+

WO2018168591A1 - モジュール - Google Patents

モジュール Download PDF

Info

Publication number
WO2018168591A1
WO2018168591A1 PCT/JP2018/008680 JP2018008680W WO2018168591A1 WO 2018168591 A1 WO2018168591 A1 WO 2018168591A1 JP 2018008680 W JP2018008680 W JP 2018008680W WO 2018168591 A1 WO2018168591 A1 WO 2018168591A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
region
wiring board
heat
resin layer
Prior art date
Application number
PCT/JP2018/008680
Other languages
English (en)
French (fr)
Inventor
喜人 大坪
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2018168591A1 publication Critical patent/WO2018168591A1/ja
Priority to US16/565,847 priority Critical patent/US11171067B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4334Auxiliary members in encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of semiconductor or other solid state devices
    • H01L25/03Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of semiconductor or other solid state devices
    • H01L25/16Assemblies consisting of a plurality of semiconductor or other solid state devices the devices being of types provided for in two or more different subclasses of H10B, H10D, H10F, H10H, H10K or H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of semiconductor or other solid state devices
    • H01L25/18Assemblies consisting of a plurality of semiconductor or other solid state devices the devices being of the types provided for in two or more different main groups of the same subclass of H10B, H10D, H10F, H10H, H10K or H10N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5383Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of semiconductor or other solid state devices
    • H01L25/03Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/041Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in subclass H10F
    • H01L25/042Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in subclass H10F the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of semiconductor or other solid state devices
    • H01L25/03Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10D89/00
    • H01L25/0655Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10D89/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of semiconductor or other solid state devices
    • H01L25/03Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group subclass H10D
    • H01L25/072Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group subclass H10D the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of semiconductor or other solid state devices
    • H01L25/03Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10H20/00
    • H01L25/0753Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10H20/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of semiconductor or other solid state devices
    • H01L25/16Assemblies consisting of a plurality of semiconductor or other solid state devices the devices being of types provided for in two or more different subclasses of H10B, H10D, H10F, H10H, H10K or H10N, e.g. forming hybrid circuits
    • H01L25/165Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/8506Containers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/88Passivation; Containers; Encapsulations

Definitions

  • the present invention relates to a module including a heat dissipation member.
  • modules are mounted on a mother board of an electronic device such as a communication terminal device.
  • various chip components are mounted on a wiring board, and these chip components are sealed with a resin.
  • a semiconductor element such as an IC generates heat when the module is used. When the generated heat accumulates in the module, the characteristics may be deteriorated, and thus a module capable of radiating the heat generated from the mounted component has been proposed.
  • an IC 102 is placed on the upper surface 101a of the wiring board 101 and connected to the electrodes of the wiring board 101 by wire bonding.
  • a spacer 103 is disposed on the upper surface 102 a of the IC 102, and these components are sealed with a sealing resin layer 104.
  • the resin on the upper side of the spacer 103 is removed by a laser or the like, so that the spacer 103 is exposed from the upper surface 104a of the sealing resin layer 104, and the heat dissipation member 105 is formed on the upper surface 104a of the sealing resin layer 104 including the exposed portion. Is disposed. With this configuration, the heat generated from the IC 102 is transmitted from the spacer 103 to the heat radiating member 105 and radiated to the outside.
  • the conventional module 100 irradiates the sealing resin layer 104 with a laser beam to form a hole, the spacer 103 is necessary to reduce damage to the IC 102, and the design freedom of the module 100 is reduced.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a module having a high degree of design freedom and excellent heat dissipation characteristics.
  • a module of the present invention includes a wiring board, first and second components mounted on the main surface of the wiring board, a contact surface that contacts the wiring board, and A sealing resin layer that seals the first component and the second component, a recess formed on the facing surface of the sealing resin layer, and a recess
  • a second heat dissipating member configured to dissipate heat more than the first component, and the heat dissipating member is disposed on the main surface of the wiring board.
  • the first part overlaps the first part and the second part overlaps the second part, and the recess reaches the first part and the second part.
  • Distance is characterized shorter than the distance from the bottom of the recess of the second region of the heat dissipation member to the second component.
  • the heat dissipation member is disposed in the concave portion formed on the opposite surface of the sealing resin layer, when the location of the heat dissipation member is formed by laser processing as in a conventional module, the component It is not necessary to arrange a spacer for preventing damage to the part between the component and the heat radiating member, and the degree of freedom in designing the module is improved. Moreover, since the 1st component which is a heat-emitting component has a short distance with a heat radiating member, the heat which generate
  • another module of the present invention includes a wiring board, a third component mounted on the main surface of the wiring board, a contact surface that contacts the wiring board, and A sealing resin layer that seals the third component, a recess formed in the facing surface of the sealing resin layer, and a heat dissipation
  • the third component has a first component inner region and the first component inner region when viewed from a direction perpendicular to the main surface of the wiring board.
  • a second component internal region that generates more heat, and the heat dissipation member overlaps the first component internal region when viewed from a direction perpendicular to the main surface of the wiring board, and A region overlapping the second component internal region, and the recess does not reach the third component, and the release
  • the distance from the bottom of the recess in the region overlapping the second component internal region of the member to the third component is from the bottom of the recess in the region overlapping the first component internal region of the heat dissipation member to the third component. It is characterized by being shorter than the distance.
  • the heat dissipation member is disposed in the concave portion formed on the opposite surface of the sealing resin layer, when the location of the heat dissipation member is formed by laser processing as in a conventional module, the component It is not necessary to arrange a spacer for preventing damage to the part between the component and the heat radiating member, and the degree of freedom in designing the module is improved. Further, since the second component internal region that is the heat generating region in the third component is short in distance to the heat radiating member, the heat generated from the second component internal region can be efficiently radiated by the heat radiating member.
  • the heat dissipating member includes a plurality of heat dissipating elements disposed in the plurality of recesses, and some of the plurality of heat dissipating elements are perpendicular to the main surface of the wiring board.
  • the first part and the second part may be disposed in a region that does not overlap any of the first part and the second part.
  • the heat dissipating member is composed of a plurality of heat dissipating elements, and when viewed from the direction perpendicular to the main surface of the wiring board, the region overlapping the first and second components and the region not overlapping A heat dissipating element is disposed on both.
  • the heat dissipating member when the heat dissipating member is disposed only in the region overlapping the heat generating component (first component) when viewed from the direction perpendicular to the main surface of the wiring board, the heat dissipating member and the resin of the sealing resin layer Due to the difference in the coefficient of linear expansion, there is a possibility that peeling occurs between the heat dissipation member and the sealing resin layer.
  • the heat dissipating member is composed of a plurality of heat dissipating elements as in this configuration, the contact area between the heat dissipating member and the sealing resin layer increases. It is possible to prevent delamination from occurring between the layers.
  • the heat dissipating element can be dispersed by disposing the heat dissipating element in both the region overlapping the first and second parts and the region not overlapping, the heat dissipating member and the resin of the sealing resin layer Due to the difference in the linear expansion coefficient, the sealing resin layer can be prevented from being deformed or the sealing resin layer from being peeled off from the wiring board.
  • the heat dissipating member includes a plurality of heat dissipating elements disposed in the plurality of recesses, and some of the plurality of heat dissipating elements are perpendicular to the main surface of the wiring board. It may be arranged in a region that does not overlap with the third component when viewed from above.
  • the heat dissipating member is composed of a plurality of heat dissipating elements, and when viewed from a direction perpendicular to the main surface of the wiring board, both the region overlapping the third component and the region not overlapping A heat dissipating element is arranged.
  • the heat dissipating member is composed of a plurality of heat dissipating element bodies, the contact area between the heat dissipating member and the sealing resin layer increases. It can be prevented from occurring.
  • the heat dissipating element can be dispersed by disposing the heat dissipating element in both the region overlapping the third part and the region not overlapping, the linear expansion coefficient between the heat dissipating member and the resin of the sealing resin layer Due to the difference, the sealing resin layer can be prevented from being deformed or the sealing resin layer from being peeled off from the wiring board. Furthermore, peeling between the heat dissipation element and the sealing resin can be suppressed.
  • the wiring board, the fourth component and the fifth component mounted on the main surface of the wiring board, the contact surface that contacts the wiring substrate, and the corresponding contact surface are opposed.
  • a sealing resin layer that seals the fourth component and the fifth component, a recess formed in the facing surface of the sealing resin layer, and a heat dissipation And the fifth part is a part that does not generate heat more than the fourth part, the recess does not reach the fourth part, and the heat dissipation member is When viewed from a direction perpendicular to the main surface of the wiring board, there is a region overlapping the fourth component, but there is no region overlapping the fifth component.
  • the fifth component is a component that is likely to cause characteristic fluctuation due to the influence of heat
  • the heat radiating member in the region overlapping the fifth component, Therefore, a heat radiation structure with a high degree of freedom according to the amount of heat generated by the mounted component and the size of the module can be achieved.
  • Another module of the present invention includes a wiring board, a sixth component mounted on the main surface of the wiring board, a contact surface that contacts the wiring board, and a facing surface that faces the corresponding contact surface. And a sealing resin layer that seals the sixth component, a recess formed in the facing surface of the sealing resin layer, and a heat dissipation member disposed in the recess, the sixth component Has a first component inner region and a second component inner region that generates heat more than the first component inner region when viewed from a direction perpendicular to the main surface of the wiring board, and the concave portion Has not reached the sixth component, and the heat dissipating member has a region overlapping the second component internal region when viewed from a direction perpendicular to the main surface of the wiring board, The first component region has no overlapping region.
  • the plurality of heat dissipating elements may be arranged at equal intervals when viewed from a direction perpendicular to the main surface of the wiring board.
  • the sealing resin layer since the stress caused by the difference in linear expansion coefficient between the heat dissipating element and the resin of the sealing resin layer can be made uniform in the sealing resin layer, the sealing resin layer may be deformed or sealed. It can be further suppressed that the resin layer is peeled off from the wiring board.
  • a shield film may be further provided to cover the facing surface of the sealing resin layer in contact with the heat radiating member.
  • the heat generated from the components can be dissipated from the shield film, the heat dissipation characteristics of the module can be further improved.
  • the heat dissipating member is disposed in the concave portion formed on the opposing surface of the sealing resin layer, when the heat dissipating member is disposed by laser processing as in the conventional module, the component It is not necessary to arrange a spacer for preventing damage to the part between the component and the heat radiating member, and the degree of freedom in designing the module is improved. Further, since the second component internal region that is the heat generating region in the third component is short in distance to the heat radiating member, the heat generated from the second component internal region can be efficiently radiated by the heat radiating member.
  • FIG. 2 is a plan view of the module of FIG. 1 with a shield film removed. It is a figure for demonstrating arrangement
  • FIG. 6 is a plan view of the module of FIG. 5 with a shield film removed. It is a figure which shows the modification of arrangement
  • FIG. 9 is a plan view of the module of FIG. 8 with a shield film removed. It is a figure which shows the modification of the heat radiating member of FIG. It is sectional drawing of the conventional module.
  • FIGS. 1 is a cross-sectional view taken along the line AA in FIG. 2
  • FIG. 2 is a plan view of the module 1a with the shield film 6 removed
  • FIG. 3 is a diagram for explaining the arrangement of the radiator 5a.
  • the module 1 a includes a multilayer wiring board 2 (corresponding to “wiring board” of the present invention) and a plurality of components mounted on the upper surface 20 a of the multilayer wiring board 2.
  • the mounting components 3a to 3d, the sealing resin layer 4 laminated on the upper surface 20a of the multilayer wiring board 2, the shield film 6 covering the surface of the sealing resin layer 4, and a plurality of provided in the sealing resin layer 4 is mounted on, for example, a mother board of an electronic device in which a high-frequency signal is used.
  • the multilayer wiring board 2 is formed by laminating a plurality of insulating layers 2a to 2d formed of, for example, a low-temperature co-fired ceramic, a high-temperature co-fired ceramic, glass epoxy resin, or the like.
  • a plurality of insulating layers 2a to 2d formed of, for example, a low-temperature co-fired ceramic, a high-temperature co-fired ceramic, glass epoxy resin, or the like.
  • On the upper surface 20a of the multilayer wiring board 2 (corresponding to the “main surface of the wiring board” of the present invention)
  • mounting electrodes 7 for mounting the mounting components 3a to 3d are formed on the upper surface 20a of the multilayer wiring board 2 (corresponding to the “main surface of the wiring board” of the present invention).
  • a plurality of external electrodes 8 for external connection are formed on the lower surface 20 b of the multilayer wiring board 2.
  • Various internal wiring electrodes 9 are formed between the adjacent insulating layers 2a to 2d, and the internal
  • a plurality of via conductors 10 for connection are formed.
  • the mounting electrode 7, the external electrode 8, and the internal wiring electrode 9 are all formed of a metal generally employed as a wiring electrode such as Cu, Ag, or Al.
  • Each via conductor 10 is made of a metal such as Ag or Cu.
  • Each mounting electrode 7 and each external electrode 8 may be subjected to Ni / Au plating, Ni / Pd / Au plating, or Ni / Sn plating, respectively.
  • the mounting parts 3a to 3d are composed of semiconductor elements such as IC and PA (power amplifier), and chip parts such as chip inductors, chip capacitors, chip resistors, etc., and multilayer wiring boards by general surface mounting techniques such as solder bonding. 2 is implemented.
  • the mounting components 3a to 3d among the mounting components 3a to 3d, the mounting components 3a and 3c (corresponding to the “first component” or “third component” of the present invention) generate a large amount of heat when the module 1a is energized.
  • the remaining mounting components 3b and 3d are components that generate less heat than the mounting components 3a and 3c.
  • the mounting component 3a when viewed from a direction perpendicular to the upper surface 20a of the multilayer wiring board 2 (hereinafter sometimes referred to as a plan view), a region that generates a large amount of heat (see region H in FIG. 1). ) And a small area (see area L in FIG. 1).
  • the sealing resin layer 4 is formed of a resin that is generally employed as a sealing resin such as an epoxy resin, and seals the mounting components 3a to 3d.
  • the sealing resin layer 4 includes a lower surface 4b (corresponding to the “contact surface of the sealing resin layer” of the present invention) that contacts the multilayer wiring board 2 and an upper surface 4a that faces the lower surface 4b (“ Corresponding to the “opposing surface of the sealing resin layer”) and a side surface 4c, and a plurality of recesses 40 are formed on the upper surface 4a.
  • the heat radiator 5a is disposed in each of the recesses 40.
  • Each of the heat dissipating bodies 5a is formed, for example, by forming a plurality of recesses 40 on the upper surface 4a of the sealing resin layer 4 by laser processing or the like, and filling these recesses 40 with, for example, a conductive paste or matching the shape of the recesses 40.
  • a high thermal conductivity material is fitted into each recess 40 by filling a metal column or a paste containing a metal component as a main component. That is, a conductive paste or a metal column is disposed so as to be in close contact with the recess.
  • each recess 40 has an opening with a regular hexagonal shape, and thereby each radiator 5 a is formed in a hexagonal column shape.
  • each recessed part 40 is formed so that each heat radiator 5a may be arranged at substantially equal intervals.
  • the center point 0 of one radiator 5a (reference radiator 5a) is a regular hexagon F
  • the respective radiators 5a are arranged so that the center points A1, A2, B1, B2, C1, C2 of the other adjacent radiators 5a are located at the apex of the regular hexagon.
  • each radiator 5a adjacent to the reference radiator 5a has the same distance from the reference radiator 5a, that is, each radiator 5a is arranged at equal intervals. Will be.
  • the stress caused by the difference between the linear expansion coefficients of the radiator 5a and the sealing resin layer 4 is easily offset between the adjacent radiators 5a. Separation of the interface between the heat radiator 5a and the sealing resin layer 4 and deformation of the sealing resin layer 4 due to the difference in linear expansion coefficient between the resin of 5a and the sealing resin layer 4 can be suppressed.
  • the depth of the recess 40 in which each radiator 5a is disposed (depth in the thickness direction of the sealing resin layer 4) varies depending on the position where the recess 40 is formed. For example, as shown in FIG. 1, when viewed from a direction perpendicular to the upper surface 20a of the multilayer wiring board 2, a region H that generates a large amount of heat in the recess 40 that overlaps the mounting component 3a (see “ The distance W1 between the bottom of the recess 40 that overlaps the “region in two components” and the upper surface 3a1 of the mounting component 3a overlaps the region L (corresponding to the “first component region” in the present invention).
  • Each recess 40 is formed so as to be narrower than the interval W2 between the bottom of the recess 40 and the upper surface 3a1 of the mounting component 3a. That is, in this embodiment, when viewed from a direction perpendicular to the upper surface 20a of the multilayer wiring board 2, the heat dissipating body 5a overlapping the region H where the heat generation amount is large is brought closer to the mounting component 3a and the heat generation amount is reduced.
  • the depth of each recess 40 is set so that the heat dissipating body 5a overlapping the small region L can be separated from the mounting component 3a. In any case, a sealing resin layer exists between the bottom of the recess and each mounted component, and does not penetrate to the component surface.
  • Each of the heat dissipating bodies 5a corresponds to a “heat dissipating element” of the present invention, and a plurality of heat dissipating bodies 5a in which the heat dissipating bodies 5a are combined correspond to a “heat dissipating member” of the present invention.
  • the shield film 6 covers the surface (the upper surface 4 a and the side surface 4 c) of the sealing resin layer 4 and the side surface 20 c of the multilayer wiring board 2.
  • Each radiator 5 a is connected to the shield film 6 on the upper surface 4 a of the sealing resin layer 4.
  • the shield film 6 is connected to a ground electrode (not shown) exposed on the side surface 20 c of the multilayer wiring board 2.
  • the shield film 6 can be formed in a multilayer structure having an adhesion film laminated on the upper surface 4a of the sealing resin layer 4, a conductive film laminated on the adhesion film, and a protective film laminated on the conductive film.
  • the adhesion film is provided to increase the adhesion strength between the conductive film and the sealing resin layer 4 and can be formed of a metal such as SUS, for example.
  • the conductive film is a layer that bears the substantial shielding function of the shield film 6 and can be formed of, for example, any one of Cu, Ag, and Al.
  • the protective film is provided to prevent the conductive film from being corroded or scratched, and can be formed of, for example, SUS.
  • the plurality of recesses 40 are formed on the upper surface 20a of the sealing resin layer 4, and each radiator 5a is disposed in these recesses 40. Since fixed intervals W1 and W2 are maintained between the mounted components 3a to 3d, when the location of the heat dissipating member is formed by laser processing as in the conventional module, it is used to prevent damage to the components. It is not necessary to arrange the spacer between the component and the heat dissipation member. Further, the mounting component 3a has a region H with a large amount of heat generation and a region L with a small amount of heat when viewed from a direction perpendicular to the upper surface 20a of the multilayer wiring board 2, and overlaps the region H in plan view.
  • the distance (interval W1) between the radiator 5a arranged and the upper surface 3a1 of the mounting component 3a is larger than the distance (interval W2) between the radiator 5a and the upper surface 3a1 of the mounting component 3a arranged in the region overlapping the region L. Since it is short, the heat generated by the mounting component 3a can be efficiently radiated. Further, for example, if the distance between the region L where the heat generation amount is small and the radiator 5a is the same as the distance (interval W1) between the region H where the heat generation amount is large and the heat radiator 5a, the temperature of the region L where the heat generation amount is small There is a risk that specific fluctuations and characteristic degradation will occur.
  • the distance (interval W2) from the upper surface 3a1 of the mounting component 3a of the radiator 5a arranged in the region overlapping the region L in plan view is the radiator 5a arranged in the region overlapping the region H. Since this is longer than the distance (interval W1) with respect to the upper surface 3a1 of the mounting component 3a, such characteristic variation and characteristic deterioration can be suppressed.
  • the distance from the radiator 5a is long in the region L of the mounting component 3a, the space between the upper surface 3a1 of the mounting component 3a and the radiator 5a in the region L can be used as an arrangement space for other members. The degree of freedom in designing the module 1a can be increased.
  • the heat dissipating bodies 5a are distributed at substantially equal intervals regardless of whether or not they overlap the mounting components 3a to 3d when viewed from a direction perpendicular to the upper surface 20a of the multilayer wiring board 2.
  • the heat dissipating member is disposed only in a region overlapping with the heat generating component (mounting components 3a, 3c) in plan view, the heat dissipating member and the sealing member are sealed due to the difference in linear expansion coefficient between the heat dissipating member and the resin of the sealing resin layer. There is a risk of peeling between the resin layer.
  • the heat radiating member is configured with a plurality of heat radiating bodies 5a as in this embodiment, the contact area between the heat radiating member (heat radiating body 5a) and the sealing resin layer 4 increases, It is possible to prevent peeling between the heat radiating body 5a and the sealing resin layer 4. Further, by disposing the heat dissipating body 5a in a distributed manner, the encapsulating resin layer 4 may be deformed or the encapsulating resin layer due to a difference in linear expansion coefficient between the heat dissipating member (heat dissipating body 5a) and the resin of the encapsulating resin layer 4. It is possible to prevent the sealing resin layer 4 from being peeled off from the multilayer wiring board 2 due to the stress accompanying the deformation of 4. Further, warpage of the multilayer wiring board itself can be suppressed.
  • each radiator 5a is connected to the shield film 6, the heat generated from the mounted components 3a and 3c can be radiated from the shield film 6 as well, so that the heat dissipation characteristics of the module 1a can be further improved. Can do.
  • the radiators 5a are arranged at regular intervals in a plan view.
  • the radiators 5a are basically arranged at regular intervals.
  • the heat radiating body 5a may not be disposed in a region that overlaps with a part that easily changes its characteristics due to heat or a part of the mounting part 3b that generates a small amount of heat.
  • a heat dissipating structure with a high degree of freedom according to the heat radiation amount of each of the mounting components 3a to 3d and the size of the mounting components 3a to 3d becomes possible.
  • the mounting component 3a that is a heat-generating component corresponds to the “fourth component” of the present invention
  • the mounting component 3b that does not easily generate heat corresponds to the “fifth component” of the present invention.
  • FIGS. 5 is a cross-sectional view of the module 1b and is a cross-sectional view taken along the line BB of FIG. 6, and FIG. 6 is a plan view of the module 1b with the shield film 6 removed.
  • the module 1b according to this embodiment differs from the module 1a according to the first embodiment described with reference to FIGS. 1 to 3 in that the arrangement and traversing of the radiators 5b are as shown in FIGS.
  • the surface shape is different and the depth of the recess 40 in which the radiator 5b is disposed is different. Since other configurations are the same as those of the module 1a of the first embodiment, the description thereof is omitted by attaching the same reference numerals.
  • each heat dissipating body 5b is formed in a columnar shape having a circular shape in cross-sectional view (transverse cross-sectional shape) and arranged in a matrix (distributed arrangement). Therefore, similarly to the first embodiment, the heat dissipating body 5b is also disposed in a region that does not overlap the mounting components 3a to 3d in plan view. Further, in this embodiment, as shown in FIG. 5, the bottoms of all the recesses 40 formed in a region (corresponding to the “first region” of the present invention) that overlaps the mounting component 3a that is a heat-generating component in a plan view. The interval between the mounting component 3a and the upper surface 3a1 is unified by W1.
  • interval with 3b1 is formed by W3 longer than W1.
  • the radiator 5b may not be disposed in a region overlapping the non-heat-generating component in plan view. Good.
  • the heat dissipators 5b are arranged in a matrix, but may be arranged at equal intervals, as in the first embodiment.
  • the center of one radiator 5b is arranged at the center of a regular hexagon when viewed from the direction perpendicular to the upper surface 20a on the multilayer wiring board 2, the other adjacent The center of the radiator 5b is arranged at each apex of the regular hexagon.
  • FIGS. 8 is a cross-sectional view of the module 1c, taken along the line CC in FIG. 9, and FIG. 9 is a plan view of the module 1c with the shield film 6 removed.
  • the module 1c according to this embodiment differs from the module 1b of the second embodiment described with reference to FIGS. 5 and 6 in that the shape of the recess 40 and the recess 40 are as shown in FIGS. This is that the shape of the heat dissipating body 5c disposed in the slab is different. Since other configurations are the same as those of the module 1b of the second embodiment, the description thereof is omitted by attaching the same reference numerals.
  • the recess 40 is formed in a honeycomb-like groove when viewed from a direction perpendicular to the upper surface 20a of the multilayer wiring board 2, and the heat radiator 5c is disposed in the groove.
  • the interval W1 between the bottom of the recess 40 that overlaps the heat generating components (mounting components 3a, 3c) and the top surfaces 3a1, 3c1 of the heat generating components (mounting components 3a, 3c) in a plan view is not
  • the recess 40 is formed to be narrower than the interval W3 between the bottom of the recess 40 that overlaps the heat generating component (mounting component 3b) and the upper surface 3b1 of the non-heat generating component (mounting component 3b).
  • the radiator 5c is formed in a honeycomb shape, peeling of the interface between the radiator 5c and the sealing resin layer 4 due to the difference in linear expansion coefficient between the resin of the radiator 5c and the sealing resin layer 4 Further, deformation of the sealing resin layer 4 can be further suppressed.
  • the shield film 6 may not be provided.
  • the heat radiating body 5a may not be disposed in a portion overlapping the region L where the heat generation amount of the mounting component 3a is small in plan view. This eliminates the thermal effect of heat conduction from the heat radiating body 5a on the region L where the heat generation amount is small, thus enabling a heat dissipation structure with a high degree of freedom according to the heat generation amount of the mounted component and the module size.
  • the mounting component 3a in this case corresponds to the “sixth component” of the present invention.
  • the present invention can be applied to various modules including a heat radiating member that radiates heat generated from components mounted on a wiring board.
  • Module 2 Multi-layer wiring board (wiring board) 3a, 3c parts (first part, third part, fourth part, sixth part) 3b parts (second part, fifth part) 3d parts (second parts) 5a, 5b Heat dissipation body (heat dissipation element) 5c Heat radiator (heat radiating member) 40 recess

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

設計自由度が高く、放熱特性が優れたモジュールを提供する。 モジュール1bは、多層配線基板2と、該多層配線基板2の上面20aに実装された実装部品3a~3dと、各実装部品3a~3dを封止する封止樹脂層4と、封止樹脂層4の上面4aに形成された複数の凹部40と、各凹部40に配設された放熱体5aとを備え、実装部品3b、3dは、実装部品3a、3cよりも発熱しない部品であり、多層配線基板2の上面20aに対して垂直な方向から見たときに、実装部品3a、3cに重なる領域に配置される凹部40の底と、実装部品3a、3cとの間隔W1は、実装部品3b、3dに重なる領域に配置される凹部40の底と、実装部品3b、3dとの間隔W3よりも短い。

Description

モジュール
本発明は、放熱部材を備えるモジュールに関する。
 通信端末装置などの電子機器のマザー基板には、種々のモジュールが実装される。この種のモジュールには、配線基板に各種のチップ部品が実装され、これらのチップ部品が樹脂で封止されるものがある。実装されているチップ部品のうち、例えば、ICなどの半導体素子は、モジュールの使用時に発熱する。発生した熱がモジュールに溜まると、特性が低下するおそれがあるため、実装部品から発生した熱を放熱可能なモジュールが提案されている。例えば、図11に示すように、特許文献1に記載のモジュール100は、配線基板101の上面101aにIC102が載置され、ワイヤボンディングにより配線基板101の電極に接続される。また、IC102の上面102aにはスペーサ103が配設され、これらの部品が封止樹脂層104で封止される。スペーサ103の上側の樹脂は、レーザ等で除去されることにより、封止樹脂層104の上面104aからスペーサ103が露出し、該露出部を含む封止樹脂層104の上面104aに、放熱部材105が配設される。このように構成すると、IC102から発生した熱は、スペーサ103から放熱部材105に伝達され、外部へ放熱される。
特表2010-514208号公報(段落0014~0021、図12等参照)
 しかしながら、従来のモジュール100は、封止樹脂層104にレーザ光を照射して穴を空けるため、IC102に対するダメージ軽減のためにスペーサ103が必要になり、モジュール100の設計自由度が低下する。
 本発明は、上記した課題に鑑みてなされたものであり、設計自由度が高く、放熱特性が優れたモジュールを提供することを目的とする。
 上記した目的を達成するために、本発明のモジュールは、配線基板と、前記配線基板の主面に実装された第1部品および第2部品と、前記配線基板に当接する当接面と、該当接面に対向する対向面とを有し、前記第1部品および前記第2部品を封止する封止樹脂層と、前記封止樹脂層の前記対向面に形成された凹部と、前記凹部に配設され、放熱素体から構成される放熱部材とを備え、前記第2部品は、前記第1部品よりも発熱しない部品であり、前記放熱部材は、前記配線基板の前記主面に対して垂直な方向から見たときに、前記第1部品に重なる第1領域と、前記第2部品に重なる第2領域とを有し、前記凹部は、前記第1部品および前記第2部品まで到達しておらず、前記放熱部材の前記第1領域の前記凹部の底から前記第1部品までの距離は、前記放熱部材の前記第2領域の前記凹部の底から前記第2部品までの距離よりも短いことを特徴としている。
 この構成によれば、放熱部材は封止樹脂層の対向面に形成された凹部に配設されるため、従来のモジュールのように、放熱部材の配置場所をレーザ加工で形成する際に、部品へのダメージ防止用のスペーサを部品と放熱部材との間に配置する必要がなく、モジュールの設計自由度が向上する。また、発熱部品である第1部品は放熱部材との距離が短いため、放熱部材により第1部品から発生する熱を効率よく放熱することができる。
 また、上記した目的を達成するために、本発明の他のモジュールは、配線基板と、前記配線基板の主面に実装された第3部品と、前記配線基板に当接する当接面と、該当接面に対向する対向面とを有し、前記第3部品を封止する封止樹脂層と、前記封止樹脂層の前記対向面に形成された凹部と、前記凹部に配設され、放熱素体から構成される放熱部材とを備え、前記第3部品は、前記配線基板の前記主面に対して垂直な方向から見たときに、第1部品内領域と、該第1部品内領域よりも発熱する第2部品内領域とを有し、前記放熱部材は、前記配線基板の前記主面に対して垂直な方向から見たときに、前記第1部品内領域に重なる領域と、前記第2部品内領域に重なる領域とを有し、前記凹部は、前記第3部品まで到達しておらず、前記放熱部材の前記第2部品内領域に重なる領域の前記凹部の底から前記第3部品までの距離は、前記放熱部材の前記第1部品内領域に重なる領域の前記凹部の底から前記第3部品までの距離よりも短いことを特徴としている。
 この構成によれば、放熱部材は封止樹脂層の対向面に形成された凹部に配設されるため、従来のモジュールのように、放熱部材の配置場所をレーザ加工で形成する際に、部品へのダメージ防止用のスペーサを部品と放熱部材との間に配置する必要がなく、モジュールの設計自由度が向上する。また、第3部品の中で発熱領域となる第2部品内領域は放熱部材との距離が短いため、放熱部材により第2部品内領域から発生する熱を効率よく放熱することができる。
 また、前記放熱部材は、複数の前記凹部に配設された複数の前記放熱素体から構成され、前記複数の放熱素体のいくつかは、前記配線基板の前記主面に対して垂直な方向から見たときに、前記第1部品および前記第2部品にいずれにも重ならない領域に配置されていてもよい。
 この構成によれば、放熱部材が複数の放熱素体で構成され、配線基板の前記主面に対して垂直な方向から見たときに、第1、第2部品に重なる領域と、重ならない領域の両方に放熱素体が配置される。例えば、配線基板の主面に対して垂直な方向から見たときに、発熱部品(第1部品)に重なる領域のみに放熱部材を配置する場合は、放熱部材と封止樹脂層の樹脂との線膨張係数の差によって、放熱部材と封止樹脂層との間で剥離が生じるおそれがある。しかしながら、この構成のように放熱部材を複数の放熱素体で構成すると、放熱部材と封止樹脂層との接触面積が増えるため、両者の線膨張係数の差によって、放熱素体と封止樹脂層との間で剥離が生じるのを防止することができる。また、放熱素体を第1、第2部品に重なる領域と、重ならない領域の両方に配置することで、放熱素体を分散させることができるため、放熱部材と封止樹脂層の樹脂との線膨張係数の差によって、封止樹脂層が変形したり、封止樹脂層が配線基板から剥がれたりするのを抑えることができる。
 また、前記放熱部材は、複数の前記凹部に配設された複数の前記放熱素体から構成され、前記複数の放熱素体のいくつかは、前記配線基板の前記主面に対して垂直な方向から見たときに、前記第3部品に重ならない領域に配置されていてもよい。
 この構成によれば、放熱部材が複数の放熱素体で構成され、配線基板の前記主面に対して垂直な方向から見たときに、第3部品に重なる領域と、重ならない領域の両方に放熱素体が配置される。放熱部材を複数の放熱素体で構成すると、放熱部材と封止樹脂層との接触面積が増えるため、両者の線膨張係数の差によって、放熱素体と封止樹脂層との間で剥離が生じるのを防止することができる。また、放熱素体を第3部品に重なる領域と、重ならない領域の両方に配置することで、放熱素体を分散させることができるため、放熱部材と封止樹脂層の樹脂との線膨張係数の差によって、封止樹脂層が変形したり、封止樹脂層が配線基板から剥がれたりするのを抑えることができる。更に放熱素体と封止樹脂間の剥がれを抑制する事が出来る。
 また、本発明の他のモジュールは、配線基板と、前記配線基板の主面に実装された第4部品および第5部品と、前記配線基板に当接する当接面と、該当接面に対向する対向面とを有し、前記第4部品および前記第5部品を封止する封止樹脂層と、前記封止樹脂層の前記対向面に形成された凹部と、前記凹部に配設され、放熱素体から構成される放熱部材とを備え、前記第5部品は、前記第4部品よりも発熱しない部品であり、前記凹部は、前記第4部品まで到達しておらず、前記放熱部材は、前記配線基板の前記主面に対して垂直な方向から見たときに、前記第4部品に重なる領域があるが、前記第5部品には重なる領域がないことを特徴としている。
 この構成によれば、例えば第5部品が熱の影響による特性変動を起こしやすい部品の場合は、第5部品と重なる領域に放熱部材を配置しないようにすることで、第5部品に対する放熱部材からの熱伝導による熱影響を無くす事が出来ることから、実装部品の発熱量やモジュールのサイズに応じた自由度の高い放熱構造が可能になる。
 また、本発明の他のモジュールは、配線基板と、前記配線基板の主面に実装された第6部品と、前記配線基板に当接する当接面と、該当接面に対向する対向面とを有し、前記第6部品を封止する封止樹脂層と、前記封止樹脂層の前記対向面に形成された凹部と、前記凹部に配設された放熱部材とを備え、前記第6部品は、前記配線基板の前記主面に対して垂直な方向から見たときに、第1部品内領域と、該第1部品内領域よりも発熱する第2部品内領域とを有し、前記凹部は、前記第6部品まで到達しておらず、前記放熱部材は、前記配線基板の前記主面に対して垂直な方向から見たときに、前記第2部品内領域に重なる領域があるが、前記第1部品内領域には重なる領域がないことを特徴としている。
 この構成によれば、第1部品内領域に対する放熱部材からの熱伝導による熱影響を無くす事が出来るため、実装部品の発熱量やモジュールのサイズに応じた自由度の高い放熱構造が可能になる。
 また、前記複数の放熱素体は、前記配線基板の前記主面に対して垂直な方向から見たときに、等間隔に配列されていてもよい。
 この構成によれば、放熱素体と封止樹脂層の樹脂との線膨張係数の差か生じる応力が、封止樹脂層内で均一化できるため、封止樹脂層が変形したり、封止樹脂層が配線基板から剥がれたりするのをさらに抑えることができる。
 また、前記放熱部材と接触した状態で前記封止樹脂層の前記対向面を被覆するシールド膜をさらに備えていてもよい。
 この構成によれば、部品から発生した熱をシールド膜からも放熱することができるため、モジュールの放熱特性のさらなる向上を図ることができる。
 本発明によれば、放熱部材は封止樹脂層の対向面に形成された凹部に配設されるため、従来のモジュールのように、放熱部材の配置場所をレーザ加工で形成する際に、部品へのダメージ防止用のスペーサを部品と放熱部材との間に配置する必要がなく、モジュールの設計自由度が向上する。また、第3部品の中で発熱領域となる第2部品内領域は放熱部材との距離が短いため、放熱部材により第2部品内領域から発生する熱を効率よく放熱することができる。
本発明の第1実施形態にかかるモジュールの断面図である。 図1のモジュールのシールド膜を除いた状態の平面図である。 図1の放熱体の配置を説明するための図である。 図1の放熱体の配置の変形例を示す図である。 本発明の第2実施形態にかかるモジュールの断面図である。 図5のモジュールのシールド膜を除いた状態の平面図である。 図5の放熱体の配置の変形例を示す図である。 本発明の第3実施形態にかかるモジュールの断面図である。 図8のモジュールのシールド膜を除いた状態の平面図である。 図8の放熱部材の変形例を示す図である。 従来のモジュールの断面図である。
 <第1実施形態>
 本発明の第1実施形態にかかるモジュール1aについて、図1~図3を参照して説明する。なお、図1は図2のA-A矢視断面図、図2はモジュール1aのシールド膜6を除いた状態の平面図、図3は放熱体5aの配置を説明するための図である。
 この実施形態にかかるモジュール1aは、図1および図2に示すように、多層配線基板2(本発明の「配線基板」に相当)と、該多層配線基板2の上面20aに実装された複数の実装部品3a~3dと、多層配線基板2の上面20aに積層された封止樹脂層4と、封止樹脂層4の表面を被覆するシールド膜6と、封止樹脂層4に設けられた複数の放熱体5aとを備え、例えば、高周波信号が用いられる電子機器のマザー基板等に搭載される。
 多層配線基板2は、例えば、低温同時焼成セラミック、高温同時焼成セラミックやガラスエポキシ樹脂などで形成された複数の絶縁層2a~2dが積層されて成る。多層配線基板2の上面20a(本発明の「配線基板の主面」に相当)には、各実装部品3a~3dの実装用の実装電極7が形成される。多層配線基板2の下面20bには、外部接続用の複数の外部電極8が形成される。また、隣接する絶縁層2a~2d間それぞれに、各種の内部配線電極9が形成されるとともに、多層配線基板2の内部には、異なる絶縁層2a~2dに形成された内部配線電極9同士を接続するための複数のビア導体10が形成される。なお、実装電極7、外部電極8および内部配線電極9は、いずれもCuやAg、Al等の配線電極として一般的に採用される金属で形成されている。また、各ビア導体10は、AgやCu等の金属で形成されている。なお、各実装電極7、各外部電極8には、Ni/AuめっきやNi/Pd/Auめっき或いはNi/Snめっきがそれぞれ施されていてもよい。
 実装部品3a~3dは、ICやPA(パワーアンプ)などの半導体素子や、チップインダクタ、チップコンデンサ、チップ抵抗等のチップ部品で構成され、半田接合などの一般的な表面実装技術により多層配線基板2に実装される。なお、この実施形態では、各実装部品3a~3dのうち、実装部品3a、3c(本発明の「第1部品」または「第3部品」に相当)がモジュール1aの通電時に発熱量が多い部品で、残りの実装部品3b,3d(本発明の「第2部品」に相当)が、これらの実装部品3a,3cよりも発熱量が少ない部品となっている。また、実装部品3aにおいては、多層配線基板2の上面20aに対して垂直な方向から見たときに(以下、平面視という場合もある。)、発熱量が多い領域(図1の領域H参照)と、少ない領域(図1の領域L参照)とがある。
 封止樹脂層4は、エポキシ樹脂等の封止樹脂として一般的に採用される樹脂で形成され、各実装部品3a~3dを封止する。また、封止樹脂層4は、多層配線基板2に当接する下面4b(本発明の「封止樹脂層の当接面」に相当)と、該下面4bに対向する上面4a(本発明の「封止樹脂層の対向面」に相当)と、側面4cとを有し、上面4aには、複数の凹部40が形成される。また、これらの凹部40それぞれに放熱体5aが配設される。
 各放熱体5aは、例えば、封止樹脂層4の上面4aにレーザ加工などにより複数の凹部40を形成し、これらの凹部40に例えば導電性ペーストを充填したり、凹部40の形状に合わせた金属柱或いは金属成分を主成分とするペースト充填によって高熱伝導性物質を各凹部40嵌め込んだりするなどして各凹部40に配設される。すなわち、凹部に密着するように、導電性ペーストや金属柱が配設されている。各凹部40は、図2に示すように、開口の輪郭が正六角形に形成されており、これにより各放熱体5aが六角柱状に形成される。また、各放熱体5aが略等間隔で配列されるように各凹部40が形成される。具体的には、図3に示すように、多層配線基板2の上面20aに対して垂直な方向から見たときに、一の放熱体5a(基準放熱体5a)の中心点0を正六角形Fの中心とすると、隣接する他の放熱体5aの中心点A1,A2,B1,B2,C1,C2が当該正六角形の頂点に位置するように各放熱体5aが配置される。このように各放熱体5aが配置されると、基準放熱体5aに隣接する各放熱体5aは、当該基準放熱体5aとの距離が同じとなる、すなわち、各放熱体5aが等間隔に配列されることになる。
 また、正六角形Fの対角線のうち中心点0を通るものは3本あり、そのうちの一つである対角線L1(破線)上は、中心点A1、中心点0、中心点A2が配置される。ここで、中心点A1の放熱体5aの一組の平行な辺、基準放熱体5aの一組の平行な辺、中心点A2の一組の平行な辺は、いずれも対角線L1に垂直な方向に配置され、これらの6つ辺が平行に配置される。残りの対角線L2(一点鎖線)上に中心点B1,B2をもつ放熱体5aの各辺の配置関係や、L3(二点鎖線)上に中心点C1、C2を持つ放熱体5aの各辺の配置関係も同様である。このような各放熱体5aの配置によれば、放熱体5aと封止樹脂層4の樹脂の線膨張係数の差から生じる応力が、隣接する放熱体5a同士で相殺され易くなるため、放熱体5aと封止樹脂層4の樹脂の線膨張係数の差に起因する、放熱体5aと封止樹脂層4との界面の剥離や、封止樹脂層4の変形を抑えることができる。
 また、この実施形態では、各放熱体5aが配設される凹部40の深さ(封止樹脂層4の厚み方向の深さ)は、凹部40の形成位置によって異なる。例えば、図1に示すように、多層配線基板2の上面20aに対して垂直な方向から見たときに、実装部品3aに重なる凹部40のうち、発熱量が多い領域H(本発明の「第2部品内領域」に相当)に重なる凹部40の底と、実装部品3aの上面3a1との間隔W1は、発熱量が少ない領域L(本発明の「第1部品内領域」に相当)に重なる凹部40の底と、実装部品3aの上面3a1との間隔W2よりも狭くなるように、各凹部40が形成される。すなわち、この実施形態では、多層配線基板2の上面20aに対して垂直な方向から見たときに、発熱量が多い領域Hに重なる放熱体5aは実装部品3aとの距離を近づけ、発熱量が少ない領域Lに重なる放熱体5aは実装部品3aとの距離を離すことができるように、各凹部40の深さが設定されている。いずれの場合においても、凹部の底と、各実装部品との間には、封止樹脂層が存在しており、部品表面まで貫通はしていない。なお、放熱体5aの1つ1つが本発明の「放熱素体」に相当し、各放熱体5aをまとめた複数の放熱体5aが本発明の「放熱部材」に相当する。
 シールド膜6は、封止樹脂層4の表面(上面4a、側面4c)と多層配線基板2の側面20cとを被覆する。また、各放熱体5aは、封止樹脂層4の上面4aにおいて、シールド膜6に接続される。シールド膜6は、多層配線基板2の側面20cに露出したグランド電極(図示省略)に接続される。
 シールド膜6は、封止樹脂層4の上面4aに積層された密着膜と、密着膜に積層された導電膜と、導電膜に積層された保護膜とを有する多層構造で形成することができる(図示せず)。ここで、密着膜は、導電膜と封止樹脂層4との密着強度を高めるために設けられたものであり、例えば、SUSなどの金属で形成することができる。導電膜は、シールド膜6の実質的なシールド機能を担う層であり、例えば、Cu、Ag、Alのうちのいずれかの金属で形成することができる。保護膜は、導電膜が腐食したり、傷が付いたりするのを防止するために設けられたものであり、例えば、SUSで形成することができる。
 したがって、上記した実施形態によれば、封止樹脂層4の上面20aに複数の凹部40が形成され、これらの凹部40に各放熱体5aが配設されるが、各凹部40の底と、各実装部品3a~3dとの間には一定の間隔W1、W2が保たれるため、従来のモジュールのように、放熱部材の配置場所をレーザ加工で形成する際に、部品へのダメージ防止用のスペーサを部品と放熱部材との間に配置する必要がない。また、実装部品3aは、多層配線基板2の上面20aに対して垂直な方向から見たときに、発熱量が多い領域Hと、少ない領域Lとがあり、平面視で領域Hと重なる領域に配置される放熱体5aの実装部品3aの上面3a1との距離(間隔W1)は、領域Lと重なる領域に配置される放熱体5aの実装部品3aの上面3a1との距離(間隔W2)よりも短いため、実装部品3aが発する熱を効率よく放熱することができる。また、例えば、発熱量の少ない領域Lと放熱体5aとの距離についても、発熱量の多い領域Hと放熱体5aとの距離(間隔W1)と同じすると、発熱量が少ない領域Lの温度も上昇してしまい、特定変動や特性低下が生じるおそれがある。しかしながら、この実施形態では、平面視で領域Lと重なる領域に配置される放熱体5aの実装部品3aの上面3a1との距離(間隔W2)が、領域Hと重なる領域に配置される放熱体5aの実装部品3aの上面3a1との距離(間隔W1)よりも長いため、このような特性変動や特性低下を抑えることができる。また、実装部品3aの領域Lでは放熱体5aとの距離が長いため、当該領域Lでの実装部品3aの上面3a1と放熱体5aとの間のスペースを他の部材の配置スペースとして利用でき、モジュール1aの設計自由度を高めることができる。
 また、各放熱体5aは、多層配線基板2の上面20aに対して垂直な方向から見たときに、実装部品3a~3dに重なるか否かに関わらず、略等間隔に分散して配置される。例えば、平面視で発熱部品(実装部品3a、3c)に重なる領域のみに放熱部材を配置する場合は、放熱部材と封止樹脂層の樹脂との線膨張係数の差によって、放熱部材と封止樹脂層との間で剥離が生じるおそれがある。しかしながら、この実施形態のように放熱部材を複数の放熱体5aで構成すると、放熱部材(放熱体5a)と封止樹脂層4との接触面積が増えるため、両者の線膨張係数の差によって、放熱体5aと封止樹脂層4との間で剥離が生じるのを防止することができる。また、放熱体5aを分散配置することで、放熱部材(放熱体5a)と封止樹脂層4の樹脂との線膨張係数の差によって、封止樹脂層4が変形したり、封止樹脂層4の変形に伴う応力などにより、封止樹脂層4が多層配線基板2から剥がれたりするのを抑えることができる。また、多層配線基板自体の反りも抑制することができる。
 また、各放熱体5aは、シールド膜6に接続されるため、実装部品3a、3cから発生した熱をシールド膜6からも放熱することができるため、モジュール1aの放熱特性のさらなる向上を図ることができる。
 (放熱体の配置の変形例)
 この実施形態では、各放熱体5aが平面視で等間隔に配置されるようにしたが、例えば、図4に示すように、基本的には各放熱体5aを等間隔に配置するが、平面視で熱の影響による特性変動を起こしやすい部品或いは発熱量が少ない一部の実装部品3bに重なる領域には、放熱体5aを配置しないようにしてもよい。この構成によると、実装部品3a~3dそれぞれの放熱量や実装部品3a~3dのサイズに応じた自由度の高い放熱構造が可能になる。なお、本変形例において、発熱部品である実装部品3aが本発明の「第4部品」に相当し、発熱しにくい部品である実装部品3bが本発明の「第5部品」に相当する。
 <第2実施形態>
 本発明の第2実施形態にかかるモジュール1bについて、図5および図6を参照して説明する。なお、図5はモジュール1bの断面図であって、図6のB-B矢視断面図、図6はモジュール1bのシールド膜6を除いた状態の平面図である。
 この実施形態にかかるモジュール1bが、図1~図3を参照して説明した第1実施形態のモジュール1aと異なるところは、図5および図6に示すように、各放熱体5bの配置と横断面形状が異なることと、放熱体5bが配設される凹部40の深さが異なることである。その他の構成は、第1実施形態のモジュール1aと同じであるため、同一符号を付すことにより説明を省略する。
 この場合、各放熱体5bは、図6に示すように、平面視形状(横断面形状)が円形を有する円柱状に形成され、マトリクス状に配列される(分散配置)。そのため、第1実施形態と同様に、平面視で実装部品3a~3dに重ならない領域にも放熱体5bが配置される。また、この実施形態では、図5に示すように、発熱部品である実装部品3aと平面視で重なる領域(本発明の「第1領域」に相当)に形成される全ての凹部40の底と、実装部品3aの上面3a1との間隔は、W1で統一される。また、非発熱部品である実装部品3b、3dと平面視で重なる領域(本発明の「第2領域」に相当)に形成される凹部40の底と、実装部品3b(非発熱部品)の上面3b1との間隔は、W1よりも長いW3で形成される。
 この構成によると、部品へのダメージ防止用のスペーサを部品と放熱部材との間に配置する必要がない。また、実装部品3aが発する熱を効率よく放熱することができる。また、特性変動や特性低下を抑えることができる。また、凹部40の開口の輪郭が円形になるため、凹部40をレーザ加工で容易に形成することができる。なお、この実施形態でも、図4を参照して説明した第1実施形態のモジュール1aの変形例と同様に、平面視で非発熱部品と重なる領域に、放熱体5bを配置しないようにしてもよい。
 (放熱体5bの配置の変形例)
 この実施形態では、各放熱体5bをマトリクス状に配列したが、第1実施形態と同様に、等間隔に配列するようにしてもよい。この場合、図7に示すように、多層配線基板2に上面20aに対して垂直な方向から見たときに、一の放熱体5bの中心を正六角形の中心に配置したときに、隣接する他の放熱体5bの中心が、当該正六角形の各頂点に配置される。この構成によれば、放熱体5bと封止樹脂層4の樹脂の線膨張係数の差から生じる応力が、隣接する放熱体5b同士で相殺され易くなるため、放熱体5bと封止樹脂層4の樹脂の線膨張係数の差に起因する、放熱体5bと封止樹脂層4との界面の剥離や、封止樹脂層4の変形を抑えることができる。
 <第3実施形態>
 本発明の第3実施形態にかかるモジュール1cについて、図8および図9を参照して説明する。なお、図8はモジュール1cの断面図であって、図9のC-C矢視断面図、図9はモジュール1cのシールド膜6を除いた状態の平面図である。
 この実施形態にかかるモジュール1cが、図5および図6を参照して説明した第2実施形態のモジュール1bと異なるところは、図8および図9に示すように、凹部40の形状およびこの凹部40に配設される放熱体5cの形状とが異なることである。その他の構成は、第2実施形態のモジュール1bと同じであるため、同一符号を付すことにより説明を省略する。
 この場合、凹部40は、多層配線基板2の上面20aに対して垂直な方向から見たときに、ハニカム状の溝に形成され、当該溝に放熱体5cが配設される。また、第2実施形態と同様、平面視で発熱部品(実装部品3a、3c)と重なる凹部40の底と、発熱部品(実装部品3a、3c)の上面3a1、3c1との間隔W1は、非発熱部品(実装部品3b)と重なる凹部40の底と、非発熱部品(実装部品3b)の上面3b1との間隔W3よりも狭くなるように凹部40が形成される。
 この構成によれば、部品へのダメージ防止用のスペーサを部品と放熱部材との間に配置する必要がない。また、実装部品3aが発する熱を効率よく放熱することができる。また、特性変動や特性低下を抑えることができる。また、放熱体5cがハニカム状に形成されるため、放熱体5cと封止樹脂層4の樹脂の線膨張係数の差に起因する、放熱体5cと封止樹脂層4との界面の剥離や、封止樹脂層4の変形をさらに抑えることができる。
 (放熱体5cの変形例)
 この実施形態において、図4を参照して説明した第1実施形態の放熱体5aの配置の変形例と同様に、平面視で発熱量が少ない一部の実装部品3bに重なる領域には、放熱体5cを配置しないようにしてもよい。この構成によると、実装部品3a~3dそれぞれの放熱量や実装部品3a~3dのサイズに応じた自由度の高い放熱構造が可能になる。
 なお、本発明は上記した各実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて、上記したもの以外に種々の変更を行なうことが可能である。例えば、上記した各実施形態や変形例の構成を組合わせてもよい。
 また、上記した第1、第2実施形態では、各放熱体5a、5bの横断面形状が正六角形、円形の場合について説明したが、例えば、矩形など、適宜変更することができる。
 また、上記した各実施形態において、シールド膜6がなくてもよい。
 また、上記した第1実施形態において、実装部品3aの発熱量が少ない領域Lと平面視で重なる箇所には、放熱体5aを配置しないようにしてもよい。このようにすると、発熱量の少ない領域Lに対する放熱体5aからの熱伝導による熱影響を無くす事が出来るため、実装部品の発熱量やモジュールのサイズに応じた自由度の高い放熱構造が可能になる。なお、この場合の実装部品3aが、本発明の「第6部品」に相当する。
 また、本発明は、配線基板に実装された部品から発生する熱を放熱する放熱部材を備える種々のモジュールに適用することができる。
 1a~1c  モジュール
 2  多層配線基板(配線基板)
 3a,3c  部品(第1部品、第3部品、第4部品、第6部品)
 3b  部品(第2部品、第5部品)
 3d  部品(第2部品)
 5a,5b  放熱体(放熱素体)
 5c  放熱体(放熱部材)
 40  凹部

Claims (8)

  1.  配線基板と、
     前記配線基板の主面に実装された第1部品および第2部品と、
     前記配線基板に当接する当接面と、該当接面に対向する対向面とを有し、前記第1部品および前記第2部品を封止する封止樹脂層と、
     前記封止樹脂層の前記対向面に形成された凹部と、
     前記凹部に配設され、放熱素体から構成される放熱部材とを備え、
     前記第2部品は、前記第1部品よりも発熱しない部品であり、
     前記放熱部材は、前記配線基板の前記主面に対して垂直な方向から見たときに、前記第1部品に重なる第1領域と、前記第2部品に重なる第2領域とを有し、
     前記凹部は、前記第1部品および前記第2部品まで到達しておらず、
     前記放熱部材の前記第1領域の前記凹部の底から前記第1部品までの距離は、前記放熱部材の前記第2領域の前記凹部の底から前記第2部品までの距離よりも短い
     ことを特徴とするモジュール。
  2.  配線基板と、
     前記配線基板の主面に実装された第3部品と、
     前記配線基板に当接する当接面と、該当接面に対向する対向面とを有し、前記第3部品を封止する封止樹脂層と、
     前記封止樹脂層の前記対向面に形成された凹部と、
     前記凹部に配設され、放熱素体から構成される放熱部材とを備え、
     前記第3部品は、前記配線基板の前記主面に対して垂直な方向から見たときに、第1部品内領域と、該第1部品内領域よりも発熱する第2部品内領域とを有し、
     前記放熱部材は、前記配線基板の前記主面に対して垂直な方向から見たときに、前記第1部品内領域に重なる領域と、前記第2部品内領域に重なる領域とを有し、
     前記凹部は、前記第3部品まで到達しておらず、
     前記放熱部材の前記第2部品内領域に重なる領域の前記凹部の底から前記第3部品までの距離は、前記放熱部材の前記第1部品内領域に重なる領域の前記凹部の底から前記第3部品までの距離よりも短い
     ことを特徴とするモジュール。
  3.  前記放熱部材は、複数の前記凹部に配設された複数の前記放熱素体から構成され、
     前記複数の放熱素体のいくつかは、前記配線基板の前記主面に対して垂直な方向から見たときに、前記第1部品および前記第2部品にいずれにも重ならない領域に配置されていることを特徴とする請求項1に記載のモジュール。
  4.  前記放熱部材は、複数の前記凹部に配設された複数の前記放熱素体から構成され、
     前記複数の放熱素体のいくつかは、前記配線基板の前記主面に対して垂直な方向から見たときに、前記第3部品に重ならない領域に配置されていることを特徴とする請求項2に記載のモジュール。
  5.  配線基板と、
     前記配線基板の主面に実装された第4部品および第5部品と、
     前記配線基板に当接する当接面と、該当接面に対向する対向面とを有し、前記第4部品および前記第5部品を封止する封止樹脂層と、
     前記封止樹脂層の前記対向面に形成された凹部と、
     前記凹部に配設され、放熱素体から構成される放熱部材とを備え、
     前記第5部品は、前記第4部品よりも発熱しない部品であり、
     前記凹部は、前記第4部品まで到達しておらず、
     前記放熱部材は、前記配線基板の前記主面に対して垂直な方向から見たときに、前記第4部品に重なる領域があるが、前記第5部品には重なる領域がない
     ことを特徴とするモジュール。
  6.  配線基板と、
     前記配線基板の主面に実装された第6部品と、
     前記配線基板に当接する当接面と、該当接面に対向する対向面とを有し、前記第6部品を封止する封止樹脂層と、
     前記封止樹脂層の前記対向面に形成された凹部と、
     前記凹部に配設された放熱部材とを備え、
     前記第6部品は、前記配線基板の前記主面に対して垂直な方向から見たときに、第1部品内領域と、該第1部品内領域よりも発熱する第2部品内領域とを有し、
     前記凹部は、前記第6部品まで到達しておらず、
     前記放熱部材は、前記配線基板の前記主面に対して垂直な方向から見たときに、前記第2部品内領域に重なる領域があるが、前記第1部品内領域には重なる領域がない
     ことを特徴とするモジュール。
  7.  前記複数の放熱素体は、前記配線基板の前記主面に対して垂直な方向から見たときに、等間隔に配列されていることを特徴とする請求項3または4に記載のモジュール。
  8.  前記放熱部材と接触した状態で前記封止樹脂層の前記対向面を被覆するシールド膜をさらに備えることを特徴とする請求項1ないし7のいずれか1項に記載のモジュール。
     
     

     
PCT/JP2018/008680 2017-03-13 2018-03-07 モジュール WO2018168591A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/565,847 US11171067B2 (en) 2017-03-13 2019-09-10 Module having a sealing resin layer with radiating member filled depressions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-046962 2017-03-13
JP2017046962 2017-03-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/565,847 Continuation US11171067B2 (en) 2017-03-13 2019-09-10 Module having a sealing resin layer with radiating member filled depressions

Publications (1)

Publication Number Publication Date
WO2018168591A1 true WO2018168591A1 (ja) 2018-09-20

Family

ID=63522106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008680 WO2018168591A1 (ja) 2017-03-13 2018-03-07 モジュール

Country Status (2)

Country Link
US (1) US11171067B2 (ja)
WO (1) WO2018168591A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114639643A (zh) * 2020-12-16 2022-06-17 双鸿科技股份有限公司 电子封装件及其散热结构

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP1635460S (ja) * 2018-10-22 2019-07-01
JP1635458S (ja) * 2018-10-22 2019-07-01
JP1635459S (ja) * 2018-10-22 2019-07-01
JP1635061S (ja) * 2018-10-22 2019-07-01
JP1640671S (ja) * 2018-10-22 2019-09-09
JP1645247S (ja) * 2019-04-09 2019-11-11
US12055633B2 (en) * 2020-08-25 2024-08-06 Lumentum Operations Llc Package for a time of flight device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139648A (ja) * 1987-11-27 1989-06-01 Fujitsu Ltd 熱伝導性樹脂組成物
JPH03171651A (ja) * 1989-11-29 1991-07-25 Seiko Epson Corp 半導体装置
JPH1126658A (ja) * 1997-07-09 1999-01-29 Rohm Co Ltd Bga型半導体装置のパッケージ構造
JP2008130915A (ja) * 2006-11-22 2008-06-05 Murata Mfg Co Ltd 部品内蔵基板
JP3143888U (ja) * 2008-05-29 2008-08-07 株式会社村田製作所 部品内蔵モジュール
JP2012028484A (ja) * 2010-07-22 2012-02-09 Panasonic Corp モジュールと、その製造方法
JP2012094592A (ja) * 2010-10-25 2012-05-17 Elpida Memory Inc 半導体装置及びその製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5233225A (en) * 1988-02-05 1993-08-03 Citizen Watch Co., Ltd. Resin encapsulated pin grid array and method of manufacturing the same
US5796165A (en) * 1996-03-19 1998-08-18 Matsushita Electronics Corporation High-frequency integrated circuit device having a multilayer structure
US6703707B1 (en) * 1999-11-24 2004-03-09 Denso Corporation Semiconductor device having radiation structure
EP1394857A3 (en) * 2002-08-28 2004-04-07 Matsushita Electric Industrial Co., Ltd. Semiconductor device
DE102004007180B4 (de) * 2003-02-14 2015-10-22 Autonetworks Technologies, Ltd. Verteilereinheit und elektrisches Verbindungsgehäuse hiermit
JP2005080370A (ja) * 2003-08-29 2005-03-24 Auto Network Gijutsu Kenkyusho:Kk 回路構成体及び防水処理された回路構成体の製造方法
DE102004007315A1 (de) * 2004-02-14 2005-08-25 Robert Bosch Gmbh Nahbereichsradar mit Mehrfachsensorik zur Ortung von in einem Medium eingeschlossenen Objekten
JP2008159718A (ja) * 2006-12-21 2008-07-10 Sharp Corp マルチチップモジュールおよびその製造方法、並びにマルチチップモジュールの搭載構造およびその製造方法
US7776648B2 (en) 2006-12-21 2010-08-17 Agere Systems Inc. High thermal performance packaging for circuit dies
JP5280102B2 (ja) * 2008-05-26 2013-09-04 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
WO2011042982A1 (ja) * 2009-10-09 2011-04-14 トヨタ自動車株式会社 半導体装置の製造方法
JP5480923B2 (ja) * 2011-05-13 2014-04-23 シャープ株式会社 半導体モジュールの製造方法及び半導体モジュール
JP2014063844A (ja) * 2012-09-20 2014-04-10 Sony Corp 半導体装置、半導体装置の製造方法及び電子機器
JP5576548B1 (ja) * 2013-07-10 2014-08-20 太陽誘電株式会社 回路モジュール及びその製造方法
JP5550159B1 (ja) * 2013-09-12 2014-07-16 太陽誘電株式会社 回路モジュール及びその製造方法
US10712278B2 (en) * 2015-06-29 2020-07-14 Hewlett-Packard Development Company, L.P. Analyte detection package with integrated lens
JP6764666B2 (ja) * 2016-03-18 2020-10-07 新光電気工業株式会社 半導体装置及び半導体装置の製造方法
US10770795B2 (en) * 2016-05-27 2020-09-08 Taiwan Semiconductor Manufacturing Co., Ltd. Antenna device and method for manufacturing antenna device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139648A (ja) * 1987-11-27 1989-06-01 Fujitsu Ltd 熱伝導性樹脂組成物
JPH03171651A (ja) * 1989-11-29 1991-07-25 Seiko Epson Corp 半導体装置
JPH1126658A (ja) * 1997-07-09 1999-01-29 Rohm Co Ltd Bga型半導体装置のパッケージ構造
JP2008130915A (ja) * 2006-11-22 2008-06-05 Murata Mfg Co Ltd 部品内蔵基板
JP3143888U (ja) * 2008-05-29 2008-08-07 株式会社村田製作所 部品内蔵モジュール
JP2012028484A (ja) * 2010-07-22 2012-02-09 Panasonic Corp モジュールと、その製造方法
JP2012094592A (ja) * 2010-10-25 2012-05-17 Elpida Memory Inc 半導体装置及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114639643A (zh) * 2020-12-16 2022-06-17 双鸿科技股份有限公司 电子封装件及其散热结构

Also Published As

Publication number Publication date
US20200006172A1 (en) 2020-01-02
US11171067B2 (en) 2021-11-09

Similar Documents

Publication Publication Date Title
WO2018168591A1 (ja) モジュール
CN105870080B (zh) 半导体装置
US11699670B2 (en) High-frequency module
TWI613774B (zh) 功率覆蓋結構及其製造方法
WO2018159453A1 (ja) モジュール
JPWO2016080333A1 (ja) モジュール
CN111771276A (zh) 高频模块
JP4610414B2 (ja) 電子部品収納用パッケージおよび電子装置ならびに電子装置の実装構造
US9860990B1 (en) Circuit board structure with chips embedded therein and manufacturing method thereof
WO2018151176A1 (ja) 熱電素子内蔵パッケージ
JP6048238B2 (ja) 電子装置
JP2012064855A (ja) 半導体装置
JP2021005674A (ja) 電子部品モジュール、電子部品ユニット、および、電子部品モジュールの製造方法
US11177189B2 (en) Module including heat dissipation structure
JP7320923B2 (ja) モジュール
JP7059714B2 (ja) 電力変換装置及び電力変換装置の製造方法
WO2018164160A1 (ja) モジュール
JP6686467B2 (ja) 電子部品放熱構造
JP6200693B2 (ja) 電子制御装置
JP6953859B2 (ja) 半導体装置
JP2020191316A (ja) 回路モジュール
JP2016111141A (ja) 半導体装置
JP2019021856A (ja) モジュール
JP2017168486A (ja) 電子装置およびその製造方法
CN115763383A (zh) 半导体安装结构体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18766777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18766777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载