+

WO2018168342A1 - Crystallized glass support substrate and laminate using same - Google Patents

Crystallized glass support substrate and laminate using same Download PDF

Info

Publication number
WO2018168342A1
WO2018168342A1 PCT/JP2018/005717 JP2018005717W WO2018168342A1 WO 2018168342 A1 WO2018168342 A1 WO 2018168342A1 JP 2018005717 W JP2018005717 W JP 2018005717W WO 2018168342 A1 WO2018168342 A1 WO 2018168342A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
crystallized glass
substrate
supporting
support
Prior art date
Application number
PCT/JP2018/005717
Other languages
French (fr)
Japanese (ja)
Inventor
哲哉 村田
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2018168342A1 publication Critical patent/WO2018168342A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting

Definitions

  • the present invention relates to a support crystallized glass substrate and a laminate using the same, and specifically to a support crystallized glass substrate used for supporting a processed substrate in a semiconductor package manufacturing process and a laminate using the support crystallized glass substrate.
  • Portable electronic devices such as mobile phones, notebook personal computers, and PDAs (Personal Data Assistance) are required to be smaller and lighter.
  • the mounting space of semiconductor chips used in these electronic devices is also strictly limited, and high-density mounting of semiconductor chips has become a problem. Therefore, in recent years, high-density mounting of semiconductor packages has been achieved by three-dimensional mounting technology, that is, by stacking semiconductor chips and interconnecting the semiconductor chips.
  • a conventional wafer level package is manufactured by forming bumps in a wafer state and then dicing them into individual pieces.
  • the semiconductor chip is likely to be chipped.
  • the fan-out type WLP can increase the number of pins, and can prevent chipping of the semiconductor chip by protecting the end portion of the semiconductor chip.
  • the fan-out type WLP includes a step of forming a processed substrate by molding a plurality of semiconductor chips with a resin sealing material and then wiring to one surface of the processed substrate, a step of forming a solder bump, and the like.
  • the sealing material may be deformed and the processed substrate may change in dimensions.
  • the dimension of the processed substrate changes, it becomes difficult to perform wiring with high density on one surface of the processed substrate, and it becomes difficult to accurately form solder bumps.
  • the glass substrate is easy to smooth the surface and has rigidity. Therefore, when a glass substrate is used as the support substrate, the processed substrate can be supported firmly and accurately. In addition, the glass substrate easily transmits light such as ultraviolet light and infrared light. Therefore, when a glass substrate is used as the support substrate, the processed substrate and the glass substrate can be easily fixed when an adhesive layer or the like is provided with an ultraviolet curable adhesive or the like. Furthermore, when a release layer or the like that absorbs infrared rays is provided, the processed substrate and the glass substrate can be easily separated. As another method, the processed substrate and the glass substrate can be easily fixed and separated even when an adhesive layer or the like is provided with an ultraviolet curable tape or the like.
  • the thermal expansion coefficient of the processed substrate is increased.
  • about 25% by mass of the alkali metal oxide is contained in the glass composition of the glass substrate. It is necessary to introduce and raise the thermal expansion coefficient of the glass substrate.
  • the present invention has been made in view of the above circumstances, and its technical problem is that when the ratio of semiconductor chips is small in the processed substrate and the ratio of the sealing material is large, the dimensional change of the processed substrate during processing ( In particular, it is to contribute to high-density mounting of semiconductor packages by creating a support substrate and a laminate using the support substrate that hardly cause warpage and have a small amount of alkali elution.
  • the present inventors have found that the above technical problem can be solved by using a crystallized glass substrate in which a specific high expansion crystal is precipitated in a glass matrix as a support substrate.
  • the support crystallized glass substrate of the present invention is a support crystallized glass substrate for supporting a processed substrate, and one or more of lithium disilicate, ⁇ -cristobalite, and ⁇ -quartz are deposited.
  • the Young's modulus is 80 GPa or more.
  • “Young's modulus” refers to a value measured by a bending resonance method. 1 GPa corresponds to approximately 101.9 kgf / mm 2 .
  • a high-expansion crystal that is, a crystallized glass substrate on which one or more of lithium disilicate, ⁇ -cristobalite, and ⁇ -quartz is precipitated is used as the support substrate.
  • the Young's modulus is improved as compared with the crystalline glass before crystallization.
  • the crystallized glass substrate can be easily smoothed in the same manner as the glass substrate, and can impart light permeability.
  • the support crystallized glass substrate of the present invention has a Young's modulus of 80 GPa or more. In this way, since the rigidity of the entire laminate is increased, deformation, warpage, and breakage of the processed substrate are less likely to occur during processing.
  • the supported crystallized glass substrate of the present invention preferably has an alkali elution amount of less than 1.5 mg.
  • alkaline elution amount refers to a value measured based on JIS R3502.
  • the support crystallized glass substrate of the present invention has an average transmittance in the thickness direction in the wavelength range of 250 to 1500 nm before weathering test (HAST: Highly Accelerated Temperature and Humidity Stress test) X (%), weather resistance
  • HAST Highly Accelerated Temperature and Humidity Stress test
  • Y %
  • the “average transmittance” can be measured with a commercially available spectrophotometer.
  • the support crystallized glass substrate of the present invention has an average linear thermal expansion coefficient exceeding 60 ⁇ 10 ⁇ 7 / ° C. in a temperature range of 30 to 380 ° C. and not more than 195 ⁇ 10 ⁇ 7 / ° C. preferable.
  • the thermal expansion coefficients of the processed substrate and the supporting crystallized glass substrate are easily matched.
  • the thermal expansion coefficients of the two match, it becomes easy to suppress dimensional changes (particularly warpage) of the processed substrate during processing.
  • wiring on one surface of the processed substrate can be performed with high density, and solder bumps can be accurately formed.
  • the “average linear thermal expansion coefficient in the temperature range of 30 to 380 ° C.” can be measured with a dilatometer.
  • the support crystallized glass substrate of the present invention preferably has a total thickness deviation (TTV) of 5 ⁇ m or less.
  • TTV total thickness deviation
  • the “total thickness deviation (TTV)” is a difference between the maximum thickness and the minimum thickness of the entire support crystallized glass substrate, and can be measured by, for example, SBW-331ML / d manufactured by Kobelco Research Institute.
  • the support crystallized glass substrate of the present invention a composition, in mass%, SiO 2 50 ⁇ 85% , Al 2 O 3 0.1 ⁇ 15%, B 2 O 3 0 ⁇ 10%, P 2 O 5 0-15%, Li 2 O 2-20%, Na 2 O 0-10%, K 2 O 0-7%, MgO 0-10%, CaO 0-5%, SrO 0-5%, BaO 0- It is preferable to contain 5%, ZnO 0 to 5%, and ZrO 2 0 to 10%.
  • the support crystallized glass substrate of the present invention preferably has a plate thickness of less than 2.0 mm and a warp amount of 60 ⁇ m or less.
  • the "warp amount” is the sum of the absolute value of the maximum distance between the highest point and the least square focal plane in the entire supporting crystallized glass substrate and the absolute value of the lowest point and the least square focal plane. For example, it can be measured by SBW-331ML / d manufactured by Kobelco Kaken.
  • the laminate of the present invention is a laminate comprising at least a processed substrate and a support crystallized glass substrate for supporting the process substrate, wherein the support crystallized glass substrate is the above-mentioned support crystallized glass substrate.
  • the processed substrate includes a semiconductor chip molded with at least a sealing material.
  • the method of manufacturing a semiconductor package of the present invention includes a step of preparing a laminate including at least a processed substrate and a support crystallized glass substrate for supporting the processed substrate, a step of performing a processing process on the processed substrate, And the above-mentioned support crystallized glass substrate is used as the support crystallized glass substrate.
  • the processed substrate includes a semiconductor chip molded with at least a sealing material.
  • lithium disilicate In the supported crystallized glass substrate of the present invention, one or more of lithium disilicate, ⁇ -cristobalite, and ⁇ -quartz are preferably deposited, and lithium disilicate is more preferably deposited.
  • the Young's modulus and thermal expansion coefficient of the support crystallized glass substrate can be increased while reducing the amount of alkali elution.
  • lithium disilicate is advantageous in reducing the total thickness deviation (TTV) by the polishing treatment because the size of the crystal particles is easily miniaturized, and also advantageous in ensuring transparency.
  • the support crystallized glass substrate of the present invention is preferably free of ⁇ -eucryptite, ⁇ -spodumene, ⁇ -cristobalite, ⁇ -quartz, and solid solutions thereof. If it does in this way, the situation where the thermal expansion coefficient of a support crystallized glass substrate falls unjustly can be avoided.
  • the Young's modulus is preferably 80 GPa or more, 85 GPa or more, 90 GPa or more, 95 GPa or more, 98 GPa or more, particularly 100 to 150 GPa. If the Young's modulus is too low, the rigidity of the entire laminate is lowered, and the processed substrate is likely to be deformed, warped, or damaged.
  • the alkali elution amount is preferably less than 1.5 mg, 1.0 mg or less, particularly less than 0.5 mg. When there is too much alkali elution amount, the recyclability of a support crystallized glass substrate will fall easily.
  • the average transmittance in the plate thickness direction in the wavelength range 250 to 1500 nm before the weather resistance test (HAST) is X (%), and the wavelength range 250 to 500 after the weather resistance test (HAST).
  • X (%) the average transmittance in the plate thickness direction at 1500 nm
  • Y (%) it is preferable to satisfy the relationship of XY ⁇ 10%, more preferably to satisfy the relationship of XY ⁇ 5%. It is particularly preferable to satisfy the relationship of Y ⁇ 3%.
  • the value of XY increases, the recyclability of the support crystallized glass substrate tends to decrease.
  • the average linear thermal expansion coefficient in the temperature range of 30 to 380 ° C. is more than 60 ⁇ 10 ⁇ 7 / ° C. and not more than 195 ⁇ 10 ⁇ 7 / ° C., preferably 80 ⁇ 10 -7 / ° C. greater, and 195 ⁇ 10 -7 / °C less, more preferably 100 ⁇ 10 -7 / °C or higher, and 160 ⁇ 10 -7 / °C less, particularly preferably 100 ⁇ 10 -7 / °C or higher And 150 ⁇ 10 ⁇ 7 / ° C. or less.
  • the average linear thermal expansion coefficient in the temperature range of 30 to 380 ° C. is outside the above range, the thermal expansion coefficients of the processed substrate and the support crystallized glass substrate are difficult to match. If the thermal expansion coefficients of the two are mismatched, a dimensional change (particularly warpage) of the processed substrate is likely to occur during processing.
  • a composition, in mass%, SiO 2 50 ⁇ 85% , Al 2 O 3 0.1 ⁇ 15%, B 2 O 3 0 ⁇ 10%, P 2 O 5 0 ⁇ 15%, Li 2 O 2-20%, Na 2 O 0-10%, K 2 O 0-7%, MgO 0-10%, CaO 0-5%, SrO 0-5%, BaO 0-5% ZnO 0 to 5% and ZrO 2 0 to 10% are preferable.
  • the reason for limiting the content of each component as described above will be described below.
  • % display represents the mass% unless there is particular notice.
  • SiO 2 is a component for increasing Young's modulus and weather resistance, and is a component for precipitating lithium disilicate, ⁇ -cristobalite, ⁇ -quartz and the like.
  • the content of SiO 2 is preferably 50 to 85%, 60 to 82%, 65 to 80%, 68 to 79%, particularly 70 to 78%.
  • Al 2 O 3 is a component that enhances the Young's modulus and a component that suppresses phase separation and devitrification.
  • the content of Al 2 O 3 is preferably 0.1 to 15%, 0.5 to 10%, 1 to 9%, 2 to 8%, particularly 4 to 7%.
  • B 2 O 3 is a component that enhances meltability and devitrification resistance.
  • the content of B 2 O 3 is preferably 0 to 10%, 0 to 7%, 0 to 5%, 0 to 3%, particularly 0 to less than 1%.
  • P 2 O 5 is a component for generating crystal nuclei.
  • the content of P 2 O 5 is preferably 0 to 15%, 0.1 to 12%, 1 to 8%, particularly 1.5 to 4%.
  • Li 2 O is a component that increases the Young's modulus and the coefficient of thermal expansion, is a component that lowers the high-temperature viscosity and remarkably increases the meltability, and is a component for further precipitating lithium disilicate and the like.
  • the content of Li 2 O is preferably 2 to 20%, 4 to 17%, 5 to 15%, particularly 6 to 12%.
  • Na 2 O is an ingredient enhances the thermal expansion coefficient and lower the high temperature viscosity, a component for enhancing significantly the melting property. Further, it is a component that contributes to the initial melting of the glass raw material. However, when the content of Na 2 O is too large, it tends to be much amount of alkali elution. Therefore, the content of Na 2 O is preferably 0 to 10%, 0 to 5%, 0 to 3%, particularly 0 to less than 1%.
  • K 2 O is a component that increases the coefficient of thermal expansion, and is a component that lowers the viscosity at high temperature to remarkably increase the meltability and suppress the coarsening of the precipitated crystals.
  • the content of K 2 O is preferably 0 to 7%, 0 to 6%, 0.1 to 5%, 0.5 to 3%, particularly 1 to 2%. Note that when the precipitated crystal becomes coarse, it becomes difficult to reduce the total thickness deviation (TTV) by the polishing process.
  • MgO is a component that increases the Young's modulus and lowers the high-temperature viscosity to increase the meltability.
  • the content of MgO is preferably 0 to 10%, 0 to 7%, 0.1 to 4%, particularly 0.3 to 2%.
  • CaO is a component that lowers the high temperature viscosity and remarkably increases the meltability. Moreover, among the alkaline earth metal oxides, since the introduced raw material is relatively inexpensive, it is a component that lowers the batch cost. However, if the content is too large, the glass tends to devitrify during molding. Therefore, the content of CaO is preferably 0 to 5%, 0 to 3%, 0 to 1%, particularly 0 to 0.5%.
  • SrO is a component that suppresses phase separation, and a component that suppresses the coarsening of precipitated crystals.
  • the content of SrO is preferably 0 to 5%, 0.1 to 4%, 0.5 to 3%, particularly 1 to 2%.
  • BaO is a component that suppresses the coarsening of the precipitated crystal, but if its content is too large, it becomes difficult to precipitate the crystal by heat treatment. Therefore, the content of BaO is preferably 0 to 5%, 0 to 4%, 0.1 to 3%, particularly 0.5 to 2%.
  • ZnO is a component that lowers the viscosity at high temperature and remarkably increases the meltability, and also suppresses the coarsening of the precipitated crystals.
  • the content of ZnO is preferably 0 to 5%, 0 to 3%, 0.1 to 2%, particularly 0.2 to 1%.
  • ZrO 2 is a component that enhances Young's modulus and weather resistance, and is a component for generating crystal nuclei.
  • the content of ZrO 2 is preferably 0 to 10%, 0.1 to 9%, 1 to 8%, 2 to 7%, particularly 3 to 6%.
  • the content of other components other than the above components is preferably 10% or less, and particularly preferably 5% or less in total, from the viewpoint of accurately enjoying the effects of the present invention.
  • TiO 2 is a component for generating crystal nuclei, and is a component for improving weather resistance and Young's modulus.
  • Y 2 O 3 is a component that increases the Young's modulus of glass. However, Y 2 O 3 also has an effect of suppressing crystal growth. Therefore, the content of Y 2 O 3 is preferably 0 to 5%, 0 to 3%, particularly 0 to less than 1%.
  • Fe 2 O 3 is a component mixed as an impurity or a component that can be introduced as a fining agent component.
  • the content of Fe 2 O 3 is preferably 0.05% or less, 0.03% or less, and particularly 0.02% or less.
  • “Fe 2 O 3 ” referred to in the present invention includes divalent iron oxide and trivalent iron oxide, and the divalent iron oxide is handled in terms of Fe 2 O 3 .
  • other polyvalent oxides are handled on the basis of the indicated oxide.
  • Nb 2 O 5 and La 2 O 3 have a function of increasing the strain point, Young's modulus, and the like. However, if the content of these components is more than 5%, particularly more than 1%, the batch cost may increase.
  • As 2 O 3 and Sb 2 O 3 act effectively as fining agents, but it is preferable to reduce this component as much as possible from an environmental point of view.
  • the contents of As 2 O 3 and Sb 2 O 3 are preferably 1% or less, 0.5% or less, particularly preferably 0.1% or less, respectively, and it is desirable not to contain them substantially.
  • substantially free of refers to the case where the content of the explicit component in the composition is less than 0.05%.
  • SnO 2 is a component having a good clarification action in a high temperature region and a component that lowers the high temperature viscosity.
  • the content of SnO 2 is preferably 0 to 1%, 0.01 to 1%, particularly 0.05 to 0.5%.
  • Sn-based heterogeneous crystals are likely to precipitate.
  • the content of SnO 2 is too small, it becomes difficult to enjoy the above-mentioned effects.
  • metal powders such as F, Cl, SO 3 , C, Al, Si or the like may be introduced up to about 3% as long as the glass properties are not impaired. Further, CeO 2 or the like can be introduced up to about 2%, but it is necessary to pay attention to a decrease in ultraviolet transmittance.
  • the total thickness deviation (TTV) is preferably 5 ⁇ m or less, 4 ⁇ m or less, 3 ⁇ m or less, 2 ⁇ m or less, 1 ⁇ m or less, particularly 0.1 to less than 1 ⁇ m.
  • the warp amount is preferably 60 ⁇ m or less, 55 ⁇ m or less, 50 ⁇ m or less, 1 to 45 ⁇ m, particularly 5 to 40 ⁇ m.
  • the smaller the warp amount the easier it is to improve the accuracy of the processing. In particular, since the wiring accuracy can be increased, high-density wiring is possible.
  • the support crystallized glass substrate of the present invention preferably has a substantially disk shape or wafer shape, and its diameter is preferably 100 mm or more and 500 mm or less, particularly preferably 150 mm or more and 450 mm or less. In this way, it becomes easy to apply to the manufacturing process of a semiconductor package. You may process into other shapes, for example, shapes, such as a rectangle, as needed.
  • the roundness (excluding the notch portion) is preferably 1 mm or less, 0.1 mm or less, 0.05 mm or less, particularly 0.03 mm or less.
  • “roundness” is a value obtained by subtracting the minimum value from the maximum value of the outer shape of the wafer.
  • the plate thickness is preferably less than 2.0 mm, 1.5 mm or less, 1.2 mm or less, 1.1 mm or less, 1.0 mm or less, particularly 0.9 mm or less.
  • the plate thickness decreases, the mass of the laminate becomes lighter, and thus handling properties are improved.
  • the plate thickness is preferably 0.1 mm or more, 0.2 mm or more, 0.3 mm or more, 0.4 mm or more, 0.5 mm or more, 0.6 mm or more, particularly more than 0.7 mm.
  • the support crystallized glass substrate of the present invention preferably has a notch part (notch-shaped alignment part), and the deep part of the notch part is more preferably substantially circular or substantially V-groove in plan view.
  • a positioning member such as a positioning pin
  • alignment of the support crystallized glass substrate and the processed substrate is facilitated.
  • the notch is formed on the processed substrate and the positioning member is brought into contact with the processed substrate, the alignment of the entire laminate is facilitated.
  • the support crystallized glass substrate of the present invention it is preferable that all or part of the edge region where the surface of the notch portion and the end face intersect is chamfered. As a result, it is possible to effectively avoid damage starting from the notch portion.
  • all or part of the edge region where the surface and end face of the notch portion intersect is chamfered, and 50% of the edge region where the surface and end surface of the notch portion intersect.
  • the above is preferably chamfered, more preferably 90% or more of the edge region where the surface of the notch portion intersects with the end surface is chamfered, and the edge region where the surface of the notch portion intersects with the end surface More preferably, all of the above are chamfered. The larger the chamfered area at the notch, the lower the probability of breakage starting from the notch.
  • the chamfering width in the front surface direction of the notch portion (the chamfering width in the rear surface direction is also the same) is preferably 50 to 900 ⁇ m, 200 to 800 ⁇ m, 300 to 700 ⁇ m, 400 to 650 ⁇ m, particularly 500 to 600 ⁇ m. If the chamfering width in the surface direction of the notch portion is too small, the supporting crystallized glass substrate tends to be damaged starting from the notch portion. On the other hand, if the chamfering width in the surface direction of the notch portion is too large, the chamfering efficiency is lowered, and the manufacturing cost of the support crystallized glass substrate is likely to increase.
  • the chamfer width in the plate thickness direction of the notch portion (the total chamfer width of the front surface and the back surface) is preferably 5 to 80%, 20 to 75%, 30 to 70%, 35 to 65% of the plate thickness, especially 40-60%. If the chamfer width in the plate thickness direction of the notch portion is too small, the supporting crystallized glass substrate is likely to be damaged starting from the notch portion. On the other hand, if the chamfer width in the plate thickness direction of the notch portion is too large, the external force tends to concentrate on the end surface of the notch portion, and the supporting crystallized glass substrate is likely to be damaged starting from the end surface of the notch portion.
  • the support crystallized glass substrate of the present invention is preferably not subjected to ion exchange treatment, and preferably has no compressive stress layer on the surface.
  • ion exchange treatment When the ion exchange treatment is performed, the manufacturing cost of the support crystallized glass substrate increases. However, if the ion exchange processing is not performed, the manufacturing cost of the support crystallized glass substrate can be reduced. Further, if ion exchange treatment is performed, it becomes difficult to reduce the total thickness deviation (TTV) of the support crystallized glass substrate. However, if the ion exchange treatment is not carried out, it is easy to eliminate such a problem.
  • TTV total thickness deviation
  • the method for producing the support crystallized glass substrate of the present invention will be described.
  • glass raw materials are prepared so as to have a predetermined composition, and the obtained glass batch is melted at a temperature of 1550 to 1750 ° C. and then formed into a plate shape to obtain a crystalline glass substrate.
  • Various methods can be adopted as the forming method. For example, a slot down method, a rollout method, a redraw method, a float method, an ingot molding method, etc. can be adopted.
  • a crystallized glass substrate can be produced by heat treatment at 700 to 1000 ° C. for 0.5 to 3 hours to generate crystal nuclei in the crystalline glass substrate and grow the crystal.
  • a crystal nucleus forming step for forming crystal nuclei on the crystalline glass substrate may be provided before the step of growing the crystal.
  • the laminate of the present invention is a laminate comprising at least a processed substrate and a support crystallized glass substrate for supporting the process substrate, wherein the support crystallized glass substrate is the above-mentioned support crystallized glass substrate.
  • the technical characteristics (preferable structure and effect) of the laminate of the present invention overlap with the technical characteristics of the support crystallized glass substrate of the present invention. Therefore, in the present specification, detailed description of the overlapping portions is omitted.
  • the laminate of the present invention preferably has an adhesive layer between the processed substrate and the support crystallized glass substrate.
  • the adhesive layer is preferably a resin, for example, a thermosetting resin, a photocurable resin (particularly an ultraviolet curable resin), or the like.
  • a resin for example, a thermosetting resin, a photocurable resin (particularly an ultraviolet curable resin), or the like.
  • an ultraviolet curable tape can also be used as an adhesive layer.
  • the laminate of the present invention further has a release layer between the processed substrate and the supporting crystallized glass substrate, more specifically between the processed substrate and the adhesive layer, or between the supporting crystallized glass substrate and the adhesive layer. It is preferable to have a peeling layer between them. If it does in this way, it will become easy to peel a processed substrate from a support crystallized glass substrate, after performing predetermined processing processing to a processed substrate. Peeling of the processed substrate is preferably performed with irradiation light such as laser light from the viewpoint of productivity.
  • the laser light source an infrared laser light source such as a YAG laser (wavelength 1064 nm) or a semiconductor laser (wavelength 780 to 1300 nm) can be used.
  • disassembles by irradiating an infrared laser can be used for a peeling layer.
  • a substance that efficiently absorbs infrared rays and converts it into heat can also be added to the resin.
  • carbon black, graphite powder, fine metal powder, dye, pigment, etc. can be added to the resin.
  • the peeling layer is made of a material that causes “in-layer peeling” or “interfacial peeling” by irradiation light such as laser light. That is, when light of a certain intensity is irradiated, the bonding force between atoms or molecules in an atom or molecule disappears or decreases, and ablation or the like is caused to cause peeling.
  • the component contained in the release layer is released as a gas due to irradiation of irradiation light, the separation layer is released, and when the release layer absorbs light and becomes a gas, and its vapor is released, resulting in separation There is.
  • the supporting crystallized glass substrate is preferably larger than the processed substrate.
  • the method of manufacturing a semiconductor package of the present invention includes a step of preparing a laminate including at least a processed substrate and a support crystallized glass substrate for supporting the processed substrate, a step of performing a processing process on the processed substrate, And the above-mentioned support crystallized glass substrate is used as the support crystallized glass substrate.
  • the technical characteristics (preferable structure and effect) of the manufacturing method of the semiconductor package of the present invention overlap with the technical characteristics of the support crystallized glass substrate and the laminate of the present invention. Therefore, in the present specification, detailed description of the overlapping portions is omitted.
  • the semiconductor package manufacturing method of the present invention includes a step of preparing a laminate including at least a processed substrate and a supporting crystallized glass substrate for supporting the processed substrate.
  • a laminate including a processed substrate and a support crystallized glass substrate for supporting the processed substrate has the material configuration described above.
  • the method for manufacturing a semiconductor package of the present invention further includes a step of transporting the stacked body.
  • the processing efficiency of a processing process can be improved. Note that the “process for transporting the laminate” and the “process for processing the processed substrate” do not need to be performed separately and may be performed simultaneously.
  • the processing is preferably performed by wiring on one surface of the processed substrate or forming solder bumps on one surface of the processed substrate.
  • the processing since the processed substrate is difficult to change in dimensions during these processes, these steps can be appropriately performed.
  • one surface of the processed substrate (usually the surface opposite to the supporting crystallized glass substrate) is mechanically polished, and one surface of the processed substrate (usually supporting crystallization) Either a process of dry etching the surface opposite to the glass substrate) or a process of wet etching one surface of the processed substrate (usually the surface opposite to the supporting crystallized glass substrate) may be used.
  • a dimensional change particularly, warpage
  • the rigidity of the entire laminated body can be maintained. As a result, the above processing can be performed appropriately.
  • FIG. 1 is a conceptual perspective view showing an example of a laminate 1 of the present invention.
  • the laminate 1 includes a supporting crystallized glass substrate 10 and a processed substrate 11.
  • the support crystallized glass substrate 10 is attached to the processed substrate 11 in order to prevent a dimensional change of the processed substrate 11.
  • a peeling layer 12 and an adhesive layer 13 are disposed between the support crystallized glass substrate 10 and the processed substrate 11.
  • the release layer 12 is in contact with the support crystallized glass substrate 10, and the adhesive layer 13 is in contact with the processed substrate 11.
  • the laminate 1 is laminated in the order of a support crystallized glass substrate 10, a release layer 12, an adhesive layer 13, and a processed substrate 11.
  • the shape of the support crystallized glass substrate 10 is determined according to the processed substrate 11.
  • the shapes of the support crystallized glass substrate 10 and the processed substrate 11 are both substantially disk shapes.
  • a resin that decomposes when irradiated with a laser can be used.
  • a substance that efficiently absorbs laser light and converts it into heat can also be added to the resin.
  • carbon black, graphite powder, fine metal powder, dye, pigment or the like can be added to the resin.
  • the release layer 12 is formed by plasma CVD, spin coating by a sol-gel method, or the like.
  • the adhesive layer 13 is made of a resin, and is applied and formed by, for example, various printing methods, inkjet methods, spin coating methods, roll coating methods, and the like.
  • An ultraviolet curable tape can also be used. After the support crystallized glass substrate 10 is peeled from the processed substrate 11 by the release layer 12, the adhesive layer 13 is dissolved and removed by a solvent or the like. The ultraviolet curable tape can be removed with a peeling tape after being irradiated with ultraviolet rays.
  • FIG. 2 is a conceptual cross-sectional view showing a manufacturing process of a fan out type WLP.
  • FIG. 2A shows a state in which the adhesive layer 21 is formed on one surface of the support member 20. A peeling layer may be formed between the support member 20 and the adhesive layer 21 as necessary.
  • FIG. 2B a plurality of semiconductor chips 22 are pasted on the adhesive layer 21. At that time, the surface on the active side of the semiconductor chip 22 is brought into contact with the adhesive layer 21.
  • the semiconductor chip 22 is molded with a resin sealing material 23.
  • the sealing material 23 is made of a material having little dimensional change after compression molding and little dimensional change when forming a wiring. Subsequently, as shown in FIGS.
  • the support crystallized glass substrate 26 and the adhesive layer 25 are interposed. Adhere and fix. At that time, the surface of the processed substrate 24 opposite to the surface on which the semiconductor chip 22 is embedded is disposed on the supporting crystallized glass substrate 26 side. In this way, the laminate 27 can be obtained. In addition, you may form a peeling layer between the contact bonding layer 25 and the support crystallized glass substrate 26 as needed. Further, after the obtained laminated body 27 is conveyed, as shown in FIG. 2 (f), a wiring 28 is formed on the surface of the processed substrate 24 where the semiconductor chip 22 is embedded, and then a plurality of solder bumps 29 are formed. Form. Finally, after separating the processed substrate 24 from the support crystallized glass substrate 26, the processed substrate 24 is cut into semiconductor chips 22 for use in a subsequent packaging process (FIG. 2 (g)).
  • Table 1 shows examples (samples Nos. 1 to 12) and comparative examples (samples Nos. 13 and 14) of the present invention.
  • a glass batch in which glass raw materials were prepared so as to have the composition shown in the table was placed in a platinum crucible and melted at 1600 ° C. for 4 hours.
  • the mixture was stirred and homogenized using a platinum stirrer.
  • the molten glass was poured out on a carbon plate, formed into a plate shape, and then gradually cooled from a temperature about 20 ° C. higher than the annealing point to room temperature at 3 ° C./min.
  • the obtained crystalline glass samples (Sample Nos. 1 to 12) were put into an electric furnace and held at 500 to 800 ° C. for 0.5 to 5 hours to generate crystal nuclei, and then 850 to 1000 ° C.
  • the Young's modulus E is a value measured by a resonance method.
  • Alkaline elution is evaluated as “ ⁇ ” when the alkali elution amount measured in accordance with JIS R3502 is less than 1.5 mg, and “x” when it exceeds 1.5 mg / cm 2 .
  • HAST weather resistance test
  • the transmittance change after the weather resistance test was measured by first measuring the average transmittance in the plate thickness direction and wavelength range of 250 to 1500 nm using a spectrophotometer (UV-3100 manufactured by Shimadzu Corporation). Was held at 135 ° C. and 95% humidity for 8 hours, and the average transmittance was measured under the same conditions. Finally, the decrease in average transmittance was calculated, and the value was less than 10%. The case was evaluated as “ ⁇ ”, and the case of 10% or more was evaluated as “x”.
  • sample No. Nos. 1 to 12 had a high Young's modulus, a small amount of alkali elution, and good weather resistance. Therefore, sample no. Nos. 1 to 12 are considered to be suitable as support substrates used for supporting a processed substrate in a semiconductor package manufacturing process. On the other hand, sample No. Nos. 13 and 14 had a low Young's modulus, a large amount of alkali elution, and poor weather resistance.
  • each sample of [Example 2] was produced as follows. First, the sample No. described in the table was used. After preparing the glass raw material so as to have a composition of 1 to 12, it is supplied to a glass melting furnace and melted at 1550 to 1650 ° C., and then the molten glass is poured into a ceramic mold and molded into a plate shape. did. About each obtained sample, it put into the electric furnace and was hold
  • the obtained crystallized glass substrate (overall plate thickness deviation TTV approximately 5.5 ⁇ m) was processed to a thickness of ⁇ 300 mm ⁇ 0.7 mm, and both surfaces thereof were polished by a polishing apparatus. Specifically, both surfaces of the crystallized glass substrate are sandwiched between a pair of polishing pads having different outer diameters, and both surfaces of the crystallized glass substrate are polished while rotating the crystallized glass substrate and the pair of polishing pads together. did. During the polishing process, control was sometimes performed so that a part of the crystallized glass substrate protruded from the polishing pad.
  • the polishing pad was made of urethane, the average particle size of the polishing slurry used in the polishing treatment was 2.5 ⁇ m, and the polishing rate was 15 m / min.
  • the total thickness deviation (TTV) and the amount of warpage were measured by SBW-331ML / d manufactured by Kobelco Kaken.
  • the overall thickness deviation (TTV) was less than 1.0 ⁇ m, and the warpage amount was 35 ⁇ m or less.
  • the support crystallized glass substrate of the present invention is preferably used for supporting a processed substrate in a manufacturing process of a semiconductor package, but can be applied to applications other than this application.
  • it can be applied as an alternative substrate for a high expansion metal substrate such as an aluminum alloy substrate, and can also be applied as an alternative substrate for a high expansion ceramic substrate such as a zirconia substrate or a ferrite substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Glass Compositions (AREA)

Abstract

This crystallized glass support substrate is designed to support fabricated wafers and is characterized by having one or more among lithium disilicate, α-cristobalite and α-quartz precipitated, and a Young's modulus of 80 GPa or more.

Description

支持結晶化ガラス基板及びこれを用いた積層体Support crystallized glass substrate and laminate using the same
 本発明は、支持結晶化ガラス基板及びこれを用いた積層体に関し、具体的には、半導体パッケージの製造工程で加工基板の支持に用いる支持結晶化ガラス基板及びこれを用いた積層体に関する。 The present invention relates to a support crystallized glass substrate and a laminate using the same, and specifically to a support crystallized glass substrate used for supporting a processed substrate in a semiconductor package manufacturing process and a laminate using the support crystallized glass substrate.
 携帯電話、ノート型パーソナルコンピュータ、PDA(Personal Data Assistance)等の携帯型電子機器には、小型化及び軽量化が要求されている。これに伴い、これらの電子機器に用いられる半導体チップの実装スペースも厳しく制限されており、半導体チップの高密度な実装が課題になっている。そこで、近年では、三次元実装技術、すなわち半導体チップ同士を積層し、各半導体チップ間を配線接続することにより、半導体パッケージの高密度実装を図っている。 Portable electronic devices such as mobile phones, notebook personal computers, and PDAs (Personal Data Assistance) are required to be smaller and lighter. Along with this, the mounting space of semiconductor chips used in these electronic devices is also strictly limited, and high-density mounting of semiconductor chips has become a problem. Therefore, in recent years, high-density mounting of semiconductor packages has been achieved by three-dimensional mounting technology, that is, by stacking semiconductor chips and interconnecting the semiconductor chips.
 また、従来のウエハレベルパッケージ(WLP)は、バンプをウエハの状態で形成した後、ダイシングで個片化することにより作製されている。しかし、従来のWLPは、ピン数を増加させ難いことに加えて、半導体チップの裏面が露出した状態で実装されるため、半導体チップの欠け等が発生し易いという問題があった。 In addition, a conventional wafer level package (WLP) is manufactured by forming bumps in a wafer state and then dicing them into individual pieces. However, in the conventional WLP, in addition to the difficulty of increasing the number of pins, since the back surface of the semiconductor chip is mounted, the semiconductor chip is likely to be chipped.
 そこで、新たなWLPとして、fan out型のWLPが提案されている。fan out型のWLPは、ピン数を増加させることが可能であり、また半導体チップの端部を保護することにより、半導体チップの欠け等を防止することができる。 Therefore, a fan out type WLP has been proposed as a new WLP. The fan-out type WLP can increase the number of pins, and can prevent chipping of the semiconductor chip by protecting the end portion of the semiconductor chip.
 fan out型のWLPでは、複数の半導体チップを樹脂の封止材でモールドして、加工基板を形成した後に、加工基板の一方の表面に配線する工程、半田バンプを形成する工程等を有する。 The fan-out type WLP includes a step of forming a processed substrate by molding a plurality of semiconductor chips with a resin sealing material and then wiring to one surface of the processed substrate, a step of forming a solder bump, and the like.
 これらの工程は、約200℃の熱処理を伴うため、封止材が変形して、加工基板が寸法変化する虞がある。加工基板が寸法変化すると、加工基板の一方の表面に対して、高密度に配線することが困難になり、また半田バンプを正確に形成することも困難になる。 Since these processes involve a heat treatment at about 200 ° C., the sealing material may be deformed and the processed substrate may change in dimensions. When the dimension of the processed substrate changes, it becomes difficult to perform wiring with high density on one surface of the processed substrate, and it becomes difficult to accurately form solder bumps.
 このような事情から、加工基板の寸法変化を抑制するために、ガラス基板を用いて、加工基板を支持することが検討されている(特許文献1参照)。 From such circumstances, in order to suppress the dimensional change of the processed substrate, it has been studied to support the processed substrate using a glass substrate (see Patent Document 1).
 ガラス基板は、表面を平滑化し易く、且つ剛性を有する。よって、支持基板としてガラス基板を用いると、加工基板を強固、且つ正確に支持することが可能になる。またガラス基板は、紫外光、赤外光等の光を透過し易い。よって、支持基板としてガラス基板を用いると、紫外線硬化型接着剤等により接着層等を設けた時に、加工基板とガラス基板を容易に固定することができる。更に、赤外線を吸収する剥離層等を設ける時に、加工基板とガラス基板を容易に分離することもできる。別の方式として、紫外線硬化型テープ等により接着層等を設ける時にも、加工基板とガラス基板を容易に固定、分離することができる。 The glass substrate is easy to smooth the surface and has rigidity. Therefore, when a glass substrate is used as the support substrate, the processed substrate can be supported firmly and accurately. In addition, the glass substrate easily transmits light such as ultraviolet light and infrared light. Therefore, when a glass substrate is used as the support substrate, the processed substrate and the glass substrate can be easily fixed when an adhesive layer or the like is provided with an ultraviolet curable adhesive or the like. Furthermore, when a release layer or the like that absorbs infrared rays is provided, the processed substrate and the glass substrate can be easily separated. As another method, the processed substrate and the glass substrate can be easily fixed and separated even when an adhesive layer or the like is provided with an ultraviolet curable tape or the like.
特開2015-78113号公報JP2015-78113A
 ところで、加工基板とガラス基板の熱膨張係数が不整合であると、加工処理時に加工基板の寸法変化(特に、反り)が生じ易くなる。結果として、加工基板の一方の表面に対して、高密度に配線することが困難になり、また半田バンプを正確に形成することも困難になる。 By the way, if the thermal expansion coefficients of the processed substrate and the glass substrate are mismatched, a dimensional change (particularly, warpage) of the processed substrate is likely to occur during processing. As a result, it is difficult to perform wiring with high density on one surface of the processed substrate, and it is also difficult to accurately form solder bumps.
 加工基板内で半導体チップの割合が少なく、封止材の割合が多い場合、加工基板の熱膨張係数が高くなるが、この場合、ガラス基板のガラス組成中にアルカリ金属酸化物を25質量%程度導入して、ガラス基板の熱膨張係数を上昇させる必要がある。 When the ratio of the semiconductor chip is small in the processed substrate and the ratio of the sealing material is large, the thermal expansion coefficient of the processed substrate is increased. In this case, about 25% by mass of the alkali metal oxide is contained in the glass composition of the glass substrate. It is necessary to introduce and raise the thermal expansion coefficient of the glass substrate.
 しかし、ガラス基板のガラス組成中にアルカリ金属酸化物を過剰に導入すると、ガラス基板からアルカリ溶出量が多くなる。結果として、半導体パッケージの製造工程において、薬液を使用する工程(例えば、支持ガラス基板をリサイクルする際に、支持ガラス基板の表面に付着した樹脂等を薬液除去する工程)を通過させ難くなる。 However, when an alkali metal oxide is excessively introduced into the glass composition of the glass substrate, the amount of alkali elution from the glass substrate increases. As a result, in the manufacturing process of the semiconductor package, it becomes difficult to pass a step of using a chemical solution (for example, a step of removing a chemical solution attached to the surface of the support glass substrate when recycling the support glass substrate).
 また、支持ガラス基板で加工基板を支持して、積層体とした場合に、積層体全体の剛性が低いと、加工処理時に加工基板の変形、反り、破損が発生し易くなる。結果として、加工基板の一方の表面に対して、高密度に配線することが困難になり、また半田バンプを正確に形成することも困難になる。 Also, when a processed substrate is supported by a supporting glass substrate to form a laminated body, if the rigidity of the entire laminated body is low, the processed substrate is likely to be deformed, warped, or damaged during processing. As a result, it is difficult to perform wiring with high density on one surface of the processed substrate, and it is also difficult to accurately form solder bumps.
 本発明は、上記事情に鑑みなされたものであり、その技術的課題は、加工基板内で半導体チップの割合が少なく、封止材の割合が多い場合に、加工処理時に加工基板の寸法変化(特に、反り)を生じさせ難く、且つアルカリ溶出量が少ない支持基板及びこれを用いた積層体を創案することにより、半導体パッケージの高密度実装に寄与することである。 The present invention has been made in view of the above circumstances, and its technical problem is that when the ratio of semiconductor chips is small in the processed substrate and the ratio of the sealing material is large, the dimensional change of the processed substrate during processing ( In particular, it is to contribute to high-density mounting of semiconductor packages by creating a support substrate and a laminate using the support substrate that hardly cause warpage and have a small amount of alkali elution.
 本発明者等は、種々の実験を繰り返した結果、ガラスマトリクス中に特定の高膨張結晶を析出させた結晶化ガラス基板を支持基板に用いることにより、上記技術的課題を解決し得ることを見出し、本発明として、提案するものである。すなわち、本発明の支持結晶化ガラス基板は、加工基板を支持するための支持結晶化ガラス基板であって、二珪酸リチウム、α-クリストバライト、α-クォーツの内、一種又は二種以上が析出しており、ヤング率が80GPa以上であることを特徴とする。ここで、「ヤング率」は、曲げ共振法により測定した値を指す。なお、1GPaは、約101.9Kgf/mmに相当する。 As a result of repeating various experiments, the present inventors have found that the above technical problem can be solved by using a crystallized glass substrate in which a specific high expansion crystal is precipitated in a glass matrix as a support substrate. This is proposed as the present invention. That is, the support crystallized glass substrate of the present invention is a support crystallized glass substrate for supporting a processed substrate, and one or more of lithium disilicate, α-cristobalite, and α-quartz are deposited. The Young's modulus is 80 GPa or more. Here, “Young's modulus” refers to a value measured by a bending resonance method. 1 GPa corresponds to approximately 101.9 kgf / mm 2 .
 本発明では、支持基板として高膨張結晶、つまり二珪酸リチウム、α-クリストバライト、α-クォーツの内、一種又は二種以上を析出させた結晶化ガラス基板を用いる。ガラスマトリクス中にこれらの結晶を析出させると、結晶化前の結晶性ガラスの時に比べて、ヤング率が向上する。更に、これらの結晶を析出させると、熱膨張係数を高めるために、組成中にアルカリ金属酸化物を過剰に導入する必要がなくなる。その結果、支持結晶化ガラス基板のアルカリ溶出量を低減することが可能になる。なお、結晶化ガラス基板は、ガラス基板と同様にして、表面を平滑化し易く、光透過性を付与することが可能である。 In the present invention, a high-expansion crystal, that is, a crystallized glass substrate on which one or more of lithium disilicate, α-cristobalite, and α-quartz is precipitated is used as the support substrate. When these crystals are deposited in the glass matrix, the Young's modulus is improved as compared with the crystalline glass before crystallization. Further, when these crystals are precipitated, it is not necessary to introduce an excessive amount of alkali metal oxide into the composition in order to increase the thermal expansion coefficient. As a result, it becomes possible to reduce the alkali elution amount of the support crystallized glass substrate. Note that the crystallized glass substrate can be easily smoothed in the same manner as the glass substrate, and can impart light permeability.
 また、本発明の支持結晶化ガラス基板は、ヤング率が80GPa以上である。このようにすれば、積層体全体の剛性が高くなるため、加工処理時に加工基板の変形、反り、破損が発生し難くなる。 The support crystallized glass substrate of the present invention has a Young's modulus of 80 GPa or more. In this way, since the rigidity of the entire laminate is increased, deformation, warpage, and breakage of the processed substrate are less likely to occur during processing.
 また、本発明の支持結晶化ガラス基板は、アルカリ溶出量が1.5mg未満であることが好ましい。ここで、「アルカリ溶出量」は、JIS R3502に基づいて測定した値を指す。 Further, the supported crystallized glass substrate of the present invention preferably has an alkali elution amount of less than 1.5 mg. Here, “alkaline elution amount” refers to a value measured based on JIS R3502.
 また、本発明の支持結晶化ガラス基板は、耐候性試験(HAST:Highly Accelerated Temperature and Humidity Stress test)前の波長範囲250~1500nmでの板厚方向の平均透過率をX(%)、耐候性試験(HAST)後の波長範囲250~1500nmでの板厚方向の平均透過率をY(%)とした時に、X-Y<10%の関係を満たすことが好ましい。ここで、「平均透過率」は、市販の分光光度計で測定可能である。 Further, the support crystallized glass substrate of the present invention has an average transmittance in the thickness direction in the wavelength range of 250 to 1500 nm before weathering test (HAST: Highly Accelerated Temperature and Humidity Stress test) X (%), weather resistance When the average transmittance in the thickness direction in the wavelength range of 250 to 1500 nm after the test (HAST) is Y (%), it is preferable to satisfy the relationship of XY <10%. Here, the “average transmittance” can be measured with a commercially available spectrophotometer.
 また、本発明の支持結晶化ガラス基板は、30~380℃の温度範囲における平均線熱膨張係数が60×10-7/℃超であり、且つ195×10-7/℃以下であることが好ましい。このようにすれば、加工基板内で半導体チップの割合が少なく、封止材の割合が多い場合に、加工基板と支持結晶化ガラス基板の熱膨張係数が整合し易くなる。そして、両者の熱膨張係数が整合すると、加工処理時に加工基板の寸法変化(特に、反り)を抑制し易くなる。結果として、加工基板の一方の表面に対して、高密度に配線することが可能になり、また半田バンプを正確に形成することも可能になる。ここで、「30~380℃の温度範囲における平均線熱膨張係数」は、ディラトメーターで測定可能である。 Further, the support crystallized glass substrate of the present invention has an average linear thermal expansion coefficient exceeding 60 × 10 −7 / ° C. in a temperature range of 30 to 380 ° C. and not more than 195 × 10 −7 / ° C. preferable. In this way, when the ratio of the semiconductor chip is small and the ratio of the sealing material is large in the processed substrate, the thermal expansion coefficients of the processed substrate and the supporting crystallized glass substrate are easily matched. When the thermal expansion coefficients of the two match, it becomes easy to suppress dimensional changes (particularly warpage) of the processed substrate during processing. As a result, wiring on one surface of the processed substrate can be performed with high density, and solder bumps can be accurately formed. Here, the “average linear thermal expansion coefficient in the temperature range of 30 to 380 ° C.” can be measured with a dilatometer.
 また、本発明の支持結晶化ガラス基板は、全体板厚偏差(TTV)が5μm以下であることが好ましい。ここで、「全体板厚偏差(TTV)」は、支持結晶化ガラス基板全体の最大板厚と最小板厚の差であり、例えばコベルコ科研社製のSBW-331ML/dにより測定可能である。 Further, the support crystallized glass substrate of the present invention preferably has a total thickness deviation (TTV) of 5 μm or less. Here, the “total thickness deviation (TTV)” is a difference between the maximum thickness and the minimum thickness of the entire support crystallized glass substrate, and can be measured by, for example, SBW-331ML / d manufactured by Kobelco Research Institute.
 また、本発明の支持結晶化ガラス基板は、組成として、質量%で、SiO 50~85%、Al 0.1~15%、B 0~10%、P 0~15%、LiO 2~20%、NaO 0~10%、KO 0~7%、MgO 0~10%、CaO 0~5%、SrO 0~5%、BaO 0~5%、ZnO 0~5%、ZrO 0~10%を含有することが好ましい。 The support crystallized glass substrate of the present invention, a composition, in mass%, SiO 2 50 ~ 85% , Al 2 O 3 0.1 ~ 15%, B 2 O 3 0 ~ 10%, P 2 O 5 0-15%, Li 2 O 2-20%, Na 2 O 0-10%, K 2 O 0-7%, MgO 0-10%, CaO 0-5%, SrO 0-5%, BaO 0- It is preferable to contain 5%, ZnO 0 to 5%, and ZrO 2 0 to 10%.
 また、本発明の支持結晶化ガラス基板は、板厚が2.0mm未満であり、且つ反り量が60μm以下であることが好ましい。ここで、「反り量」は、支持結晶化ガラス基板全体における最高位点と最小二乗焦点面との間の最大距離の絶対値と、最低位点と最小二乗焦点面との絶対値との合計を指し、例えばコベルコ科研社製のSBW-331ML/dにより測定可能である。 Further, the support crystallized glass substrate of the present invention preferably has a plate thickness of less than 2.0 mm and a warp amount of 60 μm or less. Here, the "warp amount" is the sum of the absolute value of the maximum distance between the highest point and the least square focal plane in the entire supporting crystallized glass substrate and the absolute value of the lowest point and the least square focal plane. For example, it can be measured by SBW-331ML / d manufactured by Kobelco Kaken.
 本発明の積層体は、少なくとも加工基板と加工基板を支持するための支持結晶化ガラス基板とを備える積層体であって、支持結晶化ガラス基板が上記の支持結晶化ガラス基板であることを特徴とする。 The laminate of the present invention is a laminate comprising at least a processed substrate and a support crystallized glass substrate for supporting the process substrate, wherein the support crystallized glass substrate is the above-mentioned support crystallized glass substrate. And
 また、本発明の積層体は、加工基板が、少なくとも封止材でモールドされた半導体チップを備えることが好ましい。 In the laminate of the present invention, it is preferable that the processed substrate includes a semiconductor chip molded with at least a sealing material.
 本発明の半導体パッケージの製造方法は、少なくとも加工基板と加工基板を支持するための支持結晶化ガラス基板とを備える積層体を用意する工程と、加工基板に対して、加工処理を行う工程と、を有すると共に、支持結晶化ガラス基板として、上記の支持結晶化ガラス基板を用いることを特徴とする。 The method of manufacturing a semiconductor package of the present invention includes a step of preparing a laminate including at least a processed substrate and a support crystallized glass substrate for supporting the processed substrate, a step of performing a processing process on the processed substrate, And the above-mentioned support crystallized glass substrate is used as the support crystallized glass substrate.
 また、本発明の半導体パッケージの製造方法は、加工基板が、少なくとも封止材でモールドされた半導体チップを備えることが好ましい。 In the method for manufacturing a semiconductor package of the present invention, it is preferable that the processed substrate includes a semiconductor chip molded with at least a sealing material.
本発明の積層体の一例を示す概念斜視図である。It is a conceptual perspective view which shows an example of the laminated body of this invention. fan out型のWLPの製造工程を示す概念断面図である。It is a conceptual sectional view showing a manufacturing process of a fan out type WLP.
 本発明の支持結晶化ガラス基板は、二珪酸リチウム、α-クリストバライト、α-クォーツの内、一種又は二種以上が析出していることが好ましく、二珪酸リチウムが析出していることが更に好ましい。これらの結晶が析出すると、アルカリ溶出量を低減しつつ、支持結晶化ガラス基板のヤング率と熱膨張係数を高めることができる。特に、二珪酸リチウムは、結晶粒子のサイズが微細化し易いため、研磨処理により全体板厚偏差(TTV)を低減する上で有利であり、また透明性を確保する上でも有利である。一方、本発明の支持結晶化ガラス基板は、β-ユークリプタイト、β-スポジュメン、β-クリストバライト、β-クォーツ及びこれらの固溶体が析出していないことが好ましい。このようにすれば、支持結晶化ガラス基板の熱膨張係数が不当に低下する事態を回避することができる。 In the supported crystallized glass substrate of the present invention, one or more of lithium disilicate, α-cristobalite, and α-quartz are preferably deposited, and lithium disilicate is more preferably deposited. . When these crystals precipitate, the Young's modulus and thermal expansion coefficient of the support crystallized glass substrate can be increased while reducing the amount of alkali elution. In particular, lithium disilicate is advantageous in reducing the total thickness deviation (TTV) by the polishing treatment because the size of the crystal particles is easily miniaturized, and also advantageous in ensuring transparency. On the other hand, the support crystallized glass substrate of the present invention is preferably free of β-eucryptite, β-spodumene, β-cristobalite, β-quartz, and solid solutions thereof. If it does in this way, the situation where the thermal expansion coefficient of a support crystallized glass substrate falls unjustly can be avoided.
 本発明の支持結晶化ガラス基板において、ヤング率は、好ましくは80GPa以上、85GPa以上、90GPa以上、95GPa以上、98GPa以上、特に100~150GPaである。ヤング率が低過ぎると、積層体全体の剛性が低下して、加工基板の変形、反り、破損が発生し易くなる。 In the supported crystallized glass substrate of the present invention, the Young's modulus is preferably 80 GPa or more, 85 GPa or more, 90 GPa or more, 95 GPa or more, 98 GPa or more, particularly 100 to 150 GPa. If the Young's modulus is too low, the rigidity of the entire laminate is lowered, and the processed substrate is likely to be deformed, warped, or damaged.
 本発明の支持結晶化ガラス基板において、アルカリ溶出量は、好ましくは1.5mg未満、1.0mg以下、特に0.5mg未満である。アルカリ溶出量が多過ぎると、支持結晶化ガラス基板のリサイクル性が低下し易くなる。 In the supported crystallized glass substrate of the present invention, the alkali elution amount is preferably less than 1.5 mg, 1.0 mg or less, particularly less than 0.5 mg. When there is too much alkali elution amount, the recyclability of a support crystallized glass substrate will fall easily.
 本発明の支持結晶化ガラス基板において、耐候性試験(HAST)前の波長範囲250~1500nmでの板厚方向の平均透過率をX(%)、耐候性試験(HAST)後の波長範囲250~1500nmでの板厚方向の平均透過率をY(%)とした時に、X-Y<10%の関係を満たすことが好ましく、X-Y<5%の関係を満たすことが更に好ましく、X-Y<3%の関係を満たすことが特に好ましい。X-Yの値が大きくなると、支持結晶化ガラス基板のリサイクル性が低下し易くなる。 In the support crystallized glass substrate of the present invention, the average transmittance in the plate thickness direction in the wavelength range 250 to 1500 nm before the weather resistance test (HAST) is X (%), and the wavelength range 250 to 500 after the weather resistance test (HAST). When the average transmittance in the plate thickness direction at 1500 nm is Y (%), it is preferable to satisfy the relationship of XY <10%, more preferably to satisfy the relationship of XY <5%. It is particularly preferable to satisfy the relationship of Y <3%. When the value of XY increases, the recyclability of the support crystallized glass substrate tends to decrease.
 本発明の支持結晶化ガラス基板において、30~380℃の温度範囲における平均線熱膨張係数は、60×10-7/℃超、且つ195×10-7/℃以下であり、好ましくは80×10-7/℃超、且つ195×10-7/℃以下、より好ましくは100×10-7/℃以上、且つ160×10-7/℃以下、特に好ましくは100×10-7/℃以上、且つ150×10-7/℃以下である。30~380℃の温度範囲における平均線熱膨張係数が上記範囲外になると、加工基板と支持結晶化ガラス基板の熱膨張係数が整合し難くなる。そして、両者の熱膨張係数が不整合になると、加工処理時に加工基板の寸法変化(特に、反り)が生じ易くなる。 In the support crystallized glass substrate of the present invention, the average linear thermal expansion coefficient in the temperature range of 30 to 380 ° C. is more than 60 × 10 −7 / ° C. and not more than 195 × 10 −7 / ° C., preferably 80 × 10 -7 / ° C. greater, and 195 × 10 -7 / ℃ less, more preferably 100 × 10 -7 / ℃ or higher, and 160 × 10 -7 / ℃ less, particularly preferably 100 × 10 -7 / ℃ or higher And 150 × 10 −7 / ° C. or less. If the average linear thermal expansion coefficient in the temperature range of 30 to 380 ° C. is outside the above range, the thermal expansion coefficients of the processed substrate and the support crystallized glass substrate are difficult to match. If the thermal expansion coefficients of the two are mismatched, a dimensional change (particularly warpage) of the processed substrate is likely to occur during processing.
 本発明の支持結晶化ガラス基板は、組成として、質量%で、SiO 50~85%、Al 0.1~15%、B 0~10%、P 0~15%、LiO 2~20%、NaO 0~10%、KO 0~7%、MgO 0~10%、CaO 0~5%、SrO 0~5%、BaO 0~5%、ZnO 0~5%、ZrO 0~10%を含有することが好ましい。上記のように各成分の含有量を限定した理由を以下に示す。なお、各成分の含有量の説明において、%表示は、特に断りがある場合を除き、質量%を表す。 Supporting crystallized glass substrate of the present invention, a composition, in mass%, SiO 2 50 ~ 85% , Al 2 O 3 0.1 ~ 15%, B 2 O 3 0 ~ 10%, P 2 O 5 0 ~ 15%, Li 2 O 2-20%, Na 2 O 0-10%, K 2 O 0-7%, MgO 0-10%, CaO 0-5%, SrO 0-5%, BaO 0-5% ZnO 0 to 5% and ZrO 2 0 to 10% are preferable. The reason for limiting the content of each component as described above will be described below. In addition, in description of content of each component,% display represents the mass% unless there is particular notice.
 SiOは、ヤング率と耐候性を高める成分であり、また二珪酸リチウム、α-クリストバライト、α-クォーツ等を析出させるための成分である。しかし、SiOの含有量が多過ぎると、高温粘度が高くなり、溶融性、成形性が低下し易くなる。よって、SiOの含有量は、好ましくは50~85%、60~82%、65~80%、68~79%、特に70~78%である。 SiO 2 is a component for increasing Young's modulus and weather resistance, and is a component for precipitating lithium disilicate, α-cristobalite, α-quartz and the like. However, when the content of SiO 2 is too large, the higher the viscosity at high temperature meltability, moldability tends to decrease. Therefore, the content of SiO 2 is preferably 50 to 85%, 60 to 82%, 65 to 80%, 68 to 79%, particularly 70 to 78%.
 Alは、ヤング率を高める成分であると共に、分相、失透を抑制する成分である。しかし、Alの含有量が多過ぎると、相転移によりβ-スポジュメン等の低膨張結晶が析出し易くなり、また高温粘度が高くなり、溶融性、成形性が低下し易くなる。よって、Alの含有量は、好ましくは0.1~15%、0.5~10%、1~9%、2~8%、特に4~7%である。 Al 2 O 3 is a component that enhances the Young's modulus and a component that suppresses phase separation and devitrification. However, if the content of Al 2 O 3 is too large, low-expansion crystals such as β-spodumene are likely to precipitate due to phase transition, and the high-temperature viscosity becomes high, so that the meltability and moldability tend to decrease. Therefore, the content of Al 2 O 3 is preferably 0.1 to 15%, 0.5 to 10%, 1 to 9%, 2 to 8%, particularly 4 to 7%.
 Bは、溶融性、耐失透性を高める成分である。しかし、Bの含有量が多過ぎると、ヤング率、耐候性が低下し易くなる。よって、Bの含有量は、好ましくは0~10%、0~7%、0~5%、0~3%、特に0~1%未満である。 B 2 O 3 is a component that enhances meltability and devitrification resistance. However, when the content of B 2 O 3 is too large, the Young's modulus, weather resistance tends to decrease. Therefore, the content of B 2 O 3 is preferably 0 to 10%, 0 to 7%, 0 to 5%, 0 to 3%, particularly 0 to less than 1%.
 Pは、結晶核を生成させるための成分である。しかし、Pを多量に導入すると、ガラスが分相し易くなる。よって、Pの含有量は、好ましくは0~15%、0.1~12%、1~8%、特に1.5~4%である。 P 2 O 5 is a component for generating crystal nuclei. However, when a large amount of P 2 O 5 is introduced, the glass is likely to undergo phase separation. Therefore, the content of P 2 O 5 is preferably 0 to 15%, 0.1 to 12%, 1 to 8%, particularly 1.5 to 4%.
 LiOは、ヤング率や熱膨張係数を高める成分であり、また高温粘性を下げて、溶融性を顕著に高める成分であり、更に二珪酸リチウム等を析出させるための成分である。しかし、LiOの含有量が多過ぎると、アルカリ溶出量が多くなり易い。よって、LiOの含有量は、好ましくは2~20%、4~17%、5~15%、特に6~12%である。 Li 2 O is a component that increases the Young's modulus and the coefficient of thermal expansion, is a component that lowers the high-temperature viscosity and remarkably increases the meltability, and is a component for further precipitating lithium disilicate and the like. However, when the content of Li 2 O is too large, it tends to be much amount of alkali elution. Therefore, the content of Li 2 O is preferably 2 to 20%, 4 to 17%, 5 to 15%, particularly 6 to 12%.
 NaOは、熱膨張係数を高める成分であり、また高温粘性を下げて、溶融性を顕著に高める成分である。また、ガラス原料の初期の溶融に寄与する成分である。しかし、NaOの含有量が多過ぎると、アルカリ溶出量が多くなり易い。よって、NaOの含有量は、好ましくは0~10%、0~5%、0~3%、特に0~1%未満である。 Na 2 O is an ingredient enhances the thermal expansion coefficient and lower the high temperature viscosity, a component for enhancing significantly the melting property. Further, it is a component that contributes to the initial melting of the glass raw material. However, when the content of Na 2 O is too large, it tends to be much amount of alkali elution. Therefore, the content of Na 2 O is preferably 0 to 10%, 0 to 5%, 0 to 3%, particularly 0 to less than 1%.
 KOは、熱膨張係数を高める成分であり、また高温粘性を下げて、溶融性を顕著に高める共に、析出結晶の粗大化を抑制する成分である。しかし、KOの含有量が多過ぎると、アルカリ溶出量が多くなり易い。よって、KOの含有量は、好ましくは0~7%、0~6%、0.1~5%、0.5~3%、特に1~2%である。なお、析出結晶が粗大化すると、研磨処理により全体板厚偏差(TTV)を低減し難くなる。 K 2 O is a component that increases the coefficient of thermal expansion, and is a component that lowers the viscosity at high temperature to remarkably increase the meltability and suppress the coarsening of the precipitated crystals. However, when the content of K 2 O is too large, it tends to be much amount of alkali elution. Therefore, the content of K 2 O is preferably 0 to 7%, 0 to 6%, 0.1 to 5%, 0.5 to 3%, particularly 1 to 2%. Note that when the precipitated crystal becomes coarse, it becomes difficult to reduce the total thickness deviation (TTV) by the polishing process.
 MgOは、ヤング率を高めると共に、高温粘性を下げて、溶融性を高める成分である。しかし、MgOの含有量が多過ぎると、成形時にガラスが失透し易くなる。よって、MgOの含有量は、好ましくは0~10%、0~7%、0.1~4%、特に0.3~2%である。 MgO is a component that increases the Young's modulus and lowers the high-temperature viscosity to increase the meltability. However, when there is too much content of MgO, it will become easy to devitrify glass at the time of shaping | molding. Therefore, the content of MgO is preferably 0 to 10%, 0 to 7%, 0.1 to 4%, particularly 0.3 to 2%.
 CaOは、高温粘性を下げて、溶融性を顕著に高める成分である。またアルカリ土類金属酸化物の中では、導入原料が比較的安価であるため、バッチコストを低廉化する成分であるが、その含有量が多過ぎると、成形時にガラスが失透し易くなる。よって、CaOの含有量は、好ましくは0~5%、0~3%、0~1%、特に0~0.5%である。 CaO is a component that lowers the high temperature viscosity and remarkably increases the meltability. Moreover, among the alkaline earth metal oxides, since the introduced raw material is relatively inexpensive, it is a component that lowers the batch cost. However, if the content is too large, the glass tends to devitrify during molding. Therefore, the content of CaO is preferably 0 to 5%, 0 to 3%, 0 to 1%, particularly 0 to 0.5%.
 SrOは、分相を抑制する成分であり、また析出結晶の粗大化を抑制する成分であるが、その含有量が多過ぎると、熱処理により結晶を析出させることが困難になる。よって、SrOの含有量は、好ましくは0~5%、0.1~4%、0.5~3%、特に1~2%である。 SrO is a component that suppresses phase separation, and a component that suppresses the coarsening of precipitated crystals. However, if the content is too large, it becomes difficult to precipitate crystals by heat treatment. Therefore, the content of SrO is preferably 0 to 5%, 0.1 to 4%, 0.5 to 3%, particularly 1 to 2%.
 BaOは、析出結晶の粗大化を抑制する成分であるが、その含有量が多過ぎると、熱処理により結晶を析出させることが困難になる。よって、BaOの含有量は、好ましくは0~5%、0~4%、0.1~3%、特に0.5~2%である。 BaO is a component that suppresses the coarsening of the precipitated crystal, but if its content is too large, it becomes difficult to precipitate the crystal by heat treatment. Therefore, the content of BaO is preferably 0 to 5%, 0 to 4%, 0.1 to 3%, particularly 0.5 to 2%.
 ZnOは、高温粘性を下げて、溶融性を顕著に高める成分であると共に、析出結晶の粗大化を抑制する成分である。しかし、ZnOの含有量が多過ぎると、成形時にガラスが失透し易くなる。よって、ZnOの含有量は、好ましくは0~5%、0~3%、0.1~2%、特に0.2~1%である。 ZnO is a component that lowers the viscosity at high temperature and remarkably increases the meltability, and also suppresses the coarsening of the precipitated crystals. However, if the ZnO content is too large, the glass tends to devitrify during molding. Therefore, the content of ZnO is preferably 0 to 5%, 0 to 3%, 0.1 to 2%, particularly 0.2 to 1%.
 ZrOは、ヤング率と耐候性を高める成分であり、また結晶核を生成させるための成分である。しかし、ZrOを多量に導入すると、ガラスが失透し易くなり、また導入原料が難溶解性であるため、未熔解の異物が結晶化ガラス基板内に混入する虞がある。よって、ZrOの含有量は、好ましくは0~10%、0.1~9%、1~8%、2~7%、特に3~6%である。 ZrO 2 is a component that enhances Young's modulus and weather resistance, and is a component for generating crystal nuclei. However, when a large amount of ZrO 2 is introduced, the glass tends to be devitrified, and since the introduced raw material is hardly soluble, there is a possibility that undissolved foreign matter is mixed in the crystallized glass substrate. Therefore, the content of ZrO 2 is preferably 0 to 10%, 0.1 to 9%, 1 to 8%, 2 to 7%, particularly 3 to 6%.
 上記成分以外にも、任意成分として、他の成分を導入してもよい。なお、上記成分以外の他の成分の含有量は、本発明の効果を的確に享受する観点から、合量で10%以下、特に5%以下が好ましい。 In addition to the above components, other components may be introduced as optional components. In addition, the content of other components other than the above components is preferably 10% or less, and particularly preferably 5% or less in total, from the viewpoint of accurately enjoying the effects of the present invention.
 TiOは、結晶核を生成させるための成分であり、また耐候性、ヤング率を改善する成分である。しかし、TiOを多量に導入すると、ガラスが着色し、透過率が低下し易くなる。よって、TiOの含有量は、好ましくは0~5%、0~3%、特に0~1%未満である。 TiO 2 is a component for generating crystal nuclei, and is a component for improving weather resistance and Young's modulus. However, the introduction of TiO 2 in a large amount, the glass is colored, the transmittance tends to decrease. Therefore, the content of TiO 2 is preferably 0 to 5%, 0 to 3%, particularly 0 to less than 1%.
 Yは、ガラスのヤング率を高める成分である。しかし、Yは、結晶成長を抑制する効果も有する。よって、Yの含有量は、好ましくは0~5%、0~3%、特に0~1%未満である。 Y 2 O 3 is a component that increases the Young's modulus of glass. However, Y 2 O 3 also has an effect of suppressing crystal growth. Therefore, the content of Y 2 O 3 is preferably 0 to 5%, 0 to 3%, particularly 0 to less than 1%.
 Feは、不純物として混入する成分、或いは清澄剤成分として導入し得る成分である。しかし、Feの含有量が多過ぎると、紫外線透過率が低下する虞がある。すなわち、Feの含有量が多過ぎると、接着層、剥離層を介して、加工基板と支持結晶化ガラス基板の接着と脱着を適正に行うことが困難になる。よって、Feの含有量は、好ましくは0.05%以下、0.03%以下、特に0.02%以下である。なお、本発明でいう「Fe」は、2価の酸化鉄と3価の酸化鉄を含み、2価の酸化鉄は、Feに換算して、取り扱うものとする。他の多価酸化物についても、同様にして、表記の酸化物を基準にして取り扱うものとする。 Fe 2 O 3 is a component mixed as an impurity or a component that can be introduced as a fining agent component. However, if the content of Fe 2 O 3 is too large, there is a possibility that the ultraviolet transmission is reduced. That is, when the content of Fe 2 O 3 is too large, the adhesive layer, through a peeling layer, it is difficult to properly perform the adhesion and detachment of the processing substrate and the supporting crystallized glass substrate. Therefore, the content of Fe 2 O 3 is preferably 0.05% or less, 0.03% or less, and particularly 0.02% or less. Note that “Fe 2 O 3 ” referred to in the present invention includes divalent iron oxide and trivalent iron oxide, and the divalent iron oxide is handled in terms of Fe 2 O 3 . Similarly, other polyvalent oxides are handled on the basis of the indicated oxide.
 Nb、Laには、歪点、ヤング率等を高める働きがある。しかし、これらの成分の含有量が各々5%、特に1%より多いと、バッチコストが高騰する虞がある。 Nb 2 O 5 and La 2 O 3 have a function of increasing the strain point, Young's modulus, and the like. However, if the content of these components is more than 5%, particularly more than 1%, the batch cost may increase.
 清澄剤として、As、Sbが有効に作用するが、環境的観点で言えば、この成分を極力低減することが好ましい。As、Sbの含有量は、それぞれ1%以下、0.5%以下、特に0.1%以下が好ましく、実質的に含有させないことが望ましい。ここで、「実質的に~を含有しない」とは、組成中の明示の成分の含有量が0.05%未満の場合を指す。 As 2 O 3 and Sb 2 O 3 act effectively as fining agents, but it is preferable to reduce this component as much as possible from an environmental point of view. The contents of As 2 O 3 and Sb 2 O 3 are preferably 1% or less, 0.5% or less, particularly preferably 0.1% or less, respectively, and it is desirable not to contain them substantially. Here, “substantially free of” refers to the case where the content of the explicit component in the composition is less than 0.05%.
 SnOは、高温域で良好な清澄作用を有する成分であり、また高温粘性を低下させる成分である。SnOの含有量は、好ましくは0~1%、0.01~1%、特に0.05~0.5%である。SnOの含有量が多過ぎると、Sn系の異種結晶が析出し易くなる。なお、SnOの含有量が少な過ぎると、上記効果を享受し難くなる。 SnO 2 is a component having a good clarification action in a high temperature region and a component that lowers the high temperature viscosity. The content of SnO 2 is preferably 0 to 1%, 0.01 to 1%, particularly 0.05 to 0.5%. When the content of SnO 2 is too large, Sn-based heterogeneous crystals are likely to precipitate. Incidentally, when the content of SnO 2 is too small, it becomes difficult to enjoy the above-mentioned effects.
 清澄剤として、ガラス特性が損なわれない限り、F、Cl、SO、C、或いはAl、Si等の金属粉末を各々3%程度まで導入してもよい。また、CeO等も2%程度まで導入し得るが、紫外線透過率の低下に留意する必要がある。 As a fining agent, metal powders such as F, Cl, SO 3 , C, Al, Si or the like may be introduced up to about 3% as long as the glass properties are not impaired. Further, CeO 2 or the like can be introduced up to about 2%, but it is necessary to pay attention to a decrease in ultraviolet transmittance.
 本発明の支持結晶化ガラス基板において、全体板厚偏差(TTV)は、好ましくは5μm以下、4μm以下、3μm以下、2μm以下、1μm以下、特に0.1~1μm未満である。全体板厚偏差(TTV)が小さい程、加工処理の精度を高め易くなる。特に配線精度を高めることができるため、高密度の配線が可能になる。 In the supported crystallized glass substrate of the present invention, the total thickness deviation (TTV) is preferably 5 μm or less, 4 μm or less, 3 μm or less, 2 μm or less, 1 μm or less, particularly 0.1 to less than 1 μm. The smaller the overall plate thickness deviation (TTV), the easier it is to improve the processing accuracy. In particular, since the wiring accuracy can be increased, high-density wiring is possible.
 本発明の支持結晶化ガラス基板において、反り量は、好ましくは60μm以下、55μm以下、50μm以下、1~45μm、特に5~40μmである。反り量が小さい程、加工処理の精度を高め易くなる。特に配線精度を高めることができるため、高密度の配線が可能になる。 In the support crystallized glass substrate of the present invention, the warp amount is preferably 60 μm or less, 55 μm or less, 50 μm or less, 1 to 45 μm, particularly 5 to 40 μm. The smaller the warp amount, the easier it is to improve the accuracy of the processing. In particular, since the wiring accuracy can be increased, high-density wiring is possible.
 本発明の支持結晶化ガラス基板は、略円板状又はウエハ状が好ましく、その直径は100mm以上500mm以下、特に150mm以上450mm以下が好ましい。このようにすれば、半導体パッケージの製造工程に適用し易くなる。必要に応じて、それ以外の形状、例えば矩形等の形状に加工してもよい。 The support crystallized glass substrate of the present invention preferably has a substantially disk shape or wafer shape, and its diameter is preferably 100 mm or more and 500 mm or less, particularly preferably 150 mm or more and 450 mm or less. In this way, it becomes easy to apply to the manufacturing process of a semiconductor package. You may process into other shapes, for example, shapes, such as a rectangle, as needed.
 本発明の支持結晶化ガラス基板において、真円度(但し、ノッチ部を除く)は、好ましくは1mm以下、0.1mm以下、0.05mm以下、特に0.03mm以下である。真円度が小さい程、半導体パッケージの製造工程に適用し易くなる。ここで、「真円度」は、ウエハの外形の最大値から最小値を減じた値である。 In the support crystallized glass substrate of the present invention, the roundness (excluding the notch portion) is preferably 1 mm or less, 0.1 mm or less, 0.05 mm or less, particularly 0.03 mm or less. The smaller the roundness, the easier it is to apply to the semiconductor package manufacturing process. Here, “roundness” is a value obtained by subtracting the minimum value from the maximum value of the outer shape of the wafer.
 本発明の支持結晶化ガラス基板において、板厚は、好ましくは2.0mm未満、1.5mm以下、1.2mm以下、1.1mm以下、1.0mm以下、特に0.9mm以下である。板厚が薄くなる程、積層体の質量が軽くなるため、ハンドリング性が向上する。一方、板厚が薄過ぎると、支持結晶化ガラス基板自体の強度が低下して、支持基板としての機能を果たし難くなる。よって、板厚は、好ましくは0.1mm以上、0.2mm以上、0.3mm以上、0.4mm以上、0.5mm以上、0.6mm以上、特に0.7mm超である。 In the support crystallized glass substrate of the present invention, the plate thickness is preferably less than 2.0 mm, 1.5 mm or less, 1.2 mm or less, 1.1 mm or less, 1.0 mm or less, particularly 0.9 mm or less. As the plate thickness decreases, the mass of the laminate becomes lighter, and thus handling properties are improved. On the other hand, if the plate thickness is too thin, the strength of the support crystallized glass substrate itself is lowered, and it becomes difficult to perform the function as the support substrate. Therefore, the plate thickness is preferably 0.1 mm or more, 0.2 mm or more, 0.3 mm or more, 0.4 mm or more, 0.5 mm or more, 0.6 mm or more, particularly more than 0.7 mm.
 本発明の支持結晶化ガラス基板は、ノッチ部(ノッチ形状の位置合わせ部)を有することが好ましく、ノッチ部の深部は平面視で略円形状又は略V溝形状であることがより好ましい。これにより、支持結晶化ガラス基板のノッチ部に位置決めピン等の位置決め部材を当接させて、支持結晶化ガラス基板を位置固定し易くなる。結果として、支持結晶化ガラス基板と加工基板の位置合わせが容易になる。特に、加工基板にもノッチ部を形成して、位置決め部材を当接させると、積層体全体の位置合わせが容易になる。 The support crystallized glass substrate of the present invention preferably has a notch part (notch-shaped alignment part), and the deep part of the notch part is more preferably substantially circular or substantially V-groove in plan view. This makes it easier to fix the position of the support crystallized glass substrate by bringing a positioning member such as a positioning pin into contact with the notch portion of the support crystallized glass substrate. As a result, alignment of the support crystallized glass substrate and the processed substrate is facilitated. In particular, when the notch is formed on the processed substrate and the positioning member is brought into contact with the processed substrate, the alignment of the entire laminate is facilitated.
 支持結晶化ガラス基板のノッチ部に位置決め部材を当接すると、ノッチ部に応力が集中し易くなり、ノッチ部を起点にして、支持結晶化ガラス基板が破損し易くなる。特に、支持結晶化ガラス基板が外力により湾曲した時に、その傾向が顕著になる。よって、本発明の支持結晶化ガラス基板は、ノッチ部の表面と端面とが交差する端縁領域の全部又は一部が面取りされていることが好ましい。これにより、ノッチ部を起点にした破損を有効に回避することができる。 When the positioning member is brought into contact with the notch portion of the support crystallized glass substrate, the stress is easily concentrated on the notch portion, and the support crystallized glass substrate is easily damaged starting from the notch portion. In particular, when the support crystallized glass substrate is bent by an external force, the tendency becomes remarkable. Therefore, in the support crystallized glass substrate of the present invention, it is preferable that all or part of the edge region where the surface of the notch portion and the end face intersect is chamfered. As a result, it is possible to effectively avoid damage starting from the notch portion.
 本発明の支持結晶化ガラス基板は、ノッチ部の表面と端面とが交差する端縁領域の全部又は一部が面取りされており、ノッチ部の表面と端面とが交差する端縁領域の50%以上が面取りされていることが好ましく、ノッチ部の表面と端面とが交差する端縁領域の90%以上が面取りされていることがより好ましく、ノッチ部の表面と端面とが交差する端縁領域の全部が面取りされていることが更に好ましい。ノッチ部において面取りされている領域が大きい程、ノッチ部を起点にした破損の確率を低減することができる。 In the support crystallized glass substrate of the present invention, all or part of the edge region where the surface and end face of the notch portion intersect is chamfered, and 50% of the edge region where the surface and end surface of the notch portion intersect. The above is preferably chamfered, more preferably 90% or more of the edge region where the surface of the notch portion intersects with the end surface is chamfered, and the edge region where the surface of the notch portion intersects with the end surface More preferably, all of the above are chamfered. The larger the chamfered area at the notch, the lower the probability of breakage starting from the notch.
 ノッチ部のおもて面方向の面取り幅(裏面方向の面取り幅も同様)は、好ましくは50~900μm、200~800μm、300~700μm、400~650μm、特に500~600μmである。ノッチ部の表面方向の面取り幅が小さ過ぎると、ノッチ部を起点にして、支持結晶化ガラス基板が破損し易くなる。一方、ノッチ部の表面方向の面取り幅が大き過ぎると、面取り効率が低下して、支持結晶化ガラス基板の製造コストが高騰し易くなる。 The chamfering width in the front surface direction of the notch portion (the chamfering width in the rear surface direction is also the same) is preferably 50 to 900 μm, 200 to 800 μm, 300 to 700 μm, 400 to 650 μm, particularly 500 to 600 μm. If the chamfering width in the surface direction of the notch portion is too small, the supporting crystallized glass substrate tends to be damaged starting from the notch portion. On the other hand, if the chamfering width in the surface direction of the notch portion is too large, the chamfering efficiency is lowered, and the manufacturing cost of the support crystallized glass substrate is likely to increase.
 ノッチ部の板厚方向の面取り幅(おもて面と裏面の面取り幅の合計)は、好ましくは板厚の5~80%、20~75%、30~70%、35~65%、特に40~60%である。ノッチ部の板厚方向の面取り幅が小さ過ぎると、ノッチ部を起点にして、支持結晶化ガラス基板が破損し易くなる。一方、ノッチ部の板厚方向の面取り幅が大き過ぎると、外力がノッチ部の端面に集中し易くなり、ノッチ部の端面を起点にして、支持結晶化ガラス基板が破損し易くなる。 The chamfer width in the plate thickness direction of the notch portion (the total chamfer width of the front surface and the back surface) is preferably 5 to 80%, 20 to 75%, 30 to 70%, 35 to 65% of the plate thickness, especially 40-60%. If the chamfer width in the plate thickness direction of the notch portion is too small, the supporting crystallized glass substrate is likely to be damaged starting from the notch portion. On the other hand, if the chamfer width in the plate thickness direction of the notch portion is too large, the external force tends to concentrate on the end surface of the notch portion, and the supporting crystallized glass substrate is likely to be damaged starting from the end surface of the notch portion.
 本発明の支持結晶化ガラス基板は、イオン交換処理が行われていないことが好ましく、表面に圧縮応力層を有しないことが好ましい。イオン交換処理を行うと、支持結晶化ガラス基板の製造コストが高騰するが、イオン交換処理を行わなければ、支持結晶化ガラス基板の製造コストを低下させることが可能になる。更にイオン交換処理を行うと、支持結晶化ガラス基板の全体板厚偏差(TTV)を低減し難くなるが、イオン交換処理を行わなければ、そのような不具合を解消し易くなる。 The support crystallized glass substrate of the present invention is preferably not subjected to ion exchange treatment, and preferably has no compressive stress layer on the surface. When the ion exchange treatment is performed, the manufacturing cost of the support crystallized glass substrate increases. However, if the ion exchange processing is not performed, the manufacturing cost of the support crystallized glass substrate can be reduced. Further, if ion exchange treatment is performed, it becomes difficult to reduce the total thickness deviation (TTV) of the support crystallized glass substrate. However, if the ion exchange treatment is not carried out, it is easy to eliminate such a problem.
 本発明の支持結晶化ガラス基板の製造方法を説明する。まず所定の組成になるようにガラス原料を調合し、得られたガラスバッチを1550~1750℃の温度で溶融した後、板状に成形し、結晶性ガラス基板を得る。なお、成形方法として、種々の方法を採択することができる。例えば、スロットダウン法、ロールアウト法、リドロー法、フロート法、インゴット成型法等を採択することができる。 The method for producing the support crystallized glass substrate of the present invention will be described. First, glass raw materials are prepared so as to have a predetermined composition, and the obtained glass batch is melted at a temperature of 1550 to 1750 ° C. and then formed into a plate shape to obtain a crystalline glass substrate. Various methods can be adopted as the forming method. For example, a slot down method, a rollout method, a redraw method, a float method, an ingot molding method, etc. can be adopted.
 続いて、700~1000℃で0.5~3時間熱処理して、結晶性ガラス基板中に結晶核を生成し、結晶を成長させることにより、結晶化ガラス基板を作製することができる。なお、必要に応じて、結晶を成長させる工程の前に、結晶性ガラス基板に結晶核を形成させる結晶核形成工程を設けることもできる。 Subsequently, a crystallized glass substrate can be produced by heat treatment at 700 to 1000 ° C. for 0.5 to 3 hours to generate crystal nuclei in the crystalline glass substrate and grow the crystal. If necessary, a crystal nucleus forming step for forming crystal nuclei on the crystalline glass substrate may be provided before the step of growing the crystal.
 本発明の積層体は、少なくとも加工基板と加工基板を支持するための支持結晶化ガラス基板とを備える積層体であって、支持結晶化ガラス基板が上記の支持結晶化ガラス基板であることを特徴とする。ここで、本発明の積層体の技術的特徴(好適な構成、効果)は、本発明の支持結晶化ガラス基板の技術的特徴と重複する。よって、本明細書では、その重複部分について、詳細な記載を省略する。 The laminate of the present invention is a laminate comprising at least a processed substrate and a support crystallized glass substrate for supporting the process substrate, wherein the support crystallized glass substrate is the above-mentioned support crystallized glass substrate. And Here, the technical characteristics (preferable structure and effect) of the laminate of the present invention overlap with the technical characteristics of the support crystallized glass substrate of the present invention. Therefore, in the present specification, detailed description of the overlapping portions is omitted.
 本発明の積層体は、加工基板と支持結晶化ガラス基板の間に、接着層を有することが好ましい。接着層は、樹脂であることが好ましく、例えば、熱硬化性樹脂、光硬化性樹脂(特に紫外線硬化樹脂)等が好ましい。また半導体パッケージの製造工程における熱処理に耐える耐熱性を有するものが好ましい。これにより、半導体パッケージの製造工程で接着層が融解し難くなり、加工処理の精度を高めることができる。なお、加工基板と支持結晶化ガラス基板を容易に固定するため、紫外線硬化型テープを接着層として使用することもできる。 The laminate of the present invention preferably has an adhesive layer between the processed substrate and the support crystallized glass substrate. The adhesive layer is preferably a resin, for example, a thermosetting resin, a photocurable resin (particularly an ultraviolet curable resin), or the like. Moreover, what has the heat resistance which can endure the heat processing in the manufacturing process of a semiconductor package is preferable. Thereby, it becomes difficult to melt | dissolve an adhesive layer in the manufacturing process of a semiconductor package, and the precision of a process can be improved. In addition, in order to fix a process substrate and a support crystallized glass substrate easily, an ultraviolet curable tape can also be used as an adhesive layer.
 本発明の積層体は、更に加工基板と支持結晶化ガラス基板の間に、より具体的には加工基板と接着層の間に、剥離層を有すること、或いは支持結晶化ガラス基板と接着層の間に、剥離層を有することが好ましい。このようにすれば、加工基板に対して、所定の加工処理を行った後に、加工基板を支持結晶化ガラス基板から剥離し易くなる。加工基板の剥離は、生産性の観点から、レーザー光等の照射光により行うことが好ましい。レーザー光源として、YAGレーザー(波長1064nm)、半導体レーザー(波長780~1300nm)等の赤外光レーザー光源を用いることができる。また、剥離層には、赤外線レーザーを照射することで分解する樹脂を使用することができる。また、赤外線を効率良く吸収し、熱に変換する物質を樹脂に添加することもできる。例えば、カーボンブラック、グラファイト粉、微粒子金属粉末、染料、顔料等を樹脂に添加することができる。 The laminate of the present invention further has a release layer between the processed substrate and the supporting crystallized glass substrate, more specifically between the processed substrate and the adhesive layer, or between the supporting crystallized glass substrate and the adhesive layer. It is preferable to have a peeling layer between them. If it does in this way, it will become easy to peel a processed substrate from a support crystallized glass substrate, after performing predetermined processing processing to a processed substrate. Peeling of the processed substrate is preferably performed with irradiation light such as laser light from the viewpoint of productivity. As the laser light source, an infrared laser light source such as a YAG laser (wavelength 1064 nm) or a semiconductor laser (wavelength 780 to 1300 nm) can be used. Moreover, resin which decomposes | disassembles by irradiating an infrared laser can be used for a peeling layer. A substance that efficiently absorbs infrared rays and converts it into heat can also be added to the resin. For example, carbon black, graphite powder, fine metal powder, dye, pigment, etc. can be added to the resin.
 剥離層は、レーザー光等の照射光により「層内剥離」又は「界面剥離」が生じる材料で構成される。つまり一定の強度の光を照射すると、原子又は分子における原子間又は分子間の結合力が消失又は減少して、アブレーション(ablation)等を生じ、剥離を生じさせる材料で構成される。なお、照射光の照射により、剥離層に含まれる成分が気体となって放出されて分離に至る場合と、剥離層が光を吸収して気体になり、その蒸気が放出されて分離に至る場合とがある。 The peeling layer is made of a material that causes “in-layer peeling” or “interfacial peeling” by irradiation light such as laser light. That is, when light of a certain intensity is irradiated, the bonding force between atoms or molecules in an atom or molecule disappears or decreases, and ablation or the like is caused to cause peeling. In addition, when the component contained in the release layer is released as a gas due to irradiation of irradiation light, the separation layer is released, and when the release layer absorbs light and becomes a gas, and its vapor is released, resulting in separation There is.
 本発明の積層体において、支持結晶化ガラス基板は、加工基板よりも大きいことが好ましい。これにより、加工基板と支持結晶化ガラス基板を支持する際に、両者の中心位置が僅かに離間した場合でも、支持結晶化ガラス基板から加工基板の縁部が食み出し難くなる。 In the laminate of the present invention, the supporting crystallized glass substrate is preferably larger than the processed substrate. As a result, when the processed substrate and the supporting crystallized glass substrate are supported, even if the center positions of both are slightly separated, the edge of the processed substrate is unlikely to protrude from the supporting crystallized glass substrate.
 本発明の半導体パッケージの製造方法は、少なくとも加工基板と加工基板を支持するための支持結晶化ガラス基板とを備える積層体を用意する工程と、加工基板に対して、加工処理を行う工程と、を有すると共に、支持結晶化ガラス基板として、上記の支持結晶化ガラス基板を用いることを特徴とする。ここで、本発明の半導体パッケージの製造方法の技術的特徴(好適な構成、効果)は、本発明の支持結晶化ガラス基板及び積層体の技術的特徴と重複する。よって、本明細書では、その重複部分について、詳細な記載を省略する。 The method of manufacturing a semiconductor package of the present invention includes a step of preparing a laminate including at least a processed substrate and a support crystallized glass substrate for supporting the processed substrate, a step of performing a processing process on the processed substrate, And the above-mentioned support crystallized glass substrate is used as the support crystallized glass substrate. Here, the technical characteristics (preferable structure and effect) of the manufacturing method of the semiconductor package of the present invention overlap with the technical characteristics of the support crystallized glass substrate and the laminate of the present invention. Therefore, in the present specification, detailed description of the overlapping portions is omitted.
 本発明の半導体パッケージの製造方法は、少なくとも加工基板と加工基板を支持するための支持結晶化ガラス基板とを備える積層体を用意する工程を有する。加工基板と加工基板を支持するための支持結晶化ガラス基板とを備える積層体は、上記の材料構成を有している。 The semiconductor package manufacturing method of the present invention includes a step of preparing a laminate including at least a processed substrate and a supporting crystallized glass substrate for supporting the processed substrate. A laminate including a processed substrate and a support crystallized glass substrate for supporting the processed substrate has the material configuration described above.
 本発明の半導体パッケージの製造方法は、更に積層体を搬送する工程を有することが好ましい。これにより、加工処理の処理効率を高めることができる。なお、「積層体を搬送する工程」と「加工基板に対して、加工処理を行う工程」とは、別途に行う必要はなく、同時であってもよい。 It is preferable that the method for manufacturing a semiconductor package of the present invention further includes a step of transporting the stacked body. Thereby, the processing efficiency of a processing process can be improved. Note that the “process for transporting the laminate” and the “process for processing the processed substrate” do not need to be performed separately and may be performed simultaneously.
 本発明の半導体パッケージの製造方法において、加工処理は、加工基板の一方の表面に配線する処理、或いは加工基板の一方の表面に半田バンプを形成する処理が好ましい。本発明の半導体パッケージの製造方法では、これらの処理時に加工基板が寸法変化し難いため、これらの工程を適正に行うことができる。 In the method for manufacturing a semiconductor package of the present invention, the processing is preferably performed by wiring on one surface of the processed substrate or forming solder bumps on one surface of the processed substrate. In the method for manufacturing a semiconductor package of the present invention, since the processed substrate is difficult to change in dimensions during these processes, these steps can be appropriately performed.
 加工処理として、上記以外にも、加工基板の一方の表面(通常、支持結晶化ガラス基板とは反対側の表面)を機械的に研磨する処理、加工基板の一方の表面(通常、支持結晶化ガラス基板とは反対側の表面)をドライエッチングする処理、加工基板の一方の表面(通常、支持結晶化ガラス基板とは反対側の表面)をウェットエッチングする処理の何れかであってもよい。なお、本発明の半導体パッケージの製造方法では、加工基板に寸法変化(特に、反り)が発生し難いと共に、積層体全体の剛性を維持することができる。結果として、上記加工処理を適正に行うことができる。 In addition to the above processing, one surface of the processed substrate (usually the surface opposite to the supporting crystallized glass substrate) is mechanically polished, and one surface of the processed substrate (usually supporting crystallization) Either a process of dry etching the surface opposite to the glass substrate) or a process of wet etching one surface of the processed substrate (usually the surface opposite to the supporting crystallized glass substrate) may be used. In the semiconductor package manufacturing method of the present invention, a dimensional change (particularly, warpage) hardly occurs in the processed substrate, and the rigidity of the entire laminated body can be maintained. As a result, the above processing can be performed appropriately.
 図面を参酌しながら、本発明を更に説明する。 The present invention will be further described with reference to the drawings.
 図1は、本発明の積層体1の一例を示す概念斜視図である。図1では、積層体1は、支持結晶化ガラス基板10と加工基板11とを備えている。支持結晶化ガラス基板10は、加工基板11の寸法変化を防止するために、加工基板11に貼着されている。支持結晶化ガラス基板10と加工基板11との間には、剥離層12と接着層13が配置されている。剥離層12は、支持結晶化ガラス基板10と接触しており、接着層13は、加工基板11と接触している。 FIG. 1 is a conceptual perspective view showing an example of a laminate 1 of the present invention. In FIG. 1, the laminate 1 includes a supporting crystallized glass substrate 10 and a processed substrate 11. The support crystallized glass substrate 10 is attached to the processed substrate 11 in order to prevent a dimensional change of the processed substrate 11. A peeling layer 12 and an adhesive layer 13 are disposed between the support crystallized glass substrate 10 and the processed substrate 11. The release layer 12 is in contact with the support crystallized glass substrate 10, and the adhesive layer 13 is in contact with the processed substrate 11.
 図1から分かるように、積層体1は、支持結晶化ガラス基板10、剥離層12、接着層13、加工基板11の順に積層配置されている。支持結晶化ガラス基板10の形状は、加工基板11に応じて決定されるが、図1では、支持結晶化ガラス基板10及び加工基板11の形状は、何れも略円板形状である。剥離層12は、例えばレーザーを照射することで分解する樹脂を使用することができる。また、レーザー光を効率良く吸収し、熱に変換する物質を樹脂に添加することもできる。例えば、カーボンブラック、グラファイト粉、微粒子金属粉末、染料、顔料等を樹脂に添加することもできる。剥離層12は、プラズマCVDや、ゾル-ゲル法によるスピンコート等により形成される。接着層13は、樹脂で構成されており、例えば、各種印刷法、インクジェット法、スピンコート法、ロールコート法等により塗布形成される。また、紫外線硬化型テープも使用可能である。接着層13は、剥離層12により加工基板11から支持結晶化ガラス基板10が剥離された後、溶剤等により溶解除去される。紫外線硬化型テープは、紫外線を照射した後、剥離用テープにより除去可能である。 As can be seen from FIG. 1, the laminate 1 is laminated in the order of a support crystallized glass substrate 10, a release layer 12, an adhesive layer 13, and a processed substrate 11. The shape of the support crystallized glass substrate 10 is determined according to the processed substrate 11. In FIG. 1, the shapes of the support crystallized glass substrate 10 and the processed substrate 11 are both substantially disk shapes. For the release layer 12, for example, a resin that decomposes when irradiated with a laser can be used. A substance that efficiently absorbs laser light and converts it into heat can also be added to the resin. For example, carbon black, graphite powder, fine metal powder, dye, pigment or the like can be added to the resin. The release layer 12 is formed by plasma CVD, spin coating by a sol-gel method, or the like. The adhesive layer 13 is made of a resin, and is applied and formed by, for example, various printing methods, inkjet methods, spin coating methods, roll coating methods, and the like. An ultraviolet curable tape can also be used. After the support crystallized glass substrate 10 is peeled from the processed substrate 11 by the release layer 12, the adhesive layer 13 is dissolved and removed by a solvent or the like. The ultraviolet curable tape can be removed with a peeling tape after being irradiated with ultraviolet rays.
 図2は、fan out型のWLPの製造工程を示す概念断面図である。図2(a)は、支持部材20の一方の表面上に接着層21を形成した状態を示している。必要に応じて、支持部材20と接着層21の間に剥離層を形成してもよい。次に、図2(b)に示すように、接着層21の上に複数の半導体チップ22を貼付する。その際、半導体チップ22のアクティブ側の面を接着層21に接触させる。次に、図2(c)に示すように、半導体チップ22を樹脂の封止材23でモールドする。封止材23は、圧縮成形後の寸法変化、配線を成形する際の寸法変化が少ない材料が使用される。続いて、図2(d)、(e)に示すように、支持部材20から半導体チップ22がモールドされた加工基板24を分離した後、接着層25を介して、支持結晶化ガラス基板26と接着固定させる。その際、加工基板24の表面の内、半導体チップ22が埋め込まれた側の表面とは反対側の表面が支持結晶化ガラス基板26側に配置される。このようにして、積層体27を得ることができる。なお、必要に応じて、接着層25と支持結晶化ガラス基板26の間に剥離層を形成してもよい。更に、得られた積層体27を搬送した後に、図2(f)に示すように、加工基板24の半導体チップ22が埋め込まれた側の表面に配線28を形成した後、複数の半田バンプ29を形成する。最後に、支持結晶化ガラス基板26から加工基板24を分離した後に、加工基板24を半導体チップ22毎に切断し、後のパッケージング工程に供される(図2(g))。 FIG. 2 is a conceptual cross-sectional view showing a manufacturing process of a fan out type WLP. FIG. 2A shows a state in which the adhesive layer 21 is formed on one surface of the support member 20. A peeling layer may be formed between the support member 20 and the adhesive layer 21 as necessary. Next, as shown in FIG. 2B, a plurality of semiconductor chips 22 are pasted on the adhesive layer 21. At that time, the surface on the active side of the semiconductor chip 22 is brought into contact with the adhesive layer 21. Next, as shown in FIG. 2C, the semiconductor chip 22 is molded with a resin sealing material 23. The sealing material 23 is made of a material having little dimensional change after compression molding and little dimensional change when forming a wiring. Subsequently, as shown in FIGS. 2D and 2E, after separating the processed substrate 24 on which the semiconductor chip 22 is molded from the support member 20, the support crystallized glass substrate 26 and the adhesive layer 25 are interposed. Adhere and fix. At that time, the surface of the processed substrate 24 opposite to the surface on which the semiconductor chip 22 is embedded is disposed on the supporting crystallized glass substrate 26 side. In this way, the laminate 27 can be obtained. In addition, you may form a peeling layer between the contact bonding layer 25 and the support crystallized glass substrate 26 as needed. Further, after the obtained laminated body 27 is conveyed, as shown in FIG. 2 (f), a wiring 28 is formed on the surface of the processed substrate 24 where the semiconductor chip 22 is embedded, and then a plurality of solder bumps 29 are formed. Form. Finally, after separating the processed substrate 24 from the support crystallized glass substrate 26, the processed substrate 24 is cut into semiconductor chips 22 for use in a subsequent packaging process (FIG. 2 (g)).
 以下、本発明を実施例に基づいて説明する。なお、以下の実施例は単なる例示である。本発明は、以下の実施例に何ら限定されない。 Hereinafter, the present invention will be described based on examples. The following examples are merely illustrative. The present invention is not limited to the following examples.
 表1は、本発明の実施例(試料No.1~12)と比較例(試料No.13、14)を示している。 Table 1 shows examples (samples Nos. 1 to 12) and comparative examples (samples Nos. 13 and 14) of the present invention.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 まず表中の組成になるように、ガラス原料を調合したガラスバッチを白金坩堝に入れ、1600℃で4時間溶融した。ガラスバッチの溶解に際しては、白金スターラーを用いて攪拌し、均質化を行った。次いで、溶融ガラスをカーボン板上に流し出し、板状に成形した後、徐冷点より20℃程度高い温度から、3℃/分で常温まで徐冷した。得られた各結晶性ガラス試料(試料No.1~12)について、電気炉に投入し500~800℃で0.5~5時間保持して、結晶核を生成させた後、850~1000℃で1~5時間保持して、ガラス中に結晶を成長させた。結晶を成長させた後、1℃/分の降温速度で常温まで冷却した。なお、試料No.13、14については、上記結晶化処理を行っていない(上記結晶化処理を行っても、結晶が析出しない)。得られた各試料について、析出結晶、30~220℃の温度範囲における平均線熱膨張係数CTE30-220℃、30~260℃の温度範囲における平均線熱膨張係数CTE30-260℃、30~300℃の温度範囲における平均線熱膨張係数CTE30-300℃、30~380℃の温度範囲における平均線熱膨張係数CTE30-380℃、ヤング率、アルカリ溶出、耐候性試験(HAST)後の外観と透過率変化を評価した。 First, a glass batch in which glass raw materials were prepared so as to have the composition shown in the table was placed in a platinum crucible and melted at 1600 ° C. for 4 hours. In melting the glass batch, the mixture was stirred and homogenized using a platinum stirrer. Next, the molten glass was poured out on a carbon plate, formed into a plate shape, and then gradually cooled from a temperature about 20 ° C. higher than the annealing point to room temperature at 3 ° C./min. The obtained crystalline glass samples (Sample Nos. 1 to 12) were put into an electric furnace and held at 500 to 800 ° C. for 0.5 to 5 hours to generate crystal nuclei, and then 850 to 1000 ° C. For 1 to 5 hours to grow crystals in the glass. After growing the crystal, it was cooled to room temperature at a temperature lowering rate of 1 ° C./min. Sample No. 13 and 14 are not subjected to the crystallization treatment (the crystals are not precipitated even when the crystallization treatment is performed). For each sample obtained, precipitated crystals, average linear thermal expansion coefficient CTE 30-220 ° C. in the temperature range of 30-220 ° C. , average linear thermal expansion coefficient CTE 30-260 ° C. in the temperature range of 30-260 ° C. , 30- Average linear thermal expansion coefficient CTE in the temperature range of 300 ° C. 30-300 ° C. Average linear thermal expansion coefficient CTE in the temperature range of 30 to 380 ° C. 30-380 ° C. , Young's modulus, alkali elution Appearance and transmittance change were evaluated.
 析出結晶は、X線回折装置(リガク製RINT-2100)で評価したものである。なお、測定範囲を2θ=10~60°とした。 Precipitated crystals were evaluated with an X-ray diffractometer (RINT-2100 manufactured by Rigaku). The measurement range was 2θ = 10 to 60 °.
 30~220℃の温度範囲における平均線熱膨張係数CTE30-220℃、30~260℃の温度範囲における平均線熱膨張係数CTE30-260℃、30~300℃の温度範囲における平均線熱膨張係数CTE30-300℃、30~380℃の温度範囲における平均線熱膨張係数CTE30-380℃は、ディラトメーターで測定した値である。 Average linear thermal expansion coefficient CTE in the temperature range of 30 to 220 ° C. 30-220 ° C. Average linear thermal expansion coefficient in the temperature range of 30 to 260 ° C. Average linear thermal expansion in the temperature range of 30 to 260 ° C. and 30 to 300 ° C. Coefficient CTE 30-300 ° C. The average linear thermal expansion coefficient CTE 30-380 ° C. in the temperature range of 30-380 ° C. is a value measured with a dilatometer .
 ヤング率Eは、共振法により測定した値である。 The Young's modulus E is a value measured by a resonance method.
 アルカリ溶出は、JIS R3502に基づいて測定したアルカリ溶出量が1.5mg未満であった場合を「○」、1.5mg/cm超であった場合を「×」として評価したものである。 Alkaline elution is evaluated as “◯” when the alkali elution amount measured in accordance with JIS R3502 is less than 1.5 mg, and “x” when it exceeds 1.5 mg / cm 2 .
 耐候性試験(HAST)後の外観は、平山製作所製HAST試験機PC-242HSR2を用いて、135℃、湿度95%の条件下で、8時間保持した後、試料表面を目視で観察し、外観変化が認められなかった場合を「○」、外観変化が認められた場合を「×」として評価したものである。 The appearance after the weather resistance test (HAST) was maintained for 8 hours at 135 ° C. and 95% humidity using a HAST tester PC-242HSR2 manufactured by Hirayama Seisakusho. The case where no change was observed was evaluated as “◯”, and the case where an appearance change was observed was evaluated as “x”.
 耐候性試験(HAST)後の透過率変化は、まず分光光度計(株式会社島津製作所製UV-3100)を用いて、板厚方向、波長範囲250~1500nmでの平均透過率を測定し、次に135℃、湿度95%の条件下で、8時間保持した後、同様の条件で平均透過率を測定し、最後に平均透過率の低下幅を算出し、その値が10%未満であった場合を「○」、10%以上であった場合を「×」として評価したものである。 The transmittance change after the weather resistance test (HAST) was measured by first measuring the average transmittance in the plate thickness direction and wavelength range of 250 to 1500 nm using a spectrophotometer (UV-3100 manufactured by Shimadzu Corporation). Was held at 135 ° C. and 95% humidity for 8 hours, and the average transmittance was measured under the same conditions. Finally, the decrease in average transmittance was calculated, and the value was less than 10%. The case was evaluated as “◯”, and the case of 10% or more was evaluated as “x”.
 表1から明らかなように、試料No.1~12は、ヤング率が高く、アルカリ溶出量が少なく、耐候性が良好であった。よって、試料No.1~12は、半導体パッケージの製造工程で加工基板の支持に用いる支持基板として好適であると考えられる。一方、試料No.13、14は、ヤング率が低く、アルカリ溶出量が多く、耐候性が不良であった。 As is clear from Table 1, sample No. Nos. 1 to 12 had a high Young's modulus, a small amount of alkali elution, and good weather resistance. Therefore, sample no. Nos. 1 to 12 are considered to be suitable as support substrates used for supporting a processed substrate in a semiconductor package manufacturing process. On the other hand, sample No. Nos. 13 and 14 had a low Young's modulus, a large amount of alkali elution, and poor weather resistance.
 次のようにして、[実施例2]の各試料を作製した。まず、表中に記載の試料No.1~12の組成になるように、ガラス原料を調合した後、ガラス溶融炉に供給して1550~1650℃で溶融し、次いで溶融ガラスをそれぞれセラミックス製の型枠に流し入れて、板状に成型した。得られた各試料について、電気炉に投入し500℃で30分間保持して、結晶核を生成させた後、850℃で60分間保持して、ガラスマトリクス中に結晶を成長させた。結晶を成長させた後、1℃/分の降温速度で常温まで冷却した。得られた結晶化ガラス基板(全体板厚偏差TTV約5.5μm)をφ300mm×0.7mm厚に加工した後、その両表面を研磨装置により研磨処理した。具体的には、結晶化ガラス基板の両表面を外径が相違する一対の研磨パットで挟み込み、結晶化ガラス基板と一対の研磨パッドを共に回転させながら、結晶化ガラス基板の両表面を研磨処理した。研磨処理の際、時折、結晶化ガラス基板の一部が研磨パッドから食み出すように制御した。なお、研磨パッドはウレタン製、研磨処理の際に使用した研磨スラリーの平均粒径は2.5μm、研磨速度は15m/分であった。得られた研磨処理済みの各結晶化ガラス基板について、コベルコ科研社製のSBW-331ML/dにより全体板厚偏差(TTV)と反り量を測定した。その結果、全体板厚偏差(TTV)は、それぞれ1.0μm未満であり、反り量は、それぞれ35μm以下であった。 Each sample of [Example 2] was produced as follows. First, the sample No. described in the table was used. After preparing the glass raw material so as to have a composition of 1 to 12, it is supplied to a glass melting furnace and melted at 1550 to 1650 ° C., and then the molten glass is poured into a ceramic mold and molded into a plate shape. did. About each obtained sample, it put into the electric furnace and was hold | maintained at 500 degreeC for 30 minutes, after producing | generating a crystal nucleus, it hold | maintained at 850 degreeC for 60 minutes, and the crystal was grown in the glass matrix. After growing the crystal, it was cooled to room temperature at a temperature lowering rate of 1 ° C./min. The obtained crystallized glass substrate (overall plate thickness deviation TTV approximately 5.5 μm) was processed to a thickness of φ300 mm × 0.7 mm, and both surfaces thereof were polished by a polishing apparatus. Specifically, both surfaces of the crystallized glass substrate are sandwiched between a pair of polishing pads having different outer diameters, and both surfaces of the crystallized glass substrate are polished while rotating the crystallized glass substrate and the pair of polishing pads together. did. During the polishing process, control was sometimes performed so that a part of the crystallized glass substrate protruded from the polishing pad. The polishing pad was made of urethane, the average particle size of the polishing slurry used in the polishing treatment was 2.5 μm, and the polishing rate was 15 m / min. With respect to each of the obtained crystallized glass substrates that had been subjected to polishing treatment, the total thickness deviation (TTV) and the amount of warpage were measured by SBW-331ML / d manufactured by Kobelco Kaken. As a result, the overall thickness deviation (TTV) was less than 1.0 μm, and the warpage amount was 35 μm or less.
 本発明の支持結晶化ガラス基板は、半導体パッケージの製造工程で加工基板の支持に用いることが好ましいが、この用途以外にも応用可能である。例えば、高膨張の利点を生かして、アルミニウム合金基板等の高膨張金属基板の代替基板として応用可能であり、またジルコニア基板、フェライト基板等の高膨張セラミック基板の代替基板としても応用可能である。 The support crystallized glass substrate of the present invention is preferably used for supporting a processed substrate in a manufacturing process of a semiconductor package, but can be applied to applications other than this application. For example, taking advantage of high expansion, it can be applied as an alternative substrate for a high expansion metal substrate such as an aluminum alloy substrate, and can also be applied as an alternative substrate for a high expansion ceramic substrate such as a zirconia substrate or a ferrite substrate.
1、27 積層体
10、26 支持結晶化ガラス基板
11、24 加工基板
12 剥離層
13、21、25 接着層
20 支持部材
22 半導体チップ
23 封止材
28 配線
29 半田バンプ
1, 27 Laminate 10, 26 Support crystallized glass substrate 11, 24 Processed substrate 12 Peeling layer 13, 21, 25 Adhesive layer 20 Support member 22 Semiconductor chip 23 Sealing material 28 Wiring 29 Solder bump

Claims (11)

  1.  加工基板を支持するための支持結晶化ガラス基板であって、
     二珪酸リチウム、α-クリストバライト、α-クォーツの内、一種又は二種以上が析出しており、
     ヤング率が80GPa以上であることを特徴とする支持結晶化ガラス基板。
    A support crystallized glass substrate for supporting a processed substrate,
    Among lithium disilicate, α-cristobalite, α-quartz, one or more are deposited,
    A support crystallized glass substrate having a Young's modulus of 80 GPa or more.
  2.  アルカリ溶出量が1.5mg未満であることを特徴とする請求項1に記載の支持結晶化ガラス基板。 The supporting crystallized glass substrate according to claim 1, wherein the alkali elution amount is less than 1.5 mg.
  3.  耐候性試験(HAST)前の波長範囲250~1500nmでの板厚方向の平均透過率をX(%)、耐候性試験(HAST)後の波長範囲250~1500nmでの板厚方向の平均透過率をY(%)とした時に、X-Y<10%の関係を満たすことを特徴とする請求項1又は2に記載の支持結晶化ガラス基板。 The average transmittance in the plate thickness direction in the wavelength range 250-1500 nm before the weather resistance test (HAST) is X (%), and the average transmittance in the plate thickness direction in the wavelength range 250-1500 nm after the weather resistance test (HAST). 3. The support crystallized glass substrate according to claim 1, wherein a relationship of XY <10% is satisfied when Y is (%).
  4.  30~380℃の温度範囲における平均線熱膨張係数が60×10-7/℃超であり、且つ195×10-7/℃以下であることを特徴とする請求項1~3の何れかに記載の支持結晶化ガラス基板。 4. The average linear thermal expansion coefficient in a temperature range of 30 to 380 ° C. is more than 60 × 10 −7 / ° C. and not more than 195 × 10 −7 / ° C. The support crystallized glass substrate described.
  5.  全体板厚偏差(TTV)が5μm以下であることを特徴とする請求項1~4の何れかに記載の支持結晶化ガラス基板。 The supporting crystallized glass substrate according to any one of claims 1 to 4, wherein a total thickness deviation (TTV) is 5 µm or less.
  6.  組成として、質量%で、SiO 50~85%、Al 0.1~15%、B 0~10%、P 0~15%、LiO 2~20%、NaO 0~10%、KO 0~7%、MgO 0~10%、CaO 0~5%、SrO 0~5%、BaO 0~5%、ZnO 0~5%、ZrO 0~10%を含有することを特徴とする請求項1~5の何れかに記載の支持結晶化ガラス基板。 The composition is SiO 2 50 to 85%, Al 2 O 3 0.1 to 15%, B 2 O 3 0 to 10%, P 2 O 5 0 to 15%, Li 2 O 2 to 20% by mass%. , Na 2 O 0-10%, K 2 O 0-7%, MgO 0-10%, CaO 0-5%, SrO 0-5%, BaO 0-5%, ZnO 0-5%, ZrO 2 0 The supporting crystallized glass substrate according to any one of claims 1 to 5, characterized by containing ~ 10%.
  7.  板厚が2.0mm未満であり、且つ反り量が60μm以下であることを特徴とする請求項1~6の何れかに記載の支持結晶化ガラス基板。 The supporting crystallized glass substrate according to any one of claims 1 to 6, wherein a thickness of the plate is less than 2.0 mm and a warpage amount is 60 µm or less.
  8.  少なくとも加工基板と加工基板を支持するための支持結晶化ガラス基板とを備える積層体であって、
     支持結晶化ガラス基板が請求項1~7の何れかに記載の支持結晶化ガラス基板であることを特徴とする積層体。
    A laminate comprising at least a processed substrate and a support crystallized glass substrate for supporting the processed substrate,
    A laminated body, wherein the supporting crystallized glass substrate is the supporting crystallized glass substrate according to any one of claims 1 to 7.
  9.  加工基板が、少なくとも封止材でモールドされた半導体チップを備えることを特徴とする請求項8に記載の積層体。 The laminate according to claim 8, wherein the processed substrate includes a semiconductor chip molded with at least a sealing material.
  10.  少なくとも加工基板と加工基板を支持するための支持結晶化ガラス基板とを備える積層体を用意する工程と、
     加工基板に対して、加工処理を行う工程と、を有すると共に、
     支持結晶化ガラス基板として、請求項1~7の何れかに記載の支持結晶化ガラス基板を用いることを特徴とする半導体パッケージの製造方法。
    Preparing a laminate including at least a processed substrate and a supporting crystallized glass substrate for supporting the processed substrate;
    A process of performing processing on the processed substrate,
    A method for producing a semiconductor package, comprising using the support crystallized glass substrate according to any one of claims 1 to 7 as the support crystallized glass substrate.
  11.  加工基板が、少なくとも封止材でモールドされた半導体チップを備えることを特徴とする請求項10に記載の半導体パッケージの製造方法。 The method for manufacturing a semiconductor package according to claim 10, wherein the processed substrate includes a semiconductor chip molded with at least a sealing material.
PCT/JP2018/005717 2017-03-13 2018-02-19 Crystallized glass support substrate and laminate using same WO2018168342A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017047228A JP6922276B2 (en) 2017-03-13 2017-03-13 Support crystallized glass substrate and laminate using this
JP2017-047228 2017-03-13

Publications (1)

Publication Number Publication Date
WO2018168342A1 true WO2018168342A1 (en) 2018-09-20

Family

ID=63522043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005717 WO2018168342A1 (en) 2017-03-13 2018-02-19 Crystallized glass support substrate and laminate using same

Country Status (3)

Country Link
JP (1) JP6922276B2 (en)
TW (1) TW201837975A (en)
WO (1) WO2018168342A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114349351A (en) * 2019-03-06 2022-04-15 株式会社小原 Inorganic composition products and crystallized glass
CN116444161A (en) * 2020-08-21 2023-07-18 Agc株式会社 Chemically strengthened glass and glass ceramics, and methods for producing same
WO2023145956A1 (en) * 2022-01-31 2023-08-03 株式会社オハラ Inorganic composition article

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111943514B (en) * 2020-06-29 2022-04-05 成都光明光电股份有限公司 Glass-ceramic and glass-ceramic article

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001097740A (en) * 1999-09-29 2001-04-10 Ngk Insulators Ltd Crystallized glass, substrate for magnetic disk and magnetic disk
JP2001318222A (en) * 2001-04-26 2001-11-16 Ohara Inc Glass-ceramics for optical filter and the optical filter
JP2002097037A (en) * 2000-02-01 2002-04-02 Ohara Inc Glass ceramic
JP2008254984A (en) * 2007-04-06 2008-10-23 Ohara Inc Inorganic composition article
JP2009114005A (en) * 2007-11-02 2009-05-28 Ohara Inc Crystallized glass
WO2015156075A1 (en) * 2014-04-07 2015-10-15 日本電気硝子株式会社 Supporting glass substrate and laminate using same
JP2016141607A (en) * 2015-02-04 2016-08-08 日本電気硝子株式会社 Semiconductor wafer support substrate
WO2017104514A1 (en) * 2015-12-16 2017-06-22 日本電気硝子株式会社 Crystallized glass support substrate and laminate body using same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311492A (en) * 2006-05-17 2007-11-29 Shinko Electric Ind Co Ltd Method for manufacturing semiconductor device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001097740A (en) * 1999-09-29 2001-04-10 Ngk Insulators Ltd Crystallized glass, substrate for magnetic disk and magnetic disk
JP2002097037A (en) * 2000-02-01 2002-04-02 Ohara Inc Glass ceramic
JP2001318222A (en) * 2001-04-26 2001-11-16 Ohara Inc Glass-ceramics for optical filter and the optical filter
JP2008254984A (en) * 2007-04-06 2008-10-23 Ohara Inc Inorganic composition article
JP2009114005A (en) * 2007-11-02 2009-05-28 Ohara Inc Crystallized glass
WO2015156075A1 (en) * 2014-04-07 2015-10-15 日本電気硝子株式会社 Supporting glass substrate and laminate using same
JP2016141607A (en) * 2015-02-04 2016-08-08 日本電気硝子株式会社 Semiconductor wafer support substrate
WO2017104514A1 (en) * 2015-12-16 2017-06-22 日本電気硝子株式会社 Crystallized glass support substrate and laminate body using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114349351A (en) * 2019-03-06 2022-04-15 株式会社小原 Inorganic composition products and crystallized glass
CN116444161A (en) * 2020-08-21 2023-07-18 Agc株式会社 Chemically strengthened glass and glass ceramics, and methods for producing same
WO2023145956A1 (en) * 2022-01-31 2023-08-03 株式会社オハラ Inorganic composition article

Also Published As

Publication number Publication date
JP2018150188A (en) 2018-09-27
JP6922276B2 (en) 2021-08-18
TW201837975A (en) 2018-10-16

Similar Documents

Publication Publication Date Title
WO2017104514A1 (en) Crystallized glass support substrate and laminate body using same
JP6593669B2 (en) Support glass substrate and carrier using the same
WO2015156075A1 (en) Supporting glass substrate and laminate using same
WO2016035674A1 (en) Supporting glass substrate and laminate using same
WO2016088868A1 (en) Glass sheet
JP6593676B2 (en) Laminated body and semiconductor package manufacturing method
JP6443668B2 (en) Support glass substrate and laminate using the same
WO2018168342A1 (en) Crystallized glass support substrate and laminate using same
JP2016117641A (en) Support glass substrate and laminate comprising the same
KR102509782B1 (en) Support glass substrate and laminate using same
JP7538483B2 (en) Support glass substrate and laminated substrate using same
JP2016169141A (en) Support glass substrate and laminate using the same
WO2023026770A1 (en) Support glass substrate, multi-layer body, method for producing multi-layer body, and method for producing semiconductor package
JP2016155735A (en) Support glass substrate and laminate using the same
JP7004234B2 (en) Manufacturing method of supported crystallized glass substrate
JP2018095514A (en) Glass support substrate and laminate using same
TWI755449B (en) Support glass substrate and laminate using the same, semiconductor package, method for producing the same, and electronic device
JP2018095544A (en) Glass support substrate and laminate using same
WO2016098499A1 (en) Support glass substrate and laminate using same
JP2024069160A (en) Support glass substrate, laminate, method for producing laminate and method for producing semiconductor package
CN117836249A (en) Support glass substrate, laminate, method for manufacturing laminate, and method for manufacturing semiconductor package

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18766597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18766597

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载