+

WO2018167725A1 - Composite de construction sans contrainte pour la construction de murs et de plafonds structuraux, et procédé de construction de murs et de plafonds structuraux au moyen de composites de construction sans contrainte sans pont - Google Patents

Composite de construction sans contrainte pour la construction de murs et de plafonds structuraux, et procédé de construction de murs et de plafonds structuraux au moyen de composites de construction sans contrainte sans pont Download PDF

Info

Publication number
WO2018167725A1
WO2018167725A1 PCT/IB2018/051767 IB2018051767W WO2018167725A1 WO 2018167725 A1 WO2018167725 A1 WO 2018167725A1 IB 2018051767 W IB2018051767 W IB 2018051767W WO 2018167725 A1 WO2018167725 A1 WO 2018167725A1
Authority
WO
WIPO (PCT)
Prior art keywords
bridgeless
structural
construction
composites
composite
Prior art date
Application number
PCT/IB2018/051767
Other languages
English (en)
Inventor
Aleksander PANEK
Original Assignee
Climatic Sp. Z O.O. Sp. K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Climatic Sp. Z O.O. Sp. K. filed Critical Climatic Sp. Z O.O. Sp. K.
Publication of WO2018167725A1 publication Critical patent/WO2018167725A1/fr

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C3/08Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal with apertured web, e.g. with a web consisting of bar-like components; Honeycomb girders
    • E04C3/09Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal with apertured web, e.g. with a web consisting of bar-like components; Honeycomb girders at least partly of bent or otherwise deformed strip- or sheet-like material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/56Load-bearing walls of framework or pillarwork; Walls incorporating load-bearing elongated members
    • E04B2/58Load-bearing walls of framework or pillarwork; Walls incorporating load-bearing elongated members with elongated members of metal
    • E04B2/60Load-bearing walls of framework or pillarwork; Walls incorporating load-bearing elongated members with elongated members of metal characterised by special cross-section of the elongated members
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/29Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0443Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by substantial shape of the cross-section
    • E04C2003/046L- or T-shaped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0443Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by substantial shape of the cross-section
    • E04C2003/0473U- or C-shaped

Definitions

  • the subject of the invention is non-stress construction composite for building structural walls and ceilings, and a method of building structural walls and ceilings in using non-stress construction composites
  • the solution, according to the invention is widely used in construction, has particular advantages in modular construction.
  • Modular construction is characterized by reduced time of completion of erecting a building. It is connected with the necessity of making the construction process independent of weather conditions. For this reason, construction technology seeks building systems making it possible to manufacture as much of the lightweight structure as possible in the prefabrication plant.
  • modular construction only foundations are laid at the building site. Prefabricated modules are set on the foundations, and work consists in assembling modules and connecting elements of installations running between modules.
  • a significant problem is the need to build a significant part, or even the whole fagade at the construction site after assembling the modular building.
  • the insulating and finishing layer of the fagade completed, for example, using the light wet method is susceptible to mechanical damage.
  • the manufacturing such a fagade in the prefabrication plant involves the risk of damage during loading, transport and assembly. What it means in practice is a necessity of building the fagade at the construction site which is not possible, for example, in adverse weather conditions.
  • the SCS system is known from prior art, in which the outer walls consist essentially of wood chip plasterboard, aluminium mat, SCS structure filled with glass wool, OSB Oriented Strand Board-3 i and an additional layer of heat insulation.
  • the disadvantage of this type of solution is the need to build a double- layer wall to eliminate linear thermal bridges.
  • SCS profiles are made only in specific sizes of 90 mm and 140 mm, which is a significant limitation in the thickness profile of the first layer of the wall in which different types of installations are designed.
  • flat roofs built in the SCS system consist of a roofing membrane, EPS (expanded polystyrene),ln turn, flat roofs built in the SCS system consist of a roofing membrane, EPS (expanded polystyrene), OSB-3 board, SCS structure filled with glass wool, aluminium mat and fibre-plaster board.
  • EPS expanded polystyrene
  • OSB-3 board SCS structure filled with glass wool, aluminium mat and fibre-plaster board.
  • the outer walls of the wooden frame system are basically made of the following layers: Styrofoam/wool, mesh, plaster, MFP. (Multifunction Panel), wind proof foil, timber structure (at a distance of approx. 40 cm) mineral wool, vapour barrier foil, MFP and plasterboard.
  • This technology also implies the need to make a double- layer wall, or make walls of considerable thickness to eliminate linear thermal bridges. This type of walls are not resistant to water or biological corrosion, and are heavier than those made in the technology of bridgeless structural composites.
  • One of the most well-known and widely used external wall construction systems is the traditional brick wall.
  • masonry held external walls are generally made as two-layer: the supporting layer can be made of bricks, hollow blocks, cellular concrete blocks, silicates or expanded clay concrete.
  • the thermal insulation layer is made from mineral wool or polystyrene with a thickness of approx. 12-20cm, fitted from the outer side of the wall.
  • Sandwich panels consist essentially of two claddings of steel sheet (external and internal) and a structural-insulating core between them.
  • the disadvantage of this type of solutions is the possibility of panel separation in the event of fire, surface finishing limitations and placing installations in the insulating layer of the panel.
  • sandwich panels make it impossible to put in windows and doors directly in the panels without using additional substructures.
  • the essence of the invention is a bridgeless structural composite intended for construction of walls and ceilings, which is characterized by the fact that it contains external and internal profiles, battens connecting external and internal profiles and filling.
  • the external and internal profiles are made of sheet metal, preferably of galvanized, stainless or acid resistant steel.
  • the battens are made of sheet metal, preferably of stainless steel or acid resistant sheet metal.
  • the filling is a material having insulating properties.
  • the filling is a closed cell polyurethane foam.
  • the battens are arranged alternately.
  • the battens have axial bends along the longer edge and/or their surface is perforated.
  • the bridged structural composite is in the form of a post or a beam.
  • the bridgeless structural composite is used in construction, preferably in modular construction.
  • the batten used in the composite, according to the invention is a transverse connection between external and internal profiles, preventing their bending.
  • the batten is characterized by increased stiffness (EJ).
  • EJ stiffness
  • the use of an axial bending along the long edge of the batten causes an increase in the moment of inertia in the cross-section of the batten.
  • external and internal profiles and battens having an axial bend along the long edge, the surface of which may have perforations additionally cause a longer heat transfer path, which, in addition to completely eliminating linear thermal bridges, also significantly reduces point thermal bridges, reducing the heat transfer coefficient, both the structural composite and the entire partition, for the construction of which such composites were used.
  • the essence of the invention is also the method of construction of walls and ceilings of buildings using bridgeless structural composites, characterized by the fact that the bridgeless construction composites are placed at a certain axial distance from each other, and that it is accomplished by the following: attaching bridgeless structural composites to the building structure using fasteners, attaching the board intended to be used inside the building directly to bridgeless structural composites, filling the space between bridgeless structural composites with a thermal insulation layer, fixing the board intended for use outside the building directly to bridgeless structural composites or using a spacer structure between bridgeless structural composites and the board intended for use outside the building.
  • Fig. 1 Presents bridgeless structural composite in a side view.
  • Fig. 2. Presents bridgeless structural composite in the A-A cross-section.
  • Fig. 3. Presents bridgeless structural composite profile in a side view.
  • Fig. 4. Presents bridgeless structural composite profile in the B-B cross-section.
  • Fig. 5 Presents the first alternative of the batten in the bridgeless structural composite, in the view.
  • Fig. 6 Presents the first alternative of the batten in the bridgeless structural composite, in the C-C cross-section.
  • Fig. 7 Presents the first alternative of the batten in the bridgeless structural composite, in the D-D cross-section.
  • Fig. 8 Presents the second alternative of the batten in the bridgeless structural composite, in the view.
  • Fig. 9 Presents the second alternative of the batten in the bridgeless structural composite, in the E-E cross-section.
  • Fig. 10 Presents the second alternative of the batten in the bridgeless structural composite, in the F-F cross-section.
  • Fig. 11 Presents the third alternative of the batten in the bridgeless structural composite, in the view.
  • Fig. 12 Presents the third alternative of the batten in the bridgeless structural composite, in the G-G cross-section.
  • Fig. 13 Presents the third alternative of the batten in the bridgeless structural composite, in the H-H cross-section.
  • Fig. 14 Presents the fourth alternative of the batten in the bridgeless structural composite, in the view.
  • Fig. 15 Presents the fourth alternative of the batten in the bridgeless structural composite, in the l-l cross-section.
  • Fig. 16 Presents the fourth alternative of the batten in the bridgeless structural composite, in the J-J cross-section.
  • Fig. 17. Presents the first alternative of a protection wall with bridgeless structural composite in the horizontal section.
  • Fig. 18 Presents the first alternative of a protection wall with bridgeless structural composite in the vertical K-K section.
  • Fig. 19 Presents the second alternative of a protection wall with bridgeless structural composite in the horizontal section.
  • Fig. 20 Presents the second alternative of a protection wall with bridgeless structural composite in the L-L vertical section.
  • Fig. 21 Presents the third alternative of a protection wall with bridgeless structural composite in the horizontal section.
  • Fig. 22 Presents the third alternative of a protection wall with bridgeless structural composite in the M-M vertical section.
  • Fig. 23 Presents a vertical section through the module.
  • FIG. 1 and Fig. 2 show an embodiment of a bridgeless structural composite in the form of a post.
  • Battens 2 made of stainless steel, are arranged alternately.
  • Battens 2 in this embodiment, connect the external and internal profiles 1, which in this example of implementation are made from galvanized steel. Closed cell polyurethane foam is The filling 3 in the space between profiles and battens.
  • the shape of battens 2 connected to the outer and inner profiles 1, in this embodiment resembles an I-beam
  • the outer and inner profiles 1 are made of galvanized steel and in the cross-section resemble an T-beam.
  • FIG. 5 shows an embodiment of batten 2 in stainless steel.
  • Batten 2 in this embodiment has an axial bending 18 along the long edge.
  • the batten alternative in this embodiment is characterized by increased stiffness (EJ) and increased moment of inertia C-C resulting from axial bending.
  • FIG. 8 shows an embodiment of batten 2 in stainless steel.
  • batten 2 has an axial bending 18 along the long edge and perforations 19 on the surface.
  • perforations 19 have a shape resembling a circle. Perforations 19 result in a longer heat path through batten 2.
  • the batten alternative in this embodiment is characterized by lower stiffness (EJ) with respect to the embodiment of the batten in the third embodiment.
  • Fig. 11, Fig. 12 and Fig. 13 show an embodiment of batten 2 in stainless steel.
  • batten 2 has an axial bending 18 along the long edge and perforations 19 on the surface.
  • perforations 19 have a smaller diameter than the batten perforations in the fourth embodiment.
  • the batten alternative described in this embodiment is characterized by a lower stiffness (EJ) with respect to the embodiment of the batten described in the third embodiment.
  • Fig. 14, Fig. 15 and Fig. 16 show the embodiment of a batten 2 in stainless steel.
  • batten 2 has an axial bending 18 along the long edge and perforations 19 on the surface. Perforations 19 resemble an elliptical shape.
  • the batten alternative described in this embodiment is characterized by a lower stiffness (EJ) with respect to the embodiment of the batten described in the third embodiment.
  • EJ lower stiffness
  • Fig. 17 and Fig. 18 present the embodiment of the protection wall with bridgeless structural composite 4.
  • bridgeless structural composites 4 are fastened to the wall 8 in the form of a post.
  • Bridgeless construction composites 4 are spaced at axial distance of 60 cm.
  • the space between the bridgeless structural composites 4 is filled with a mineral wool insulation layer 6 with a bulk density of at least 45 kg/m 3 .
  • the board designed for use outside the building 5, with a thin-layer of fagade finish, is attached to bridgeless structural composites 4 external profiles 1 made of galvanized steel.
  • Fig. 19 and Fig. 20 show an embodiment of protection wall with bridgeless structural composite 4.
  • post-shaped bridgeless structural composite 4 is fitted to the board intended for use inside the building 7.
  • Bridgeless structural composites 4 are spaced in the wall at axial distance of 60 cm.
  • the space between the bridgeless composites is filled with a layer of mineral wool insulation 6 with a bulk density of at least 45 kg/m 3 .
  • the board designed for use outside the building 5, with a thin-layer of fagade finish, is attached to bridgeless structural composites 4 external profiles 1 made of galvanized steel.
  • Fig. 21 and Fig. 22, show an embodiment of the protection wall with bridgeless structural composite 4.
  • post-shaped bridgeless structural composite 5 is attached to the board to be used inside the building 7, finished with a PCV liner.
  • Bridgeless structural composites are spaced in the wall at the distance of 60 cm.
  • the space between the bridgeless composites is filled with a layer of mineral wool insulation 6 with a bulk density of at least 45 kg/m 3 .
  • a spacer structure 9 is provided between the outer steel profile 1 of the bridgeless structural composites 4 and the board to be used outside the building 5.
  • the bridgeless structural composites external steel profiles of 1, placed in the wall, are connected with the board 5 intended for outdoor use with a finishing layer.
  • Fig. 23 shows an embodiment of the module with bridgeless structural composites 4 in the form of a post.
  • post-shaped bridgeless construction composites 4 are attached to the board intended for use inside the building 7.
  • the bridgeless construction composites 4 are attached to the structure of the building 15 by means of connectors 20.
  • the roof of the module consists of a combination of surface and underlay roofing felt 10, a drop layer made of EPS 11, the insulation of EPS, PUR foam fillings 14 and board intended for interior use 7.
  • lower construction element of the module contains PUR foam fillings 14 MFP board 13 floor finishing 16 layer and floor board 17.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Building Environments (AREA)
  • Joining Of Building Structures In Genera (AREA)

Abstract

L'invention a pour objet un composite structural sans pont pour la construction de murs et de plafonds ainsi que le procédé de construction de murs et de plafonds au moyen de composites structuraux sans pont. Le composite sans pont selon l'invention comprend des profils externe et interne, des lattes raccordant des profils externe et interne et un remplissage. Le procédé de construction de murs et de plafonds de bâtiments au moyen de composites structuraux sans pont selon l'invention consiste en ce que des composites structuraux sans pont sont positionnés à une certaine distance axiale les uns des autres, et cette construction est mise en œuvre de la manière suivante : des composites structuraux sans pont sont fixés à la structure de construction au moyen de raccords, le panneau destiné à être utilisé à l'intérieur du bâtiment est fixé directement aux composites structuraux sans pont, l'espace entre des composites structuraux sans pont est rempli d'une couche d'isolation thermique, le panneau destiné à être utilisé à l'extérieur du bâtiment est fixé directement aux composites structuraux sans pont, ou une structure d'espacement entre des composites structuraux sans pont et un panneau destinée à être utilisé à l'extérieur du bâtiment est utilisée. La solution selon l'invention présente une large plage d'utilisation dans la construction, elle peut en particulier être avantageusement utilisée dans une construction modulaire.
PCT/IB2018/051767 2017-03-17 2018-03-16 Composite de construction sans contrainte pour la construction de murs et de plafonds structuraux, et procédé de construction de murs et de plafonds structuraux au moyen de composites de construction sans contrainte sans pont WO2018167725A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PLPL420892 2017-03-17
PL420892A PL420892A1 (pl) 2017-03-17 2017-03-17 Bezmostkowy kompozyt konstrukcyjny do budowy ścian i stropów oraz sposób budowy ścian i stropów budynków przy użyciu bezmostkowych kompozytów konstrukcyjnych

Publications (1)

Publication Number Publication Date
WO2018167725A1 true WO2018167725A1 (fr) 2018-09-20

Family

ID=62116502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/051767 WO2018167725A1 (fr) 2017-03-17 2018-03-16 Composite de construction sans contrainte pour la construction de murs et de plafonds structuraux, et procédé de construction de murs et de plafonds structuraux au moyen de composites de construction sans contrainte sans pont

Country Status (2)

Country Link
PL (1) PL420892A1 (fr)
WO (1) WO2018167725A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD1021151S1 (en) 2021-04-26 2024-04-02 Jaimes Industries, Inc. Framing member

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2101074A (en) * 1935-04-22 1937-12-07 Fer O Con Corp Building system and construction units and elements therefor
US4224774A (en) * 1978-08-31 1980-09-30 Rockwool International A/S Composite building elements
US5678381A (en) * 1994-11-25 1997-10-21 Denadel; Duane G. Insulated beam
WO2005028797A1 (fr) * 2003-09-01 2005-03-31 Forster Rohr- & Profiltechnik Ag Profile et procede de production d'un profile
WO2012113406A1 (fr) * 2011-02-25 2012-08-30 Svensson Peehr Mathias Oernfeldt Poutre de toit et élément de type plaque de toit préfabriqué comportant des poutres de toit
US8516778B1 (en) * 2012-05-14 2013-08-27 Lester B. Wilkens Insulated wall stud system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2101074A (en) * 1935-04-22 1937-12-07 Fer O Con Corp Building system and construction units and elements therefor
US4224774A (en) * 1978-08-31 1980-09-30 Rockwool International A/S Composite building elements
US5678381A (en) * 1994-11-25 1997-10-21 Denadel; Duane G. Insulated beam
WO2005028797A1 (fr) * 2003-09-01 2005-03-31 Forster Rohr- & Profiltechnik Ag Profile et procede de production d'un profile
WO2012113406A1 (fr) * 2011-02-25 2012-08-30 Svensson Peehr Mathias Oernfeldt Poutre de toit et élément de type plaque de toit préfabriqué comportant des poutres de toit
US8516778B1 (en) * 2012-05-14 2013-08-27 Lester B. Wilkens Insulated wall stud system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD1021151S1 (en) 2021-04-26 2024-04-02 Jaimes Industries, Inc. Framing member

Also Published As

Publication number Publication date
PL420892A1 (pl) 2018-09-24

Similar Documents

Publication Publication Date Title
US4021983A (en) Honeycomb building wall construction
US4478018A (en) Thermal break exterior insulated wall framing system
US7421828B2 (en) Integral forming technology, a method of constructing steel reinforced concrete structures
US20080196349A1 (en) Connected structural panels for buildings
US20070227086A1 (en) Building Panels with Support Members Extending Partially Through the Panels and Method Therefor
US20170191266A1 (en) A self-bearing prefabricated construction element and a method of erecting external building walls of prefabricated construction elements
US20190234063A1 (en) Horizontal self-supporting formwork building system
RU80870U1 (ru) Строительная панель
KR20090098729A (ko) 빌딩용 개선된 구조물 시스템
WO2018167725A1 (fr) Composite de construction sans contrainte pour la construction de murs et de plafonds structuraux, et procédé de construction de murs et de plafonds structuraux au moyen de composites de construction sans contrainte sans pont
WO2019012440A1 (fr) Composite de construction sans contrainte pour la construction de murs et de plafonds structuraux, et procédé de construction de murs et de plafonds structuraux au moyen de composites de construction sans contrainte sans pont
GB2467923A (en) Timber-based insulating building section
CZ36826U1 (cs) Plošný stavební prvek
US9834923B1 (en) Building construction method
WO2018107187A1 (fr) Procédé d'érection d'un mur extérieur à couches multiples d'un bâtiment
RU2119020C1 (ru) Многоэтажное здание со стенами из мелкоштучных камней и способ его возведения
EP2449185B1 (fr) Système d'isolation supplémentaire et procédé pour isoler une façade
RU2777236C1 (ru) Модульная многослойная навесная фасадная система и способ её монтажа
RU2759464C1 (ru) Способ строительства верхнего этажа здания
RU105652U1 (ru) Малоэтажное здание модульной конструкции (варианты)
EP3563010B1 (fr) Segment de construction préfabriqué de grande taille, procédé de production de celui-ci et procédé de construction d'un bâtiment avec une construction segmentaire préfabriquée
WO2023128835A1 (fr) Système de façade suspendu multicouches modulaire, et procédé de montage
RU139830U1 (ru) Монолитная строительная конструкция здания или сооружения
RU48338U1 (ru) Наружная навесная стена каркасного многоэтажного здания
US20200123760A1 (en) Vertical self-supporting formwork building system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18722721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18722721

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载