+

WO2018167699A1 - Proceso para la obtención de materiales poliméricos de tres componentes con composición variable orientada, sintetizados mediante copolimerizaciones secuenciales en reactor semicontinuo con gradiente de alimentación - Google Patents

Proceso para la obtención de materiales poliméricos de tres componentes con composición variable orientada, sintetizados mediante copolimerizaciones secuenciales en reactor semicontinuo con gradiente de alimentación Download PDF

Info

Publication number
WO2018167699A1
WO2018167699A1 PCT/IB2018/051722 IB2018051722W WO2018167699A1 WO 2018167699 A1 WO2018167699 A1 WO 2018167699A1 IB 2018051722 W IB2018051722 W IB 2018051722W WO 2018167699 A1 WO2018167699 A1 WO 2018167699A1
Authority
WO
WIPO (PCT)
Prior art keywords
chains
comonomers
gradient
semi
composition
Prior art date
Application number
PCT/IB2018/051722
Other languages
English (en)
French (fr)
Inventor
Carlos Federico Jasso Gastinel
Francisco Javier RIVERA GÁLVEZ
Luis Javier GONZÁLEZ ORTIZ
Original Assignee
Universidad De Guadalajara
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Guadalajara filed Critical Universidad De Guadalajara
Publication of WO2018167699A1 publication Critical patent/WO2018167699A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/06Hydrocarbons
    • C08F12/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/16Halogens
    • C08F12/18Chlorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/02Monomers containing chlorine
    • C08F14/04Monomers containing two carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F18/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F18/02Esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F218/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F218/02Esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/04Anhydrides, e.g. cyclic anhydrides
    • C08F222/06Maleic anhydride
    • C08F222/08Maleic anhydride with vinyl aromatic monomers

Definitions

  • the object of the invention consists in a process that allows obtaining three-component polymeric materials with variable oriented composition, by means of sequential emulsion copolymerizations in semicontinuous reactors with feed gradient.
  • the advantage of this synthesis process is that being scalable at the industrial level, it allows to obtain three-component polymer systems with considerable average molecular weights (eg> 10 5 g / mol), where evolution, through the modification of the feeding profile, is promoted desired in the compositions of the chains that are formed throughout the reaction, with the intention of achieving a distribution of compositions that enhances the contribution of each component in the polymeric material (that is, trying to combine the properties that each component would present as homopolymer).
  • polymers are required to be partially compatible, which greatly reduces the chances of forming useful mixtures via simple mixing. This has led to the use of coupling agents to generate attractive forces (secondary bonds) between the structures of both polymeric materials, which has allowed the expansion of the mix formation range and its applications.
  • Another way that has been used in the mixtures is to prepare, first, one of the polymers (polymer A) that functions as a matrix, to later diffuse in it, for a certain time, a monomer B, and finally polymerize "in situ "that monomer to generate a polymer B.
  • a material thus obtained is known as a chemical mixture, with which mixing at a microscopic level is achieved, the phase separation of the polymers is reduced and, thus, better properties than with physical mixtures (1). If it is also achieved that in a mixture If there is a chemical variation in the composition at the spatial level (gradual change or gradient of composition at the volumetric level), materials can be achieved that combine the optimal contribution of each component to mechanical properties (2), or that a property is optimized in the surface (3).
  • copolymers there is the particularity that the interaction between the components is the best possible, because the bonds are present at the primary level (eg covalent bonds).
  • bonds are present at the primary level (eg covalent bonds).
  • random copolymers have been reported (where two monomers are "loaded” or placed in a vessel, or reactor, and allowed to react), alternating, block, or graft, which have been applied in various fields.
  • polymerization reactions have been used via free radicals, by ionic route and, more recently, by radical route, controlled with various types of catalysts. This last route allows to control the monomer that is added until reaching a certain size (4), with which, seeking to combine properties, the synthesis or formation of copolymers with composition gradient has been reported at the laboratory level.
  • copolymers can be synthesized to the desired molecular size (medium, high or very high, eg 100 to 10,000 link chains) with great ease, adjusting the amount of initiator for the reaction, and that the reaction can be done in industrial scale reactors, varying the feeding of the comonomers in a semi-continuous scheme (6,7).
  • the composition of the chains to be formed at a given moment of the reaction depends on the affinity or ability of the monomers to react with themselves, or with the other monomer, when wanting to form a copolymer. Such capacity is completely related to the chemical structure of both components.
  • the improvement in properties or performance that has been obtained with a composition gradient can be used for the preparation of three component polymers.
  • the implicit difficulty in using the method of obtaining a terpolymer is that the number of possible growth reactions with three components (if the three monomers are placed in a load reactor) is nine (while in a copolymer there are only four ); In such a synthesis, the achievement of the desirable ratio between the 3 monomers in the chains being formed is greatly complicated, preventing the achievement of their contribution or fundamental characteristic as a polymer for each component. For this reason, a "terpolymer" of industrial importance such as poly (acrylonitrile-butadiene-styrene, (ABS)) has traditionally been made in two stages by charges, polymerizing separately one of the monomers and the other two by copolymerization ( 12).
  • ABS acrylonitrile-butadiene-styrene
  • this process begins with the preparation of a seeding of the homopolymer of one of the comonomers (first stage), which is described in the following paragraph.
  • Table 1 shows the quantities used of the different components required for the synthesis of the seeds and the reference “terpolymer” (synthesized in two stages).
  • the procedure for obtaining the polymeric materials of three monomers proposed herein, in which a semi-continuous process with feed gradient is used, is detailed in the following paragraphs.
  • the process of the invention begins in a stirred reactor at constant reaction temperature and pressure, which may contain a previously prepared sowing latex and, if required, adjusted in concentration, so that the total amount of solids in the reactor is less than or equal to 10% of the total mass to be polymerized;
  • the procedure for obtaining a sowing latex is in the public domain, was briefly described in the background and is not part of the claims.
  • a certain amount of a surfactant is added to said reactor, maintaining stirring and bubbling nitrogen gas to try to have an aqueous system saturated with nitrogen and free of oxygen (which inhibits the reaction), before adding the comonomers.
  • two monomers are fed simultaneously to the reactor, following a semi-continuous scheme with a feed gradient, defining a certain number of stages (for example: between 5 and 40) and modifying in each of them the amounts of the comonomers, which are semi-continuous added.
  • the pre-established amounts of initiator allowing free radicals to be generated by heating
  • surfactant and pH buffer are added in a single charge.
  • Table 2 shows the feed flows of an example (applicable to vinyl monomers) or, the fed doughs (applicable to the other ingredients) at each stage of the various components, used in the synthesis of a type 1 material ( G1).
  • Table 3 shows, as an example, the equivalent information for a type 2 material (G2). In both tables the gradient feed sequence of the A / B and, B / C comonomers is evidenced.
  • Figure 1 It shows the distribution of the comonomer units in the gradient copolymer chains formed through the reaction time, for: (a) controlled root copolymerization and (b) free radical copolymerization.
  • Figure 2. It shows the stress-strain behavior of the "terpolymer” obtained with forced feed gradient type 1 (- -) and, the one obtained by the reference method (-). Test temperature: 40 ° C; crosshead speed for deformation: 5 mm / min.
  • Figure 3. It shows the stress-strain behavior of the "terpolymer” obtained with forced feed gradient type 2 (- -) and, the one obtained by the reference method (-). Test temperature: 25 ° C; crosshead speed for deformation: 5 mm / min.
  • Figure 4.- Shows the loss module as a function of the temperature for the "terpolymers" G1 (- -), G2 ( ⁇ ) and, of reference (-); frequency: 1 Hz.
  • Material G1 prepared with styrene (S), butyl acrylate (BA), and 4-vinylbenzyl chloride (CIVB), of overall composition S / BA / CIVB 25/60/15% by weight was obtained by emulsion polymerization semi-continuous following the generic steps described below: 1) adding latex seeds to the reactor (250 g of 20% latex in solids, equivalent to 50 g of PS; 10% of the total amount of G1 material to be obtained), 2) adding water to complete a total of 1400 g of water, 3) start stirring at 400 rpm with bubbling nitrogen gas for at least 1 hour, 3) adding the amount set out in Table 2 for the first loading of ingredients additional (sodium dodecyl sulfate, DSS, potassium persulfate, PSK; sodium bicarbonate, BS; 2% each with respect to the amount of monomer to be added at the stage in question, which are fed into a global solution containing 30 g of water), 4) start feeding the first pair comonom
  • Table 2 shows the feed flows or, the masses fed at each stage, corresponding to the various components used in the synthesis of type 1 material (G1).
  • the G2 material was synthesized in a totally equivalent way to that used in the synthesis of the G1 material, with the only variation of feeding the first and second comonomic pair following the flows indicated in Table 3, instead of those indicated in Table 2.
  • the G1 and G2 systems, as well as the two-stage reference system (2-E) were prepared with the same chemical system and with the same overall proportions of the monomers; that is, 25% by weight of butyl acrylate, 60% by weight of styrene and 15% by weight of 4-vinylbenzyl chloride.
  • the same equipment and the same general reaction conditions were used, ie temperature (70 ° C) and reactor agitation speed (400 rpm).
  • Table 3 shows the feed flows or, the masses fed at each stage, corresponding to the various components used in the synthesis of type 2 material (G2).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

Se han utilizado diferentes caminos para optimizar la contribución de cada componente en sistemas de dos monómeros para formar copolímeros, ya que las estructuras de los mismos influyen fuertemente en la composición de las cadenas de tipo A-B que se pueden formar al reaccionar. Para tres componentes, la situación se complica más si se quieren obtener secuencias específicas, porque el número posible de reacciones de crecimiento aumenta (9 para terpolímeros, en lugar de 4 para copolímeros). Una manera de forzar el contenido relativo de los componentes en las cadenas de peso molecular elevado, formadas mediante reacciones tradicionales por radicales, es utilizando un proceso semicontinuo con gradiente de alimentación, en donde comonómeros vinílicos se alimentan secuencialmente por pares (A-B y B-C), promoviendo la formación de cadenas ricas en A, cadenas ricas en B y cadenas ricas en C, además de una cierta cantidad de cadenas de copolímeros A-B y, B-C que cubran el espectro de composiciones intermedias. Las cuales actúan como compatibilizantes. Con tal estrategia se puede lograr una conjunción sinérgica de propiedades en el material final.

Description

PROCESO PARA LA OBTENCIÓN DE MATERIALES POLIMÉRICOS DE TRES
COMPONENTES CON COMPOSICIÓN VARIABLE ORIENTADA. SINTETIZADOS MEDIANTE COPOLIMERIZACIONES SECUENCIALES EN REACTOR SEMICONTINUO CON GRADIENTE
DE ALIMENTACIÓN
OBJETO DE LA INVENCIÓN
El objeto de la invención consiste en un proceso que permite la obtención de materiales poliméricos de tres componentes con composición variable orientada, mediante la realización de copolimerizaciones secuenciales en emulsión en reactores semicontinuos con gradiente de alimentación. La ventaja de este proceso de síntesis, es que siendo escalable a nivel industrial, permite obtener sistemas poliméricos tricomponentes con pesos molecularespromedio considerables (v.g. > 105 g/mol), en donde se promueve, mediante la modificación del perfil de alimentación, la evolución deseada en las composiciones de las cadenas que se van formando a lo largo de la reacción, con la intención de lograr una distribución de composiciones que realce la aportación de cada componente en el material polimérico (esto es, procurando conjuntar las propiedades que cada componente presentaría como homopolímero). Esencialmente, se debe lograr que se formen cadenas ricas en cada uno de los tres componentes, con miras a cumplir los requerimientos en propiedades que la aplicación de interés exija, al pretender que el producto final refleje, como conjunto, lo que cada uno aporta.
ANTECEDENTES DE LA INVENCIÓN
En la búsqueda de la combinación de materiales poliméricos que puedan cubrir una amplia gama de propiedades, en la segunda mitad del siglo veinte se profundizó, por un lado, en la obtención de mezclas de dos o más polímeros y, por el otro, en hacer reacciones con dos o más monómeros, para generar materiales poliméricos de dos o tres componentes (conocidos como copolímeros y terpolímeros, respectivamente).
Para que las mezclas físicas puedan combinar propiedades de forma útil, se requiere que los polímeros sean parcialmente compatibles, lo cual reduce bastante las posibilidades de formar mezclas útiles por la vía de un mezclado simple. Ello ha motivado que se utilicen agentes de acoplamiento para generar fuerzas de atracción (enlaces secundarios) entre las estructuras de ambos materiales poliméricos, con lo cual se ha podido ampliar la gama de formación de mezclas y sus aplicaciones. Otro camino que se ha usado en las mezclas, es el de preparar, primeramente, uno de los polímeros (polímero A) que funja como matriz, para difundir luego en ella, por un cierto tiempo, un monómero B, y finalmente polimerizar "in situ" ese monómero para generar un polímero B. A un material así obtenido se le conoce como mezcla química, con la cual se logra un mezclado a nivel microscópico, se disminuye la separación de fases de los polímeros y, con ello, se logran mejores propiedades que con las mezclas físicas (1 ). Si además se logra que en una mezcla química se tenga una variación en la composición a nivel espacial (cambio gradual o gradiente de composición a nivel volumétrico), se pueden lograr materiales que combinen el aporte óptimo de cada componente para propiedades mecánicas (2), o que se optimice una propiedad en la superficie (3).
Con respecto a los copolímeros, se tiene la particularidad de que la interacción entre los componentes es la mejor posible, debido a que los enlaces están presentes a nivel primario (v.g. enlaces covalentes). A través del tiempo se han reportado copolímeros aleatorios (donde dos monómeros se "cargan" o colocan en una vasija, o reactor, y se dejan reaccionar), alternados, de bloque, o de injerto, los cuales se han aplicado en diversos campos. Para su obtención, se han utilizado reacciones de polimerización por vía de radicales libres, por vía iónica y, más recientemente, por vía radicálica, controlada con diversos tipos de catalizadores. Esta última vía permite controlar el monómero que se adiciona hasta llegar a cierto tamaño (4), con lo cual, buscando combinar propiedades, se ha reportado, a nivel laboratorio, la síntesis o formación de copolímeros con gradiente de composición. Sin embargo, la escala de obtención y la dificultad para controlar el monómero a añadir en moléculas poliméricas de gran tamaño, ha limitado hasta ahora los avances en la caracterización de propiedades y las posibles aplicaciones de los copolímeros obtenidos por tal vía. La formación de copolímeros con gradiente de composición no es nueva; ya había sido reportada su obtención por vía de radicales libres desde hace tiempo para aplicaciones ópticas (5). Para aplicaciones de propiedades mecánicas, se han reportado las ventajas que ofrecen los copolímeros que se obtienen con un gradiente de alimentación comonoméricajo que conduce a una variación en la composición de las cadenas que se van formando, para evitar que se forme un copolímero aleatorio. El método ya ha sido probado con dos diferentes sistemas comonoméricos (6,7). La diferencia fundamental con el método vía radicálica controlada, es que, en el caso de la reacción por radicales libres, cada molécula se forma y desactiva en una fracción de segundo, por lo cual, el gradiente de composición comonomérico de la masa que se va alimentando, permite cambiar la composición de las cadenas que se van formando a medida que va avanzando la conversión de alimento comonomérico (en lugar de tener activa cada cadena por largo tiempo, mientras se varía la composición en cada cadena a medida que va creciendo la misma, como sucede en una reacción por vía radicálica controlada). En la Figura 1 se muestra la diferencia en la variación de la estructura entre ambos tipos de reacciones de síntesis. Entre las características y ventajas de las reacciones por radicales libres, se tiene el hecho de que se pueden sintetizar copolímeros al tamaño molecular deseado (mediano, alto o, muy alto, v.g. cadenas de 100 a 10,000 eslabones) con gran facilidad, ajustando la cantidad de iniciador para la reacción, y el que la reacción se puede hacer en reactores de escala industrial, variando la alimentación de los comonómeros en un esquema semicontinuo (6,7). La composición de las cadenas a formar en un instante dado de la reacción, depende de la afinidad o capacidad que tienen para reaccionar los monómeros consigo mismo, o con el otro monómero, al querer formar un copolímero. Tal capacidad está completamente relacionada con la estructura química de ambos componentes. Como consecuencia, la relación de capacidades entre ellos también varía, típicamente desde valores fraccionarios hasta decenas (llamadas reactividades relativas) (8). Además, la relación de las concentraciones de los componentes en la masa de reacción va variando con el tiempo, debido a que, por las reactividades relativas y la propia relación instantánea de concentraciones de los comonómeros, éstos se consumen a diferentes velocidades. Ello provoca que la composición instantánea del producto "A-B" que se vaya formando, esté cambiando al avanzar la conversión, lo cual conduce finalmente a un copolímero conocido como aleatorio o estadístico. En este tipo de copolímero, generalmente no se logra conseguir la interacción entre los componentes a nivel molecular, lo que impide combinar óptimamente las propiedades que cada componente podría aportar como homopolímero.
Basado en ello, utilizando un esquema semicontinuo de reacción para variar la composición de alimento, se puede hablar de "copolímeros de composición forzada" (9, 10), lo cual se ha usado desde hace tiempo para producir copolímeros de composición constante, con el fin de procurar uniformidad en las propiedades en las cadenas que se van formando (1 1 ).
La mejora en propiedades o desempeño que se ha obtenido con un gradiente de composición, ya sea en mezclas químicas (2,3) con respecto a las mezclas de composición uniforme, o en la masa de cadenas obtenida de copolímeros por radicales libres (6,7J con respecto a copolímeros aleatorios y los materiales poliméricos conocidos como de tipo núcleo coraza (6- 7,10), puede ser aprovechada para la elaboración de polímeros de tres componentes.
La dificultad implícita al utilizar el método de obtención de un terpolímero, estriba en que el número de reacciones de crecimiento posibles con tres componentes (si se colocan los tres monómeros en un reactor por cargas) es nueve (mientras que en un copolímero son sólo cuatro); en una síntesis así, el logro de la proporción deseable entre los 3 monómeros en las cadenas formándose se complica grandemente, impidiendo el lograr que para cada componente se optimice su aporte o característica fundamental como polímero. Por tal motivo, un "terpolímero" de importancia industrial como el poli (acrilonitrilo-butadieno-estireno, (ABS)), tradicionalmente se ha hecho en dos etapas por cargas, polimerizando por separado uno de los monómeros y los otros dos por copolimerización (12). Añadiendo también que, en el caso del "terpolímero" por radicales libres, se ha reportado un sistema con el fin de obtener un "terpolímero" de composición uniforme, tal como se hizo con copolímeros (13). Por otro lado, se han hecho esfuerzos por vía radicálica controlada para generar un material con un gradiente de composición en las cadenas de copolímero (14).
A continuación, se describe el procedimiento tradicional de obtención de un "terpolímero" en emulsión (método de referencia 2-E), donde, en una primera etapa se sintetiza el homopolímero de uno de los comonómeros y, en presencia de él (segunda etapa), se prepara un copolímero aleatorio de los otros dos comonómeros.
De acuerdo a lo anterior, este proceso inicia con la preparación de una siembra del homopolímero de uno de los comonómeros (primera etapa), la cual se describe en el siguiente párrafo.
Aunque el método de formación de una siembra de un homopolímero es de dominio público, y por ello no forma parte de las reivindicaciones, dada su importancia para el tema aquí tratado, en la Tabla 1 se incluye, a modo informativo, una formulación típica para preparar una semilla de poliestireno (PS) en emulsión, así como una de poli (acrilato de butilo) (PBA). En términos generales, la preparación de la siembra se inicia en un reactor agitado conteniendo agua a la temperatura de reacción, al cual se le añade un tensoactivo, manteniendo la agitación y burbujeando permanentemente nitrógeno gaseoso, para procurar tener un medio acuoso saturado en nitrógeno y libre de oxígeno (que inhibe la reacción), antes de añadir el monómero a polimerizar y una solución de iniciador. El monómero se deja reaccionar hasta conversión prácticamente total, lo cual, dependiendo del sistema químico utilizado, suele ocurrir en unas cuantas horas.
En la segunda etapa de éste método tradicional, el cual es conocido industrialmente y no forma parte de la invención (se incluye aquí para evidenciar las diferencias con el método propuesto), se vuelve a cargar un tensoactivo y se mantiene el burbujeo permanente de nitrógeno, para proceder luego a la carga simultánea de los monómeros "B" y "C" (proceso por cargas o "batch"), del iniciador y de un amortiguador de pH, para sintetizar el copolímero Poli(B-C) de tipo aleatorio en presencia de la cantidad deseada de homopolímero A que representa la siembra.
En la Tabla 1 se muestran las cantidades utilizadas de los diferentes componentes requeridos para la síntesis de las semillas y del "terpolímero" de referencia (sintetizado en dos etapas). Tabla 1
Material Monómero Monómero Monómero de Látex de DSS PSK BS Agua de de acrilato cloruro de 4- poli (acrilato (g) (g) (g) (g) estire no de butilo vinilbencilo de butilo)3
(g) (g) (g) (g)
Semilla de 500 10.0 10.0 10.0 2000 PS
Material de referencia (polímero de 2 etapas; 2-E)
Primera etapa
Semilla de 500 10.0 10.0 10.0 2000 PBA
Segunda etapa
2-E 25/60/15 300 75 600 7.5 7.5 7.5 1525 BA/S/CIVB b a Contenido de sólidos: 20.8%. D Total de PBA añadido al reactor en el látex siembra: 125 g. D Total de agua dentro del reactor: 2000 g. Velocidad de agitación en todas las reacciones: 400 ± 5 rpm. Temperatura de reacción en todas las reacciones: 70 ± 2 °C.
Referencias bibliográficas.
1 . - Manson, J.A.; Sperling, L.H. (1976). Rubber-toughened plastics in polymer blends and composites. Plenum Press: New York, 3, 77 - 1 19.
2. - Jasso, C.F.; Hong, S.D.; Shen, M. (1979). Stress-strain behavior of PMMA/CIEA gradient polymers in multiphase polymers. Cooper, S.L.; Estes, G.M., Eds.; Advances in Chemistry; American Chemical Society: Wisconsin, 176, 443 - 453. 3.- Jasso-Gastinel, C.F.; González-Ortiz, L.J.; García-Enríquez, S. (2013). Proceso para la síntesis de resinas de intercambio iónico que presenten un gradiente continuo de composición en la sección iónica de la partícula, mediante difusión monomérica., MX Patente 31 1783 B.
4. - Gray, M.K., Zhou, H., Nuyen, S. T., Torkelson, J.M. (2003). Limitations in the synthesis of high molecular weight polymers via nitroxide-mediated controlled radical polymerization: experimental studies. Macromolecules. 36 (15), 5792 - 5797.
5. - Ohtsuka, Y. (1973). Light-focusing plástic rod prepared form diallyl isophthalate-methyl methacrylate copolymerization, Applied Physics. Lett., 23 (5), 247 - 248. 6. - Jasso, C.F.; Reyes, I.; López, L.C.; González-Ortiz, L.J. (2006). Mechanical performance of styrene-2-ethylhexyl acrylate polymers synthesized by semicontinuous emulsión polymerization varying feed composition. International Journal of Polymer Analysis and Characterization, 1 1 (5), 383 - 402.
7. - Arnez-Prado, A.H.; González-Ortiz, L.J.; Aranda-García, F.J.; Jasso-Gastinel, C.F. (2012). The variation of comonomers feeding protile to design the distribution of chains composition for the optimization of the mechanical properties in copolymer systems. e-polymers, 12 (1 ), 814 - 829. 8.- Odian, G. (2004). Chain copolymerization. In Principies of polymerization, 4th ed.; Wiley- Interscience: New York., chapter 6, 464 - 543.
9. - Lin W. and Broadbelt L.J. (2009). Explicit sequence of Styrene/Methyl Methacrylate gradient copolymers synthesized by forced gradient copolymerization with nitroxide-mediated Controlled Radical Polymerization, Macromolecules, 42 (20), 7961 - 7968
10. - Jasso-Gastinel, C.F.; Arnez-Prado, A.H.; Aranda-García F.J.; Sahagún-Aguilar L.O.; López Dellamary Toral, F.A.; Hernández-Hernández M.E.; González-Ortiz L. J. (2017). Tailoring copolymer properties by gradual changes in the distribution of chains composition using semicontinuous emulsión polymerization. Polymers, 9 (2), 72 - 82.
1 1 . - Guyot, A., Guillot, J., Pichot, C. & Guerrero, L. R. (1981 ). Emulsión Polymers and Emulsión Polymerization, 415 - 436. 12.- Daly, L.E. (1948). Blends of butadiene-acrylonitrile rubbery copolymers having a toluene- insoluble "b" gel content of from 30 to 50% and hard resinous styrene-acrylonitrile copolymers, US 2550139 A, Us Rubber Co.
13. - Snuparek, J. Jr., Krska F. (1977). Semicontinuous Emulsión Copolymerization of Acrylonitrile, Butyl Acrylate, and Styrene, Journal of Applied Polymer Science, 21 (8), 2253-2260
14. - Beginn, U. (2008). Gradient copolymers. Colloid Polym. Sci., 286 (13), 1465-1474.
DESCRIPCIÓN DE LA INVENCIÓN
El procedimiento de obtención de los materiales poliméricos de tres monómeros aquí propuesto, en el cual se utiliza un proceso semicontinuo con gradiente de alimentación, se detalla en los siguientes párrafos. El proceso de la invención inicia en un reactor agitado a temperatura y presión de reacción constantes, el cual puede contener un látex siembra previamente preparado y, si es requerido, ajustado en su concentración, a fin de que la cantidad total de sólidos en el reactor sea inferior o igual al 10% de la masa total a polimerizar; el procedimiento de obtención de un látex siembra es de dominio público, fue brevemente descrito en los antecedentes y no forma parte de las reivindicaciones. Es recomendable iniciar el proceso con una siembra, ya que ello facilita el crecimiento de las partículas en las que se llevan a cabo las reacciones deseadas, sin embargo, si no se desea o no se puede utilizar siembra, dicho látex debe ser substituido por agua. A dicho reactor se añade una cierta cantidad de un tensoactivo, manteniendo la agitación y burbujeando nitrógeno gaseoso para procurar tener un sistema acuoso saturado en nitrógeno y libre de oxígeno (que inhibe la reacción), antes de añadir los comonómeros. Posteriormente, se alimentan simultáneamente al reactor dos monómeros, siguiendo un esquema semicontinuo con gradiente de alimentación, definiendo un cierto número de etapas (por ejemplo: entre 5 y 40) y modificando en cada una de ellas las cantidades de los comonómeros, los que son añadidos en semicontinuo. Al inicio de cada etapa son adicionadas, en una sola carga, las cantidades preestablecidas de iniciador (que permite generar los radicales libres por calentamiento), tensoactivo y amortiguador de pH.
En la Tabla 2 se muestran los flujos de alimentación de un ejemplo (aplicables a los monómeros vinílicos) o, las masas alimentadas (aplicables a los otros ingredientes) en cada etapa de los diversos componentes, utilizados en la síntesis de un material tipo 1 (G1 ). En la Tabla 3 se presenta, como ejemplo, la información equivalente para un material tipo 2 (G2). En ambas tablas se evidencia la secuencia de alimentación tipo gradiente de los comonómeros A/B y, B/C.
BREVE DESCRIPCIÓN DE LOS DIBUJOS
Figura 1 . -Muestra la distribución de las unidades comonoméricas en las cadenas de copolímeros de gradiente formadas a través del tiempo de reacción, para: (a) copolimerización por vía radicálica controlada y (b) copolimerización por radicales libres.
Figura 2. -Muestra el comportamiento de esfuerzo-deformación del "terpolímero" obtenido con gradiente de alimentación forzado tipo 1 (- -) y, el obtenido por el método de referencia ( - ). Temperatura de prueba: 40 °C; velocidad de cruceta para la deformación: 5 mm/min. Figura 3. -Muestra el comportamiento de esfuerzo-deformación del "terpolímero" obtenido con gradiente de alimentación forzado tipo 2 (- -) y, el obtenido por el método de referencia ( - ). Temperatura de prueba: 25 °C; velocidad de cruceta para la deformación: 5 mm/min. Figura 4.- Muestra el módulo de pérdida en función de la temperatura para los "terpolímeros" G1 (- -), G2 (■■■) y, de referencia ( - );frecuencia: 1 Hz.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
Ejemplo de síntesis 1 . Material con gradiente de alimentación forzado tipo 1 (G1 ).
El material G1 , preparado con estireno (S), acrilato de butilo (BA), y cloruro de 4- vinilbencilo (CIVB), de composición global S/BA/CIVB 25/60/15 % en peso fue obtenido mediante polimerización en emulsión semicontinua siguiendo los pasos genéricos descritos a continuación: 1 ) adición de látex siembra al reactor (250 g de látex al 20% en sólidos, lo que equivale a 50 g de PS; 10% de la cantidad total de material G1 a obtener), 2) adición de agua para completar un total de 1400 g de agua, 3) iniciar agitación a 400 rpm con burbujeo de nitrógeno gaseoso al menos por 1 hora, 3) adición de la cantidad establecida en la Tabla 2 para la primer carga de ingredientes adicionales (dodecilsulfato de sodio, DSS, persulfato de potasio, PSK; bicarbonato de sodio, BS; 2% de cada uno con respecto a la cantidad de monómero a añadir en la etapa en cuestión, los cuales son alimentados en una solución global conteniendo 30 g de agua), 4) iniciar la alimentación del primer par comonomérico (BA S) manteniendo los flujos indicados para la etapa correspondiente de la Tabla 2 durante 6 minutos, 5) repetir los pasos 3 y 4 hasta llegar a la etapa 10, 6) adición de la cantidad establecida en la Tabla 2 para la carga de aditivos correspondientes a la etapa en cuestión (DSS, PSK, BS; 2% de cada uno con respecto a la cantidad de monómero a añadir en la etapa en cuestión, los cuales son alimentados en una solución conteniendo 30 g de agua), 7) iniciar la alimentación del segundo par comonomérico (S/CIVB) manteniendo los flujos indicados en la Tabla 2 para la etapa en cuestión durante 6 minutos, 8) repetir los pasos 6 y 7 hasta llegar a la etapa 20, 9) mantener el reactor a la temperatura de interés (70°C) durante 4 h., contando a partir del inicio de la alimentación del primer par comonomérico (en esta reacción se logró conversión superior al 95%), 10) permitir el enfriado ambiental del reactor antes de proceder a su descargado.
En la Tabla 2 se muestran los flujos de alimentación o, las masas alimentadas en cada etapa, correspondientes a los diversos componentes utilizados en la síntesis del material tipo 1 (G1 ).
Tabla 2
BA S CIVB DSS PSK BS
Etapa*
(g/min) (g/min) (g/min) (g/etapa) (g/etapa) (g/etapa)
1 0.189 3.977 0.500 0.500 0.500
2 1 .136 3.030 0.500 0.500 0.500
3 2.083 2.083 0.500 0.500 0.500
4 3.030 1 .136 0.500 0.500 0.500
5 3.977 0.189 0.500 0.500 0.500 6 3.97 0.189 0.500 0.500 0.500
7 3.030 0.758 0.455 0.455 0.455
8 2.083 1 .704 0.455 0.455 0.455
9 1 .136 3.030 0.500 0.500 0.500
10 0.189 4.735 0.591 0.591 0.591
1 1 3.977 0.1 14 0.491 0.491 0.491
12 3.030 0.454 0.418 0.418 0.418
13 2.083 1.023 0.373 0.373 0.373
14 1 .136 1 .818 0.355 0.355 0.355
15 0.189 2.841 0.364 0.364 0.364
16 0.189 2.083 0.273 0.273 0.273
17 1.136 1.833 0.356 0.356 0.356
18 2.083 1 .417 0.420 0.420 0.420
19 3.030 0.833 0.464 0.464 0.464
20 3.977 0.083 0.487 0.487 0.487
Masa total añadida al reactor (g)
Total 125 250 75 9.0 9.0 9.0
* Cada etapa dura 6 minutos. Total de PS añadido inicialmente al reactor en forma de látex siembra: 50 g. Total de agua adicionada al reactor durante la reacción: 2000 g. Velocidad de agitación: 400 ± 5 rpm. Temperatura de reacción: 70 ± 2 °C. Ejemplo de síntesis 2. Material con gradiente de alimentación forzado tipo 2 (G2).
El material G2 fue sintetizado en forma totalmente equivalente a la utilizada en la síntesis del material G1 , con la única variación de alimentar el primer y segundo par comonoméricos siguiendo los flujos indicados en la Tabla 3, en lugar de los indicados en la Tabla 2.
Los sistemas G1 y G2, tanto como el sistema de referencia de dos etapas (2-E) fueron preparados con el mismo sistema químico y con las mismas proporciones globales de los monómeros; es decir, 25% en peso de acrilato de butilo, 60% en peso de estireno y 15% en peso de cloruro de 4-vinilbencilo. Además, en las 3 síntesis se utilizó el mismo equipo y las mismas condiciones generales de reacción, es decir, temperatura (70°C) y, velocidad de agitación del reactor (400 rpm).
En la Tabla 3 se muestran los flujos de alimentación o, las masas alimentadas en cada etapa, correspondientes a los diversos componentes utilizados en la síntesis del material tipo 2 (G2).
Tabla 3
CIVB S BA DSS PSK BS
Etapa*
(g/min) (g/min) (g/min) (g/etapa) (g/etapa) (g/etapa)
1 0.1 14 3.977 0.491 0.491 0.491
2 0.454 3.030 0.418 0.418 0.418 3 1.023 2.083 0.373 0.373 0.373
4 1 .818 1 .136 0.355 0.355 0.355
5 2.841 0.189 0.364 0.364 0.364
6 2.083 0.189 0.273 0.273 0.273
7 1.833 0.758 0.311 0.311 0.31 1
8 1 .417 1 .704 0.375 0.375 0.375
9 0.833 3.030 0.464 0.464 0.464
10 0.083 4.735 0.578 0.578 0.578
1 1 3.977 0.189 0.500 0.500 0.500
12 3.030 1 .136 0.500 0.500 0.500
13 2.083 2.083 0.500 0.500 0.500
14 1 .136 3.030 0.500 0.500 0.500
15 0.189 3.977 0.500 0.500 0.500
16 0.189 3.97 0.500 0.500 0.500
17 1 .136 3.030 0.455 0.455 0.455
18 2.083 2.083 0.455 0.455 0.455
19 3.030 1 .136 0.500 0.500 0.500
20 3.977 0.189 0.591 0.591 0.591
Masa total añadida al reactor (g)
Total 75 250 125 9.0 9.0 9.0
* Cada etapa dura 6 minutos. Total de PS añadido inicialmente al reactor en forma de látex siembra: 50 g. Total de agua adicionada al reactor durante la reacción: 2000 g. Velocidad de agitación: 400 ± 5 rpm. Temperatura de reacción: 70 ± 2 °C.
El comportamiento mecanoestático de los materiales G1 y G2 es mostrado comparativamente con el del material de referencia en las Figuras 2 y 3. Ahí puede apreciarse que, los materiales poliméricos obtenidos con el método aquí presentado (utilizando un gradiente de flujo de alimento para los pares comonoméricos secuenciales), muestran en la prueba de esfuerzo vs deformación un comportamiento sinérgico, al poseer elevada tenacidad (área bajo la curva en las Figuras 2 y 3) con respecto a la mostrada por el material de referencia, sin modificar importantemente su módulo inicial; de hecho, el material G2 muestra un módulo estadísticamente igual que el de referencia. El comportamiento mostrado por los materiales G1 y G2 tiene gran valor si se quieren producir objetos industriales con buena resistencia al impacto. Tales resultados se confirman observando la Figura 4, en la cual se muestra el módulo de pérdida como función de la temperatura para el material de referencia y los materiales G1 y G2. En dicha figura, el área bajo la curva representa la capacidad de absorción de energía de un material; ello tiene aplicaciones de tipo mecánico, como ya se ha explicado arriba, o de absorción de energía, para aplicaciones donde se requiere suprimir el sonido (por ejemplo, para pinturas, o habitaciones a prueba de ruido). En la Figura 4, el área bajo la curva medida entre - 25 y 75 °C, para ambos materiales preparados con el método aquí propuesto (materiales G 1 y G2), es de alrededor del doble del valor obtenido con el material de referencia (ver valores en Tabla 4). En la Tabla 4 se muestran los respectivos valores de "área bajo la curva", correspondientes a los módulos de pérdida presentados en la Figura 4, como función de la temperatura (de -25 a 75°C).
Tabla 4
Material (MJ/m3°C)
2- E 25/60/15 BA/S/CI VB 9200
G1 20300
G2 16700
Con base en lo anterior, se puede afirmar que, el tipo genérico de alimentación antes descrito permitió, con los perfiles considerados, generar un gradiente de composición en las unidades de repetición, o eslabones de las cadenas del material polimérico, que posibilitó optimizar el aporte de cada uno de los componentes, permitiendo la obtención de materiales con propiedades mejores que el material de referencia.

Claims

REIVINDICACIONES
1 . - Proceso para la obtención de materiales poliméricos de tres componentes, utilizando un proceso semicontinuo con gradiente de alimentación, en donde comonómeros vinílicos se alimentan secuencialmente por pares, es decir, A-B y B-C.
2. - La reivindicación 1 en un proceso en el que al menos uno de los comonómeros en alguna de las 2 copolimerizaciones secuenciales es alimentado con un gradiente en el flujo de alimentación.
3. -La reivindicación 1 en un proceso en el que los respectivos flujos de alimento de los comonómeros tienen perfiles de tipo recto a través del tiempo de reacción.
4. - La reivindicación 1 en un proceso en el que los respectivos flujos de alimento de los comonómeros son una combinación de uno o más perfiles de tipo recto y uno o más perfiles de tipo monotónico no recto.
5. - La reivindicación 1 en un proceso en el que los respectivos flujos de alimento de los comonómeros tienen perfiles de tipo monotónico no recto a través del tiempo de reacción.
6. - Las reivindicaciones 1 a 5 en la cual la alimentación de los comonómeros B-C se inicia cuando ya ha sido alimentado al menos el 85 % en peso de la masa total de los comonómeros A-B que conforman el primer par a alimentar.
7. -Las reivindicaciones 1 a 6, donde el proceso se hace en emulsión por radicales libres con semilla y se efectúa a temperatura y presión constantes, sin presión manométrica y a una temperatura entre 50 y 95 °C, generando partículas de material polimérico con un diámetro promedio entre 10 y 1 ,000 nm.
8. - Las reivindicaciones 1 a 6, donde el proceso se hace en emulsión por radicales libres sin semilla y se efectúa a temperatura y presión constantes, sin presión manométrica y a una temperatura entre 50 y 95 °C, generando partículas de material polimérico con un diámetro promedio entre 10 y 1 ,000 nm.
PCT/IB2018/051722 2017-03-16 2018-03-14 Proceso para la obtención de materiales poliméricos de tres componentes con composición variable orientada, sintetizados mediante copolimerizaciones secuenciales en reactor semicontinuo con gradiente de alimentación WO2018167699A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MXMX/A/2017/003497 2017-03-16
MX2017003497A MX2017003497A (es) 2017-03-16 2017-03-16 Proceso para la obtencion de materiales poliméricos de tres componentes con composición variable orientada, sintetizados mediante copolimerizaciones secuenciales en reactor semicontinuo con gradiente de alimentación.

Publications (1)

Publication Number Publication Date
WO2018167699A1 true WO2018167699A1 (es) 2018-09-20

Family

ID=60186429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/051722 WO2018167699A1 (es) 2017-03-16 2018-03-14 Proceso para la obtención de materiales poliméricos de tres componentes con composición variable orientada, sintetizados mediante copolimerizaciones secuenciales en reactor semicontinuo con gradiente de alimentación

Country Status (2)

Country Link
MX (1) MX2017003497A (es)
WO (1) WO2018167699A1 (es)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110301298A1 (en) * 2006-05-25 2011-12-08 Arkema Inc. Acid functionalized gradient block copolymers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110301298A1 (en) * 2006-05-25 2011-12-08 Arkema Inc. Acid functionalized gradient block copolymers

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BERGMAN, J. ET AL.: "Role of the segment distribution in the microphase separation of acrylic diblock and triblock terpolymers", POLYMER, vol. 55, no. 16, 5 August 2014 (2014-08-05), pages 4206 - 4215, XP029013812, Retrieved from the Internet <URL:https://doi.org/10.1016/j.potymer.2014.O5.049> *
GUO, Y. ET AL.: "Mechanical Properties of Gradient Copolymers of Styrene and n-Butyl Acrylate", JOURNAL OF POLYMER SCIENCE , PART B: POLYMER PHYSICS, vol. 53, no. 12, 2015, pages 860 - 868, XP055539686, Retrieved from the Internet <URL:https://doi.org/10.1002/polb.23709> *
JASSO-GASTINEL C. ET AL.: "Synthesis and Characterization of Anionic Exchange Resins with a Gradient in Polymer Composition for the PS-co-DVB/PDEAMA-co-DVB System", POLYMER BULLETIN, vol. 59, no. 6, 2008, pages 777 - 785, XP055539689 *
JASSO-GASTINEL, C. ET AL.: "Gradients in Homopolymers, Blends, and Copolymers", MODIFICATION OF POLYMER PROPERTIES, 2017, pages 185 - 210, Retrieved from the Internet <URL:https://doi.org/10.1016/B978-0-323-44353-1.00008-7> *
JASSO-GASTINEL, C. ET AL.: "Synthesis and Characterization of Styrene-Butyl Acrylate Polymers, Varying Feed Composition in a Semicontinuous Emulsion Process", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 103, no. 6, 2007, pages 3964 - 3971, XP055539668, Retrieved from the Internet <URL:https://doi.org/10.1002/app.25265> *
JASSO-GASTINEL, C. ET AL.: "Tailoring Copolymer Properties by Gradual Changes in the Distribution of the Chains Composition Using Semicontinuous Emulsion Polymerization", POLYMERS, vol. 72, no. 9, 2017, XP055539674, Retrieved from the Internet <URL:hffps://doi.org/10.3390/polym9020072> *
YUAN, X. ET AL.: "Effect of annealing on the phase structure and the properties of the film formed from P(St-co-BA)/P(MMA-co-BA) composite latex", JOURNAL OF COLLOID AND INTERFACE SCIENCE, vol. 346, no. 1, June 2010 (2010-06-01), pages 72 - 78, XP055539698 *

Also Published As

Publication number Publication date
MX2017003497A (es) 2017-08-02

Similar Documents

Publication Publication Date Title
US8410232B2 (en) Emulsion polymerization of esters of itaconic acid
EP2113000A2 (fr) Copolymeres a base d&#39;unites methacrylates, leur procede de preparation et leurs utilisations
US11319395B2 (en) Rubbery polymer, graft copolymer, and thermoplastic resin composition
RU2007132743A (ru) Улучшенная композиция для покрытия
Levit et al. Synthesis and characterization of well-defined poly (2-deoxy-2-methacrylamido-d-glucose) and its biopotential block copolymers via RAFT and ROP polymerization
KR20190052051A (ko) 메타크릴계 아미드를 사용함에 의한 pmma 발포체의 특성 개선
Haldar et al. POSS tethered hybrid “inimer” derived hyperbranched and star-shaped polymers via SCVP-RAFT technique
Chernikova et al. Controlled synthesis of styrene-n-butyl acrylate copolymers with various chain microstructures mediated by dibenzyl trithiocarbonate
WO2018167699A1 (es) Proceso para la obtención de materiales poliméricos de tres componentes con composición variable orientada, sintetizados mediante copolimerizaciones secuenciales en reactor semicontinuo con gradiente de alimentación
Tamate et al. Autonomous unimer-vesicle oscillation by totally synthetic diblock copolymers: Effect of block length and polymer concentration on spatio-temporal structures
KR102802859B1 (ko) 실리콘 단량체와 아크릴 단량체의 중합 방법
ES2802457T3 (es) (Co)polímero aromático de vinilo reforzado con caucho, que tiene un equilibrio óptimo de propiedades fisico-mecánicas y un alto brillo
KR20210036360A (ko) 실리콘-아크릴 중합체 입자
ES2666002T3 (es) Procedimientos para fabricar poliestireno de alto impacto
Mizuta et al. Spreading behavior of poly (N-dodecylacrylamide-co-styrene) monolayers and Langmuir-Blodgett multilayer formation
Huybrechts et al. New applications of catalytic chain transfer polymerization to waterborne binders for automotive paint systems
Lee The control of structure in emulsion polymerization
Ouchi et al. Vinyl polymerization. 410. Polymerizations of vinyl monomers initiated by poly (styrene‐co‐sodium acrylate) or poly (methyl methacrylate‐co‐sodium methacrylate). A verification of the concept of hard and soft hydrophobic areas and monomers
Burkeyev et al. Synthesis and properties of poly (propylene glycol maleate phthalate)–styrene copolymers as a base of composite materials
Zhou et al. Synthesis of double-bond-containing diblock copolymers via RAFT polymerization
JP3736711B2 (ja) ブロック共重合体及びその製造方法
WO2012044145A1 (es) Nueva composición para la producción de materiales vinil-aromáticos con resistencia al impacto mejorada con un aditivo modificador de estructura
US12071536B2 (en) Bimodal silicone-acrylic polymer particles
McBride Synthesis of high molecular weight polymers as low-viscosity latex particles by RAFT aqueous dispersion polymerisation
Zhao et al. Synthesis of highly branched polystyrene via atom transfer radical polymerization with p-styrenesulfonyl chloride as an initiator.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18766674

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18766674

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载