+

WO2018168696A1 - 光海底ケーブルシステムおよび光海底中継装置 - Google Patents

光海底ケーブルシステムおよび光海底中継装置 Download PDF

Info

Publication number
WO2018168696A1
WO2018168696A1 PCT/JP2018/009238 JP2018009238W WO2018168696A1 WO 2018168696 A1 WO2018168696 A1 WO 2018168696A1 JP 2018009238 W JP2018009238 W JP 2018009238W WO 2018168696 A1 WO2018168696 A1 WO 2018168696A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical submarine
current
driving
excitation
Prior art date
Application number
PCT/JP2018/009238
Other languages
English (en)
French (fr)
Inventor
晋吾 亀田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to CN201880016239.4A priority Critical patent/CN110383717B/zh
Priority to JP2019505968A priority patent/JP6825695B2/ja
Priority to US16/487,149 priority patent/US11223427B2/en
Priority to EP18768571.4A priority patent/EP3598668A4/en
Publication of WO2018168696A1 publication Critical patent/WO2018168696A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/806Arrangements for feeding power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/294Signal power control in a multiwavelength system, e.g. gain equalisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water

Definitions

  • the present invention relates to an optical submarine cable system and an optical submarine repeater that is provided in the optical submarine cable system and adopts an optical direct amplification technique.
  • optical submarine repeaters adopting pump laser technology using LD (Laser Diode) and direct optical amplification technology using EDF (Erbium-Doped Fiber).
  • LD Laser Diode
  • EDF Erbium-Doped Fiber
  • FIG. 6A is a configuration diagram showing a configuration of a current optical submarine cable system related to the present invention.
  • FIG. 6B shows the internal configuration of the optical submarine repeater 10M and the circuit configuration of the excitation LD driving device 11M in the optical submarine repeater 10M.
  • the excitation LD driving device 11M outputs an optical signal for exciting an optical amplifier (EDFA: Erbium-Doped Fiber Amplifier).
  • EDFA Erbium-Doped Fiber Amplifier
  • the optical submarine cable system is provided on land and connects the land terminal devices 30M to each other in order to perform optical communication between the land terminal devices 30M installed so as to face each other.
  • a power feeder (PFE: Power Feeding Equipment) is arranged as a current source in the land terminal device 30M.
  • PFE Power Feeding Equipment
  • the power supply line from the power supply apparatus is connected in series to each optical submarine repeater apparatus 10M as an optical submarine cable 20M together with an optical fiber for optical signal transmission.
  • Each optical submarine repeater 10M is configured to include a pumping LD driving device 11M, a multiplexing unit 12M, and an optical amplifier (EDFA) 13M, as shown in FIG. 6B.
  • the pumping LD driving device 11M outputs pumping light for driving the optical amplifier 13M.
  • the multiplexing unit 12M combines the wavelength multiplexed optical signal input from the optical fiber as the wavelength multiplexed optical signal with the excitation driving excitation light, drives the optical amplifier 13M, and receives the input wavelength.
  • the multiplexed optical signal is pumped and amplified by the optical amplifier 13M and output.
  • the pumping LD driving device 11M includes an LD driving circuit 111M and a constant voltage supply circuit 112M as shown in an internal configuration flock diagram below the block of the optical submarine relay device 10M in FIG. 6B.
  • the LD drive circuit 111M drives an LD (Laser Diode: semiconductor laser) to output predetermined pumping light for driving the optical amplifier 13M to pump, and requires electric power to drive the LD. .
  • the constant voltage supply circuit 112M when the system current I A coming is powered from the power supply device of land terminal station device 30M is larger than the total required amount of current required for driving the LD driving circuit 111M, by bypassing It is a circuit for flowing.
  • the constant voltage supply circuit 112M is connected in parallel with the LD drive circuit 111M so that the surplus current flows.
  • a plurality of pumping LD driving devices 11M for pumping the optical amplifier 13M be arranged in each optical submarine repeater 10M as shown in FIG. 7 for the following reason. .
  • the excitation LD driving device 11M is made redundant. Is desirable.
  • an optical submarine cable system in which a plurality of optical submarine transmission systems (a combination of two optical fibers for bidirectional transmission ⁇ a transmission system including the number of systems) is laid in parallel can be constructed. desirable.
  • FIG. 7 is a block diagram showing an internal configuration different from that of FIG. 6B of the optical submarine repeater constituting the current optical submarine cable system related to the present invention.
  • Each optical submarine repeater includes a plurality of multiplexing units. 2 shows a configuration in the case where an excitation LD driving device and an optical amplifier are provided. Note that the configuration example shown in FIG. 7 includes a first sequence having a (C + L) band configuration in which optical signals in the C-band wavelength band and the L-band wavelength band are used together, and is different from the first sequence in optical transmission. A case is also shown in which a second configuration of the system is provided, and the first and second sequences are each made redundant.
  • the optical submarine repeater 10N shown in FIG. 7 includes, as the first series, a duplex configuration of the excitation LD driving device 11Na1 and the excitation LD driving device 11Nb1 that excite C-band and L-band, and the excitation LD driving.
  • a multiplexing unit 12Nab1 that performs multiplexing / demultiplexing of C-band and L-band pumping light from either the device 11Na1 or the excitation LD driving device 11Nb1, a C-band multiplexing unit 12NC, and an optical amplifier 13NC; , An L-band multiplexer 12NL and an optical amplifier 13NL.
  • the driving of the LD drive circuit used for C-band excitation is performed. It is different from the desired current value I L required for driving the LD driving circuit used for the excitation of the required current value I C and L-band required for.
  • the C-band optical amplifier and the L-band optical amplifier are arranged on different optical fibers.
  • the L-band LD drive circuit having a longer wavelength than the C-band tends to require more current than the C-band LD drive circuit.
  • L-band LD driving provided in the excitation LD driving device 11Na1 of FIG. case of supplying the series current to the LD driving circuit for the circuit and C-band, as shown in FIG.
  • FIG. 8 is an explanatory diagram for explaining a problem in the current technology of an optical submarine repeater having a (C + L) band configuration that uses both the C band wavelength band and the L band wavelength band. That is, FIG.
  • connection configuration of the feeder line in the pumping LD driving device of the optical submarine repeater in the current technology for pumping each of the C band wavelength band and the L band wavelength band.
  • the connection configuration of the feeder line to the LD driving circuit is described as an example.
  • the current for driving the optical submarine repeater is supplied as a system current from the power supply device in the land terminal device via the optical submarine cable.
  • the present invention has been made in order to solve the above-described problems. Even in a configuration including a plurality of LD driving circuits having different required currents, the present invention is effective in suppressing excess current.
  • An object of the present invention is to provide an optical submarine cable system and an optical submarine repeater that enable current supply.
  • the optical submarine cable system and the optical submarine repeater according to the present invention mainly adopt the following characteristic configuration.
  • An optical submarine cable system comprises: In an optical submarine cable system in which an optical submarine repeater is arranged for each optical submarine cable relay section,
  • the optical submarine repeater has an optical amplifier and an excitation LD (Laser Diode) driving device that outputs excitation light for exciting the optical amplifier,
  • the excitation LD driving device includes a plurality of LD driving circuits, and power supply lines for supplying power to each of the plurality of LD driving circuits are connected in parallel.
  • the optical submarine repeater according to the present invention is An optical submarine repeater arranged for each optical submarine cable relay section in an optical submarine cable system, An optical amplifier and an excitation LD (Laser Diode) driving device that outputs excitation light for exciting the optical amplifier;
  • the excitation LD driving device includes a plurality of LD driving circuits, and power supply lines for supplying power to each of the plurality of LD driving circuits are connected in parallel.
  • the present invention even when a plurality of LD drive circuits having different required currents are installed in the optical submarine repeater, it is possible to efficiently supply current while suppressing excess current, and the optical submarine cable system. The effect that the desired current required for the whole can be kept low is obtained. The reason is that when a plurality of LD drive circuits having different currents required for driving are installed in the optical submarine repeater, the connection paths of the feeder lines to each LD drive circuit are connected in parallel. is there.
  • FIG. 4A It is a block diagram which shows the structural example of the optical submarine cable system which concerns on this invention. It is a block block diagram which shows an example of an internal structure of the optical submarine repeater shown in FIG. It is a block block diagram which shows an example of an internal structure of the LD drive device for excitation in the optical submarine repeater shown in FIG. It is a block diagram which shows the example of a connection structure at the time of making the LD drive device for excitation in the optical submarine repeater shown in FIG. 2 into a redundant structure. It is a block diagram which shows the connection structural example of the LD drive device for redundant excitation in the optical submarine repeater which made the LD drive device for excitation shown in FIG. 4A redundant.
  • FIG. 6B is a diagram showing an internal configuration of the optical submarine repeater 10M in the optical submarine cable system shown in FIG. 6A and a circuit configuration of an excitation LD driving device in the optical submarine repeater 10M. It is a block diagram which shows the internal structure different from FIG. 6B of the optical submarine repeater which comprises the present optical submarine cable system relevant to this invention. It is explanatory drawing for demonstrating the problem in the present technique of the optical submarine repeater of a (C + L) band structure which uses together the wavelength band of C band, and the wavelength band of L band.
  • the present invention provides an optical submarine repeater having a plurality of LD drive circuits having different currents required for output of pumping light to each of a plurality of optical amplifiers, wherein power feed lines of the plurality of LD drive circuits are connected in parallel,
  • the main feature is that a plurality of the LD driving devices are driven simultaneously.
  • connection configuration is used in which feed lines of the LD driving circuit 111L for exciting the band and the LD driving circuit 111C for exciting the C band are connected in series.
  • the consumption current flowing in the LD driving circuit 111L for excitation of L-band and I L the consumption current flowing in the LD driving circuit 111C for excitation of C-band I C (however, I L> I C )
  • the L-band excitation LD drive circuit 111L and the C-band excitation LD drive circuit are used for any of the optical submarine repeaters arranged for each optical submarine cable relay section.
  • a connection configuration in which a power supply line to 111C is connected in parallel is adopted.
  • the L-band LD drive circuit 111L and the C-band for the C-band connected in parallel in the excitation LD drive device As a result, in any optical submarine repeater to which the optical submarine cable is connected, unlike the case of FIG. 8, the L-band LD drive circuit 111L and the C-band for the C-band connected in parallel in the excitation LD drive device. LD driving circuit 111C and the consumption current I L and I C flows in each, the excess current flowing through the constant voltage supply circuit does not occur. Therefore, the system current of the optical submarine cable system can be effectively used, and the desired current required for the entire optical submarine cable system can be kept low.
  • FIG. 1 is a configuration diagram showing a configuration example of an optical submarine cable system according to the present invention, and has the same configuration as the configuration shown in FIG. 6A as the current technology related to the present invention. That is, as shown in FIG. 1, the optical submarine cable system is configured to connect both land terminal devices 30 in order to perform optical communication between the land terminal devices 30 installed so as to face the land.
  • the optical submarine cable 20 laid on the seabed and one or more optical submarine repeaters 10 arranged in multiple stages for each relay section of the optical submarine cable 20 are configured.
  • the wavelength multiplexed optical signal input from the land terminal device 30 is pumped by the optical submarine repeater 10 connected in multiple stages on the optical submarine cable 20 at appropriate intervals. The signal is transmitted to the opposite land terminal device 30 while repeating the amplification.
  • a power feeding device (PFE: Power Feeding Equipment) is used as a current source in the land terminal device 30. 31 is arranged, and a power supply line from the power supply device 31 is connected as an optical submarine cable 20 in series with each optical submarine repeater 10 together with an optical fiber for optical signal transmission.
  • FIG. 1 shows the case where the power feeding device 31 is provided in the land terminal device 30, the power feeding device 31 may be arranged separately from the land terminal device 30.
  • FIG. 2 is a block diagram showing an example of the internal configuration of the optical submarine repeater 10 shown in FIG.
  • the optical submarine cable system according to the present invention includes a plurality of optical submarine transmission systems laid in parallel.
  • FIG. 2 illustrates the case where two optical transmission systems of the first series and the second series are included.
  • the present invention is not limited to such a system number, and any number of systems may be used. I do not care.
  • the first optical submarine transmission system is transmitted via the first optical fiber 20a in the optical submarine cable 20
  • the two-series optical submarine transmission system is transmitted via the second series optical fiber 20b in the optical submarine cable 20.
  • the pumping LD semiconductor laser
  • the required current value required for each drive is different.
  • optical submarine repeaters 10 arranged in multiple stages on the optical submarine cable 20 have the same internal configuration, and as shown in FIG. It includes at least a unit 12ab, a first multiplexer 12a, a first optical amplifier (EDFA) 13a, a second multiplexer 12b, and a second optical amplifier (EDFA) 13b.
  • EDFA optical amplifier
  • the pumping LD driving device 11 of the optical submarine repeater 10 in FIG. 2 outputs the first pumping light and the second pumping light for performing the amplification pumping of the optical signals of the optical submarine transmission systems of the first series and the second series, respectively.
  • the multiplexing unit 12ab multiplexes / demultiplexes the first excitation light and the second excitation light, the first excitation light to the first multiplexing unit 12a, and the second excitation light to the second combination.
  • the unit 12b To the unit 12b.
  • the optical signal of the first-sequence optical submarine transmission system input from the first-sequence optical fiber 20a is multiplexed with the first pumping light in the first multiplexing unit 12a, whereby the first optical amplifier 13a.
  • the input optical signal is pumped and amplified by the first optical amplifier 13a and output.
  • the optical signal of the second-sequence optical submarine transmission system input from the second-sequence optical fiber 20b is multiplexed with the second pumping light in the second multiplexing unit 12b, whereby the second optical amplifier. 13b is driven, and the input optical signal is pumped and amplified by the second optical amplifier 13b and output.
  • FIG. 3 is a block configuration diagram showing an example of an internal configuration of the excitation LD drive device 11 in the optical submarine repeater 10 shown in FIG.
  • the pumping LD driving device 11 includes the first pumping light for performing amplification pumping of the optical signal of the first series optical submarine transmission system and the optical signal of the second series optical submarine transmission system. Both of the second pumping light and the second pumping light for performing the amplification excitation are output.
  • the excitation LD driving device 11 includes a first LD driving circuit 111a, a second LD driving circuit 111b, and a constant voltage supply circuit 112.
  • the first LD driving circuit 111a drives an LD (Laser Diode: semiconductor laser) and outputs predetermined first excitation light for exciting and driving the first optical amplifier 13a.
  • the second LD driving circuit 111b The LD is driven to output predetermined second pumping light for pumping the second optical amplifier 13b.
  • the constant voltage supply circuit 112 the system current I A coming is powered from the power supply device 31 of the land terminal station apparatus 30 total required current amount required for driving both of the 1LD drive circuit 111a and the 2LD driving circuit 111b Is a circuit for bypassing the surplus current to the constant voltage supply circuit 112 side, and is connected in parallel with the first LD driving circuit 111a and the second LD driving circuit 111b.
  • each LD drive circuit 111a that outputs the first pumping light for the first series optical submarine transmission system.
  • the value Ia is different from the required current value Ib required for driving the second LD drive circuit 111b that outputs the second pumping light for the second series optical submarine transmission system.
  • each LD drive circuit that outputs each excitation light is required for driving.
  • the power feed lines of the respective LD drive devices that is, the power feed lines of the first LD drive circuit 111a and the second LD drive circuit 111b are connected in parallel to each other.
  • the device that is, the first LD driving circuit 111a and the second LD driving circuit 111b are configured to be driven simultaneously. That is, as shown in FIG. 3, the feed lines of the first LD drive circuit 111a, the second LD drive circuit 111b, and the constant voltage supply circuit 112 are connected in parallel.
  • any optical submarine repeater 10 to which the optical submarine cable 20 is connected unlike the case shown in FIG. 8 as the current technology related to the present invention, as shown in FIG. Consumption currents Ia and Ib flow in the first LD driving circuit 111a and the second LD driving circuit 111b connected in parallel in the device 11, and no surplus current flowing in the constant voltage supply circuit 112 is generated. Therefore, the system current of the optical submarine cable system can be effectively used, and the desired current required for the entire optical submarine cable system can be kept low. Thus, it becomes possible to construct an optical submarine cable system that realizes a long-distance large-capacity communication system.
  • FIG. 4A is a configuration diagram illustrating a connection configuration example when the excitation LD drive device 11 in the optical submarine repeater 10 illustrated in FIG. 2 is configured in a redundant configuration.
  • FIG. 4A shows a connection configuration example in a case where a duplex configuration of the 0-system excitation LD drive device 11A and the 1-system excitation LD drive device 11B is adopted as a redundant configuration of the excitation LD drive device.
  • a state in which the 0-system excitation LD drive device 11A and the 1-system excitation LD drive device 11B are connected to the multiplexing unit 12ab shown in FIG. 2 is shown.
  • FIG. 4B shows the connection state of the feeder lines to the two devices, the 0-system excitation LD drive device 11A and the 1-system excitation LD drive device 11B shown in FIG. 4A.
  • the multiplexing unit 12ab performs multiplexing / demultiplexing of the excitation light output from either the 0-system excitation LD driving device 11A or the excitation LD driving device 11B, and the corresponding first multiplexing Output to each of the unit 12a and the second multiplexing unit 12b.
  • the multiplexing unit 12ab performs multiplexing / demultiplexing of the excitation light output from either the 0-system excitation LD driving device 11A or the excitation LD driving device 11B, and the corresponding first multiplexing Output to each of the unit 12a and the second multiplexing unit 12b.
  • the current value Ia is different from the required current value Ib required for driving each of the 0-system second LD drive circuit 111bA and the 1-system second LD drive circuit 111bB that outputs the second pump light for the second-series optical submarine transmission system. It is a value.
  • the current supply route (that is, the feed line connection route) in each of the 0-system excitation LD drive device 11A and the 1-system excitation LD drive device 11B is shown in FIG.
  • the 0-system first LD drive circuit 111aA, the 0-system second LD drive circuit 111bA, and the 0-system constant voltage supply circuit 112A are connected in parallel, respectively, and the 1-system first LD drive circuit 111aB.
  • a 1-system second LD drive circuit 111bB and a 1-system constant voltage supply circuit 112B are connected in parallel.
  • the current supply route between the 0-system excitation LD drive device 11A and the 1-system excitation LD drive device 11B (that is, the feed line connection route) is cascade-connected in series.
  • any optical submarine repeater 10 to which the optical submarine cable 20 is connected as shown in FIG. 4B, a 0-system first LD drive in which feeder lines are connected in parallel in the 0-system excitation LD drive apparatus 11A.
  • the consumption current Ia and the consumption current Ib flow through the circuit 111aA and the 0-system second LD drive circuit 111bA, respectively, and no surplus current flows through the 0-system constant voltage supply circuit 112A.
  • the current consumption Ia and the current consumption Ib flow in the first-system first LD drive circuit 111aB and the first-system second LD drive circuit 111bB, respectively, in which the feeder lines are connected in parallel in the first-system excitation LD drive device 11B. No surplus current flows through the 1-system constant voltage supply circuit 112B.
  • FIG. 1 When constructing an optical submarine repeater that accommodates a plurality of optical submarine transmission systems, when applying a redundant configuration with N-duplication (N: natural number of 2 or more) as an LD drive circuit, FIG.
  • N natural number of 2 or more
  • N natural number of 2 or more
  • FIG. 1 the number of redundant feeder lines of LD drive circuits for optical submarine transmission systems of the same series, that is, LD drive devices that require the same required current, that is, A configuration is adopted in which N units connected in parallel are cascade-connected for the number of series (for the number of systems). Therefore, surplus current is generated on the side of the LD drive circuit for the optical submarine transmission system having the smaller required current, and wasteful power is consumed.
  • a current obtained by adding the current flowing in the LD drive circuit side for the submarine transmission system by the number in parallel, that is, N is required as the system current of the entire optical submarine cable system.
  • each LD drive circuit for an optical submarine transmission system that is, each LD drive circuit for all series including LD drive circuits that require different currents, is connected in parallel for the number of series (for the number of systems).
  • a configuration is adopted in which the configuration is cascade-connected for the redundant number, that is, N.
  • an LD drive control IC Integrated Circuit
  • FIG. 5 is a block diagram showing a modification of the pumping LD drive device 11 in the optical submarine repeater 10 shown in FIG. 3, and a current branch circuit for branching power to each LD drive circuit is provided.
  • the excitation LD driving device 11 includes an LD driving control IC 11K and a constant voltage supply circuit 112.
  • the LD drive control IC11K from feeder current value supplied as the system current I A of current (Ia + Ib), in the first 1LD driving circuit 111a side of the required current Ia and the 2LD driving circuit 111b side of the required current Ib A branching current branch circuit 111K is provided, and a first LD driving circuit 111a and a second LD driving circuit 111b connected to the branched power supply lines on the output side of the current branching circuit 111K are provided.
  • the LD drive control IC 11K includes only the current branch circuit 111K, and the first LD drive circuit 111a and the second LD drive circuit 111b are externally connected to the branched power supply lines. May be.
  • the first LD drive circuit 111a in the LD drive control IC 11K drives the first LD with the drive current Ia branched by the current branch circuit 111K and outputs the first excitation light.
  • the second LD drive circuit 111b can drive the second LD with the drive current Ib branched by the current branch circuit 111K to output the second excitation light.
  • the present invention can be applied to any number (system number) of two or more sequences.
  • the number of LD driving devices provided for the optical submarine transmission system of the same series is not limited to one, and is composed of two or more as in the case of the redundant configuration described above.
  • the present invention can be applied.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

必要とする所要電流が異なる複数のLD駆動回路を備えた構成であっても、余剰な電流を抑制した効率的な電流供給を可能にする光海底ケーブルシステムおよび光海底中継装置を提供する。光海底ケーブルの中継区間ごとに光海底中継装置を配置した光海底ケーブルシステムの各前記光海底中継装置内において、光増幅器を励起するための励起光を出力する励起用LD(Laser Diode)駆動装置(11)として、必要とする所要電流が異なる複数のLD駆動回路例えば所要電流Iaの第1LD駆動回路(111a)と所要電流(Ib)の第2LD駆動回路(111b)とが含まれて構成されている場合、第1LD駆動回路(111a)と第2LD駆動回路(111b)それぞれに給電するための給電線を並列に接続した構成とする。

Description

光海底ケーブルシステムおよび光海底中継装置
 本発明は、光海底ケーブルシステム、およびその光海底ケーブルシステムに設けられ、光直接増幅技術を採用した光海底中継装置に関する。
 近年、光海底ケーブルシステムの分野においては、LD(Laser Diode:半導体レーザ)による励起レーザ技術とEDF(Erbium-Doped Fiber:エルビウムドープ光ファイバ)による光直接増幅技術とを採用した光海底中継装置が導入され、さらに、波長多重伝送技術を組み合わせることにより、大容量の光海底ケーブルシステムが実用化されている。而して、光海底ケーブル1本当たりの伝送可能容量を飛躍的に増加させることが可能になり、インターネットを始め、国際間大容量データ伝送を支えるバックボーンの通信システムとして不可欠な存在になっている。
 図6Aは、本発明に関連する現状の光海底ケーブルシステムの構成を示す構成図である。図6Bは、光海底中継装置10Mの内部構成、およびその光海底中継装置10Mにおける励起用LD駆動装置11Mの回路構成を示す。励起用LD駆動装置11Mは、光増幅器(EDFA:Erbium-Doped Fiber Amplifier)を励起するための光信号を出力する。
 光海底ケーブルシステムは、図6Aに示すように、それぞれ陸上に設けられ、対向させるようにして設置した陸上端局装置30M相互の光通信を行うために、陸上端局装置30Mを互いに接続するように海底に敷設した光海底ケーブル20Mと、該光海底ケーブル20Mの中継区間ごとに多段に配置されている1ないし複数の光海底中継装置10Mとによって構成されている。
 図6Aにおいて、海底に配置される各光海底中継装置10Mに対して電力を供給するために、陸上端局装置30M内には、電流源として給電装置(PFE:Power Feeding Equipment)が配置されていて、該給電装置からの給電線が、光海底ケーブル20Mとして、光信号伝送用の光ファイバとともに、各光海底中継装置10Mに対して直列的に接続されている。
 また、各光海底中継装置10Mは、図6Bに示すように、励起用LD駆動装置11M、合波部12M、光増幅器(EDFA)13Mを含んで構成されている。励起用LD駆動装置11Mは、光増幅器13Mに対する励起駆動用の励起光を出力する。合波部12Mは、波長多重化した光信号として光ファイバから入力されてくる波長多重光信号をその励起駆動用の励起光と合波させ、光増幅器13Mを駆動して、入力してくる波長多重光信号を光増幅器13Mにより励起増幅して、出力する。
 なお、励起用LD駆動装置11Mは、図6Bにおいて光海底中継装置10Mのブロックの下に内部構成フロック図で示すように、LD駆動回路111Mと定電圧供給回路112Mとから構成されている。LD駆動回路111Mは、LD(Laser Diode:半導体レーザ)を駆動して、光増幅器13Mを励起駆動するための所定の励起光を出力させるものであり、該LDを駆動するためには電力を要する。また、定電圧供給回路112Mは、陸上端局装置30M内の給電装置から給電されてくるシステム電流IがLD駆動回路111Mの駆動に要する総所要電流量を上回っている場合に、バイパスさせて流すための回路である。定電圧供給回路112Mは、その余剰電流を流すように、LD駆動回路111Mと並列に接続されている。
 ここで、光増幅器13Mを励起駆動するための励起用LD駆動装置11Mは、以下に示すような理由から、図7に示すように、各光海底中継装置10M内に複数個配置することが望ましい。
(1)光海底ケーブルシステムとしての信頼性向上を図るために、例えば特許文献1の国際公開第2014/208048号等にも記載されているように、励起用LD駆動装置11Mを冗長化した構成とすることが望ましい。
(2)伝送容量を増大するために、複数の光海底伝送システム(双方向伝送用の光ファイバ2本の組み合わせ×システム数を含む伝送システム)を並行敷設した光海底ケーブルシステムを構築することが望ましい。
(3)さらに、近年、伝送容量の増加に伴い、光ファイバの利用効率の向上を図るために、現状の光通信で使用されているCバンドの波長帯域に加えて、該Cバンドよりも波長の長いLバンドの併用が検討されており、異なるバンドの複数の光信号を対象とする光海底ケーブルシステムを構築することが望ましい。
 図7は、本発明に関連する現状の光海底ケーブルシステムを構成する光海底中継装置の図6Bとは異なる内部構成を示す構成図であり、各光海底中継装置として、複数個の合波部、励起用LD駆動装置および光増幅器を備えた場合の構成を示している。なお、図7に示す構成例においては、Cバンドの波長帯域とLバンドの波長帯域の光信号を併用した(C+L)バンド構成の第1系列を備え、かつ、第1系列とは異なる光伝送システムの第2系列も備え、かつ、該第1系列、該第2系列それぞれを冗長化した二重化構成とした場合について示している。
 すなわち、図7に示す光海底中継装置10Nは、第1系列として、CバンドおよびLバンドの励起を行う励起用LD駆動装置11Na1と励起用LD駆動装置11Nb1との二重化構成と、励起用LD駆動装置11Na1と励起用LD駆動装置11Nb1とのいずれかからのCバンドおよびLバンドの励起光の合波・分波を行う合波部12Nab1と、Cバンド用の合波部12NCおよび光増幅器13NCと、Lバンド用の合波部12NLおよび光増幅器13NLと、を備えている。また、第2系列として、Cバンド、Lバンドとは異なる光伝送システムの2つの励起光を出力する励起用LD駆動装置11Na2と励起用LD駆動装置11Nb2との二重化構成と、励起用LD駆動装置11Na2と励起用LD駆動装置11Nb2とのいずれかからの2つの励起光の合波・分波を行う合波部12Nab2と、一方の励起光用の合波部12NXおよび光増幅器13NXと、他方の励起光用の合波部12NYおよび光増幅器13NYと、を備えている。
国際公開第2014/208048号
 近年のインターネットの急激な普及に伴い、長距離、大容量通信の需要が益々高まっている。海底ケーブルシステムも例外ではなく、給電装置(PFE:Power Feeding Equipment)の電流供給量が決まっている中で、長距離通信を実現しなければならない。そのために、光海底中継装置における消費電流の低減が強く求められている。
 しかしながら、前述したような本発明に関連する現状の光海底ケーブルシステムにおいては、光海底中継装置内の定電圧供給回路側に流れる余剰電流を削減することが困難である。例えば、図7に例示したような、Cバンドの波長帯域とLバンドの波長帯域とを併用する(C+L)バンド構成の光海底中継装置においては、Cバンドの励起用に用いるLD駆動回路の駆動に要する所要電流値IとLバンドの励起用に用いるLD駆動回路の駆動に要する所要電流値Iとは異なっている。なお、図7に示したように、Cバンド用の光増幅器とLバンドの光増幅器とはそれぞれ異なる光ファイバ上に配置されている。
 つまり、一般的に、Cバンドよりも波長の長いLバンド用のLD駆動回路の方が、Cバンド用のLD駆動回路よりも多く電流を要する傾向にある。その結果、陸上の給電装置から光海底ケーブルを介して直列的に電流が供給される光海底ケーブルシステムにおいては、例えば図7の励起用LD駆動装置11Na1内に備えられたLバンド用のLD駆動回路とCバンド用のLD駆動回路とに直列的に電流を供給した場合、図8に示すように、Lバンド用のLD駆動回路111Lの負荷に流れる電流IとCバンド用のLD駆動回路111Cの負荷に流れる電流Iとの消費電流の差により、Cバンド用の定電圧供給回路112C側には余剰電流Iが流れることになる。このため、光海底中継装置としての電流の低減を十分に図ることができないという不都合が発生してしまう。図8は、Cバンドの波長帯域とLバンドの波長帯域とを併用する(C+L)バンド構成の光海底中継装置の現状の技術における問題を説明するための説明図である。すなわち、図8は、現状の技術における光海底中継装置の励起用LD駆動装置内における給電線の接続構成上の問題点について、Cバンドの波長帯域とLバンドの波長帯域とのそれぞれの励起用のLD駆動回路に対する給電線の接続構成を例にして説明している。
 ここで、図8に示す説明図を参照して光海底中継器における余剰電流について、補足して説明しておく。前述したように、光海底中継器を駆動するための電流は、陸上端局装置内の給電装置から光海底ケーブルを介してシステム電流として給電されてくる。図8に示すような接続構成において、Lバンド用のLD駆動回路111Lに流れる消費電流をIとし、Cバンド用のLD駆動回路111Cに流れる消費電流をI(ただし、I>I)とした場合、陸上端局装置内の給電装置から光海底ケーブルを介して給電されてくるシステム電流Iは、
   I=I
に設定される。
 したがって、Lバンド用のLD駆動回路111Lに並列接続された定電圧供給回路112Lに流れる余剰電流は発生しないが、Cバンド用のLD駆動回路111Cに並列接続された定電圧供給回路112Cには、余剰電流Iとして、
   I=I-I
で与えられる電流が流れることになる。
(本発明の目的)
 本発明は、前述のような課題を解決するためになされたものであり、必要とする所要電流が異なる複数のLD駆動回路を備えた構成であっても、余剰な電流を抑制した効率的な電流供給を可能にする光海底ケーブルシステムおよび光海底中継装置を提供することを、その目的としている。
 前述の課題を解決するため、本発明による光海底ケーブルシステムおよび光海底中継装置は、主に、次のような特徴的な構成を採用している。
 (1)本発明による光海底ケーブルシステムは、
 光海底ケーブルの中継区間ごとに光海底中継装置を配置した光海底ケーブルシステムにおいて、
 前記光海底中継装置は、光増幅器と該光増幅器を励起するための励起光を出力する励起用LD(Laser Diode)駆動装置とを有し、
 前記励起用LD駆動装置は、複数のLD駆動回路を有し、複数の前記LD駆動回路それぞれに給電するための給電線を並列に接続していることを特徴とする。
 (2)本発明による光海底中継装置は、
 光海底ケーブルシステムにおける光海底ケーブルの中継区間ごとに配置される光海底中継装置であって、
 光増幅器と該光増幅器を励起するための励起光を出力する励起用LD(Laser Diode)駆動装置とを有し、
 前記励起用LD駆動装置は、複数のLD駆動回路を有し、複数の前記LD駆動回路それぞれに給電するための給電線を並列に接続していることを特徴とする。
 本発明の光海底ケーブルシステムおよび光海底中継装置によれば、以下のような効果を奏することができる。
 すなわち、本発明においては、光海底中継装置内に所要電流が異なる複数のLD駆動回路を設置した場合であっても、余剰な電流を抑制した効率的な電流供給を可能にし、光海底ケーブルシステム全体に必要とする所望電流を低く抑えることができるという効果が得られる。その理由は、光海底中継装置内にそれぞれの駆動に要する所要電流が異なる複数のLD駆動回路を設置する場合、各LD駆動回路に対する給電線の接続経路を並列に接続した構成にしていることにある。
本発明に係る光海底ケーブルシステムの構成例を示す構成図である。 図1に示した光海底中継装置の内部構成の一例を示すブロック構成図である。 図2に示した光海底中継装置内の励起用LD駆動装置の内部構成の一例を示すブロック構成図である。 図2に示した光海底中継装置内の励起用LD駆動装置を冗長化構成にした場合の接続構成例を示す構成図である。 図4Aに示した励起用LD駆動装置を冗長化構成にした光海底中継装置内におけるその冗長化励起用LD駆動装置の接続構成例を示す構成図である。 図3に示した光海底中継装置内の励起用LD駆動装置の変形例を示すブロック構成図である。 本発明に関連する現状の光海底ケーブルシステムの構成を示す構成図である。 図6Aに示した光海底ケーブルシステムにおける光海底中継装置10Mの内部構成、およびその光海底中継装置10Mにおける励起用LD駆動装置の回路構成を示す図である。 本発明に関連する現状の光海底ケーブルシステムを構成する光海底中継装置の図6Bとは異なる内部構成を示す構成図である。 Cバンドの波長帯域とLバンドの波長帯域とを併用する(C+L)バンド構成の光海底中継装置の現状の技術における問題を説明するための説明図である。
 以下、本発明による光海底ケーブルシステムおよび光海底中継装置の好適な実施形態について添付図を参照して説明する。なお、以下の各図面に付した図面参照符号は、理解を助けるための一例として各要素に便宜上付記したものであり、本発明を図示の態様に限定することを意図するものではないことも言うまでもない。
(本発明の特徴)
 本発明の実施形態の説明に先立って、本発明の特徴についてその概要をまず説明する。本発明は、複数の光増幅器それぞれに対する励起光の出力に要する所要電流が異なる複数のLD駆動回路を備えた光海底中継装置において、複数の前記LD駆動回路の給電線を並列に接続して、複数の前記LD駆動装置を同時に駆動させることを主要な特徴としている。而して、光海底中継装置を含む光海底ケーブルシステム全体として、必要とする所要電流すなわちシステム電流を有効に活用することができ、無駄な電流の消耗を抑制することを可能にしている。
 例えば、Cバンドの波長帯域とLバンドの波長帯域とを併用する(C+L)バンド構成の光海底中継装置の場合、本発明に関連する現状の技術においては、図8に示したように、Lバンドの励起用のLD駆動回路111LとCバンドの励起用のLD駆動回路111Cとのそれぞれの給電線を直列に接続した接続構成を用いている。
 その結果、前述したように、Lバンドの励起用のLD駆動回路111Lに流れる消費電流をIとし、Cバンドの励起用のLD駆動回路111Cに流れる消費電流をI(ただし、I>I)とした場合、陸上の給電装置から光海底ケーブルを介して給電されてくるシステム電流Iは、
   I=I
に設定される。
 したがって、Lバンドの励起用のLD駆動回路111Lに並列接続されている定電圧供給回路112Lには、余剰電流が流れないが、Cバンドの励起用のLD駆動回路111Cに並列接続されている定電圧供給回路112Cには、余剰電流Iとして、
   I=I-I
で与えられる電流が流れることになる。
 これに対して、本発明においては、光海底ケーブルの中継区間ごとに配置される光海底中継装置のいずれについても、Lバンドの励起用のLD駆動回路111LとCバンドの励起用のLD駆動回路111Cとの給電線を並列に接続した接続構成を採用する。したがって、陸上の給電装置から光海底ケーブルを介して給電されてくるシステム電流Iは、
   I=I+I
に設定されることになる。
 その結果、光海底ケーブルが接続されるどの光海底中継装置においても、図8の場合とは異なり、励起用LD駆動装置内に並列接続されたLバンド用のLD駆動回路111LとCバンド用のLD駆動回路111Cとのそれぞれに消費電流IとIとが流れ、定電圧供給回路に流れる余剰電流は発生しない。よって、光海底ケーブルシステムのシステム電流を有効に活用することができ、光海底ケーブルシステム全体に必要とする所望電流を低く抑えることができる。
(本発明の実施形態)
 次に、本発明に係る光海底ケーブルシステムおよび光海底中継装置の実施形態について、図面を参照しながらその一例を説明する。図1は、本発明に係る光海底ケーブルシステムの構成例を示す構成図であり、本発明に関連する現状の技術として図6Aを示した構成と同じ構成からなっている。すなわち、図1に示すように、光海底ケーブルシステムは、陸上に対向させるようにしてそれぞれ設置した陸上端局装置30相互の光通信を行うために、両陸上端局装置30を接続するように海底に敷設した光海底ケーブル20と、該光海底ケーブル20の中継区間ごとに多段に配置されている1ないし複数の光海底中継装置10とによって構成されている。この図1の光海底ケーブルシステムでは、陸上端局装置30から入力されてくる波長多重光信号を、光海底ケーブル20上に適切な間隔毎に多段に接続された光海底中継装置10でもって励起増幅を繰り返しながら、対向する陸上端局装置30まで伝送していく。
 そして、海底に配置される各光海底中継装置10に対して電力を供給するために、図6Aの場合と同様、陸上端局装置30内に、電流源として給電装置(PFE:Power Feeding Equipment)31が配置されていて、該給電装置31からの給電線が、光海底ケーブル20として、光信号伝送用の光ファイバとともに、各光海底中継装置10に対して直列的に接続されている。なお、図1においては、給電装置31は、陸上端局装置30内に備えられている場合を示したが、陸上端局装置30とは別個に配置するように構成しても差し支えない。
 次に、図1に示した光海底中継装置10の内部構成について、その一例を説明する。図2は、図1に示した光海底中継装置10の内部構成の一例を示すブロック構成図である。なお、本発明に係る光海底ケーブルシステムにおいては、並行敷設された複数の系列の光海底伝送システムを含んで構成されている。図2においては、第1系列、第2系列の2つの光伝送システムを含んでいる場合を例示しているが、本発明は、かかるシステム数に限るものではなく、任意のシステム数であって構わない。例えば、Cバンドの波長帯域を用いる光伝送システムとLバンドの波長帯域を用いる光伝送システムとを少なくとも含む複数の系列のシステムから構成されるようにすることも可能である。
 つまり、2つの系列の光伝送システムを含む図2に示す本実施形態においては、第1系列の光海底伝送システムは、光海底ケーブル20内の第1系列光ファイバ20aを介して伝送され、第2系列の光海底伝送システムは、光海底ケーブル20内の第2系列光ファイバ20bを介して伝送される。ここで、第1系列の光海底伝送システムと第2系列の光海底伝送システムとのそれぞれの光信号を励起増幅するために、光海底中継装置10に備えられている励起用のLD(半導体レーザ)それぞれの駆動に要する所要電流値は異なる値であるものと仮定している。
 なお、光海底ケーブル20上に多段に配置されている各光海底中継装置10は、同一の内部構成からなっており、いずれも、図2に示すように、励起用LD駆動装置11、合波部12ab、第1合波部12a、第1光増幅器(EDFA)13a、第2合波部12b、第2光増幅器(EDFA)13bを少なくとも含んで構成されている。
 図2の光海底中継装置10の励起用LD駆動装置11が、第1系列、第2系列それぞれの光海底伝送システムの光信号の増幅励起を行うための第1励起光、第2励起光を出力すると、合波部12abにおいて、第1励起光と第2励起光とに合波・分波させて、第1励起光を第1合波部12aに、第2励起光を第2合波部12bに入力する。
 そして、第1系列光ファイバ20aから入力されてくる第1系列の光海底伝送システムの光信号は、第1合波部12aにおいて第1励起光と合波されることにより、第1光増幅器13aを駆動して、入力してくる光信号を第1光増幅器13aにより励起増幅させて出力する。同様に、第2系列光ファイバ20bから入力されてくる第2系列の光海底伝送システムの光信号は、第2合波部12bにおいて第2励起光と合波されることにより、第2光増幅器13bを駆動して、入力してくる光信号を第2光増幅器13bにより励起増幅させて出力する。
 次に、図2に示した光海底中継装置10内の励起用LD駆動装置11の内部構成について、その一例を説明する。図3は、図2に示した光海底中継装置10内の励起用LD駆動装置11の内部構成の一例を示すブロック構成図である。なお、励起用LD駆動装置11は、前述したように、第1系列の光海底伝送システムの光信号の増幅励起を行うための第1励起光と、第2系列の光海底伝送システムの光信号の増幅励起を行うための第2励起光との双方を出力する。
 励起用LD駆動装置11は、図3に示すように、第1LD駆動回路111aと第2LD駆動回路111bと定電圧供給回路112とから構成されている。第1LD駆動回路111aは、LD(Laser Diode:半導体レーザ)を駆動して、第1光増幅器13aを励起駆動するための所定の第1励起光を出力するものであり、第2LD駆動回路111bは、LDを駆動して、第2光増幅器13bを励起駆動するための所定の第2励起光を出力するものである。なお、定電圧供給回路112は、陸上端局装置30内の給電装置31から給電されてくるシステム電流Iが第1LD駆動回路111aおよび第2LD駆動回路111bの双方の駆動に要する総所要電流量を上回っている場合に、余剰電流を定電圧供給回路112側にバイパスさせて流すための回路であり、第1LD駆動回路111aおよび第2LD駆動回路111bと並列に接続されて構成される。
 ここで、それぞれのLDを駆動するためには電力を要するが、前述したように、第1系列の光海底伝送システム用の第1励起光を出力する第1LD駆動回路111aの駆動に要する所要電流値Iaと第2系列の光海底伝送システム用の第2励起光を出力する第2LD駆動回路111bの駆動に要する所要電流値Ibとは異なっている。図3に示すように、本実施形態における励起用LD駆動装置11においては、本発明に関連する現状の技術の場合とは異なり、各励起光の出力を行う各LD駆動回路に関して、駆動に要する所要電流値が異なるLD駆動回路が存在している場合には、各LD駆動装置の給電線すなわち第1LD駆動回路111aと第2LD駆動回路111bとの給電線を並列に接続して、各LD駆動装置すなわち第1LD駆動回路111aと第2LD駆動回路111bとを同時に駆動するように構成している。つまり、図3に示すように、第1LD駆動回路111aと第2LD駆動回路111bと定電圧供給回路112との給電線は並列に接続されている。
 したがって、光海底ケーブル20の中継区間ごとに配置される光海底中継装置10のいずれについても、第1LD駆動回路111aと第2LD駆動回路111bとが並列に接続されているので、陸上端局装置30内の給電装置31から光海底ケーブル20を介して給電されてくるシステム電流Iは、
   I=Ia+Ib
に設定されることになる。
 その結果、光海底ケーブル20が接続されるどの光海底中継装置10においても、本発明に関連する現状の技術として図8に示した場合とは異なり、図3に示すように、励起用LD駆動装置11内に並列接続された第1LD駆動回路111aと第2LD駆動回路111bとのそれぞれに消費電流IaとIbとが流れ、定電圧供給回路112に流れる余剰電流は発生しない。よって、光海底ケーブルシステムのシステム電流を有効に活用することができ、光海底ケーブルシステム全体に必要とする所望電流を低く抑えることができる。而して、長距離大容量通信システムを実現する光海底ケーブルシステムを構築することが可能になる。
 次に、海底ケーブルシステムとしての信頼性の向上を図るために、励起用LD駆動装置11を冗長化させて二重化構成にした場合について説明する。図4Aは、図2に示した光海底中継装置10内の励起用LD駆動装置11を冗長化構成にした場合の接続構成例を示す構成図である。なお、図4Aは、励起用LD駆動装置の冗長化構成として0系励起用LD駆動装置11Aと1系励起用LD駆動装置11Bとの二重化構成を採用した場合の接続構成例を示しており、0系励起用LD駆動装置11Aと1系励起用LD駆動装置11Bとを図2に示した合波部12abと接続している状態を示している。また、図4Bは、図4Aに示した0系励起用LD駆動装置11Aと1系励起用LD駆動装置11Bとの2つの装置に対する給電線の接続状態を示している。
 図4Aに示す接続構成は、図2に示した励起用LD駆動装置11の代わりに、二重化構成の0系励起用LD駆動装置11Aと1系励起用LD駆動装置11Bとが、合波部12abに接続された構成となっている。しかし、この他の構成部位については、図2の構成と同じ構成である。なお、合波部12abは、0系励起用LD駆動装置11Aと励起用LD駆動装置11Bとのいずれかから出力されてくる励起光の合波・分波を行って、対応する第1合波部12a、第2合波部12bそれぞれに対して出力する。ここで、図3において説明した場合と同様、第1系列の光海底伝送システム用の第1励起光を出力する0系第1LD駆動回路111aA、1系第1LD駆動回路111aBそれぞれの駆動に要する所要電流値Iaと第2系列の光海底伝送システム用の第2励起光を出力する0系第2LD駆動回路111bA、1系第2LD駆動回路111bBそれぞれの駆動に要する所要電流値Ibとは異なった電流値になっている。
 また、図4Bに示すように、0系励起用LD駆動装置11Aと1系励起用LD駆動装置11Bとのそれぞれの内部における電流の供給ルート(すなわち給電線の接続経路)に関しては、図3に示した並列接続構成の場合と同様、それぞれ、0系第1LD駆動回路111aA、0系第2LD駆動回路111bA、0系定電圧供給回路112Aが並列に接続され、また、1系第1LD駆動回路111aB、1系第2LD駆動回路111bB、1系定電圧供給回路112Bが並列に接続されて、構成される。そして、0系励起用LD駆動装置11Aと1系励起用LD駆動装置11Bとの間の電流の供給ルート(すなわち給電線の接続経路)に関しては、直列にカスケード接続された構成からなっている。
 したがって、二重化構成の励起用LD駆動装置を採用した場合においても、図3に示した場合と同様、陸上端局装置30内の給電装置31から光海底ケーブル20を介して給電されてくるシステム電流Iは、0系励起用LD駆動装置11Aと1系励起用LD駆動装置11Bとのいずれにおいても、図4Bに示すように、
   I=Ia+Ib
に設定されることになる。
 その結果、光海底ケーブル20が接続されるどの光海底中継装置10においても、図4Bに示すように、0系励起用LD駆動装置11A内においては給電線が並列接続された0系第1LD駆動回路111aAと0系第2LD駆動回路111bAとのそれぞれに消費電流Iaと消費電流Ibとが流れ、0系定電圧供給回路112Aに流れる余剰電流は発生しない。同様に、1系励起用LD駆動装置11B内においても給電線が並列接続された1系第1LD駆動回路111aBと1系第2LD駆動回路111bBとのそれぞれに消費電流Iaと消費電流Ibとが流れ、1系定電圧供給回路112Bに流れる余剰電流は発生しない。
 さらに説明すれば次の通りである。複数の系列の光海底伝送システムを収容する光海底中継装置を構築する際に、LD駆動回路としてN重化(N:2以上の自然数)した冗長化構成を適用する場合には、図8に示したような本発明に関連する現状の技術においては、同じ系列の光海底伝送システム用のLD駆動回路同士すなわち同じ所要電流を必要とするLD駆動装置同士の給電線を冗長化した個数分すなわちN個分並列に接続したものを、系列数分(システム数分)カスケード接続する構成を採用している。したがって、所要電流が少ない方の系列の光海底伝送システム用のLD駆動回路側には余剰電流が生じることになり、無駄な電力を消費するとともに、さらには、所要電流が大きい方の系列の光海底伝送システム用のLD駆動回路側に流れる電流を並列個数分つまりN個分加えた電流が光海底ケーブルシステム全体のシステム電流として必要になってしまう。
 これに対して、図4Bに例示したような本実施形態においては、LD駆動回路の冗長化構成を適用する場合、異なる所要電流を必要とするLD駆動装置が存在している場合、異なる系列の光海底伝送システム用の各LD駆動回路、すなわち、異なる所要電流が必要なLD駆動回路も含む全ての系列用の各LD駆動回路それぞれの給電線を系列数分(システム数分)並列に接続する構成としたものを、冗長化した個数分すなわちN個分カスケード接続する構成を採用している。
 したがって、本発明に関連する現状の技術とは異なり、余剰な電流が発生することはなく、かつ、本発明に関連する現状の技術に比し、光海底ケーブルシステム全体のシステム電流を少ない電流値に抑制することができる。よって、光海底ケーブルシステムのシステム電流を有効に活用することができ、光海底ケーブルシステム全体に必要とする所望電流を低く抑えることができる。而して、長距離大容量通信システムを実現する光海底ケーブルシステムを構築することが可能になる。
 次に、本発明に係る光海底中継装置の異なる構成例について説明する。すなわち、図3に示した光海底中継装置10内の励起用LD駆動装置11の変形例として、図5に示すようなLD駆動制御用IC(Integrated Circuit)を備えるようにしても良い。図5は、図3に示した光海底中継装置10内の励起用LD駆動装置11の変形例を示すブロック構成図であり、各LD駆動回路それぞれに分岐させて給電するための電流分岐回路を少なくとも含むLD駆動制御用ICを備えている場合を示している。ここで、図5に示す構成例においては、励起用LD駆動装置11は、LD駆動制御用IC11Kと定電圧供給回路112とから構成されている例を示している。
 LD駆動制御用IC11Kは、給電線からシステム電流Iとして供給される電流値(Ia+Ib)の電流を、所要電流Iaの第1LD駆動回路111a側と所要電流Ibの第2LD駆動回路111b側とに分岐する電流分岐回路111Kを備えているとともに、該電流分岐回路111Kの出力側の分岐したそれぞれの給電線に接続された第1LD駆動回路111aと第2LD駆動回路111bとを備えている。ただし、前述したように、場合によっては、LD駆動制御用IC11Kは、電流分岐回路111Kのみとし、分岐したそれぞれの給電線に第1LD駆動回路111aと第2LD駆動回路111bとを外部接続するようにしても良い。以上のような構成とすることにより、LD駆動制御用IC11K内の第1LD駆動回路111aは、電流分岐回路111Kにより分岐された駆動電流Iaにより第1LDを駆動して第1の励起光を出力させ、第2LD駆動回路111bは、電流分岐回路111Kにより分岐された駆動電流Ibにより第2LDを駆動して第2の励起光を出力させることができる。
 また、以上の実施形態の説明においては、本海底ケーブルシステムに収容する光海底伝送システムの系列数(システム数)として、2系列の場合について説明したが、本発明は、かかる2系列のみの場合に限るものではなく、2系列以上の任意の系列数(システム数)であっても、適用することができることは言うまでもない。さらには、同一の系列の光海底伝送システム用として備えるLD駆動装置の個数についても、1個に限るものではなく、冗長化構成に関して前述した場合と同様に、2個以上の個数からなっていても、本発明を適用することが可能である。
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2017年3月17日に出願された日本出願特願2017-052921を基礎とする優先権を主張し、その開示の全てをここに取り込む。
10     光海底中継装置
10M    光海底中継装置
10N    光海底中継装置
11     励起用LD駆動装置
11A    0系励起用LD駆動装置
11B    1系励起用LD駆動装置
11K    LD駆動制御用IC
11M    励起用LD駆動装置
11Na1  励起用LD駆動装置
11Na2  励起用LD駆動装置
11Nb1  励起用LD駆動装置
11Nb2  励起用LD駆動装置
12M    合波部
12NC   合波部
12NL   合波部
12NX   合波部
12NY   合波部
12Nab1 合波部
12Nab2 合波部
12a    第1合波部
12ab   合波部
12b    第2合波部
13M    光増幅器(EDFA:Erbium-Doped Fiber Amplifier)
13NC   光増幅器
13NL   光増幅器
13NX   光増幅器
13NY   光増幅器
13a    第1光増幅器(EDFA)
13b    第2光増幅器(EDFA) 
20     光海底ケーブル
20M    光海底ケーブル
20a    第1系列光ファイバ
20b    第2系列光ファイバ
30     陸上端局装置
30M    陸上端局装置
31     給電装置
111a   第1LD駆動回路
111aA  0系第1LD駆動回路
111aB  1系第1LD駆動回路
111b   第2LD駆動回路
111bA  0系第2LD駆動回路
111bB  1系第2LD駆動回路
111C   LD駆動回路
111K   電流分岐回路
111L   LD駆動回路
111M   LD駆動回路
112    定電圧供給回路
112A   0系定電圧供給回路
112B   1系定電圧供給回路
112C   定電圧供給回路
112L   定電圧供給回路
112M   定電圧供給回路
      システム電流
Ia     所要電流値
Ib     所要電流値
      電流
      電流
      余剰電流

Claims (8)

  1.  光海底ケーブルの中継区間ごとに光海底中継装置を配置し、
     前記光海底中継装置は、光増幅器と該光増幅器を励起するための励起光を出力する励起用LD(Laser Diode)駆動装置とを有し、
     前記励起用LD駆動装置は、複数のLD駆動回路を有し、複数の前記LD駆動回路それぞれに給電するための給電線を並列に接続していることを特徴とする光海底ケーブルシステム。
  2.  前記LD駆動装置は、Cバンドの波長帯域の光信号を対象とするLD駆動回路とLバンドの波長帯域の光信号を対象とするLD駆動回路とを有することを特徴とする請求項1に記載の光海底ケーブルシステム。
  3.  複数の前記LD駆動回路それぞれをN重化(N:2以上の自然数)した冗長化構成とする場合、前記LD駆動回路それぞれに給電するための給電線を並列接続したものを、冗長化した個数分を示すN個分カスケード接続した構成とすることを特徴とする請求項1または2に記載の光海底ケーブルシステム。
  4.  システム全体に必要とするシステム電流を、複数の前記LD駆動回路それぞれが必要とする前記所要電流に相当する電流ごとに分岐して前記LD駆動回路それぞれに給電する電流分岐回路を含んで構成されるLD駆動制御用IC(Integrated Circuit)を備えていることを特徴とする請求項1ないし3のいずれかに記載の光海底ケーブルシステム。
  5.  光海底ケーブルシステムにおける光海底ケーブルの中継区間ごとに配置され、
     光増幅器と該光増幅器を励起するための励起光を出力する励起用LD(Laser Diode)駆動装置とを有し、
     前記励起用LD駆動装置は、複数のLD駆動回路を有し、複数の前記LD駆動回路それぞれに給電するための給電線を並列に接続していることを特徴とする光海底中継装置。
  6.  前記LD駆動装置は、Cバンドの波長帯域の光信号を対象とするLD駆動回路とLバンドの波長帯域の光信号を対象とするLD駆動回路とを有することを特徴とする請求項5に記載の光海底中継装置。
  7.  複数の前記LD駆動回路それぞれをN重化(N:2以上の自然数)した冗長化構成とする場合、前記LD駆動回路それぞれに給電するための給電線を並列接続したものを、冗長化した個数分を示すN個分カスケード接続した構成とすることを特徴とする請求項5または6に記載の光海底中継装置。
  8.  システム全体に必要とするシステム電流を、複数の前記LD駆動回路それぞれが必要とする前記所要電流に相当する電流ごとに分岐して前記LD駆動回路それぞれに給電する電流分岐回路を少なくとも含んで構成されるLD駆動制御用IC(Integrated Circuit)を備えていることを特徴とする請求項5ないし7のいずれかに記載の光海底中継装置。
PCT/JP2018/009238 2017-03-17 2018-03-09 光海底ケーブルシステムおよび光海底中継装置 WO2018168696A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880016239.4A CN110383717B (zh) 2017-03-17 2018-03-09 光海底线缆系统和光海底中继设备
JP2019505968A JP6825695B2 (ja) 2017-03-17 2018-03-09 光海底ケーブルシステムおよび光海底中継装置
US16/487,149 US11223427B2 (en) 2017-03-17 2018-03-09 Optical submarine cable system and optical submarine relay apparatus
EP18768571.4A EP3598668A4 (en) 2017-03-17 2018-03-09 OPTICAL UNDERWATER CABLE SYSTEM AND OPTICAL UNDERWATER RELAY DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-052921 2017-03-17
JP2017052921 2017-03-17

Publications (1)

Publication Number Publication Date
WO2018168696A1 true WO2018168696A1 (ja) 2018-09-20

Family

ID=63523954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009238 WO2018168696A1 (ja) 2017-03-17 2018-03-09 光海底ケーブルシステムおよび光海底中継装置

Country Status (5)

Country Link
US (1) US11223427B2 (ja)
EP (1) EP3598668A4 (ja)
JP (1) JP6825695B2 (ja)
CN (1) CN110383717B (ja)
WO (1) WO2018168696A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188086A1 (ja) * 2022-03-30 2023-10-05 日本電気株式会社 光中継器、及び光通信システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11223427B2 (en) * 2017-03-17 2022-01-11 Nec Corporation Optical submarine cable system and optical submarine relay apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05190946A (ja) * 1992-01-17 1993-07-30 Fujitsu Ltd 励起光供給方法
JPH06315012A (ja) * 1993-04-28 1994-11-08 Fujitsu Ltd 中継伝送装置
JP2003032201A (ja) * 2001-07-11 2003-01-31 Mitsubishi Electric Corp 光中継システムおよび光増幅中継器制御方法
WO2014208048A1 (ja) 2013-06-24 2014-12-31 日本電気株式会社 レーザーダイオード駆動装置、光直接増幅装置、光信号伝送システム及びレーザーダイオード駆動方法
JP2017052921A (ja) 2015-09-11 2017-03-16 株式会社カネカ フィルム

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123842A (ja) * 1985-11-25 1987-06-05 Fujitsu Ltd 光通信装置
JPH0795160A (ja) * 1993-09-20 1995-04-07 Fujitsu Ltd 光増幅器の応答信号変調方法
JPH1012954A (ja) * 1996-06-26 1998-01-16 Fujitsu Ltd 光増幅器
US6049417A (en) * 1997-06-02 2000-04-11 Lucent Technologies Inc. Wide band optical amplifier
US6335823B2 (en) * 1997-10-17 2002-01-01 Fujitsu Limited Optical amplifier for use in optical communications equipment
JPH11238930A (ja) * 1998-02-20 1999-08-31 Kdd 光増幅伝送システム及び光増幅中継装置
FR2781321A1 (fr) * 1998-07-06 2000-01-21 Alsthom Cge Alcatel Amplification quasi-distribuee dans un systeme de transmission a fibre optique a signaux solitons
WO2000005622A1 (fr) * 1998-07-23 2000-02-03 The Furukawa Electric Co., Ltd. Amplificateur raman, repeteur optique et procede d'amplification raman
JP4204693B2 (ja) * 1999-03-31 2009-01-07 三菱電機株式会社 光増幅装置
JP2001168799A (ja) * 1999-12-08 2001-06-22 Nec Corp 光通信システム及びそれに用いる光中継器
JP2001249369A (ja) * 2000-03-02 2001-09-14 Nec Corp 光増幅器とこれを用いた光増幅中継器及び波長多重光伝送装置
AU2001253465A1 (en) * 2000-04-13 2001-10-30 University Of Southern California Wdm fiber amplifiers using sampled bragg gratings
JP3774108B2 (ja) * 2000-06-27 2006-05-10 三菱電機株式会社 光増幅中継器の監視方式
JP2002057607A (ja) * 2000-08-11 2002-02-22 Mitsubishi Electric Corp 給電路切替方法および給電路分岐装置と給電路切替システム
US20020057477A1 (en) * 2000-10-25 2002-05-16 Corrado Rocca Underwater optical transmission system and switchable underwater repeater
ATE373345T1 (de) 2000-12-27 2007-09-15 Pirelli & C Spa Unterseekabelverzweigungseinheit mit strombegrenzer
JP4626918B2 (ja) * 2001-03-02 2011-02-09 富士通株式会社 ラマン光増幅中継器
US7203427B2 (en) * 2001-05-15 2007-04-10 Alphion Corporation Redundant path all-optical regeneration, reshaping and wavelength conversion for enhanced yield
JP3759704B2 (ja) * 2001-07-18 2006-03-29 三菱電機株式会社 給電路切替回路および海中分岐装置
JP4651231B2 (ja) * 2001-07-26 2011-03-16 富士通株式会社 光伝送システム
US20030108351A1 (en) * 2001-09-24 2003-06-12 Feinberg Lee Daniel Methods for ultra long-haul optical communications
US7120362B2 (en) * 2001-10-03 2006-10-10 Bo Pedersen High power repeaters for Raman amplified, wave division multiplexed optical communication systems
US20030067671A1 (en) * 2001-10-05 2003-04-10 Islam Mohammed N. High reliability optical amplification
EP1326354A3 (en) * 2001-12-07 2005-07-20 Sumitomo Electric Industries, Ltd. Optical fiber transmission line, optical cable, and optical transmission system
DE10209374A1 (de) * 2002-03-02 2003-07-31 Rofin Sinar Laser Gmbh Diodenlaseranordnung mit einer Mehrzahl von elektrisch in Reihe geschalteten Diodenlasern
JP3968564B2 (ja) 2002-03-14 2007-08-29 日本電気株式会社 ファイバー型光増幅器、光中継器、および光伝送システム
JPWO2003079584A1 (ja) * 2002-03-19 2005-07-21 富士通株式会社 ラマン増幅を用いた光ファイバ伝送のための方法及びシステム
WO2003087891A2 (en) * 2002-04-12 2003-10-23 Corvis Corporation Optical communication systems including optical amplifiers and amplification methods
US6678088B1 (en) * 2002-05-02 2004-01-13 Ciena Corporation Optical amplifier transient control apparatus
JP4122884B2 (ja) * 2002-07-30 2008-07-23 日本電気株式会社 光中継器
JP4175051B2 (ja) * 2002-08-02 2008-11-05 日本電気株式会社 光伝送システム及び光伝送システムの光増幅方法
KR100498952B1 (ko) * 2003-05-17 2005-07-04 삼성전자주식회사 이득 평탄화된 광대역 어븀 첨가 광섬유 증폭기
JP4247834B2 (ja) * 2004-05-19 2009-04-02 三菱電機株式会社 観測装置及び観測システム
JP4458928B2 (ja) * 2004-05-20 2010-04-28 富士通株式会社 光伝送システム
US20080050121A1 (en) * 2004-06-17 2008-02-28 Evangelides Stephen G Submarine optical transmission systems having optical amplifiers of unitary design
WO2006025095A1 (ja) * 2004-08-30 2006-03-09 Mitsubishi Electric Corporation ラマン増幅器および光通信システム
JP4573627B2 (ja) * 2004-11-05 2010-11-04 富士通株式会社 光通信装置の光出力自動減衰回路
US7574140B2 (en) * 2004-12-22 2009-08-11 Tyco Telecommunications (Us) Inc. Optical transmission system including repeatered and unrepeatered segments
US20060140633A1 (en) * 2004-12-28 2006-06-29 Sanmina-Sci Corporation Systems and methods for optical pump redundancy
WO2006085370A1 (ja) * 2005-02-09 2006-08-17 Fujitsu Limited 光増幅器,光増幅中継器および励起光供給制御方法
JP4768549B2 (ja) * 2006-08-24 2011-09-07 富士通株式会社 光通信用の信号光を増幅するためのラマン光増幅器,ラマン光増幅器を備えた光通信システム,およびラマン光増幅器の制御方法
JP4983804B2 (ja) 2006-12-05 2012-07-25 Kddi株式会社 光海底ケーブルシステムの光中継器および該光中継器を備える光海底ケーブルシステム
JP4679651B2 (ja) * 2008-09-19 2011-04-27 富士通株式会社 ラマン増幅器およびその制御方法
JP5396829B2 (ja) * 2008-11-21 2014-01-22 富士通株式会社 分布ラマン増幅器および光通信システム
US8111453B2 (en) * 2009-02-13 2012-02-07 Xtera Communications, Inc. Submarine optical repeater
US8643941B2 (en) * 2009-12-14 2014-02-04 Finisar Israel Ltd. Automatic measurement and gain control of distributed Raman amplifiers
EP2393222B1 (en) 2010-06-03 2014-10-01 Alcatel Lucent System and method for transporting electric power and providing optical fiber communications under sea water
WO2013002391A1 (ja) * 2011-06-30 2013-01-03 日本電気株式会社 給電路切替装置、光海底分岐装置、海底ケーブルシステムおよび給電路切替方法
EP2765712B1 (en) * 2011-12-22 2016-07-27 NEC Corporation Branching device, and power supply path monitoring method
CN104115348B (zh) * 2012-02-14 2016-10-26 日本电气株式会社 中继器、用于其的激发光供应设备和激发光供应方法
WO2014034073A1 (ja) 2012-08-28 2014-03-06 日本電気株式会社 光増幅器の励起用光源およびその制御方法
US9094127B2 (en) * 2013-01-15 2015-07-28 Xtera Communications, Inc. Optical repeater amplifier insertion and removal technology
US9094147B2 (en) * 2013-03-15 2015-07-28 Xtera Communications, Inc. System control of repeatered optical communications system
EP2975705A4 (en) * 2013-03-15 2016-11-16 Nec Corp OPTICAL AMPLIFIER AND METHOD FOR CONTROLLING THEREOF
WO2015025518A1 (ja) 2013-08-23 2015-02-26 日本電気株式会社 給電路切替回路、分岐装置、海底ケーブルシステム、及び給電路切り替え方法
US9838136B2 (en) * 2015-03-06 2017-12-05 Neptune Subsea Ip Limited Optical transmission system and related remote optically pumped amplifier (ROPA) and method
US11189984B2 (en) * 2016-03-30 2021-11-30 Nec Corporation Excitation light source apparatus and gain equalizing method
US9755734B1 (en) * 2016-06-09 2017-09-05 Google Inc. Subsea optical communication network
WO2018097074A1 (ja) * 2016-11-28 2018-05-31 日本電気株式会社 光通信装置および光増幅用の励起光を供給する装置
US10110321B2 (en) * 2017-03-16 2018-10-23 Tyco Electronics Subsea Communications Llc Techniques for providing adaptive power distribution using a multi-node network of power feed branching units (PFBUs) and an undersea optical communication system using same
US11223427B2 (en) * 2017-03-17 2022-01-11 Nec Corporation Optical submarine cable system and optical submarine relay apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05190946A (ja) * 1992-01-17 1993-07-30 Fujitsu Ltd 励起光供給方法
JPH06315012A (ja) * 1993-04-28 1994-11-08 Fujitsu Ltd 中継伝送装置
JP2003032201A (ja) * 2001-07-11 2003-01-31 Mitsubishi Electric Corp 光中継システムおよび光増幅中継器制御方法
WO2014208048A1 (ja) 2013-06-24 2014-12-31 日本電気株式会社 レーザーダイオード駆動装置、光直接増幅装置、光信号伝送システム及びレーザーダイオード駆動方法
JP2017052921A (ja) 2015-09-11 2017-03-16 株式会社カネカ フィルム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3598668A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188086A1 (ja) * 2022-03-30 2023-10-05 日本電気株式会社 光中継器、及び光通信システム

Also Published As

Publication number Publication date
US11223427B2 (en) 2022-01-11
CN110383717A (zh) 2019-10-25
EP3598668A4 (en) 2020-03-18
CN110383717B (zh) 2022-10-25
JP6825695B2 (ja) 2021-02-03
EP3598668A1 (en) 2020-01-22
US20200059303A1 (en) 2020-02-20
JPWO2018168696A1 (ja) 2019-11-07

Similar Documents

Publication Publication Date Title
JP6965918B2 (ja) 光中継器及び光中継器の制御方法
CN107534264B (zh) 光学传输系统和相关的远程光学泵浦放大器(ropa)和方法
JP6809534B2 (ja) 光通信装置および光増幅用の励起光を供給する装置
JP7210455B2 (ja) 空間分割多重化光通信システム及びそのための増幅器
WO2018097075A1 (ja) 光通信装置および光増幅用の励起光を供給する装置
JP7160117B2 (ja) 光増幅装置、光伝送システム及び光増幅方法
WO2018168696A1 (ja) 光海底ケーブルシステムおよび光海底中継装置
JP2022002402A (ja) 中継器及び中継方法
WO2018097281A1 (ja) 光増幅装置、励起光供給方法および回路
JP4882615B2 (ja) ラマン増幅を用いた光伝送システム
WO2020031929A1 (ja) 海底中継器および光増幅方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18768571

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019505968

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018768571

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018768571

Country of ref document: EP

Effective date: 20191017

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载