WO2018168039A1 - 運転者監視装置、運転者監視方法、学習装置及び学習方法 - Google Patents
運転者監視装置、運転者監視方法、学習装置及び学習方法 Download PDFInfo
- Publication number
- WO2018168039A1 WO2018168039A1 PCT/JP2017/036277 JP2017036277W WO2018168039A1 WO 2018168039 A1 WO2018168039 A1 WO 2018168039A1 JP 2017036277 W JP2017036277 W JP 2017036277W WO 2018168039 A1 WO2018168039 A1 WO 2018168039A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- driver
- leg
- responsiveness
- driving
- learning
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/16—Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
- A61B5/18—Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state for vehicle drivers or machine operators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/16—Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
- A61B5/163—Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state by tracking eye movement, gaze, or pupil change
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/16—Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
- A61B5/165—Evaluating the state of mind, e.g. depression, anxiety
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4806—Sleep evaluation
- A61B5/4809—Sleep detection, i.e. determining whether a subject is asleep or not
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
- A61B5/7267—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/74—Details of notification to user or communication with user or patient; User input means
- A61B5/746—Alarms related to a physiological condition, e.g. details of setting alarm thresholds or avoiding false alarms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/08—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T1/00—General purpose image data processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
- G06V10/443—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
- G06V10/449—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
- G06V10/451—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
- G06V10/454—Integrating the filters into a hierarchical structure, e.g. convolutional neural networks [CNN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/59—Context or environment of the image inside of a vehicle, e.g. relating to seat occupancy, driver state or inner lighting conditions
- G06V20/597—Recognising the driver's state or behaviour, e.g. attention or drowsiness
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/161—Detection; Localisation; Normalisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/174—Facial expression recognition
- G06V40/176—Dynamic expression
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/18—Eye characteristics, e.g. of the iris
- G06V40/193—Preprocessing; Feature extraction
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/09—Arrangements for giving variable traffic instructions
- G08G1/0962—Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
- G08G1/09626—Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages where the origin of the information is within the own vehicle, e.g. a local storage device, digital map
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/08—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
- B60W2040/0818—Inactivity or incapacity of driver
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/08—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
- B60W2040/0872—Driver physiology
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/08—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
- B60W2040/0881—Seat occupation; Driver or passenger presence
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2420/00—Indexing codes relating to the type of sensors based on the principle of their operation
- B60W2420/40—Photo, light or radio wave sensitive means, e.g. infrared sensors
- B60W2420/403—Image sensing, e.g. optical camera
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
Definitions
- the present invention relates to a driver monitoring device, a driver monitoring method, a learning device, and a learning method.
- Patent Document 1 proposes a method of detecting the actual concentration of the driver from eyelid opening / closing, eye movement, or steering angle fluctuation. In this method, it is determined whether the actual concentration level is sufficient with respect to the required concentration level by comparing the detected actual concentration level with the required concentration level calculated from the surrounding environment information of the vehicle. When it is determined that the actual concentration level is insufficient with respect to the requested concentration level, the traveling speed of the automatic driving is decreased. Thereby, according to the method of patent document 1, the safety
- Patent Document 2 proposes a method for determining the drowsiness of a driver based on opening behavior and the state of muscles around the mouth.
- the level of sleepiness generated in the driver is determined according to the number of muscles in a relaxed state. Therefore, according to the method of Patent Document 2, since the level of the driver's sleepiness is determined based on a phenomenon that occurs unconsciously due to sleepiness, the detection accuracy for detecting the occurrence of sleepiness can be improved. .
- Patent Document 3 proposes a method of determining the driver's sleepiness based on whether or not a change in the face orientation angle has occurred after the driver's eyelid movement has occurred. According to the method of Patent Document 3, the accuracy of drowsiness detection can be increased by reducing the possibility of erroneously detecting the state of downward vision as a state of high drowsiness.
- Patent Document 4 proposes a method for determining a driver's sleepiness and a degree of looking aside by comparing a face photo in a driver's license with a photographed image of the driver. ing. According to the method of Patent Document 4, by treating the face photo in the license as a front image when the driver awakens, and comparing the feature amount between the face photo and the photographed image, The degree of looking aside can be determined.
- Patent Document 5 proposes a method of determining the concentration level of the driver based on the driver's line of sight. Specifically, the driver's line of sight is detected, and the stop time during which the detected line of sight stops in the gaze area is measured. Then, when the stop time exceeds the threshold value, it is determined that the driver's concentration is lowered. According to the method of Patent Document 5, the driver's concentration degree can be determined based on a small change in pixel values related to the line of sight. Therefore, the determination of the driver's concentration can be performed with a small amount of calculation.
- Patent Document 6 proposes a method for determining whether or not the driver is operating the mobile terminal based on the driver's handle grip information and line-of-sight direction information. According to the method of Patent Document 6, when it is determined that the driver is operating the mobile terminal during driving of the vehicle, the driver drives the vehicle by limiting the function of the mobile terminal. Safety can be ensured.
- the driver's state whether the driver is in a state suitable for driving at the time of analysis in terms of the driver's concentration, sleepiness, looking aside, or presence / absence of operation of the mobile terminal is determined.
- the driver may take various actions during the automatic driving. In such a vehicle, when switching from automatic driving to manual driving, whether or not the driver is in a ready state for driving operation, in other words, whether or not the driver is able to drive the vehicle manually. It is assumed that it will be important to detect this.
- the present invention has been made in view of such a situation, and an object of the present invention is to provide a technique for obtaining an index relating to whether or not a driver's leg is in a state where the driver can perform a driving operation. It is to be.
- the present invention adopts the following configuration in order to solve the above-described problems.
- the driver monitoring apparatus includes an image acquisition unit that acquires a captured image from an imaging device that is capable of imaging a driver's leg seated in a driver's seat of the vehicle, and the driver The degree of responsiveness to driving of the driver's legs is shown by inputting the captured image into a learned learning device that has performed machine learning to estimate the degree of responsiveness to driving of the legs of the driver.
- a responsiveness estimating unit that acquires leg responsiveness information from the learning device.
- the responsiveness to the driving of the driver's legs is estimated using a learned learning device obtained by machine learning. Specifically, a photographed image is acquired from a photographing device arranged so as to be capable of photographing the legs of the driver who has arrived at the driver's seat of the vehicle. Then, by inputting the captured image into a learned learning device that has performed machine learning for estimating the degree of responsiveness to the driving of the driver's legs, the responsiveness of the driver's legs to driving can be improved. Acquire leg responsiveness information indicating the degree.
- the degree of “immediate responsiveness” indicates the degree of the preparation state for driving, in other words, the degree of whether or not the driver can manually drive the vehicle. More specifically, the degree of “immediate responsiveness” indicates whether or not the driver can immediately cope with manual driving of the vehicle. Therefore, according to the said structure, the parameter
- Machine learning means finding out patterns hidden in data (learning data) by a computer
- learning device is a learning model that can acquire the ability to identify a predetermined pattern by such machine learning. It is constructed by.
- the type of the learning device is not particularly limited as long as it can learn the ability to estimate the degree of responsiveness to the driving of the driver's leg based on the captured image.
- a “learned learner” may be referred to as a “discriminator” or “classifier”.
- the imaging device means that "the driver's leg seated in the driver's seat of the vehicle is arranged so that it can be photographed" means that, for example, the imaging device is arranged so that the imaging range is at least below the driver's seat.
- the photographing device is arranged so as to cover a range where at least a part of the driver's leg should be located as a photographing range. Therefore, in situations such as when the driver is away from the seat or is sitting on the seat, the driver's legs may not be captured by the imaging device. The obtained captured image does not necessarily include the driver's legs.
- the driver monitoring device configured to selectively implement an automatic driving mode in which a driving operation is automatically performed and a manual driving mode in which the driving operation is manually performed by the driver.
- the automatic driving mode is being performed, if the driver's quick response to the driving of the leg indicated by the leg quick response information satisfies a predetermined condition, the manual driving from the automatic driving mode is performed.
- the vehicle which can switch operation
- the switching instruction unit has a responsiveness to driving the right leg of the driver indicated by the leg responsiveness information when the automatic driving mode is performed.
- an instruction to switch from the automatic operation mode to the manual operation mode may be output.
- the pedal operation of the vehicle is generally performed with the right leg. According to the said structure, the vehicle which can switch operation
- the leg responsiveness information may be configured to indicate the degree of responsiveness of the driver's leg to the driving stepwise in three or more levels. According to this configuration, the responsiveness of the driver's legs can be expressed in stages, thereby improving the usability of the driver state estimation result.
- the leg responsiveness information includes three or more degrees of responsiveness to driving of the driver's leg according to a bending state of the driver's leg. You may show it step by step.
- the “bending state” is determined by the degree of bending and the bending direction of the leg joint.
- the driver can immediately perform the pedal operation. Therefore, it is assumed that the driver is highly responsive to driving.
- the driver's knees are bent to a state close to 0 degrees due to zazen, etc., the driver cannot immediately operate the pedal, so the driver's responsiveness to driving is low. Is done. According to this configuration, it is possible to appropriately reflect such a bent state of the driver's leg and evaluate the responsiveness of the driver's leg to driving.
- the driver monitoring device urges the driver to increase the responsiveness of the leg according to the level of responsiveness to the driving of the leg of the driver indicated by the leg responsiveness information. You may further provide the warning part which performs a warning in steps. According to the said structure, the quick response of a driver
- an image acquisition step in which a computer acquires a captured image from an imaging device arranged so as to be capable of imaging a driver's leg seated in a driver's seat of the vehicle; The degree of responsiveness to driving of the driver's legs by inputting the captured image into a learned learning machine that has performed machine learning to estimate the degree of responsiveness to driving of the driver's legs And an estimation step of acquiring leg responsiveness information indicating that from the learning device.
- operator's leg part is in the state which can perform driving operation can be obtained as leg responsiveness information.
- the computer operates the vehicle to selectively implement an automatic driving mode in which driving operation is automatically performed and a manual driving mode in which driving operation is performed manually by the driver.
- the automatic driving mode is performed, when the quick response to the driving of the driver's leg indicated by the leg quick response information satisfies a predetermined condition, the automatic driving mode is It may be configured to switch to the manual operation mode.
- the vehicle which can switch operation
- the computer when the computer performs the automatic driving mode, the computer has a predetermined condition that the driver's responsiveness to the right leg driving indicated by the leg responsiveness information is a predetermined condition.
- the driver's responsiveness to the right leg driving indicated by the leg responsiveness information When satisfy
- the vehicle which can switch operation
- the leg responsiveness information may be configured to indicate the degree of responsiveness to the driving of the leg of the driver stepwise in three or more levels. According to this configuration, the responsiveness of the driver's legs can be expressed in stages, thereby improving the usability of the driver state estimation result.
- the leg responsiveness information includes three or more levels of the degree of responsiveness to the driving of the driver's leg according to the bending state of the driver's leg. It may be configured to show stepwise. According to this configuration, the responsiveness of the driver's legs to driving can be evaluated by appropriately reflecting the bent state of the driver's legs.
- the computer increases the responsiveness of the leg according to the level of responsiveness to the driving of the leg of the driver indicated by the leg responsiveness information.
- a warning step may be further performed in which warnings prompting the person are performed step by step.
- a learning device includes a captured image acquired from a photographing device arranged so as to be able to photograph a driver's leg seated in a driver's seat, and driving of the driver's leg portion.
- a learning data acquisition unit that acquires a set of leg responsiveness information indicating the degree of responsiveness to learning as learning data, and a learning device that outputs an output value corresponding to the leg responsiveness information when the captured image is input
- a learning processing unit that performs machine learning. According to this configuration, a learned learning device that can be used to estimate the degree of responsiveness to the driver's leg driving can be constructed.
- a learning method in which a computer captures a captured image acquired from a photographing device arranged to photograph a driver's leg seated in a driver's seat of the vehicle, and the driver's leg.
- a learned learning device that can be used to estimate the degree of responsiveness to the driver's leg driving can be constructed.
- the present invention it is possible to provide a technique for obtaining an index relating to whether or not the driver's legs are in a state where the driving operation can be performed.
- FIG. 1 schematically illustrates an example of a scene to which the present invention is applied.
- FIG. 2 schematically illustrates an example of a hardware configuration of the automatic driving support device according to the embodiment.
- FIG. 3 schematically illustrates an example of a hardware configuration of the learning device according to the embodiment.
- FIG. 4 schematically illustrates an example of the software configuration of the automatic driving support device according to the embodiment.
- FIG. 5 schematically illustrates an example of leg responsiveness information according to the embodiment.
- FIG. 6 schematically illustrates an example of the software configuration of the learning device according to the embodiment.
- FIG. 7 illustrates an example of a processing procedure of the automatic driving support device according to the embodiment.
- FIG. 8 illustrates an example of a processing procedure of the learning device according to the embodiment.
- FIG. 9 schematically illustrates an example of leg responsiveness information according to the modification.
- FIG. 10 schematically illustrates an example of the software configuration of the automatic driving support device according to the modification.
- this embodiment will be described with reference to the drawings.
- this embodiment described below is only an illustration of the present invention in all respects. It goes without saying that various improvements and modifications can be made without departing from the scope of the present invention. That is, in implementing the present invention, a specific configuration according to the embodiment may be adopted as appropriate.
- data appearing in this embodiment is described in a natural language, more specifically, it is specified by a pseudo language, a command, a parameter, a machine language, or the like that can be recognized by a computer.
- FIG. 1 schematically illustrates an example of an application scene of the automatic driving support device 1 and the learning device 2 according to the present embodiment.
- the automatic driving support device 1 is a computer that supports the automatic driving of the vehicle 100 while monitoring the driver D using the camera 31.
- the automatic driving support device 1 according to the present embodiment is an example of the “driver monitoring device” in the present invention.
- the type of vehicle 100 may be appropriately selected according to the embodiment.
- the vehicle 100 is, for example, a passenger car.
- the vehicle 100 according to the present embodiment is configured to be able to perform automatic driving.
- the automatic driving support device 1 acquires a photographed image from a camera 31 that is arranged so as to photograph the leg of the driver D who has arrived at the driver's seat of the vehicle 100.
- the camera 31 is an example of the “photographing apparatus” in the present invention.
- the automatic driving assistance device 1 inputs the captured image acquired into the learning device (the neural network 5 described later) that performed machine learning for estimating the degree of responsiveness to the driving of the driver's legs.
- the leg responsiveness information indicating the degree of responsiveness to the driving of the leg of the driver D is acquired from the learning device.
- the automatic driving assistance device 1 estimates the state of the driver D, that is, the degree of responsiveness to the driving of the legs of the driver D.
- the degree of “immediate responsiveness” indicates the degree of the preparation state for driving, in other words, the degree of whether or not the driver can manually drive the vehicle. More specifically, the degree of “immediate responsiveness” indicates whether or not the driver can immediately cope with manual driving of the vehicle.
- the learning device 2 constructs a learning device used in the automatic driving support device 1, that is, the degree of responsiveness to the driving of the leg of the driver D according to the input of the captured image.
- the computer performs machine learning of the learning device so as to output the leg responsiveness information shown.
- the learning device 2 acquires the set of the captured image and the leg responsiveness information as learning data.
- the captured image is used as input data
- the leg responsiveness information is used as teacher data. That is, the learning device 2 causes the learning device (a neural network 6 described later) to learn so as to output an output value corresponding to the leg responsiveness information when the captured image is input.
- the learned learning device utilized with the automatic driving assistance device 1 can be created.
- the automatic driving support device 1 can acquire a learned learning device created by the learning device 2 via a network.
- the type of network may be appropriately selected from, for example, the Internet, a wireless communication network, a mobile communication network, a telephone network, and a dedicated network.
- the automatic driving operation of the vehicle 100 can be controlled from the viewpoint of whether or not the state of the leg of the driver D is in a state where the driving operation can be performed based on the leg responsiveness information.
- the leg portion of the driver D may not be captured by the camera 31. For this reason, the captured image obtained from the camera 31 does not necessarily include the leg of the driver D.
- FIG. 2 schematically illustrates an example of a hardware configuration of the automatic driving support device 1 according to the present embodiment.
- the automatic driving support apparatus 1 is a computer in which a control unit 11, a storage unit 12, and an external interface 13 are electrically connected.
- the external interface is described as “external I / F”.
- the control unit 11 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like, which are hardware processors, and controls each component according to information processing.
- the control unit 11 is configured by, for example, an ECU (Electronic Control Unit).
- the storage unit 12 includes, for example, a RAM, a ROM, and the like, and stores a program 121, learning result data 122, and the like.
- the storage unit 12 is an example of a “memory”.
- the program 121 is a program including an instruction for causing the automatic driving support apparatus 1 to execute information processing (FIG. 7) for estimating the degree of responsiveness to driving of the leg of the driver D, which will be described later.
- the learning result data 122 is data for setting a learned learner. Details will be described later.
- the external interface 13 is an interface for connecting to an external device, and is appropriately configured according to the external device to be connected.
- the external interface 13 is connected to the navigation apparatus 30, the camera 31, and the speaker 32 via CAN (Controller
- the navigation device 30 is a computer that provides route guidance when the vehicle 100 is traveling.
- a known car navigation device may be used as the navigation device 30.
- the navigation device 30 is configured to measure the position of the vehicle based on a GPS (Global Positioning System) signal, and to perform route guidance using map information and surrounding information on surrounding buildings and the like.
- GPS information information indicating the vehicle position measured based on the GPS signal.
- the camera 31 is arranged so as to be able to photograph the leg portion of the driver D who has arrived at the driver's seat of the vehicle 100. That is, for example, the camera 31 is arranged so that at least a part below the driver's seat is set as the shooting range, and covers a range where at least a part of the leg of the driver D should be located as a shooting range at the time of driving operation.
- An imaging device is arranged. In the example of FIG. 1, the camera 31 is disposed on the front lower side of the driver's seat. However, the arrangement location of the camera 31 may not be limited to such an example, and may be appropriately selected according to the embodiment as long as the leg portion of the driver D who has arrived at the driver's seat can be photographed. .
- the camera 31 may be a general digital camera, a video camera, or the like.
- the speaker 32 is configured to output sound.
- the speaker 32 warns the driver D so as to increase the responsiveness of the legs when it is estimated that the responsiveness of the legs of the driver D is low while the vehicle 100 is traveling. Used. Details will be described later.
- an external device other than the above may be connected to the external interface 13.
- a communication module for performing data communication via a network may be connected to the external interface 13.
- the external device connected to the external interface 13 does not have to be limited to each of the above devices, and may be appropriately selected according to the embodiment.
- the automatic driving support device 1 includes one external interface 13.
- the external interface 13 may be provided for each external device to be connected.
- the number of external interfaces 13 can be selected as appropriate according to the embodiment.
- the control unit 11 may include a plurality of hardware processors.
- the hardware processor may be configured by a microprocessor, an FPGA (field-programmable gate array), or the like.
- the storage unit 12 may be configured by a RAM and a ROM included in the control unit 11.
- the storage unit 12 may be configured by an auxiliary storage device such as a hard disk drive or a solid state drive.
- the automatic driving support device 1 may be a general-purpose computer in addition to an information processing device designed exclusively for the service to be provided.
- FIG. 3 schematically illustrates an example of a hardware configuration of the learning device 2 according to the present embodiment.
- the learning device 2 is a computer in which a control unit 21, a storage unit 22, a communication interface 23, an input device 24, an output device 25, and a drive 26 are electrically connected.
- the communication interface is described as “communication I / F”.
- control unit 21 includes a CPU, RAM, ROM, and the like, which are hardware processors, and is configured to execute various types of information processing based on programs and data.
- the storage unit 22 is configured by, for example, a hard disk drive, a solid state drive, or the like.
- the storage unit 22 stores a learning program 221 executed by the control unit 21, learning data 222 used for machine learning of the learning device, learning result data 122 created by executing the learning program 221, and the like.
- the learning program 221 is a program including an instruction for causing the learning device 2 to execute a machine learning process (FIG. 8) described later and generating learning result data 122 as a result of the machine learning.
- the learning data 222 is data for performing machine learning of the learning device so as to acquire the ability to estimate the degree of responsiveness to the driving of the driver's legs. Details will be described later.
- the communication interface 23 is, for example, a wired LAN (Local Area Network) module, a wireless LAN module, or the like, and is an interface for performing wired or wireless communication via a network.
- the learning device 2 may distribute the created learning result data 122 to an external device via the communication interface 23.
- the input device 24 is a device for inputting, for example, a mouse and a keyboard.
- the output device 25 is a device for outputting a display, a speaker, or the like, for example. An operator can operate the learning device 2 via the input device 24 and the output device 25.
- the drive 26 is, for example, a CD drive, a DVD drive, or the like, and is a drive device for reading a program stored in the storage medium 92.
- the type of the drive 26 may be appropriately selected according to the type of the storage medium 92.
- the learning program 221 and the learning data 222 may be stored in the storage medium 92.
- the storage medium 92 stores information such as a program by an electrical, magnetic, optical, mechanical, or chemical action so that information such as a program recorded by a computer or other device or machine can be read. It is a medium to do.
- the learning device 2 may acquire the learning program 221 and the learning data 222 from the storage medium 92.
- a disk type storage medium such as a CD or a DVD is illustrated.
- the type of the storage medium 92 is not limited to the disk type and may be other than the disk type.
- Examples of the storage medium other than the disk type include a semiconductor memory such as a flash memory.
- the control unit 21 may include a plurality of hardware processors.
- the hardware processor may be configured by a microprocessor, an FPGA (field-programmable gate array), or the like.
- the learning device 2 may be composed of a plurality of information processing devices.
- the learning device 2 may be a general-purpose server device, a PC (Personal Computer), or the like, in addition to an information processing device designed exclusively for the service to be provided.
- FIG. 4 schematically illustrates an example of the software configuration of the automatic driving support device 1 according to the present embodiment.
- the control unit 11 of the automatic driving support device 1 expands the program 121 stored in the storage unit 12 in the RAM.
- the control unit 11 interprets and executes the program 121 expanded in the RAM by the CPU and controls each component.
- the automatic driving support device 1 includes, as software modules, an image acquisition unit 111, a resolution conversion unit 112, a quick response estimation unit 113, a warning unit 114, and a driving control unit.
- 115 is configured as a computer.
- the image acquisition unit 111 acquires the captured image 123 from the camera 31 arranged so as to be capable of capturing the leg of the driver D who has arrived at the driver's seat of the vehicle 100.
- the resolution conversion unit 112 reduces the resolution of the captured image 123 acquired by the image acquisition unit 111. Thereby, the resolution conversion unit 112 generates a low-resolution captured image 1231.
- the responsiveness estimation unit 113 reduces the resolution of the captured image 123 to a learned learning device (neural network 5) that has performed machine learning for estimating the degree of responsiveness to driving of the driver's legs.
- the low-resolution captured image 1231 obtained in the above is input.
- the quick response estimation part 113 acquires the leg quick response information 124 which shows the degree of quick response with respect to the driving
- the resolution reduction process may be omitted.
- the quick response estimation unit 113 may input the captured image 123 to the learning device.
- the leg responsiveness information 124 will be described with reference to FIG.
- FIG. 5 shows an example of the leg responsiveness information 124.
- the leg responsiveness information 124 according to the present embodiment indicates in two steps whether the driver's leg responsiveness is high or low. .
- the degree of responsiveness of the leg is set according to the driver's action state.
- the correspondence between the driver's behavioral state and the degree of responsiveness can be set as appropriate. For example, when the driver D is in an action state of “the right foot is located on the right side and the left leg is located on the left side”, “both legs are extended”, and “nothing is placed on the legs” It can be estimated that the leg of the driver D is in a state where the driving operation of the vehicle 100 is immediately started. Therefore, in the present embodiment, the driver is in an action state of “the right foot is on the right side and the left leg is on the left side”, “both legs are extended”, and “nothing is placed on the legs”. Accordingly, the leg responsiveness information 124 is set to indicate that the driver's leg responsiveness is high.
- the leg responsiveness information 124 is set so as to indicate that the responsiveness to the driving of the driver's leg is low.
- the degree of “immediate responsiveness” indicates the degree of preparation for driving as described above. For example, when the automatic driving of the vehicle 100 cannot be continued due to an abnormality or the like, the driver D manually The degree to which the vehicle 100 can be returned to the driving state can be expressed. Therefore, the leg responsiveness information 124 can be used as an index for determining whether or not the driver's leg is in a state suitable for returning to the driving operation.
- the warning unit 114 determines whether or not the leg of the driver D is in a state suitable for returning to driving of the vehicle 100 based on the leg responsiveness information 124, in other words, the leg of the driver D. It is determined whether or not the vehicle is highly responsive to driving. And when it determines with the quick response with respect to the driving
- the driving control unit 115 accesses the driving system and the control system of the vehicle 100 to automatically operate the driving operation regardless of the driver D and the manual driving mode in which the driving operation is manually performed by the driver D. Are controlled to control the operation of the vehicle 100.
- the driving control unit 115 is configured to switch between the automatic driving mode and the manual driving mode in accordance with the leg responsiveness information 124, the setting of the navigation device 30, and the like.
- the driving control unit 115 is in a state where the responsiveness to the driving of the leg of the driver D indicated by the leg responsiveness information 124 satisfies a predetermined condition when the automatic driving mode is being executed.
- the switching from the automatic operation mode to the manual operation mode is permitted, and the switching instruction is output to the vehicle 100.
- the driving control unit 115 automatically Switching from operation mode to manual operation mode is not permitted.
- the operation control unit 115 controls the operation of the vehicle 100 in a mode other than the manual operation mode, such as continuing the automatic operation mode or stopping the vehicle 100 in a predetermined stop section.
- the operation control unit 115 is configured so that the vehicle 100 can selectively implement the automatic operation mode and the manual operation mode. Further, the “switching instruction unit” of the present invention is realized as one operation of the operation control unit 115.
- the automatic driving support device 1 uses a neural network as a learned learner that has performed machine learning for estimating the degree of responsiveness to the driving of the driver's legs. 5 is used.
- the neural network 5 according to the present embodiment is configured by combining a plurality of types of neural networks.
- the neural network 5 is divided into two parts, a convolutional neural network 51 and an LSTM network 52.
- a low-resolution captured image 1231 is input to the convolutional neural network 51.
- the LSTM network 52 receives the output of the convolutional neural network 51 and outputs the leg responsiveness information 124.
- each part will be described.
- the convolutional neural network 51 is a forward propagation neural network having a structure in which convolutional layers 511 and pooling layers 512 are alternately connected.
- a plurality of convolutional layers 511 and pooling layers 512 are alternately arranged on the input side. Then, the output of the pooling layer 512 disposed on the most output side is input to the total coupling layer 513, and the output of the total coupling layer 513 is input to the output layer 514.
- the convolution layer 511 is a layer that performs an operation of image convolution.
- Image convolution corresponds to processing for calculating the correlation between an image and a predetermined filter. Therefore, by performing image convolution, for example, a shading pattern similar to the shading pattern of the filter can be detected from the input image.
- the pooling layer 512 is a layer that performs a pooling process.
- the pooling process discards a part of the information of the position where the response to the image filter is strong, and realizes the invariance of the response to the minute position change of the feature appearing in the image.
- the total connection layer 513 is a layer in which all neurons between adjacent layers are connected. That is, each neuron included in all connection layers 513 is connected to all neurons included in adjacent layers.
- the total bonding layer 513 may be composed of two or more layers. Further, the number of neurons included in all connection layers 513 may be set as appropriate according to the embodiment.
- the output layer 514 is a layer arranged on the most output side of the convolutional neural network 51.
- the number of neurons included in the output layer 514 may be appropriately set according to the embodiment.
- the output from the output layer 514 is input to the next LSTM network 52. Note that the configuration of the convolutional neural network 51 may not be limited to such an example, and may be set as appropriate according to the embodiment.
- the LSTM network 52 is a recurrent neural network that includes an LSTM block 522.
- a recursive neural network is a neural network having a loop inside, such as a path from an intermediate layer to an input layer.
- the LSTM network 52 has a structure in which an intermediate layer of a general recurrent neural network is replaced with an LSTM block 522.
- the LSTM network 52 includes an input layer 521, an LSTM block 522, and an output layer 523 in order from the input side.
- a path returning from the LSTM block 522 to the input layer 521 is provided. Have.
- the number of neurons included in the input layer 521 and the output layer 523 may be set as appropriate according to the embodiment.
- the LSTM block 522 includes an input gate and an output gate, and is configured to be able to learn information storage and output timing (S. Hochreiter and J.Schmidhuber, "Long short-term memory” Neural Computation, 9). (8): 1735-1780, November 15, 1997).
- the LSTM block 522 may also include a forgetting gate that adjusts the timing of forgetting information (FelixFA. Gers, Jurgen Schmidhuber and Fred Cummins, "Learning to Forget: Continual Prediction with LSTM” Neural Computation, pages 2451- 2471, “October” 2000).
- the configuration of the LSTM network 52 can be set as appropriate according to the embodiment.
- (C) Summary A threshold is set for each neuron, and basically, the output of each neuron is determined by whether or not the sum of products of each input and each weight exceeds the threshold.
- the control unit 11 inputs the low-resolution captured image 1231 to the convolutional neural network 51, and performs firing determination of each neuron included in each layer in order from the input side. Thereby, the control unit 11 acquires an output value corresponding to the leg responsiveness information 124 from the output layer 523 of the neural network 5.
- the configuration of such a neural network 5 (for example, the number of layers in each network, the number of neurons in each layer, the connection relationship between neurons, the transfer function of each neuron), the weight of the connection between each neuron, Information indicating the threshold is included in the learning result data 122.
- the control unit 11 refers to the learning result data 122 and sets the learned neural network 5 used for processing for estimating the degree of responsiveness to the driving of the leg of the driver D.
- FIG. 6 schematically illustrates an example of the software configuration of the learning device 2 according to the present embodiment.
- the control unit 21 of the learning device 2 expands the learning program 221 stored in the storage unit 22 in the RAM. Then, the control unit 21 interprets and executes the learning program 221 expanded in the RAM, and controls each component. Accordingly, as illustrated in FIG. 6, the learning device 2 according to the present embodiment is configured as a computer including a learning data acquisition unit 211 and a learning processing unit 212 as software modules.
- the learning data acquisition unit 211 indicates a captured image acquired from an imaging device arranged so as to be capable of imaging the driver's leg seated in the driver's seat of the vehicle, and the degree of responsiveness to the driver's leg driving.
- a set of leg responsiveness information shown is acquired as learning data.
- the captured image is used as input data. Further, the leg responsiveness information is used as teacher data (correct answer data).
- the learning data acquisition unit 211 acquires a set of the low-resolution captured image 223 and the leg responsiveness information 224 as learning data 222.
- the low-resolution captured image 223 corresponds to the low-resolution captured image 1231.
- the leg responsiveness information 224 corresponds to the leg responsiveness information 124.
- the learning processing unit 212 performs machine learning of the learning device so that an output value corresponding to the leg responsiveness information 224 is output.
- the learning device to be machine-learned is a neural network 6.
- the neural network 6 includes a convolutional neural network 61 and an LSTM network 62, and is configured in the same manner as the neural network 5.
- the convolutional neural network 61 and the LSTM network 62 are the same as the convolutional neural network 51 and the LSTM network 52, respectively.
- the learning processing unit 212 constructs the neural network 6 that outputs the output value corresponding to the leg responsiveness information 224 from the LSTM network 62 when the low-resolution captured image 223 is input to the convolutional neural network 61 by the learning processing of the neural network. To do.
- the learning processing unit 212 stores information indicating the configuration of the constructed neural network 6, the weight of the connection between the neurons, and the threshold value of each neuron as the learning result data 122 in the storage unit 22.
- each software module of the automatic driving support device 1 and the learning device 2 is realized by a general-purpose CPU.
- some or all of the above software modules may be implemented by one or more dedicated processors.
- software modules may be omitted, replaced, and added as appropriate according to the embodiment.
- FIG. 7 is a flowchart illustrating an example of a processing procedure of the automatic driving support device 1.
- the processing procedure for estimating the degree of responsiveness to the driving of the leg of the driver D described below is an example of the “driver monitoring method” of the present invention.
- the processing procedure described below is merely an example, and each processing may be changed as much as possible. Further, in the processing procedure described below, steps can be omitted, replaced, and added as appropriate according to the embodiment.
- the driver D turns on the ignition power supply of the vehicle 100 to start the automatic driving support device 1 and causes the started automatic driving support device 1 to execute the program 121.
- the control part 11 of the automatic driving assistance device 1 monitors the state of the driver D according to the following processing procedure.
- the program execution trigger may not be limited to turning on the ignition power source of the vehicle 100 as described above, and may be appropriately selected according to the embodiment.
- the execution of the program may be triggered by an instruction from the driver D via an input device (not shown).
- Step S101 In step S ⁇ b> 101, the control unit 11 operates as the operation control unit 115 and starts automatic operation of the vehicle 100.
- the control unit 11 acquires map information, peripheral information, and GPS information from the navigation device 30, and performs automatic driving of the vehicle 100 based on the acquired map information, peripheral information, and GPS information.
- a control method for automatic operation a known control method can be used.
- the control unit 11 advances the processing to the next step S102.
- Step S102 In step S ⁇ b> 102, the control unit 11 operates as the image acquisition unit 111, and acquires the captured image 123 from the camera 31 that is arranged so as to capture the leg of the driver D attached to the driver's seat of the vehicle 100.
- the captured image 123 to be acquired may be a moving image or a still image.
- the control unit 11 advances the processing to the next step S103.
- Step S103 the control unit 11 operates as the resolution conversion unit 112, and reduces the resolution of the captured image 123 acquired in step S101. Thereby, the control unit 11 generates a low-resolution captured image 1231.
- the processing method for reducing the resolution is not particularly limited, and may be appropriately selected according to the embodiment.
- the control unit 11 can generate the low-resolution captured image 1231 by the nearest neighbor method, the bilinear interpolation method, the bicubic method, or the like.
- the control unit 11 advances the processing to the next step S104. Note that this step S103 may be omitted.
- step S ⁇ b> 104 the control unit 11 operates as the quick response estimation unit 113, and executes the arithmetic processing of the neural network 5 using the acquired low resolution photographed image 1231 as the input of the neural network 5. Thereby, in step S ⁇ b> 105, the control unit 11 obtains an output value corresponding to the leg responsiveness information 124 from the neural network 5.
- control unit 11 inputs the low-resolution captured image 1231 acquired in step S103 to the convolution layer 511 arranged on the most input side of the convolution neural network 51. And the control part 11 performs the firing determination of each neuron contained in each layer in order from the input side. Thereby, the control unit 11 acquires the output value corresponding to the leg responsiveness information 124 from the output layer 523 of the LSTM network 52.
- step S106 the control unit 11 determines whether or not the driver D can perform the driving operation of the vehicle 100 based on the leg responsiveness information 124 acquired in step S105. It is determined whether or not the vehicle 100 is in a state suitable for returning to driving. Specifically, the control unit 11 determines whether or not the responsiveness to the driving of the leg of the driver D indicated by the leg responsiveness information 124 satisfies a predetermined condition.
- the predetermined condition may be set as appropriate so as to be able to determine whether or not the driver D has high responsiveness to the driving of the leg.
- the leg responsiveness information 124 represents the degree of responsiveness to the driving of the leg of the driver D in two levels. Therefore, when the leg responsiveness information 124 indicates that the responsiveness to the driving of the legs of the driver D is high, the controller 11 determines that the responsiveness to the driving of the legs of the driver D is a predetermined condition. It is determined that That is, the control unit 11 determines that the driver D is in a state of high responsiveness to the driving of the leg portion and is in a state suitable for the driver D to return to the driving of the vehicle 100.
- the controller 11 determines that the responsiveness to the driving of the legs of the driver D is a predetermined condition. Is determined not to be satisfied. That is, the control unit 11 determines that the driver D is in a state of low responsiveness to the driving of the leg portion and is not in a state suitable for the driver D to return to the driving of the vehicle 100.
- control unit 11 advances the processing to the next step S108. On the other hand, when it is determined that the driver D is not in a state suitable for returning to the driving of the vehicle 100, the control unit 11 performs the process of the next step S107.
- the control unit 11 asks the driver D to take a state suitable for returning to the driving of the vehicle 100 via the speaker 32, in other words, to improve the responsiveness of the legs.
- a warning for prompting is performed, and the processing according to this operation example is terminated.
- the content and method of the warning may be appropriately set according to the embodiment.
- Step S108 the control unit 11 operates as the operation control unit 115, and determines whether to switch the operation of the vehicle 100 from the automatic operation mode to the manual operation mode. If it is determined that switching to the manual operation mode is to be performed, the control unit 11 advances the processing to the next step S109. On the other hand, when it determines with not switching to manual operation mode, the control part 11 abbreviate
- the trigger for switching from the automatic operation mode to the manual operation mode may be set as appropriate according to the embodiment.
- an instruction from the driver D may be used as a trigger.
- the control unit 11 determines to switch to manual driving mode.
- the control unit 11 determines not to perform switching to the manual operation mode.
- the control unit 11 operates as the operation control unit 115, and switches the operation of the vehicle 100 from the automatic operation mode to the manual operation mode.
- the control part 11 starts operation
- the control unit 11 announces to the driver D via the speaker 32 to start a driving operation such as grasping a handle in order to switch the operation of the vehicle 100 to the manual operation mode. You may do.
- the automatic driving support device 1 can monitor the degree of responsiveness to the driving of the legs of the driver D while the vehicle 100 is automatically driving.
- the control unit 11 may continuously monitor the degree of responsiveness to the driving of the leg of the driver D by repeatedly executing the above-described series of processes. Further, when the control unit 11 repeatedly determines that the driver D is not in a state suitable for returning to the driving of the vehicle 100 in step S106 while repeatedly executing the series of processes.
- the operation control unit 115 may be operated to stop the automatic operation mode. And the control part 11 may control the vehicle 100 so that it may stop at a predetermined place.
- the control unit 11 refers to the map information, the peripheral information, and the GPS information after continuously determining that the driver D is not in a state suitable for returning to the driving of the vehicle 100 a plurality of times.
- the stop section may be set at a place where the vehicle 100 can be safely stopped.
- the control part 11 may implement the warning for telling the driver
- FIG. 8 is a flowchart illustrating an example of a processing procedure of the learning device 2.
- the processing procedure related to machine learning of the learning device described below is an example of the “learning method” of the present invention.
- the processing procedure described below is merely an example, and each processing may be changed as much as possible. Further, in the processing procedure described below, steps can be omitted, replaced, and added as appropriate according to the embodiment.
- step S201 In step S ⁇ b> 201, the control unit 21 of the learning device 2 operates as the learning data acquisition unit 211, and acquires a set of the low-resolution captured image 223 and the leg responsiveness information 224 as learning data 222.
- the learning data 222 is data used for machine learning to enable the neural network 6 to estimate the degree of responsiveness to the driving of the driver's legs.
- Such learning data 222 includes, for example, a vehicle including a camera 31 arranged so as to photograph a leg of a driver who has arrived at the driver's seat, and images the driver who has arrived at the driver's seat under various conditions. Then, it can be created by associating a photographing condition (degree of responsiveness to driving of the leg) with the obtained photographed image.
- the low-resolution captured image 223 can be obtained by applying the same processing as in step S103 to the acquired captured image.
- the leg responsiveness information 224 can be obtained by appropriately receiving an input of the degree of responsiveness to the driving of the driver's leg appearing in the photographed image.
- the creation of the learning data 222 may be performed manually by an operator or the like using the input device 24, or may be automatically performed by processing of a program.
- the learning data 222 may be collected from the operating vehicle as needed.
- the creation of the learning data 222 may be performed by an information processing device other than the learning device 2.
- the control unit 21 can acquire the learning data 222 by executing the creation processing of the learning data 222 in step S201.
- the learning device 2 uses the learning data 222 created by another information processing device via the network, the storage medium 92, or the like. Can be obtained.
- the number of pieces of learning data 222 acquired in step S201 may be appropriately determined according to the embodiment so that the machine learning of the neural network 6 can be performed.
- Step S202 In the next step S202, the control unit 21 operates as the learning processing unit 212.
- the control unit 21 outputs corresponding to the leg responsiveness information 224.
- Machine learning of the neural network 6 is performed so as to output a value.
- the control unit 21 prepares the neural network 6 to be subjected to learning processing.
- the configuration of the neural network 6 to be prepared, the initial value of the connection weight between the neurons, and the initial value of the threshold value of each neuron may be given by a template or may be given by an operator input.
- the control part 21 may prepare the neural network 6 based on the learning result data 122 used as the object which performs relearning.
- control unit 21 uses the low-resolution captured image 223 included in the learning data 222 acquired in step S201 as input data, and uses the leg responsiveness information 224 as teacher data (correct data).
- the learning process is performed.
- a stochastic gradient descent method or the like may be used.
- control unit 21 inputs the low-resolution captured image 223 to the convolutional layer arranged on the most input side of the convolutional neural network 61. Then, the control unit 21 performs firing determination of each neuron included in each layer in order from the input side. Thereby, the control unit 21 obtains an output value from the output layer of the LSTM network 62. Next, the control unit 21 calculates an error between the output value acquired from the output layer of the LSTM network 62 and the value corresponding to the leg responsiveness information 224. Subsequently, the control unit 21 calculates a connection weight between the neurons and an error of each neuron threshold by using the error of the calculated output value by a back-to-back error propagation (Back propagation through time) method. To do. Then, the control unit 21 updates the values of the connection weights between the neurons and the threshold values of the neurons based on the calculated errors.
- back propagation through time Back propagation through time
- the control unit 21 repeats this series of processing for each case of the learning data 222 until the output value output from the neural network 6 matches the value corresponding to the leg responsiveness information 224.
- the control unit 21 can construct the neural network 6 that outputs an output value corresponding to the leg responsiveness information 224 when the low-resolution captured image 223 is input.
- Step S203 In the next step S ⁇ b> 203, the control unit 21 operates as the learning processing unit 212, and information indicating the configuration of the constructed neural network 6, the weight of connection between each neuron, and the threshold value of each neuron is used as the learning result data 122. Store in the storage unit 22. Thereby, the control part 21 complete
- control unit 21 may transfer the created learning result data 122 to the automatic driving support device 1 after the processing of step S203 is completed.
- the control unit 21 may periodically update the learning result data 122 by periodically executing the learning process in steps S201 to S203.
- control part 21 updates the learning result data 122 which the automatic driving assistance device 1 hold
- the control unit 21 may store the created learning result data 122 in a data server such as NAS (Network Attached Storage). In this case, the automatic driving assistance device 1 may acquire the learning result data 122 from this data server.
- NAS Network Attached Storage
- the automatic driving assistance device 1 is obtained from the camera 31 arranged so as to be able to photograph the leg portion of the driver D attached to the driver's seat of the vehicle 100 by the processes of steps S102 and S103.
- a captured image (low-resolution captured image 1231) is acquired.
- the automatic driving assistance device 1 inputs the acquired low-resolution captured image 1231 to the learned neural network (neural network 5) in steps S104 and S105, thereby responding quickly to the driving of the leg of the driver D.
- the learned neural network is created by the learning device 2 using the learning data 222 including the low-resolution captured image 223 and the leg responsiveness information 224.
- leg responsiveness information 124 thereby, when the vehicle 100 is traveling in the automatic driving mode, it is possible to improve the accuracy of estimating whether or not the leg of the driver D can immediately respond to the driving operation.
- steps S106 and S109 based on the leg responsiveness information 124, the operation of the automatic driving of the vehicle 100 is controlled from the viewpoint of whether or not the driver D can perform the driving operation. can do.
- a photographed image of the camera 31 in which the leg of the driver D is arranged so as to be photographed is used.
- the behavior of the leg portion can appear greatly in the captured image. Therefore, the captured image used for estimating the behavior of the leg of the driver D may not be so high as to enable detailed analysis. Therefore, in the present embodiment, as the input of the neural network (5, 6), a low-resolution captured image (1231, 223) obtained by reducing the resolution of the captured image obtained by the camera 31 may be used. . Thereby, the calculation amount of the arithmetic processing of the neural network (5, 6) can be reduced, and the load on the processor can be reduced.
- the resolution of the low-resolution captured image (1231, 223) is preferably such that the behavior of the driver's legs can be determined.
- the neural network 5 includes a convolutional neural network 51 on the input side. Thereby, analysis suitable for input (low-resolution captured image 1231) can be performed.
- the neural network 5 according to the present embodiment includes an LSTM network 52 on the output side.
- time-series data for the low-resolution captured image 1231 the degree of responsiveness to the driving of the leg of the driver D is estimated in consideration of not only short-term dependency but also long-term dependency. be able to. Therefore, according to the present embodiment, it is possible to improve the estimation accuracy of the responsiveness to the driving of the leg portion of the driver D.
- the vehicle 100 is configured to be able to selectively implement the automatic driving mode and the manual driving mode by the automatic driving support device 1 (the driving control unit 115).
- the vehicle 100 is responsive to the driving of the leg of the driver D indicated by the leg responsiveness information 124 when the automatic driving mode is being executed in steps S106 and S109 of the automatic driving support device 1.
- the automatic operation mode is switched to the manual operation mode.
- the automatic driving support device 1 includes both the module for monitoring the driver D (image acquisition unit 111 to warning unit 114) and the module for controlling the automatic driving operation of the vehicle 100 (driving control unit 115).
- the hardware configuration of the automatic driving assistance device 1 may not be limited to such an example.
- the module for monitoring the driver D and the module for controlling the automatic driving operation of the vehicle 100 may be provided in separate computers.
- the switching instruction unit that instructs switching from the automatic operation mode to the manual operation mode may be provided in the computer together with the module that monitors the driver D.
- the computer including the switching instruction unit module satisfies the predetermined condition for the responsiveness to the driving of the leg of the driver D indicated by the leg responsiveness information 124.
- an instruction to switch from the automatic operation mode to the manual operation mode may be output to the vehicle 100.
- the computer including the module that controls the operation of the automatic operation may control switching from the automatic operation mode to the manual operation mode.
- the automatic driving support device 1 controls the operation of the vehicle 100 so as to selectively execute the automatic driving mode and the manual driving mode in accordance with an instruction from the driver D.
- the trigger for starting the automatic operation mode and the manual operation mode is not limited to such an instruction from the driver D, and may be appropriately set according to the embodiment.
- a sensor may be attached to the steering wheel to detect whether or not the driver is holding the steering wheel.
- the automatic driving assistance device 1 may output the countdown time until the start of switching from the automatic driving mode to the manual driving mode after detecting that the driver has gripped the steering wheel by voice or display. .
- the automatic driving assistance apparatus 1 may switch operation
- the leg responsiveness information 124 indicates whether the responsiveness to the driving of the leg of the driver D is high or low on two levels.
- the expression format of the leg responsiveness information 124 may not be limited to such an example.
- the leg responsiveness information 124 may indicate the degree of responsiveness to the driving of the leg of the driver D in three or more levels in a stepwise manner.
- FIG. 9 shows an example of leg responsiveness information according to this modification.
- the leg responsiveness information according to the present modification defines the degree of responsiveness to each action state with a score value from 0 to 1.
- the score value “0” is assigned to “bringing cross-legged” and “the knee is bent to 90 degrees or less”, respectively.
- a score value of “1” is assigned to “located on the left side”, “both legs are extended”, and “no object is placed on the legs”, and 0 and 1 for other action states.
- a score value between (for example, 0.5) is assigned.
- the leg responsiveness information 124 indicates the level of responsiveness to the driving of the leg of the driver D at three or more levels. May also be shown.
- step S ⁇ b> 106 the control unit 11 determines whether or not the driver D is in a state suitable for returning to driving of the vehicle 100 based on the score value of the leg responsiveness information 124. May be. For example, the control unit 11 is in a state suitable for the driver D to return to driving the vehicle 100 based on whether the score value of the leg responsiveness information 124 is higher than a predetermined threshold value. It may be determined.
- the threshold is a reference for determining whether or not the driver D is in a state suitable for returning to driving of the vehicle 100, and is an example of the “predetermined condition”. This threshold value may be set as appropriate.
- the upper limit value of the score value may not be limited to “1”, and the lower limit value may not be limited to “0”.
- step S107 the control unit 11 (warning unit 114) increases the responsiveness of the legs according to the level of responsiveness to the driving of the legs of the driver D indicated by the leg responsiveness information 124.
- a warning prompting the driver D may be given step by step.
- the control unit 11 may give a stronger warning (for example, increase the volume, sound a beep, etc.) as the score value indicated by the leg responsiveness information 124 is lower.
- the leg responsiveness information 124 may be configured to indicate the responsiveness of the right leg and the left leg separately or to indicate the responsiveness of the right leg.
- step S106 the control unit 11 may determine whether or not the responsiveness to the driving of the right leg of the driver D indicated by the leg responsiveness information 124 satisfies a predetermined condition. In step S106, when it is determined that the responsiveness of the driver D to the right leg driving indicated by the leg responsiveness information 124 satisfies the predetermined condition, the control unit 11 automatically performs the above step S109. The operation of the vehicle 100 may be switched from the operation mode to the manual operation mode.
- the responsiveness to the right leg driving of the driver D indicated by the leg responsiveness information 124 satisfies a predetermined condition.
- the automatic operation mode is configured to switch to the manual operation mode. Thereby, it is possible to appropriately evaluate whether or not the driver D is in a state where the driving operation of the vehicle 100 can be performed.
- the leg responsiveness information 124 may indicate the degree of responsiveness to the driving of the driver's legs stepwise in three or more levels according to the bending state of the driver's legs. .
- the leg responsiveness information 124 may be expressed by a score value as in the example of FIG.
- the bending state is determined by the degree of bending of the leg joint, the bending direction, and the like.
- the correspondence between the bent state and the leg responsiveness can be set as appropriate according to the embodiment. For example, when the driver's legs are extended, the driver can perform the pedal operation immediately, so that it is assumed that the driver is highly responsive to driving. On the other hand, if the driver's knees are bent to a state close to 0 degrees due to zazen, etc., the driver cannot immediately operate the pedal, so the driver's responsiveness to driving is low. Is done. Therefore, the score value of the leg responsiveness information 124 is set so as to be higher as the driver's leg is extended, and to be lower as the driver's knee is bent to 0 degrees. Good.
- the score value of the leg responsiveness information 124 is set so that the degree of responsiveness is smaller in the bending in the width direction of the vehicle than in the traveling direction of the vehicle even if the degree of bending is the same. It's okay.
- the degree of responsiveness indicated by the leg responsiveness information 124 is set corresponding to each action state.
- the degree of responsiveness can vary even within the same behavioral state. For example, in a situation where the legs have begun to be assembled, it is assumed that the responsiveness to the driving of the legs is in a low state, whereas in a situation where the legs are finished and the legs are to be extended It is assumed that the responsiveness to the driving of the leg is in a high state. Therefore, the degree of responsiveness indicated by the leg responsiveness information 124 may be set to be different depending on the situation even in the same action state. Thereby, it is possible to further appropriately evaluate whether or not the driver D is in a state where the driving operation of the vehicle 100 can be performed.
- a score value close to 0 is assigned to the case where the legs are being assembled in the state where the legs are assembled, the state where the legs are assembled is terminated, and the legs are A score value close to 1 may be assigned to a case that is about to be extended. In this case, avoid switching from the automatic operation mode to the manual operation mode in the case where the legs are started to be assembled, and switch from the automatic operation mode to the manual operation mode in the case where the legs are extended.
- the vehicle can be controlled.
- the low-resolution captured image 1231 is input to the neural network 5 in the step S104.
- the captured image input to the neural network 5 may not be limited to such an example.
- the control unit 11 may input the captured image 123 acquired in step S102 to the neural network 5 as it is. In this case, step S103 may be omitted in the above processing procedure. Further, in the software configuration of the automatic driving assistance device 1, the resolution conversion unit 112 may be omitted.
- the neural network used for estimating the responsiveness to the driving of the leg of the driver D includes a convolutional neural network and an LSTM network.
- the configuration of the neural network need not be limited to such an example, and may be determined as appropriate according to the embodiment.
- the LSTM network may be omitted.
- a neural network is used as a learning device used for estimating the responsiveness to the driving of the leg of the driver D.
- the type of learning device is not limited to a neural network as long as a captured image can be used as an input, and may be appropriately selected according to the embodiment.
- Examples of usable learning devices include a support vector machine, a self-organizing map, a learning device that performs machine learning by reinforcement learning, and the like.
- control unit 11 inputs the low-resolution captured image 1231 to the neural network 5 in step S104.
- the input of the neural network 5 may not be limited to such an example, and information other than the low-resolution captured image 1231 may be input to the neural network 5.
- FIG. 10 schematically illustrates an example of the software configuration of the automatic driving support device 1A according to the present modification.
- the automatic driving assistance device 1A further inputs influence factor information 125 relating to factors affecting the driving state of the driver D to the neural network 5A.
- the influence factor information 125 is, for example, speed information indicating the traveling speed of the vehicle, peripheral environment information indicating the state of the surrounding environment of the vehicle (radar measurement result, captured image of the camera), weather information indicating the weather, and the like.
- the influence factor information 125 may be input to the convolutional neural network 51 together with the captured image (low-resolution captured image 1231).
- the influence factor information 125 is not image information and may not be suitable for input to the convolutional neural network 51. Therefore, the neural network 5 ⁇ / b> A according to this modification includes a fully connected neural network 53 and a connection layer 54 in addition to the configuration of the neural network 5.
- the fully connected neural network 53 is arranged on the input side in parallel with the convolutional neural network 51.
- the influence factor information 125 is input to the fully connected neural network 53.
- the connection layer 54 combines the outputs of the convolutional neural network 51 and the fully connected neural network 53.
- the fully connected neural network 53 is a so-called multilayered neural network, and includes an input layer 531, an intermediate layer (hidden layer) 532, and an output layer 533 in order from the input side.
- the number of layers of the fully connected neural network 53 may not be limited to such an example, and may be appropriately selected according to the embodiment.
- Each layer 531 to 533 includes one or a plurality of neurons (nodes).
- the number of neurons included in each of the layers 531 to 533 may be set as appropriate according to the embodiment.
- Each neuron included in each of the layers 531 to 533 is coupled to all the neurons included in the adjacent layers, whereby the fully connected neural network 53 is configured.
- a weight (coupling load) is appropriately set for each coupling.
- the coupling layer 54 is disposed between the convolutional neural network 51 and the fully coupled neural network 53 and the LSTM network 52.
- the coupling layer 54 combines the output from the output layer 514 of the convolutional neural network 51 and the output from the output layer 533 of the fully coupled neural network 53.
- the number of neurons included in the connection layer 54 may be appropriately set according to the number of outputs of the convolutional neural network 51 and the total connection neural network 53.
- the output of the coupling layer 54 is input to the input layer 521 of the LSTM network 52.
- the automatic driving assistance device 1A is configured in the same manner as the automatic driving assistance device 1 according to the above embodiment.
- the factor that affects the driving state of the driver D can be reflected in the estimation process by further using the influence factor information 125.
- operator D can be improved.
- the control unit 11 may change the determination criterion in step S106 based on the influence factor information 125. For example, as in the modification ⁇ 4.3>, when the leg rapid response information 124 is indicated by a score value, the control unit 11 uses the threshold value used for the determination in step S106 based on the influence factor information 125 May be changed. As an example, the control unit 11 increases the value of a threshold (predetermined condition) for determining that the driver D is in a state where the driver can perform the driving operation of the vehicle as the traveling speed of the vehicle indicated by the speed information increases. Also good.
- a threshold predetermined condition
- the automatic driving assistance apparatus 1 is provided with the warning part 114, and implements the warning with respect to the driver
- step S107 may be omitted, and the warning unit 114 may be omitted from the software configuration of the automatic driving support device 1.
- the automatic driving support device 1 directly acquires the leg responsiveness information 124 from the neural network 5 as an output from the neural network 5.
- the method of acquiring the leg responsiveness information from the learning device may not be limited to such an example.
- the automatic driving assistance apparatus 1 may hold reference information such as a table format in which the output value of the learning device and the degree of responsiveness of the legs are associated with each other in the storage unit 12.
- the control unit 11 obtains an output value from the neural network 5 by performing arithmetic processing of the neural network 5 using the low-resolution captured image 1231 as an input in step S104.
- step S ⁇ b> 105 the control unit 11 acquires leg responsiveness information 124 indicating the degree of leg responsiveness corresponding to the output value obtained from the neural network 5 by referring to the reference information.
- the automatic driving assistance device 1 may acquire the leg responsiveness information 124 indirectly.
- the reference information may be held for each user.
- the output value output from the neural network 5 may be set so as to correspond to the state of the driver's legs.
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Theoretical Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Evolutionary Computation (AREA)
- Multimedia (AREA)
- Biophysics (AREA)
- Medical Informatics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Pathology (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Psychiatry (AREA)
- Mathematical Physics (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Data Mining & Analysis (AREA)
- Psychology (AREA)
- Hospice & Palliative Care (AREA)
- Educational Technology (AREA)
- Social Psychology (AREA)
- Developmental Disabilities (AREA)
- Child & Adolescent Psychology (AREA)
- General Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Computational Linguistics (AREA)
- Databases & Information Systems (AREA)
- Physiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Signal Processing (AREA)
- Mechanical Engineering (AREA)
Abstract
本発明の一側面に係る運転者監視装置は、車両の運転席に着いた運転者の脚部を撮影可能に配置された撮影装置から撮影画像を取得する画像取得部と、前記運転者の脚部の運転に対する即応性の程度を推定するための機械学習を行った学習済みの学習器に前記撮影画像を入力することで、前記運転者の脚部の運転に対する即応性の程度を示す脚部即応性情報を当該学習器から取得する即応性推定部と、を備える。
Description
本発明は、運転者監視装置、運転者監視方法、学習装置及び学習方法に関する。
近年、運転の安全性を高めるために、居眠り、体調の急変等の運転者の状態を監視する技術の開発が進んでいる。また、自動車の自動運転の実現に向けた動きが加速している。自動運転は、システムにより自動車の走行を制御するものであるが、システムに代わって運転者が運転しなければならない場面もあり得ることから、自動運転中であっても、運転者が運転操作を行える状態にあるか否かを監視する必要性があるとされている。この自動運転中に運転者の状態を監視する必要性があることは、国連欧州経済委員会(UN-ECE)の政府間会合(WP29)においても確認されている。この点からも、運転者の状態を監視する技術の開発が進められている。
運転者の状態を推定する技術として、例えば、特許文献1では、まぶたの開閉、視線の動き、又はハンドル角のふらつきから運転者の実集中度を検出する方法が提案されている。この方法では、検出した実集中度と車両の周辺環境情報から算出した要求集中度とを比較することで、要求集中度に対して実集中度が十分であるか否かを判定する。そして、要求集中度に対して実集中度が不十分であると判定した場合には、自動運転の走行速度を低速にする。これにより、特許文献1の方法によれば、クルーズ制御を行っている際の安全性を高めることができる。
また、例えば、特許文献2では、開口行動及び口の周りの筋肉の状態に基づいて、運転者の眠気を判定する方法が提案されている。この方法では、運転者が開口行動を実施していない場合に、弛緩状態である筋肉の数に応じて運転者に生じている眠気のレベルを判定する。したがって、特許文献2の方法によれば、眠気により無意識に生じる現象に基づいて、運転者の眠気のレベルを判定しているため、眠気が生じていることを検出する検出精度を高めることができる。
また、例えば、特許文献3では、運転者のまぶたの動きが生じた後に、顔向き角度の変化が生じたか否かに基づいて、当該運転者の眠気を判定する方法が提案されている。特許文献3の方法によれば、下方視の状態を眠気の高い状態と誤検出する可能性を低減することで、眠気検出の精度を高めることができる。
また、例えば、特許文献4では、運転者の所持する免許証内の顔写真と運転者を撮影した撮影画像とを比較することで、運転者の眠気度及び脇見度を判定する方法が提案されている。特許文献4の方法によれば、免許証内の顔写真を運転者の覚醒時の正面画像として取り扱って、当該顔写真と撮影画像との特徴量を比較することで、運転者の眠気度及び脇見度を判定することができる。
また、例えば、特許文献5では、運転者の視線の状態に基づいて、当該運転者の集中度を判定する方法が提案されている。具体的には、運転者の視線を検出し、検出した視線が注視領域に停留する停留時間を測定する。そして、停留時間が閾値を超えた場合に、運転者の集中度が低下したと判定する。特許文献5の方法によれば、視線に関連する少ない画素値の変化により運転者の集中度を判定することができる。そのため、運転者の集中度の判定を少ない計算量で行うことができる。
また、例えば、特許文献6では、運転者のハンドル把持情報及び視線方向情報に基づいて、運転者が携帯端末を操作しているか否かを判定する方法が提案されている。特許文献6の方法によれば、車両の運転中に運転者が携帯端末を操作していると判定される場合に、当該携帯端末の機能を制限することで、当該運転者が車両を運転する際の安全性を確保することができる。
従来の方法では、運転者の集中度、眠気度、脇見度、又は携帯端末の操作の有無という観点で、解析時点において運転者が運転に適した状態にあるか否かという運転者の状態を推定している。しかしながら、自動運転機能を搭載した車両では、運転者は、自動運転中に様々な行動を取る可能性がある。このような車両では、自動運転から手動運転に切り替える際に、運転者が運転操作を行える準備状態にあるか否か、換言すると、運転者が車両の運転を手動で行える状態にあるか否かを検知することが重要になると想定される。例えば、視線等の情報に基づいて解析時点において運転者が運転に適している状態と従来の方法で判定可能な場合であっても、脚を組んでいる等の脚部の状態によっては、運転者が運転操作を行える状態にないケースがあり得る。従来の方法では、このようなケースにおいて、運転者が運転操作を行える状態にあるか否かに関する指標を得ることが困難である。
本発明は、一側面では、このような実情を鑑みてなされたものであり、その目的は、運転者の脚部が運転操作を行える状態にあるか否かに関する指標を得るための技術を提供することである。
本発明は、上述した課題を解決するために、以下の構成を採用する。
すなわち、本発明の一側面に係る運転者監視装置は、車両の運転席に着いた運転者の脚部を撮影可能に配置された撮影装置から撮影画像を取得する画像取得部と、前記運転者の脚部の運転に対する即応性の程度を推定するための機械学習を行った学習済みの学習器に前記撮影画像を入力することで、前記運転者の脚部の運転に対する即応性の程度を示す脚部即応性情報を当該学習器から取得する即応性推定部と、を備える。
当該構成では、機械学習により得られる学習済みの学習器を利用して、運転者の脚部の運転に対する即応性を推定する。具体的には、車両の運転席に着いた運転者の脚部を撮影可能に配置された撮影装置から撮影画像を取得する。そして、運転者の脚部の運転に対する即応性の程度を推定するための機械学習を行った学習済みの学習器に当該撮影画像を入力することで、運転者の脚部の運転に対する即応性の程度を示す脚部即応性情報を取得する。
ここで、「即応性」の程度とは、運転に対する準備状態の程度、換言すると、運転者が車両の運転を手動で行える状態にあるか否かの度合いを示す。より詳細には、「即応性」の程度は、運転者が車両の手動運転に直ちに対応可能か否かの度合いを示す。したがって、当該構成によれば、運転者の脚部が運転操作を行える状態にあるか否かに関する指標を脚部即応性情報として得ることができる。これにより、自動運転モードで車両が走行している際に、運転者の脚部が運転操作に直ちに対応可能かどうかを推定する精度を向上させることができる。
なお、「機械学習」とは、データ(学習データ)に潜むパターンをコンピュータにより見つけ出すことであり、「学習器」は、そのような機械学習により所定のパターンを識別する能力を獲得可能な学習モデルにより構築される。この学習器の種類は、撮影画像に基づいて運転者の脚部の運転に対する即応性の程度を推定する能力を学習可能であれば、特に限定されなくてもよい。「学習済み学習器」は、「識別器」又は「分類器」と称されてもよい。
また、撮影装置が「車両の運転席に着いた運転者の脚部を撮影可能に配置される」とは、例えば、少なくとも運転席下方を撮影範囲とするように配置される等、運転操作時に運転者の脚部の少なくとも一部が位置すべき範囲を撮影範囲としてカバーするように撮影装置が配置されることである。そのため、運転者が、離席している、座席上で座禅を組んでいる等の状況では、運転者の脚部を撮影装置により捕捉できない可能性があり、このようなケースでは、撮影装置から得られる撮影画像には必ずしも運転者の脚部が写っている必要はない。
上記一側面に係る運転者監視装置は、自動的に運転操作を行う自動運転モードと運転者の手動により運転操作を行う手動運転モードとを選択的に実施可能に構成された前記車両に対して、前記自動運転モードが実施されている際に、前記脚部即応性情報により示される前記運転者の脚部の運転に対する即応性が所定の条件を満たす場合に、前記自動運転モードから前記手動運転モードに切り替える指示を出力する切替指示部を更に備えてもよい。当該構成によれば、運転者の脚部の即応性に応じて自動運転から手動運転に動作を切り替え可能な車両を提供することができる。
上記一側面に係る運転者監視装置において、前記切替指示部は、前記自動運転モードが実施されている際に、前記脚部即応性情報により示される前記運転者の右脚の運転に対する即応性が所定の条件を満たす場合に、前記自動運転モードから前記手動運転モードに切り替える指示を出力してもよい。車両のペダル操作は一般的に右脚で行われる。当該構成によれば、運転者の右脚の即応性に応じて自動運転から手動運転に動作を切り替え可能な車両を提供することができる。
上記一側面に係る運転者監視装置において、前記脚部即応性情報は、前記運転者の脚部の運転に対する即応性の程度を3つ以上のレベルで段階的に示すように構成されてよい。当該構成によれば、運転者の脚部の即応性を段階的に表現することができ、これによって、運転者状態の推定結果の利用性が向上する。
上記一側面に係る運転者監視装置において、前記脚部即応性情報は、前記運転者の脚部の屈曲状態に応じて、前記運転者の脚部の運転に対する即応性の程度を3つ以上のレベルで段階的に示してもよい。「屈曲状態」は、脚部の関節の屈曲度、屈曲方向等で定まる。運転者の脚部が伸びている場合には、当該運転者はペダル操作をすぐにでも行うことができるため、運転に対する即応性が高い状態にあると想定される。一方、座禅を組む等により運転者の膝が0度に近い状態まで折れ曲がっている場合には、当該運転者はペダル操作をすぐには行えないため、運転に対する即応性が低い状態にあると想定される。当該構成によれば、このような運転者の脚部の屈曲状態を適切に反映して、運転者の脚部の運転に対する即応性を評価することができる。
上記一側面に係る運転者監視装置は、前記脚部即応性情報の示す前記運転者の脚部の運転に対する即応性のレベルに応じて、脚部の即応性を高めるように前記運転者に促す警告を段階的に行う警告部を更に備えてもよい。当該構成によれば、運転者の脚部の即応性を段階的に評価し、その状態に適した警告を実施することができる。
また、本発明の一側面に係る運転監視方法は、コンピュータが、車両の運転席に着いた運転者の脚部を撮影可能に配置された撮影装置から撮影画像を取得する画像取得ステップと、前記運転者の脚部の運転に対する即応性の程度を推定するための機械学習を行った学習済みの学習器に前記撮影画像を入力することで、前記運転者の脚部の運転に対する即応性の程度を示す脚部即応性情報を当該学習器から取得する推定ステップと、を実行する。当該構成によれば、運転者の脚部が運転操作を行える状態にあるか否かに関する指標を脚部即応性情報として得ることができる。
上記一側面に係る運転監視方法において、前記コンピュータは、自動的に運転操作を行う自動運転モードと運転者の手動により運転操作を行う手動運転モードとを選択的に実施するように前記車両の動作を制御し、前記自動運転モードを実施している際に、前記脚部即応性情報により示される前記運転者の脚部の運転に対する即応性が所定の条件を満たす場合に、前記自動運転モードから前記手動運転モードに切り替えるように構成されてもよい。当該構成によれば、運転者の脚部の即応性に応じて自動運転から手動運転に動作を切り替え可能な車両を提供することができる。
上記一側面に係る運転監視方法において、前記コンピュータは、前記自動運転モードを実施している際に、前記脚部即応性情報により示される前記運転者の右脚の運転に対する即応性が所定の条件を満たす場合に、前記自動運転モードから前記手動運転モードに切り替えるように構成されてもよい。当該構成によれば、運転者の右脚の即応性に応じて自動運転から手動運転に動作を切り替え可能な車両を提供することができる。
上記一側面に係る運転監視方法において、前記脚部即応性情報は、前記運転者の脚部の運転に対する即応性の程度を3つ以上のレベルで段階的に示すように構成されてもよい。当該構成によれば、運転者の脚部の即応性を段階的に表現することができ、これによって、運転者状態の推定結果の利用性が向上する。
上記一側面に係る運転監視方法において、前記脚部即応性情報は、前記運転者の脚部の屈曲状態に応じて、前記運転者の脚部の運転に対する即応性の程度を3つ以上のレベルで段階的に示すように構成されてもよい。当該構成によれば、運転者の脚部の屈曲状態を適切に反映して、運転者の脚部の運転に対する即応性を評価することができる。
上記一側面に係る運転監視方法において、前記コンピュータは、前記脚部即応性情報の示す前記運転者の脚部の運転に対する即応性のレベルに応じて、脚部の即応性を高めるように前記運転者に促す警告を段階的に行う警告ステップを更に実行してもよい。当該構成によれば、運転者の脚部の即応性を段階的に評価し、その状態に適した警告を実施することができる。
また、本発明の一側面に係る学習装置は、車両の運転席に着いた運転者の脚部を撮影可能に配置された撮影装置から取得される撮影画像、及び当該運転者の脚部の運転に対する即応性の程度を示す脚部即応性情報の組を学習データとして取得する学習データ取得部と、前記撮影画像を入力すると前記脚部即応性情報に対応する出力値を出力するように学習器の機械学習を行う学習処理部と、を備える。当該構成によれば、上記運転者の脚部の運転に対する即応性の程度を推定するのに利用する学習済みの学習器を構築することができる。
また、本発明の一側面に係る学習方法は、コンピュータが、車両の運転席に着いた運転者の脚部を撮影可能に配置された撮影装置から取得される撮影画像、及び当該運転者の脚部の運転に対する即応性の程度を示す脚部即応性情報の組を学習データとして取得するステップと、前記撮影画像を入力すると前記脚部即応性情報に対応する出力値を出力するように学習器の機械学習を行うステップと、を実行する。当該構成によれば、上記運転者の脚部の運転に対する即応性の程度を推定するのに利用する学習済みの学習器を構築することができる。
本発明によれば、運転者の脚部が運転操作を行える状態にあるか否かに関する指標を得るための技術を提供することができる。
以下、本発明の一側面に係る実施の形態(以下、「本実施形態」とも表記する)を、図面に基づいて説明する。ただし、以下で説明する本実施形態は、あらゆる点において本発明の例示に過ぎない。本発明の範囲を逸脱することなく種々の改良や変形を行うことができることは言うまでもない。つまり、本発明の実施にあたって、実施形態に応じた具体的構成が適宜採用されてもよい。なお、本実施形態において登場するデータを自然言語により説明しているが、より具体的には、コンピュータが認識可能な疑似言語、コマンド、パラメータ、マシン語等で指定される。
§1 適用例
まず、図1を用いて、本発明が適用される場面の一例について説明する。図1は、本実施形態に係る自動運転支援装置1及び学習装置2の適用場面の一例を模式的に例示する。
まず、図1を用いて、本発明が適用される場面の一例について説明する。図1は、本実施形態に係る自動運転支援装置1及び学習装置2の適用場面の一例を模式的に例示する。
図1に示されるとおり、本実施形態に係る自動運転支援装置1は、カメラ31を利用して運転者Dを監視しながら、車両100の自動運転を支援するコンピュータである。本実施形態に係る自動運転支援装置1は、本発明の「運転者監視装置」の一例である。なお、車両100の種類は、実施の形態に応じて適宜選択されてよい。車両100は、例えば、乗用車である。本実施形態に係る車両100は、自動運転を実施可能に構成される。
具体的には、自動運転支援装置1は、車両100の運転席に着いた運転者Dの脚部を撮影可能に配置されたカメラ31から撮影画像を取得する。カメラ31は、本発明の「撮影装置」の一例である。そして、自動運転支援装置1は、運転者の脚部の運転に対する即応性の程度を推定するための機械学習を行った学習器(後述するニューラルネットワーク5)に取得した撮影画像を入力することで、運転者Dの脚部の運転に対する即応性の程度を示す脚部即応性情報を当該学習器から取得する。これにより、自動運転支援装置1は、運転者Dの状態、すなわち、運転者Dの脚部の運転に対する即応性の程度を推定する。なお、「即応性」の程度とは、運転に対する準備状態の程度、換言すると、運転者が車両の運転を手動で行える状態にあるか否かの度合いを示す。より詳細には、「即応性」の程度は、運転者が車両の手動運転に直ちに対応可能か否かの度合いを示す。
一方、本実施形態に係る学習装置2は、自動運転支援装置1で利用する学習器を構築する、すなわち、撮影画像の入力に応じて、運転者Dの脚部の運転に対する即応性の程度を示す脚部即応性情報を出力するように学習器の機械学習を行うコンピュータである。具体的には、学習装置2は、上記撮影画像及び脚部即応性情報の組を学習データとして取得する。これらのうち、撮影画像は入力データとして利用され、脚部即応性情報は教師データとして利用される。すなわち、学習装置2は、撮影画像を入力すると脚部即応性情報に対応する出力値を出力するように学習器(後述するニューラルネットワーク6)を学習させる。これにより、自動運転支援装置1で利用する学習済みの学習器を作成することができる。自動運転支援装置1は、例えば、ネットワークを介して、学習装置2により作成された学習済みの学習器を取得することができる。なお、ネットワークの種類は、例えば、インターネット、無線通信網、移動通信網、電話網、専用網等から適宜選択されてよい。
以上のとおり、本実施形態によれば、学習済みの学習器を利用することで、運転者の脚部が運転操作を行える状態にあるか否かに関する指標を脚部即応性情報として得ることができる。そのため、この脚部即応性情報に基づいて、運転者Dの脚部の状態が運転操作を行える状態にあるか否かという観点で、例えば、車両100の自動運転の動作を制御することができる。なお、運転者Dが、離席している、座席上で座禅を組んでいる等の状況では、当該運転者Dの脚部をカメラ31により捕捉できない可能性がある。そのため、カメラ31から得られる撮影画像には必ずしも運転者Dの脚部が写っている必要はない。
§2 構成例
[ハードウェア構成]
<自動運転支援装置>
次に、図2を用いて、本実施形態に係る自動運転支援装置1のハードウェア構成の一例について説明する。図2は、本実施形態に係る自動運転支援装置1のハードウェア構成の一例を模式的に例示する。
[ハードウェア構成]
<自動運転支援装置>
次に、図2を用いて、本実施形態に係る自動運転支援装置1のハードウェア構成の一例について説明する。図2は、本実施形態に係る自動運転支援装置1のハードウェア構成の一例を模式的に例示する。
図2に示されるとおり、本実施形態に係る自動運転支援装置1は、制御部11、記憶部12、及び外部インタフェース13が電気的に接続されたコンピュータである。なお、図2では、外部インタフェースを「外部I/F」と記載している。
制御部11は、ハードウェアプロセッサであるCPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等を含み、情報処理に応じて各構成要素の制御を行う。制御部11は、例えば、ECU(Electronic Control Unit)により構成される。記憶部12は、例えば、RAM、ROM等で構成され、プログラム121、学習結果データ122等を記憶する。記憶部12は、「メモリ」の一例である。
プログラム121は、自動運転支援装置1に後述する運転者Dの脚部の運転に対する即応性の程度を推定する情報処理(図7)を実行させるための命令を含むプログラムである。学習結果データ122は、学習済みの学習器の設定を行うためのデータである。詳細は後述する。
外部インタフェース13は、外部装置と接続するためのインタフェースであり、接続する外部装置に応じて適宜構成される。本実施形態では、外部インタフェース13は、例えば、CAN(Controller Area Network)を介して、ナビゲーション装置30、カメラ31、及びスピーカ32に接続される。
ナビゲーション装置30は、車両100の走行時に経路案内を行うコンピュータである。ナビゲーション装置30には、公知のカーナビゲーション装置が用いられてよい。ナビゲーション装置30は、GPS(Global Positioning System)信号に基づいて自車位置を測定し、地図情報及び周辺の建物等に関する周辺情報を利用して、経路案内を行うように構成される。なお、以下では、GPS信号に基づいて測定される自車位置を示す情報を「GPS情報」と称する。
カメラ31は、車両100の運転席に着いた運転者Dの脚部を撮影可能に配置される。すなわち、カメラ31は、例えば、少なくとも運転席下方を撮影範囲とするように配置される等、運転操作時に運転者Dの脚部の少なくとも一部が位置すべき範囲を撮影範囲としてカバーするように撮影装置が配置される。図1の例では、カメラ31は、運転席の前方下方に配置されている。しかしながら、カメラ31の配置場所は、このような例に限定されなくてもよく、運転席に着いた運転者Dの脚部を撮影可能であれば、実施の形態に応じて適宜選択されてよい。なお、カメラ31には、一般のデジタルカメラ、ビデオカメラ等が用いられてよい。
スピーカ32は、音声を出力するように構成される。スピーカ32は、車両100の走行中に運転者Dの脚部の運転に対する即応性が低いと推定される場合に、当該脚部の即応性を高めるように運転者Dに対して警告するのに利用される。詳細は後述する。
なお、外部インタフェース13には、上記以外の外部装置が接続されてよい。例えば、外部インタフェース13には、ネットワークを介してデータ通信を行うための通信モジュールが接続されてもよい。外部インタフェース13に接続する外部装置は、上記の各装置に限定されなくてもよく、実施の形態に応じて適宜選択されてよい。
また、図2の例では、自動運転支援装置1は、1つの外部インタフェース13を備えている。しかしながら、外部インタフェース13は、接続する外部装置毎に設けられてもよい。外部インタフェース13の数は、実施の形態に応じて適宜選択可能である。
なお、自動運転支援装置1の具体的なハードウェア構成に関して、実施形態に応じて、適宜、構成要素の省略、置換及び追加が可能である。例えば、制御部11は、複数のハードウェアプロセッサを含んでもよい。ハードウェアプロセッサは、マイクロプロセッサ、FPGA(field-programmable gate array)等で構成されてよい。記憶部12は、制御部11に含まれるRAM及びROMにより構成されてもよい。記憶部12は、ハードディスクドライブ、ソリッドステートドライブ等の補助記憶装置で構成されてもよい。また、自動運転支援装置1には、提供されるサービス専用に設計された情報処理装置の他、汎用のコンピュータが用いられてもよい。
<学習装置>
次に、図3を用いて、本実施形態に係る学習装置2のハードウェア構成の一例を説明する。図3は、本実施形態に係る学習装置2のハードウェア構成の一例を模式的に例示する。
次に、図3を用いて、本実施形態に係る学習装置2のハードウェア構成の一例を説明する。図3は、本実施形態に係る学習装置2のハードウェア構成の一例を模式的に例示する。
図3に示されるとおり、本実施形態に係る学習装置2は、制御部21、記憶部22、通信インタフェース23、入力装置24、出力装置25、及びドライブ26が電気的に接続されたコンピュータである。なお、図3では、通信インタフェースを「通信I/F」と記載している。
制御部21は、上記制御部11と同様に、ハードウェアプロセッサであるCPU、RAM、ROM等を含み、プログラム及びデータに基づいて各種情報処理を実行するように構成される。記憶部22は、例えば、ハードディスクドライブ、ソリッドステートドライブ等で構成される。記憶部22は、制御部21で実行される学習プログラム221、学習器の機械学習に利用する学習データ222、学習プログラム221を実行して作成した学習結果データ122等を記憶する。
学習プログラム221は、後述する機械学習の処理(図8)を学習装置2に実行させ、当該機械学習の結果として学習結果データ122を生成させるための命令を含むプログラムである。学習データ222は、運転者の脚部の運転に対する即応性の程度を推定する能力を獲得するように学習器の機械学習を行うためのデータである。詳細は後述する。
通信インタフェース23は、例えば、有線LAN(Local Area Network)モジュール、無線LANモジュール等であり、ネットワークを介した有線又は無線通信を行うためのインタフェースである。学習装置2は、当該通信インタフェース23を介して、作成した学習結果データ122を外部の装置に配信してもよい。
入力装置24は、例えば、マウス、キーボード等の入力を行うための装置である。また、出力装置25は、例えば、ディスプレイ、スピーカ等の出力を行うための装置である。オペレータは、入力装置24及び出力装置25を介して、学習装置2を操作することができる。
ドライブ26は、例えば、CDドライブ、DVDドライブ等であり、記憶媒体92に記憶されたプログラムを読み込むためのドライブ装置である。ドライブ26の種類は、記憶媒体92の種類に応じて適宜選択されてよい。上記学習プログラム221及び学習データ222は、この記憶媒体92に記憶されていてもよい。
記憶媒体92は、コンピュータその他装置、機械等が記録されたプログラム等の情報を読み取り可能なように、当該プログラム等の情報を、電気的、磁気的、光学的、機械的又は化学的作用によって蓄積する媒体である。学習装置2は、この記憶媒体92から、上記学習プログラム221及び学習データ222を取得してもよい。
ここで、図3では、記憶媒体92の一例として、CD、DVD等のディスク型の記憶媒体を例示している。しかしながら、記憶媒体92の種類は、ディスク型に限定される訳ではなく、ディスク型以外であってもよい。ディスク型以外の記憶媒体として、例えば、フラッシュメモリ等の半導体メモリを挙げることができる。
なお、学習装置2の具体的なハードウェア構成に関して、実施形態に応じて、適宜、構成要素の省略、置換及び追加が可能である。例えば、制御部21は、複数のハードウェアプロセッサを含んでもよい。ハードウェアプロセッサは、マイクロプロセッサ、FPGA(field-programmable gate array)等で構成されてよい。学習装置2は、複数台の情報処理装置で構成されてもよい。また、学習装置2は、提供されるサービス専用に設計された情報処理装置の他、汎用のサーバ装置、PC(Personal Computer)等であってもよい。
[ソフトウェア構成]
<自動運転支援装置>
次に、図4を用いて、本実施形態に係る自動運転支援装置1のソフトウェア構成の一例を説明する。図4は、本実施形態に係る自動運転支援装置1のソフトウェア構成の一例を模式的に例示する。
<自動運転支援装置>
次に、図4を用いて、本実施形態に係る自動運転支援装置1のソフトウェア構成の一例を説明する。図4は、本実施形態に係る自動運転支援装置1のソフトウェア構成の一例を模式的に例示する。
自動運転支援装置1の制御部11は、記憶部12に記憶されたプログラム121をRAMに展開する。そして、制御部11は、RAMに展開されたプログラム121をCPUにより解釈及び実行して、各構成要素を制御する。これによって、図4に示されるとおり、本実施形態に係る自動運転支援装置1は、ソフトウェアモジュールとして、画像取得部111、解像度変換部112、即応性推定部113、警告部114、及び運転制御部115を備えるコンピュータとして構成される。
画像取得部111は、車両100の運転席に着いた運転者Dの脚部を撮影可能に配置されたカメラ31から撮影画像123を取得する。解像度変換部112は、画像取得部111により取得した撮影画像123の解像度を低下させる。これにより、解像度変換部112は、低解像度撮影画像1231を生成する。
即応性推定部113は、運転者の脚部の運転に対する即応性の程度を推定するための機械学習を行った学習済みの学習器(ニューラルネットワーク5)に、撮影画像123を低解像度化することで得られた低解像度撮影画像1231を入力する。これにより、即応性推定部113は、運転者Dの脚部の運転に対する即応性の程度を示す脚部即応性情報124を当該学習器から取得する。なお、低解像度化の処理は省略されてもよい。この場合、即応性推定部113は、撮影画像123を学習器に入力してもよい。
ここで、図5を用いて、脚部即応性情報124を説明する。図5は、脚部即応性情報124の一例を示す。図5に示されるとおり、本実施形態に係る脚部即応性情報124は、運転者の脚部の運転に対する即応性が高い状態であるか低い状態であるかを2つのレベルで段階的に示す。本実施形態では、脚部の即応性の程度は、運転者の行動状態に応じて設定されている。
運転者の行動状態と即応性の程度との対応関係は適宜設定可能である。例えば、運転者Dが、「右足が右側、左脚が左側に位置している」、「両脚が伸びている」及び「脚の上に物が載っていない」の行動状態にある場合には、当該運転者Dの脚部は、車両100の運転操作に直ちに取り掛かれる状態にあると推定可能である。そこで、本実施形態では、「右足が右側、左脚が左側に位置している」、「両脚が伸びている」及び「脚の上に物が載っていない」の行動状態に運転者があるのに対応して、脚部即応性情報124は、運転者の脚部の運転に対する即応性が高い状態にあることを示すように設定されている。
一方、運転者Dが、「脚を組んでいる」、「あぐらをかいている」、「膝が90度以下に屈曲している」、及び「脚の上に物が載っている」の行動状態にある場合には、当該運転者Dの脚部は、車両100の運転操作に直ちには取り掛かれない状態にあると推定可能である。そこで、本実施形態では、「脚を組んでいる」、「あぐらをかいている」、「膝が90度以下に屈曲している」、及び「脚の上に物が載っている」の行動状態に運転者があるのに対応して、脚部即応性情報124は、運転者の脚部の運転に対する即応性が低い状態にあることを示すように設定されている。
なお、「即応性」の程度とは、上記のとおり、運転に対する準備状態の程度を示し、例えば、異常等の発生により車両100の自動運転を継続できなくなったときに、運転者Dが手動で車両100を運転する状態に復帰可能な度合いを表わすことができる。そのため、脚部即応性情報124は、運転者の脚部が運転操作に復帰するのに適した状態であるか否かを判定するための指標として利用することができる。
警告部114は、脚部即応性情報124に基づいて、運転者Dの脚部が車両100の運転に復帰するのに適した状態であるか否か、換言すると、運転者Dの脚部の運転に対する即応性が高い状態にあるか否かを判定する。そして、運転者Dの脚部の運転に対する即応性が低い状態にあると判定した場合に、警告部114は、スピーカ32を介して、脚部の即応性を高めるように運転者Dに促す警告を行う。
運転制御部115は、車両100の駆動系及び制御系にアクセスすることで、運転者Dによらず自動的に運転操作を行う自動運転モードと運転者Dの手動により運転操作を行う手動運転モードとを選択的に実施するように車両100の動作を制御する。本実施形態では、運転制御部115は、脚部即応性情報124、ナビゲーション装置30の設定等に応じて、自動運転モードと手動運転モードとを切り替えるように構成される。
その一例として、運転制御部115は、自動運転モードが実施されている際に、脚部即応性情報124により示される運転者Dの脚部の運転に対する即応性が所定の条件を満たし、高い状態にあると判定される場合に、自動運転モードから手動運転モードへの切り替えを許可し、当該切り替えの指示を車両100に対して出力する。一方で、脚部即応性情報124により示される運転者Dの脚部の運転に対する即応性が所定の条件を満たさず、低い状態にあると判定される場合には、運転制御部115は、自動運転モードから手動運転モードへの切り替えを許可しない。この場合、運転制御部115は、自動運転モードを継続する、所定の停車区間に車両100を停車する、等のように手動運転モード以外のモードで車両100の動作を制御する。
すなわち、本実施形態では、この運転制御部115により、車両100は、自動運転モードと手動運転モードとを選択的に実施可能に構成される。また、本発明の「切替指示部」は、運転制御部115の一動作として実現される。
(学習器)
次に、学習器について説明する。図4に示されるとおり、本実施形態に係る自動運転支援装置1は、運転者の脚部の運転に対する即応性の程度を推定するための機械学習を行った学習済みの学習器として、ニューラルネットワーク5を利用する。本実施形態に係るニューラルネットワーク5は、複数種類のニューラルネットワークを組み合わせることで構成されている。
次に、学習器について説明する。図4に示されるとおり、本実施形態に係る自動運転支援装置1は、運転者の脚部の運転に対する即応性の程度を推定するための機械学習を行った学習済みの学習器として、ニューラルネットワーク5を利用する。本実施形態に係るニューラルネットワーク5は、複数種類のニューラルネットワークを組み合わせることで構成されている。
具体的には、ニューラルネットワーク5は、畳み込みニューラルネットワーク51及びLSTMネットワーク52の2つの部分に分かれている。畳み込みニューラルネットワーク51には低解像度撮影画像1231が入力される。LSTMネットワーク52は、畳み込みニューラルネットワーク51の出力を受けて、脚部即応性情報124を出力する。以下、各部分について説明する。
(a)畳み込みニューラルネットワーク
畳み込みニューラルネットワーク51は、畳み込み層511及びプーリング層512を交互に接続した構造を有する順伝播型ニューラルネットワークである。本実施形態に係る畳み込みニューラルネットワーク51では、複数の畳み込み層511及びプーリング層512が入力側に交互に配置されている。そして、最も出力側に配置されたプーリング層512の出力が全結合層513に入力され、全結合層513の出力が出力層514に入力される。
畳み込みニューラルネットワーク51は、畳み込み層511及びプーリング層512を交互に接続した構造を有する順伝播型ニューラルネットワークである。本実施形態に係る畳み込みニューラルネットワーク51では、複数の畳み込み層511及びプーリング層512が入力側に交互に配置されている。そして、最も出力側に配置されたプーリング層512の出力が全結合層513に入力され、全結合層513の出力が出力層514に入力される。
畳み込み層511は、画像の畳み込みの演算を行う層である。画像の畳み込みとは、画像と所定のフィルタとの相関を算出する処理に相当する。そのため、画像の畳み込みを行うことで、例えば、フィルタの濃淡パターンと類似する濃淡パターンを入力される画像から検出することができる。
プーリング層512は、プーリング処理を行う層である。プーリング処理は、画像のフィルタに対する応答の強かった位置の情報を一部捨て、画像内に現れる特徴の微小な位置変化に対する応答の不変性を実現する。
全結合層513は、隣接する層の間のニューロン全てを結合した層である。すなわち、全結合層513に含まれる各ニューロンは、隣接する層に含まれる全てのニューロンに結合される。全結合層513は、2層以上で構成されてもよい。また、全結合層513に含まれるニューロンの個数は、実施の形態に応じて適宜設定されてよい。
出力層514は、畳み込みニューラルネットワーク51の最も出力側に配置される層である。出力層514に含まれるニューロンの個数は、実施の形態に応じて適宜設定されてよい。出力層514からの出力が次のLSTMネットワーク52に入力される。なお、畳み込みニューラルネットワーク51の構成は、このような例に限定されなくてもよく、実施の形態に応じて適宜設定されてよい。
(b)LSTMネットワーク
LSTMネットワーク52は、LSTMブロック522を備える再起型ニューラルネットワークである。再帰型ニューラルネットワークは、例えば、中間層から入力層への経路のように、内部にループを有するニューラルネットワークのことである。LSTMネットワーク52は、一般的な再起型ニューラルネットワークの中間層をLSTMブロック522に置き換えた構造を有する。
LSTMネットワーク52は、LSTMブロック522を備える再起型ニューラルネットワークである。再帰型ニューラルネットワークは、例えば、中間層から入力層への経路のように、内部にループを有するニューラルネットワークのことである。LSTMネットワーク52は、一般的な再起型ニューラルネットワークの中間層をLSTMブロック522に置き換えた構造を有する。
本実施形態では、LSTMネットワーク52は、入力側から順に、入力層521、LSTMブロック522、及び出力層523を備えており、順伝播の経路の他、LSTMブロック522から入力層521に戻る経路を有している。入力層521及び出力層523に含まれるニューロンの個数は、実施の形態に応じて適宜設定されてよい。
LSTMブロック522は、入力ゲート及び出力ゲートを備え、情報の記憶及び出力のタイミングを学習可能に構成されたブロックである(S.Hochreiter and J.Schmidhuber, "Long short-term memory" Neural Computation, 9(8):1735-1780, November 15, 1997)。また、LSTMブロック522は、情報の忘却のタイミングを調節する忘却ゲートを備えてもよい(Felix A. Gers, Jurgen Schmidhuber and Fred Cummins, "Learning to Forget: Continual Prediction with LSTM" Neural Computation, pages 2451-2471, October 2000)。LSTMネットワーク52の構成は、実施の形態に応じて適宜設定可能である。
(c)小括
各ニューロンには閾値が設定されており、基本的には、各入力と各重みとの積の和が閾値を超えているか否かによって各ニューロンの出力が決定される。制御部11は、畳み込みニューラルネットワーク51に低解像度撮影画像1231を入力し、入力側から順に、各層に含まれる各ニューロンの発火判定を行う。これにより、制御部11は、脚部即応性情報124に対応する出力値をニューラルネットワーク5の出力層523から取得する。
各ニューロンには閾値が設定されており、基本的には、各入力と各重みとの積の和が閾値を超えているか否かによって各ニューロンの出力が決定される。制御部11は、畳み込みニューラルネットワーク51に低解像度撮影画像1231を入力し、入力側から順に、各層に含まれる各ニューロンの発火判定を行う。これにより、制御部11は、脚部即応性情報124に対応する出力値をニューラルネットワーク5の出力層523から取得する。
なお、このようなニューラルネットワーク5の構成(例えば、各ネットワークの層数、各層におけるニューロンの個数、ニューロン同士の結合関係、各ニューロンの伝達関数)、各ニューロン間の結合の重み、及び各ニューロンの閾値を示す情報は、学習結果データ122に含まれている。制御部11は、学習結果データ122を参照して、運転者Dの脚部の運転に対する即応性の程度を推定する処理に用いる学習済みニューラルネットワーク5の設定を行う。
<学習装置>
次に、図6を用いて、本実施形態に係る学習装置2のソフトウェア構成の一例を説明する。図6は、本実施形態に係る学習装置2のソフトウェア構成の一例を模式的に例示する。
次に、図6を用いて、本実施形態に係る学習装置2のソフトウェア構成の一例を説明する。図6は、本実施形態に係る学習装置2のソフトウェア構成の一例を模式的に例示する。
学習装置2の制御部21は、記憶部22に記憶された学習プログラム221をRAMに展開する。そして、制御部21は、RAMに展開された学習プログラム221をCPUにより解釈及び実行して、各構成要素を制御する。これによって、図6に示されるとおり、本実施形態に係る学習装置2は、ソフトウェアモジュールとして、学習データ取得部211、及び学習処理部212を備えるコンピュータとして構成される。
学習データ取得部211は、車両の運転席に着いた運転者の脚部を撮影可能に配置された撮影装置から取得される撮影画像、及び当該運転者の脚部の運転に対する即応性の程度を示す脚部即応性情報の組を学習データとして取得する。撮影画像は入力データとして利用される。また、脚部即応性情報は教師データ(正解データ)として利用される。本実施形態では、学習データ取得部211は、低解像度撮影画像223及び脚部即応性情報224の組を学習データ222として取得する。低解像度撮影画像223は、上記低解像度撮影画像1231に対応する。脚部即応性情報224は、上記脚部即応性情報124に対応
する。学習処理部212は、低解像度撮影画像223を入力すると脚部即応性情報224に対応する出力値を出力するように学習器の機械学習を行う。
する。学習処理部212は、低解像度撮影画像223を入力すると脚部即応性情報224に対応する出力値を出力するように学習器の機械学習を行う。
図6に示されるとおり、本実施形態において、機械学習の対象となる学習器は、ニューラルネットワーク6である。当該ニューラルネットワーク6は、畳み込みニューラルネットワーク61及びLSTMネットワーク62を備え、上記ニューラルネットワーク5と同様に構成される。畳み込みニューラルネットワーク61及びLSTMネットワーク62はそれぞれ、上記畳み込みニューラルネットワーク51及びLSTMネットワーク52と同様である。
学習処理部212は、ニューラルネットワークの学習処理により、畳み込みニューラルネットワーク61に低解像度撮影画像223を入力すると、脚部即応性情報224に対応する出力値をLSTMネットワーク62から出力するニューラルネットワーク6を構築する。そして、学習処理部212は、構築したニューラルネットワーク6の構成、各ニューロン間の結合の重み、及び各ニューロンの閾値を示す情報を学習結果データ122として記憶部22に格納する。
<その他>
自動運転支援装置1及び学習装置2の各ソフトウェアモジュールに関しては後述する動作例で詳細に説明する。なお、本実施形態では、自動運転支援装置1及び学習装置2の各ソフトウェアモジュールがいずれも汎用のCPUによって実現される例について説明している。しかしながら、以上のソフトウェアモジュールの一部又は全部が、1又は複数の専用のプロセッサにより実現されてもよい。また、自動運転支援装置1及び学習装置2それぞれのソフトウェア構成に関して、実施形態に応じて、適宜、ソフトウェアモジュールの省略、置換及び追加が行われてもよい。
自動運転支援装置1及び学習装置2の各ソフトウェアモジュールに関しては後述する動作例で詳細に説明する。なお、本実施形態では、自動運転支援装置1及び学習装置2の各ソフトウェアモジュールがいずれも汎用のCPUによって実現される例について説明している。しかしながら、以上のソフトウェアモジュールの一部又は全部が、1又は複数の専用のプロセッサにより実現されてもよい。また、自動運転支援装置1及び学習装置2それぞれのソフトウェア構成に関して、実施形態に応じて、適宜、ソフトウェアモジュールの省略、置換及び追加が行われてもよい。
§3 動作例
[自動運転支援装置]
次に、図7を用いて、自動運転支援装置1の動作例を説明する。図7は、自動運転支援装置1の処理手順の一例を例示するフローチャートである。以下で説明する運転者Dの脚部の運転に対する即応性の程度を推定する処理手順は、本発明の「運転者監視方法」の一例である。ただし、以下で説明する処理手順は一例に過ぎず、各処理は可能な限り変更されてよい。また、以下で説明する処理手順について、実施の形態に応じて、適宜、ステップの省略、置換、及び追加が可能である。
[自動運転支援装置]
次に、図7を用いて、自動運転支援装置1の動作例を説明する。図7は、自動運転支援装置1の処理手順の一例を例示するフローチャートである。以下で説明する運転者Dの脚部の運転に対する即応性の程度を推定する処理手順は、本発明の「運転者監視方法」の一例である。ただし、以下で説明する処理手順は一例に過ぎず、各処理は可能な限り変更されてよい。また、以下で説明する処理手順について、実施の形態に応じて、適宜、ステップの省略、置換、及び追加が可能である。
(起動)
まず、運転者Dは、車両100のイグニッション電源をオンにすることで、自動運転支援装置1を起動し、起動した自動運転支援装置1にプログラム121を実行させる。これにより、自動運転支援装置1の制御部11は、以下の処理手順に従って、運転者Dの状態を監視する。なお、プログラム実行のトリガは、このような車両100のイグニッション電源をオンにすることに限定されなくてもよく、実施の形態に応じて適宜選択されてよい。例えば、プログラムの実行は、入力装置(不図示)を介した運転者Dの指示をトリガとして開始されてよい。
まず、運転者Dは、車両100のイグニッション電源をオンにすることで、自動運転支援装置1を起動し、起動した自動運転支援装置1にプログラム121を実行させる。これにより、自動運転支援装置1の制御部11は、以下の処理手順に従って、運転者Dの状態を監視する。なお、プログラム実行のトリガは、このような車両100のイグニッション電源をオンにすることに限定されなくてもよく、実施の形態に応じて適宜選択されてよい。例えば、プログラムの実行は、入力装置(不図示)を介した運転者Dの指示をトリガとして開始されてよい。
(ステップS101)
ステップS101では、制御部11は、運転制御部115として動作し、車両100の自動運転を開始する。例えば、制御部11は、ナビゲーション装置30から地図情報、周辺情報、及びGPS情報を取得して、取得した地図情報、周辺情報、及びGPS情報に基づいて車両100の自動運転を実施する。自動運転の制御方法には、公知の制御方法が利用可能である。車両100の自動運転モードを開始すると、制御部11は、次のステップS102に処理を進める。
ステップS101では、制御部11は、運転制御部115として動作し、車両100の自動運転を開始する。例えば、制御部11は、ナビゲーション装置30から地図情報、周辺情報、及びGPS情報を取得して、取得した地図情報、周辺情報、及びGPS情報に基づいて車両100の自動運転を実施する。自動運転の制御方法には、公知の制御方法が利用可能である。車両100の自動運転モードを開始すると、制御部11は、次のステップS102に処理を進める。
(ステップS102)
ステップS102では、制御部11は、画像取得部111として動作し、車両100の運転席についた運転者Dの脚部を撮影するように配置されたカメラ31から撮影画像123を取得する。取得する撮影画像123は、動画像であってもよいし、静止画像であってもよい。撮影画像123を取得すると、制御部11は、次のステップS103に処理を進める。
ステップS102では、制御部11は、画像取得部111として動作し、車両100の運転席についた運転者Dの脚部を撮影するように配置されたカメラ31から撮影画像123を取得する。取得する撮影画像123は、動画像であってもよいし、静止画像であってもよい。撮影画像123を取得すると、制御部11は、次のステップS103に処理を進める。
(ステップS103)
ステップS103では、制御部11は、解像度変換部112として動作し、ステップS101で取得した撮影画像123の解像度を低下させる。これにより、制御部11は、低解像度撮影画像1231を生成する。低解像度化の処理方法は、特に限定されなくてもよく、実施の形態に応じて適宜選択されてよい。例えば、制御部11は、ニアレストネイバー法、バイリニア補間法、バイキュービック法等により、低解像度撮影画像1231を生成することができる。低解像度撮影画像1231を生成すると、制御部11は、次のステップS104に処理を進める。なお、本ステップS103は省略されてもよい。
ステップS103では、制御部11は、解像度変換部112として動作し、ステップS101で取得した撮影画像123の解像度を低下させる。これにより、制御部11は、低解像度撮影画像1231を生成する。低解像度化の処理方法は、特に限定されなくてもよく、実施の形態に応じて適宜選択されてよい。例えば、制御部11は、ニアレストネイバー法、バイリニア補間法、バイキュービック法等により、低解像度撮影画像1231を生成することができる。低解像度撮影画像1231を生成すると、制御部11は、次のステップS104に処理を進める。なお、本ステップS103は省略されてもよい。
(ステップS104及びS105)
ステップS104では、制御部11は、即応性推定部113として動作し、取得した低解像度撮影画像1231をニューラルネットワーク5の入力として用いて、当該ニューラルネットワーク5の演算処理を実行する。これにより、ステップS105では、制御部11は、脚部即応性情報124に対応する出力値を当該ニューラルネットワーク5から得る。
ステップS104では、制御部11は、即応性推定部113として動作し、取得した低解像度撮影画像1231をニューラルネットワーク5の入力として用いて、当該ニューラルネットワーク5の演算処理を実行する。これにより、ステップS105では、制御部11は、脚部即応性情報124に対応する出力値を当該ニューラルネットワーク5から得る。
具体的には、制御部11は、ステップS103で取得した低解像度撮影画像1231を、畳み込みニューラルネットワーク51の最も入力側に配置された畳み込み層511に入力する。そして、制御部11は、入力側から順に、各層に含まれる各ニューロンの発火判定を行う。これにより、制御部11は、脚部即応性情報124に対応する出力値をLSTMネットワーク52の出力層523から取得する。
(ステップS106及びS107)
ステップS106では、制御部11は、ステップS105で取得した脚部即応性情報124に基づいて、運転者Dが車両100の運転操作を行える状態にあるか否か、本ケースでは、運転者Dが車両100の運転に復帰するのに適した状態にあるか否かを判定する。具体的には、制御部11は、脚部即応性情報124により示される運転者Dの脚部の運転に対する即応性が所定の条件を満たすか否かを判定する。
ステップS106では、制御部11は、ステップS105で取得した脚部即応性情報124に基づいて、運転者Dが車両100の運転操作を行える状態にあるか否か、本ケースでは、運転者Dが車両100の運転に復帰するのに適した状態にあるか否かを判定する。具体的には、制御部11は、脚部即応性情報124により示される運転者Dの脚部の運転に対する即応性が所定の条件を満たすか否かを判定する。
所定の条件は、運転者Dの脚部の運転に対する即応性が高いか否かを判定可能に適宜設定されてよい。本実施形態では、脚部即応性情報124は、運転者Dの脚部の運転に対する即応性の程度を2つのレベルで表す。そのため、運転者Dの脚部の運転に対する即応性が高い状態であると脚部即応性情報124が示す場合に、制御部11は、運転者Dの脚部の運転に対する即応性が所定の条件を満たすと判定する。すなわち、制御部11は、運転者Dの脚部の運転に対する即応性が高い状態にあり、運転者Dが車両100の運転に復帰するのに適した状態にあると判定する。一方、運転者Dの脚部の運転に対する即応性が低い状態であると脚部即応性情報124が示す場合に、制御部11は、運転者Dの脚部の運転に対する即応性が所定の条件を満たさないと判定する。すなわち、制御部11は、運転者Dの脚部の運転に対する即応性が低い状態にあり、運転者Dが車両100の運転に復帰するのに適した状態にないと判定する。
運転者Dが車両100の運転に復帰するのに適した状態にあると判定した場合には、制御部11は、次のステップS108に処理を進める。一方、運転者Dが車両100の運転に復帰するのに適した状態にないと判定した場合には、制御部11は、次のステップS107の処理を実行する。
次のステップS107では、制御部11は、スピーカ32を介して、車両100の運転に復帰するのに適した状態をとるように、換言すると、脚部の即応性を高めるように運転者Dに促す警告を行い、本動作例に係る処理を終了する。警告の内容及び方法は、実施の形態に応じて適宜設定されてよい。
(ステップS108及びS109)
ステップS108では、制御部11は、運転制御部115として動作し、自動運転モードから手動運転モードに車両100の動作を切り替えるか否かを判定する。手動運転モードへの切り替えを実施すると判定した場合、制御部11は、次のステップS109に処理を進める。一方、手動運転モードへの切り替えを実施しないと判定した場合には、制御部11は、次のステップS109を省略して、本動作例に係る処理を終了する。
ステップS108では、制御部11は、運転制御部115として動作し、自動運転モードから手動運転モードに車両100の動作を切り替えるか否かを判定する。手動運転モードへの切り替えを実施すると判定した場合、制御部11は、次のステップS109に処理を進める。一方、手動運転モードへの切り替えを実施しないと判定した場合には、制御部11は、次のステップS109を省略して、本動作例に係る処理を終了する。
自動運転モードから手動運転モードに切り替えるトリガは、実施の形態に応じて適宜設定されてよい。例えば、運転者Dからの指示をトリガとしてもよい。この場合、運転者Dにより手動運転への切替の指示がなされたことに応じて、制御部11は、手動運転モードへの切り替えを実施すると判定する。一方、そのような手動運転への切替の指示がなかった場合には、制御部11は、手動運転モードへの切り替えを実施しないと判定する。
次のステップS109では、制御部11は、運転制御部115として動作し、自動運転モードから手動運転モードに車両100の動作を切り替える。これにより、制御部11は、車両100において手動運転モードの動作を開始し、本動作例に係る処理を終了する。なお、この手動運転モードの開始に際して、制御部11は、スピーカ32を介して、車両100の動作を手動運転モードに切り替えるため、ハンドルを握る等の運転操作を開始するように運転者Dにアナウンスをしてもよい。
以上により、自動運転支援装置1は、車両100の自動運転を実施している間に、運転者Dの脚部の運転に対する即応性の程度を監視することができる。なお、制御部11は、上記一連の処理を繰り返し実行することで、運転者Dの脚部の運転に対する即応性の程度を継続的に監視してもよい。また、制御部11は、上記一連の処理を繰り返し実行する間に、上記ステップS106において、運転者Dが車両100の運転に復帰するのに適した状態にないと複数回連続して判定した場合に、運転制御部115として動作し、自動運転モードを停止してもよい。そして、制御部11は、所定の場所に停車するように車両100を制御してもよい。この場合、例えば、制御部11は、運転者Dが車両100の運転に復帰するのに適した状態にないと複数回連続して判定した後に、地図情報、周辺情報及びGPS情報を参照して、車両100を安全に停止可能な場所に停車区間を設定してもよい。そして、制御部11は、車両100を停止する旨を運転者Dに伝えるための警告を実施し、設定した停車区間に車両100を自動停車させてもよい。これにより、運転者Dの脚部の運転に対する即応性が継続的に低い状態にあるときに、車両100の走行を停止させることで、即応性の低い状態の運転者Dが突発的に手動で車両100の運転操作を行わなければならない事態が発生するのを抑制することができる。
[学習装置]
次に、図8を用いて、学習装置2の動作例を説明する。図8は、学習装置2の処理手順の一例を例示するフローチャートである。なお、以下で説明する学習器の機械学習に関する処理手順は、本発明の「学習方法」の一例である。ただし、以下で説明する処理手順は一例に過ぎず、各処理は可能な限り変更されてよい。また、以下で説明する処理手順について、実施の形態に応じて、適宜、ステップの省略、置換、及び追加が可能である。
次に、図8を用いて、学習装置2の動作例を説明する。図8は、学習装置2の処理手順の一例を例示するフローチャートである。なお、以下で説明する学習器の機械学習に関する処理手順は、本発明の「学習方法」の一例である。ただし、以下で説明する処理手順は一例に過ぎず、各処理は可能な限り変更されてよい。また、以下で説明する処理手順について、実施の形態に応じて、適宜、ステップの省略、置換、及び追加が可能である。
(ステップS201)
ステップS201では、学習装置2の制御部21は、学習データ取得部211として動作し、低解像度撮影画像223及び脚部即応性情報224の組を学習データ222として取得する。
ステップS201では、学習装置2の制御部21は、学習データ取得部211として動作し、低解像度撮影画像223及び脚部即応性情報224の組を学習データ222として取得する。
学習データ222は、ニューラルネットワーク6に対して、運転者の脚部の運転に対する即応性の程度を推定可能にするための機械学習に利用するデータである。このような学習データ222は、例えば、運転席に着いた運転者の脚部を撮影するように配置されたカメラ31を備える車両を用意し、運転席に着いた運転者を様々な条件で撮影し、得られる撮影画像に撮影条件(脚部の運転に対する即応性の程度)を紐付けることで作成することができる。このとき、低解像度撮影画像223は、上記ステップS103と同じ処理を当該取得した撮影画像に適用することで得ることができる。また、脚部即応性情報224は、撮影画像に表れる運転者の脚部の運転に対する即応性の程度の入力を適宜受け付けることで得ることができる。
この学習データ222の作成は、オペレータ等が入力装置24を用いて手動で行ってもよいし、プログラムの処理により自動的に行われてもよい。この学習データ222は、運用されている車両から随時収集されてもよい。また、学習データ222の作成は、学習装置2以外の他の情報処理装置により行われてもよい。学習装置2が学習データ222を作成する場合には、制御部21は、本ステップS201において、学習データ222の作成処理を実行することで、学習データ222を取得することができる。一方、学習装置2以外の他の情報処理装置が学習データ222を作成する場合には、学習装置2は、ネットワーク、記憶媒体92等を介して、他の情報処理装置により作成された学習データ222を取得することができる。なお、本ステップS201で取得する学習データ222の件数は、ニューラルネットワーク6の機械学習を行うことができるように、実施の形態に応じて適宜決定されてよい。
(ステップS202)
次のステップS202では、制御部21は、学習処理部212として動作して、ステップS201で取得した学習データ222を用いて、低解像度撮影画像223を入力すると脚部即応性情報224に対応する出力値を出力するようにニューラルネットワーク6の機械学習を実施する。
次のステップS202では、制御部21は、学習処理部212として動作して、ステップS201で取得した学習データ222を用いて、低解像度撮影画像223を入力すると脚部即応性情報224に対応する出力値を出力するようにニューラルネットワーク6の機械学習を実施する。
具体的には、まず、制御部21は、学習処理を行う対象となるニューラルネットワーク6を用意する。用意するニューラルネットワーク6の構成、各ニューロン間の結合の重みの初期値、及び各ニューロンの閾値の初期値は、テンプレートにより与えられてもよいし、オペレータの入力により与えられてもよい。また、再学習を行う場合には、制御部21は、再学習を行う対象となる学習結果データ122に基づいて、ニューラルネットワーク6を用意してもよい。
次に、制御部21は、ステップS201で取得した学習データ222に含まれる低解像度撮影画像223を入力データとして用い、脚部即応性情報224を教師データ(正解データ)として用いて、ニューラルネットワーク6の学習処理を行う。このニューラルネットワーク6の学習処理には、確率的勾配降下法等が用いられてよい。
例えば、制御部21は、畳み込みニューラルネットワーク61の最も入力側に配置された畳み込み層に低解像度撮影画像223を入力する。そして、制御部21は、入力側から順に、各層に含まれる各ニューロンの発火判定を行う。これにより、制御部21は、LSTMネットワーク62の出力層から出力値を得る。次に、制御部21は、LSTMネットワーク62の出力層から取得した出力値と脚部即応性情報224に対応する値との誤差を算出する。続いて、制御部21は、通時的誤差逆伝搬(Back propagation through time)法により、算出した出力値の誤差を用いて、各ニューロン間の結合の重み及び各ニューロンの閾値それぞれの誤差を算出する。そして、制御部21は、算出した各誤差に基づいて、各ニューロン間の結合の重み及び各ニューロンの閾値それぞれの値の更新を行う。
制御部21は、各件の学習データ222について、ニューラルネットワーク6から出力される出力値が脚部即応性情報224に対応する値と一致するまでこの一連の処理を繰り返す。これにより、制御部21は、低解像度撮影画像223を入力すると脚部即応性情報224に対応する出力値を出力するニューラルネットワーク6を構築することができる。
(ステップS203)
次のステップS203では、制御部21は、学習処理部212として動作して、構築したニューラルネットワーク6の構成、各ニューロン間の結合の重み、及び各ニューロンの閾値を示す情報を学習結果データ122として記憶部22に格納する。これにより、制御部21は、本動作例に係るニューラルネットワーク6の学習処理を終了する。
次のステップS203では、制御部21は、学習処理部212として動作して、構築したニューラルネットワーク6の構成、各ニューロン間の結合の重み、及び各ニューロンの閾値を示す情報を学習結果データ122として記憶部22に格納する。これにより、制御部21は、本動作例に係るニューラルネットワーク6の学習処理を終了する。
なお、制御部21は、上記ステップS203の処理が完了した後に、作成した学習結果データ122を自動運転支援装置1に転送してもよい。また、制御部21は、上記ステップS201~S203の学習処理を定期的に実行することで、学習結果データ122を定期的に更新してもよい。そして、制御部21は、作成した学習結果データ122を当該学習処理の実行毎に自動運転支援装置1に転送することで、自動運転支援装置1の保持する学習結果データ122を定期的に更新してもよい。また、例えば、制御部21は、作成した学習結果データ122をNAS(Network Attached Storage)等のデータサーバに保管してもよい。この場合、自動運転支援装置1は、このデータサーバから学習結果データ122を取得してもよい。
[作用・効果]
以上のように、本実施形態に係る自動運転支援装置1は、上記ステップS102及びS103の処理により、車両100の運転席についた運転者Dの脚部を撮影可能に配置されたカメラ31から得られる撮影画像(低解像度撮影画像1231)を取得する。そして、自動運転支援装置1は、上記ステップS104及びS105により、取得した低解像度撮影画像1231を学習済みのニューラルネットワーク(ニューラルネットワーク5)に入力することで、運転者Dの脚部の運転に対する即応性の程度を推定する。この学習済みのニューラルネットワークは、上記学習装置2により、低解像度撮影画像223及び脚部即応性情報224を含む学習データ222を用いて作成される。
以上のように、本実施形態に係る自動運転支援装置1は、上記ステップS102及びS103の処理により、車両100の運転席についた運転者Dの脚部を撮影可能に配置されたカメラ31から得られる撮影画像(低解像度撮影画像1231)を取得する。そして、自動運転支援装置1は、上記ステップS104及びS105により、取得した低解像度撮影画像1231を学習済みのニューラルネットワーク(ニューラルネットワーク5)に入力することで、運転者Dの脚部の運転に対する即応性の程度を推定する。この学習済みのニューラルネットワークは、上記学習装置2により、低解像度撮影画像223及び脚部即応性情報224を含む学習データ222を用いて作成される。
したがって、本実施形態によれば、学習済みのニューラルネットワークと運転者Dの脚部が写り得る撮影画像とを用いることで、運転者Dの脚部が運転操作を行える状態にあるか否かに関する指標を脚部即応性情報124として得ることができる。これにより、自動運転モードで車両100が走行している際に、運転者Dの脚部が運転操作に直ちに対応可能かどうかを推定する精度を向上させることができる。加えて、上記ステップS106及びS109のように、この脚部即応性情報124に基づいて、運転者Dが運転操作を行える状態にあるか否かという観点で、車両100の自動運転の動作を制御することができる。
また、本実施形態では、運転者Dの脚部の挙動を推定するために、当該運転者Dの脚部を撮影可能に配置したカメラ31の撮影画像を用いている。この脚部の挙動は、撮影画像内で大きく表れ得る。そのため、運転者Dの脚部の挙動を推定するのに利用する撮影画像は、詳細な解析が可能なほど高解像度ではなくてもよい。そこで、本実施形態では、ニューラルネットワーク(5、6)の入力として、カメラ31により得られる撮影画像を低解像度化した低解像度撮影画像(1231、223)を用いてもよいように構成されている。これにより、ニューラルネットワーク(5、6)の演算処理の計算量を低減することができ、プロセッサの負荷を低減することができる。なお、低解像度撮影画像(1231、223)の解像度は、運転者の脚部の挙動が判別可能な程度であるのが好ましい。
また、本実施形態に係るニューラルネットワーク5は、畳み込みニューラルネットワーク51を入力側に備えている。これにより、入力(低解像度撮影画像1231)に適した解析を行うことができる。また、本実施形態に係るニューラルネットワーク5は、LSTMネットワーク52を出力側に備えている。低解像度撮影画像1231に時系列データを利用することで、短期的な依存関係だけでなく、長期的な依存関係を考慮して、運転者Dの脚部の運転に対する即応性の程度を推定することができる。したがって、本実施形態によれば、運転者Dの脚部の運転に対する即応性の推定精度を高めることができる。
また、本実施形態では、車両100は、自動運転支援装置1(運転制御部115)により、自動運転モードと手動運転モードとを選択的に実施可能に構成されている。加えて、車両100は、自動運転支援装置1の上記ステップS106及びS109により、自動運転モードを実施している際に、脚部即応性情報124により示される運転者Dの脚部の運転に対する即応性が所定の条件を満たす場合に、自動運転モードから手動運転モードに切り替えるように構成される。これにより、運転者Dの脚部の運転に対する即応性が低い状態にある場合に、車両100の動作が手動運転モードにならないようにし、当該車両100の走行の安全性を確保することができる。
§4 変形例
以上、本発明の実施の形態を詳細に説明してきたが、前述までの説明はあらゆる点において本発明の例示に過ぎない。本発明の範囲を逸脱することなく種々の改良や変形を行うことができることは言うまでもない。例えば、以下のような変更が可能である。なお、以下では、上記実施形態と同様の構成要素に関しては同様の符号を用い、上記実施形態と同様の点については、適宜説明を省略した。以下の変形例は適宜組み合わせ可能である。
以上、本発明の実施の形態を詳細に説明してきたが、前述までの説明はあらゆる点において本発明の例示に過ぎない。本発明の範囲を逸脱することなく種々の改良や変形を行うことができることは言うまでもない。例えば、以下のような変更が可能である。なお、以下では、上記実施形態と同様の構成要素に関しては同様の符号を用い、上記実施形態と同様の点については、適宜説明を省略した。以下の変形例は適宜組み合わせ可能である。
<4.1>
上記実施形態では、自動運転支援装置1は、運転者Dを監視するモジュール(画像取得部111~警告部114)及び車両100の自動運転の動作を制御するモジュール(運転制御部115)の両方を備えている。しかしながら、自動運転支援装置1のハードウェア構成は、このような例に限られなくてもよい。例えば、運転者Dを監視するモジュール及び車両100の自動運転の動作を制御するモジュールはそれぞれ別々のコンピュータに備えられてもよい。この場合、自動運転モードから手動運転モードへの切り替えを指示する切替指示部は、運転者Dを監視するモジュールと共にコンピュータに備えられてもよい。すなわち、切替指示部のモジュールを備えるコンピュータは、自動運転モードが実施されている際に、脚部即応性情報124により示される運転者Dの脚部の運転に対する即応性が所定の条件を満たす場合に、自動運転モードから手動運転モードに切り替える指示を車両100に対して出力してもよい。これに応じて、自動運転の動作を制御するモジュールを備えるコンピュータは、自動運転モードから手動運転モードへの切り替えの制御を行ってもよい。
上記実施形態では、自動運転支援装置1は、運転者Dを監視するモジュール(画像取得部111~警告部114)及び車両100の自動運転の動作を制御するモジュール(運転制御部115)の両方を備えている。しかしながら、自動運転支援装置1のハードウェア構成は、このような例に限られなくてもよい。例えば、運転者Dを監視するモジュール及び車両100の自動運転の動作を制御するモジュールはそれぞれ別々のコンピュータに備えられてもよい。この場合、自動運転モードから手動運転モードへの切り替えを指示する切替指示部は、運転者Dを監視するモジュールと共にコンピュータに備えられてもよい。すなわち、切替指示部のモジュールを備えるコンピュータは、自動運転モードが実施されている際に、脚部即応性情報124により示される運転者Dの脚部の運転に対する即応性が所定の条件を満たす場合に、自動運転モードから手動運転モードに切り替える指示を車両100に対して出力してもよい。これに応じて、自動運転の動作を制御するモジュールを備えるコンピュータは、自動運転モードから手動運転モードへの切り替えの制御を行ってもよい。
<4.2>
上記実施形態では、自動運転支援装置1は、運転者Dの指示に応じて、自動運転モードと手動運転モードとを選択的に実施するように車両100の動作を制御している。しかしながら、自動運転モード及び手動運転モードを開始するトリガは、このような運転者Dの指示に限られなくてもよく、実施の形態に応じて適宜設定されてよい。例えば、ハンドルにセンサが取り付けられ、運転者がハンドルを握っているか否かを検知してもよい。この場合、自動運転支援装置1は、運転者がハンドルを握ったことを検知した後に、自動運転モードから手動運転モードへの切り替えを開始するまでのカウントダウン時間を音声又は表示により出力してもよい。そして、自動運転支援装置1は、カウントアップした時点で、車両100の動作を自動運転モードから手動運転モードに切り替えてもよい。
上記実施形態では、自動運転支援装置1は、運転者Dの指示に応じて、自動運転モードと手動運転モードとを選択的に実施するように車両100の動作を制御している。しかしながら、自動運転モード及び手動運転モードを開始するトリガは、このような運転者Dの指示に限られなくてもよく、実施の形態に応じて適宜設定されてよい。例えば、ハンドルにセンサが取り付けられ、運転者がハンドルを握っているか否かを検知してもよい。この場合、自動運転支援装置1は、運転者がハンドルを握ったことを検知した後に、自動運転モードから手動運転モードへの切り替えを開始するまでのカウントダウン時間を音声又は表示により出力してもよい。そして、自動運転支援装置1は、カウントアップした時点で、車両100の動作を自動運転モードから手動運転モードに切り替えてもよい。
<4.3>
上記実施形態では、脚部即応性情報124は、運転者Dの脚部の運転に対する即応性が高い状態であるか低い状態であるかを2つのレベルで示している。しかしながら、脚部即応性情報124の表現形式は、このような例に限定されなくてもよい。脚部即応性情報124は、運転者Dの脚部の運転に対する即応性の程度を3つ以上のレベルで段階的に示してもよい。
上記実施形態では、脚部即応性情報124は、運転者Dの脚部の運転に対する即応性が高い状態であるか低い状態であるかを2つのレベルで示している。しかしながら、脚部即応性情報124の表現形式は、このような例に限定されなくてもよい。脚部即応性情報124は、運転者Dの脚部の運転に対する即応性の程度を3つ以上のレベルで段階的に示してもよい。
図9は、本変形例に係る脚部即応性情報の一例を示す。図9に示すとおり、本変形例に係る脚部即応性情報は、各行動状態に対する即応性の程度を0から1までのスコア値で定めている。例えば、図9の例では、「あぐらをかいている」及び「膝が90度以下に屈曲している」にはそれぞれスコア値「0」が割り当てられており、「右足が右側、左脚が左側に位置している」、「両脚が伸びている」及び「脚の上に物が載っていない」にはそれぞれスコア値「1」が割り当てられており、その他の行動状態には0と1との間のスコア値(例えば、0.5)が割り当てられている。このように、各行動状態に対して3種類以
上のスコア値を割り当てることで、脚部即応性情報124は、運転者Dの脚部の運転に対する即応性の程度を3つ以上のレベルで段階的に示してもよい。
上のスコア値を割り当てることで、脚部即応性情報124は、運転者Dの脚部の運転に対する即応性の程度を3つ以上のレベルで段階的に示してもよい。
この場合、上記ステップS106では、制御部11は、脚部即応性情報124のスコア値に基づいて、運転者Dが車両100の運転に復帰するのに適した状態にあるか否かを判定してもよい。例えば、制御部11は、脚部即応性情報124のスコア値が所定の閾値よりも高いか否かに基づいて、運転者Dが車両100の運転に復帰するのに適した状態にあるか否かを判定してもよい。閾値は、運転者Dが車両100の運転に復帰するのに適した状態にあるか否かを判定するための基準であり、上記「所定の条件」の一例である。この閾値は、適宜設定されてよい。なお、スコア値の上限値は「1」に限られなくてもよく、下限値は「0」に限られなくてもよい。
また、上記ステップS107では、制御部11(警告部114)は、脚部即応性情報124の示す運転者Dの脚部の運転に対する即応性のレベルに応じて、脚部の即応性を高めるように運転者Dに促す警告を段階的に行ってもよい。例えば、制御部11は、脚部即応性情報124の示すスコア値が低いほど強い警告(例えば、音量を上げる、ビープ音を鳴らす、等)してもよい。
また、上記脚部即応性情報124では、右脚及び左脚の区別がなされていない。しかしながら、車両のペダル操作は一般的に右脚で行われる。そのため、車両の運転操作では、左脚よりも右脚の方が重要であると想定される。そこで、脚部即応性情報124は、右脚及び左脚の即応性を別々に、又は右脚の即応性を示すように構成されてよい。
この場合、上記ステップS106では、制御部11は、脚部即応性情報124により示される運転者Dの右脚の運転に対する即応性が所定の条件を満たすか否かを判定してもよい。そして、ステップS106において、脚部即応性情報124により示される運転者Dの右脚の運転に対する即応性が所定の条件を満たすと判定される場合に、制御部11は、上記ステップS109により、自動運転モードから手動運転モードに車両100の動作を切り替えてもよい。
このように制御することで、車両100は、自動運転モードを実施している際に、脚部即応性情報124により示される運転者Dの右脚の運転に対する即応性が所定の条件を満たす場合に、自動運転モードから手動運転モードに切り替えるように構成される。これによって、運転者Dが車両100の運転操作を行える状態にあるか否かを適切に評価することができる。
また、上記図9の例では、「膝が90度以下に屈曲している」と「両脚が伸びている」とで異なるスコア値が割り当てられている。このように、脚部即応性情報124は、運転者の脚部の屈曲状態に応じて、運転者の脚部の運転に対する即応性の程度を3つ以上のレベルで段階的に示してもよい。この場合、脚部即応性情報124は、上記図9の例と同様に、スコア値により表現されてよい。
屈曲状態は、脚部の関節の屈曲度、屈曲方向等で定まる。この屈曲状態と脚部の即応性との対応関係は、実施の形態に応じて適宜設定可能である。例えば、運転者の脚部が伸びている場合には、当該運転者はペダル操作をすぐにでも行うことができるため、運転に対する即応性が高い状態にあると想定される。一方、座禅を組む等により運転者の膝が0度に近い状態まで折れ曲がっている場合には、当該運転者はペダル操作をすぐには行えないため、運転に対する即応性が低い状態にあると想定される。そこで、脚部即応性情報124のスコア値は、運転者の脚部が伸びている状態に近いほど高く、運転者の膝が0度まで折れ曲がっている状態に近いほど小さくなるように設定されてよい。
また、例えば、車の進行方向に膝が屈曲している状態と車の幅方向に膝が屈曲している状態とを比較すると、車の進行方向に膝が屈曲している状態の方が、車の幅方向に膝が屈曲している状態に比べて、車両のペダルに脚を乗せやすいと想定される。そのため、脚部即応性情報124のスコア値は、同じ屈曲度であっても、車の幅方向に対する屈曲が、車の進行方向に対する屈曲に比べて、即応性の程度が小さくなるように設定されてよい。
また、上記実施形態及び図9の例では、脚部即応性情報124の示す即応性の程度は、各行動状態に対応して設定されている。しかしながら、同一の行動状態の中でも、即応性の程度は変化し得る。例えば、脚を組み始めた状況では、脚部の運転に対する即応性は低い状態にあると想定されるのに対して、脚を組んだのを終了して、脚を延ばそうとしている状況では、脚部の運転に対する即応性は高い状態にあると想定される。そこで、脚部即応性情報124の示す即応性の程度は、同一の行動状態であっても、その状況に応じて異なるように設定されてもよい。これにより、運転者Dが車両100の運転操作を行える状態にあるか否かを更に適切に評価することができる。また、同一の行動状態であっても、その状況に応じて、自動運転モードから手動運転モードに切り替えないようにしたり、切り替えられるようにしたりすることができる。例えば、上記の点を考慮して、「脚を組んでいる」状態について、脚を組み始めたケースに対しては0に近いスコア値を割り当て、脚を組んだ状態を終了して、脚を延ばそうとしているケースに対しては1に近いスコア値を割り当ててもよい。この場合、脚を組み始めたケースでは、自動運転モードから手動運転モードへの切り替えが起きないようにし、脚を延ばそうとしているケースでは、自動運転モードから手動運転モードへの切り替えが起きるように車両の制御を行うことができる。
<4.4>
上記実施形態では、上記ステップS104において、低解像度撮影画像1231をニューラルネットワーク5に入力している。しかしながら、ニューラルネットワーク5に入力する撮影画像は、このような例に限定されなくてもよい。制御部11は、ステップS102で取得した撮影画像123をそのままニューラルネットワーク5に入力してもよい。なお、この場合、上記処理手順において、ステップS103は省略されてよい。また、上記自動運転支援装置1のソフトウェア構成において、解像度変換部112は省略されてよい。
上記実施形態では、上記ステップS104において、低解像度撮影画像1231をニューラルネットワーク5に入力している。しかしながら、ニューラルネットワーク5に入力する撮影画像は、このような例に限定されなくてもよい。制御部11は、ステップS102で取得した撮影画像123をそのままニューラルネットワーク5に入力してもよい。なお、この場合、上記処理手順において、ステップS103は省略されてよい。また、上記自動運転支援装置1のソフトウェア構成において、解像度変換部112は省略されてよい。
<4.5>
上記実施形態では、図4及び図6に示されるとおり、運転者Dの脚部の運転に対する即応性の推定に利用するニューラルネットワークは、畳み込みニューラルネットワーク及びLSTMネットワークを備えている。しかしながら、当該ニューラルネットワークの構成は、このような例に限定されなくてもよく、実施の形態に応じて適宜決定されてよい。例えば、LSTMネットワークは省略されてもよい。
上記実施形態では、図4及び図6に示されるとおり、運転者Dの脚部の運転に対する即応性の推定に利用するニューラルネットワークは、畳み込みニューラルネットワーク及びLSTMネットワークを備えている。しかしながら、当該ニューラルネットワークの構成は、このような例に限定されなくてもよく、実施の形態に応じて適宜決定されてよい。例えば、LSTMネットワークは省略されてもよい。
<4.6>
上記実施形態では、運転者Dの脚部の運転に対する即応性の推定に利用する学習器として、ニューラルネットワークを用いている。しかしながら、学習器の種類は、撮影画像を入力として利用可能であれば、ニューラルネットワークに限られなくてもよく、実施の形態に応じて適宜選択されてよい。利用可能な学習器として、例えば、サポートベクターマシン、自己組織化マップ、強化学習により機械学習を行う学習器等を挙げることができる。
上記実施形態では、運転者Dの脚部の運転に対する即応性の推定に利用する学習器として、ニューラルネットワークを用いている。しかしながら、学習器の種類は、撮影画像を入力として利用可能であれば、ニューラルネットワークに限られなくてもよく、実施の形態に応じて適宜選択されてよい。利用可能な学習器として、例えば、サポートベクターマシン、自己組織化マップ、強化学習により機械学習を行う学習器等を挙げることができる。
<4.7>
上記実施形態では、制御部11は、ステップS104において、低解像度撮影画像1231をニューラルネットワーク5に入力している。しかしながら、ニューラルネットワーク5の入力は、このような例に限定されなくてもよく、低解像度撮影画像1231以外の情報が、ニューラルネットワーク5に入力されてもよい。
上記実施形態では、制御部11は、ステップS104において、低解像度撮影画像1231をニューラルネットワーク5に入力している。しかしながら、ニューラルネットワーク5の入力は、このような例に限定されなくてもよく、低解像度撮影画像1231以外の情報が、ニューラルネットワーク5に入力されてもよい。
図10は、本変形例に係る自動運転支援装置1Aのソフトウェア構成の一例を模式的に例示する。自動運転支援装置1Aは、運転者Dの運転状態に影響を与える因子に関する影響因子情報125をニューラルネットワーク5Aに更に入力する。影響因子情報125は、例えば、車両の走行速度を示す速度情報、車両の周辺環境の状態を示す周辺環境情報(レーダの測定結果、カメラの撮影画像)、天候を示す天候情報等である。
このとき、影響因子情報125は、撮影画像(低解像度撮影画像1231)と共に、畳み込みニューラルネットワーク51に入力されてもよい。ただし、影響因子情報125は、画像情報ではなく、畳み込みニューラルネットワーク51に入力するのに適さない可能性がある。そこで、本変形例に係るニューラルネットワーク5Aは、上記ニューラルネットワーク5の構成に加えて、全結合ニューラルネットワーク53と結合層54とを備えている。全結合ニューラルネットワーク53は、畳み込みニューラルネットワーク51と並列に入力側に配置される。この全結合ニューラルネットワーク53には、影響因子情報125が入力される。結合層54は、畳み込みニューラルネットワーク51及び全結合ニューラルネットワーク53の出力を結合する。
具体的には、全結合ニューラルネットワーク53は、いわゆる多層構造のニューラルネットワークであり、入力側から順に、入力層531、中間層(隠れ層)532、及び出力層533を備えている。ただし、全結合ニューラルネットワーク53の層の数は、このような例に限定されなくてもよく、実施の形態に応じて適宜選択されてよい。
各層531~533は、1又は複数のニューロン(ノード)を備えている。各層531~533に含まれるニューロンの個数は、実施の形態に応じて適宜設定されてよい。各層531~533に含まれる各ニューロンが、隣接する層に含まれる全てのニューロンに結合されていることで、全結合ニューラルネットワーク53は構成される。各結合には、重み(結合荷重)が適宜設定されている。
また、結合層54は、畳み込みニューラルネットワーク51及び全結合ニューラルネットワーク53とLSTMネットワーク52との間に配置される。結合層54は、畳み込みニューラルネットワーク51の出力層514からの出力及び全結合ニューラルネットワーク53の出力層533からの出力を結合する。結合層54に含まれるニューロンの個数は、畳み込みニューラルネットワーク51及び全結合ニューラルネットワーク53の出力の数に応じて適宜設定されてよい。結合層54の出力は、LSTMネットワーク52の入力層521に入力される。
以上の点を除き、自動運転支援装置1Aは、上記実施形態に係る自動運転支援装置1と同様に構成される。当該変形例では、低解像度撮影画像1231の他に、影響因子情報125を更に利用することにより、運転者Dの運転状態に影響を与える因子を上記推定処理に反映することができる。これによって、当該変形例によれば、運転者Dの脚部の運転に対する即応性の推定精度を高めることができる。
なお、制御部11は、この影響因子情報125に基づいて、上記ステップS106における判定基準を変更してもよい。例えば、上記変形例<4.3>のとおり、脚部即応性情報124がスコア値で示される場合に、制御部11は、影響因子情報125に基づいて、上記ステップS106の判定に利用する閾値を変更してもよい。一例として、制御部11は、速度情報の示す車両の走行速度が大きくなるほど、運転者Dが車両の運転操作を行える状態にあると判定するための閾値(所定の条件)の値を大きくしてもよい。
<4.8>
上記実施形態では、自動運転支援装置1は、警告部114を備え、ステップS107において運転者Dに対する警告を実施する。しかしながら、警告を実施しない場合には、ステップS107は省略されてよく、自動運転支援装置1のソフトウェア構成から警告部114が省略されてもよい。
上記実施形態では、自動運転支援装置1は、警告部114を備え、ステップS107において運転者Dに対する警告を実施する。しかしながら、警告を実施しない場合には、ステップS107は省略されてよく、自動運転支援装置1のソフトウェア構成から警告部114が省略されてもよい。
<4.9>
上記実施形態では、自動運転支援装置1は、ニューラルネットワーク5からの出力として、当該ニューラルネットワーク5から脚部即応性情報124を直接的に取得している。しかしながら、脚部即応性情報を学習器から取得する方法は、このような例に限定されなくてもよい。例えば、自動運転支援装置1は、学習器の出力値と脚部の即応性の程度とを対応付けたテーブル形式等の参照情報を記憶部12に保持していてもよい。この場合、制御部11は、上記ステップS104において、低解像度撮影画像1231を入力として用いて、ニューラルネットワーク5の演算処理を行うことで、当該ニューラルネットワーク5から出力値を得る。そして、上記ステップS105において、制御部11は、参照情報を参照することで、ニューラルネットワーク5から得た出力値に対応する脚部の即応性の程度を示す脚部即応性情報124を取得する。このように、自動運転支援装置1は、脚部即応性情報124を間接的に取得してもよい。なお、この場合、参照情報は、ユーザ毎に保持されてもよい。また、ニューラルネットワーク5から出力される出力値は、運転者の脚部の状態に対応するように設定されてもよい。
上記実施形態では、自動運転支援装置1は、ニューラルネットワーク5からの出力として、当該ニューラルネットワーク5から脚部即応性情報124を直接的に取得している。しかしながら、脚部即応性情報を学習器から取得する方法は、このような例に限定されなくてもよい。例えば、自動運転支援装置1は、学習器の出力値と脚部の即応性の程度とを対応付けたテーブル形式等の参照情報を記憶部12に保持していてもよい。この場合、制御部11は、上記ステップS104において、低解像度撮影画像1231を入力として用いて、ニューラルネットワーク5の演算処理を行うことで、当該ニューラルネットワーク5から出力値を得る。そして、上記ステップS105において、制御部11は、参照情報を参照することで、ニューラルネットワーク5から得た出力値に対応する脚部の即応性の程度を示す脚部即応性情報124を取得する。このように、自動運転支援装置1は、脚部即応性情報124を間接的に取得してもよい。なお、この場合、参照情報は、ユーザ毎に保持されてもよい。また、ニューラルネットワーク5から出力される出力値は、運転者の脚部の状態に対応するように設定されてもよい。
(付記1)
ハードウェアプロセッサ(11)と、
前記ハードウェアプロセッサ(11)で実行するプログラム(121)を保持するメモリ(12)と、
を備える運転者監視装置(1、1A)であって、
前記ハードウェアプロセッサ(11)は、前記プログラム(121)を実行することにより、
車両の運転席に着いた運転者の脚部を撮影可能に配置された撮影装置から撮影画像を取得する画像取得ステップと、
前記運転者の脚部の運転に対する即応性の程度を推定するための機械学習を行った学習済みの学習器に前記撮影画像を入力することで、前記運転者の脚部の運転に対する即応性の程度を示す脚部即応性情報を当該学習器から取得する推定ステップと、
を実行するように構成される、
運転者監視装置(1、1A)。
ハードウェアプロセッサ(11)と、
前記ハードウェアプロセッサ(11)で実行するプログラム(121)を保持するメモリ(12)と、
を備える運転者監視装置(1、1A)であって、
前記ハードウェアプロセッサ(11)は、前記プログラム(121)を実行することにより、
車両の運転席に着いた運転者の脚部を撮影可能に配置された撮影装置から撮影画像を取得する画像取得ステップと、
前記運転者の脚部の運転に対する即応性の程度を推定するための機械学習を行った学習済みの学習器に前記撮影画像を入力することで、前記運転者の脚部の運転に対する即応性の程度を示す脚部即応性情報を当該学習器から取得する推定ステップと、
を実行するように構成される、
運転者監視装置(1、1A)。
(付記2)
ハードウェアプロセッサ(11)により、車両の運転席に着いた運転者の脚部を撮影可能に配置された撮影装置から撮影画像を取得する画像取得ステップと、
ハードウェアプロセッサ(11)により、前記運転者の脚部の運転に対する即応性の程度を推定するための機械学習を行った学習済みの学習器に前記撮影画像を入力することで、前記運転者の脚部の運転に対する即応性の程度を示す脚部即応性情報を当該学習器から取得する推定ステップと、
を備える、
運転者監視方法。
ハードウェアプロセッサ(11)により、車両の運転席に着いた運転者の脚部を撮影可能に配置された撮影装置から撮影画像を取得する画像取得ステップと、
ハードウェアプロセッサ(11)により、前記運転者の脚部の運転に対する即応性の程度を推定するための機械学習を行った学習済みの学習器に前記撮影画像を入力することで、前記運転者の脚部の運転に対する即応性の程度を示す脚部即応性情報を当該学習器から取得する推定ステップと、
を備える、
運転者監視方法。
(付記3)
ハードウェアプロセッサ(21)と、
前記ハードウェアプロセッサ(21)で実行するプログラム(221)を保持するメモリ(22)と、
を備える学習装置(2)であって、
前記ハードウェアプロセッサ(21)は、前記プログラム(221)を実行することにより、
車両の運転席に着いた運転者の脚部を撮影可能に配置された撮影装置から取得される撮影画像、及び当該運転者の脚部の運転に対する即応性の程度を示す脚部即応性情報の組を学習データとして取得する学習データ取得ステップと、
前記撮影画像を入力すると前記脚部即応性情報に対応する出力値を出力するように学習器の機械学習を行う学習処理ステップと、
を実施するように構成される、
学習装置(2)。
ハードウェアプロセッサ(21)と、
前記ハードウェアプロセッサ(21)で実行するプログラム(221)を保持するメモリ(22)と、
を備える学習装置(2)であって、
前記ハードウェアプロセッサ(21)は、前記プログラム(221)を実行することにより、
車両の運転席に着いた運転者の脚部を撮影可能に配置された撮影装置から取得される撮影画像、及び当該運転者の脚部の運転に対する即応性の程度を示す脚部即応性情報の組を学習データとして取得する学習データ取得ステップと、
前記撮影画像を入力すると前記脚部即応性情報に対応する出力値を出力するように学習器の機械学習を行う学習処理ステップと、
を実施するように構成される、
学習装置(2)。
(付記4)
ハードウェアプロセッサ(21)により、車両の運転席に着いた運転者の脚部を撮影可能に配置された撮影装置から取得される撮影画像、及び当該運転者の脚部の運転に対する即応性の程度を示す脚部即応性情報の組を学習データとして取得する学習データ取得ステップと、
ハードウェアプロセッサ(21)により、前記撮影画像を入力すると前記脚部即応性情報に対応する出力値を出力するように学習器の機械学習を行う学習処理ステップと、
を備える、
学習方法。
ハードウェアプロセッサ(21)により、車両の運転席に着いた運転者の脚部を撮影可能に配置された撮影装置から取得される撮影画像、及び当該運転者の脚部の運転に対する即応性の程度を示す脚部即応性情報の組を学習データとして取得する学習データ取得ステップと、
ハードウェアプロセッサ(21)により、前記撮影画像を入力すると前記脚部即応性情報に対応する出力値を出力するように学習器の機械学習を行う学習処理ステップと、
を備える、
学習方法。
1…自動運転支援装置(運転者監視装置)、
11…制御部、12…記憶部、13…外部インタフェース、
111…画像取得部、112…解像度変換部、
113…即応性推定部、114…警告部、
121…プログラム、122…学習結果データ、
123…撮影画像、1231…低解像度撮影画像、
124…脚部即応性情報、
2…学習装置、
21…制御部、22…記憶部、23…通信インタフェース、
24…入力装置、25…出力装置、26…ドライブ、
211…学習データ取得部、212…学習処理部、
221…学習プログラム、222…学習データ、
223…低解像度撮影画像、224…脚部即応性情報、
30…ナビゲーション装置、31…カメラ、32…スピーカ、
5…ニューラルネットワーク、
51…畳み込みニューラルネットワーク、
511…畳み込み層、512…プーリング層、
513…全結合層、514…出力層、
52…LSTMネットワーク(再帰型ニューラルネットワーク)、
521…入力層、522…LSTMブロック、523…出力層、
53…全結合ニューラルネットワーク、
531…入力層、532…中間層(隠れ層)、533…出力層、
54…結合層、
6…ニューラルネットワーク、
61…畳み込みニューラルネットワーク、
62…LSTMネットワーク、
92…記憶媒体
11…制御部、12…記憶部、13…外部インタフェース、
111…画像取得部、112…解像度変換部、
113…即応性推定部、114…警告部、
121…プログラム、122…学習結果データ、
123…撮影画像、1231…低解像度撮影画像、
124…脚部即応性情報、
2…学習装置、
21…制御部、22…記憶部、23…通信インタフェース、
24…入力装置、25…出力装置、26…ドライブ、
211…学習データ取得部、212…学習処理部、
221…学習プログラム、222…学習データ、
223…低解像度撮影画像、224…脚部即応性情報、
30…ナビゲーション装置、31…カメラ、32…スピーカ、
5…ニューラルネットワーク、
51…畳み込みニューラルネットワーク、
511…畳み込み層、512…プーリング層、
513…全結合層、514…出力層、
52…LSTMネットワーク(再帰型ニューラルネットワーク)、
521…入力層、522…LSTMブロック、523…出力層、
53…全結合ニューラルネットワーク、
531…入力層、532…中間層(隠れ層)、533…出力層、
54…結合層、
6…ニューラルネットワーク、
61…畳み込みニューラルネットワーク、
62…LSTMネットワーク、
92…記憶媒体
Claims (14)
- 車両の運転席に着いた運転者の脚部を撮影可能に配置された撮影装置から撮影画像を取得する画像取得部と、
前記運転者の脚部の運転に対する即応性の程度を推定するための機械学習を行った学習済みの学習器に前記撮影画像を入力することで、前記運転者の脚部の運転に対する即応性の程度を示す脚部即応性情報を当該学習器から取得する即応性推定部と、
を備える、
運転者監視装置。 - 自動的に運転操作を行う自動運転モードと運転者の手動により運転操作を行う手動運転モードとを選択的に実施可能に構成された前記車両に対して、前記自動運転モードが実施されている際に、前記脚部即応性情報により示される前記運転者の脚部の運転に対する即応性が所定の条件を満たす場合に、前記自動運転モードから前記手動運転モードに切り替える指示を出力する切替指示部を更に備える、
請求項1に記載の運転者監視装置。 - 前記切替指示部は、前記自動運転モードが実施されている際に、前記脚部即応性情報により示される前記運転者の右脚の運転に対する即応性が所定の条件を満たす場合に、前記自動運転モードから前記手動運転モードに切り替える指示を出力する、
請求項2に記載の運転者監視装置。 - 前記脚部即応性情報は、前記運転者の脚部の運転に対する即応性の程度を3つ以上のレベルで段階的に示す、
請求項1から3のいずれか1項に記載の運転者監視装置。 - 前記脚部即応性情報は、前記運転者の脚部の屈曲状態に応じて、前記運転者の脚部の運転に対する即応性の程度を3つ以上のレベルで段階的に示す、
請求項4に記載の運転者監視装置。 - 前記脚部即応性情報の示す前記運転者の脚部の運転に対する即応性のレベルに応じて、脚部の即応性を高めるように前記運転者に促す警告を段階的に行う警告部を更に備える、
請求項4又は5に記載の運転者監視装置。 - コンピュータが、
車両の運転席に着いた運転者の脚部を撮影可能に配置された撮影装置から撮影画像を取得する画像取得ステップと、
前記運転者の脚部の運転に対する即応性の程度を推定するための機械学習を行った学習済みの学習器に前記撮影画像を入力することで、前記運転者の脚部の運転に対する即応性の程度を示す脚部即応性情報を当該学習器から取得する推定ステップと、
を実行する、
運転者監視方法。 - 前記コンピュータは、
自動的に運転操作を行う自動運転モードと運転者の手動により運転操作を行う手動運転モードとを選択的に実施するように前記車両の動作を制御し、
前記自動運転モードを実施している際に、前記脚部即応性情報により示される前記運転者の脚部の運転に対する即応性が所定の条件を満たす場合に、前記自動運転モードから前記手動運転モードに切り替える、
請求項7に記載の運転者監視方法。 - 前記コンピュータは、前記自動運転モードを実施している際に、前記脚部即応性情報により示される前記運転者の右脚の運転に対する即応性が所定の条件を満たす場合に、前記自動運転モードから前記手動運転モードに切り替える、
請求項8に記載の運転者監視方法。 - 前記脚部即応性情報は、前記運転者の脚部の運転に対する即応性の程度を3つ以上のレベルで段階的に示す、
請求項7から9のいずれか1項に記載の運転者監視方法。 - 前記脚部即応性情報は、前記運転者の脚部の屈曲状態に応じて、前記運転者の脚部の運転に対する即応性の程度を3つ以上のレベルで段階的に示す、
請求項10に記載の運転者監視方法。 - 前記コンピュータは、前記脚部即応性情報の示す前記運転者の脚部の運転に対する即応性のレベルに応じて、脚部の即応性を高めるように前記運転者に促す警告を段階的に行う警告ステップを更に実行する、
請求項10又は11に記載の運転者監視方法。 - 車両の運転席に着いた運転者の脚部を撮影可能に配置された撮影装置から取得される撮影画像、及び当該運転者の脚部の運転に対する即応性の程度を示す脚部即応性情報の組を学習データとして取得する学習データ取得部と、
前記撮影画像を入力すると前記脚部即応性情報に対応する出力値を出力するように学習器の機械学習を行う学習処理部と、
を備える、
学習装置。 - コンピュータが、
車両の運転席に着いた運転者の脚部を撮影可能に配置された撮影装置から取得される撮影画像、及び当該運転者の脚部の運転に対する即応性の程度を示す脚部即応性情報の組を学習データとして取得するステップと、
前記撮影画像を入力すると前記脚部即応性情報に対応する出力値を出力するように学習器の機械学習を行うステップと、
を実行する、
学習方法。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017049250 | 2017-03-14 | ||
JP2017-049250 | 2017-03-14 | ||
JP2017130208A JP6264494B1 (ja) | 2017-03-14 | 2017-07-03 | 運転者監視装置、運転者監視方法、学習装置及び学習方法 |
JP2017-130208 | 2017-07-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018168039A1 true WO2018168039A1 (ja) | 2018-09-20 |
Family
ID=61020628
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/019719 WO2018167991A1 (ja) | 2017-03-14 | 2017-05-26 | 運転者監視装置、運転者監視方法、学習装置及び学習方法 |
PCT/JP2017/036277 WO2018168039A1 (ja) | 2017-03-14 | 2017-10-05 | 運転者監視装置、運転者監視方法、学習装置及び学習方法 |
PCT/JP2017/036278 WO2018168040A1 (ja) | 2017-03-14 | 2017-10-05 | 運転者監視装置、運転者監視方法、学習装置及び学習方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/019719 WO2018167991A1 (ja) | 2017-03-14 | 2017-05-26 | 運転者監視装置、運転者監視方法、学習装置及び学習方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/036278 WO2018168040A1 (ja) | 2017-03-14 | 2017-10-05 | 運転者監視装置、運転者監視方法、学習装置及び学習方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20190370580A1 (ja) |
JP (3) | JP6264492B1 (ja) |
CN (1) | CN110268456A (ja) |
DE (1) | DE112017007252T5 (ja) |
WO (3) | WO2018167991A1 (ja) |
Families Citing this family (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109803583A (zh) * | 2017-08-10 | 2019-05-24 | 北京市商汤科技开发有限公司 | 驾驶状态监控方法、装置和电子设备 |
JP6766791B2 (ja) * | 2017-10-04 | 2020-10-14 | 株式会社デンソー | 状態検出装置、状態検出システム及び状態検出プログラム |
US11273836B2 (en) | 2017-12-18 | 2022-03-15 | Plusai, Inc. | Method and system for human-like driving lane planning in autonomous driving vehicles |
US11130497B2 (en) | 2017-12-18 | 2021-09-28 | Plusai Limited | Method and system for ensemble vehicle control prediction in autonomous driving vehicles |
US20190185012A1 (en) | 2017-12-18 | 2019-06-20 | PlusAI Corp | Method and system for personalized motion planning in autonomous driving vehicles |
US10303045B1 (en) * | 2017-12-20 | 2019-05-28 | Micron Technology, Inc. | Control of display device for autonomous vehicle |
US11017249B2 (en) | 2018-01-29 | 2021-05-25 | Futurewei Technologies, Inc. | Primary preview region and gaze based driver distraction detection |
CN111656423A (zh) * | 2018-02-05 | 2020-09-11 | 索尼公司 | 信息处理装置、移动装置、方法以及程序 |
JP7020156B2 (ja) * | 2018-02-06 | 2022-02-16 | オムロン株式会社 | 評価装置、動作制御装置、評価方法、及び評価プログラム |
JP6935774B2 (ja) * | 2018-03-14 | 2021-09-15 | オムロン株式会社 | 推定システム、学習装置、学習方法、推定装置及び推定方法 |
TWI666941B (zh) * | 2018-03-27 | 2019-07-21 | 緯創資通股份有限公司 | 多層次狀態偵測系統與方法 |
JP2021128349A (ja) * | 2018-04-26 | 2021-09-02 | ソニーセミコンダクタソリューションズ株式会社 | 情報処理装置、情報処理システム、および情報処理方法、並びにプログラム |
US12248877B2 (en) * | 2018-05-23 | 2025-03-11 | Movidius Ltd. | Hybrid neural network pruning |
US10684681B2 (en) | 2018-06-11 | 2020-06-16 | Fotonation Limited | Neural network image processing apparatus |
US10457294B1 (en) * | 2018-06-27 | 2019-10-29 | Baidu Usa Llc | Neural network based safety monitoring system for autonomous vehicles |
JP7014129B2 (ja) * | 2018-10-29 | 2022-02-01 | オムロン株式会社 | 推定器生成装置、モニタリング装置、推定器生成方法及び推定器生成プログラム |
US10940863B2 (en) * | 2018-11-01 | 2021-03-09 | GM Global Technology Operations LLC | Spatial and temporal attention-based deep reinforcement learning of hierarchical lane-change policies for controlling an autonomous vehicle |
US11200438B2 (en) | 2018-12-07 | 2021-12-14 | Dus Operating Inc. | Sequential training method for heterogeneous convolutional neural network |
JP7135824B2 (ja) * | 2018-12-17 | 2022-09-13 | 日本電信電話株式会社 | 学習装置、推定装置、学習方法、推定方法、及びプログラム |
US11087175B2 (en) * | 2019-01-30 | 2021-08-10 | StradVision, Inc. | Learning method and learning device of recurrent neural network for autonomous driving safety check for changing driving mode between autonomous driving mode and manual driving mode, and testing method and testing device using them |
JP7334415B2 (ja) * | 2019-02-01 | 2023-08-29 | オムロン株式会社 | 画像処理装置 |
US11068069B2 (en) * | 2019-02-04 | 2021-07-20 | Dus Operating Inc. | Vehicle control with facial and gesture recognition using a convolutional neural network |
JP7361477B2 (ja) * | 2019-03-08 | 2023-10-16 | 株式会社Subaru | 車両の乗員監視装置、および交通システム |
CN111723596B (zh) * | 2019-03-18 | 2024-03-22 | 北京市商汤科技开发有限公司 | 注视区域检测及神经网络的训练方法、装置和设备 |
US10740634B1 (en) | 2019-05-31 | 2020-08-11 | International Business Machines Corporation | Detection of decline in concentration based on anomaly detection |
JP7136047B2 (ja) * | 2019-08-19 | 2022-09-13 | 株式会社デンソー | 運転制御装置及び車両行動提案装置 |
US10752253B1 (en) * | 2019-08-28 | 2020-08-25 | Ford Global Technologies, Llc | Driver awareness detection system |
WO2021053780A1 (ja) * | 2019-09-19 | 2021-03-25 | 三菱電機株式会社 | 認知機能推定装置、学習装置、および、認知機能推定方法 |
JP7564616B2 (ja) | 2019-11-21 | 2024-10-09 | オムロン株式会社 | モデル生成装置、推定装置、モデル生成方法、及びモデル生成プログラム |
JP7434829B2 (ja) | 2019-11-21 | 2024-02-21 | オムロン株式会社 | モデル生成装置、推定装置、モデル生成方法、及びモデル生成プログラム |
US11687778B2 (en) | 2020-01-06 | 2023-06-27 | The Research Foundation For The State University Of New York | Fakecatcher: detection of synthetic portrait videos using biological signals |
US20230293115A1 (en) * | 2020-02-28 | 2023-09-21 | Daikin Industries, Ltd. | Efficiency inference apparatus |
US11738763B2 (en) * | 2020-03-18 | 2023-08-29 | Waymo Llc | Fatigue monitoring system for drivers tasked with monitoring a vehicle operating in an autonomous driving mode |
CN111553190A (zh) * | 2020-03-30 | 2020-08-18 | 浙江工业大学 | 一种基于图像的驾驶员注意力检测方法 |
JP7351253B2 (ja) * | 2020-03-31 | 2023-09-27 | いすゞ自動車株式会社 | 許否決定装置 |
US11494865B2 (en) | 2020-04-21 | 2022-11-08 | Micron Technology, Inc. | Passenger screening |
US11091166B1 (en) * | 2020-04-21 | 2021-08-17 | Micron Technology, Inc. | Driver screening |
FR3111460B1 (fr) * | 2020-06-16 | 2023-03-31 | Continental Automotive | Procédé de génération d’images d’une caméra intérieure de véhicule |
JP7405030B2 (ja) * | 2020-07-15 | 2023-12-26 | トヨタ紡織株式会社 | 状態判定装置、状態判定システム、および制御方法 |
JP7420000B2 (ja) * | 2020-07-15 | 2024-01-23 | トヨタ紡織株式会社 | 状態判定装置、状態判定システム、および制御方法 |
GB2597092A (en) * | 2020-07-15 | 2022-01-19 | Daimler Ag | A method for determining a state of mind of a passenger, as well as an assistance system |
US11396305B2 (en) | 2020-07-30 | 2022-07-26 | Toyota Research Institute, Inc. | Systems and methods for improving driver warnings during automated driving |
JP7186749B2 (ja) * | 2020-08-12 | 2022-12-09 | ソフトバンク株式会社 | 管理システム、管理方法、管理装置、プログラム及び通信端末 |
CN112558510B (zh) * | 2020-10-20 | 2022-11-15 | 山东亦贝数据技术有限公司 | 一种智能网联汽车安全预警系统及预警方法 |
US11978266B2 (en) | 2020-10-21 | 2024-05-07 | Nvidia Corporation | Occupant attentiveness and cognitive load monitoring for autonomous and semi-autonomous driving applications |
WO2022141114A1 (zh) * | 2020-12-29 | 2022-07-07 | 深圳市大疆创新科技有限公司 | 视线估计方法、装置、车辆及计算机可读存储介质 |
DE102021202790A1 (de) | 2021-03-23 | 2022-09-29 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren und Vorrichtung zur Insassenzustandsüberwachung in einem Kraftfahrzeug |
JP7639493B2 (ja) | 2021-04-01 | 2025-03-05 | 日産自動車株式会社 | 音声ガイド提示装置、及び、音声ガイド提示方法 |
JP7589103B2 (ja) * | 2021-04-27 | 2024-11-25 | 京セラ株式会社 | 電子機器、電子機器の制御方法、及びプログラム |
US20240153285A1 (en) * | 2021-06-11 | 2024-05-09 | Sdip Holdings Pty Ltd | Prediction of human subject state via hybrid approach including ai classification and blepharometric analysis, including driver monitoring systems |
WO2023032617A1 (ja) * | 2021-08-30 | 2023-03-09 | パナソニックIpマネジメント株式会社 | 判定システム、判定方法、及び、プログラム |
CN114241458B (zh) * | 2021-12-20 | 2024-06-14 | 东南大学 | 一种基于姿态估计特征融合的驾驶员行为识别方法 |
JP7460867B2 (ja) * | 2021-12-24 | 2024-04-03 | パナソニックオートモーティブシステムズ株式会社 | 推定装置、推定方法及びプログラム |
US11878707B2 (en) * | 2022-03-11 | 2024-01-23 | International Business Machines Corporation | Augmented reality overlay based on self-driving mode |
CN115205622A (zh) * | 2022-06-15 | 2022-10-18 | 同济大学 | 一种基于车载视觉的端到端驾驶员疲劳检测方法 |
JP7523180B1 (ja) | 2023-12-27 | 2024-07-26 | 株式会社レグラス | 作業機械の安全装置 |
CN118411310B (zh) * | 2024-05-23 | 2025-04-29 | 南京昊红樱智能科技有限公司 | 用于自动驾驶的画质增强系统 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006123640A (ja) * | 2004-10-27 | 2006-05-18 | Nissan Motor Co Ltd | ドライビングポジション調整装置 |
JP2013058060A (ja) * | 2011-09-08 | 2013-03-28 | Dainippon Printing Co Ltd | 人物属性推定装置、人物属性推定方法及びプログラム |
JP2013228847A (ja) * | 2012-04-25 | 2013-11-07 | Nippon Hoso Kyokai <Nhk> | 顔表情解析装置および顔表情解析プログラム |
JP2015207253A (ja) * | 2014-04-23 | 2015-11-19 | 株式会社デンソー | 車両用報知装置 |
JP2016078530A (ja) * | 2014-10-14 | 2016-05-16 | 日立オートモティブシステムズ株式会社 | 自動運転システム |
JP2016109495A (ja) * | 2014-12-03 | 2016-06-20 | タカノ株式会社 | 分類器生成装置、外観検査装置、分類器生成方法、及びプログラム |
JP2017030390A (ja) * | 2015-07-29 | 2017-02-09 | 修一 田山 | 車輌の自動運転システム |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2546415B2 (ja) * | 1990-07-09 | 1996-10-23 | トヨタ自動車株式会社 | 車両運転者監視装置 |
JP3654656B2 (ja) * | 1992-11-18 | 2005-06-02 | 日産自動車株式会社 | 車両の予防安全装置 |
US6144755A (en) * | 1996-10-11 | 2000-11-07 | Mitsubishi Electric Information Technology Center America, Inc. (Ita) | Method and apparatus for determining poses |
JP2005050284A (ja) * | 2003-07-31 | 2005-02-24 | Toyota Motor Corp | 動き認識装置および動き認識方法 |
JP2005173635A (ja) * | 2003-12-05 | 2005-06-30 | Fujitsu Ten Ltd | 居眠り検出装置、カメラ、光遮断センサおよびシートベルトセンサ |
JP4677963B2 (ja) * | 2006-09-11 | 2011-04-27 | トヨタ自動車株式会社 | 居眠り検知装置、居眠り検知方法 |
JP2008176510A (ja) * | 2007-01-17 | 2008-07-31 | Denso Corp | 運転支援装置 |
JP4333797B2 (ja) | 2007-02-06 | 2009-09-16 | 株式会社デンソー | 車両用制御装置 |
JP2009037415A (ja) * | 2007-08-01 | 2009-02-19 | Toyota Motor Corp | ドライバ状態判別装置、および運転支援装置 |
JP5224280B2 (ja) * | 2008-08-27 | 2013-07-03 | 株式会社デンソーアイティーラボラトリ | 学習データ管理装置、学習データ管理方法及び車両用空調装置ならびに機器の制御装置 |
JP5163440B2 (ja) | 2008-11-19 | 2013-03-13 | 株式会社デンソー | 眠気判定装置、プログラム |
JP2010238134A (ja) * | 2009-03-31 | 2010-10-21 | Saxa Inc | 画像処理装置及びプログラム |
JP2010257072A (ja) * | 2009-04-22 | 2010-11-11 | Toyota Motor Corp | 意識状態推定装置 |
JP5493593B2 (ja) | 2009-08-26 | 2014-05-14 | アイシン精機株式会社 | 眠気検出装置、眠気検出方法、及びプログラム |
JP5018926B2 (ja) * | 2010-04-19 | 2012-09-05 | 株式会社デンソー | 運転補助装置、及びプログラム |
JP2012038106A (ja) * | 2010-08-06 | 2012-02-23 | Canon Inc | 情報処理装置、情報処理方法、およびプログラム |
CN101941425B (zh) * | 2010-09-17 | 2012-08-22 | 上海交通大学 | 对驾驶员疲劳状态的智能识别装置与方法 |
JP2012084068A (ja) * | 2010-10-14 | 2012-04-26 | Denso Corp | 画像解析装置 |
CN103442925B (zh) * | 2011-03-25 | 2016-08-17 | Tk控股公司 | 用于确定驾驶员警觉性的系统和方法 |
CN102426757A (zh) * | 2011-12-02 | 2012-04-25 | 上海大学 | 基于模式识别的安全驾驶监控系统和方法 |
CN102542257B (zh) * | 2011-12-20 | 2013-09-11 | 东南大学 | 基于视频传感器的驾驶人疲劳等级检测方法 |
CN102622600A (zh) * | 2012-02-02 | 2012-08-01 | 西南交通大学 | 基于面像与眼动分析的高速列车驾驶员警觉度检测方法 |
JP2015099406A (ja) * | 2012-03-05 | 2015-05-28 | アイシン精機株式会社 | 運転支援装置 |
JP5807620B2 (ja) * | 2012-06-19 | 2015-11-10 | トヨタ自動車株式会社 | 運転支援装置 |
US9854159B2 (en) * | 2012-07-20 | 2017-12-26 | Pixart Imaging Inc. | Image system with eye protection |
JP5789578B2 (ja) * | 2012-09-20 | 2015-10-07 | 富士フイルム株式会社 | 眼の開閉判断方法及び装置、プログラム、並びに監視映像システム |
JP6221292B2 (ja) | 2013-03-26 | 2017-11-01 | 富士通株式会社 | 集中度判定プログラム、集中度判定装置、および集中度判定方法 |
JP6150258B2 (ja) * | 2014-01-15 | 2017-06-21 | みこらった株式会社 | 自動運転車 |
GB2525840B (en) * | 2014-02-18 | 2016-09-07 | Jaguar Land Rover Ltd | Autonomous driving system and method for same |
JP2015194798A (ja) * | 2014-03-31 | 2015-11-05 | 日産自動車株式会社 | 運転支援制御装置 |
JP6370469B2 (ja) * | 2014-04-11 | 2018-08-08 | グーグル エルエルシー | 畳み込みニューラルネットワークのトレーニングの並列化 |
EP4035962A3 (en) * | 2014-12-12 | 2022-12-14 | Sony Group Corporation | Automatic driving control device and automatic driving control method |
JP6409699B2 (ja) * | 2015-07-13 | 2018-10-24 | トヨタ自動車株式会社 | 自動運転システム |
CN105139070B (zh) * | 2015-08-27 | 2018-02-02 | 南京信息工程大学 | 基于人工神经网络和证据理论的疲劳驾驶评价方法 |
-
2017
- 2017-05-26 CN CN201780085928.6A patent/CN110268456A/zh active Pending
- 2017-05-26 DE DE112017007252.2T patent/DE112017007252T5/de not_active Withdrawn
- 2017-05-26 US US16/484,480 patent/US20190370580A1/en not_active Abandoned
- 2017-05-26 WO PCT/JP2017/019719 patent/WO2018167991A1/ja active Application Filing
- 2017-06-20 JP JP2017120586A patent/JP6264492B1/ja active Active
- 2017-07-03 JP JP2017130208A patent/JP6264494B1/ja active Active
- 2017-07-03 JP JP2017130209A patent/JP6264495B1/ja active Active
- 2017-10-05 WO PCT/JP2017/036277 patent/WO2018168039A1/ja active Application Filing
- 2017-10-05 WO PCT/JP2017/036278 patent/WO2018168040A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006123640A (ja) * | 2004-10-27 | 2006-05-18 | Nissan Motor Co Ltd | ドライビングポジション調整装置 |
JP2013058060A (ja) * | 2011-09-08 | 2013-03-28 | Dainippon Printing Co Ltd | 人物属性推定装置、人物属性推定方法及びプログラム |
JP2013228847A (ja) * | 2012-04-25 | 2013-11-07 | Nippon Hoso Kyokai <Nhk> | 顔表情解析装置および顔表情解析プログラム |
JP2015207253A (ja) * | 2014-04-23 | 2015-11-19 | 株式会社デンソー | 車両用報知装置 |
JP2016078530A (ja) * | 2014-10-14 | 2016-05-16 | 日立オートモティブシステムズ株式会社 | 自動運転システム |
JP2016109495A (ja) * | 2014-12-03 | 2016-06-20 | タカノ株式会社 | 分類器生成装置、外観検査装置、分類器生成方法、及びプログラム |
JP2017030390A (ja) * | 2015-07-29 | 2017-02-09 | 修一 田山 | 車輌の自動運転システム |
Also Published As
Publication number | Publication date |
---|---|
JP6264492B1 (ja) | 2018-01-24 |
JP2018152034A (ja) | 2018-09-27 |
DE112017007252T5 (de) | 2019-12-19 |
JP6264494B1 (ja) | 2018-01-24 |
JP2018152037A (ja) | 2018-09-27 |
WO2018168040A1 (ja) | 2018-09-20 |
JP2018152038A (ja) | 2018-09-27 |
CN110268456A (zh) | 2019-09-20 |
JP6264495B1 (ja) | 2018-01-24 |
US20190370580A1 (en) | 2019-12-05 |
WO2018167991A1 (ja) | 2018-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6264494B1 (ja) | 運転者監視装置、運転者監視方法、学習装置及び学習方法 | |
WO2019155873A1 (ja) | 評価装置、動作制御装置、評価方法、及び評価プログラム | |
CN112673378B (zh) | 推断器生成装置、监视装置、推断器生成方法以及推断器生成程序 | |
WO2019149061A1 (en) | Gesture-and gaze-based visual data acquisition system | |
US11394870B2 (en) | Main subject determining apparatus, image capturing apparatus, main subject determining method, and storage medium | |
JP6545271B2 (ja) | アプリケーションプログラムの制御方法、装置、及び電子機器 | |
JP6904287B2 (ja) | 制御装置、制御方法、及び制御プログラム | |
WO2018168038A1 (ja) | 運転者の着座判定装置 | |
CN113610898A (zh) | 一种云台控制方法和装置、存储介质及电子装置 | |
JP4985531B2 (ja) | ミラーシステム | |
KR20190031786A (ko) | 전자 장치 및 이의 피드백 정보 획득 방법 | |
WO2020044630A1 (ja) | 検出器生成装置、モニタリング装置、検出器生成方法及び検出器生成プログラム | |
US12013980B2 (en) | Information processing apparatus, information processing method, learning method, and storage medium | |
US20220327728A1 (en) | Information processing apparatus, information processing method, learning method, and storage medium | |
JP6947091B2 (ja) | 運転支援装置、運転支援方法、運転支援プログラム、動作制御装置、動作制御方法、及び動作制御プログラム | |
Ryan et al. | NavSense: A navigation tool for visually impaired | |
JP7535827B2 (ja) | 画像検証方法、それを実行する診断システム、及びその方法が記録されたコンピューター読取可能な記録媒体 | |
US20250114719A1 (en) | System and method for tipping during a livestream | |
WO2020044629A1 (ja) | 検出器生成装置、モニタリング装置、検出器生成方法及び検出器生成プログラム | |
JP2025027367A (ja) | 情報処理装置、情報処理装置の制御方法、及びプログラム | |
JP2024159333A (ja) | 情報処理装置、情報処理方法、及び情報処理プログラム | |
CN116763297A (zh) | 晕动推测装置、晕动推测方法以及非临时性的存储介质 | |
JP2021043665A (ja) | 画像処理装置、画像処理方法および画像処理プログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17901042 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17901042 Country of ref document: EP Kind code of ref document: A1 |