WO2018166733A1 - Plaque bipolaire pour cellule de combustible et cellule de combustible ainsi que procédé de fabrication d'une plaque bipolaire - Google Patents
Plaque bipolaire pour cellule de combustible et cellule de combustible ainsi que procédé de fabrication d'une plaque bipolaire Download PDFInfo
- Publication number
- WO2018166733A1 WO2018166733A1 PCT/EP2018/053651 EP2018053651W WO2018166733A1 WO 2018166733 A1 WO2018166733 A1 WO 2018166733A1 EP 2018053651 W EP2018053651 W EP 2018053651W WO 2018166733 A1 WO2018166733 A1 WO 2018166733A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bipolar plate
- fuel cell
- coating
- carrier material
- electrode
- Prior art date
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 75
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 6
- 239000011248 coating agent Substances 0.000 claims abstract description 39
- 238000000576 coating method Methods 0.000 claims abstract description 39
- 238000009826 distribution Methods 0.000 claims abstract description 32
- 239000012876 carrier material Substances 0.000 claims abstract description 22
- 239000012528 membrane Substances 0.000 claims abstract description 22
- 239000007800 oxidant agent Substances 0.000 claims abstract description 14
- 239000002002 slurry Substances 0.000 claims description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 15
- 239000010439 graphite Substances 0.000 claims description 11
- 229910002804 graphite Inorganic materials 0.000 claims description 11
- 239000011230 binding agent Substances 0.000 claims description 9
- 238000001035 drying Methods 0.000 claims description 7
- 239000002904 solvent Substances 0.000 claims description 5
- 229910001220 stainless steel Inorganic materials 0.000 claims description 5
- 239000010935 stainless steel Substances 0.000 claims description 5
- 239000000654 additive Substances 0.000 claims description 4
- 230000000996 additive effect Effects 0.000 claims description 4
- 229920002678 cellulose Polymers 0.000 claims description 4
- 239000001913 cellulose Substances 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 4
- 230000001590 oxidative effect Effects 0.000 claims description 4
- 229920003048 styrene butadiene rubber Polymers 0.000 claims description 4
- 239000011888 foil Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 10
- 239000001257 hydrogen Substances 0.000 description 9
- 229910052739 hydrogen Inorganic materials 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- 150000002431 hydrogen Chemical class 0.000 description 7
- 239000006260 foam Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 238000007606 doctor blade method Methods 0.000 description 2
- -1 hydrogen ions Chemical class 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 239000005518 polymer electrolyte Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000009827 uniform distribution Methods 0.000 description 2
- 229920000557 Nafion® Polymers 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000002482 conductive additive Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 239000000110 cooling liquid Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0241—Composites
- H01M8/0245—Composites in the form of layered or coated products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0206—Metals or alloys
- H01M8/0208—Alloys
- H01M8/021—Alloys based on iron
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0223—Composites
- H01M8/0228—Composites in the form of layered or coated products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0234—Carbonaceous material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0241—Composites
- H01M8/0243—Composites in the form of mixtures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the invention relates to a bipolar plate for a fuel cell, which comprises at least one distribution structure for distributing a fuel or an oxidizing agent to an electrode.
- the invention also relates to a fuel cell, which comprises at least one electrode unit with a first electrode and a second electrode, which are separated from one another by a membrane, and at least one bipolar plate.
- the invention further relates to a method for producing a bipolar plate for a fuel cell.
- a fuel cell is a galvanic cell, which is the chemical
- Reaction energy of a continuously supplied fuel and an oxidizing agent converts into electrical energy.
- a fuel cell is therefore an electrochemical energy converter.
- known fuel cells in particular hydrogen (H2) and oxygen (O2) in water (H2O), electrical energy and heat are converted.
- An electrolyzer is an electrochemical energy converter that splits water (H2O) into hydrogen (H2) and oxygen (O2) by means of electrical energy.
- proton exchange membrane PEM
- PEM proton exchange membrane
- Air oxygen is thereby spatially from the fuel, in particular
- Proton exchange membrane fuel cells further include an anode and a cathode.
- the fuel is supplied to the anode of the fuel cell and catalytically oxidized to protons with release of electrons.
- the protons pass through the membrane to the cathode.
- the emitted electrons are derived from the fuel cell and flow through an external
- the oxidant is supplied to the cathode of the fuel cell and it reacts by absorbing the electrons from the external circuit and protons that have passed through the membrane to the cathode to water. The resulting water is discharged from the fuel cell.
- the gross reaction is:
- a voltage is applied between the anode and the cathode of the fuel cell.
- a plurality of fuel cells can be arranged mechanically one behind the other to form a fuel cell stack and electrically connected.
- the bipolar plates have, for example, channel-like structures for distributing the fuel and the oxidizing agent to the electrodes.
- the channel-like structures also serve to dissipate the water formed during the reaction.
- the bipolar plates may further include structures for passing a cooling liquid through the fuel cell to dissipate heat.
- the distribution structure is usually realized as a channel or as an electronically conductive porous layer, for example as a foam.
- a bipolar plate according to the prior art comprises
- a distribution plate for example, a distribution plate, a foam and a foam with seal.
- Bipolar plates serve both to provide optimal gas distribution
- bipolar plates must be resistant to corrosion in fuel cells, since the fuel cell water has corrosive properties, and in particular in the vicinity of
- Nafionmembranen creates an acidic, corrosive environment.
- the partial surfaces have channels for gas transport.
- WO 1016/070862 A1 describes a metallic bipolar plate for use in an electrochemical cell, wherein the bipolar plate has an electrically conductive graphene-like coating.
- bipolar plates according to the prior art, inter alia, that they have a fairly high thickness and thus represent a spatial limitation for a structural reduction of electrochemical cells.
- a bipolar plate is proposed for a fuel cell, which comprises at least one distribution structure for distributing a fuel or an oxidizing agent to an electrode, wherein the at least one distribution structure comprises a carrier material, which can also be referred to as substrate, and a coating, and the coating is electrically conductive and is porous.
- the at least one distribution structure comprises a carrier material, which can also be referred to as substrate, and a coating, and the coating is electrically conductive and is porous.
- the bipolar plate can also be used in other electrochemical energy converters, for example in an electrolyzer.
- the bipolar plate is used in a fuel cell, particularly preferably in a polymer electrolyte fuel cell (PEM).
- PEM polymer electrolyte fuel cell
- the bipolar plate may have one or two or more distribution structures, preferably a distribution structure or two distribution structures. In the event that there are two distribution areas, both distribution areas can each be limited by a separate partition plate or by a common partition plate.
- the support material is designed as a film and has a first thickness of not more than 2000 ⁇ m, preferably not more than 1500 ⁇ m, more preferably not more than 1000 ⁇ m, and particularly preferably not more than 800 ⁇ m.
- the first thickness is preferably from 300 ⁇ to 2000 ⁇ , more preferably from 500 ⁇ to 2000 ⁇ .
- the term foil is understood to mean a very thin, sheet-like material, in particular a material sheet, preferably a metal sheet or a plastic sheet. In the context of the invention, the term thickness in each case denotes the average layer thickness.
- reaction gases such as hydrogen (Hb) and oxygen O2, as well as cooling liquids, are preferably conducted into the cell.
- the oxygen O2 is preferably in air.
- An electrode unit having a first electrode and a second electrode, which are separated from each other by a membrane, and at least one
- Bipolar plate according to the invention comprises.
- the fuel cell is constructed in such a way that in each case a bipolar plate is connected on both sides of an electrode unit.
- the membrane is preferably a Nafion membrane containing sulfonated tetrafluoroethylene polymer (PTFE).
- Distribution structure for distributing a fuel or an oxidizing agent to an electrode
- the at least one distribution structure comprises a carrier material and a coating
- the coating is electrically conductive and porous and the method comprises the following steps: a) providing the support material, wherein the support material as a film
- the support material and the coating preferably form a layer structure.
- the coating is arranged directly on the carrier material. More preferably, the layer structure consists of the carrier material and the
- the layer structure preferably forms the distribution structure of the bipolar plate.
- the distribution of the gas preferably takes place through the porosity of the layer structure.
- the coating contains graphite, more preferably, the coating consists of more than 70 wt .-%, more preferably more than 90 wt .-% of graphite.
- the coating contains a binder and / or a
- Conductivity additive Preferred binders are cellulose and / or styrene-butadiene rubber.
- a preferred conductivity additive is conductive black.
- the coating has a porosity of 50% to 95%, preferably 70% to 90% and particularly preferably 80% to 85%.
- the support material is preferably not less than 90% by weight of stainless steel, more preferably not less than 95% by weight, and particularly preferably not less than 99% by weight.
- a preferred stainless steel is the stainless steel with the material number 1.4404 and the composition
- the layer structure has a total thickness of not more than 3000 ⁇ , preferably not more than 2000 ⁇ and more preferably not more than 1500 ⁇ .
- the slurry is applied by doctoring in step c).
- the slurry is preferably applied with a slurry thickness of less than 1100 ⁇ m.
- the slurry preferably contains graphite, which is preferably in the form of
- the graphite powder is present.
- the graphite powder preferably has a middle one
- Particles preferably have a shape that deviates from a platelet shape. More preferably, the particles have a substantially spherical shape. Larger particles lead to an increased porosity of the coating. More preferably, the slurry contains a binder, in particular cellulose and / or styrene-butadiene rubber, and / or a conductive additive, in particular Leitruß. The slurry preferably contains 20% by weight to 70% by weight, more preferably 40% by weight to 60% by weight, for example 50% by weight.
- the solvent is preferably water.
- step d) at least parts of the solvent are removed from the slurry, so that the coating as a porous solid on the
- Carrier material remains.
- the drying is preferred in a
- Drying temperature of 60 ° C to 100 ° C, more preferably carried out from 70 ° C to 90 ° C, for example 80 ° C.
- the drying is for a period of
- the slurry thickness preferably decreases by 20% to 50%, more preferably by 35% to 35%.
- the carrier material and the coating can replace conventional channel structures and / or foams in bipolar plates.
- the inventive Bipolar plate is characterized by a thin structure, which simultaneously ensures the fluid dynamic requirements in a fuel cell, for example, a tolerable pressure drop, so that individual fuel cells and thus fuel cell stacks can be made smaller and more compact.
- the binder provides stability, ductility and flexibility
- Coating and the addition of conductive black increases the conductivity of the coating.
- the porosity of the coating leads to a good one
- FIG. 1 shows a schematic representation of a fuel cell
- FIG. 2 shows a schematic representation of a fuel cell stack with a plurality of fuel cells
- Figure 3 is a schematic representation of an inventive
- Figure 4 is a schematic representation of the principle of a doctor blade method. Embodiments of the invention
- Figure 1 shows a schematic representation of a fuel cell 2.
- Fuel cell 2 has an anode 21, a cathode 22 and a
- the fuel cell 2 has bipolar plates 40, through which hydrogen is transported to the anode 21 and oxygen to the cathode 22 or water away from the cathode 22 and a gas diffusion system 41 indicated only schematically in FIG. 1. A stream is taken from the fuel cell 2.
- FIG. 2 shows a schematic illustration of a fuel cell stack 5 with a plurality of fuel cells 2.
- Each fuel cell 2 has an electrode unit 10 which comprises a first electrode 19, a second electrode 20 and a membrane 18.
- the two electrodes 19, 20 are arranged on mutually opposite sides of the membrane 18 and thus separated from each other by the membrane 18.
- the first electrode 19 will also be referred to below as the anode 21 and the second electrode 20 will also be referred to below as the cathode 22.
- the membrane 18 is formed as a polymer electrolyte membrane.
- the membrane 18 is permeable to hydrogen ions, ie H + ions.
- Each fuel cell 2 also has two bipolar plates 40, which adjoin the electrode unit 10 on both sides.
- each of the bipolar plates 40 may be arranged as being adjacent to each other
- the bipolar plates 40 each comprise a first distribution structure 50 for
- the bipolar plates 40 also each include a second distribution structure 60 for distributing the oxidant facing the cathode 22.
- the second distribution structure 60 simultaneously serves to dissipate water formed in a reaction in the fuel cell 2.
- the bipolar plates 40 further include a third distribution structure 70 disposed between the first distribution structure 50 and the second distribution structure 60.
- the third distribution structure 70 serves to pass a
- fuel is conducted via the first distribution structure 50 to the anode 21.
- oxidizing agent is via the second
- Distributed structure 60 passed to the cathode 22.
- the fuel present
- Hydrogen is catalytically oxidized at the anode 21 with the emission of electrons to protons.
- the protons pass through the membrane 18 to the cathode 22.
- the emitted electrons flow through the distribution structures 50, 60, 70 to the cathode 22 of the adjacent fuel cell 2, or from the anode 21 of the peripheral fuel cell 2 via an external circuit the cathode 22 located at the other edge
- Fuel cell 2 The oxidizing agent, in the present case atmospheric oxygen, reacts by taking up the thus conducted electrons and the protons, which through the
- Membrane 18 have come to the cathode 22, to water.
- FIG. 3 shows a layer structure 30 comprising a carrier material 31, which may also be referred to as a substrate, and a coating 32.
- the coating 32 contains graphite 33 in particulate form and a binder 35 and Leitruß 36.
- the coating 32 has cavities 34 which are occupied by neither the graphite 33 nor the binder 35 or Leitruß 36 and which make up the porosity of the coating 32.
- the carrier material 31 is designed as a foil and has a first thickness 37.
- the coating 32 has a second thickness 38.
- Figure 4 shows a schematic representation of the principle of a doctor blade method.
- the carrier material 31 is designed as a film and is provided as a web.
- a slurry 82 containing graphite 33 is present in a doctoring trough 81.
- the web of support material 31 is moved relative to the doctoring trough 81 which is adjacent to a doctor blade 80, the slurry 82 being thinly applied by the doctor blade 80 to the support material 31 and forming the coating 32.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
Abstract
L'invention concerne une plaque bipolaire (40), destinée une cellule de combustible (2), comprenant au moins une structure de distribution (50, 60) destinée à distribuer un combustible ou un agent oxydant à une électrode (19, 20). L'au moins une structure de distribution (50, 60) comprend un matériau support (31) et un revêtement (32) et le revêtement (32) est électriquement conducteur et poreux. Le matériau de support (31) est réalisé sous la forme d'un film et a une première épaisseur (37) non supérieure à 2000 µm. En outre, l'invention concerne une cellule de combustible (2) comprenant au moins une unité d'électrode (10), pourvue d'une première électrode (19) et d'une deuxième électrode (20) séparées l'une de l'autre par une membrane (18), et au moins une plaque bipolaire (40) de l' invention. L'invention concerne également un procédé de fabrication d'une plaque bipolaire (40).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017204183.8A DE102017204183A1 (de) | 2017-03-14 | 2017-03-14 | Bipolarplatte für eine Brennstoffzelle und Brennstoffzelle sowie Verfahren zur Herstellung einer Bipolarplatte |
DE102017204183.8 | 2017-03-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018166733A1 true WO2018166733A1 (fr) | 2018-09-20 |
Family
ID=61249628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2018/053651 WO2018166733A1 (fr) | 2017-03-14 | 2018-02-14 | Plaque bipolaire pour cellule de combustible et cellule de combustible ainsi que procédé de fabrication d'une plaque bipolaire |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102017204183A1 (fr) |
WO (1) | WO2018166733A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111463448A (zh) * | 2019-01-18 | 2020-07-28 | 罗伯特·博世有限公司 | 用于燃料电池和电解装置的气体分配器结构 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102022200621A1 (de) | 2022-01-20 | 2023-07-20 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren zur Herstellung einer Kontaktplatte |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020034672A1 (en) * | 1998-06-05 | 2002-03-21 | Kazuo Saito | Fuel cell separator |
EP1227531A1 (fr) * | 1999-09-02 | 2002-07-31 | Matsushita Electric Industrial Co., Ltd. | Pile a combustible a electrolyte polymere |
WO2006125775A1 (fr) | 2005-05-27 | 2006-11-30 | Basf Aktiengesellschaft | Plaque bipolaire pour piles a combustible |
EP1919015A1 (fr) * | 2005-06-17 | 2008-05-07 | University of Yamanashi | Séparateur métallique destiné à une pile à combustible et son procédé de fabrication |
EP2450992A1 (fr) * | 2009-06-29 | 2012-05-09 | Tokai Carbon Co., Ltd. | Procede de production d'un separateur de pile a combustible |
WO2016070862A1 (fr) | 2014-11-03 | 2016-05-12 | Forschungszentrum Jülich GmbH | Plaque bipolaire pour cellules électrochimiques et son procédé de production |
-
2017
- 2017-03-14 DE DE102017204183.8A patent/DE102017204183A1/de not_active Withdrawn
-
2018
- 2018-02-14 WO PCT/EP2018/053651 patent/WO2018166733A1/fr active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020034672A1 (en) * | 1998-06-05 | 2002-03-21 | Kazuo Saito | Fuel cell separator |
EP1227531A1 (fr) * | 1999-09-02 | 2002-07-31 | Matsushita Electric Industrial Co., Ltd. | Pile a combustible a electrolyte polymere |
WO2006125775A1 (fr) | 2005-05-27 | 2006-11-30 | Basf Aktiengesellschaft | Plaque bipolaire pour piles a combustible |
EP1919015A1 (fr) * | 2005-06-17 | 2008-05-07 | University of Yamanashi | Séparateur métallique destiné à une pile à combustible et son procédé de fabrication |
EP2450992A1 (fr) * | 2009-06-29 | 2012-05-09 | Tokai Carbon Co., Ltd. | Procede de production d'un separateur de pile a combustible |
WO2016070862A1 (fr) | 2014-11-03 | 2016-05-12 | Forschungszentrum Jülich GmbH | Plaque bipolaire pour cellules électrochimiques et son procédé de production |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111463448A (zh) * | 2019-01-18 | 2020-07-28 | 罗伯特·博世有限公司 | 用于燃料电池和电解装置的气体分配器结构 |
Also Published As
Publication number | Publication date |
---|---|
DE102017204183A1 (de) | 2018-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69427676T2 (de) | Herstellungsverfahren von Elektroden | |
DE19812592B4 (de) | Membran-Elektroden-Einheit für Polymer-Elektrolyt-Brennstoffzellen, Verfahren zu ihrer Herstellung sowie Tinte | |
DE112005000978B4 (de) | Hybridbipolarplattenanordnung und Vorrichtungen, die diese enthalten sowie deren Verwendung | |
DE10393838B4 (de) | Korrosionsbeständige PEM-Brennstoffzelle, Separatorplatte und Verfahren zur Herstellug und Behandlung derselben | |
DE102008046403A1 (de) | Sauerstoffentwicklungsreaktionskatalysatoren enthaltende Elektroden | |
DE112004000171T5 (de) | Korrosionsbeständige Anschlussplatten für Brennstoffzellen | |
DE102013207900A1 (de) | Membran-Elektroden-Einheit und Brennstoffzelle mit einer solchen | |
DE102008038202B4 (de) | PEM-Brennstoffzelle mit verbessertem Wassermanagement und Verfahren zu ihrer Herstellung | |
DE102008051534A1 (de) | Brennstoffzellenstapel mit asymmetrischen Diffusionsmedien an Anode und Kathode | |
WO2020182433A1 (fr) | Couche de diffusion gazeuse pour une pile à combustible et pile à combustible | |
DE102008064086A1 (de) | Passivierte Metall-Bipolarplatten und ein Verfahren zu deren Herstellung | |
DE3241801A1 (de) | Wasserstoff/brom-zelle | |
WO2018166733A1 (fr) | Plaque bipolaire pour cellule de combustible et cellule de combustible ainsi que procédé de fabrication d'une plaque bipolaire | |
DE112004001685T5 (de) | Berücksichtigen einer MEA-Ausfallbetriebsart durch Steuerung einer MEA-Katalysatorschichtüberlappung | |
DE102016224696A1 (de) | Bipolarplatte für eine Brennstoffzelle und Brennstoffzelle | |
DE102004017501C5 (de) | Brennstoffzelle, Brennstoffzellenstapel, Verfahren zu deren Herstellung sowie Verwendung der Brennstoffzelle | |
EP3329535B1 (fr) | L'unite membrane-électrode de pile à combustible et procédé de fabrication de celui-ci | |
WO2018233921A1 (fr) | Pile à combustible | |
DE102020213574A1 (de) | Verteilerplatte für eine elektrochemische Zelle, elektrochemische Zelle und Verfahren zum Betrieb einer elektrochemischen Zelle | |
WO2019175014A1 (fr) | Convertisseur d'énergie électrochimique à résistance de transition réduite | |
WO2018130388A1 (fr) | Procédé de fabrication d'une plaque bipolaire, plaque bipolaire pour une pile à combustible et pile à combustible | |
EP1328987A2 (fr) | Procede d'exploitation d'une pile a combustible, pile a combustible a membrane electrolytique polymere mise en oeuvre et son procede de fabrication | |
WO2020001944A1 (fr) | Électrode de diffusion gazeuse destinée au recyclage de dioxyde de carbone, procédé de production et cellule électrolytique dotée d'une électrode de diffusion gazeuse | |
WO2017025557A1 (fr) | Unité membrane-électrodes pour pile à combustible et pile à combustible | |
WO2022175020A1 (fr) | Procédé de fabrication de couches catalytiques pour piles à combustible |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18706234 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18706234 Country of ref document: EP Kind code of ref document: A1 |