+

WO2018166593A1 - Procédé de réservation de bande passante et élément de réseau adapté - Google Patents

Procédé de réservation de bande passante et élément de réseau adapté Download PDF

Info

Publication number
WO2018166593A1
WO2018166593A1 PCT/EP2017/056132 EP2017056132W WO2018166593A1 WO 2018166593 A1 WO2018166593 A1 WO 2018166593A1 EP 2017056132 W EP2017056132 W EP 2017056132W WO 2018166593 A1 WO2018166593 A1 WO 2018166593A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
resources
network elements
reserved
reservation
Prior art date
Application number
PCT/EP2017/056132
Other languages
German (de)
English (en)
Inventor
Feng Chen
Franz-Josef GÖTZ
Marcel Kiessling
An Ninh NGUYEN
Jürgen Schmitt
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to PCT/EP2017/056132 priority Critical patent/WO2018166593A1/fr
Publication of WO2018166593A1 publication Critical patent/WO2018166593A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0663Performing the actions predefined by failover planning, e.g. switching to standby network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/72Admission control; Resource allocation using reservation actions during connection setup

Definitions

  • Profibus Process Field Bus
  • IEC 61158 The best-known example is Profibus (Process Field Bus), the universal fieldbus that is widely used in manufacturing, process and building automation.
  • Profibus was developed by Siemens and the Profibus user organization and standardized in the international standard series IEC 61158.
  • Profibus allows communication of Ge ⁇ boards from different manufacturers without any special interface adjustments.
  • Profibus specifies the technical features of a serial field bus system ⁇ , up to cell level may be in crosslinked form of distributed digital automation ⁇ apparatus of a field level with each other.
  • Profibus is a multi-master system that enables the joint operation of several automation, engineering or visualization systems with the decentralized peripheral devices on one bus.
  • PROFINET ⁇ Process Field Network is the open Industrial Ethernet standard of the PROFIBUS user organization e. V. (PNO) for automation.
  • Profinet uses TCP / IP and IT standards, is real-time Ethernet-capable and allows the in ⁇ tegration of fieldbus systems.
  • proprietary Ethernet additions were often used. Thereby the required quality of data transmission and latency requirements were met.
  • Time-sensitive networking is a set of standards that the Time-Sensitive Networking Task Group (IEEE 802.1) uses.
  • the standardization standards define mechanisms for the transmission of data over Ethernet networks.
  • a large part of the projects defines extensions of the bridging standard
  • IEEE 802. IQ IEEE 802. IQ. These extensions mainly address the transmission with very low transmission latency and high availability. Possible application areas are convergent
  • Networks with real-time audio / video streams and in particular real-time control streams which, for. B. in the automotive or industrial plants are used for control.
  • the establishment of the connections in the Ethernet network is carried out automatically by a reservation protocol (Multiple Stream Reservation Protocol, MSRP). All required resources must be reserved to guarantee the forwarding. Guarantees can be given for each individual transmission link through the check; possible overload scenarios are automatically prevented.
  • the reservation is Runaway ⁇ leads based on the current transmission through MSRP. So far, a reservation is made for each individual connection.
  • the Automatic Resource Reservation Protocol, MSRP considers the resources along the path to be used (given by Audio / Video Bridging, AVB through RSTP). By establishing the stream (for the periodic transmission of the real-time data) along the path, the transmission on the existing path is ensured.
  • Switching over the network to a backup path leads, depending ⁇ but to clear the connection.
  • the end application must reserve the connection again after the switchover has ended in the network. Until the completion of the new reservation creates a communication disorder for the participants which can lead to problems especially in real time applications.
  • MSRP Multiple Stream Reservation Protocol
  • Industrial networks are specially designed to use a planned replacement route in case of failure.
  • the resources must be designed so that enough resources would remain available in the event of a network switch. This is typically accomplished by requiring each network device to provide enough resources - but reservation and verification of individual connections does not occur in legacy networks.
  • the method for bandwidth reservation in a network consisting of network elements that operate according to the Time Sensitive Net ⁇ work standard according to IEEE 802.1, and in the connection establishment between a transmitting and a receiving network element, a first transmission standard by default checks ⁇ ge and the resources required for the network elements are reserved, wherein in the connection establishment phase at least a second, alternative data transmission ge ⁇ checks and the resources are reserved in the network elements.
  • each new stream is checked against the maximum resources available in the entire network. If there are too few resources, the feed-in into the network is prevented. The resource check takes place at the edge port. This makes it possible to switch over in the network at any time - the examination of existing resources is already checked by the edge port.
  • Layering enables mapping of local automation cells and connection to a backbone network. This allows networks with a different performance to be combined. At the transition of the networks an edge port for the superimposed / neighboring Seg ⁇ ment arises. Local streams only need resources in the automation cell. Streams that have been transferred to another cell need resources in the local cells and additionally in the backbone (base network) network.
  • the new layering concept enables independent switching in every level / instance.
  • the reserved but currently unused resources can be used with TSN for non-real-time data, so they are not wasted. They may only be used for the transmission of real-time data in the event of an error.
  • the bandwidth is no longer considered for the active forwarding path in each bridge, but per cell / network segment. So far, a reservation is made only along the currently active forwarding path.
  • This area reservation is advantageous in industrial networks - because they are designed specifically to error ⁇ falling rapidly an alternate route with sufficient resources to bie ⁇ th By testing the bandwidth with a protocol, an automatic access control takes place.. The network can no longer be overloaded by real-time data.
  • the switching of the forwarding path takes place independently of the resource consideration. As a result, no reservation is necessary when changing the path. As long as a possible alternative path exists in the network, it can be used. This allows the existing methods for fast switching in industrial networks such. B. MRP continue to be used.
  • Use of the new Shift redundancy concepts it is ⁇ enables (eg mechanisms such as Intermediate System to Intermediate System IS-IS SPB, Fast Reroute, ..) because the Reservie ⁇ tion has already been tested for all existing alternative routes.
  • FIG. 1 shows a ring topology with MRP as the redundancy method in the normal state
  • FIG. 2 shows a ring topology with MRP as a redundancy method in the event of a fault with interruption
  • Figure 3 shows a typical ring topology as is common in industrial networks
  • FIG. 4 shows a ring topology with area reservation
  • FIG. 5 shows an example with several network segments.
  • Figure 1 shows a conventional ring topology in a network 1, which consists of network elements 11 to 18, and a redundancy manager RM.
  • a routing method is the media
  • Redundancy Protocol MRP or Hybrid Routing Protocol HRP used.
  • the small X below the redundancy manager indicates a targeted interrupt in the ring topology to prevent redundant transmission of data packets on two redundant data paths by blocking the output port towards the network element 15.
  • Figure 3 shows a typical network for a contisco ⁇ len installation, wherein these are characterized in that a control element 3 (the PLC, Programmable Logic Controller) via a bridge 2 to the network elements 31 to 38 by the sensor data and measured values for controlling and control data is transmitted away from the controller.
  • a control element 3 the PLC, Programmable Logic Controller
  • the resources, thus in particular the required Speicherbe ⁇ may be used in the input and output queues and computing capacity for the switching and routing in the network elements 31 to 38 are reserved in advance during connection establishment.
  • Figure 4 now shows a different view of the known network, here the path does not become a sequence of individual
  • Network elements on the way from the sender to the receiver (quasi one-dimensional) but as all possible paths from the sender to the receiver within a network or segment. fen (flat or two-dimensional, 2) and performed as a "sum reservation" in the individual network elements, so it is reserved in each network element a reservation for potential transmissions / possible connections between the sender and receiver - within the maximum available bandwidth of the network element.
  • FIG. 5 shows a connection of three networks N1, N2, N3 via a backbone BB, the networks in each case being networks such as that illustrated in FIG.
  • the three networks Nl, N2, N3 are ver linked in each case via ⁇ "Edge ports" 20, 30, 29, 49 to each other via the backbone.
  • a reservation invention within a network ⁇ works Nl to N3 then has an impact on the Reservie ⁇ stakes in the resources of the backbone.
  • Networks N1, N2 N3 comprise the reserved bandwidth in their own network plus one part of each external bandwidth reservations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)

Abstract

L'objectif de l'invention est de modifier le schéma de réservation du protocole MSRP ("Multiple Stream Reservation Protocol"). Dans les réseaux industriels, la réservation étendue d'éléments de réseau nécessaires proposée est avantageuse du fait que ces éléments sont conçus spécialement pour offrir rapidement une voie de déroutement avec suffisamment de ressources en cas de défaut. Une protection d'accès automatique a lieu grâce au contrôle de la bande passante au moyen d'un protocole. Le réseau ne peut plus être surchargé par des données en temps réel.
PCT/EP2017/056132 2017-03-15 2017-03-15 Procédé de réservation de bande passante et élément de réseau adapté WO2018166593A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/EP2017/056132 WO2018166593A1 (fr) 2017-03-15 2017-03-15 Procédé de réservation de bande passante et élément de réseau adapté

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2017/056132 WO2018166593A1 (fr) 2017-03-15 2017-03-15 Procédé de réservation de bande passante et élément de réseau adapté

Publications (1)

Publication Number Publication Date
WO2018166593A1 true WO2018166593A1 (fr) 2018-09-20

Family

ID=58387802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/056132 WO2018166593A1 (fr) 2017-03-15 2017-03-15 Procédé de réservation de bande passante et élément de réseau adapté

Country Status (1)

Country Link
WO (1) WO2018166593A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3522483A1 (fr) * 2018-01-31 2019-08-07 Siemens Aktiengesellschaft Procédé de communication de données, en particulier dans un réseau industriel, procédé de commande, dispositif, programme informatique ainsi que support lisible par ordinateur

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6141319A (en) * 1996-04-10 2000-10-31 Nec Usa, Inc. Link based alternative routing scheme for network restoration under failure
US20030147352A1 (en) * 2002-02-06 2003-08-07 Nec Corporation Path establishment method for establishing paths of different fault recovery types in a communications network
WO2005091142A1 (fr) * 2004-03-19 2005-09-29 Agency For Science, Technology And Research Procede et dispositif de determination de la capacite d'une liaison d'un reseau et systeme reseau
US20050270979A1 (en) * 2002-08-16 2005-12-08 Uwe Pauluhn Method for establishing a substitute path in a network
EP1768281A1 (fr) * 2004-06-22 2007-03-28 ZTE Corporation Procede permettant d'etablir une connexion de service et protection de reprise de service dans un reseau optique
US20150124600A1 (en) * 2012-05-11 2015-05-07 Josef Nöbauer Method for transmitting data in a packet-oriented communications network and correspondingly configured user terminal in said communications network

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6141319A (en) * 1996-04-10 2000-10-31 Nec Usa, Inc. Link based alternative routing scheme for network restoration under failure
US20030147352A1 (en) * 2002-02-06 2003-08-07 Nec Corporation Path establishment method for establishing paths of different fault recovery types in a communications network
US20050270979A1 (en) * 2002-08-16 2005-12-08 Uwe Pauluhn Method for establishing a substitute path in a network
WO2005091142A1 (fr) * 2004-03-19 2005-09-29 Agency For Science, Technology And Research Procede et dispositif de determination de la capacite d'une liaison d'un reseau et systeme reseau
EP1768281A1 (fr) * 2004-06-22 2007-03-28 ZTE Corporation Procede permettant d'etablir une connexion de service et protection de reprise de service dans un reseau optique
US20150124600A1 (en) * 2012-05-11 2015-05-07 Josef Nöbauer Method for transmitting data in a packet-oriented communications network and correspondingly configured user terminal in said communications network

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3522483A1 (fr) * 2018-01-31 2019-08-07 Siemens Aktiengesellschaft Procédé de communication de données, en particulier dans un réseau industriel, procédé de commande, dispositif, programme informatique ainsi que support lisible par ordinateur
WO2019149576A1 (fr) * 2018-01-31 2019-08-08 Siemens Aktiengesellschaft Procédé de communication de données dans un réseau en particulier industriel, procédé de commande, dispositif, programme informatique et support lisible par ordinateur

Similar Documents

Publication Publication Date Title
EP2034668B1 (fr) Système de communication hautement disponible
EP3522482B1 (fr) Procédé de communication de données dans un réseau industriel, procédé de commande, dispositif, programme informatique et support lisible par ordinateur
EP1430618B1 (fr) Procede pour faire fonctionner un systeme de transmission, et systeme de transmission dans un reseau d'alimentation electrique
DE102009042368B4 (de) Steuerungssystem zum Steuern von sicherheitskritischen Prozessen
EP2688249B1 (fr) Procédé de transmission de nouvelles dans un réseau de communication industriel pouvant fonctionner de manière redondante et appareil de communication pour un réseau de communication industriel pouvant fonctionner de manière redondante
DE102012209108B4 (de) Netzwerkeinrichtung, Netzwerkanordnung und Verfahren zum Betreiben einer Netzwerkanordnung
DE102012101957B3 (de) Busteilnehmer-Einrichtung zum Anschluss an einen linienredundanten, seriellen Datenbus und Verfahren zur Steuerung der Kommunikation eines Busteilnehmers mit einem linienredundanten, seriellen Datenbus
EP2838220A1 (fr) Procédé de transmission redondante de messages dans un réseau de communication industriel et appareil de communication
DE102006061063A1 (de) Redundantes Überwachungssteuersystem, und Redundanzschaltverfahren des Gleichen
EP2302841A1 (fr) Procédé et dispositif de communication orientée vers la sécurité dans le réseau de communication d'une installation d'automatisation
WO2019001718A1 (fr) Procédé de réservation de voies de transmission redondantes au maximum pour la transmission de paquets de données et dispositif
EP3577871B1 (fr) Procédé et dispositif permettant l'orientation modulaire d'un flux avb
EP3017570B1 (fr) Dispositif de controle, noeud de reseau et procede pour l'echange des donnees sur un reseau
EP2661023A1 (fr) Appareil de communication pour un réseau de communication industriel fonctionnant de manière redondante et procédé de fonctionnement d'un appareil de communication
EP0192120B1 (fr) Système et dispositif de transmission de données pour commande à distance
EP2675114A1 (fr) Procédé pour expoiter une formation de réseau , un arrangement de réseau et une formation de réseau
EP2704370B1 (fr) Procédé de transmission de nouvelles dans un réseau de communication industriel pouvant fonctionner de manière redondante et appareil de communication pour un réseau de communication industriel pouvant fonctionner de manière redondante
EP2165474A2 (fr) Redondance cyclique rapide d'un réseau
DE60301675T2 (de) Routersystem und Methode zur Duplizierung einer Weiterleitungseinheit
WO2018166593A1 (fr) Procédé de réservation de bande passante et élément de réseau adapté
EP2528282A1 (fr) Réseau de communication et dispositif de couplage pour interconnecter un premier et un deuxieme sous-réseau du réseau de communication
AT505741A1 (de) Dezentrale energieversorgungseinrichtung für ein modulares, fehlersicheres steuerungssystem
EP2854345A1 (fr) Procédé et appareil de communication couplé pour la transmission de messages dans un réseau de communication industriel à fonctionnement redondant
EP3739407A1 (fr) Procédé d'ajustement d'une topologie de communication dans un système cyberphysique
EP2515492B1 (fr) Procédé de communication dans un réseau d'automatisation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17712434

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17712434

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载