4より、20、100μmの焼結フィルター以外で内部コントロールが検出されていない。この結果から、マイコプラズマ・ニューモニエの遺伝子検査において、高感度な検査結果を得るには、特定の大きさの孔径の焼結フィルターを用いることが重要であることが明らかとなった。 Results FIGS. 3 and 4 show results obtained by performing nucleic acid amplification under the above-mentioned conditions, and regarding the change in fluorescence intensity as the temperature rises, the results of various filters are plotted on the horizontal axis and the vertical axis of the graph is the differential value of the fluorescence signal FIG. FIG. 3 shows the results of Mycoplasma pneumoniae, and FIG. 4 shows the results of internal control. As is apparent from FIG. 3, Mycoplasma pneumoniae is detected when there is a filter. However, in the case of no filter, Mycoplasma pneumoniae has not been detected due to PCR inhibition of the substance contained in the sample. Further, from FIG. 4, no internal control was detected except for the sintered filters of 20, 100 μm. From this result, it has been clarified that it is important to use a sintered filter having a specific pore size in order to obtain a highly sensitive test result in the genetic test of Mycoplasma pneumoniae.
〔実施例4:肺炎マイコプラズマの検出〕
(1)試料の調製
マイコプラズマ・ニューモニエから抽出したDNA試料を10mMのTris-HCl(pH7.5)で10(コピー/μL)となるように調製し、生理食塩水で懸濁した咽頭拭い液と混合して疑似生体試料とした。この試料を焼結フィルター(ポリエチレン製、孔径20μm)で通過させて試料を調製した。また、フィルターろ過せず、従来法に従い遠心分離(13,000rpmで3分)した上清を、比較例の試料として使用した。
(2)核酸増幅および融解曲線解析
上記試料を下記試薬に添加して、下記条件によりマイコプラズマ・ニューモニエを検出した。核酸増幅および融解曲線解析には東洋紡製GENECUBE(登録商標)を使用した。 [Example 4: Detection of pneumonia mycoplasma]
(1) Sample preparation A DNA sample extracted from Mycoplasma pneumoniae was prepared to 10 (copy / μL) with 10 mM Tris-HCl (pH 7.5) and suspended in physiological saline. A pseudo biological sample was prepared by mixing. This sample was passed through a sintered filter (made of polyethylene,pore size 20 μm) to prepare a sample. Moreover, the supernatant which was not filtered but centrifuged according to the conventional method (13,000 rpm for 3 minutes) was used as a sample of a comparative example.
(2) Nucleic acid amplification and melting curve analysis The sample was added to the following reagents, and Mycoplasma pneumoniae was detected under the following conditions. GENECUBE (registered trademark) manufactured by Toyobo was used for nucleic acid amplification and melting curve analysis.
(1)試料の調製
マイコプラズマ・ニューモニエから抽出したDNA試料を10mMのTris-HCl(pH7.5)で10(コピー/μL)となるように調製し、生理食塩水で懸濁した咽頭拭い液と混合して疑似生体試料とした。この試料を焼結フィルター(ポリエチレン製、孔径20μm)で通過させて試料を調製した。また、フィルターろ過せず、従来法に従い遠心分離(13,000rpmで3分)した上清を、比較例の試料として使用した。
(2)核酸増幅および融解曲線解析
上記試料を下記試薬に添加して、下記条件によりマイコプラズマ・ニューモニエを検出した。核酸増幅および融解曲線解析には東洋紡製GENECUBE(登録商標)を使用した。 [Example 4: Detection of pneumonia mycoplasma]
(1) Sample preparation A DNA sample extracted from Mycoplasma pneumoniae was prepared to 10 (copy / μL) with 10 mM Tris-HCl (pH 7.5) and suspended in physiological saline. A pseudo biological sample was prepared by mixing. This sample was passed through a sintered filter (made of polyethylene,
(2) Nucleic acid amplification and melting curve analysis The sample was added to the following reagents, and Mycoplasma pneumoniae was detected under the following conditions. GENECUBE (registered trademark) manufactured by Toyobo was used for nucleic acid amplification and melting curve analysis.
試薬
KOD Mix(ジーンキューブ(R)テストベーシック、東洋紡製)4μL
10μM フォワードプライマー(配列番号7)0.2μL
100μM リバースプライマー(配列番号8)0.3μL
10μM プローブ(配列番号9、5’末端をBODIPY-FL標識)0.4μL
PPD Mix(ジーンキューブ(R)テストベーシック、東洋紡製)3μL
IC Mix(ジーンキューブ(R)テストベーシック、東洋紡製)1.3μL
試料4μL Reagent KOD Mix (Gen Cube (R) Test Basic, Toyobo) 4μL
10 μM forward primer (SEQ ID NO: 7) 0.2 μL
100 μM reverse primer (SEQ ID NO: 8) 0.3 μL
0.4 μL of 10 μM probe (SEQ ID NO: 9, 5 ′ end labeled with BODIPY-FL)
PPD Mix (Gen Cube (R) Test Basic, manufactured by Toyobo) 3μL
IC Mix (Gen Cube Test Basic, manufactured by Toyobo) 1.3μL
Sample 4μL
KOD Mix(ジーンキューブ(R)テストベーシック、東洋紡製)4μL
10μM フォワードプライマー(配列番号7)0.2μL
100μM リバースプライマー(配列番号8)0.3μL
10μM プローブ(配列番号9、5’末端をBODIPY-FL標識)0.4μL
PPD Mix(ジーンキューブ(R)テストベーシック、東洋紡製)3μL
IC Mix(ジーンキューブ(R)テストベーシック、東洋紡製)1.3μL
試料4μL Reagent KOD Mix (Gen Cube (R) Test Basic, Toyobo) 4μL
10 μM forward primer (SEQ ID NO: 7) 0.2 μL
100 μM reverse primer (SEQ ID NO: 8) 0.3 μL
0.4 μL of 10 μM probe (SEQ ID NO: 9, 5 ′ end labeled with BODIPY-FL)
PPD Mix (Gen Cube (R) Test Basic, manufactured by Toyobo) 3μL
IC Mix (Gen Cube Test Basic, manufactured by Toyobo) 1.3μL
Sample 4μL
核酸増幅および融解曲線解析
94℃・2分
(以上1サイクル)
97℃・1秒
58℃・3秒
63℃・6秒
(以上60サイクル)
94℃・30秒
39℃・30秒
39℃~75℃(0.09℃/秒で温度上昇)
マイコプラズマ・ニューモニエのカットオフ値:7.5
内部コントロールのカットオフ値:1.5 Nucleic acid amplification and melting curve analysis 94 ° C, 2 minutes (1 cycle or more)
97 ° C · 1 second 58 ° C · 3 seconds 63 ° C · 6 seconds (over 60 cycles)
94 ° C, 30 seconds 39 ° C, 30 seconds 39 ° C to 75 ° C (temperature rises at 0.09 ° C / second)
Mycoplasma pneumonia cutoff value: 7.5
Internal control cutoff value: 1.5
94℃・2分
(以上1サイクル)
97℃・1秒
58℃・3秒
63℃・6秒
(以上60サイクル)
94℃・30秒
39℃・30秒
39℃~75℃(0.09℃/秒で温度上昇)
マイコプラズマ・ニューモニエのカットオフ値:7.5
内部コントロールのカットオフ値:1.5 Nucleic acid amplification and melting curve analysis 94 ° C, 2 minutes (1 cycle or more)
97 ° C · 1 second 58 ° C · 3 seconds 63 ° C · 6 seconds (over 60 cycles)
94 ° C, 30 seconds 39 ° C, 30 seconds 39 ° C to 75 ° C (temperature rises at 0.09 ° C / second)
Mycoplasma pneumonia cutoff value: 7.5
Internal control cutoff value: 1.5
結果
図5は、上記の条件で核酸増幅を行い、その後の温度上昇にともなう蛍光強度の変化を、グラフの横軸を温度、縦軸を蛍光シグナルの微分値として解析結果を表した図である。グラフはマイコプラズマ・ニューモニエの結果を示しており、フィルターろ過は焼結フィルターで試料をろ過した解析結果を、遠心分離は試料を遠心機で13,000rpmで3分間遠心し、その上清を試料とした解析結果を示している。図5より明らかなように、焼結フィルターろ過で処理したマイコプラズマ・ニューモニエの蛍光値が、遠心分離で処理した場合より蛍光値が高い。従って、本発明の遺伝子検査方法は、従来の遠心分離法よりも、簡便な方法でありながら、より高感度に検出できることが明らかとなった。 Results FIG. 5 is a graph showing the results of analysis of the change in fluorescence intensity with the temperature rise after the nucleic acid amplification under the above conditions, with the horizontal axis of the graph being the temperature and the vertical axis being the differential value of the fluorescence signal. . The graph shows the results of Mycoplasma pneumoniae. Filter filtration is the analysis result obtained by filtering the sample with a sintered filter. Centrifugation is performed by centrifuging the sample at 13,000 rpm for 3 minutes with a centrifuge and using the supernatant as the sample. The analysis results are shown. As is clear from FIG. 5, the fluorescence value of Mycoplasma pneumoniae treated by sintering filter filtration is higher than that of the case treated by centrifugation. Therefore, it has been clarified that the genetic testing method of the present invention can be detected with higher sensitivity while being a simpler method than the conventional centrifugation method.
図5は、上記の条件で核酸増幅を行い、その後の温度上昇にともなう蛍光強度の変化を、グラフの横軸を温度、縦軸を蛍光シグナルの微分値として解析結果を表した図である。グラフはマイコプラズマ・ニューモニエの結果を示しており、フィルターろ過は焼結フィルターで試料をろ過した解析結果を、遠心分離は試料を遠心機で13,000rpmで3分間遠心し、その上清を試料とした解析結果を示している。図5より明らかなように、焼結フィルターろ過で処理したマイコプラズマ・ニューモニエの蛍光値が、遠心分離で処理した場合より蛍光値が高い。従って、本発明の遺伝子検査方法は、従来の遠心分離法よりも、簡便な方法でありながら、より高感度に検出できることが明らかとなった。 Results FIG. 5 is a graph showing the results of analysis of the change in fluorescence intensity with the temperature rise after the nucleic acid amplification under the above conditions, with the horizontal axis of the graph being the temperature and the vertical axis being the differential value of the fluorescence signal. . The graph shows the results of Mycoplasma pneumoniae. Filter filtration is the analysis result obtained by filtering the sample with a sintered filter. Centrifugation is performed by centrifuging the sample at 13,000 rpm for 3 minutes with a centrifuge and using the supernatant as the sample. The analysis results are shown. As is clear from FIG. 5, the fluorescence value of Mycoplasma pneumoniae treated by sintering filter filtration is higher than that of the case treated by centrifugation. Therefore, it has been clarified that the genetic testing method of the present invention can be detected with higher sensitivity while being a simpler method than the conventional centrifugation method.
〔実施例5:インフルエンザの検出〕
(1)試料の調製
インフルエンザ精製RNAを滅菌水で懸濁した鼻腔拭い液で1000倍、2000倍希釈し疑似生体試料とした。この試料を焼結フィルター(ポリプロピレン製、孔径20μm)で通過させて試料を調製した。また、焼結フィルターでろ過しない試料も比較として使用した。
(2)核酸増幅および融解曲線解析
上記試料を下記試薬に添加して、下記条件によりインフルエンザA型を検出した。核酸増幅として、TaqMan probeを用いたリアルタイムRT-PCRにはRotor-Gene Q(登録商標)を使用した。 [Example 5: Detection of influenza]
(1) Preparation of sample A purified biological sample was prepared by diluting influenza purified RNA 1000-fold and 2000-fold with nasal wiping liquid suspended in sterilized water. This sample was passed through a sintered filter (made of polypropylene,pore size 20 μm) to prepare a sample. A sample not filtered with a sintered filter was also used as a comparison.
(2) Nucleic acid amplification and melting curve analysis The above samples were added to the following reagents, and influenza A was detected under the following conditions. As nucleic acid amplification, Rotor-Gene Q (registered trademark) was used for real-time RT-PCR using TaqMan probe.
(1)試料の調製
インフルエンザ精製RNAを滅菌水で懸濁した鼻腔拭い液で1000倍、2000倍希釈し疑似生体試料とした。この試料を焼結フィルター(ポリプロピレン製、孔径20μm)で通過させて試料を調製した。また、焼結フィルターでろ過しない試料も比較として使用した。
(2)核酸増幅および融解曲線解析
上記試料を下記試薬に添加して、下記条件によりインフルエンザA型を検出した。核酸増幅として、TaqMan probeを用いたリアルタイムRT-PCRにはRotor-Gene Q(登録商標)を使用した。 [Example 5: Detection of influenza]
(1) Preparation of sample A purified biological sample was prepared by diluting influenza purified RNA 1000-fold and 2000-fold with nasal wiping liquid suspended in sterilized water. This sample was passed through a sintered filter (made of polypropylene,
(2) Nucleic acid amplification and melting curve analysis The above samples were added to the following reagents, and influenza A was detected under the following conditions. As nucleic acid amplification, Rotor-Gene Q (registered trademark) was used for real-time RT-PCR using TaqMan probe.
試薬
以下の試薬を含む溶液を調製した。
10μM フォワードプライマー(配列番号10)1μL
10μM リバースプライマー(配列番号11)1μL
10μM プローブ(配列番号12、5’末端をFAM、3’末端をBHQ1)0.4μL、
QRZ-101(THUNDERBIRD(R)Probe One-step qRT-PCR Kit、東洋紡製)
試料4μL A solution containing the following reagents was prepared.
1 μL of 10 μM forward primer (SEQ ID NO: 10)
10 μM reverse primer (SEQ ID NO: 11) 1 μL
0.4 μL of 10 μM probe (SEQ ID NO: 12, 5 ′ end is FAM, 3 ′ end is BHQ1),
QRZ-101 (THUNDERBIRD (R) Probe One-step qRT-PCR Kit, manufactured by Toyobo)
Sample 4μL
以下の試薬を含む溶液を調製した。
10μM フォワードプライマー(配列番号10)1μL
10μM リバースプライマー(配列番号11)1μL
10μM プローブ(配列番号12、5’末端をFAM、3’末端をBHQ1)0.4μL、
QRZ-101(THUNDERBIRD(R)Probe One-step qRT-PCR Kit、東洋紡製)
試料4μL A solution containing the following reagents was prepared.
1 μL of 10 μM forward primer (SEQ ID NO: 10)
10 μM reverse primer (SEQ ID NO: 11) 1 μL
0.4 μL of 10 μM probe (SEQ ID NO: 12, 5 ′ end is FAM, 3 ′ end is BHQ1),
QRZ-101 (THUNDERBIRD (R) Probe One-step qRT-PCR Kit, manufactured by Toyobo)
Sample 4μL
RT-PCR条件
50℃・10分
95℃・1分
(以上1サイクル)
95℃・15秒
60℃・45秒
(以上50サイクル) RT-PCR conditions 50 ° C, 10 minutes, 95 ° C, 1 minute (more than one cycle)
95 ° C / 15seconds 60 ° C / 45 seconds (over 50 cycles)
50℃・10分
95℃・1分
(以上1サイクル)
95℃・15秒
60℃・45秒
(以上50サイクル) RT-
95 ° C / 15
結果
図6は、上記の条件でリアルタイムRT-PCRを行った解析結果を表した表である。フィルター有りは焼結フィルターで試料をろ過した場合の解析結果を、フィルターなしは試料を焼結フィルターでろ過しない場合の解析結果を示している。図6より明らかなように、焼結フィルターろ過で処理した場合のインフルエンザ試料のカットオフ値(Ct値)が、フィルターろ過しない場合より立ち上がりが早い。この結果より、焼結フィルターで前処理するだけで高感度な検査結果が得られることが明らかとなった。 Results FIG. 6 is a table showing the analysis results of real-time RT-PCR under the above conditions. With the filter, the analysis result when the sample is filtered with the sintered filter is shown, and without the filter, the analysis result when the sample is not filtered with the sintered filter is shown. As is clear from FIG. 6, the cut-off value (Ct value) of the influenza sample when treated by sintered filter filtration rises faster than when the filter is not filtered. From this result, it became clear that a high-sensitivity test result can be obtained only by pretreatment with a sintered filter.
図6は、上記の条件でリアルタイムRT-PCRを行った解析結果を表した表である。フィルター有りは焼結フィルターで試料をろ過した場合の解析結果を、フィルターなしは試料を焼結フィルターでろ過しない場合の解析結果を示している。図6より明らかなように、焼結フィルターろ過で処理した場合のインフルエンザ試料のカットオフ値(Ct値)が、フィルターろ過しない場合より立ち上がりが早い。この結果より、焼結フィルターで前処理するだけで高感度な検査結果が得られることが明らかとなった。 Results FIG. 6 is a table showing the analysis results of real-time RT-PCR under the above conditions. With the filter, the analysis result when the sample is filtered with the sintered filter is shown, and without the filter, the analysis result when the sample is not filtered with the sintered filter is shown. As is clear from FIG. 6, the cut-off value (Ct value) of the influenza sample when treated by sintered filter filtration rises faster than when the filter is not filtered. From this result, it became clear that a high-sensitivity test result can be obtained only by pretreatment with a sintered filter.
〔実施例6:ノロウイルスRNAの検出〕
(1)試料の調製
フロックスワブで採取したノロウイルスG2型を含む糞便試料を精製水に懸濁した試料を、焼結フィルター(ポリエチレン製、孔径100μm)を含むろ過フィルターに通過させて試料を調製した。また、焼結フィルターでろ過しない試料も比較として使用した。
(2)核酸増幅および融解曲線解析
上記試料を下記試薬に添加して、下記条件によりノロウイルスG2型を検出した。核酸増幅および融解曲線解析には東洋紡製GENECUBE(登録商標)を使用した。 [Example 6: Detection of Norovirus RNA]
(1) Preparation of sample A sample prepared by suspending a stool sample containing Norovirus G2 type collected by Phloxwav in purified water was passed through a filtration filter containing a sintered filter (made of polyethylene, pore size 100 μm) to prepare a sample. . A sample not filtered with a sintered filter was also used as a comparison.
(2) Nucleic acid amplification and melting curve analysis The above sample was added to the following reagents, and Norovirus G2 type was detected under the following conditions. GENECUBE (registered trademark) manufactured by Toyobo was used for nucleic acid amplification and melting curve analysis.
(1)試料の調製
フロックスワブで採取したノロウイルスG2型を含む糞便試料を精製水に懸濁した試料を、焼結フィルター(ポリエチレン製、孔径100μm)を含むろ過フィルターに通過させて試料を調製した。また、焼結フィルターでろ過しない試料も比較として使用した。
(2)核酸増幅および融解曲線解析
上記試料を下記試薬に添加して、下記条件によりノロウイルスG2型を検出した。核酸増幅および融解曲線解析には東洋紡製GENECUBE(登録商標)を使用した。 [Example 6: Detection of Norovirus RNA]
(1) Preparation of sample A sample prepared by suspending a stool sample containing Norovirus G2 type collected by Phloxwav in purified water was passed through a filtration filter containing a sintered filter (made of polyethylene, pore size 100 μm) to prepare a sample. . A sample not filtered with a sintered filter was also used as a comparison.
(2) Nucleic acid amplification and melting curve analysis The above sample was added to the following reagents, and Norovirus G2 type was detected under the following conditions. GENECUBE (registered trademark) manufactured by Toyobo was used for nucleic acid amplification and melting curve analysis.
試薬
ジーンキューブ(登録商標)テストベーシック(東洋紡社)を使用して以下に示される成分を含む反応液を調製した。反応液の調製等はジーンキューブ(登録商標)テストベーシックの取扱説明書に従った。
0.5μM COG2Fプライマー(配列番号13)
1.5μM COG2Rプライマー(配列番号14)
0.3μM ハイブリダイゼーションプローブ(配列番号15、3’末端をBODIPY-FL標識)
0.05unit/μL Revertra Ace(東洋紡社)
試料3μL Reagents A reaction solution containing the components shown below was prepared using GeneCube (registered trademark) Test Basic (Toyobo Co., Ltd.). The reaction solution was prepared in accordance with the instruction manual for GeneCube (registered trademark) Test Basic.
0.5 μM COG2F primer (SEQ ID NO: 13)
1.5 μM COG2R primer (SEQ ID NO: 14)
0.3 μM hybridization probe (SEQ ID NO: 15, 3 ′ end labeled with BODIPY-FL)
0.05 unit / μL Reverse Ace (Toyobo)
Sample 3μL
ジーンキューブ(登録商標)テストベーシック(東洋紡社)を使用して以下に示される成分を含む反応液を調製した。反応液の調製等はジーンキューブ(登録商標)テストベーシックの取扱説明書に従った。
0.5μM COG2Fプライマー(配列番号13)
1.5μM COG2Rプライマー(配列番号14)
0.3μM ハイブリダイゼーションプローブ(配列番号15、3’末端をBODIPY-FL標識)
0.05unit/μL Revertra Ace(東洋紡社)
試料3μL Reagents A reaction solution containing the components shown below was prepared using GeneCube (registered trademark) Test Basic (Toyobo Co., Ltd.). The reaction solution was prepared in accordance with the instruction manual for GeneCube (registered trademark) Test Basic.
0.5 μM COG2F primer (SEQ ID NO: 13)
1.5 μM COG2R primer (SEQ ID NO: 14)
0.3 μM hybridization probe (SEQ ID NO: 15, 3 ′ end labeled with BODIPY-FL)
0.05 unit / μL Reverse Ace (Toyobo)
Sample 3μL
逆転写反応、核酸増幅および融解曲線解析
42℃ 180秒(逆転写反応)
94℃・30秒
(以上1サイクル)
98℃・1秒
60℃・10秒
63℃・10秒
(以上60サイクル)
94℃・30秒
39℃・30秒
39℃~75℃(0.09℃/秒で温度上昇)
G2のカットオフ値:7
内部コントロールのカットオフ値:1.5 Reverse transcription reaction, nucleic acid amplification andmelting curve analysis 42 ° C. 180 seconds (reverse transcription reaction)
94 ° C, 30 seconds (more than one cycle)
98 ° C · 1 second 60 ° C · 10 seconds 63 ° C · 10 seconds (over 60 cycles)
94 ° C, 30 seconds 39 ° C, 30 seconds 39 ° C to 75 ° C (temperature rises at 0.09 ° C / second)
G2 cutoff value: 7
Internal control cutoff value: 1.5
42℃ 180秒(逆転写反応)
94℃・30秒
(以上1サイクル)
98℃・1秒
60℃・10秒
63℃・10秒
(以上60サイクル)
94℃・30秒
39℃・30秒
39℃~75℃(0.09℃/秒で温度上昇)
G2のカットオフ値:7
内部コントロールのカットオフ値:1.5 Reverse transcription reaction, nucleic acid amplification and
94 ° C, 30 seconds (more than one cycle)
98 ° C · 1 second 60 ° C · 10 seconds 63 ° C · 10 seconds (over 60 cycles)
94 ° C, 30 seconds 39 ° C, 30 seconds 39 ° C to 75 ° C (temperature rises at 0.09 ° C / second)
G2 cutoff value: 7
Internal control cutoff value: 1.5
結果
図7は、上記の条件でRT-PCRを行い、その後の温度上昇にともなう蛍光強度の変化を、グラフの横軸を温度、縦軸を蛍光シグナルの微分値として解析結果を表した図である。図7より明らかなように、フィルターありの場合でノロウイルスG2が検出されている。しかし、フィルターなしの場合は、蛍光値が低くカットオフ値以下となり、弱陽性となっている。この結果から、ノロウイルスG2遺伝子検査において、高感度な検査結果を得るには、焼結フィルターを用いることが重要であることが明らかとなった。 Results FIG. 7 is a graph showing the change in fluorescence intensity as the temperature rises after the RT-PCR under the above conditions, with the horizontal axis of the graph representing the temperature and the vertical axis representing the differential value of the fluorescence signal. is there. As is apparent from FIG. 7, norovirus G2 is detected when there is a filter. However, without the filter, the fluorescence value is low and below the cut-off value, which is weakly positive. From this result, it was revealed that it is important to use a sintered filter in order to obtain a highly sensitive test result in the Norovirus G2 gene test.
図7は、上記の条件でRT-PCRを行い、その後の温度上昇にともなう蛍光強度の変化を、グラフの横軸を温度、縦軸を蛍光シグナルの微分値として解析結果を表した図である。図7より明らかなように、フィルターありの場合でノロウイルスG2が検出されている。しかし、フィルターなしの場合は、蛍光値が低くカットオフ値以下となり、弱陽性となっている。この結果から、ノロウイルスG2遺伝子検査において、高感度な検査結果を得るには、焼結フィルターを用いることが重要であることが明らかとなった。 Results FIG. 7 is a graph showing the change in fluorescence intensity as the temperature rises after the RT-PCR under the above conditions, with the horizontal axis of the graph representing the temperature and the vertical axis representing the differential value of the fluorescence signal. is there. As is apparent from FIG. 7, norovirus G2 is detected when there is a filter. However, without the filter, the fluorescence value is low and below the cut-off value, which is weakly positive. From this result, it was revealed that it is important to use a sintered filter in order to obtain a highly sensitive test result in the Norovirus G2 gene test.
本発明の方法及びキットは、疾患の検出・診断等に利用することができる。
The method and kit of the present invention can be used for disease detection and diagnosis.
1:遺伝子検査キット本体(包装箱)
2:検体試料用ろ過チューブ
21-a、21-b:焼結フィルター
3:スワブ(短繊維を付着したフロックスワブ)
31:短繊維を付着した検体採取部分
32:スワブ軸部
4:遺伝子検査試薬
41:遺伝子検査試薬の容器本体
42:遺伝子検査試薬の蓋部 1: Genetic test kit body (packaging box)
2: Specimen filter tube 21-a, 21-b: Sintered filter 3: Swab (Flox wab with short fibers attached)
31: Specimen collection part with short fibers attached 32: Swab shaft part 4: Genetic test reagent 41: Container body of genetic test reagent 42: Cover part of genetic test reagent
2:検体試料用ろ過チューブ
21-a、21-b:焼結フィルター
3:スワブ(短繊維を付着したフロックスワブ)
31:短繊維を付着した検体採取部分
32:スワブ軸部
4:遺伝子検査試薬
41:遺伝子検査試薬の容器本体
42:遺伝子検査試薬の蓋部 1: Genetic test kit body (packaging box)
2: Specimen filter tube 21-a, 21-b: Sintered filter 3: Swab (Flox wab with short fibers attached)
31: Specimen collection part with short fibers attached 32: Swab shaft part 4: Genetic test reagent 41: Container body of genetic test reagent 42: Cover part of genetic test reagent
Claims (21)
- 被検出対象を含む試料をろ過フィルターによってろ過した後に、前記試料中の被検出対象の存在を検出又は定量することを特徴とする遺伝子検査方法。 A genetic test method characterized by detecting or quantifying the presence of a target to be detected in the sample after a sample containing the target to be detected is filtered by a filtration filter.
- ろ過フィルターが焼結フィルターである請求項1に記載の遺伝子検査方法。 The genetic test method according to claim 1, wherein the filtration filter is a sintered filter.
- 焼結フィルターの素材がポリプロピレン、ポリエチレン、ポリスチレン及びポリメチルメタクリレートからなる群から選択される請求項2に記載の遺伝子検査方法。 The genetic test method according to claim 2, wherein the material of the sintered filter is selected from the group consisting of polypropylene, polyethylene, polystyrene, and polymethylmethacrylate.
- 焼結フィルターの孔径が10~100μmである請求項2に記載の遺伝子検査方法。 The genetic test method according to claim 2, wherein the pore size of the sintered filter is 10 to 100 µm.
- 遠心分離による前処理を必要としない請求項1に記載の遺伝子検査方法。 The genetic test method according to claim 1, wherein pretreatment by centrifugation is not required.
- 検体採取器具として綿棒またはスワブを用いて被検出対象を含む検体を採取して試料とし、アッセイに用いる、請求項1に記載の遺伝子検査方法。 2. The genetic testing method according to claim 1, wherein a sample containing a detection target is collected using a cotton swab or swab as a sample collecting device and used as a sample for the assay.
- 検体が生体試料である請求項6に記載の遺伝子検査方法。 The genetic test method according to claim 6, wherein the specimen is a biological sample.
- 検体がヒト又は他の動物の口腔内擦過物、咽頭拭い液、鼻腔拭い液、鼻腔吸引液、鼻腔洗浄液、肺胞洗浄液、便懸濁液、直腸拭い液、膣分泌物、子宮頸管粘液、及び尿道擦過物からなる群から選択される検体である請求項7に記載の遺伝子検査方法。 If the specimen is a human or other animal oral scrape, pharyngeal wipe, nasal wipe, nasal aspirate, nasal wash, alveolar wash, stool suspension, rectal wipe, vaginal discharge, cervical mucus, and The genetic test method according to claim 7, which is a specimen selected from the group consisting of urethral scrapings.
- 被検出対象の存在を検出又は定量することにより検査できる事項が呼吸器感染症の原因微生物若しくは該微生物由来の物質である請求項8に記載の遺伝子検査方法。 9. The genetic testing method according to claim 8, wherein the matter that can be examined by detecting or quantifying the presence of the target to be detected is a microorganism causing respiratory infection or a substance derived from the microorganism.
- 被検出対象の存在を検出又は定量することにより検査できる事項がインフルエンザウイルス、RSウイルス、アデノウイルス、A群溶連菌、肺炎マイコプラズマ、百日咳菌、及び肺炎クラミジアからなる群から選択される病原微生物若しくは該微生物由来の物質である請求項9に記載の遺伝子検査方法。 A pathogenic microorganism selected from the group consisting of influenza virus, RS virus, adenovirus, group A streptococcus, pneumonia mycoplasma, Bordetella pertussis, and Chlamydia pneumoniae or the microorganism that can be examined by detecting or quantifying the presence of the target to be detected The genetic test method according to claim 9, wherein the genetic test method is derived from a substance.
- 被検出対象の存在を検出又は定量することにより検査できる事項が下痢症の原因微生物若しくは該微生物由来の物質である請求項8に記載の遺伝子検査方法。 The genetic testing method according to claim 8, wherein the matter that can be examined by detecting or quantifying the presence of the target to be detected is a microorganism causing diarrhea or a substance derived from the microorganism.
- 被検出対象の存在を検出又は定量することにより検査できる事項がノロウイルス、ロタウイルス、サポウイルス及び下痢症アデノウイルスからなる群から選択される病原微生物若しくは該微生物由来の物質である請求項11に記載の遺伝子検査方法。 The matter that can be examined by detecting or quantifying the presence of the detection target is a pathogenic microorganism selected from the group consisting of norovirus, rotavirus, sapovirus, and diarrhea adenovirus, or a substance derived from the microorganism. Genetic testing method.
- 被検出対象の存在を検出又は定量することにより検査できる事項が性感染症の原因微生物若しくは該微生物由来の物質である請求項8に記載の遺伝子検査方法。 9. The genetic testing method according to claim 8, wherein the matter that can be examined by detecting or quantifying the presence of the target to be detected is a microorganism causing sexually transmitted disease or a substance derived from the microorganism.
- 被検出対象の存在を検出又は定量することにより検査できる事項が淋菌、クラミジア、マイコプラズマ、ウレアプラズマ、HIV及びHPVからなる群から選択される病原微生物若しくは該微生物由来の物質である請求項13に記載の遺伝子検査方法。 The matter that can be inspected by detecting or quantifying the presence of the detection target is a pathogenic microorganism selected from the group consisting of Neisseria gonorrhoeae, Chlamydia, Mycoplasma, Ureaplasma, HIV and HPV, or a substance derived from the microorganism. Genetic testing method.
- 被検出対象の存在を検出又は定量することにより検査できる事項がヒト遺伝子多型の検出である請求項8に記載の遺伝子検査方法。 The genetic test method according to claim 8, wherein the matter that can be examined by detecting or quantifying the presence of the target to be detected is detection of a human genetic polymorphism.
- 被検出対象の存在を検出又は定量することにより検査できる事項が薬剤代謝酵素遺伝子の遺伝子多型、アルコール脱水素酵素遺伝子の遺伝子多型、アセトアルデヒド脱水素酵素遺伝子の遺伝子多型、及びメチレンテトラヒドロ葉酸還元酵素遺伝子の遺伝子多型からなる群から選択されるヒト遺伝子多型である請求項15に記載の遺伝子検査方法。 The items that can be examined by detecting or quantifying the presence of the detection target are gene polymorphisms of drug metabolizing enzyme gene, gene polymorphism of alcohol dehydrogenase gene, gene polymorphism of acetaldehyde dehydrogenase gene, and methylenetetrahydrofolate reduction The genetic test method according to claim 15, which is a human gene polymorphism selected from the group consisting of gene polymorphisms of enzyme genes.
- ろ過フィルターが孔径の異なる複数のフィルターを重ねて構成されている、請求項1~16のいずれか1項に記載の遺伝子検査方法。 The gene testing method according to any one of claims 1 to 16, wherein the filtration filter is formed by stacking a plurality of filters having different pore sizes.
- 被検出対象を含む検体試料を最初に最大孔径を有するフィルターを通過させ、次いでより小さい孔径を有するフィルターを通過させる請求項17記載の遺伝子検査方法。 18. The genetic testing method according to claim 17, wherein the specimen sample containing the detection target is first passed through a filter having a maximum pore size and then passed through a filter having a smaller pore size.
- 以下を含む、検体試料中の被検出対象の存在を検査するための遺伝子検査キット。
(1)焼結フィルターを含むフィルターにより構成されたろ過フィルターを備えた検体試料用ろ過チューブ。 A genetic test kit for testing the presence of a target to be detected in a specimen sample, comprising:
(1) A specimen sample filtration tube provided with a filtration filter constituted by a filter including a sintered filter. - さらに、検体採取器具として綿棒またはスワブを含む請求項19記載の遺伝子検査キット。 Furthermore, the genetic test kit according to claim 19, further comprising a cotton swab or swab as a specimen collecting device.
- さらに、被検出対象の存在を検出又は定量することができる遺伝子検査試薬が充填されている容器を含む請求項19記載の遺伝子検査キット。 20. The genetic test kit according to claim 19, further comprising a container filled with a genetic test reagent capable of detecting or quantifying the presence of the detection target.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880000710.0A CN108884488A (en) | 2017-03-15 | 2018-03-15 | Gene tester and gene detecting kit |
JP2019506251A JP7264046B2 (en) | 2017-03-15 | 2018-03-15 | Genetic test method and genetic test kit |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-049528 | 2017-03-15 | ||
JP2017049528 | 2017-03-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018168986A1 true WO2018168986A1 (en) | 2018-09-20 |
Family
ID=63522200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/010136 WO2018168986A1 (en) | 2017-03-15 | 2018-03-15 | Gene testing method and gene testing kit |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7264046B2 (en) |
CN (1) | CN108884488A (en) |
WO (1) | WO2018168986A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019208487A1 (en) * | 2018-04-27 | 2019-10-31 | 公益財団法人筑波メディカルセンター | Method for detecting nucleic acid of pathogenic microorganism |
JP2019193607A (en) * | 2018-04-27 | 2019-11-07 | 公益財団法人筑波メディカルセンター | Nucleic acid detection method of pathogenic microorganism |
WO2020075695A1 (en) * | 2018-10-09 | 2020-04-16 | 公益財団法人筑波メディカルセンター | Microorganism detection method |
JP2020058271A (en) * | 2018-10-09 | 2020-04-16 | 公益財団法人筑波メディカルセンター | Microbe detection method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003533212A (en) * | 2000-05-13 | 2003-11-11 | ディーエヌエー リサーチ イノヴェイションズ リミテッド | Separation device |
JP2008515423A (en) * | 2004-10-08 | 2008-05-15 | グッジェン インク | Bacterial probes, DNA chips and genotyping kits that cause sexually transmitted infections |
JP2008122372A (en) * | 2006-10-19 | 2008-05-29 | Denka Seiken Co Ltd | Simple membrane assay method and kit using sample filtration filter |
JP2008527997A (en) * | 2005-01-21 | 2008-07-31 | ザ ニューヨーク ブラッド センター インコーポレイテッド | Nucleic acid extraction and identification method |
JP2010522537A (en) * | 2006-11-30 | 2010-07-08 | ナビジェニクス インコーポレイティド | Genetic analysis systems and methods |
WO2013002354A1 (en) * | 2011-06-29 | 2013-01-03 | 株式会社ダナフォーム | Biological sample pretreatment method, method for detecting rna, and pretreatment kit |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060281099A1 (en) | 2005-06-14 | 2006-12-14 | Bio-Rad Laboratories, Inc. | Q-melt for polymorphism detection |
CN101538567B (en) * | 2008-03-20 | 2012-09-19 | 杭州优思达生物技术有限公司 | Method for quickly processing filter-type micro nucleic acid clinical samples |
EP2878673B1 (en) | 2012-07-25 | 2017-08-09 | Sony Corporation | Preparation method and preparation device for sample for nucleic acid amplification reaction |
JP5904153B2 (en) | 2013-03-29 | 2016-04-13 | ソニー株式会社 | Sample preparation method for nucleic acid amplification reaction, nucleic acid amplification method, reagent for solid phase nucleic acid amplification reaction, and microchip |
CN104312913B (en) * | 2014-10-17 | 2016-05-11 | 复旦大学附属华山医院 | Integrating whole blood nucleic acid extraction, increasing is micro-fluidic chip and the application thereof of visual detection oncogene sudden change |
-
2018
- 2018-03-15 WO PCT/JP2018/010136 patent/WO2018168986A1/en active Application Filing
- 2018-03-15 CN CN201880000710.0A patent/CN108884488A/en active Pending
- 2018-03-15 JP JP2019506251A patent/JP7264046B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003533212A (en) * | 2000-05-13 | 2003-11-11 | ディーエヌエー リサーチ イノヴェイションズ リミテッド | Separation device |
JP2008515423A (en) * | 2004-10-08 | 2008-05-15 | グッジェン インク | Bacterial probes, DNA chips and genotyping kits that cause sexually transmitted infections |
JP2008527997A (en) * | 2005-01-21 | 2008-07-31 | ザ ニューヨーク ブラッド センター インコーポレイテッド | Nucleic acid extraction and identification method |
JP2008122372A (en) * | 2006-10-19 | 2008-05-29 | Denka Seiken Co Ltd | Simple membrane assay method and kit using sample filtration filter |
JP2010522537A (en) * | 2006-11-30 | 2010-07-08 | ナビジェニクス インコーポレイティド | Genetic analysis systems and methods |
WO2013002354A1 (en) * | 2011-06-29 | 2013-01-03 | 株式会社ダナフォーム | Biological sample pretreatment method, method for detecting rna, and pretreatment kit |
Non-Patent Citations (1)
Title |
---|
UJIIYE, TAKESHI: "Useful method ''Nucleic Acid-Chromatography'' for genetic testing", APANESE JOURNAL OF CLINICAL CHEMISTRY, vol. 36, 2007, pages 19 - 24 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019208487A1 (en) * | 2018-04-27 | 2019-10-31 | 公益財団法人筑波メディカルセンター | Method for detecting nucleic acid of pathogenic microorganism |
JP2019193607A (en) * | 2018-04-27 | 2019-11-07 | 公益財団法人筑波メディカルセンター | Nucleic acid detection method of pathogenic microorganism |
JP7187175B2 (en) | 2018-04-27 | 2022-12-12 | 公益財団法人筑波メディカルセンター | Nucleic acid detection method for pathogenic microorganisms |
WO2020075695A1 (en) * | 2018-10-09 | 2020-04-16 | 公益財団法人筑波メディカルセンター | Microorganism detection method |
JP2020058271A (en) * | 2018-10-09 | 2020-04-16 | 公益財団法人筑波メディカルセンター | Microbe detection method |
CN112805388A (en) * | 2018-10-09 | 2021-05-14 | 公益财团法人筑波医疗中心 | Method for detecting microorganism |
JP7329912B2 (en) | 2018-10-09 | 2023-08-21 | 公益財団法人筑波メディカルセンター | Microorganism detection method |
Also Published As
Publication number | Publication date |
---|---|
JP7264046B2 (en) | 2023-04-25 |
JPWO2018168986A1 (en) | 2020-01-16 |
CN108884488A (en) | 2018-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018168986A1 (en) | Gene testing method and gene testing kit | |
JP5202732B2 (en) | Nucleic acid extraction equipment | |
JP6688883B2 (en) | Device components, devices, and methods for purifying and testing biomolecules from biological samples | |
EP1173623B1 (en) | Solid medium and process for the storage and rapid purification of nucleic acid | |
JP5651011B2 (en) | Polynucleotide capture material and method of use thereof | |
CN102137702B (en) | Nucleic acid extraction method | |
CN105925568A (en) | Method for co-extracting DNA/RNA (Deoxyribonucleic Acid/Ribonucleic Acid) virus nucleic acid | |
US20120231466A1 (en) | Methods and compositions for isolating nucleic acid | |
CN101684463A (en) | Method and kit for rapidly extracting nucleic acids from trace clinical samples | |
JP2017526355A (en) | Device for acquiring biomaterial and / or bioinformation from a sample containing a heterogeneous matrix | |
WO2014133467A1 (en) | Methods and biomarkers for the detection of circulating tumor cells | |
US6881543B2 (en) | Sampling and storage system for genetic material from tissue | |
JP7588815B2 (en) | RNA filter and RNA filtering method | |
CN102134588B (en) | Legionella pneumophilia test kit and application thereof | |
CN107988210A (en) | A kind of method of rapid extraction blood and buccal swab genomic DNA | |
JP6437250B2 (en) | Pretreatment method and nucleic acid extraction kit used therefor | |
US20220049321A1 (en) | Method, system and apparatus for blood processing unit | |
JP7187175B2 (en) | Nucleic acid detection method for pathogenic microorganisms | |
CN210506297U (en) | Micro flow channel chip and micro flow channel structure | |
CN102140542B (en) | Kit for rapidly detecting potato viruses Y and detection method | |
CN210506296U (en) | Micro flow channel chip and micro flow channel structure | |
WO2019208487A1 (en) | Method for detecting nucleic acid of pathogenic microorganism | |
JP2005073595A (en) | Method for preparing nucleic acid sample and method for amplifying nucleic acid | |
CN117050856A (en) | Analytical column for enriching mycobacterium tuberculosis nucleic acid and application thereof | |
TR2023002225A1 (en) | ISOLATION OF NUCLEIC ACIDS FROM MATERIALS OF DIFFERENT SOURCES USING MARBLE MICRO PARTICLES (MMP) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18767139 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019506251 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18767139 Country of ref document: EP Kind code of ref document: A1 |