WO2018164148A1 - タービン翼の冷却構造 - Google Patents
タービン翼の冷却構造 Download PDFInfo
- Publication number
- WO2018164148A1 WO2018164148A1 PCT/JP2018/008643 JP2018008643W WO2018164148A1 WO 2018164148 A1 WO2018164148 A1 WO 2018164148A1 JP 2018008643 W JP2018008643 W JP 2018008643W WO 2018164148 A1 WO2018164148 A1 WO 2018164148A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rib
- lattice
- cooling
- ribs
- rib set
- Prior art date
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 88
- 239000002826 coolant Substances 0.000 claims abstract description 56
- 238000004891 communication Methods 0.000 claims abstract description 11
- 239000003507 refrigerant Substances 0.000 claims description 17
- 238000005192 partition Methods 0.000 description 30
- 230000007423 decrease Effects 0.000 description 5
- 230000003068 static effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 238000007599 discharging Methods 0.000 description 2
- 238000007792 addition Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/187—Convection cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/187—Convection cooling
- F01D5/188—Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D9/00—Stators
- F01D9/02—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/12—Cooling of plants
- F02C7/16—Cooling of plants characterised by cooling medium
- F02C7/18—Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D9/00—Stators
- F01D9/06—Fluid supply conduits to nozzles or the like
- F01D9/065—Fluid supply or removal conduits traversing the working fluid flow, e.g. for lubrication-, cooling-, or sealing fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/20—Rotors
- F05D2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
- F05D2240/304—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the trailing edge of a rotor blade
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2250/00—Geometry
- F05D2250/10—Two-dimensional
- F05D2250/18—Two-dimensional patterned
- F05D2250/185—Two-dimensional patterned serpentine-like
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2250/00—Geometry
- F05D2250/20—Three-dimensional
- F05D2250/28—Three-dimensional patterned
- F05D2250/282—Three-dimensional patterned cubic pattern
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/221—Improvement of heat transfer
- F05D2260/2212—Improvement of heat transfer by creating turbulence
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/221—Improvement of heat transfer
- F05D2260/2214—Improvement of heat transfer by increasing the heat transfer surface
- F05D2260/22141—Improvement of heat transfer by increasing the heat transfer surface using fins or ribs
Definitions
- the present invention relates to a structure for cooling a turbine blade of a gas turbine engine, that is, a stationary blade and a moving blade in a turbine from the inside.
- the turbine constituting the gas turbine engine is disposed downstream of the combustor and is supplied with high-temperature gas combusted in the combustor, and thus is exposed to high temperatures during operation of the gas turbine engine. Therefore, it is necessary to cool the turbine blade, that is, the stationary blade and the moving blade.
- As a structure for cooling such turbine blades it is known that a part of air compressed by a compressor is introduced into a cooling passage formed in the blades, and the turbine blades are cooled by using compressed air as a cooling medium. (For example, refer to Patent Document 1).
- the cooling medium flowing through one flow path contacts a partition plate that is a wall surface that partitions the inside and outside of the structure, turns, and flows into the other flow path.
- the cooling medium flowing through the other channel contacts the partition plate of the structure, turns, and flows into one channel.
- cooling is accelerated
- cooling is accelerated
- an object of the present invention is to provide a cooling structure capable of cooling a turbine blade with high efficiency while suppressing an increase in weight and a decrease in durability of the turbine blade in order to solve the above-described problems.
- a turbine blade cooling structure is a structure for cooling a turbine blade of a turbine driven by high-temperature gas from the inside,
- a first rib set composed of a plurality of ribs arranged on the first wall surface of the cooling passage formed in the turbine blade, and a plurality of pieces arranged on the second wall surface facing the first wall surface of the cooling passage.
- a lattice structure having a plurality of lattice communication portions for communicating the flow paths formed between the ribs and the flow paths formed between the plurality of ribs of the second rib set;
- Each of the first rib set and the second rib set extends in a direction opposite to each other with respect to a virtual boundary line extending in the moving direction of the entire cooling medium flowing through the cooling passage, and is mutually on the virtual boundary line. It has a rib wall consisting of a pair of ribs in contact, In each of the first rib set and the second rib set, each rib forming at least one rib wall has a plurality of lattice communicating portions between two lattice communicating portions at both ends thereof. It is so extended.
- the cooling medium flowing in from the channels inclined in the opposite directions collide with each other, thereby increasing the static pressure and turning the cooling medium. That is, by inclining the rib in the opposite direction with respect to the virtual boundary line, the same cooling effect as when the partition plate is provided can be obtained without providing the partition plate on the virtual boundary line. Therefore, high cooling efficiency can be realized while suppressing an increase in the weight of the turbine blade and a decrease in durability.
- the cooling medium mainly passes through the communicating portion and crosses the ribs of the other rib set, thereby generating a vortex in the cooling medium.
- each rib forming the rib wall is extended so that a plurality of lattice communicating portions are formed between the two lattice communicating portions at both ends thereof, so that the cooling medium flows between the ribs. While flowing along the path, a sufficient distance is secured to cool the wall surface of the lattice channel by forming a vortex.
- the first rib set and the second rib set have a common virtual boundary line in plan view, and are arranged so that apex portions of the rib walls overlap each other. May be. According to this configuration, the cooling medium smoothly turns from one lattice channel to the other lattice channel on the virtual boundary line.
- the first rib group and the second rib group may be formed symmetrically with respect to the virtual boundary line. According to this configuration, it is possible to increase the static pressure due to the refrigerant collision on the virtual boundary line more effectively, and it is easy to form the lattice structure.
- the moving direction of the entire cooling medium may be a direction from a root portion to a tip portion in the height direction of the turbine blade. According to this configuration, a higher cooling efficiency can be obtained by setting the root portion, which is a portion where a large stress is applied to the turbine blade, and therefore a portion where cooling is more necessary, to the upstream side of the cooling medium.
- the cooling passage at the tip of the turbine blade is provided with a refrigerant outlet portion in which the first wall surface and the second wall surface are formed as flat surfaces, and the tip of the turbine blade A discharge hole for discharging the cooling medium from the refrigerant outlet portion to the outside may be provided in the blade wall of the portion. According to this configuration, the cooling medium can be smoothly discharged while maintaining the cooling efficiency by providing the refrigerant leading portion at the blade tip portion where the necessity for cooling is relatively low.
- FIG. 1 is a perspective view showing a turbine blade 1 of a turbine of a gas turbine engine to which a turbine blade cooling structure according to an embodiment of the present invention is applied.
- the turbine rotor blade 1 forms a turbine driven by a high-temperature gas G supplied from a combustor (not shown) and flowing in the direction of the arrow.
- the turbine rotor blade 1 includes a first blade wall 3 that is concavely curved with respect to the flow path GP of the high-temperature gas G, and a second blade wall 5 that is curved convexly with respect to the flow path GP of the high-temperature gas.
- the upstream side (the left side in FIG.
- the turbine blade 1 is mainly shown as an example of a turbine blade provided with a cooling structure, but the cooling structure according to the present embodiment is a turbine blade that is a turbine blade, unless specifically described. It can be similarly applied to.
- the turbine rotor blade 1 has a platform 11 connected to the outer peripheral portion of the turbine disk 13, so that a large number of them are implanted in the circumferential direction to form a turbine.
- a front cooling passage 15 extending in the blade height direction H and turning back is formed inside the front portion 1 a of the turbine rotor blade 1.
- a rear cooling passage 17 is formed in the rear portion 1 b of the turbine rotor blade 1.
- the cooling medium CL flows toward the outside in the radial direction through the front cooling medium introduction passage 19 and the rear cooling medium introduction passage 21 formed inside the turbine disk 13 on the radially inner side. Are introduced into the front cooling passage 15 and the rear cooling passage 17, respectively.
- a part of compressed air from a compressor (not shown) is used as the cooling medium CL.
- the cooling medium CL supplied to the front cooling passage 15 is discharged outside through a discharge hole (not shown) communicating with the outside of the turbine rotor blade 1.
- the cooling medium CL supplied to the rear cooling passage 17 is discharged to the outside through a discharge hole 43 provided in the blade wall at the tip of the turbine rotor blade 1. The discharge hole 43 will be described later.
- the cooling structure according to the present embodiment in the rear portion 1b of the turbine rotor blade 1 will be described, but the cooling structure according to the present embodiment may be provided in any part of the turbine rotor blade 1.
- the entire cooling medium CL flows along the height direction H of the turbine rotor blade 1 in the direction from the root portion side to the tip portion side.
- the moving direction of the entire cooling medium CL is referred to as a refrigerant moving direction M.
- a direction orthogonal to the refrigerant moving direction M in the rear cooling passage 17 is referred to as a transverse direction T.
- a lattice structure 23 is provided as one element constituting a cooling structure for cooling the turbine rotor blade 1 from the inside.
- the lattice structure 23 is formed by stacking two rib sets including a plurality of ribs 31 on each other on the opposing wall surfaces of the rear cooling passage 17 in a lattice pattern.
- a first rib set (lower rib set in FIG. 4) 33A composed of a plurality of first ribs 31A arranged in parallel with each other at equal intervals, and a plurality of first rib sets arranged in parallel with each other at equal intervals.
- a second rib group (upper rib group in FIG.
- the first rib 31 ⁇ / b> A and the second rib 31 ⁇ / b> B are respectively provided on two wall surfaces facing the blade thickness direction of the turbine rotor blade 1, that is, the first wall surface 3 a and the second blade wall 5, which are the wall surfaces of the first blade wall 3. It is provided on the second wall surface 5a which is a wall surface.
- the gap between the adjacent ribs 31 and 31 of each rib set 33A and 33B forms a flow path (lattice flow path) 37 for the cooling medium CL.
- a portion where the lattice flow path 37 of the first rib set 33A and the lattice flow path 37 of the second rib set 33B intersect is a lattice that allows the lattice flow paths 37 and 37 of both the rib sets 33A and 33B to communicate with each other.
- the communication part 23a is formed.
- each lattice channel 37 In the lattice structure 23, the uppermost stream end of each lattice channel 37 is not closed and opens upstream, and the plurality of openings is referred to as an inlet of the lattice channel 37 (hereinafter simply referred to as “lattice inlet”). .) 37a is formed. In the lattice structure 23, the most downstream end of each lattice channel 37 is not closed and opens downstream, and the plurality of openings are referred to as outlets of the lattice channel 37 (hereinafter simply referred to as “lattice outlets”). .) 37b is formed.
- the first rib set 33 ⁇ / b> A and the second rib set 33 ⁇ / b> B extend while being inclined in directions opposite to each other with respect to the virtual boundary line L extending in the refrigerant movement direction M, and on the virtual boundary line L.
- a rib wall 35 composed of a pair of ribs 31 and 31 that are in contact with each other.
- the virtual boundary line L in the present specification refers to a cooling region composed of a rib portion inclined in one direction of each of the rib sets 33A and 33B and a rib inclined in the opposite direction adjacent thereto in the lattice structure 23. It is an imaginary straight line that demarcates the boundary with the cooling region consisting of parts.
- the first rib set 33A and the second rib set 33B are formed symmetrically with respect to the virtual boundary line L, respectively.
- the rib wall 35 in each rib set has a vertex portion 35 a on the virtual boundary line L and has a V-shape that is symmetric with respect to the virtual boundary line L.
- the first rib set 33A and the second rib set 33B have a common virtual boundary line L in plan view (that is, the virtual boundary lines L overlap in plan view), and The apex portions 35a of the rib walls 35 are arranged so as to overlap each other.
- the entire first rib set 33A and the entire second rib set 33B form a continuous lattice shape over the entire lattice structure 23 in plan view. Yes. Therefore, the lattice communicating portion having the same shape and area in plan view as the other lattice communicating portion 23a not located on the virtual boundary line L, between the nearest vertex portions 35a, 35a of the rib sets 33A, 33B that do not overlap each other.
- 23a (lattice communication portion located on the virtual boundary line L indicated by the reference numeral “23aX” in the figure) is formed.
- the cooling medium CL introduced into the lattice structure 23 is, as indicated by a broken line arrow in the drawing, first from the lattice inlet 37a of one rib group (lower first rib group 33A in the illustrated example) to the lattice channel 37. And the other rib set (the upper second rib set 33B in the illustrated example) is crossed to generate a vortex. That is, the cooling medium CL causes a vortex in the lattice structure 23 by passing through the lattice communicating portion 23a.
- the cooling medium CL collides with the partition 39 and turns, and as shown by a solid line arrow in the figure, the lattice flow of the other rib set (the second rib set 33B in the upper stage in the illustrated example) from the collided portion. It flows into the road 37.
- the partition 39 is a structure provided on the side of the lattice structure 23. As the partition body 39, it is possible to substantially prevent the flow of the cooling medium CL flowing through the lattice flow path 37, and at the side of the lattice structure 23, the cooling medium CL is made to collide, Any one may be used as long as it can be turned from one lattice channel 37 to the other lattice channel 37.
- the partition plate which is a flat side wall is used as the partition body 39, but a plurality of partition pin fins may be used as the partition body 39, for example.
- the cooling media CL that have flowed in from the channels inclined in the opposite direction collide with each other. To do. Due to the collision between the cooling media CL, the static pressure rises in the lattice flow path 37, and the cooling medium CL turns and flows into the other lattice flow path 37. That is, the cooling medium CL is turned to the other lattice flow path 37 even in a portion on the virtual boundary L where there is no structure such as a partition that the cooling medium collides with. When the cooling medium CL is turned on the partition 39 and the virtual boundary line L, a vortex is generated in the cooling medium CL.
- the cooling medium CL flows through the lattice flow path 37 and repeatedly flows into the other lattice flow path 37 on the partition 39 and the virtual boundary L, and then the lattice structure 23. Discharged from.
- the cooling medium CL passes through the lattice communicating portion 23a, crosses the other rib set extending in the direction crossing the lattice flow path 37, and the cooling medium CL is turned. An eddy current is generated therein, and cooling of the wall surfaces 3a and 5a is promoted.
- each of the ribs 31 and 31 (ribs 31 extending from the partition body 39 to the virtual boundary line L) forming the rib wall 35 includes two ribs at both ends thereof.
- a plurality of (three in the illustrated example) communication portions 23a are extended between the lattice communication portions 23a.
- the height of each of the upper and lower ribs 31, that is, the height h of the lattice channel 37 in the blade thickness direction is the same at each outlet 37 b portion of the lattice channel 37. .
- the interval between the ribs 31 and 31 in the first rib set 33A and the interval between the ribs 31 and 31 in the second rib set 33B are the same. That is, the lattice flow path 37 width w in the first rib set 33A and the lattice flow path 37 width w in the second rib set 33B are the same.
- the first rib set 33A and the second rib set 33B do not necessarily have to be symmetric with respect to the virtual boundary line L.
- the positions of the ribs 31, 31 forming the rib wall 35 of each rib set may be deviated on the virtual boundary line L as long as they are in contact with each other.
- the inclination angle with respect to may be different.
- the first rib set 33A and the second rib set 33B have a common virtual boundary line L in plan view, and are arranged so that the apex portions 35a of the rib walls 35 overlap each other. Therefore, the cooling medium CL smoothly turns from one lattice channel 37 to the other lattice channel 37 on the virtual boundary line L where the cooling media CL collide with each other.
- the apex portion 35a of the first rib set 33A and the apex portions 35a and 35a of the second rib set 33B may not overlap.
- the virtual boundary line L does not need to overlap in plan view between the first rib set 33A and the second rib set 33B.
- a discharge hole 43 that connects the rear cooling passage 17 and the outside is provided in the tip wall 41 of the turbine rotor blade 1. That is, the cooling medium CL in the rear cooling passage 17 is discharged from the discharge hole 43 to the outside.
- a refrigerant lead-out portion 45 in which the first wall surface 3a and the second wall surface 5a are formed as flat surfaces is further formed in the downstream portion that is the front end side of the rear cooling passage 17.
- a portion on the downstream side (tip side) of the rear cooling passage 17 with respect to the lattice outlet 37 b is formed as the refrigerant outlet 45.
- the cooling medium CL that flows out from the lattice outlet 37 b of the lattice structure 23 passes through the refrigerant outlet 45 and is then discharged to the outside through the discharge hole 43.
- the phrase “the first wall surface 3a and the second wall surface 5a are formed as flat surfaces” means that both wall surfaces are formed as surfaces on which no protrusions or recesses are provided.
- the lattice structure 23 may be arranged up to the tip of the rear cooling passage 17, or a structure different from the lattice structure 23 such as a pin fin may be provided in a region corresponding to the refrigerant outlet 45. Good.
- the turbine blade 1 is a portion where a large stress is applied, so the necessity for cooling is relatively low.
- the cooling medium can be discharged smoothly while effectively cooling the high root portion.
- the lattice structure 23 when the lattice structure 23 is provided on the turbine stationary blade, the lattice structure 23 may be provided only on the root side of the turbine stationary blade that is on the radially outer side of the turbine.
- FIG. 2 an example in which the discharge hole 43 is provided in the tip wall 41 is shown, but the other blade wall of the tip portion of the turbine rotor blade 1, that is, the first blade wall 3 and / or the second blade wall 5. You may provide the discharge hole 43 in the part connected to the lattice exit 37b. Further, the number of the discharge holes 43 may be one as in the illustrated example, or may be two or more.
- the lattice structure 23 according to the present embodiment has only a single virtual boundary line L between the pair of partitions 39, 39 as shown in FIG. With such a configuration, it is possible to obtain an effect of reducing the number of partitions while simplifying the structure of the lattice structure 23. But the lattice structure 23 may be formed so that it may have two or more virtual boundary lines L between a set of partitions.
- the refrigerant moving direction M in the rear cooling passage 17 is the direction from the root side to the tip side in the height direction of the turbine rotor blade 1, but as shown in FIG.
- the direction M may be a chord direction, that is, a direction along the flow direction of the hot gas G outside the turbine rotor blade 1.
- a plurality of lattice structures 23 having at least one virtual boundary line L may be arranged in the height direction H via the partition body 39 as shown in FIG.
- the four lattice structures 23 are arranged in the height direction H via the three partitions 39.
- a plurality of lattice structures 23 having at least one virtual boundary line L are arranged side by side in the transverse direction T via the partition body 39 as necessary. May be.
- the cooling media CL that have flowed in from the lattice channels inclined in the opposite direction collide with each other on the virtual boundary line L of the lattice structure 23.
- the static pressure rises and the cooling medium CL turns. That is, by inclining the ribs 31 and 31 in the opposite direction with respect to the virtual boundary line L, the cooling effect similar to that in the case of providing the partition body is provided without providing a partition body such as a partition plate on the virtual boundary line L. Can be obtained. Therefore, high cooling efficiency can be realized while suppressing an increase in the weight of the turbine blade and a decrease in durability.
- the cooling medium CL mainly passes through the lattice communicating portion 23a and crosses the rib 31 of the other rib set, thereby generating a vortex in the cooling medium CL.
- the ribs 31 and 31 forming the rib wall 35 are extended so that a plurality of lattice communicating portions 23a are formed between the two lattice communicating portions 23a and 23a at both ends thereof. While the cooling medium CL flows along the lattice channel 37 between the ribs 31, 31, a sufficient distance is secured for cooling the wall surface of the lattice channel 37 by forming a vortex.
- Turbine blade Turbine blade
- First blade wall Second blade wall 17
- Rear cooling passage (cooling passage) Lattice structure 23a Lattice communication portion 31 Rib 33A First rib set 33B Second rib set 37 Lattice flow path CL Cooling medium G Hot gas L Virtual boundary
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
タービン翼(1)の冷却構造において、冷却通路(17)に配置された第1リブ組(33A)および第2リブ組(33B)とが互いに格子状に重ねられて構成されたラティス構造体(23)であって、第1リブ組のリブ間に形成された流路(37)と第2リブ組のリブ間に形成された流路(37)とを互いに連通させるラティス連通部(23a)を有するラティス構造体(23)を設け、前記第1,第2リブ組(33A,33B)が、それぞれ、冷却媒体(CL)の移動方向(M)に延びる仮想境界線(L)に対して互いに逆向きに傾斜し、かつ仮想境界線(L)上で互いに接する1対のリブからなるリブ壁(35)を有しており、前記リブ壁(35)を形成する各リブ(31,31)の両端部における2つのラティス連通部(23a)の間に複数のラティス連通部が形成されている。
Description
本出願は、2017年3月10日出願の特願2017-045925の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
本発明は、ガスタービンエンジンのタービン翼、すなわちタービンにおける静翼および動翼を、内部から冷却するための構造に関する。
ガスタービンエンジンを構成するタービンは、燃焼器の下流に配置され、燃焼器で燃焼された高温のガスが供給されるため、ガスタービンエンジンの運転中は高温に曝される。したがって、タービン翼、つまり静翼および動翼を冷却する必要がある。このようなタービン翼を冷却する構造として、圧縮機で圧縮された空気の一部を、翼内に形成した冷却通路に導入し、圧縮空気を冷却媒体としてタービン翼を冷却することが知られている(例えば、特許文献1参照)。
圧縮空気の一部をタービン翼の冷却に用いる場合、外部から冷却媒体を導入する必要がなく、冷却構造を簡単にできるメリットがある一方、圧縮機で圧縮された空気を多量に冷却に用いるとエンジン効率の低下につながるので、できるだけ少ない空気量で効率的に冷却を行う必要がある。タービン翼を高い効率で冷却するための構造として、複数のリブを格子状に組み合わせて形成した、いわゆるラティス構造体を採用することが提案されている(例えば、特許文献2参照)。一般に、ラティス構造体では、その両側端が端部壁面により閉塞されている。一方の流路を流れる冷却媒体が、構造体の内外を仕切る壁面である仕切り板に接触し、転向して他方の流路に流入する。同様に、他方の流路を流れる冷却媒体が構造体の仕切り板に接触し、転向して一方の流路に流入する。このように、冷却媒体が端部壁面への接触・転向を繰り返すことで冷却が促進される。また、冷却媒体が格子状のリブを横切る際に発生する渦流により冷却が促進される。
しかし、冷却効率を高めるため、ラティス構造体に多数の仕切り板を設ければ、タービン翼の重量が増大する。また、ラティス構造体に多数の仕切り板を設けて仕切り板間の流路数を減少させた場合、何らかの原因で一部の流路が閉塞した場合に仕切り板間の流路全体における流量バランスが大きく偏る。その結果、翼内における冷却分布が偏ることによってタービン翼の耐久性が低下する。
そこで、本発明の目的は、上記の課題を解決すべく、タービン翼の重量増大と耐久性低下を抑制しながら、タービン翼を高効率に冷却可能な冷却構造を提供することにある。
上記目的を達成するために、本発明に係るタービン翼の冷却構造は、高温ガスによって駆動されるタービンのタービン翼を内部から冷却するための構造であって、
前記タービン翼内に形成された冷却通路の第1壁面上に配置された複数のリブからなる第1リブ組と、前記冷却通路の前記第1壁面に対向する第2壁面上に配置された複数のリブからなる第2リブ組とを有し、前記第1リブ組と前記第2リブ組とが互いに格子状に重ねられて構成されたラティス構造体であって、前記第1リブ組の複数のリブ間に形成された流路と前記第2リブ組の複数のリブ間に形成された流路とを互いに連通させる複数のラティス連通部を有するラティス構造体を備え、
前記第1リブ組および前記第2リブ組が、それぞれ、前記冷却通路を流れる冷却媒体全体の移動方向に延びる仮想境界線に対して互いに逆向きに傾斜して延び、かつ前記仮想境界線上で互いに接する1対のリブからなるリブ壁を有しており、
前記第1リブ組および前記第2リブ組のそれぞれにおいて、少なくとも1つの前記リブ壁を形成する各リブが、その両端部における2つの前記ラティス連通部の間に複数のラティス連通部が形成されるように延設されている。
前記タービン翼内に形成された冷却通路の第1壁面上に配置された複数のリブからなる第1リブ組と、前記冷却通路の前記第1壁面に対向する第2壁面上に配置された複数のリブからなる第2リブ組とを有し、前記第1リブ組と前記第2リブ組とが互いに格子状に重ねられて構成されたラティス構造体であって、前記第1リブ組の複数のリブ間に形成された流路と前記第2リブ組の複数のリブ間に形成された流路とを互いに連通させる複数のラティス連通部を有するラティス構造体を備え、
前記第1リブ組および前記第2リブ組が、それぞれ、前記冷却通路を流れる冷却媒体全体の移動方向に延びる仮想境界線に対して互いに逆向きに傾斜して延び、かつ前記仮想境界線上で互いに接する1対のリブからなるリブ壁を有しており、
前記第1リブ組および前記第2リブ組のそれぞれにおいて、少なくとも1つの前記リブ壁を形成する各リブが、その両端部における2つの前記ラティス連通部の間に複数のラティス連通部が形成されるように延設されている。
この構成によれば、ラティス構造体の仮想境界線上おいて、逆向きに傾斜する流路から流入してきた冷却媒体同士が衝突することによって静圧が上昇し、冷却媒体が転向する。すなわち、仮想境界線に対してリブを逆方向に傾斜させることにより、仮想境界線上に仕切り板を設けなくとも、仕切り板を設けた場合と同様の冷却効果を得ることができる。したがって、タービン翼の重量増大と耐久性低下を抑制しながら、高い冷却効率を実現できる。
また、ラティス構造体において、冷却媒体が主として連通部を通過して他方のリブ組のリブを横切ることによって、冷却媒体中に渦流が生じる。本発明では、リブ壁を形成する各リブが、その両端部における2つのラティス連通部の間に複数のラティス連通部が形成されるように延設されているので、冷却媒体がリブ間の流路に沿って流れる間に、渦流を形成してラティス流路の壁面を冷却するための十分な距離が確保される。
本発明の一実施形態において、前記第1リブ組および第2リブ組は、平面視において共通の仮想境界線を有しており、かつ、各々のリブ壁の頂点部分が重なるように配置されていてもよい。この構成によれば、仮想境界線上において、冷却媒体が、一方のラティス流路から他方のラティス流路へ円滑に転向する。
本発明の一実施形態において、前記第1リブ組および前記第2リブ組が、それぞれ、前記仮想境界線に対して対称に形成されていてもよい。この構成によれば、より効果的に仮想境界線上における冷媒衝突による静圧上昇を生じさせることができるとともに、ラティス構造体の形成が容易になる。
本発明の一実施形態において、前記冷却媒体全体の移動方向が、前記タービン翼の高さ方向における根元部から先端部へ向かう方向であってもよい。この構成によれば、タービン翼において大きな応力がかかる部分であり、それゆえ冷却の必要性がより高い部分である根元部を冷却媒体の上流側とすることによって、さらに高い冷却効率が得られる。
本発明の一実施形態において、前記タービン翼の先端部における前記冷却通路に、前記第1壁面および前記第2壁面が平坦面として形成された冷媒導出部が設けられており、前記タービン翼の先端部の翼壁に、前記冷媒導出部から外部へ冷却媒体を排出する排出孔が設けられていてもよい。この構成によれば、冷却の必要性が比較的低い翼先端部に冷媒導出部を設けることにより、冷却効率を維持しながら円滑に冷却媒体を排出することができる。
請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
本発明の一実施形態に係る冷却構造が適用されるタービン翼の一例を示す斜視図である。
図1のタービン翼の冷却構造を模式的に示す縦断面図である。
図1のタービン翼の横断面図である。
図2の冷却構造に用いられるラティス構造体を示す斜視図である。
図2の冷却構造に用いられるラティス構造体を模式的に示す平面図である。
本発明の一実施形態に係る冷却構造の配置例を模式的に示す縦断面図である。
以下,本発明の好ましい実施形態を図面に基づいて説明する。図1は本発明の一実施形態に係るタービン翼の冷却構造が適用される、ガスタービンエンジンのタービンの動翼1を示す斜視図である。タービン動翼1は、図示しない燃焼器から供給された、矢印方向に流れる高温ガスGによって駆動されるタービンを形成している。タービン動翼1は、高温ガスGの流路GPに対して凹状に湾曲する第1翼壁3と、高温ガスの流路GPに対して凸状に湾曲する第2翼壁5とを有する。本明細書では、高温ガスGの流れ方向に沿った上流側(図1の左側)を前方と呼び、下流側(図1の右側)を後方と呼ぶ。なお、以下の説明では、冷却構造が設けられるタービン翼として、主としてタービン動翼1を例として示すが、特に説明する場合を除き、本実施形態に係る冷却構造は、タービン翼であるタービン静翼にも同様に適用することができる。
具体的には、タービン動翼1は、図2に示すように、そのプラットフォーム11がタービンディスク13の外周部に連結されることで、周方向に多数植設されてタービンを形成している。タービン動翼1の前部1aの内部には、翼の高さ方向Hに延びて折り返す前部冷却通路15が形成されている。タービン動翼1の後部1bの内部には、後部冷却通路17が形成されている。これらの冷却通路15,17は、図3に示すように、第1翼壁3と第2翼壁5との間の空間を利用して形成されている。
図2に示すように、冷却媒体CLが、径方向内側のタービンディスク13の内部に形成された前部冷却媒体導入通路19,後部冷却媒体導入通路21を通って、径方向外側に向かって流れ、それぞれ前部冷却通路15,後部冷却通路17に導入される。本実施形態では、図示しない圧縮機からの圧縮空気の一部を冷却媒体CLとして利用している。前部冷却通路15に供給された冷却媒体CLは、タービン動翼1の外部に連通する図示しない排出孔から外部へ排出される。後部冷却通路17に供給された冷却媒体CLは、タービン動翼1の先端部の翼壁に設けられた排出孔43から外部へ排出される。この排出孔43については後述する。
以下、本実施形態に係る冷却構造をタービン動翼1の後部1bに設けた例について説明するが、本実施形態に係る冷却構造は、タービン動翼1のいずれの部分に設けてもよい。本実施形態では、後部冷却通路17内において、冷却媒体CLの全体が、タービン動翼1の高さ方向Hに沿って根元部側から先端部側へ向かう方向に流れる。本明細書では、この冷却媒体CL全体の移動方向を、冷媒移動方向Mと呼ぶ。また、後部冷却通路17における冷媒移動方向Mに直交する方向を横断方向Tと呼ぶ。
後部冷却通路17の内部には、タービン動翼1を内部から冷却するための冷却構造を構成する一要素としてラティス構造体23が設けられている。図4に示すように、ラティス構造体23は、後部冷却通路17の対向する壁面上に、複数のリブ31からなる2つのリブ組を、互いに格子状に重ねることにより形成されている。本実施形態では、互いに平行かつ等間隔に配置された複数の第1リブ31Aからなる第1リブ組(図4における下段のリブ組)33Aと、互いに平行かつ等間隔に配置された複数の第2リブ31Bからなる第2リブ組(図4における上段のリブ組)33Bとが格子状に重ねられている。すなわち、第1リブ組33Aと第2リブ組33Bとは、平面視における格子形状の交差部分において互いに接触している。第1リブ31Aおよび第2リブ31Bは、それぞれ、タービン動翼1の翼厚方向に対向する2つの壁面、つまり、第1翼壁3の壁面である第1壁面3aおよび第2翼壁5の壁面である第2壁面5aに設けられている。
図4に示すように、ラティス構造体23において、各リブ組33A,33Bの隣り合うリブ31,31間の間隙が冷却媒体CLの流路(ラティス流路)37を形成する。平面視において第1リブ組33Aのラティス流路37と第2リブ組33Bのラティス流路37とが交差する部分は、これら両リブ組33A,33Bのラティス流路37,37を互いに連通させるラティス連通部23aを形成する。
ラティス構造体23において、各ラティス流路37の最上流端は閉塞されておらず上流側に開口しており、これら複数の開口が、ラティス流路37の入口(以下、単に「ラティス入口」という。)37aを形成している。ラティス構造体23において、各ラティス流路37の最下流端は閉塞されておらず下流側に開口しており、これら複数の開口が、ラティス流路37の出口(以下、単に「ラティス出口」という。)37bを形成している。
図5に示すように、第1リブ組33Aおよび第2リブ組33Bは、それぞれ、冷媒移動方向Mに延びる仮想境界線Lに対して互いに逆向きに傾斜して延び、かつ仮想境界線L上で互いに接する1対のリブ31,31からなるリブ壁35を有している。つまり、本明細書における仮想境界線Lとは、ラティス構造体23において、各リブ組33A,33Bの、一方向に傾斜したリブ部分からなる冷却領域と、これに隣接する逆方向に傾斜したリブ部分からなる冷却領域との境界を画する仮想直線である。図示の例では、第1リブ組33Aおよび第2リブ組33Bは、それぞれ、仮想境界線Lに対して対称に形成されている。換言すれば、各リブ組におけるリブ壁35は、仮想境界線L上に頂点部分35aを有し、仮想境界線Lに対して対称なV字形状を有している。
また、図示の例では、第1リブ組33Aおよび第2リブ組33Bは、平面視において共通の仮想境界線Lを有し(つまりそれぞれの仮想境界線Lが平面視で重なっており)、かつ、それぞれのリブ壁35の頂点部分35aが重なるように配置されている。換言すれば、同図に示すように、第1リブ組33Aの全体と第2リブ組33Bの全体とによって、平面視において、ラティス構造体23の全体に渡って連続した格子形状が形成されている。したがって、両リブ組33A,33Bの互いに重ならない直近の頂点部分35a,35aの間にも、仮想境界線L上に位置しない他のラティス連通部23aと同じ平面視形状および面積を有するラティス連通部23a(同図において符号「23aX」で示された、仮想境界線L上に位置するラティス連通部)が形成されている。
ラティス構造体23に導入された冷却媒体CLは、同図に破線矢印で示すように、まず一方のリブ組(図示の例では下段の第1リブ組33A)のラティス入口37aからラティス流路37に流入し、他方のリブ組(図示の例では上段の第2リブ組33B)を横切ることにより渦流を生じさせる。つまり、冷却媒体CLは、ラティス構造体23において、ラティス連通部23aを通過することにより渦流を生じさせる。
その後、冷却媒体CLは仕切り体39に衝突して転向し、同図に実線矢印で示すように、衝突した部分から他方のリブ組(図示の例では上段の第2リブ組33B)のラティス流路37に流れ込む。なお、仕切り体39は、ラティス構造体23の側方に設けられた構造体である。仕切り体39としては、ラティス流路37を流れてくる冷却媒体CLの流通を実質的に妨げることが可能であり、かつ、ラティス構造体23の側部において、冷却媒体CLを衝突させて、一方のラティス流路37から他方のラティス流路37へ流れ込むように転向させることができれば、どのようなものを用いてもよい。本実施形態では、平板状の側壁である仕切り板を仕切り体39として用いているが、例えば、複数の仕切り用ピンフィンを仕切り体39として用いてもよい。
本実施形態では、さらに、図5に示すように、ラティス流路37の仮想境界線L上に位置するラティス連通部23aXにおいて、逆向きに傾斜する流路から流入してきた冷却媒体CL同士が衝突する。この冷却媒体CL同士の衝突によってラティス流路37内で静圧が上昇し、冷却媒体CLが転向して他方のラティス流路37に流れ込む。すなわち、仕切り体のような冷却媒体が衝突する構造物が存在しない仮想境界線L上の部分においても、冷却媒体CLの他方のラティス流路37への転向が生じる。冷却媒体CLが仕切り体39および仮想境界線L上において転向することによっても冷却媒体CLに渦流が生じる。
このように、ラティス構造体23においては、冷却媒体CLが、ラティス流路37を流れ、仕切り体39および仮想境界線L上において他方のラティス流路37に流れ込むことを繰り返した後にラティス構造体23から排出される。その過程において、冷却媒体CLがラティス連通部23aを通過し、当該ラティス流路37を横断する方向に延びる他方のリブ組を横切ること、および冷却媒体CLが転向することにより、冷却媒体CL流れの中に渦流が発生し、壁面3a,5aの冷却が促進される。
さらに、第1リブ組33Aおよび第2リブ組33Bのそれぞれにおいて、リブ壁35を形成する各リブ31,31(仕切り体39から仮想境界線Lまで延びるリブ31)は、その両端部における2つのラティス連通部23aの間に、複数(図示の例では3つ)の連通部23aが形成されるように延設されている。このように構成することにより、冷却媒体CLがリブ間のラティス流路37に沿って仕切り体39と仮想境界線L上の部分との間を流れる間に、渦流を形成してラティス流路37の壁面を冷却するための十分な距離が確保される。
本実施形態では、図4に示すように、ラティス流路37の各出口37b部分において、上段と下段の各リブ31の高さ、すなわち翼厚方向のラティス流路37高さhは同一である。また、第1リブ組33Aにおけるリブ31,31同士の間隔と、第2リブ組33Bにおけるリブ31,31同士の間隔とは同一である。すなわち、第1リブ組33Aにおけるラティス流路37幅wと、第2リブ組33Bにおけるラティス流路37幅wとは同一である。
なお、第1リブ組33Aおよび第2リブ組33Bは、かならずしも仮想境界線Lに対して対称でなくともよい。例えば、各リブ組のリブ壁35を形成する各リブ31,31の位置が、仮想境界線L上において、互いに接する限度で偏位していてもよく、各リブ31,31の仮想境界線Lに対する傾斜角度が異なっていてもよい。
また、本実施形態では、第1リブ組33Aおよび第2リブ組33Bは、平面視において共通の仮想境界線Lを有し、かつ、それぞれのリブ壁35の頂点部分35aが重なるように配置されているので、冷却媒体CL同士が衝突する仮想境界線L上において、冷却媒体CLが、一方のラティス流路37から他方のラティス流路37へ円滑に転向する。もっとも、第1リブ組33Aの頂点部分35aと第2リブ組33Bの頂点部分35a,35aは重なっていなくともよい。また、第1リブ組33Aと第2リブ組33Bとで仮想境界線Lが平面視で重なっていなくてもよい。
次に、後部冷却通路17から冷却媒体CLをタービン動翼1の外部へ排出するための構造について説明する。図2に示すように、タービン動翼1の先端壁41に、後部冷却通路17と外部とを連通させる排出孔43が設けられている。すなわち、後部冷却通路17内の冷却媒体CLは、排出孔43から外部へ排出される。本実施形態では、さらに、後部冷却通路17の先端側である下流部に、第1壁面3aおよび第2壁面5aが平坦面として形成された冷媒導出部45が形成されている。より具体的には、後部冷却通路17のラティス出口37bよりも下流側(先端側)の部分が、前記冷媒導出部45として形成されている。ラティス構造体23のラティス出口37bから流出した冷却媒体CLは、冷媒導出部45を通った後、排出孔43から外部へ排出される。なお、第1壁面3aおよび第2壁面5aが「平坦面として形成された」とは、両壁面が突起物や凹所が設けられていない面として形成されていることを意味する。
後部冷却通路17に上記の構造を有する冷媒導出部45を設けることは必須ではない。例えば、後部冷却通路17の先端部までラティス構造体23を配置してもよいし、冷媒導出部45に相当する領域に、ピンフィンのような、ラティス構造体23とは異なる構造体を設けてもよい。もっとも、図示の例のように冷却の必要性が比較的低い翼先端部に冷媒導出部45を設けることにより、タービン動翼1において大きな応力がかかる部分であることから冷却の必要性が比較的高い根元部分を効果的に冷却しながら、円滑に冷却媒体を排出することができる。同様の理由により、タービン静翼にラティス構造体23を設ける場合には、タービンの径方向外側となるタービン静翼の根元側にのみラティス構造体23を設けてもよい。
なお、図2では、先端壁41に排出孔43を設けた例を示したが、タービン動翼1の先端部の他の翼壁、すなわち第1翼壁3および/または第2翼壁5のラティス出口37bに連通する部分に排出孔43を設けてもよい。また、排出孔43の数は、図示の例のように1つであってもよく、2つ以上であってもよい。
また、本実施形態に係るラティス構造体23は、図5に示すように、一組の仕切り体39,39間に単一の仮想境界線Lのみを有している。このような構成により、ラティス構造体23の構造を簡易にしながら、仕切り体の数を削減する効果を得ることができる。もっとも、ラティス構造体23は、一組の仕切り体間に2つ以上の仮想境界線Lを有するように形成されていてもよい。
また、本実施形態では、後部冷却通路17における冷媒移動方向Mは、タービン動翼1の高さ方向における根元部側から先端部側に向かう方向としたが、図6に示すように、冷媒移動方向Mを翼弦方向、すなわちタービン動翼1の外部の高温ガスGの流れ方向に沿った方向としてもよい。その場合、同図に示すように、少なくとも一つの仮想境界線Lを有するラティス構造体23を、仕切り体39を介して高さ方向Hに複数並べて配置してもよい。図示の例では、4つのラティス構造体23が、3つの仕切り体39を介して高さ方向Hに並べられている。
なお、冷媒移動方向Mを高さ方向Hとする場合も、必要に応じて、少なくとも一つの仮想境界線Lを有するラティス構造体23を、仕切り体39を介して横断方向Tに複数並べて配置してもよい。
以上説明したように、本実施形態に係る冷却構造によれば、ラティス構造体23の仮想境界線L上おいて、逆向きに傾斜するラティス流路から流入してきた冷却媒体CL同士が衝突することによって静圧が上昇し、冷却媒体CLが転向する。すなわち、仮想境界線Lに対してリブ31,31を逆方向に傾斜させることにより、仮想境界線L上に仕切り板等の仕切り体を設けなくとも、仕切り体を設けた場合と同様の冷却効果を得ることができる。したがって、タービン翼の重量増大と耐久性低下を抑制しながら、高い冷却効率を実現できる。
また、ラティス構造体23において、冷却媒体CLが主としてラティス連通部23aを通過して他方のリブ組のリブ31を横切ることによって、冷却媒体CL中に渦流が生じる。本発明では、リブ壁35を形成する各リブ31,31が、その両端部における2つのラティス連通部23a,23aの間に複数のラティス連通部23aが形成されるように延設されているので、冷却媒体CLがリブ31,31間のラティス流路37に沿って流れる間に、渦流を形成してラティス流路37の壁面を冷却するための十分な距離が確保される。
以上のとおり、図面を参照しながら本発明の好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。
1 タービン動翼(タービン翼)
3 第1翼壁
5 第2翼壁
17 後部冷却通路(冷却通路)
23 ラティス構造体
23a ラティス連通部
31 リブ
33A 第1リブ組
33B 第2リブ組
37 ラティス流路
CL 冷却媒体
G 高温ガス
L 仮想境界線
3 第1翼壁
5 第2翼壁
17 後部冷却通路(冷却通路)
23 ラティス構造体
23a ラティス連通部
31 リブ
33A 第1リブ組
33B 第2リブ組
37 ラティス流路
CL 冷却媒体
G 高温ガス
L 仮想境界線
Claims (5)
- 高温ガスによって駆動されるタービンのタービン翼を内部から冷却するための構造であって、
前記タービン翼内に形成された冷却通路の第1壁面上に配置された複数のリブからなる第1リブ組と、前記冷却通路の前記第1壁面に対向する第2壁面上に配置された複数のリブからなる第2リブ組とを有し、前記第1リブ組と前記第2リブ組とが互いに格子状に重ねられて構成されたラティス構造体であって、前記第1リブ組の複数のリブ間に形成された流路と前記第2リブ組の複数のリブ間に形成された流路とを互いに連通させる複数のラティス連通部を有するラティス構造体を備え、
前記第1リブ組および前記第2リブ組が、それぞれ、前記冷却通路を流れる冷却媒体全体の移動方向に延びる仮想境界線に対して互いに逆向きに傾斜して延び、かつ前記仮想境界線上で互いに接する1対のリブからなるリブ壁を有しており、
前記第1リブ組および前記第2リブ組のそれぞれにおいて、少なくとも1つの前記リブ壁を形成する各リブが、その両端部における2つの前記ラティス連通部の間に複数のラティス連通部が形成されるように延設されている、
ガスタービンエンジンの冷却構造。 - 請求項1に記載の冷却構造において、前記第1リブ組および第2リブ組は、平面視において共通の仮想境界線を有しており、かつ、各々のリブ壁の頂点部分が重なるように配置されている冷却構造。
- 請求項1または2に記載の冷却構造において、前記第1リブ組および前記第2リブ組が、それぞれ、前記仮想境界線に対して対称に形成されている冷却構造。
- 請求項1から3のいずれか一項に記載の冷却構造において、前記冷却媒体全体の移動方向が、前記タービン翼の高さ方向における根元部から先端部へ向かう方向である冷却構造。
- 請求項4に記載の冷却構造において、前記タービン翼の先端部における前記冷却通路に平坦面として形成された冷媒導出部が設けられており、前記タービン翼の先端部の翼壁に、前記冷媒導出部から外部へ冷媒を排出する排出孔が設けられている冷却構造。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112018001282.4T DE112018001282B4 (de) | 2017-03-10 | 2018-03-06 | Kühlstruktur für eine Turbinenschaufel |
GB1912921.2A GB2574532B (en) | 2017-03-10 | 2018-03-06 | Cooling structure for turbine airfoil |
CN201880014035.7A CN110392769B (zh) | 2017-03-10 | 2018-03-06 | 涡轮叶片的冷却结构 |
US16/558,646 US11578659B2 (en) | 2017-03-10 | 2019-09-03 | Cooling structure for turbine airfoil |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-045925 | 2017-03-10 | ||
JP2017045925A JP6906332B2 (ja) | 2017-03-10 | 2017-03-10 | タービン翼の冷却構造 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/558,646 Continuation US11578659B2 (en) | 2017-03-10 | 2019-09-03 | Cooling structure for turbine airfoil |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2018164148A1 true WO2018164148A1 (ja) | 2018-09-13 |
WO2018164148A8 WO2018164148A8 (ja) | 2019-09-06 |
Family
ID=63447838
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/008643 WO2018164148A1 (ja) | 2017-03-10 | 2018-03-06 | タービン翼の冷却構造 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11578659B2 (ja) |
JP (1) | JP6906332B2 (ja) |
CN (1) | CN110392769B (ja) |
DE (1) | DE112018001282B4 (ja) |
GB (1) | GB2574532B (ja) |
WO (1) | WO2018164148A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021050688A (ja) * | 2019-09-26 | 2021-04-01 | 川崎重工業株式会社 | タービン翼 |
JP7681382B2 (ja) | 2019-09-26 | 2025-05-22 | 川崎重工業株式会社 | タービン翼 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111335964B (zh) * | 2020-03-09 | 2021-01-05 | 北京南方斯奈克玛涡轮技术有限公司 | 一种增材制造的发动机涡轮冷却叶片 |
CN113623010B (zh) * | 2021-07-13 | 2022-11-29 | 哈尔滨工业大学 | 涡轮叶片 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1089006A (ja) * | 1996-08-23 | 1998-04-07 | Asea Brown Boveri Ag | 冷却式羽根 |
JP2009221995A (ja) * | 2008-03-18 | 2009-10-01 | Ihi Corp | 高温部品の内面冷却構造 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4407632A (en) * | 1981-06-26 | 1983-10-04 | United Technologies Corporation | Airfoil pedestaled trailing edge region cooling configuration |
US5603606A (en) | 1994-11-14 | 1997-02-18 | Solar Turbines Incorporated | Turbine cooling system |
JP3035187B2 (ja) * | 1995-05-09 | 2000-04-17 | 東北電力株式会社 | ガスタービン中空冷却動翼 |
SE512384C2 (sv) * | 1998-05-25 | 2000-03-06 | Abb Ab | Komponent för en gasturbin |
US6634858B2 (en) * | 2001-06-11 | 2003-10-21 | Alstom (Switzerland) Ltd | Gas turbine airfoil |
US6969233B2 (en) * | 2003-02-27 | 2005-11-29 | General Electric Company | Gas turbine engine turbine nozzle segment with a single hollow vane having a bifurcated cavity |
SE526847C2 (sv) * | 2004-02-27 | 2005-11-08 | Demag Delaval Ind Turbomachine | En komponent som innefattar en ledskena eller ett rotorblad för en gasturbin |
JP4957131B2 (ja) | 2006-09-06 | 2012-06-20 | 株式会社Ihi | 冷却構造 |
CN101779001B (zh) * | 2007-08-30 | 2014-09-24 | 三菱重工业株式会社 | 燃气轮机的叶片冷却结构 |
US8182203B2 (en) * | 2009-03-26 | 2012-05-22 | Mitsubishi Heavy Industries, Ltd. | Turbine blade and gas turbine |
EP2378073A1 (en) * | 2010-04-14 | 2011-10-19 | Siemens Aktiengesellschaft | Blade or vane for a turbomachine |
CN103946483A (zh) * | 2011-11-25 | 2014-07-23 | 西门子公司 | 具有冷却通路的翼 |
US9004866B2 (en) * | 2011-12-06 | 2015-04-14 | Siemens Aktiengesellschaft | Turbine blade incorporating trailing edge cooling design |
JP6036424B2 (ja) | 2013-03-14 | 2016-11-30 | 株式会社Ihi | 冷却促進構造 |
JP6064700B2 (ja) * | 2013-03-14 | 2017-01-25 | 株式会社ジェイテクト | 電磁クラッチ装置、四輪駆動車、電磁クラッチの制御方法、及び四輪駆動車の制御方法 |
WO2015147672A1 (en) * | 2014-03-27 | 2015-10-01 | Siemens Aktiengesellschaft | Blade for a gas turbine and method of cooling the blade |
GB2533315B (en) * | 2014-12-16 | 2017-04-12 | Rolls Royce Plc | Cooling of engine components |
JP2016125380A (ja) * | 2014-12-26 | 2016-07-11 | 川崎重工業株式会社 | タービン翼の冷却構造 |
-
2017
- 2017-03-10 JP JP2017045925A patent/JP6906332B2/ja active Active
-
2018
- 2018-03-06 GB GB1912921.2A patent/GB2574532B/en active Active
- 2018-03-06 DE DE112018001282.4T patent/DE112018001282B4/de active Active
- 2018-03-06 WO PCT/JP2018/008643 patent/WO2018164148A1/ja active Application Filing
- 2018-03-06 CN CN201880014035.7A patent/CN110392769B/zh active Active
-
2019
- 2019-09-03 US US16/558,646 patent/US11578659B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1089006A (ja) * | 1996-08-23 | 1998-04-07 | Asea Brown Boveri Ag | 冷却式羽根 |
JP2009221995A (ja) * | 2008-03-18 | 2009-10-01 | Ihi Corp | 高温部品の内面冷却構造 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021050688A (ja) * | 2019-09-26 | 2021-04-01 | 川崎重工業株式会社 | タービン翼 |
WO2021060093A1 (ja) * | 2019-09-26 | 2021-04-01 | 川崎重工業株式会社 | タービン翼 |
GB2603338A (en) * | 2019-09-26 | 2022-08-03 | Kawasaki Heavy Ind Ltd | Turbine Airfoil |
GB2603338B (en) * | 2019-09-26 | 2023-02-08 | Kawasaki Heavy Ind Ltd | Turbine Airfoil |
US11708763B2 (en) | 2019-09-26 | 2023-07-25 | Kawasaki Jukogyo Kabushiki Kaisha | Turbine airfoil |
JP7681382B2 (ja) | 2019-09-26 | 2025-05-22 | 川崎重工業株式会社 | タービン翼 |
Also Published As
Publication number | Publication date |
---|---|
JP6906332B2 (ja) | 2021-07-21 |
CN110392769A (zh) | 2019-10-29 |
GB2574532B (en) | 2022-03-02 |
JP2018150827A (ja) | 2018-09-27 |
DE112018001282B4 (de) | 2023-02-16 |
GB201912921D0 (en) | 2019-10-23 |
DE112018001282T5 (de) | 2019-11-21 |
GB2574532A (en) | 2019-12-11 |
US20200018235A1 (en) | 2020-01-16 |
WO2018164148A8 (ja) | 2019-09-06 |
CN110392769B (zh) | 2022-03-22 |
US11578659B2 (en) | 2023-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5709879B2 (ja) | ガスタービンエンジン | |
US10787911B2 (en) | Cooling configuration for a gas turbine engine airfoil | |
JP6860383B2 (ja) | タービン翼の冷却構造 | |
CN102089498A (zh) | 用于燃气涡轮机的涡轮机叶片和用于制造这样的涡轮机叶片的型芯 | |
JP6203423B2 (ja) | 弓形ベーン用のタービン翼冷却システム | |
KR20180065728A (ko) | 베인의 냉각 구조 | |
WO2018164148A1 (ja) | タービン翼の冷却構造 | |
JP5567180B1 (ja) | タービン翼の冷却構造 | |
WO2018164149A1 (ja) | タービン翼の冷却構造 | |
JP2016125380A (ja) | タービン翼の冷却構造 | |
US20170138204A1 (en) | Cooling structure and gas turbine | |
EP3358138B1 (en) | Pre-swirler for gas turbine | |
JP2016538458A (ja) | 内部冷却系を有する横方向に延在するスナッバを備えたタービン翼 | |
US11708763B2 (en) | Turbine airfoil | |
WO2018135283A1 (ja) | タービン翼の冷却構造 | |
JP2011208624A (ja) | 高温部材の冷却構造 | |
KR101699887B1 (ko) | 블레이드 내·외벽 사이에 핀-휜과 결합된 립 구조를 갖는 가스터빈 블레이드 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18764547 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 201912921 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20180306 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18764547 Country of ref document: EP Kind code of ref document: A1 |