WO2018164344A1 - Fire monitoring system for preventing false alarm of fire detection device - Google Patents
Fire monitoring system for preventing false alarm of fire detection device Download PDFInfo
- Publication number
- WO2018164344A1 WO2018164344A1 PCT/KR2017/013287 KR2017013287W WO2018164344A1 WO 2018164344 A1 WO2018164344 A1 WO 2018164344A1 KR 2017013287 W KR2017013287 W KR 2017013287W WO 2018164344 A1 WO2018164344 A1 WO 2018164344A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fire
- fire detection
- predetermined time
- detection device
- received
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 211
- 238000012544 monitoring process Methods 0.000 title claims abstract description 48
- 238000000034 method Methods 0.000 claims description 11
- 230000035945 sensitivity Effects 0.000 description 52
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 44
- 229910002092 carbon dioxide Inorganic materials 0.000 description 22
- 239000001569 carbon dioxide Substances 0.000 description 22
- 238000012360 testing method Methods 0.000 description 13
- 238000003466 welding Methods 0.000 description 11
- 230000005855 radiation Effects 0.000 description 9
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 7
- 229910002091 carbon monoxide Inorganic materials 0.000 description 7
- 238000004891 communication Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 238000012806 monitoring device Methods 0.000 description 5
- 239000003086 colorant Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000005281 excited state Effects 0.000 description 2
- 230000005283 ground state Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- XXLDWSKFRBJLMX-UHFFFAOYSA-N carbon dioxide;carbon monoxide Chemical compound O=[C].O=C=O XXLDWSKFRBJLMX-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B29/00—Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
- G08B29/12—Checking intermittently signalling or alarm systems
- G08B29/14—Checking intermittently signalling or alarm systems checking the detection circuits
- G08B29/145—Checking intermittently signalling or alarm systems checking the detection circuits of fire detection circuits
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B17/00—Fire alarms; Alarms responsive to explosion
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B25/00—Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
- G08B25/01—Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
- G08B25/08—Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using communication transmission lines
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B25/00—Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
- G08B25/01—Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
- G08B25/10—Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using wireless transmission systems
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B25/00—Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
- G08B25/14—Central alarm receiver or annunciator arrangements
Definitions
- the present invention relates to a fire monitoring system, and more particularly, to a fire monitoring system for preventing a false alarm by determining that the fire detection device is a fire even when the fire detection device is not a real fire.
- the fire monitoring system of Korean Patent Laid-Open Publication No. 10-2013-0058244 includes a carbon dioxide detecting sensor array unit comprising a plurality of carbon dioxide detecting sensors and a sensor node unit transmitting a result value measured by the carbon dioxide detecting sensor array unit in order to determine whether a fire exists. And, it receives a result value transmitted through this and consists of a receiver for displaying whether or not a fire occurs in the terminal.
- the fire detection device of Korean Patent Publication No. 10-1098969 has an ultraviolet light sensor for detecting ultraviolet rays flowing into the fire detection device, an infrared light sensor for detecting infrared rays entering the fire detection device, an ultraviolet light sensor and an infrared light sensor.
- the pulse signal detected by the amplification unit for amplifying a digital signal; Check whether the wavelength of ultraviolet rays and infrared rays amplified by the amplification part is within the wavelength range recognized as the fire among the fire recognition zones set in the fire judgment DB, and fire judgment that generates a fire signal when included in the preset fire recognition zone.
- An optical sensor for detecting an amount of light flowing into the fire detector An optical sensor for detecting an amount of light flowing into the fire detector;
- a fire sensitivity control unit is provided to change the reference intensity recognized as a fire among the ultraviolet and infrared fire recognition zones set in the fire judgment DB of the fire judgment unit in association with the amount of light recognized by the optical sensor.
- the prior art document has the advantage that it is possible to detect the fire at a long distance by measuring the infrared and ultraviolet wavelengths generated during the fire, but the flame or high heat generated from a flame source such as welding or furnace that can be mistaken as a fire is present. There is still a problem of false alarms in places where sparks inevitably occur during work such as industrial facilities.
- an object of the present invention is to provide a fire detection device capable of minimizing a false alarm of a fire detection device due to a flame or high temperature, which is essentially generated in connection with a work in a workplace.
- a plurality of fire detection device and the integrated controller wirelessly or wired connected to the fire detection device, fire monitoring for preventing false alarm of the plurality of fire detection devices
- a system in which a plurality of fire detection devices are installed in a space to have the same effective monitoring area as each other, and the integrated controller receives a first fire detection signal from a fire detection device of any of the plurality of fire detection devices. If received, it is configured to wait for a fire alarm for a predetermined time interval (T1 ⁇ T2), and executes a fire alarm when the second fire detection signal is received from another fire detection device within the predetermined time.
- T1 ⁇ T2 predetermined time interval
- the integrated controller is configured not to execute a fire alarm when a second fire detection signal is not received from one or more other fire detection devices within the predetermined time interval T1 to T2.
- the predetermined time is preferably in the range of 3 to 50 seconds.
- the integrated controller when the integrated controller receives the second fire detection signal from the other one or more fire detection devices before the minimum time T1 of the predetermined time intervals T1 to T2, the predetermined time intervals T1 to T2. Wait for a fire alarm to run, and execute a fire alarm if a third fire detection signal is received from another one or more fire detection devices within the predetermined time.
- the integrated controller may be configured not to execute a fire alarm when a third fire detection signal is not received from another one or more fire detection devices within the predetermined time interval T1 to T2.
- the integrated controller may be configured to execute a fire alarm when the second fire detection signal is received from the other one or more fire detection devices before the minimum time T1 of the predetermined time intervals T1 to T2. .
- the present invention provides a fire authenticity determination method for determining the authenticity of the fire based on the fire detection signals from a plurality of fire detection devices installed in the space to have the same effective monitoring area in order to achieve the above object.
- a fire detection step of detecting a fire using a plurality of fire detection devices Receiving a first fire detection signal from any one of the plurality of fire detection devices; Waiting to receive a second fire detection signal from another fire detection device after receiving the first fire detection signal; And executing a fire alarm when the second fire detection signal is received between the predetermined time intervals T1 and T2 or when the second fire detection signal is not received between the predetermined time intervals T1 and T2. Including the step of ignoring the signal and returning to the fire detection step.
- the present invention by detecting the fire according to the detection result of the fire detection devices installed in the space to have the same effective monitoring area, it is possible to reduce the false alarm of the fire detection device due to the flame or high heat generated during the operation. .
- 1 is an explanatory diagram for explaining sensitivity according to an effective sensing distance.
- FIG. 2 is a view showing the appearance of a fire detection apparatus according to the present invention.
- FIG. 3 is a view showing the sensor unit and the LED unit of the fire detection apparatus exposed to the outside according to the present invention.
- FIG. 4 is a view showing a wavelength detection band of the first to third sensors of the sensor unit according to the present invention.
- Figure 5 is a block diagram showing the internal configuration of a fire detection apparatus according to the present invention.
- FIG. 6 is a view for explaining the effective monitoring distance setting by the connection of the external sensitivity control switch and the signal receiver in the fire detection apparatus according to the present invention.
- FIG. 7 is an explanatory diagram for explaining a fire monitoring system configured for preventing the false alarm of the fire detection device.
- FIG. 8 is an explanatory diagram for explaining a fire monitoring system using three fire detection devices.
- FIG. 9 is a flowchart illustrating a fire authenticity determination method for determining the authenticity of a fire based on fire detection signals from a plurality of fire detection devices installed in a space to have different monitoring areas.
- a fire detection device or a flame detector tests a valid monitoring distance by introducing a concept of an effective monitoring distance that recognizes two or more detection distances in one detector according to a rule that previously provided only one nominal monitoring distance to one detector. do.
- the type approval and verification test of the fire detection device is 1.2 times the effective monitoring distance or nominal monitoring distance.
- a flame that is ignited in the same way on a 16.5 ⁇ 16.5 mm ⁇ 50 mm plate placed at the same distance must meet all of the malfunction tests that must be withdrawn without detecting more than one minute (i.e. without issuing a fire alarm). .
- the method of changing the sensitivity is that the infrared energy is increased or decreased in proportion to the square of the distance, the flame generated by igniting the haptan and water in the ignition plate of 330mm ⁇ 330mm ⁇ 50mm size at the longest 50m distance
- the infrared energy reaching the detector is assumed to be 100, and after the same flame is brought 40 meters away from the detector, 10 meters forward from the 50m test site, the infrared energy reaching the detector is 1.2 times longer.
- the magnitude of the energy reached increases from 100 to 144.
- the fire detection device is set to a low sensitivity (also referred to as 30m sensitivity) for a close effective monitoring distance (30m).
- a low sensitivity also referred to as 30m sensitivity
- it is set to medium sensitivity (also referred to as 40m sensitivity)
- high sensitivity also referred to as 50m sensitivity
- the sensitivity is set to satisfy the requirements of the operation test and the non-operation test as described above at each sensitivity.
- the fire detection apparatus 100 includes a case 170 formed to surround and expose the sensor unit 110 for detecting a fire and an LED unit 130 indicating a state of the fire detection apparatus. .
- the sensor unit 110 includes a plurality of sensors for detecting a fire, and a central processing unit 120 for controlling the sensitivity of the sensor unit 110 and determining whether there is a fire is housed in the cylindrical case. .
- a fire detection sensor unit is provided with a lens (not shown) on one side of the cylindrical body (BODY), the inside of the body is provided with a printed circuit board (PCB) equipped with a sensor and an LED.
- PCB printed circuit board
- the sensor unit 110 for detecting a fire includes, but is not limited to, at least three sensors 112, 114, and 116.
- a plurality of sensors constituting the sensor unit 110 is a fire element detection sensor for detecting at least one fire-related element, and includes a non-fire element detection sensor for detecting at least one non-fire element.
- the first sensor 112 is a sensor for detecting CO 2 and CO resonance energy when a flame (flame) occurs
- the second sensor 114 is a flame ( Flame) detects only CO resonance energy
- the remaining third sensor 116 is a sensor configured to detect non-fire elements other than the flame rather than the flame.
- the third sensor 116 for detecting the non-fire element may be an optical sensor for detecting a wavelength range corresponding to the infrared characteristics exhibited in arc welding, sunlight, halogen lamps, fluorescent lamps, and various colored lamps.
- Radiation energy can be expressed by three factors of the Stefan-Boltzmann law.
- H is the radiant energy per hour
- A is the surface area
- e is the emissivity of the radiant
- ⁇ is Stefan Boltzmann's constant
- T is the temperature of the radiant. The radiant energy increases with increasing temperature value of the radiating object. Detecting the resonance energy of carbon dioxide will be described as follows.
- the phenomenon called carbon dioxide resonance radiation present in the infrared rays emitted from the flame is used.
- Carbon dioxide has two emission spectrum peaks in the near infrared band, and gray emission and carbon dioxide resonance radiation exist, and the present invention uses carbon dioxide resonance radiation rather than gray emission.
- the present invention is designed to further utilize the resonance radiation of carbon monoxide in order to further increase the accuracy of fire detection.
- the carbon dioxide resonance radiation means that the energy emitted by the carbon dioxide in the excited state is absorbed by other carbon dioxide in the ground state, and the carbon dioxide emitted by the carbon dioxide in the excited state is received by the carbon dioxide in another ground state. It refers to a phenomenon that causes resonance to exchange energy with each other, and carbon dioxide resonance radiation characteristics are different from heat sources such as sunlight, lamps, and heat. Carbon monoxide resonance radiation is also similar to carbon dioxide resonance radiation.
- the sensor first sensor 112 that detects CO 2 and CO resonance energy is a band pass filter for detecting infrared energy (thermal energy) having a wavelength band ranging from approximately 3.8 ⁇ m to 5.0 ⁇ m.
- the sensor 114 that detects only CO resonance energy may be a band pass filter for detecting infrared energy having a wavelength band in the range of approximately 4.5 ⁇ m to 4.9 ⁇ m.
- the third sensor 116 for detecting the non-fire element may be a band pass filter for detecting infrared energy having a wavelength band within a range of 3.9 ⁇ m to 4.1 ⁇ m.
- the third sensor 113 for detecting a non-fire element does not react the detection It is considered that a spark or flame is likely to be caused by a fire. Differently, even if the first sensor 112 and the second sensor 113 react, if the third sensor 113 that detects the non-fire element reacts greatly, it may be other than a fire such as arc welding, a lighter or a fire. It can be judged that it is likely to be caused by a factor.
- an LED unit is installed on an exposed surface of the fire detection apparatus 100, and the LED unit 130 includes a plurality of LEDs (light emitting diodes) that emit light of different colors. As shown in FIG. 3, the LED unit 130 includes, but is not limited to, the first LED 132 emitting red light and the second LED 134 emitting green light. The LED unit 130 is installed to display the operation state of the fire detection device, which will be described later.
- FIG. 5 is a block diagram schematically showing the configuration of the fire detection apparatus 100 according to the present invention.
- the fire detection device 100 the sensor unit including a plurality of sensors to detect a fire, based on the signal input from the sensor unit 110 to determine whether the fire.
- the central processing unit 120 for determining the state
- the LED unit 130 for displaying the state of the sensor unit 110 and whether the fire
- the sensitivity control input device 140 for adjusting the sensitivity from the outside and the external network device 250, for example, a Wi-Fi communication module 150 connected with an Access Point (AP).
- AP Access Point
- the sensor unit 110 including the plurality of sensors 112, 114, and 116 to detect a fire has been described above with reference to FIGS. 3 and 4, and thus description thereof will be provided. Omit it.
- the sensor unit 110 including the fire element detection sensors 112 and 114 and the non-fire element detection sensor 116 transmits the detected value in each wavelength band to the signal input unit 122 of the central processing unit (MCU) 120. And the central processing unit (MCU) functions to determine whether a fire is based on the detected values from the respective sensors received.
- MCU central processing unit
- the central processing unit 120 controls the overall operation of the sensor unit 110, the sensitivity control switch 140, or the signal input unit 122 and the fire detection device 100 configured to receive signals from the short range communication module.
- a memory 128 for storing a sensitivity adjustment algorithm used to set the sensitivity of the sensor unit 110 of the fire detection apparatus 100 and a fire discrimination algorithm for determining whether a fire is present.
- the signal input unit 122 receives a signal sensed by the sensor unit 110, receives a sensitivity value set by the user through the sensitivity control switch 140, or receives data input from the short range communication module 150. It is configured to deliver this to the control unit 124.
- the controller 124 controls or processes signals input from the signal input unit 122. For example, when a flame occurs, when the first to third sensors 112, 114, and 116 of the sensor unit 110 transmit respective detected values to the controller 124, the controller 124 may store the memory 128. Fire discrimination algorithm stored in the) and determines whether the generated flame is caused by fire or non-fire element (welding, lighter fire) and notifies the integrated controller 300 through the signal output unit 126. .
- the integrated controller 300 will be described in more detail below.
- the fire determination algorithm may include a carbon dioxide-carbon monoxide waveform feature, a carbon monoxide waveform feature, a non-fire element waveform feature, or a combination thereof detected from the first to third sensors 112, 114, and 116 as described with reference to FIG. 4. This is performed by comparing the characteristic (ratio) of the waveform to the waveform characteristic corresponding to the fire stored in the memory and the waveform characteristic corresponding to the non-fire.
- the amount detected by the fire factor detection sensor (the first sensor 112 and the second sensor 114) and the amount detected by the non-fire factor detection sensor (the third sensor 116) are compared. If the amount detected from the non-fire factor detection sensor 116 is larger than the amount detected from the fire factor detection sensors 112 and 114 or more than a predetermined amount, the controller 124 indicates that the detected flame is caused by a fire. If not, it may be stored in the memory 128 as a non-fire event.
- the controller 124 determines that the detected flame is generated by the fire. And store it in the memory 128 as a fire event, and transmit the fire to the fire station or display through the LED 130.
- Sensitivity adjustment switch 140 is separated from the body (or case 1700) of the fire detection device 100 shown in FIG. It is installed to be electrically connected.
- the sensitivity control switch 140 includes three terminals.
- the first terminal T1 is commonly connected to a negative ( ⁇ ) power supply of a DC level
- the second terminal T2 and the third terminal T3 are connected to a DC sub power source (DC ⁇ ) to which the first terminal T1 is connected.
- Is configured to be connected via a switch.
- the input terminals I1, I2, and the signal input unit 122 of the signal input unit 122 of the central control unit 120 are opened.
- H, L, and L are respectively input to I3, and the controller performs a sensitivity adjustment algorithm stored in the memory to set the effective monitoring distance to 30 m (the sensitivity of the sensor unit 110 is set to a low degree).
- the controller performs a sensitivity adjustment algorithm stored in the memory to set the effective monitoring distance to be 40 m (the sensitivity of the sensor unit 110 is set to the middle sensitivity).
- the input terminals I1, I2, and I3 of the signal input unit 122 of the central control unit 120 are H, H, and H are respectively input, and the controller performs a sensitivity control algorithm stored in the memory to set the effective monitoring distance to 50 m (the sensitivity of the sensor unit 110 is set to high sensitivity).
- the user can go to the place where the fire monitoring device is installed (approximately 15m to 50m or more from the ground) to adjust the sensitivity of the conventional fire monitoring device, and safely adjust the sensitivity of the fire monitoring device when necessary without operating the fire monitoring device. It becomes possible.
- the sensitivity of the fire detection device is controlled by non-fire elements such as welding or lighter by setting it to a low level because it is relatively easy to observe the fire by the worker in case of fire during the day when the operator is resident. The non-fire alarm can be further prevented.
- the fire detection device is set at high sensitivity, so that flames or sparks caused by fire can be detected more precisely.
- the central processing unit may further include a timer unit, and may be configured to automatically change the sensitivity of the fire detection apparatus for each time zone set by the user by the timer unit.
- a fire detection device can be configured to automatically adjust sensitivity by setting a sensitivity of 30m in the time zone of 9 am to 6 pm and a sensitivity of 50 m in the time zone of 6 pm to 9 am the next day. have.
- the signal input unit 122 is configured to further receive a sensitivity adjustment command from the Wi-Fi communication module 150 in addition to the sensitivity adjustment switch 140.
- the Wi-Fi communication module 150 is configured to perform communication with an external terminal, specifically, a dedicated application installed on a smartphone, through an AP (Access Point) installed on the outside.
- the fire detection apparatus 100 is provided with an LED unit 130 that visually displays state information.
- the LED unit 130 includes, but is not limited to, a first LED 132 emitting red light and a second LED 134 emitting green light.
- the first LED 132 and the second LED 134 is advantageous for visual distinction of emitting light in different colors, and may be selected from two different colors of red, green, blue, and yellow.
- the control unit turns on only the first LED 132 (the second LED 134 turns off) during normal monitoring, and the first LED when the fire is detected. Controls to flash.
- the control unit controls to display both the first LED 132 and the second LED 134 by lighting and to flash the first LED when detecting the fire.
- control unit controls only the second LED 134 lights up during normal monitoring, and the first LED 132 flashes during the fire detection.
- the first LED is preferably selected in the red to visually display the emergency situation
- the second LED is preferably selected in blue or green.
- the color and blink state of the LED installed on the exposed surface of the fire detection device allows administrators to easily recognize the fire detection state at which sensitivity the fire detection device is currently operating, and the fire detection state. Can lose.
- the LED unit 130 has been described as being composed of two LEDs, that is, the first LED 132 and the second LED 134, but the present invention is not limited thereto, and the first LEDs of different colors are different from each other. It consists of the third to third LEDs, each of the three color sensitivity (30m sensitivity, 40m sensitivity, 50m sensitivity) for each color, and in the same manner as in the above-described embodiment to detect only one LED (red) in the event of fire detection It may be implemented.
- the fire monitoring system 10 includes a plurality of fire detection devices 100-1 and 100-2 and an integrated controller 300 individually connected to each fire detection device.
- the connection between the integrated controller 300 and the fire detection apparatuses 100-1 and 100-2 may be wired or wireless.
- the integrated controller 300 may be mounted in a wireless router.
- the integrated controller 300 receives the fire detection information through the signal output unit 126 of the plurality of fire detection apparatus 100 as described above.
- each of the plurality of fire detection apparatuses 100-1, 100-2 is installed in a space to have the same effective monitoring A1.
- the second fire detection apparatus 100 when a flame (for example, arc welding by welding) is generated by an operator's work in one of the effective monitoring areas A1, the second fire detection apparatus 100 relatively close to the fire source is generated. -2) detects the flame first and determines whether the fire is true or not by a fire determination algorithm using detection signals from the first to third sensors of the second fire monitoring apparatus as described above.
- a flame for example, arc welding by welding
- the fire discrimination algorithm of the fire detection apparatus may misjudge it as a flame caused by fire.
- the conventional fire monitoring device is directly connected to the fire brigade to notify the fire alarm in the integrated controller 300 and configured to notify the fire brigade through the second decision.
- the second fire detection apparatus 100-2 that detects the flame transmits a fire detection signal to the integrated controller 300.
- the integrated controller 300 is another fire detection device connected to the integrated controller 300, instead of immediately transmitting the fire detection signal from the second fire detection device 100-2 to the fire station, the first fire detection device Wait for a predetermined time to receive a fire detection signal from (100-1).
- the infrared energy from the flower source is reduced in proportion to the square of the distance.
- the energy generated by the fire source flame
- the sum of the infrared energy which decreases by the square of the distance from the fire source to the second fire detection sensor 100-2.
- the second fire detection device that detects the first flame, unless the energy generated from the flame generated by arc welding performed in the workplace, etc. is suddenly increased to two to three times (four times if the distance is double).
- the first fire detection apparatus 100-1 disposed adjacent to 100-2 recognizes the flame by welding as a fire and does not notify the integrated controller 300 of the fire detection signal.
- the infrared energy generated from the fire source is gradually increased as the flame of the fire source increases, that is, over time, so that the neighboring fire from the second fire detection device 100-2
- the fire detection device 100-1 detects this and notifies the integrated controller 300 of the fire detection signal.
- the integrated controller 300 waits for the transmission of the fire alarm signal to the fire station for a predetermined time and detects another fire for the predetermined time. If the fire detection signal is not received from the device 100-1, it is determined that the flame is generally generated in the workplace, and thus the fire detection signal received from the second fire detection device 100-2 is ignored. When a fire detection signal is received from the other fire detection device 100-1 for a predetermined time, it is determined that the fire is generated and a fire alarm signal is generated in the fire station.
- the predetermined time may be selected as an appropriate time condition in consideration of the sensitivity of the fire detection devices 100-1 and 2 installed in the workplace and / or the installation distance between the fire detection devices.
- the predetermined time of waiting for the fire detection signal of the other fire detection device in the integrated controller is preferably selected in the range of approximately 3 seconds to 50 seconds, more preferably in the range of 5 to 30 seconds.
- FIG. 7 two fire monitoring apparatuses have been described as an example, but the present invention is not limited thereto.
- three fire detection apparatuses 100-1 to 100 to 3 are located within the same fire monitoring region. It may be configured as a fire monitoring system having a.
- the flower garden (flame or fire) is an area between the third fire detection device 100-3 and the second fire detection 100-2.
- the second fire detection device and the third fire detection device notify the integrated controller first at the second fire detection device with a slight time difference, and then the third fire detection device.
- the fire detection signal will be sent to the integrated controller (300).
- the integrated controller 300 first receives the image detection signal from the second fire detection device and receives the fire detection signal from the third fire detection device within a time range of, for example, within 5 seconds earlier than a predetermined time.
- the integrated controller 300 may be configured to determine that it is a real fire only when receiving a fire detection signal from any one or more of the other fire detection devices.
- the fire detection signal is received from another fire detection device (the first fire detection device). It can also be set to judge the fire only.
- Such a method makes it possible to distinguish the authenticity of the flower garden more accurately when the flower garden occurs at the boundary of the area to be monitored.
- FIG. 9 is a flowchart illustrating an operation flow in an integrated controller for preventing false alarm according to the present invention for determining the authenticity of a flower source as described with reference to FIGS. 7 and 8.
- the integrated controller monitors the fire source or the fire occurrence as in step S100 while being connected to a plurality of flame detection devices installed in the space to have the same effective monitoring area.
- step S110 when a fire or a fire source occurs due to an operation or a fire, the fire detection device (hereinafter referred to as the first fire detection device) that detects this sends a fire detection signal to the integrated controller so that the integrated controller receives the first fire detection signal. do.
- the fire detection device hereinafter referred to as the first fire detection device
- step S120 Upon receiving the first fire detection signal from the first fire detection device, the process proceeds to step S120, in which the integrated controller waits for a fire alarm and enters a fire determination mode for determining the authenticity of the fire.
- step S130 the integrated controller determines whether a second fire detection signal is received from another fire detection device for a predetermined time range T1 to T2.
- step S130 If the second fire detection signal is not received from the other fire detection device within the predetermined time range in step S130 (that is, T> T2), the step proceeds to S160 and S170 to release the fire plane mode and reset to step S100. Will return.
- step S130 if the second fire detection signal is received in step S130 and the reception time T is between T1 and T2, which is a predetermined time range, it is determined that the flame has increased due to the fire, and the flow proceeds to step S180 to provide a fire alarm.
- T1 and T2 which is a predetermined time range
- step S130 if the second fire detection signal is received in step S130 and the reception time T is less than the minimum value of the predetermined time range T1 (T ⁇ T1), the position of the flower source is the first surveillance region and the second surveillance. It is likely to occur between the regions. Therefore, in this case, by repeating the operations of steps S130, S150, S180, S160, and S170, that is, the authenticity of the fire source is determined according to whether a fire detection signal from another fire detector is received between the time T1 and the time T2. It can be further configured to.
- this additional step is according to the user's selection, and may be configured to notify the fire alarm by determining that it is a fire when the reception time T of the second fire detection signal is received before T1 which is the minimum value of the predetermined time range. .
- Such an additional configuration may, depending on the environment of the workplace in which the fire monitoring system is installed, e.g. a configuration in which a third fire detection signal is awaited, in which case, for example, arc welding is mainly performed and no flammable or explosive materials are handled. It is preferable that a place where material or flammable material is mainly handled so that a fire can be greatly ignited from an early stage is configured to immediately issue a fire alarm without waiting for reception of a third fire detection signal.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Computer Networks & Wireless Communication (AREA)
- Fire Alarms (AREA)
Abstract
The present invention relates to a fire monitoring system and, more particularly, to a fire monitoring system for preventing a fire detection device from erroneously determining that there is a fire and making a false alarm even when there is no actual fire. Provided is a fire monitoring system which consists of a plurality of fire detection devices and an integrated controller connected to the fire detection devices wirelessly or by wire, and is for preventing false alarms of the plurality of fire detection devices. In particular, the plurality of fire detection devices are installed within a space so as to have the same effective monitoring area, and the integrated controller is configured to put execution of a fire alarm on standby for a predetermined time interval (T1-T2) when a first fire detection signal is received from any one of the plurality of fire detection devices, and to execute the fire alarm when a second fire detection signal is received from another fire detection device within the predetermined time.
Description
본 발명은 화재 감시 시스템에 관한 것으로서, 더욱 상세하게는 화재 감지 장치가 실제 화재가 아닌 경우에도 화재인 것으로 판단하여 오경보하는 것을 방지하기 위한 화재 감시 시스템에 관한 것이다.The present invention relates to a fire monitoring system, and more particularly, to a fire monitoring system for preventing a false alarm by determining that the fire detection device is a fire even when the fire detection device is not a real fire.
일반적으로, 화재가 발생하면 화재 발생 초기에는 일산화탄소, 이산화탄소 및 연기가 발생되며, 이후 불꽃이 일어나기 시작한다. 이러한 화재 진행에 따라 일산화탄소, 이산화탄소 및 불꽃을 효과적으로 계측하여 경보 시스템에 관한 연구가 있어 왔다.In general, when a fire occurs, carbon monoxide, carbon dioxide, and smoke are generated at an early stage of a fire, and then a spark starts to occur. As the fire progresses, there has been a study on the alarm system by effectively measuring carbon monoxide, carbon dioxide and flame.
화재 초기에는 일산화탄소가 1,000ppm 이상, 이산화탄소는 수만 ppm까지 증가하게 되는데, 평상시 일산화탄소와 이산화탄소의 농도가 증가하는 경우는 거의 없다.In the early stages of fire, carbon monoxide increases to more than 1,000 ppm and carbon dioxide increases to tens of thousands of ppm, and the concentrations of carbon monoxide and carbon dioxide are not usually increased.
공개특허공보 제10-2013-0058244호의 화재 감시 시스템은 화재 여부를 판단하기 위하여, 복수개의 이산화탄소 감지 센서로 이루어진 이산화탄소 감지센서 어레이부, 이산화탄소 감지 센서 어레이부에서 측정된 결과 값을 송신하는 센서 노드부와, 이를 통해 송신된 결과 값을 받아 단말기에 화재 발생 여부에 대해 표시하는 수신부로 이루어져 있다.The fire monitoring system of Korean Patent Laid-Open Publication No. 10-2013-0058244 includes a carbon dioxide detecting sensor array unit comprising a plurality of carbon dioxide detecting sensors and a sensor node unit transmitting a result value measured by the carbon dioxide detecting sensor array unit in order to determine whether a fire exists. And, it receives a result value transmitted through this and consists of a receiver for displaying whether or not a fire occurs in the terminal.
이와 같은 구성에 의해 화재시 증가하는 이산화탄소의 농도를 감지함으로써 화재 발생 조기에 화재 발생을 쉽게 감시할 수 있는 이점이 있다. 하지만, 이산화탄소를 감지하기 위해서는 센서를 직접 건물 내부에 설치해야만 하고, 센서가 설치되지 않은 장소에는 화재가 발생하면 신속히 감지하기 쉽지 않다는 문제점이 있다.By such a configuration there is an advantage that it is easy to monitor the occurrence of fire early in the fire by detecting the concentration of carbon dioxide increases in the event of fire. However, in order to detect carbon dioxide, a sensor must be installed directly inside a building, and there is a problem that it is not easy to quickly detect a fire in a place where the sensor is not installed.
또한 등록특허공보 제10-1098969호의 화재 감지 장치는 화재 감지 장치로 유입되는 자외선을 감지하는 자외선 감지센서와, 화재 감지 장치로 유입되는 적외선을 감지하는 적외선 감지센서와, 자외선감지센서와 적외선감지센서에서 감지된 펄스신호는 디지털신호로 증폭하는 증폭부와; 증폭부에서 증폭된 자외선과 적외선의 파장이 화재판단DB에 기 설정된 화재인식영역 중 화재로 인식되는 파장범위에 포함되어 있는지를 확인하고, 기설정된 화재인식영역에 포함되면 화재신호를 발생시키는 화재판단부와; 화재감지기로 유입되는 광량을 감지하는 광센서와; 광센서에서 인식된 광량에연동하여 화재판단부의 화재판단DB에 설정된 자외선 및 적외선의 화재인식영역 중 화재로 인식되는 기준강도를 변경시키는 화재감도조절부를 구비하고 있다.In addition, the fire detection device of Korean Patent Publication No. 10-1098969 has an ultraviolet light sensor for detecting ultraviolet rays flowing into the fire detection device, an infrared light sensor for detecting infrared rays entering the fire detection device, an ultraviolet light sensor and an infrared light sensor. The pulse signal detected by the amplification unit for amplifying a digital signal; Check whether the wavelength of ultraviolet rays and infrared rays amplified by the amplification part is within the wavelength range recognized as the fire among the fire recognition zones set in the fire judgment DB, and fire judgment that generates a fire signal when included in the preset fire recognition zone. Wealth; An optical sensor for detecting an amount of light flowing into the fire detector; A fire sensitivity control unit is provided to change the reference intensity recognized as a fire among the ultraviolet and infrared fire recognition zones set in the fire judgment DB of the fire judgment unit in association with the amount of light recognized by the optical sensor.
상기 선행기술문헌은 화재시 발생되는 적외선과 자외선 파장을 측정하여 원거리에서도 화재의 검출이 가능하다는 이점이 있으나, 화재로 오인될 수 있는 용접이나 용광로 등의 화염 소스에서 발생되는 불꽃 또는 고열이 상존하는 산업시설과 같이 업무 중 불가피하게 불꽃이 발생하게 되는 장소에서 여전히 오경보하는 문제점이 발생되고 있는 실정이다.The prior art document has the advantage that it is possible to detect the fire at a long distance by measuring the infrared and ultraviolet wavelengths generated during the fire, but the flame or high heat generated from a flame source such as welding or furnace that can be mistaken as a fire is present. There is still a problem of false alarms in places where sparks inevitably occur during work such as industrial facilities.
그러나 이와 같이 업무 수행을 위해 불꽃이 발생되는 환경하에서 화재발생 위험이 매우 것이 사실이다. 2013년 손해보험협회의 특수건물화재 조사분석 보고 결과에 따르면 화재의 83%가 공장에서 발생되고, 그리고 그중 47.7%가 업무 시간 중에 발생되는 것으로 보고되고 있다. However, it is true that there is a great risk of fire in such an environment where sparks are generated to perform work. In 2013, 83% of fires occurred in factories, and 47.7% of them occurred during business hours, according to the 2013 Korea Insurance Insurance Association's special building fire report.
즉, 이와 같이 불꽃을 동반하는 업무 장소에서, 실제 화재 발생이 업무 시간에 발생될 확율이 매우 높은 것을 의미하는데, 이런 장소에서 화재를 예방하기 위해서는 화재 감지 장치 또는 불꽃 감지 장치를 반듯이 설치해야만 한다. 그러나 전술한 바와 같은 오경보로 인해 스프링클러 등의 자동소화장치의 동작, 전원 차단과 같은 동작으로 인해 간접적인 피해 사고도 빈번하게 발생되고 있으며, 화재 감지 장치의 감도를 크게 낮추거나 화재 감지 장치의 전원을 꺼놓는 사례가 늘어나고 있으며, 이로 인해 실제 화재 발생시 초기에 화재를 진압하지 못하게 되는 문제가 발생된다.That is, in a work place accompanied by a flame, it means that the probability of actual fire occurrence at work time is very high. In order to prevent fire in such a place, a fire detection device or a flame detection device must be installed. However, due to the false alarm as described above, indirect damage accidents are frequently caused by the operation of automatic fire extinguishing devices such as sprinklers and the power cut off, and greatly reduce the sensitivity of the fire detection device or turn off the power of the fire detection device. Increasingly, there is a growing number of cases, which leads to problems that prevent fires from being put out early in the event of an actual fire.
따라서 이와 같은 화재 감지 장치의 오경보 동작을 줄일 수 있는 방안이 필요한 실정이다.Therefore, there is a need for a way to reduce the false alarm operation of such a fire detection device.
본 발명은 전술한 바와 같이 작업장에서 업무와 관련하여 필수적으로 발생되는 불꽃이나 고열 등으로 인해 화재 감지 장치가 오경보하는 최소화할 수 있는 화재 감지 장치를 제공하는 것을 목적으로 한다.As described above, an object of the present invention is to provide a fire detection device capable of minimizing a false alarm of a fire detection device due to a flame or high temperature, which is essentially generated in connection with a work in a workplace.
본 발명의 해결하고자 하는 과제는 이상에서 언급된 과제로 제한되지 않는다. 아울러 언급하지 않은 다른 기술적 과제들은 이하의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The problem to be solved of the present invention is not limited to the above-mentioned problem. In addition, other technical problems that are not mentioned will be clearly understood by those skilled in the art from the following description.
전술한 목적을 달성하기 위해, 본 발명의 제1 양태에 따르면 복수의 화재 감지 장치 및 화재 감지 장치에 무선 또는 유선으로 연결된 통합 제어기로 이루어지고, 상기 복수의 화재 감지 장치의 오경보 방지를 위한 화재 감시 시스템이 제공되고, 이 시스템에 있어서, 복수의 화재 감지 장치는 서로 동일한 유효 감시 영역을 갖도록 공간 내에 설치되고, 통합 제어기는, 복수의 화재 감지 장치 중 어느 하나 화재 감지 장치로부터 제1 화재 감지 신호를 수신한 경우 미리정해진 시간 구간(T1~T2) 동안 화재 경보 실행을 대기하고, 상기 미리정해진 시간 내에 다른 하나의 화재 감지 장치로부터 제2 화재 감지 신호를 수신한 경우 화재 경보를 실행하도록 구성된다. In order to achieve the above object, according to the first aspect of the present invention, a plurality of fire detection device and the integrated controller wirelessly or wired connected to the fire detection device, fire monitoring for preventing false alarm of the plurality of fire detection devices A system is provided, in which a plurality of fire detection devices are installed in a space to have the same effective monitoring area as each other, and the integrated controller receives a first fire detection signal from a fire detection device of any of the plurality of fire detection devices. If received, it is configured to wait for a fire alarm for a predetermined time interval (T1 ~ T2), and executes a fire alarm when the second fire detection signal is received from another fire detection device within the predetermined time.
전술한 양태에서 통합 제어기는, 상기 미리정해진 시간 구간(T1~T2) 내에 다른 하나 이상의 화재 감지 장치로부터 제2 화재 감지 신호가 수신되지 않는 경우 화재 경보를 실행하지 않도록 구성된다. In the above-described aspect, the integrated controller is configured not to execute a fire alarm when a second fire detection signal is not received from one or more other fire detection devices within the predetermined time interval T1 to T2.
*한편 전술한 양태에서 미리정해진 시간은 3초 내지 50초 범위 내에 있는 것이 바람직하다.On the other hand, in the above-described embodiment, the predetermined time is preferably in the range of 3 to 50 seconds.
또한 전술한 양태에서, 통합 제어기는, 미리정해진 시간 구간(T1~T2)의 최소 시간 T1 이전에 다른 하나 이상의 화재 감지 장치로부터 제2 화재 감지 신호를 수신한 경우, 미리정해진 시간 구간(T1~T2) 동안 화재 경보 실행을 대기하고, 상기 미리정해진 시간 내에 또 다른 하나 이상의 화재 감지 장치로부터 제3 화재 감지 신호를 수신한 경우 화재 경보를 실행하도록 구성되는 것이 바람직하다. In addition, in the above-described aspect, when the integrated controller receives the second fire detection signal from the other one or more fire detection devices before the minimum time T1 of the predetermined time intervals T1 to T2, the predetermined time intervals T1 to T2. Wait for a fire alarm to run, and execute a fire alarm if a third fire detection signal is received from another one or more fire detection devices within the predetermined time.
또한 전술한 양태에서 통합 제어기는, 상기 미리정해진 시간 구간(T1~T2) 내에 또 다른 하나 이상의 화재 감지 장치로부터 제3 화재 감지 신호가 수신되지 않는 경우 화재 경보를 실행하지 않도록 구성될 수 있다. In addition, in the above-described aspect, the integrated controller may be configured not to execute a fire alarm when a third fire detection signal is not received from another one or more fire detection devices within the predetermined time interval T1 to T2.
또한 전술한 양태에서 통합 제어기는, 미리정해진 시간 구간(T1~T2)의 최소 시간 T1 이전에 다른 하나 이상의 화재 감지 장치로부터 제2 화재 감지 신호를 수신한 경우, 화재 경보를 실행하도록 구성될 수도 있다. In addition, in the above-described aspect, the integrated controller may be configured to execute a fire alarm when the second fire detection signal is received from the other one or more fire detection devices before the minimum time T1 of the predetermined time intervals T1 to T2. .
또한 본 발명은 전술한 목적을 달성하기 위해 동일한 유효 감시 영역을 갖도록 공간 내에 설치되는 복수의 화재 감지 장치로부터의 화재 감지 신호에 기반하여 화재의 진위 여부를 판단하는 화재 진위 판단 방법을 제공하는데, 이 방법은,In addition, the present invention provides a fire authenticity determination method for determining the authenticity of the fire based on the fire detection signals from a plurality of fire detection devices installed in the space to have the same effective monitoring area in order to achieve the above object. Way,
복수의 화재 감지 장치를 이용하여 화재를 감지하는 화재 감지 단계; 복수의 화재 감지 장치 중 어느 하나로부터 제1 화재 감지 신호를 수신하는 단계; 제1 화재 감지 신호를 수신한 후 다른 화재 감지 장치로부터의 제2 화재 감지 신호의 수신을 대기하는 단계; 및 제2 화재 감지 신호가 미리정해진 시간 구간 T1과 T2 사이에 수신된 경우 화재 경보를 실행하거나 제2 화재 감지 신호가 미리정해진 시간 구간 T1과 T2 사이에 수신되지 않는 경우 이전 수신된 제1 화재 감지 신호를 무시하고 화재 감지 단계로 복귀하는 단계를 포함하는 것을 특징적 구성으로서 포함한다. A fire detection step of detecting a fire using a plurality of fire detection devices; Receiving a first fire detection signal from any one of the plurality of fire detection devices; Waiting to receive a second fire detection signal from another fire detection device after receiving the first fire detection signal; And executing a fire alarm when the second fire detection signal is received between the predetermined time intervals T1 and T2 or when the second fire detection signal is not received between the predetermined time intervals T1 and T2. Including the step of ignoring the signal and returning to the fire detection step.
본 발명에 따르면 동일한 유효 감시 영역을 갖도록 공간내 설치된 화재 감지 장치들의 감지 결과에 따라 화재의 여부를 판독하도록 함으로써 작업중 발생되는 불꽃이나 고열 등에 의한 화재 감지 장치의 오경보를 줄일 수 있게 된다는 효과를 얻게 된다.According to the present invention, by detecting the fire according to the detection result of the fire detection devices installed in the space to have the same effective monitoring area, it is possible to reduce the false alarm of the fire detection device due to the flame or high heat generated during the operation. .
도 1은 유효 감지 거리에 따른 감도를 설명하기 위한 설명도.1 is an explanatory diagram for explaining sensitivity according to an effective sensing distance.
도 2는 본 발명에 따른 화재 감지 장치의 외관을 나타낸 도면.2 is a view showing the appearance of a fire detection apparatus according to the present invention.
도 3은 본 발명에 따른, 외부에 노출되는 화재 감지 장치의 센서부와 LED부를 나타낸 도면.3 is a view showing the sensor unit and the LED unit of the fire detection apparatus exposed to the outside according to the present invention.
도 4는 본 발명에 따른 센서부의 제1 센서 내지 제3 센서의 파장 감지 대역을 나타낸 도면.4 is a view showing a wavelength detection band of the first to third sensors of the sensor unit according to the present invention.
도 5는 본 발명에 따른 화재 감지 장치의 내부 구성을 나타낸 블록도.Figure 5 is a block diagram showing the internal configuration of a fire detection apparatus according to the present invention.
도 6은 본 발명에 따른 화재 감지 장치에서 외부의 감도조절 스위치와 신호 수신부의 결선에 의한 유효 감시 거리 설정을 설명하기 위한 도면.6 is a view for explaining the effective monitoring distance setting by the connection of the external sensitivity control switch and the signal receiver in the fire detection apparatus according to the present invention.
도 7은 화재 감지 장치의 오경보 방지를 위해 구성된 화재 감시 시스템을 설명하기 위한 설명도. 7 is an explanatory diagram for explaining a fire monitoring system configured for preventing the false alarm of the fire detection device.
도 8은 3개의 화재 감지 장치를 이용하는 화재 감시 시스템을 설명하기 위한 설명도.8 is an explanatory diagram for explaining a fire monitoring system using three fire detection devices.
도 9는 서로 상이한 감시 영역을 갖도록 공간 내에 설치되는 복수의 화재 감지 장치로부터의 화재 감지 신호에 기반하여 화재의 진위 여부를 판단하는 화재 진위 판단 방법을 설명하기 위한 흐름도.9 is a flowchart illustrating a fire authenticity determination method for determining the authenticity of a fire based on fire detection signals from a plurality of fire detection devices installed in a space to have different monitoring areas.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되는 실시예를 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이다. Advantages and features of the present invention, and methods for achieving them will be apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below but may be implemented in various different forms.
본 명세서에서 본 실시예는 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 그리고 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 따라서, 몇몇 실시예들에서, 잘 알려진 구성 요소, 잘 알려진 동작 및 잘 알려진 기술들은 본 발명이 모호하게 해석되는 것을 피하기 위하여 구체적으로 설명되지 않는다. In this specification, the embodiments are provided so that the disclosure of the present invention may be completed and the scope of the present invention may be completely provided to those skilled in the art. And the present invention is only defined by the scope of the claims. Thus, in some embodiments, well known components, well known operations and well known techniques are not described in detail in order to avoid obscuring the present invention.
명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다. 그리고, 본 명세서에서 사용된(언급된) 용어들은 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 또한, '포함(또는, 구비)한다'로 언급된 구성 요소 및 동작은 하나 이상의 다른 구성요소 및 동작의 존재 또는 추가를 배제하지 않는다. Like reference numerals refer to like elements throughout. In addition, the terms used (discussed) herein are for the purpose of describing particular embodiments only and are not intended to be limiting of the invention. In this specification, the singular also includes the plural unless specifically stated otherwise in the phrase. In addition, components and operations referred to as 'includes (or includes)' do not exclude the presence or addition of one or more other components and operations.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 정의되어 있지 않은 한 이상적으로 또는 과도하게 해석되지 않는다.Unless otherwise defined, all terms (including technical and scientific terms) used in the present specification may be used in a sense that can be commonly understood by those skilled in the art. In addition, the terms defined in the commonly used dictionary are not ideally or excessively interpreted unless they are defined.
이하, 첨부된 도면들을 참조하여 본 발명의 기술적 특징을 구체적으로 설명하기로 한다. 먼저 본 발명에 대한 이해를 돕기 위해 먼저 화재 감지 장치의 거리에 따른 감도에 대해 도 1을 참조하여 설명하도록 한다.Hereinafter, technical features of the present invention will be described in detail with reference to the accompanying drawings. First, the sensitivity according to the distance of the fire detection apparatus will be described with reference to FIG. 1 to help the understanding of the present invention.
통상적으로 화재 감지 장치 또는 불꽃 감지기는 종래 1개의 감지기에 1개의 공칭감시거리 만을 부여하던 규정을 1개의 감지기에 2개 이상의 복수감지거리를 인정하는 유효 감시거리 개념을 도입함에 따라 유효 감시 거리별로 시험된다.In general, a fire detection device or a flame detector tests a valid monitoring distance by introducing a concept of an effective monitoring distance that recognizes two or more detection distances in one detector according to a rule that previously provided only one nominal monitoring distance to one detector. do.
일례로, 도 1에 도시한 바와 같은 3개의 유효 감시거리(30m, 40m, 50m)를 가진 화재 감지 장치의 경우, 화재 감지 장치의 형식 승인 및 검정 시험은 유효 감시 거리 또는 공칭 감시 거리의 1.2배의 거리(각각 36m, 48m, 60m)에서 놓인 330mm × 330mm × 50mm의 불판에 물과 햅탄을 규정된 비율로 붓고 점화시킨 화염을 30초 이내에 감지하여 화재경보를 발령해야 하는 동작 시험과, 이와 반대로 같은 거리에 놓인 16.5 × 16.5mm × 50mm의 불판에 같은 방법으로 점화된 화염에 대해서는 1분 이상을 감지하지 않고(즉, 화재경보를 발령해야하지 않고) 버텨야만 하는 부동작 시험을 모두 만족해야만 한다. For example, for a fire detection device having three effective monitoring distances (30m, 40m, 50m) as shown in FIG. 1, the type approval and verification test of the fire detection device is 1.2 times the effective monitoring distance or nominal monitoring distance. 330mm × 330mm × 50mm fire plate placed at the distance (36m, 48m, 60m, respectively) of water and haptan in a prescribed ratio and the fire test to detect the ignited flame within 30 seconds, and vice versa A flame that is ignited in the same way on a 16.5 × 16.5 mm × 50 mm plate placed at the same distance must meet all of the malfunction tests that must be withdrawn without detecting more than one minute (i.e. without issuing a fire alarm). .
상기 승인 시험에서 동작 시험과 부동작 시험 중 어느 하나만을 만족시키는 것은 어려운 일이 아니지만, 두 가지 시험을 모두 만족 시키는 것은 결코 수월하지 않으며, 또한 각각의 유효 감시 거리에서 전술한 동작 시험과 부동작 시험의 요건을 만족하는 것은 매우 어렵다. It is not difficult to satisfy only one of the operation test and the non-operation test in the acceptance test, but it is never easy to satisfy both tests, and the operation test and the non-operation test described above at each effective monitoring distance. It is very difficult to meet the requirements of.
본 발명에서 감도를 변경하는 방법은 적외선 에너지는 거리의 제곱에 비례하여 커지거나 작아지는 것을 이용하여, 가장 원거리인 50m거리에 330mm × 330mm × 50mm 크기의 불판에 햅탄과 물을 넣고 점화하여 발생한 화염이 점화 후 1분이 경과 한 후 감지기에 도달하는 적외선 에너지를 100이라 가정하고, 동일한 화염을 감지기로부터 40m 즉, 50m 시험장소에서 전방으로 10m 앞당겨 놓은 후에는 감지기에 도달하는 적외선 에너지는 거리가 1.2배 가까워짐에 따라 도달 에너지의 크기는 100에서 144로 증가하게 되고, 같은 원리로 30m 거리에서는 거리가 1.4배 가까워짐에 따라 도달 에너지의 크기는 196으로 증가하게 된다. In the present invention, the method of changing the sensitivity is that the infrared energy is increased or decreased in proportion to the square of the distance, the flame generated by igniting the haptan and water in the ignition plate of 330mm × 330mm × 50mm size at the longest 50m distance After 1 minute of ignition, the infrared energy reaching the detector is assumed to be 100, and after the same flame is brought 40 meters away from the detector, 10 meters forward from the 50m test site, the infrared energy reaching the detector is 1.2 times longer. As we get closer, the magnitude of the energy reached increases from 100 to 144. In the same way, the distance reached 1.4 times at 30m distance, increasing to 196.
전술한 바와 같이 거리에 따라 화재 감지 장치에서 수신하는 적외선 에너지의 크기는 거리가 가까울 수록 커지기 때문에, 화재 감지 장치는 가까운 유효 감시 거리(30m)의 경우 저감도(30m 감도로서 언급되기도 함)로 설정되어지고, 중간의 유효 감시 거리(40m)의 경우 중감도(40m 감도로서 언급되기도 함)로 설정되어지고, 먼 유효 감시 거리(50m)의 경우 고감도(50m 감도로서 언급되기도 함)로 설정되어지며, 각각의 감도에서 전술한 바와 같은 동작 시험의 요건과 비동작 시험의 요건을 만족하도록 설정된다. As described above, since the amount of infrared energy received by the fire detection device increases with distance, the fire detection device is set to a low sensitivity (also referred to as 30m sensitivity) for a close effective monitoring distance (30m). In the case of intermediate effective monitoring distance (40m), it is set to medium sensitivity (also referred to as 40m sensitivity), and in the case of distant effective monitoring distance (50m), it is set to high sensitivity (also referred to as 50m sensitivity) The sensitivity is set to satisfy the requirements of the operation test and the non-operation test as described above at each sensitivity.
도 2는 본 발명에 따른 화재 감지 장치(100)의 외관을 나타낸 도면이다. 도 2에 도시한 바와 같이 화재 감지 장치(100)는 화재를 감지하기 위한 센서부(110) 및 화재 감지 장치의 상태를 나타내는 LED부(130)가 노출되도록 감싸고 형성되는 케이스(170)를 포함한다. 2 is a view showing the appearance of the fire detection apparatus 100 according to the present invention. As shown in FIG. 2, the fire detection apparatus 100 includes a case 170 formed to surround and expose the sensor unit 110 for detecting a fire and an LED unit 130 indicating a state of the fire detection apparatus. .
센서부(110)는 화재 감지를 위한 복수의 센서들을 포함하고 있으며, 원통 형상의 케이스 내부에는 센서부(110)의 감도를 제어하고 화재 여부를 판단하기 위한 중앙 처리 유닛(120)이 수용되어 있다.The sensor unit 110 includes a plurality of sensors for detecting a fire, and a central processing unit 120 for controlling the sensitivity of the sensor unit 110 and determining whether there is a fire is housed in the cylindrical case. .
본 발명에 따른 화재 감지 센서부는 원통 형상의 몸체(BODY)의 일측에는 렌즈(미도시)가 구비되며, 상기 몸체의 내부에는 센서와 엘이디가 장착된 인쇄회로기판(PCB)이 구비된다.A fire detection sensor unit according to the present invention is provided with a lens (not shown) on one side of the cylindrical body (BODY), the inside of the body is provided with a printed circuit board (PCB) equipped with a sensor and an LED.
도 3은 전술한 바와 같은 센서부(110)를 보다 구체적으로 도시한 도면이다. 본 발명에 따른 화재 감지를 위한 센서부(110)는, 이에 한정되는 것은 아니지만 적어도 3개의 센서들(112, 114, 116)를 포함한다.3 is a view illustrating the sensor unit 110 as described above in more detail. The sensor unit 110 for detecting a fire according to the present invention includes, but is not limited to, at least three sensors 112, 114, and 116.
센서부(110)를 구성하는 복수의 센서는 적어도 하나의 화재 관련 요소를 감지하는 화재요소 감지센서이고, 적어도 하나의 비화재 요소를 감지하는 비화재 요소 감지 센서를 포함한다.A plurality of sensors constituting the sensor unit 110 is a fire element detection sensor for detecting at least one fire-related element, and includes a non-fire element detection sensor for detecting at least one non-fire element.
보다 구체적으로, 3개의 센서를 채용한 도 3의 실시예에서, 제1 센서(112)는 불꽃(화염) 발생시 CO2 및 CO 공명 에너지를 감지하는 센서이고, 제2 센서(114)는 불꽃(화염) 발생시 CO 공명 에너지 만을 감지하는 센서이고, 나머지 제3 센서(116)은 불꽃 보다는 불꽃 이외의 비화재 요소들을 감지하도록 구성된 센서이다. 일례로, 비화재 요소을 감지하는 제3 센서(116)는, 아크용접, 태양광, 할로겐램프, 형광램프, 각종 유색 램프에서 발휘되는 적외선 특성에 대응하는 파장 범위를 감지하는 광센서일 수도 있다. More specifically, in the embodiment of FIG. 3 employing three sensors, the first sensor 112 is a sensor for detecting CO 2 and CO resonance energy when a flame (flame) occurs, the second sensor 114 is a flame ( Flame) detects only CO resonance energy, and the remaining third sensor 116 is a sensor configured to detect non-fire elements other than the flame rather than the flame. For example, the third sensor 116 for detecting the non-fire element may be an optical sensor for detecting a wavelength range corresponding to the infrared characteristics exhibited in arc welding, sunlight, halogen lamps, fluorescent lamps, and various colored lamps.
참고로, 화재로 인한 불꽃 또는 화염은 복사 에너지를 방사한다. 복사에너지는 Stefan-Boltzmann law의 3가지 요인으로 표현될 수 있다.For reference, flames or flames from fire radiate radiant energy. Radiation energy can be expressed by three factors of the Stefan-Boltzmann law.
[수식][Equation]
H = AeσT4
H = AeσT 4
여기서, H는 시간당 복사에너지, A는 표면적, e는 복사체의 복사율, σ는 스테판 볼츠만의 상수, T는 복사체의 온도이다. 복사에너지는 복사하는 물체의 온도 값 상승에 따라 증가한다. 이산화탄소의 공명 에너지를 검출하는 것을 설명하면 다음과 같다.Where H is the radiant energy per hour, A is the surface area, e is the emissivity of the radiant, σ is Stefan Boltzmann's constant, and T is the temperature of the radiant. The radiant energy increases with increasing temperature value of the radiating object. Detecting the resonance energy of carbon dioxide will be described as follows.
본 발명에서는 전술한 바와 같이 불꽃으로부터 방사되는 적외선에 존재하는 이산화탄소 공명방사라는 현상을 이용한다. 이산화탄소는 근적외선 대역에서 2개의 방사 스펙트럼 피크를 나타내게 되는데, 회색방사와 이산화탄소 공명방사가 존재하고, 본 발명에서는 회색 방사보다는 이산화탄소 공명방사를 이용한다. 또한 화재 감지의 정밀도를 보다 높이기 위해 본 발명은 일산화탄소의 공명방사를 더 이용하도록 설계되었다. In the present invention, as described above, the phenomenon called carbon dioxide resonance radiation present in the infrared rays emitted from the flame is used. Carbon dioxide has two emission spectrum peaks in the near infrared band, and gray emission and carbon dioxide resonance radiation exist, and the present invention uses carbon dioxide resonance radiation rather than gray emission. In addition, the present invention is designed to further utilize the resonance radiation of carbon monoxide in order to further increase the accuracy of fire detection.
상기 이산화탄소 공명방사란 여기상태의 이산화탄소가 방출한 에너지를 기저상태에 있는 다른 이산화탄소가 받아들여 여기상태가 되고, 또 다시 여기상태의 이산화탄소가 방출한 에너지를 다른 기저상태의 이산화탄소가 받게 되는 즉, 이산화탄소끼리 에너지를 주고받는 공명을 일으키는 현상을 의미하며, 이산화탄소 공명방사 특성은 햇빛, 램프, 히트와 같은 열원과는 다른 특징을 나타낸다. 일산화탄소 공명방사 역시 이산화탄소 공명방사와 유사하다. The carbon dioxide resonance radiation means that the energy emitted by the carbon dioxide in the excited state is absorbed by other carbon dioxide in the ground state, and the carbon dioxide emitted by the carbon dioxide in the excited state is received by the carbon dioxide in another ground state. It refers to a phenomenon that causes resonance to exchange energy with each other, and carbon dioxide resonance radiation characteristics are different from heat sources such as sunlight, lamps, and heat. Carbon monoxide resonance radiation is also similar to carbon dioxide resonance radiation.
도 4은 전술한 바와 같은 복수의 센서들(112,114,116)의 감지 파장 대역을 도시한 도면이다. 도 3에 도시한 바와 같이 CO2 및 CO 공명 에너지를 감지하는 센서 제1 센서(112)는 대략 3.8㎛ 내지 5.0㎛ 범위의 파장 대역을 가진 적외선 에너지(열 에너지)을 검출하기 위한 대역 통과 필터일 수 있으며, CO 공명 에너지 만을 감지하는 센서(114)는 대략 4.5㎛ 내지 4.9㎛ 범위 내의 파장 대역을 가진 적외선 에너지를 검출하기 위한 대역 통과 필터 일 수 있다. 한편 비화재 요소을 감지하는 제3 센서(116)는 3.9㎛ 내지 4.1㎛ 범위 내의 파장 대역을 가진 적외선 에너지를 검출하는 대역 통과 필터 일 수 있다.4 is a diagram illustrating sensing wavelength bands of the plurality of sensors 112, 114, and 116 as described above. As shown in FIG. 3, the sensor first sensor 112 that detects CO 2 and CO resonance energy is a band pass filter for detecting infrared energy (thermal energy) having a wavelength band ranging from approximately 3.8 μm to 5.0 μm. The sensor 114 that detects only CO resonance energy may be a band pass filter for detecting infrared energy having a wavelength band in the range of approximately 4.5 μm to 4.9 μm. Meanwhile, the third sensor 116 for detecting the non-fire element may be a band pass filter for detecting infrared energy having a wavelength band within a range of 3.9 μm to 4.1 μm.
이와 같은 구성에 따르면, 일례로, 화재 요소를 감지하는 제1 센서(112)와 제2 센서(113)가 반응을 하고, 비화재 요소를 감지하는 제3 센서(113)가 반응하지 않는다면 상기 감지된 불꽃 또는 화염은 화재에 의해 발생될 가능성이 높다고 볼 수 있다. 이와 상이하게, 제1 센서(112)와 제2 센서(113)가 반응을 하더라도, 비화재 요소를 감지하는 제3 센서(113)가 크게 반응한다면, 이는 아크 용접, 라이터 불과 같은 화재 이외의 기타 요인에 의해 발생될 가능성이 높다라고 판단될 수 있다.According to such a configuration, for example, if the first sensor 112 and the second sensor 113 for detecting a fire element reacts, and the third sensor 113 for detecting a non-fire element does not react the detection It is considered that a spark or flame is likely to be caused by a fire. Differently, even if the first sensor 112 and the second sensor 113 react, if the third sensor 113 that detects the non-fire element reacts greatly, it may be other than a fire such as arc welding, a lighter or a fire. It can be judged that it is likely to be caused by a factor.
다시 도 3을 참조하면, 화재 감지 장치(100)의 노출면에는 LED부가 설치되고, LED부(130)는 서로 상이한 색깔로 발광하는 복수의 LED(발광 다이오드)를 포함한다. 도 3에 도시한 바와 같이 본 실시예에서, 이에 한정되는 것은 아니지만, LED부(130)는 적색으로 발광하는 제1 LED(132)와 녹색으로 발광하는 제2 LED(134)를 포함한다. LED부(130)는 화재 감지 장치의 동작 상태를 표시하기 위해 설치되는데, 이에 대해서는 후술하도록 한다. Referring back to FIG. 3, an LED unit is installed on an exposed surface of the fire detection apparatus 100, and the LED unit 130 includes a plurality of LEDs (light emitting diodes) that emit light of different colors. As shown in FIG. 3, the LED unit 130 includes, but is not limited to, the first LED 132 emitting red light and the second LED 134 emitting green light. The LED unit 130 is installed to display the operation state of the fire detection device, which will be described later.
도 5는 본 발명에 따른 화재 감지 장치(100)의 구성을 개략적으로 나타낸 블록도이다. 도 5에 도시한 바와 같이, 본 발명에 따른 화재 감지 장치(100)는, 화재를 감지하도록 복수의 센서를 포함하는 센서부(110), 센서부(110)로부터 입력되는 신호에 기반하여 화재 여부를 판단하기 위한 중앙처리유닛(120), 센서부(110)의 상태 및 화재 여부를 표시하기 위한 LED부(130), 외부로부터 감도를 조절하기 위한 감도조절입력장치(140) 및 외부의 네트워크 장치(250)(일례로 AP: Access Point)와 연결되는 와이파이 통신 모듈(150)을 포함한다.5 is a block diagram schematically showing the configuration of the fire detection apparatus 100 according to the present invention. As shown in Figure 5, the fire detection device 100 according to the present invention, the sensor unit including a plurality of sensors to detect a fire, based on the signal input from the sensor unit 110 to determine whether the fire The central processing unit 120 for determining the state, the LED unit 130 for displaying the state of the sensor unit 110 and whether the fire, the sensitivity control input device 140 for adjusting the sensitivity from the outside and the external network device 250, for example, a Wi-Fi communication module 150 connected with an Access Point (AP).
화재 감지 장치(100)에 있어서, 화재를 감지하도록 복수의 센서(112, 114, 116)를 포함하는 센서부(110)에 대해서는, 도 3 및 도 4를 참조하여 이전에 설명하였으므로 이에 대한 설명은 생략하도록 한다.In the fire detection apparatus 100, the sensor unit 110 including the plurality of sensors 112, 114, and 116 to detect a fire has been described above with reference to FIGS. 3 and 4, and thus description thereof will be provided. Omit it.
화재요소 감지 센서(112,114) 및 비화재요소 감지 센서(116)으로 이루어진 센서부(110)는 각각의 파장 대역에 있어서의 감지값을 중앙처리유닛(MCU)(120)의 신호입력부(122)로 전송하고, 중앙처리유닛(MCU)은 수신된 각각의 센서들로부터의 감지값에 기반하여 화재여부를 판단하도록 기능한다.The sensor unit 110 including the fire element detection sensors 112 and 114 and the non-fire element detection sensor 116 transmits the detected value in each wavelength band to the signal input unit 122 of the central processing unit (MCU) 120. And the central processing unit (MCU) functions to determine whether a fire is based on the detected values from the respective sensors received.
중앙처리유닛(120)은, 센서부(110), 감도조절스위치(140), 또는 근거리 통신 모듈로부터의 신호를 입력받도록 구성된 신호입력부(122), 화재 감지 장치(100)의 전반적인 동작을 제어하기 위한 제어부(124), 화재 감지 장치(100)의 센서부(110)의 감도를 설정에 이용되는 감도 조정 알고리즘 및 화재여부를 판단하기 위한 화재판별 알고리즘이 저장되는 메모리(128)를 포함한다. The central processing unit 120 controls the overall operation of the sensor unit 110, the sensitivity control switch 140, or the signal input unit 122 and the fire detection device 100 configured to receive signals from the short range communication module. And a memory 128 for storing a sensitivity adjustment algorithm used to set the sensitivity of the sensor unit 110 of the fire detection apparatus 100 and a fire discrimination algorithm for determining whether a fire is present.
신호 입력부(122)는 센서부(110)로부터 감지된 신호를 입력받거나, 사용자가 감도조절스위치(140)를 통해 설정한 감도값을 입력받거나, 근거리 통신 모듈(150)로부터 입력되는 데이터를 수신하고 이를 제어부(124)에 전달하도록 구성된다.The signal input unit 122 receives a signal sensed by the sensor unit 110, receives a sensitivity value set by the user through the sensitivity control switch 140, or receives data input from the short range communication module 150. It is configured to deliver this to the control unit 124.
제어부(124)는 신호입력부(122)로부터 입력된 신호들에 대한 제어 또는 처리를 수행한다. 일례로, 화염이 발생한 경우, 센서부(110)의 제1 내지 제3 센서(112, 114, 116)는 각각의 감지된 값을 제어부(124)로 송신하면, 제어부(124)는 메모리(128)에 저장된 화재판별 알고리즘을 수행하고 발생된 화염이 화재에 의한 것인지 아니면 비화재 요소(용접, 라이터불)에 의한 것인지를 판단하고 이를 신호출력부(126)를 통해 통합 제어기(300)에 통지한다. 통합 제어기(300)에 대해서는 이하에서 보다 구체적으로 설명하도록 한다.The controller 124 controls or processes signals input from the signal input unit 122. For example, when a flame occurs, when the first to third sensors 112, 114, and 116 of the sensor unit 110 transmit respective detected values to the controller 124, the controller 124 may store the memory 128. Fire discrimination algorithm stored in the) and determines whether the generated flame is caused by fire or non-fire element (welding, lighter fire) and notifies the integrated controller 300 through the signal output unit 126. . The integrated controller 300 will be described in more detail below.
한편 화재 판별 알고리즘은 도 4를 참조하여 설명한 바와 같은 제1 내지 제3 센서(112, 114, 116)로부터 감지된, 이산화탄소-일산화탄소 파형 특징, 일산화탄소 파형 특징, 비화재요소 파형 특징 또는 이들의 조합된 파형의 특징(비율)을 메모리에 저장된 화재인 경우에 해당하는 파형 특징과 비화재인 경우에 해당하는 파형 특징에 비교함으로써 수행된다. Meanwhile, the fire determination algorithm may include a carbon dioxide-carbon monoxide waveform feature, a carbon monoxide waveform feature, a non-fire element waveform feature, or a combination thereof detected from the first to third sensors 112, 114, and 116 as described with reference to FIG. 4. This is performed by comparing the characteristic (ratio) of the waveform to the waveform characteristic corresponding to the fire stored in the memory and the waveform characteristic corresponding to the non-fire.
예를 들면, 화재요인 감지 센서(제1 센서(112)와 제2 센서(114)에 의해 감지된 량과, 비화재요인 감지 센서(제3 센서(116))에 의해 감지된 량을 비교하고, 비화재요인 감지 센서(116)로부터 감지된 량이 화재요인 감지 센서(112,114)에서 감지된 량에 비교하여 크거나 또는 미리정해진 량 이상이라면 제어부(124)는 감지된 화염이 화재에 의해 발생된 것이 아닌 것으로 판단하고, 비화재 이벤트로서 메모리(128)에 저장할 수도 있다. For example, the amount detected by the fire factor detection sensor (the first sensor 112 and the second sensor 114) and the amount detected by the non-fire factor detection sensor (the third sensor 116) are compared. If the amount detected from the non-fire factor detection sensor 116 is larger than the amount detected from the fire factor detection sensors 112 and 114 or more than a predetermined amount, the controller 124 indicates that the detected flame is caused by a fire. If not, it may be stored in the memory 128 as a non-fire event.
한편, 비화재요인 감지 센서(116)로부터 감지된 량이 화재요인 감지 센서(112,114)에서 감지된 량에 비교하여 크거나 또는 미리정해진 량 이하라면 제어부(124)는 감지된 화염이 화재에 의해 발생된 것으로 판단하고, 화재 이벤트로서 메모리(128)에 저장하고, 화재 사실을 소방 수신반에 전송하거나 LED(130)를 통해 표시하도록 제어하도록 동작한다.On the other hand, if the amount detected from the non-fire factor detection sensor 116 is large or less than a predetermined amount compared to the amount detected from the fire factor detection sensors 112 and 114, the controller 124 determines that the detected flame is generated by the fire. And store it in the memory 128 as a fire event, and transmit the fire to the fire station or display through the LED 130.
다음으로 도 6을 참조하여 감도 조절 스위치(140)에 대해 설명한다. 감도 조절 스위치(140)는 관리자에 의한 접근이 용이하고 또한 필요시 관리자에 의한 감도 조절을 수행하도록 도 2에 도시한 화재 감지 장치(100)의 몸체(또는 케이스(1700)로부터 떨어져서, 전선을 통해 전기적으로 연결되도록 설치된다. Next, the sensitivity control switch 140 will be described with reference to FIG. 6. Sensitivity adjustment switch 140 is separated from the body (or case 1700) of the fire detection device 100 shown in FIG. It is installed to be electrically connected.
도 6에 도시한 바와 같이, 감도 조절 스위치(140)는 3개의 단자를 포함하여 이루어진다. 제1 단자(T1)은 DC 레벨의 부(-) 전원에 공통으로 연결되고, 제2 단자(T2)와 제3 단자(T3)는 상기 제1 단자(T1)가 연결된 DC 부전원(DC -)에 스위치를 통해 연결될 수 있도록 구성된다. 이와 같은 구성에서, 제2 단자(T2)와 제3 단자(T3)가 DC 부전원(DC -)에 오픈되어 있는 경우 중앙 제어 유닛(120)의 신호 입력부(122)의 입력단자 I1, I2, I3에는 각각 H, L, L가 입력되고 제어부는 메모리에 저장된 감도조절 알고리즘을 수행하여 유효감시거리를 30m인 것으로 설정한다(센서부(110)의 감도를 저감도로 설정함). As shown in FIG. 6, the sensitivity control switch 140 includes three terminals. The first terminal T1 is commonly connected to a negative (−) power supply of a DC level, and the second terminal T2 and the third terminal T3 are connected to a DC sub power source (DC −) to which the first terminal T1 is connected. Is configured to be connected via a switch. In such a configuration, when the second terminal T2 and the third terminal T3 are open to the DC sub power source DC −, the input terminals I1, I2, and the signal input unit 122 of the signal input unit 122 of the central control unit 120 are opened. H, L, and L are respectively input to I3, and the controller performs a sensitivity adjustment algorithm stored in the memory to set the effective monitoring distance to 30 m (the sensitivity of the sensor unit 110 is set to a low degree).
한편, 제2 단자(T2)가 DC 부전원(DC -)에 연결되고, 제3 단자(T3)가 오픈되어 있는 경우, 중앙 제어 유닛(120)의 신호 입력부(122)의 입력단자 I1, I2, I3에는 각각 H, H, L가 입력되고 제어부는 메모리에 저장된 감도조절 알고리즘을 수행하여 유효감시거리를 40m인 것으로 설정한다(센서부(110)의 감도를 중감도로 설정함).On the other hand, when the second terminal T2 is connected to the DC sub power source DC − and the third terminal T3 is open, the input terminals I1 and I2 of the signal input unit 122 of the central control unit 120 are connected. H, H, and L are respectively input to I3, and the controller performs a sensitivity adjustment algorithm stored in the memory to set the effective monitoring distance to be 40 m (the sensitivity of the sensor unit 110 is set to the middle sensitivity).
또한, 제2 단자(T2)와 제3 단자(T3)가 모두 DC 부전원(DC -)에 연결되어 있는 경우 중앙 제어 유닛(120)의 신호 입력부(122)의 입력단자 I1, I2, I3에는 각각 H, H, H가 입력되고 제어부는 메모리에 저장된 감도조절 알고리즘을 수행하여 유효감시거리를 50m인 것으로 설정한다(센서부(110)의 감도를 고감도로 설정함). In addition, when both the second terminal T2 and the third terminal T3 are connected to the DC sub power source DC-, the input terminals I1, I2, and I3 of the signal input unit 122 of the central control unit 120 are H, H, and H are respectively input, and the controller performs a sensitivity control algorithm stored in the memory to set the effective monitoring distance to 50 m (the sensitivity of the sensor unit 110 is set to high sensitivity).
따라서 사용자는 종래 화재 감시 장치의 감도를 조절하기 위해 화재 감시 장치가 설치된 장소(지면으로부터 대략 15m~50m 이상)로 이동하여 화재 감시 장치를 조작할 필요가 없이 안전하게 화재 감시 장치의 감도를 필요시 조절할 수 있게 된다.Therefore, the user can go to the place where the fire monitoring device is installed (approximately 15m to 50m or more from the ground) to adjust the sensitivity of the conventional fire monitoring device, and safely adjust the sensitivity of the fire monitoring device when necessary without operating the fire monitoring device. It becomes possible.
이와 같은 화재 감지 장치의 감도 조절은 작업자가 많이 상주하는 주간의 경우 화재시 작업자에 의한 화재 관찰이 비교적 용이하기 때문에 저감도로 설정하여 두고 작업을 진행함으로써 용접이나 라이터불과 같은 비화재 요소에 의해 발생되는 비화재 경보가 발생되는 것을 더욱 방지할 수 있다. 한편 작업자가 없는 야간의 경우 화재 감지 장치를 고감도로 설정하여 둠으로써 화재에 의한 화염 또는 불꽃을 보다 정밀하게 발견할 수 있게 된다.The sensitivity of the fire detection device is controlled by non-fire elements such as welding or lighter by setting it to a low level because it is relatively easy to observe the fire by the worker in case of fire during the day when the operator is resident. The non-fire alarm can be further prevented. On the other hand, at night when there are no workers, the fire detection device is set at high sensitivity, so that flames or sparks caused by fire can be detected more precisely.
또한 도시하지는 않았지만, 중앙 처리 장치는 타이머부를 더 포함할 수 있고, 상기 타이머부에 의해 사용자가 설정한 시간대별로 화재 감지 장치의 감도를 자동으로 변경하도록 구성될 수 있다. 예를 들면, 오전 9시부터 오후 6까지의 시간대에서 30m 감도로 설정하고, 오후 6시부터 다음날 오전 9시까지의 시간대에서 50m의 감도로 설정하여 화재 감지 장치가 자동으로 감도조절할 수 있도록 구성될 수 있다.In addition, although not shown, the central processing unit may further include a timer unit, and may be configured to automatically change the sensitivity of the fire detection apparatus for each time zone set by the user by the timer unit. For example, a fire detection device can be configured to automatically adjust sensitivity by setting a sensitivity of 30m in the time zone of 9 am to 6 pm and a sensitivity of 50 m in the time zone of 6 pm to 9 am the next day. have.
다시 도 5를 참조하면, 신호입력부(122)에는 감도 조절 스위치(140) 이외에 와이파이 통신 모듈(150)로부터의 감도 조절 명령을 더 수신하도록 구성된다. 와이파이 통신 모듈(150)은 외부에 설치된 AP(Access Point)를 통해 외부의 단말기, 구체적으로는 스마트폰 등에 설치된 전용 어플리케이션과의 통신을 수행하도록 구성된다.Referring back to FIG. 5, the signal input unit 122 is configured to further receive a sensitivity adjustment command from the Wi-Fi communication module 150 in addition to the sensitivity adjustment switch 140. The Wi-Fi communication module 150 is configured to perform communication with an external terminal, specifically, a dedicated application installed on a smartphone, through an AP (Access Point) installed on the outside.
다시 도 5를 참조하면, 본 발명에 따른 화재 감지 장치(100)는 상태정보를 시각적으로 표시하는 LED부(130)가 제공된다. LED부(130)는 이에 한정되는 것은 아니지만 적색으로 발광하는 제1 LED(132)와 녹색으로 발광하는 제2 LED(134)를 포함한다. 제1 LED(132)와 제2 LED(134)는 서로 다른 색으로 발광하는 것이 시각적인 구별을 위해 유리하며, 적색, 녹색, 청색, 황색 중 어느 서로 다른 두가지 색으로 선택될 수 있다.Referring back to FIG. 5, the fire detection apparatus 100 according to the present invention is provided with an LED unit 130 that visually displays state information. The LED unit 130 includes, but is not limited to, a first LED 132 emitting red light and a second LED 134 emitting green light. The first LED 132 and the second LED 134 is advantageous for visual distinction of emitting light in different colors, and may be selected from two different colors of red, green, blue, and yellow.
[표 1] LED부에 의한 상태 정보 표시[Table 1] Status information display by LED part
전술한 표 1에 도시한 바와 같이, 화재 감지 장치가 30m 감도로 동작하는 경우 정상적인 감시중에는 제어부는 제1 LED(132)만 점등(제2 LED(134) 소등)하고 화재 감지시에는 제1 LED가 점멸하도록 제어한다. As shown in Table 1, when the fire detection device operates at a sensitivity of 30m, the control unit turns on only the first LED 132 (the second LED 134 turns off) during normal monitoring, and the first LED when the fire is detected. Controls to flash.
한편 화재 감지 장치가 40m 감도로 동작하는 경우, 정상적인 감시중에는 제어부는 제1 LED(132)와 제2 LED(134) 모두 점등하여 표시하고 화재감지시에는 제1 LED가 점멸하도록 제어한다. On the other hand, when the fire detection device operates at a sensitivity of 40m, during normal monitoring, the control unit controls to display both the first LED 132 and the second LED 134 by lighting and to flash the first LED when detecting the fire.
또한 화재 감지 장치가 50m 감도로 설정된 경우, 정상적인 감시중에는 제어부는 제2 LED(134)만 점등하고, 화재감지시에는 제1 LED(132)가 점멸하도록 제어한다.In addition, when the fire detection device is set to 50m sensitivity, the control unit controls only the second LED 134 lights up during normal monitoring, and the first LED 132 flashes during the fire detection.
따라서 화재시 화재경보는 긴급한 상황을 알려야 하므로 제1 엘이디는 긴급 상황을 시각적으로 표시하는 적색으로 선택하는 것이 바람직하며, 제2 엘이디는 청색 또는 녹색으로 선택하는 것이 바람직하다.Therefore, the fire alarm in case of fire should be informed of the urgent situation, the first LED is preferably selected in the red to visually display the emergency situation, the second LED is preferably selected in blue or green.
이와 같은 구성에 따르면 화재 감지 장치의 노출 표면에 설치된 LED의 색깔과 점멸 상태를 보고 관리자는 화재 감지 장치가 어느 감도에서 현재 동작하고 있는지의 여부와, 화재 감지 상태를 쉽게 인지할 수 있다는 이점이 얻어질 수 있다. According to this configuration, the color and blink state of the LED installed on the exposed surface of the fire detection device allows administrators to easily recognize the fire detection state at which sensitivity the fire detection device is currently operating, and the fire detection state. Can lose.
전술한 실시예에서 LED부(130)가 두개의 LED, 즉 제1 LED(132)와 제2 LED(134)로 이루어진 것으로 설명하였지만 본 발명은 이에 한정되는 것은 아니고, 서로 상이한 색깔의 제1 LED 내지 제3 LED로 이루어지고, 각각의 색깔별로 3가지의 감도 상태(30m 감도, 40m 감도, 50m 감도)를 나타내고, 전술한 실시예와 동일하게 화재감지시에는 하나의 LED(적색)만 점멸하도록 구현될 수도 있다. In the above-described embodiment, the LED unit 130 has been described as being composed of two LEDs, that is, the first LED 132 and the second LED 134, but the present invention is not limited thereto, and the first LEDs of different colors are different from each other. It consists of the third to third LEDs, each of the three color sensitivity (30m sensitivity, 40m sensitivity, 50m sensitivity) for each color, and in the same manner as in the above-described embodiment to detect only one LED (red) in the event of fire detection It may be implemented.
도 7은 전술한 바와 같은 구성을 가진 화재 감지 장치(100)로 이루어진 본 발명에 따른 화재 감시 시스템의 일례를 예시적으로 나타낸 도면이다. 도 7에 도시한 바와 같이, 화재 감시 시스템(10)은 복수의 화재 감지 장치(100-1,100-2)와 각각의 화재 감지 장치와 개별적으로 연결된 통합 제어기(300)로 이루어진다. 통합 제어기(300)와 화재 감지 장치(100-1,100-2)와의 연결은 유선 또는 무선으로 이루어질 수 있다. 무선의 경우 통합 제어기(300)는 무선 라우터 내에 실장될 수 있다.7 is a view showing an example of a fire monitoring system according to the present invention consisting of a fire detection device 100 having the configuration as described above. As shown in FIG. 7, the fire monitoring system 10 includes a plurality of fire detection devices 100-1 and 100-2 and an integrated controller 300 individually connected to each fire detection device. The connection between the integrated controller 300 and the fire detection apparatuses 100-1 and 100-2 may be wired or wireless. In the case of wireless, the integrated controller 300 may be mounted in a wireless router.
통합 제어기(300)는 전술한 바와 같이 복수의 화재 감지 장치(100)들의 신호출 력부(126)를 통해 화재감지정보를 수신한다. 도 7에서 도시된 예에서, 복수의 화재 감지 장치(100-1,100-2)의 각각은 동일한 유효 감시 A1을 갖도록 공간내에 설치된다. The integrated controller 300 receives the fire detection information through the signal output unit 126 of the plurality of fire detection apparatus 100 as described above. In the example shown in FIG. 7, each of the plurality of fire detection apparatuses 100-1, 100-2 is installed in a space to have the same effective monitoring A1.
이와 같이 구성된 화재 감시 시스템에서, 유효 감시 영역 A1의 어느 한 곳에서 작업자의 작업에 의한 불꽃(예를 들면 용접에 의한 아크 용접 등)이 발생된 경우, 화원에 비교적 가까운 제2 화재 감지 장치(100-2)는 불꽃을 먼저 감지하고 이를 전술한 바와 같은 제2 화재 감시 장치의 제1 내지 제3 센서로부터의 감지 신호를 이용한 화재 판별 알고리즘에 의해 화재의 진실 여부를 판별하게 된다.In the fire monitoring system configured as described above, when a flame (for example, arc welding by welding) is generated by an operator's work in one of the effective monitoring areas A1, the second fire detection apparatus 100 relatively close to the fire source is generated. -2) detects the flame first and determines whether the fire is true or not by a fire determination algorithm using detection signals from the first to third sensors of the second fire monitoring apparatus as described above.
대부분의 경우 본 발명에 따른 화재 감지 장치의 고유의 화재 판별 알고리즘에 의해 이 아크 용접에 의한 불꽃은 화재가 아닌 것으로 판단될 수 있을 것이다. 그러나 특이한 조건에 경우 본 발명의 화재 판별 알고리즘에서도 이를 화재에 의한 불꽃으로 오판단할 수 있다. In most cases, by the inherent fire discrimination algorithm of the fire detection apparatus according to the present invention, it can be determined that the flame by the arc welding is not a fire. However, under unusual conditions, the fire discrimination algorithm of the present invention may misjudge it as a flame caused by fire.
본 발명에서는 이와 같은 오경보를 방지하도록 종래 화재 감시 장치가 소방반에 직접 연결되어 화재 경보를 통보하는 것을 통합 제어기(300)에서 이를 수신하고 2차 판단을 거쳐 소방 수신반에 통보하도록 구성된다.In the present invention, to prevent such a false alarm, the conventional fire monitoring device is directly connected to the fire brigade to notify the fire alarm in the integrated controller 300 and configured to notify the fire brigade through the second decision.
이와 같은 구성에서, 불꽃을 감지한 제2 화재 감지 장치(100-2)는 화재 감지 신호를 통합 제어기(300)에 전송한다. 통합 제어기(300)는 제2 화재 감지 장치(100-2)로부터 화재 감지 신호를 수신하면 이를 즉각적으로 소방 수신반에 전송하는 대신 통합 제어기(300)에 연결된 다른 화재 감지 장치인, 제1 화재 감지 장치(100-1)로부터 화재 감지 신호를 수신할 것을 미리정해진 시간동안 기다린다.In such a configuration, the second fire detection apparatus 100-2 that detects the flame transmits a fire detection signal to the integrated controller 300. The integrated controller 300 is another fire detection device connected to the integrated controller 300, instead of immediately transmitting the fire detection signal from the second fire detection device 100-2 to the fire station, the first fire detection device Wait for a predetermined time to receive a fire detection signal from (100-1).
이는 전술한 바와 같이, 화원으로부터의 적외선 에너지는 거리의 제곱에 비례하여 작아지는 원리를 이용한 것으로, 제1 화재 감지 센서(100-2)에서 화원인 불꽃으로부터의 적외선 에너지를 화재로서 감지하기 위해서는, 화원(불꽃)에 의해 발생되는 에너지가 화원으로부터 제2 화재 감지 센서(100-2)까지의 거리의 제곱으로 작아지는 적외선 에너지의 총합보다 커져야만 가능하다. As described above, the infrared energy from the flower source is reduced in proportion to the square of the distance. In order to detect the infrared energy from the flame as the fire source in the first fire detection sensor 100-2 as a fire, It is possible only if the energy generated by the fire source (flame) is greater than the sum of the infrared energy which decreases by the square of the distance from the fire source to the second fire detection sensor 100-2.
따라서 작업장 등에서 수행되는 아크 용접 등에 의해 발생되는 불꽃으로부터 발생되는 에너지가 급격하게 2배 내지 3배(거리가 2배인 경우 4배) 이상으로 커지지 않는 이상, 최초 불꽃을 감지한 제2 화재 감지 장치(100-2)에 이웃하여 배치된 제1 화재 감지 장치(100-1)에서 이와 같은 용접에 의한 불꽃을 화재로서 인식하여 통합 제어기(300)에 화재 감지 신호를 통보하지 않게 된다.Therefore, the second fire detection device that detects the first flame, unless the energy generated from the flame generated by arc welding performed in the workplace, etc. is suddenly increased to two to three times (four times if the distance is double). The first fire detection apparatus 100-1 disposed adjacent to 100-2 recognizes the flame by welding as a fire and does not notify the integrated controller 300 of the fire detection signal.
한편 감시 영역 A1에서 실제 화재가 발생한 경우에, 화원으로부터 발생되는 적외선 에너지는 화원의 불꽃이 커짐에 따라, 즉 시간이 지남에 따라 점차 커지기 때문에 제2 화재 감지 장치(100-2)로부터 이웃하는 제1 화재 감지 장치(100-1)에서 이를 감지하게되고 화재 감지 신호를 통합 제어기(300)에 통보하게 된다.On the other hand, when an actual fire occurs in the monitoring area A1, the infrared energy generated from the fire source is gradually increased as the flame of the fire source increases, that is, over time, so that the neighboring fire from the second fire detection device 100-2 The fire detection device 100-1 detects this and notifies the integrated controller 300 of the fire detection signal.
즉, 통합 제어기(300)는 제2 화재 감지 장치(100-2)로부터 화재 감지 신호를 수신한 후 소방 수신반으로의 화재 경보 신호의 전송을 미리정해진 시간 동안 대기하고, 미리정해진 시간 동안 다른 화재 감지 장치(100-1)로부터 화재 감지 신호가 수신되지 않으면 작업장에서 일반적으로 발생할 수 있는 불꽃인 것으로 판단하여 이와 같이 제2 화재 감지 장치(100-2)으로부터 수신된 화재 감지 신호를 무시하는 한편, 미리정해진 시간 동안 다른 화재 감지 장치(100-1)로부터 화재 감지 신호가 수신되면 화재인 것으로 판단하여 소방 수신반에 화재 경보 신호를 발생시킨다. That is, after receiving the fire detection signal from the second fire detection device 100-2, the integrated controller 300 waits for the transmission of the fire alarm signal to the fire station for a predetermined time and detects another fire for the predetermined time. If the fire detection signal is not received from the device 100-1, it is determined that the flame is generally generated in the workplace, and thus the fire detection signal received from the second fire detection device 100-2 is ignored. When a fire detection signal is received from the other fire detection device 100-1 for a predetermined time, it is determined that the fire is generated and a fire alarm signal is generated in the fire station.
한편, 미리정해진 시간은 작업장에 설치되는 화재 감지 장치(100-1,2)의 감도 및/또는 화재 감지 장치들 사이의 설치 거리 등을 고려하여 적당한 시간 조건으로 선택될 수 있다. 그러나 바람직하게 통합 제어기에서 다른 화재 감지 장치의 화재 감지 신호를 대기하는 미리정해진 시간은 대략 3초 내지 50초의 범위, 더 바람직하게는 5초 내지 30초의 범위 내에서 선택되는 것이 바람직하다.Meanwhile, the predetermined time may be selected as an appropriate time condition in consideration of the sensitivity of the fire detection devices 100-1 and 2 installed in the workplace and / or the installation distance between the fire detection devices. However, preferably the predetermined time of waiting for the fire detection signal of the other fire detection device in the integrated controller is preferably selected in the range of approximately 3 seconds to 50 seconds, more preferably in the range of 5 to 30 seconds.
도 7에서는 2개의 화재 감시 장치가 배치된 것을 예로 하여 설명하였지만 본 발명은 이에 한정되는 것은 아니며 도 8에 도시된 바와 같이 동일한 화재 감시 영역 내에 3개의 화재 감지 장치(100-1~100~3)를 갖는 화재 감시 시스템으로 구성될 수도 있다. In FIG. 7, two fire monitoring apparatuses have been described as an example, but the present invention is not limited thereto. As illustrated in FIG. 8, three fire detection apparatuses 100-1 to 100 to 3 are located within the same fire monitoring region. It may be configured as a fire monitoring system having a.
이와 같은 구성을 가진 화재 감시 시스템에서, 예를 들면 도 8에 도시한 것 처럼 화원(불꽃 또는 화재)이 제3 화재 감지 장치(100-3)과 제2 화재 감지(100-2) 사이의 영역에서(제2 화재 감지 장치에 가까운 것으로 가정) 발생되는 경우, 제2 화재 감지 장치와 제3 화재 감지 장치는 미세한 시차를 두고 제2 화재 감지 장치에서 먼저 통합 제어기에 통보하고 이후 제3 화재 감지 장치에서 통합 제어기(300)로 화재 감지 신호가 전송되어질 것이다.In the fire monitoring system having such a configuration, for example, as illustrated in FIG. 8, the flower garden (flame or fire) is an area between the third fire detection device 100-3 and the second fire detection 100-2. , The second fire detection device and the third fire detection device notify the integrated controller first at the second fire detection device with a slight time difference, and then the third fire detection device. The fire detection signal will be sent to the integrated controller (300).
이 경우 통합 제어기(300)는 제2 화재 감지 장치에서 먼저 화지 감지 신호를 수신받고 미리정해진 시간보다도 일찍, 예를 들면 5초 이내의 시간 범위 내에서 제3 화재 감지 장치로부터 화재 감지 신호를 통보받은 경우, 통합 제어기(300)는 또 다른 화재 감지 장치들 중 어느 하나 이상으로부터 화재 감지 신호를 수신하는 경우에만 실제 화재인 것으로 판단하도록 구성될 수 있다. In this case, the integrated controller 300 first receives the image detection signal from the second fire detection device and receives the fire detection signal from the third fire detection device within a time range of, for example, within 5 seconds earlier than a predetermined time. In this case, the integrated controller 300 may be configured to determine that it is a real fire only when receiving a fire detection signal from any one or more of the other fire detection devices.
즉 도 8의 실시예에서는 제2 화원 감지 장치 및 제3 화원 감지 장치로부터 거의 동시적으로 화재 감지 신호를 수신한 경우라도 다른 화재 감지 장치(제1 화재 감지 장치)로부터 화재 감지 신호를 수신한 경우에만 화재인 것으로 판단하도록 설정할 수도 있다. That is, in the embodiment of FIG. 8, even when a fire detection signal is received from the second fire source detection device and the third fire source detection device almost simultaneously, the fire detection signal is received from another fire detection device (the first fire detection device). It can also be set to judge the fire only.
이와 같은 방법은 감시 대상 영역의 경계에서 화원이 발생되는 경우 발생되는 경우 보다 정확하게 화원의 진위 여부를 구별할 수 있게 해준다.Such a method makes it possible to distinguish the authenticity of the flower garden more accurately when the flower garden occurs at the boundary of the area to be monitored.
도 9는 도 7 및 도 8을 참조하여 설명한 바와 같은 화원의 진위 여부를 판별하기 위한 본 발명에 따른 오경보 방지를 위한 통합 제어기에서의 동작 흐름을 나타낸 흐름도이다.9 is a flowchart illustrating an operation flow in an integrated controller for preventing false alarm according to the present invention for determining the authenticity of a flower source as described with reference to FIGS. 7 and 8.
도 9에 도시한 바와 같이, 통합 제어기는 동일한 유효 감시 영역을 갖도록 공간내 설치된 복수의 화염 감지 장치에 연결된 상태로 단계 S100에서와 같이 화원 또는 화재 발생을 감시한다.As shown in Fig. 9, the integrated controller monitors the fire source or the fire occurrence as in step S100 while being connected to a plurality of flame detection devices installed in the space to have the same effective monitoring area.
단계 S110에서 작업이나 화재로 인한 불꽃 또는 화원이 발생한 경우 이를 감지한 화재 감지 장치(이하 제1 화재 감지 장치)가 화재 감지 신호를 통합 제어기로 전송함에 따라 통합 제어기에서 제1 화재 감지 신호를 수신하게 된다.In step S110, when a fire or a fire source occurs due to an operation or a fire, the fire detection device (hereinafter referred to as the first fire detection device) that detects this sends a fire detection signal to the integrated controller so that the integrated controller receives the first fire detection signal. do.
제1 화재 감지 장치로부터의 제1 화재 감지 신호를 수신하면 단계 S120으로 진행되고 단계 S120에서 통합 제어기는 화재 경보를 대기하며 화재의 진위를 판별하기 위한 화재 판별 모드를 시작한다.Upon receiving the first fire detection signal from the first fire detection device, the process proceeds to step S120, in which the integrated controller waits for a fire alarm and enters a fire determination mode for determining the authenticity of the fire.
이어서 단계 S130에서 통합 제어기는 미리정해진 시간 범위(T1 ~ T2) 동안 다른 화재 감지 장치로부터 제2 화재 감지 신호가 수신되는지 여부를 판단하게 된다. Subsequently, in step S130, the integrated controller determines whether a second fire detection signal is received from another fire detection device for a predetermined time range T1 to T2.
단계 S130에서 미리정해진 시간 범위 내에 제2 화재 감지 신호가 다른 화재 감지 장치로부터 수신되지 않느다면(즉, T > T2), 단계는 S160 및 S170으로 진행되어 화재 판면 모드가 해제되고 리셋되어 단계 S100으로 복귀하게 된다.If the second fire detection signal is not received from the other fire detection device within the predetermined time range in step S130 (that is, T> T2), the step proceeds to S160 and S170 to release the fire plane mode and reset to step S100. Will return.
*그러나, 단계 S130에서 제2 화재 감지 신호가 수신되고 그 수신 시간(T)이 미리 정해진 시간 범위인 T1 내지 T2 사이에 있다면 이는 화재로 인해 불꽃이 커진 것으로 판단하여 단계 S180으로 진행하여 화재 경보를 발령함으로써 작업장 내에서 발생된 화원의 진위 여부를 보다 정확하게 판별할 수 있게 되고 이로 인해 화재 감지 장치의 오경보로 인한 피해를 막을 수 있게 된다.However, if the second fire detection signal is received in step S130 and the reception time T is between T1 and T2, which is a predetermined time range, it is determined that the flame has increased due to the fire, and the flow proceeds to step S180 to provide a fire alarm. By the announcement, it is possible to more accurately determine the authenticity of the fire source generated in the workplace, thereby preventing the damage caused by the false alarm of the fire detection device.
한편 추가적으로 단계 S130에서 제2 화재 감지 신호가 수신되고 그 수신 시간(T)이 미리 정해진 시간 범위의 최소값이 T1보다 작다면(T<T1)인 경우 화원의 위치가 제1 감시 영역과 제2 감시 영역의 사이에 발생될 가능성이 있게 된다. 따라서 이 경우 단계 S130, S150, S180, S160, S170의 동작을 반복하여 수행함으로써, 즉 시간 T1과 시간 T2 사이에 또 다른 화재 감지기로부터의 화재 감지 신호가 수신되는지의 여부에 따라 화원의 진위를 판별하도록 더 구성할 수도 있다.On the other hand, if the second fire detection signal is received in step S130 and the reception time T is less than the minimum value of the predetermined time range T1 (T <T1), the position of the flower source is the first surveillance region and the second surveillance. It is likely to occur between the regions. Therefore, in this case, by repeating the operations of steps S130, S150, S180, S160, and S170, that is, the authenticity of the fire source is determined according to whether a fire detection signal from another fire detector is received between the time T1 and the time T2. It can be further configured to.
그러나 이와 같은 추가적인 단계는 사용자 선택에 따른 것으로, 제2 화재 감지 신호의 수신 시간(T)이 미리 정해진 시간 범위의 최소값인 T1이전에 수신된 경우 화재로 판단하여 화재 경보를 통보하도록 구성될 수 있다. However, this additional step is according to the user's selection, and may be configured to notify the fire alarm by determining that it is a fire when the reception time T of the second fire detection signal is received before T1 which is the minimum value of the predetermined time range. .
이러한 추가적인 구성은 화재 감시 시스템이 설치되는 작업장의 환경에 따라, 예를 들면 주로 아크 용접 등이 주로 수행되고 인화 물질이나 폭발 물질이 취급되지 않는 경우에는 제3 화재 감지 신호를 대기하는 구성을, 폭발 물질이나 인화 물질이 주로 취급되어 화원이 초기부터 크게 발화될 수 있는 장소에는 제3 화재 감지 신호의 수신을 대기하지 않고 즉각적으로 화재 경보를 발령하도록 구성되는 것이 바람직하다.Such an additional configuration may, depending on the environment of the workplace in which the fire monitoring system is installed, e.g. a configuration in which a third fire detection signal is awaited, in which case, for example, arc welding is mainly performed and no flammable or explosive materials are handled. It is preferable that a place where material or flammable material is mainly handled so that a fire can be greatly ignited from an early stage is configured to immediately issue a fire alarm without waiting for reception of a third fire detection signal.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로, 본 발명이 속하는 기술분야에서 통상의 지식을 갖는 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 게시된 실시예는 본 발명의 기술 사상을 한정하기 위한 것이 아닌 설명을 위한 것이고, 이런 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not for limiting the technical spirit of the present invention but for the description, and the scope of the technical idea of the present invention is not limited by these embodiments.
따라서 본 발명의 보호 범위는 전술한 실시예에 의해 제한되기 보다는 아래의 청구범위에 의하여 해석되어야하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.Therefore, the protection scope of the present invention should be construed by the claims below, rather than being limited by the above-described embodiment, and all technical ideas within the equivalent scope will be construed as being included in the scope of the present invention.
Claims (4)
- 복수의 화재 감지 장치 및 복수의 화재 감지 장치 각각에 무선 또는 유선으로 연결된 통합 제어기로 이루어지고, 상기 복수의 화재 감지 장치의 각각으로부터의 화재 감지 신호에 기반하여 오경보를 방지하는 화재 감시 시스템에 있어서,A fire monitoring system comprising an integrated controller wirelessly or wiredly connected to each of a plurality of fire detection devices and a plurality of fire detection devices, and prevents false alarms based on fire detection signals from each of the plurality of fire detection devices.상기 복수의 화재 감지 장치는 동일한 유효 감시 영역을 갖도록 동일한 공간 내에 설치되고, 복수의 화재 감지 장치 각각은, 적어도 하나의 화재 관련 요소를 감지하기 위한 화재요소 감지센서와, 적어도 하나의 비화재 요소를 감지하는 비화재 요소 감지 센서 및 상기 화재요소 감지센서와 상기 비화재 요소 감지센서의 결과에 기반하여 화재 여부를 1차적으로 판단하고 판단된 화재 감지 신호를 상기 통합 제어기로 송신하는 제어부를 포함하고,The plurality of fire detection devices are installed in the same space to have the same effective monitoring area, and each of the plurality of fire detection devices includes a fire element detection sensor for detecting at least one fire related element and at least one non-fire element. Non-fire element detection sensor for detecting and based on the results of the fire element detection sensor and the non-fire element detection sensor includes a control unit for primarily determining whether a fire and transmit the determined fire detection signal to the integrated controller,상기 통합 제어기는, The integrated controller,복수의 화재 감지 장치 중 어느 하나의 화재 감지 장치로부터 제1 화재 감지 신호를 수신한 경우 미리정해진 시간 구간(T1~T2) 동안 화재 경보 실행을 대기하고, When the first fire detection signal is received from any one of the plurality of fire detection devices, the fire alarm is executed for a predetermined time interval T1 to T2,다른 하나의 화재 감지 장치로부터 상기 미리정해진 시간(T1<T<T2) 내에 제2 화재 감지 신호를 수신한 경우 화재 경보를 실행하고, If a second fire detection signal is received from the other fire detection device within the predetermined time T1 <T <T2, a fire alarm is executed;상기 미리정해진 시간 구간(T1<T<T2) 내에 다른 하나 이상의 화재 감지 장치로부터 제2 화재 감지 신호가 수신되지 않는 경우 화재 경보를 실행하지 않으며,If a second fire detection signal is not received from another one or more fire detection devices within the predetermined time interval T1 <T <T2, the fire alarm is not executed.미리정해진 시간 구간(T1~T2)의 최소 시간 T1 이전에 다른 하나 이상의 화재 감지 장치로부터 제2 화재 감지 신호를 수신한 경우, 미리정해진 시간 구간(T1~T2) 동안 화재 경보 실행을 대기하고, 상기 미리정해진 시간 내에 또 다른 하나 이상의 화재 감지 장치로부터 제3 화재 감지 신호를 수신한 경우 화재 경보를 실행하도록 상기 복수의 화재 감지 장치로부터 각각 수신되는 복수의 화재 감지 신호에 기반하여 화재 여부를 2차적으로 판단하도록 구성된 것을 특징으로 하는 화재 감시 시스템.When the second fire detection signal is received from the other one or more fire detection devices before the minimum time T1 of the predetermined time intervals T1 to T2, the execution of the fire alarm is waited for the predetermined time intervals T1 to T2, and If a third fire detection signal is received from another one or more fire detection devices within a predetermined time period, whether the fire is secondary based on a plurality of fire detection signals respectively received from the plurality of fire detection devices to trigger a fire alarm. Fire monitoring system, characterized in that it is configured to determine.
- 제1항에 있어서,The method of claim 1,상기 미리정해진 시간은 3초 내지 50초 범위 내에 있는 것을 특징으로 하는 화재 감시 시스템.And said predetermined time is in the range of 3 to 50 seconds.
- 제1항에 있어서,The method of claim 1,상기 통합 제어기는, 상기 미리정해진 시간 구간(T1~T2) 내에 또 다른 하나 이상의 화재 감지 장치로부터 제3 화재 감지 신호가 수신되지 않는 경우 화재 경보를 실행하지 않도록 구성된 것을 특징으로 하는 화재 감시 시스템.Wherein said integrated controller is configured to not execute a fire alarm if a third fire detection signal is not received from another one or more fire detection devices within said predetermined time interval (T1-T2).
- 제1항에 있어서,The method of claim 1,상기 통합 제어기는, 미리정해진 시간 구간(T1~T2)의 최소 시간 T1 이전에 다른 하나 이상의 화재 감지 장치로부터 제2 화재 감지 신호를 수신한 경우, 화재 경보를 실행하도록 구성된 것을 특징으로 하는 화재 감시 시스템.The integrated controller is configured to execute a fire alarm when a second fire detection signal is received from at least one other fire detection device before a minimum time T1 of a predetermined time interval T1 to T2. .
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2017-0029690 | 2017-03-08 | ||
KR1020170029690A KR101787967B1 (en) | 2017-03-08 | 2017-03-08 | System and method for preventing false alarm of fire detection device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018164344A1 true WO2018164344A1 (en) | 2018-09-13 |
Family
ID=60387185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/013287 WO2018164344A1 (en) | 2017-03-08 | 2017-11-21 | Fire monitoring system for preventing false alarm of fire detection device |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101787967B1 (en) |
WO (1) | WO2018164344A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102001595B1 (en) * | 2019-04-08 | 2019-10-01 | 주식회사 코어세이프티 | Fire detector having function preventing the malfunction and method of determining error operation thereof |
KR102444941B1 (en) * | 2020-07-29 | 2022-09-19 | 한국과학기술정보연구원 | Fire monitoring device and its operation method |
CN112150756A (en) * | 2020-09-07 | 2020-12-29 | 中车青岛四方机车车辆股份有限公司 | Fire detection method, device and system and train |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130058244A (en) * | 2011-11-25 | 2013-06-04 | 한국과학기술원 | Fire alarm system using carbon dioxide sensor array |
KR101573236B1 (en) * | 2015-06-17 | 2015-12-01 | 주식회사 아이알티코리아 | Fire detection system |
JP5842141B2 (en) * | 2013-08-22 | 2016-01-13 | パナソニックIpマネジメント株式会社 | Fire alarm system |
KR101604571B1 (en) * | 2015-07-22 | 2016-03-22 | 유정무 | Three wavelength type infrared flame detector having ultraviolet sensor |
-
2017
- 2017-03-08 KR KR1020170029690A patent/KR101787967B1/en active Active
- 2017-11-21 WO PCT/KR2017/013287 patent/WO2018164344A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130058244A (en) * | 2011-11-25 | 2013-06-04 | 한국과학기술원 | Fire alarm system using carbon dioxide sensor array |
JP5842141B2 (en) * | 2013-08-22 | 2016-01-13 | パナソニックIpマネジメント株式会社 | Fire alarm system |
KR101573236B1 (en) * | 2015-06-17 | 2015-12-01 | 주식회사 아이알티코리아 | Fire detection system |
KR101604571B1 (en) * | 2015-07-22 | 2016-03-22 | 유정무 | Three wavelength type infrared flame detector having ultraviolet sensor |
Also Published As
Publication number | Publication date |
---|---|
KR101787967B1 (en) | 2017-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018207997A1 (en) | Fire detection device having plurality of sensor groups so as to prevent false alarm | |
KR101604571B1 (en) | Three wavelength type infrared flame detector having ultraviolet sensor | |
WO2018190478A1 (en) | Intelligent flame detection device and method using infrared thermography | |
WO2019203409A1 (en) | Additional function expansion-type fire detector | |
KR101573272B1 (en) | Fire detection device and fire detection system using the same | |
WO2017131320A1 (en) | Social safety network system having portable light for both wireless disaster fire detection and crime prevention | |
WO2018164344A1 (en) | Fire monitoring system for preventing false alarm of fire detection device | |
WO2016175574A1 (en) | Emergency detection and response system using led-lighting module, and method thereof | |
KR101874310B1 (en) | Fire Detector | |
KR101807264B1 (en) | mono type firefighting sensor of based IoT | |
KR101818066B1 (en) | LED lamp system having disaster warning and training function | |
KR101807263B1 (en) | fire-prevention system type indoor space fusioning | |
WO2022240231A1 (en) | Iot-based wireless flame detection system for both hydrogen fire and normal fire | |
WO2019035505A1 (en) | Fire detectors linked by mesh network and a method for installing fire detectors | |
KR101573236B1 (en) | Fire detection system | |
KR100327497B1 (en) | Line interruption and fire supervisory apparatus for a fire alarm system and an fire alarm apparatus having the same | |
KR101950743B1 (en) | Control method of emergency lighting system in case of fire in apartment house | |
KR101573244B1 (en) | Sensitibity adjustable fire detection device in local area | |
KR101807261B1 (en) | firefighting sensor having warning function display and fire-prevention system having the same | |
JP2019185197A (en) | Radio communication device for fire and fire alarm system | |
KR101950745B1 (en) | Control method of emergency lighting system of apartment in case of fire | |
WO2020171616A1 (en) | Fire detector having reset function linked with lamp and fire warning method using same | |
CN208076451U (en) | Torch altar lamp which burns day and night combustion state detection device based on ion circuit | |
KR101807262B1 (en) | firefighting sensor having warning function display and fire-prevention system having the same | |
CN217386459U (en) | Smoke and phosgene combined fire detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17900017 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/11/2019) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17900017 Country of ref document: EP Kind code of ref document: A1 |