+

WO2018164011A1 - Cryopump - Google Patents

Cryopump Download PDF

Info

Publication number
WO2018164011A1
WO2018164011A1 PCT/JP2018/008132 JP2018008132W WO2018164011A1 WO 2018164011 A1 WO2018164011 A1 WO 2018164011A1 JP 2018008132 W JP2018008132 W JP 2018008132W WO 2018164011 A1 WO2018164011 A1 WO 2018164011A1
Authority
WO
WIPO (PCT)
Prior art keywords
cryopump
refrigerator
housing
cooling stage
shield
Prior art date
Application number
PCT/JP2018/008132
Other languages
French (fr)
Japanese (ja)
Inventor
誠 下村
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to CN201880005340.XA priority Critical patent/CN110352301B/en
Publication of WO2018164011A1 publication Critical patent/WO2018164011A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/06Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means
    • F04B37/08Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means by condensing or freezing, e.g. cryogenic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/14Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
    • F04B37/16Means for nullifying unswept space

Definitions

  • the present invention relates to a cryopump.
  • the cryopump is a vacuum pump that traps and exhausts gas molecules by condensation or adsorption on a cryopanel cooled to a cryogenic temperature.
  • the cryopump is generally used to realize a clean vacuum environment required for a semiconductor circuit manufacturing process or the like.
  • cryopump Since the cryopump is a so-called gas storage type vacuum pump, regeneration is required to periodically discharge the trapped gas to the outside. For regeneration, the cryopump is heated from cryogenic temperature to room temperature or somewhat higher.
  • a cryopump is usually provided with a heat source such as an electric heater attached to a cooling source such as a cooling stage of a refrigerator.
  • the refrigerator itself may allow a heating operation with a thermodynamic temperature increase cycle (including adiabatic compression of working gas) instead of the refrigeration cycle.
  • the ice trapped on the cryopanel melts by heating and eventually vaporizes and is discharged out of the cryopump.
  • a large-capacity cryopump designed to exhaust a large amount of water is prone to freezing because of its large volume. Evaporation of water is remarkably suppressed along with icing, making it difficult to discharge by vaporization, resulting in a long regeneration time. There is a possibility that the reproduction is not completed within a practically acceptable time. Therefore, it is desirable to discharge water more efficiently in order to shorten the regeneration time.
  • One exemplary purpose of one aspect of the present invention is to reduce the regeneration time of the cryopump.
  • the cryopump includes a refrigerator having a room temperature portion, a first cooling stage, and a second cooling stage, and is thermally coupled to the first cooling stage, and is not connected to the second cooling stage.
  • a shield housing that has a radiation shield surrounding the second cooling stage in contact and a cryopump inlet, and has a housing bottom on the opposite side of the cryopump inlet, and surrounds the radiation shield in non-contact with the radiation shield
  • a cryopump housing comprising: a refrigerator housing unit that connects the shield housing unit to the room temperature unit of the refrigerator; and an outer surface of the refrigerator housing unit that applies heat to the inside from the outside of the cryopump housing. Or a heater disposed on the bottom surface of the housing.
  • the cryopump is a refrigerator having a room temperature section, a first cooling stage, and a second cooling stage, and is thermally coupled to the first cooling stage and surrounds the second cooling stage.
  • a cryopump housing provided with a refrigerator housing portion connected to the room temperature portion of the machine, and a heat pump thermally coupled to the first cooling stage and disposed in a gap between the refrigerator housing portion and the refrigerator.
  • a thermal member is provided with a refrigerator housing portion connected to the room temperature portion of the machine, and a heat pump thermally coupled to the first cooling stage and disposed in a gap between the refrigerator housing portion and the refrigerator.
  • the regeneration time of the cryopump can be shortened.
  • FIG. 1 schematically shows a cryopump according to a first embodiment.
  • the cryopump which concerns on 2nd Embodiment is shown schematically.
  • the cryopump which concerns on 3rd Embodiment is shown schematically.
  • FIG. 1 schematically shows a cryopump 10 according to the first embodiment.
  • FIG. 1 shows a schematic side view of the cryopump 10.
  • the cryopump 10 is attached to a vacuum chamber of, for example, an ion implantation apparatus, a sputtering apparatus, a vapor deposition apparatus, or other vacuum process apparatus to increase the degree of vacuum inside the vacuum chamber to a level required for a desired vacuum process. used.
  • the cryopump 10 has a cryopump intake port (hereinafter also simply referred to as “intake port”) 12 for receiving a gas to be evacuated from the vacuum chamber. Gas enters the internal space of the cryopump 10 through the air inlet 12.
  • the cryopump 10 includes a refrigerator 16 and a cryopump housing 70.
  • a well-known configuration may be employed, and an exemplary configuration will be described later with reference to FIG.
  • the cryopump housing 70 includes a shield housing portion 74 and a refrigerator housing portion 76.
  • the shield housing portion 74 includes a housing bottom surface 70 a on the side opposite to the air inlet 12.
  • the shield accommodating portion 74 surrounds the radiation shield in a non-contact manner with the radiation shield.
  • the refrigerator housing unit 76 connects the shield housing unit 74 to the room temperature unit 26 of the refrigerator 16.
  • the shield accommodating portion 74 has a cylindrical or dome shape with one end opened as the air inlet 12 and the other end closed as the housing bottom surface 70a.
  • the shield accommodating portion 74 includes an intake port flange 72 that defines the intake port 12.
  • an opening for inserting the refrigerator 16 is formed on the side wall of the shield housing portion 74 that connects the air inlet flange 72 to the housing bottom surface 70a.
  • the refrigerator accommodating portion 76 has a cylindrical shape extending from the opening to the room temperature portion 26 of the refrigerator 16.
  • the refrigerator housing portion 76 is formed integrally with the shield housing portion 74.
  • a rough valve 78 and a vent valve 80 for discharging gas or liquid from the cryopump 10 during regeneration are attached to the cylindrical side surface of the refrigerator housing portion 76.
  • the rough valve 78 connects the cryopump housing 70 to the roughing pump 79.
  • the vent valve 80 is provided to release a high pressure that can be generated inside the cryopump 10 to the external environment.
  • a purge valve 82 for supplying purge gas to the inside of the cryopump 10 is attached to the shield housing portion 74.
  • the purge valve 82 connects the cryopump housing 70 to the purge gas source 83.
  • Roughing pump 79 and purge gas source 83 are typically not considered components of cryopump 10.
  • the arrangement of the rough valve 78, the vent valve 80, and the purge valve 82 is an example, and is not particularly limited. Such a valve may not be attached to the refrigerator accommodating portion 76.
  • the rough valve 78 and the vent valve 80 may be attached to the shield housing portion 74.
  • other components such as a vacuum gauge may be attached to the refrigerator housing portion 76.
  • An attachment flange 76 a for attaching to the room temperature part 26 of the refrigerator 16 is provided at the end of the refrigerator accommodating part 76 (that is, the end opposite to the shield accommodating part 74).
  • a refrigerator flange 26a corresponding to the attachment flange 76a is provided in the room temperature portion 26, and the attachment flange 76a is fixed to the refrigerator flange 26a with an appropriate fastener such as a bolt.
  • the room temperature unit 26 may be a motor housing that houses a motor that drives the refrigerator 16.
  • the cryopump 10 includes a first heater 84 disposed on the outer surface of the refrigerator housing portion 76 so as to apply heat from the outside to the inside of the cryopump housing 70.
  • the first heater 84 is an electric heater.
  • the first heater 84 has a sheet-like shape and is wound around a cylindrical side surface of the refrigerator housing portion 76. Although the 1st heater 84 has enclosed the perimeter of the refrigerator accommodating part 76, it is not essential.
  • the first heater 84 may be partially provided in the circumferential direction of the refrigerator housing unit 76.
  • the shape of the first heater 84 is arbitrary and is not limited to a sheet shape.
  • the first heater 84 may be a linear heater.
  • the first heater 84 is connected to a heater power supply 85.
  • the regeneration of the cryopump 10 generally includes a temperature raising process, a discharging process, and a cool-down process.
  • the temperature raising step the cryopanel is heated to the regeneration temperature.
  • the discharge process the gas captured by the cryopump 10 is discharged.
  • the cool-down process the cryopanel is re-cooled to a cryogenic temperature for evacuation operation.
  • the heater power supply 85 turns on the first heater 84 in response to the start of regeneration of the cryopump 10 (for example, the start of the temperature raising process), and turns off the first heater 84 in response to the completion of the discharge process or the start of the cool-down process. It may be configured to be off.
  • the lower limit of the heating temperature of the first heater 84 may be selected so as to prevent freezing of water, and the upper limit may be selected based on the heat resistant temperature of the refrigerator 16.
  • the heating temperature of the first heater 84 may be selected from a range of 10 ° C. to 50 ° C., or a range of 20 ° C. to 40 ° C., for example. This temperature setting is the same for the second heater 86 described later.
  • the first heater 84 is not limited to this, and may be any type of heating device.
  • the 1st heater 84 is provided with the piping of the temperature control fluid wound around the outer surface of the refrigerator accommodating part 76, or extended along the outer surface of the refrigerator accommodating part 76, for example, warm water or warm gas flows through this piping.
  • heat may be applied from the outside to the inside of the cryopump housing 70.
  • the second heater described later may have an arbitrary shape.
  • the second heater may be any type of heating device.
  • the supply of purge gas to the cryopump 10 by the purge gas supply unit including the purge valve 82 and the purge gas source 83 can be regarded as a kind of heating means, but the first heater 84 does not include this.
  • the first heater 84 is provided in the cryopump 10 as a heating device different from the purge gas supply unit.
  • the first heater 84 is disposed on the outer surface of the base portion 76 b of the refrigerator housing portion 76 adjacent to the room temperature portion 26.
  • the base portion 76 b of the refrigerator housing portion 76 refers to a portion of the refrigerator housing portion 76 that is close to the room temperature portion 26.
  • the first heater 84 is attached to the base portion 76b of the refrigerator housing portion 76 adjacent to the mounting flange 76a.
  • the first heater 84 is disposed between a valve (for example, the vent valve 80) closest to the room temperature unit 26 and the room temperature unit 26.
  • the cryopump 10 can have an inlet flange 72 attached to the vacuum chamber in the illustrated direction.
  • the cryopump 10 can be used in a so-called vertical orientation. That is, the cryopump 10 may be used in a state in which the air inlet 12 and the housing bottom surface 70a are located above and the room temperature portion 26 of the refrigerator 16 is located below.
  • the melted water flows downward due to gravity and can accumulate on the bottom of the refrigerator housing unit 76 (directly above the room temperature unit 26). If the water level exceeds the vent valve 80, water can be discharged from the vent valve 80 to the outside of the cryopump 10 in a liquid state. However, if the water level does not reach the vent valve 80, it is necessary to evaporate the accumulated water for discharging.
  • the cooling action by evaporation lowers the temperature of the water accumulated at the bottom of the refrigerator housing section 76. In the worst case, the water surface or the whole of the accumulated water can be frozen again.
  • a typical cryopump is equipped with heating means for regeneration. However, this typical heating means is disposed at a location away from the bottom of the refrigerator accommodating portion 76 (for example, the cooling stage of the refrigerator 16). For this reason, it is difficult to heat the water stored in the bottom of the refrigerator housing portion 76 so as to quickly evaporate it.
  • the evaporation of moisture from the water surface accumulated at the bottom of the refrigerator accommodating portion 76 is significant. To be suppressed. Discharge of water by vaporization becomes substantially difficult, and the regeneration time can be extremely long. There is a possibility that the reproduction is not completed within a practically acceptable time.
  • the first heater 84 is disposed in the base portion 76b of the refrigerator housing unit 76. Therefore, the water accumulated at the bottom of the refrigerator housing portion 76 can be heated using the first heater 84 to prevent icing. Moreover, evaporation of water can be promoted by heating. Therefore, water can be discharged efficiently and the regeneration time can be shortened.
  • the first heater 84 may be disposed at any place as long as heat can be effectively applied to the water that can be accumulated in the refrigerator housing unit 76.
  • the first heater 84 may be disposed in the vicinity of the shield housing portion 74 away from the base portion 76 b of the refrigerator housing portion 76.
  • an additional structure such as a valve or a sensor is provided in the base portion 76b of the refrigerator housing portion 76, the arrangement of the first heater 84 avoiding such a structure may be appropriate.
  • the first heater 84 is mounted on the outer surface of the refrigerator housing portion 76, there is an advantage that it can be additionally installed in an existing cryopump that does not have such a heater.
  • FIG. 2 schematically shows a cryopump 10 according to the second embodiment.
  • the cryopump 10 can have an inlet flange 72 attached to the vacuum chamber in the orientation shown.
  • the cryopump 10 can be used in a horizontal direction. In other words, the cryopump 10 may be used in a state where the air inlet 12 is located above and the housing bottom surface 70a is located below.
  • a drain hole 87 may be formed at the bottom of the radiation shield 30. In this case, water melted during regeneration tends to accumulate at the bottom of the shield housing portion 74 through the drain hole 87.
  • the cryopump 10 includes a second heater 86 disposed on the housing bottom surface 70 a so as to apply heat from the outside to the inside of the cryopump housing 70.
  • a second heater 86 disposed on the housing bottom surface 70 a so as to apply heat from the outside to the inside of the cryopump housing 70.
  • water that can accumulate at the bottom of the shield housing portion 74 can be heated by the second heater 86 in the case where the illustrated cryopump 10 is disposed sideways. Therefore, also by the cryopump 10 according to the second embodiment, water can be efficiently discharged and the regeneration time can be shortened, similarly to the cryopump 10 according to the first embodiment.
  • the second heater 86 is disposed only on the housing bottom surface 70 a in the shield housing portion 74.
  • the second heater 86 is not provided on the side surface of the shield housing portion 74. In this way, a commercially available heater having a planar shape can be easily used as the second heater 86.
  • the installation of the second heater 86 is easier than when the heaters are attached to both the side surface of the shield housing portion 74 and the housing bottom surface 70a.
  • the 2nd heater 86 may be provided in both the side surface of the shield accommodating part 74, and the housing bottom face 70a as needed.
  • the second heater 86 is connected to a heater power supply 85.
  • the cryopump 10 may include both the first heater 84 and the second heater 86.
  • the terms “axial direction” and “radial direction” are sometimes used to express the positional relationship of the components of the cryopump 10 in an easy-to-understand manner.
  • the axial direction represents the direction passing through the intake port 12 (the direction along the central axis A in FIG. 1)
  • the radial direction represents the direction along the intake port 12 (the direction perpendicular to the central axis A).
  • up the fact that it is relatively close to the inlet 12 in the axial direction
  • the distance from the bottom of the cryopump 10 may be referred to as “up” and the distance from the bottom of the cryopump 10 as “lower”.
  • the proximity to the center of the intake port 12 may be referred to as “inside” and the proximity to the peripheral edge of the intake port 12 may be referred to as “outside”.
  • Such an expression is not related to the arrangement when the cryopump 10 is attached to the vacuum chamber.
  • the cryopump 10 may be attached to the vacuum chamber with the inlet 12 facing downward in the vertical direction.
  • the direction surrounding the axial direction may be called “circumferential direction”.
  • the circumferential direction is a second direction along the air inlet 12 and is a tangential direction orthogonal to the radial direction.
  • the cryopump 10 includes a refrigerator 16, a first cryopanel unit 18, a second cryopanel unit 20, and a cryopump housing 70.
  • the refrigerator 16 is a cryogenic refrigerator such as a Gifford-McMahon refrigerator (so-called GM refrigerator).
  • the refrigerator 16 is a two-stage refrigerator. Therefore, the refrigerator 16 includes a first cooling stage 22 and a second cooling stage 24.
  • the refrigerator 16 is configured to cool the first cooling stage 22 to the first cooling temperature and to cool the second cooling stage 24 to the second cooling temperature.
  • the second cooling temperature is lower than the first cooling temperature.
  • the first cooling stage 22 is cooled to about 65K to 120K, preferably 80K to 100K
  • the second cooling stage 24 is cooled to about 10K to 20K.
  • the refrigerator 16 also includes a refrigerator structure portion 21 that structurally supports the second cooling stage 24 on the first cooling stage 22 and structurally supports the first cooling stage 22 on the room temperature portion 26 of the refrigerator 16.
  • the refrigerator structure unit 21 includes a first cylinder 23 and a second cylinder 25 that extend coaxially along the radial direction.
  • the first cylinder 23 connects the room temperature part 26 of the refrigerator 16 to the first cooling stage 22.
  • the second cylinder 25 connects the first cooling stage 22 to the second cooling stage 24.
  • the room temperature section 26, the first cylinder 23, the first cooling stage 22, the second cylinder 25, and the second cooling stage 24 are arranged in a straight line in this order.
  • first displacer and a second displacer are disposed so as to be able to reciprocate.
  • a first regenerator and a second regenerator are incorporated in the first displacer and the second displacer, respectively.
  • the room temperature section 26 has a drive mechanism (not shown) for reciprocating the first displacer and the second displacer.
  • the drive mechanism includes a flow path switching mechanism that switches the flow path of the working gas so as to periodically repeat the supply and discharge of the working gas (for example, helium) to the inside of the refrigerator 16.
  • the refrigerator 16 is connected to a working gas compressor (not shown).
  • the refrigerator 16 expands the working gas pressurized by the compressor to cool the first cooling stage 22 and the second cooling stage 24.
  • the expanded working gas is collected in the compressor and pressurized again.
  • the refrigerator 16 generates cold by repeating a heat cycle including supply and discharge of the working gas and reciprocation of the first displacer and the second displacer in synchronization therewith.
  • the illustrated cryopump 10 is a so-called horizontal cryopump.
  • the horizontal type cryopump is generally a cryopump in which the refrigerator 16 is disposed so as to intersect (usually orthogonal) the central axis A of the cryopump 10.
  • the first cryopanel unit 18 includes a radiation shield 30 and an entrance cryopanel 32 and surrounds the second cryopanel unit 20.
  • the first cryopanel unit 18 provides a cryogenic surface for protecting the second cryopanel unit 20 from radiant heat from the outside of the cryopump 10 or from the cryopump housing 70.
  • the first cryopanel unit 18 is thermally coupled to the first cooling stage 22. Therefore, the first cryopanel unit 18 is cooled to the first cooling temperature.
  • the first cryopanel unit 18 has a gap with the second cryopanel unit 20, and the first cryopanel unit 18 is not in contact with the second cryopanel unit 20.
  • the first cryopanel unit 18 is not in contact with the cryopump housing 70.
  • the radiation shield 30 is provided to protect the second cryopanel unit 20 from the radiant heat of the cryopump housing 70.
  • the radiation shield 30 is located between the cryopump housing 70 and the second cryopanel unit 20 and surrounds the second cryopanel unit 20.
  • the radiation shield 30 has a shield main opening 34 for receiving gas from the outside of the cryopump 10 into the internal space 14.
  • the shield main opening 34 is located at the air inlet 12.
  • the radiation shield 30 includes a shield front end 36 that defines the shield main opening 34, a shield bottom 38 that is located on the opposite side of the shield main opening 34, and a shield side 40 that connects the shield front end 36 to the shield bottom 38.
  • the shield side portion 40 extends in the axial direction from the shield front end 36 to the side opposite to the shield main opening 34, and extends in the circumferential direction so as to surround the second cooling stage 24.
  • the shield side part 40 has a shield side part opening 44 into which the refrigerator structure part 21 is inserted.
  • the second cooling stage 24 and the second cylinder 25 are inserted into the radiation shield 30 from outside the radiation shield 30 through the shield side opening 44.
  • the shield side part opening 44 is an attachment hole formed in the shield side part 40, and is circular, for example.
  • the first cooling stage 22 is disposed outside the radiation shield 30.
  • the shield side portion 40 includes a mounting seat 46 for the refrigerator 16.
  • the mounting seat 46 is a flat portion for mounting the first cooling stage 22 to the radiation shield 30 and is slightly recessed when viewed from the outside of the radiation shield 30.
  • the mounting seat 46 forms the outer periphery of the shield side opening 44.
  • the radiation shield 30 is thermally coupled to the first cooling stage 22 by attaching the first cooling stage 22 to the mounting seat 46.
  • the radiation shield 30 is thermally coupled to the first cooling stage 22 via an additional heat transfer member.
  • the heat transfer member may be a hollow short cylinder having flanges at both ends, for example.
  • the heat transfer member may be fixed to the mounting seat 46 by a flange at one end and fixed to the first cooling stage 22 by a flange at the other end.
  • the heat transfer member may extend from the first cooling stage 22 to the radiation shield 30 so as to surround the refrigerator structure 21.
  • the shield side part 40 may include such a heat transfer member.
  • the radiation shield 30 is configured as an integral cylinder.
  • the radiation shield 30 may be configured to have a tubular shape as a whole by a plurality of parts. The plurality of parts may be arranged with a gap therebetween.
  • the radiation shield 30 may be divided into two parts in the axial direction.
  • the upper part of the radiation shield 30 is a cylinder whose both ends are open, and includes a shield front end 36 and a first portion of the shield side part 40.
  • the lower part of the radiation shield 30 is also a cylinder open at both ends, and includes a second part of the shield side part 40 and a shield bottom part 38.
  • a slit extending in the circumferential direction is formed between the first portion and the second portion of the shield side portion 40.
  • This slit may form at least a part of the shield side opening 44.
  • the upper half of the shield side opening 44 may be formed in the first part of the shield side part 40, and the lower half may be formed in the second part of the shield side part 40.
  • the radiation shield 30 forms a gas receiving space 50 surrounding the second cryopanel unit 20 between the air inlet 12 and the shield bottom 38.
  • the gas receiving space 50 is a part of the internal space 14 of the cryopump 10 and is a region adjacent to the second cryopanel unit 20 in the radial direction.
  • the inlet cryopanel 32 is configured to protect the second cryopanel unit 20 from radiant heat from a heat source outside the cryopump 10 (for example, a heat source in a vacuum chamber to which the cryopump 10 is attached). Main opening 34, and so on). Further, a gas (for example, moisture) that condenses at the cooling temperature of the inlet cryopanel 32 is captured on the surface thereof.
  • a heat source outside the cryopump 10 for example, a heat source in a vacuum chamber to which the cryopump 10 is attached.
  • Main opening 34 and so on.
  • a gas for example, moisture
  • the inlet cryopanel 32 is disposed at a location corresponding to the second cryopanel unit 20 at the air inlet 12.
  • the inlet cryopanel 32 occupies the central portion of the opening area of the air inlet 12, and forms an annular open region 51 with the radiation shield 30.
  • the open area 51 is at a location corresponding to the gas receiving space 50 in the intake port 12. Since the gas receiving space 50 is on the outer peripheral portion of the internal space 14 so as to surround the second cryopanel unit 20, the open region 51 is located on the outer peripheral portion of the intake port 12.
  • the open area 51 is an inlet of the gas receiving space 50, and the cryopump 10 receives gas into the gas receiving space 50 through the open area 51.
  • the inlet cryopanel 32 is attached to the shield front end 36 via an attachment member (not shown). Thus, the inlet cryopanel 32 is fixed to the radiation shield 30 and is thermally connected to the radiation shield 30. The inlet cryopanel 32 is close to the second cryopanel unit 20 but is not in contact with it.
  • the inlet cryopanel 32 has a planar structure disposed at the air inlet 12.
  • the inlet cryopanel 32 may include, for example, a louver or chevron formed concentrically or in a lattice shape, or may include a flat plate (for example, a circular plate).
  • the inlet cryopanel 32 may be disposed so as to cross the entire inlet 12. In that case, the open area
  • region 51 may be formed by missing a part of plate, or missing the louver of a part of louver or chevron.
  • the second cryopanel unit 20 is provided in the center of the internal space 14 of the cryopump 10.
  • the second cryopanel unit 20 includes a plurality of cryopanels 60 and a panel mounting member 62.
  • the panel attachment member 62 extends upward and downward in the axial direction from the second cooling stage 24.
  • the second cryopanel unit 20 is attached to the second cooling stage 24 via a panel attachment member 62. In this way, the second cryopanel unit 20 is thermally connected to the second cooling stage 24. Therefore, the second cryopanel unit 20 is cooled to the second cooling temperature.
  • an adsorption region 64 is formed on at least a part of the surface.
  • the adsorption region 64 is provided for capturing a non-condensable gas (for example, hydrogen) by adsorption.
  • the adsorption region 64 is formed in a location behind the cryopanel 60 adjacent above so as not to be seen from the air inlet 12. That is, the suction region 64 is formed in the upper surface central portion and the entire lower surface of each cryopanel 60. However, the suction region 64 is not provided on the upper surface of the top cryopanel 60a.
  • the adsorption region 64 is formed by adhering an adsorbent (for example, activated carbon) to the cryopanel surface, for example.
  • a condensing region 66 for capturing condensable gas by condensation is formed on at least a part of the surface of the second cryopanel unit 20.
  • the condensation area 66 is, for example, an area where the adsorbent is missing on the cryopanel surface, and the cryopanel substrate surface, for example, a metal surface is exposed.
  • a plurality of cryopanels 60 are arranged on the panel mounting member 62 along the direction from the shield main opening 34 toward the shield bottom 38 (that is, along the central axis A).
  • Each of the plurality of cryopanels 60 is a flat plate (for example, a circular plate) extending perpendicularly to the central axis A, and is attached to the panel attachment member 62 in parallel with each other.
  • the one closest to the inlet 12 among the plurality of cryopanels 60 may be referred to as the top cryopanel 60a, and the one closest to the shield bottom 38 among the plurality of cryopanels 60 may be referred to as the bottom cryopanel 60b.
  • the second cryopanel unit 20 extends elongated along the axial direction between the air inlet 12 and the shield bottom 38.
  • the distance from the upper end to the lower end of the second cryopanel unit 20 in the axial direction is longer than the external dimension of the vertical projection of the second cryopanel unit 20 in the axial direction.
  • the distance between the top cryopanel 60a and the bottom cryopanel 60b is larger than the width or diameter of the cryopanel 60.
  • the plurality of cryopanels 60 may have the same shape as illustrated, or may have different shapes (for example, different diameters).
  • a certain cryopanel 60 among the plurality of cryopanels 60 may have the same shape as that of the cryopanel 60 adjacent above the cryopanel 60 or may be large.
  • the bottom cryopanel 60b may be larger than the top cryopanel 60a.
  • the area of the bottom cryopanel 60b may be about 1.5 times to about 5 times the area of the top cryopanel 60a.
  • intervals between the plurality of cryopanels 60 may be constant as shown in the figure, or may be different from each other.
  • the cryopump housing 70 is a housing of the cryopump 10 that houses the first cryopanel unit 18, the second cryopanel unit 20, and the refrigerator 16, and is configured to maintain the vacuum airtightness of the internal space 14. It is a vacuum vessel.
  • the cryopump housing 70 includes the first cryopanel unit 18 and the refrigerator structure portion 21 in a non-contact manner.
  • the cryopump housing 70 is attached to the room temperature portion 26 of the refrigerator 16.
  • the inlet 12 is defined by the front end of the cryopump housing 70.
  • the cryopump housing 70 includes an inlet flange 72 that extends radially outward from its front end.
  • the inlet flange 72 is provided over the entire circumference of the cryopump housing 70.
  • the cryopump 10 is attached to a vacuum chamber to be evacuated using an intake port flange 72.
  • the vacuum evacuation operation of the cryopump 10 having the above configuration will be described below.
  • the vacuum chamber is first roughed to about 1 Pa with another appropriate roughing pump before the operation. Thereafter, the cryopump 10 is operated.
  • the first cooling stage 22 and the second cooling stage 24 are cooled to the first cooling temperature and the second cooling temperature, respectively, by driving the refrigerator 16. Therefore, the first cryopanel unit 18 and the second cryopanel unit 20 that are thermally coupled to these are also cooled to the first cooling temperature and the second cooling temperature, respectively.
  • the inlet cryopanel 32 cools the gas flying from the vacuum chamber toward the cryopump 10.
  • a gas having a sufficiently low vapor pressure (for example, 10 ⁇ 8 Pa or less) condenses on the surface of the inlet cryopanel 32 at the first cooling temperature.
  • This gas may be referred to as a first type gas.
  • the first type gas is, for example, water vapor.
  • the inlet cryopanel 32 can exhaust the first type gas.
  • a part of the gas whose vapor pressure is not sufficiently low at the first cooling temperature enters the internal space 14 from the air inlet 12. Alternatively, the other part of the gas is reflected by the inlet cryopanel 32 and does not enter the internal space 14.
  • the gas that has entered the internal space 14 is cooled by the second cryopanel unit 20.
  • a gas having a sufficiently low vapor pressure (for example, 10 ⁇ 8 Pa or less) is condensed on the surface of the second cryopanel unit 20 at the second cooling temperature.
  • This gas may be referred to as a second type gas.
  • the second type gas is, for example, argon.
  • the second cryopanel unit 20 can exhaust the second type gas.
  • the gas whose vapor pressure is not sufficiently low at the second cooling temperature is adsorbed by the adsorbent of the second cryopanel unit 20.
  • This gas may be referred to as a third type gas.
  • the third type gas is, for example, hydrogen.
  • the second cryopanel unit 20 can exhaust the third type gas. Therefore, the cryopump 10 can exhaust various gases by condensation or adsorption, and can reach the desired vacuum level of the vacuum chamber.
  • the gas is accumulated in the cryopump 10 by continuing the exhaust operation. In order to discharge the accumulated gas to the outside, the cryopump 10 is regenerated.
  • FIG. 3 schematically shows a cryopump 10 according to the third embodiment.
  • the cryopump 10 includes a heat transfer member 88 that is thermally coupled to the first cooling stage 22 and disposed in a gap between the refrigerator housing unit 76 and the refrigerator 16.
  • the illustrated heat transfer member 88 includes two heat transfer rods, but may include one or three or more heat transfer rods. Similar to the first cooling stage 22, the heat transfer member 88 is formed of a high thermal conductivity material, such as copper.
  • the heat transfer member 88 is fixed to the first cooling stage 22, and the other end is located in the vicinity of the base portion 76 b of the refrigerator housing portion 76.
  • the heat transfer member 88 extends along the first cylinder 23 between the refrigerator housing portion 76 and the first cylinder 23.
  • the heat transfer member 88 may extend linearly in parallel with the first cylinder 23, or may be curved (for example, spirally around the first cylinder 23).
  • the shape of the heat transfer member 88 is arbitrary.
  • the end of the heat transfer member 88 is slightly separated from the room temperature part 26 of the refrigerator 16 and is not physically in contact with the room temperature part 26.
  • the distance between the heat transfer member 88 and the room temperature portion 26 is, for example, about several mm.
  • the heat transfer member 88 is not in contact with the first cylinder 23.
  • the refrigerator 16 enables so-called reverse temperature increase.
  • the refrigerator 16 includes a reversible motor 90 and is configured to switch between cooling and heating of the first cooling stage 22 and the second cooling stage 24 according to the rotation direction of the reversible motor 90.
  • the heat transfer member 88 is also cooled, and when the first cooling stage 22 is heated, the heat transfer member 88 is also heated.
  • the reversible motor 90 is accommodated in the room temperature portion 26. Since it is already well known that the reverse temperature rise of the refrigerator 16 is used as a heat source for the regeneration of the cryopump 10, details thereof will not be described here.
  • a heating element such as an electric heater may be disposed on the first cooling stage 22 so that the heat transfer member 88 may be heated.
  • the end of the heat transfer member 88 can be immersed in the water accumulated at the bottom of the refrigerator accommodating portion 76. Therefore, the heat transfer member 88 heated by the first cooling stage 22 can heat the water accumulated at the bottom of the refrigerator housing unit 76.
  • the cryopump 10 according to the third embodiment can efficiently discharge water and shorten the regeneration time.
  • the cryopump 10 may include a combination of the first heater 84 and the heat transfer member 88 or a combination of the second heater 86 and the heat transfer member 88.
  • the cryopump 10 may include a first heater 84, a second heater 86, and a heat transfer member 88.
  • the vertical cryopump refers to a cryopump in which the refrigerator 16 is disposed along the central axis A of the cryopump 10.
  • an opening through which the refrigerator 16 is inserted is formed in the housing bottom surface 70a.
  • the refrigerator accommodating portion 76 extends from this opening to the room temperature portion 26 of the refrigerator 16, and connects the shield accommodating portion 74 to the room temperature portion 26.
  • the first heater 84 may be disposed on the outer surface of the refrigerator housing portion 76, for example, the outer surface of the base portion 76 b of the refrigerator housing portion 76.
  • the second heater 86 may be disposed on the housing bottom surface 70a.
  • cryopump 10 cryopump, 12 inlet, 16 freezer, 22 1st cooling stage, 24 2nd cooling stage, 26 room temperature section, 30 radiation shield, 70 cryopump housing, 70a housing bottom, 74 shield housing section, 76 refrigerator housing Part, 84, first heater, 86, second heater, 88 heat transfer member, 90 reversible motor.
  • the present invention can be used in the field of cryopumps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

The cryopump 10 is provided with: a freezer 16 comprising a room-temperature part, a first cooling stage, and a second cooling stage; and a cryopump housing 70 comprising a radiation shield thermally coupled to the first cooling stage and surrounding the second cooling stage without making contact with the second cooling stage, a shield housing part 74 which has an intake port 12 and a housing bottom surface 70a disposed on the opposite side from the intake port 12 and which surrounds the radiation shield without making contact with the radiation shield, and a freezer housing part 76 which connects the shield housing part 74 to the room-temperature part 26 of the freezer 16. A first heater 84 disposed on an outer surface of the freezer housing part 76, or a second heater disposed on the housing bottom surface 70a, or a heat transfer member thermally coupled to the first cooling stage and disposed in a gap between the freezer housing part 76 and the freezer 16 is provided so as to apply heat into the cryopump housing 70 from the outside.

Description

クライオポンプCryopump
 本発明は、クライオポンプに関する。 The present invention relates to a cryopump.
 クライオポンプは、極低温に冷却されたクライオパネルに気体分子を凝縮または吸着により捕捉して排気する真空ポンプである。クライオポンプは半導体回路製造プロセス等に要求される清浄な真空環境を実現するために一般に利用される。 The cryopump is a vacuum pump that traps and exhausts gas molecules by condensation or adsorption on a cryopanel cooled to a cryogenic temperature. The cryopump is generally used to realize a clean vacuum environment required for a semiconductor circuit manufacturing process or the like.
 クライオポンプはいわゆる気体溜め込み式の真空ポンプであるから、捕捉した気体を外部に定期的に排出する再生を要する。再生のためにクライオポンプは極低温から室温またはそれよりいくらか高い温度に加熱される。そのためにクライオポンプには通例、冷凍機の冷却ステージなどの冷却源に電気ヒータなどの熱源が付設されている。また冷凍機自体が冷凍サイクルに代えて、熱力学的な昇温サイクル(作動ガスの断熱圧縮を含む)を伴う加熱動作を可能とする場合もある。クライオパネル上に捕捉されていた氷は加熱により溶け最終的には気化し、クライオポンプの外に排出される。 Since the cryopump is a so-called gas storage type vacuum pump, regeneration is required to periodically discharge the trapped gas to the outside. For regeneration, the cryopump is heated from cryogenic temperature to room temperature or somewhat higher. For this purpose, a cryopump is usually provided with a heat source such as an electric heater attached to a cooling source such as a cooling stage of a refrigerator. In addition, the refrigerator itself may allow a heating operation with a thermodynamic temperature increase cycle (including adiabatic compression of working gas) instead of the refrigeration cycle. The ice trapped on the cryopanel melts by heating and eventually vaporizes and is discharged out of the cryopump.
特許第2725689号公報Japanese Patent No. 2,725,689
 本発明者らは、クライオポンプの再生について鋭意研究を重ねた結果、以下の課題を認識するに至った。クライオポンプに捕捉される水以外の種々の気体は室温レベルの再生温度で容易に気化するのでクライオポンプから排出されやすい。ところが、水はその温度域で液体状態をとる。液体の水は重力にしたがい下方に流れ、クライオポンプ内の底部またはその他の場所に溜まる。排出口が最下部にあるとは限らない。排出口より下に溜まった水を排出するには、水を蒸発させなければならない。水は蒸発するとき周囲から熱を奪う。溜まった水量が多いほど蒸発による吸熱量も増え、場合によっては水面が氷結しうる。
とくに、大量の水を排気できるよう設計された大容量のクライオポンプでは、水量が多いので、こうした氷結が起こりやすい。氷結にともない水の蒸発が顕著に抑制され、気化による排出が困難となり、再生時間が長くなってしまう。実用上許容できる時間内に再生が完了されないこともありうる。そこで、再生時間をより短くするうえで、より効率的に水を排出することが望まれる。
As a result of intensive studies on the regeneration of cryopumps, the present inventors have recognized the following problems. Various gases other than water trapped by the cryopump easily evaporate at a regeneration temperature of the room temperature level, and thus are easily discharged from the cryopump. However, water takes a liquid state in that temperature range. Liquid water flows downward in accordance with gravity and collects at the bottom of the cryopump or elsewhere. The outlet is not always at the bottom. In order to drain the water accumulated below the outlet, the water must be evaporated. When water evaporates, it takes heat away from the surroundings. As the amount of accumulated water increases, the amount of heat absorbed by evaporation also increases, and in some cases, the water surface can freeze.
In particular, a large-capacity cryopump designed to exhaust a large amount of water is prone to freezing because of its large volume. Evaporation of water is remarkably suppressed along with icing, making it difficult to discharge by vaporization, resulting in a long regeneration time. There is a possibility that the reproduction is not completed within a practically acceptable time. Therefore, it is desirable to discharge water more efficiently in order to shorten the regeneration time.
 本発明のある態様の例示的な目的のひとつは、クライオポンプの再生時間を短縮することにある。 One exemplary purpose of one aspect of the present invention is to reduce the regeneration time of the cryopump.
 本発明のある態様によると、クライオポンプは、室温部と第1冷却ステージと第2冷却ステージとを備える冷凍機と、前記第1冷却ステージに熱的に結合され、前記第2冷却ステージと非接触に前記第2冷却ステージを囲む放射シールドと、クライオポンプ吸気口を有し、前記クライオポンプ吸気口と反対側にハウジング底面を備え、前記放射シールドと非接触に前記放射シールドを囲むシールド収容部と、前記シールド収容部を前記冷凍機の前記室温部に接続する冷凍機収容部と、を備えるクライオポンプハウジングと、前記クライオポンプハウジングの外から中に熱を与えるよう前記冷凍機収容部の外面または前記ハウジング底面に配置されたヒータと、を備える。 According to an aspect of the present invention, the cryopump includes a refrigerator having a room temperature portion, a first cooling stage, and a second cooling stage, and is thermally coupled to the first cooling stage, and is not connected to the second cooling stage. A shield housing that has a radiation shield surrounding the second cooling stage in contact and a cryopump inlet, and has a housing bottom on the opposite side of the cryopump inlet, and surrounds the radiation shield in non-contact with the radiation shield A cryopump housing comprising: a refrigerator housing unit that connects the shield housing unit to the room temperature unit of the refrigerator; and an outer surface of the refrigerator housing unit that applies heat to the inside from the outside of the cryopump housing. Or a heater disposed on the bottom surface of the housing.
 本発明のある態様によると、クライオポンプは、室温部と第1冷却ステージと第2冷却ステージとを備える冷凍機と、前記第1冷却ステージに熱的に結合され、前記第2冷却ステージを囲む放射シールドと、クライオポンプ吸気口を有し、前記クライオポンプ吸気口と反対側にハウジング底面を備え、前記放射シールドと非接触に前記放射シールドを囲むシールド収容部と、前記シールド収容部を前記冷凍機の前記室温部に接続する冷凍機収容部と、を備えるクライオポンプハウジングと、前記第1冷却ステージに熱的に結合され、前記冷凍機収容部と前記冷凍機との隙間に配置された伝熱部材と、を備える。 According to an aspect of the present invention, the cryopump is a refrigerator having a room temperature section, a first cooling stage, and a second cooling stage, and is thermally coupled to the first cooling stage and surrounds the second cooling stage. A radiation shield and a cryopump inlet; a housing bottom surface on the opposite side of the cryopump inlet; a shield housing portion that surrounds the radiation shield in a non-contact manner with the radiation shield; and A cryopump housing provided with a refrigerator housing portion connected to the room temperature portion of the machine, and a heat pump thermally coupled to the first cooling stage and disposed in a gap between the refrigerator housing portion and the refrigerator. A thermal member.
 なお、以上の構成要素の任意の組み合わせや本発明の構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。 It should be noted that any combination of the above-described constituent elements and the constituent elements and expressions of the present invention that are mutually replaced between methods, apparatuses, systems, etc. are also effective as an aspect of the present invention.
 本発明によれば、クライオポンプの再生時間を短縮することができる。 According to the present invention, the regeneration time of the cryopump can be shortened.
第1実施形態に係るクライオポンプを概略的に示す。1 schematically shows a cryopump according to a first embodiment. 第2実施形態に係るクライオポンプを概略的に示す。The cryopump which concerns on 2nd Embodiment is shown schematically. 第3実施形態に係るクライオポンプを概略的に示す。The cryopump which concerns on 3rd Embodiment is shown schematically.
 以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。説明および図面において同一または同等の構成要素、部材、処理には同一の符号を付し、重複する説明は適宜省略する。図示される各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。実施の形態は例示であり、本発明の範囲を何ら限定するものではない。実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In the description and drawings, the same or equivalent components, members, and processes are denoted by the same reference numerals, and redundant descriptions are omitted as appropriate. The scales and shapes of the respective parts shown in the drawings are set for convenience in order to facilitate explanation, and are not limitedly interpreted unless otherwise specified. The embodiments are illustrative and do not limit the scope of the present invention. All features and combinations thereof described in the embodiments are not necessarily essential to the invention.
(第1実施形態)
 図1は、第1実施形態に係るクライオポンプ10を概略的に示す。図1には、クライオポンプ10の概略側面図を示す。
(First embodiment)
FIG. 1 schematically shows a cryopump 10 according to the first embodiment. FIG. 1 shows a schematic side view of the cryopump 10.
 クライオポンプ10は、例えばイオン注入装置、スパッタリング装置、蒸着装置、またはその他の真空プロセス装置の真空チャンバに取り付けられて、真空チャンバ内部の真空度を所望の真空プロセスに要求されるレベルまで高めるために使用される。クライオポンプ10は、排気されるべき気体を真空チャンバから受け入れるためのクライオポンプ吸気口(以下では単に「吸気口」ともいう)12を有する。吸気口12を通じて気体がクライオポンプ10の内部空間に進入する。 The cryopump 10 is attached to a vacuum chamber of, for example, an ion implantation apparatus, a sputtering apparatus, a vapor deposition apparatus, or other vacuum process apparatus to increase the degree of vacuum inside the vacuum chamber to a level required for a desired vacuum process. used. The cryopump 10 has a cryopump intake port (hereinafter also simply referred to as “intake port”) 12 for receiving a gas to be evacuated from the vacuum chamber. Gas enters the internal space of the cryopump 10 through the air inlet 12.
 クライオポンプ10は、冷凍機16と、クライオポンプハウジング70とを備える。クライオポンプ10の内部の構成は、よく知られたものが採用されてもよく、また図2を参照して例示的構成を後述するので、ここでは詳述しない。 The cryopump 10 includes a refrigerator 16 and a cryopump housing 70. As the internal configuration of the cryopump 10, a well-known configuration may be employed, and an exemplary configuration will be described later with reference to FIG.
 クライオポンプハウジング70は、シールド収容部74と、冷凍機収容部76とを備える。シールド収容部74は、吸気口12と反対側にハウジング底面70aを備える。シールド収容部74は、放射シールドと非接触に放射シールドを囲む。冷凍機収容部76は、シールド収容部74を冷凍機16の室温部26に接続する。 The cryopump housing 70 includes a shield housing portion 74 and a refrigerator housing portion 76. The shield housing portion 74 includes a housing bottom surface 70 a on the side opposite to the air inlet 12. The shield accommodating portion 74 surrounds the radiation shield in a non-contact manner with the radiation shield. The refrigerator housing unit 76 connects the shield housing unit 74 to the room temperature unit 26 of the refrigerator 16.
 シールド収容部74は、一端が吸気口12として開放され他端がハウジング底面70aとして閉塞された円筒状またはドーム状の形状を有する。シールド収容部74は、吸気口12を画定する吸気口フランジ72を備える。 The shield accommodating portion 74 has a cylindrical or dome shape with one end opened as the air inlet 12 and the other end closed as the housing bottom surface 70a. The shield accommodating portion 74 includes an intake port flange 72 that defines the intake port 12.
 吸気口フランジ72をハウジング底面70aに接続するシールド収容部74の側壁には、吸気口12とは別に、冷凍機16を挿通する開口が形成されている。冷凍機収容部76はこの開口から冷凍機16の室温部26へと延びる円筒状の形状を有する。冷凍機収容部76はシールド収容部74と一体的に形成されている。 In addition to the air inlet 12, an opening for inserting the refrigerator 16 is formed on the side wall of the shield housing portion 74 that connects the air inlet flange 72 to the housing bottom surface 70a. The refrigerator accommodating portion 76 has a cylindrical shape extending from the opening to the room temperature portion 26 of the refrigerator 16. The refrigerator housing portion 76 is formed integrally with the shield housing portion 74.
 冷凍機収容部76の円筒状の側面には、再生中にクライオポンプ10から気体または液体を排出するためのラフバルブ78及びベントバルブ80が取り付けられている。ラフバルブ78はクライオポンプハウジング70を粗引きポンプ79に接続する。ベントバルブ80はクライオポンプ10の内部に生じうる高圧を外部環境に逃がすために設けられている。また、シールド収容部74にはクライオポンプ10の内部にパージガスを供給するためのパージバルブ82が取り付けられている。パージバルブ82はクライオポンプハウジング70をパージガス源83に接続する。粗引きポンプ79及びパージガス源83は通例、クライオポンプ10の構成要素とはみなされない。 A rough valve 78 and a vent valve 80 for discharging gas or liquid from the cryopump 10 during regeneration are attached to the cylindrical side surface of the refrigerator housing portion 76. The rough valve 78 connects the cryopump housing 70 to the roughing pump 79. The vent valve 80 is provided to release a high pressure that can be generated inside the cryopump 10 to the external environment. A purge valve 82 for supplying purge gas to the inside of the cryopump 10 is attached to the shield housing portion 74. The purge valve 82 connects the cryopump housing 70 to the purge gas source 83. Roughing pump 79 and purge gas source 83 are typically not considered components of cryopump 10.
 ラフバルブ78、ベントバルブ80、及びパージバルブ82の配置は例示であり、とくに限定されない。冷凍機収容部76にはこうしたバルブが取り付けられていなくてもよい。ラフバルブ78及びベントバルブ80は、シールド収容部74に取り付けられていてもよい。また、冷凍機収容部76には、例えば真空計などのその他の構成要素が取り付けられていてもよい。 The arrangement of the rough valve 78, the vent valve 80, and the purge valve 82 is an example, and is not particularly limited. Such a valve may not be attached to the refrigerator accommodating portion 76. The rough valve 78 and the vent valve 80 may be attached to the shield housing portion 74. In addition, other components such as a vacuum gauge may be attached to the refrigerator housing portion 76.
 冷凍機収容部76の末端(すなわちシールド収容部74と反対側の端部)には、冷凍機16の室温部26に取り付けるための取付フランジ76aが設けられている。取付フランジ76aに対応する冷凍機フランジ26aが室温部26に設けられており、取付フランジ76aは冷凍機フランジ26aにボルトなどの適宜の締結具で固定される。室温部26は、冷凍機16を駆動するモータを収容するモータハウジングであってもよい。 An attachment flange 76 a for attaching to the room temperature part 26 of the refrigerator 16 is provided at the end of the refrigerator accommodating part 76 (that is, the end opposite to the shield accommodating part 74). A refrigerator flange 26a corresponding to the attachment flange 76a is provided in the room temperature portion 26, and the attachment flange 76a is fixed to the refrigerator flange 26a with an appropriate fastener such as a bolt. The room temperature unit 26 may be a motor housing that houses a motor that drives the refrigerator 16.
 クライオポンプ10は、クライオポンプハウジング70の外から中に熱を与えるよう冷凍機収容部76の外面に配置された第1ヒータ84を備える。第1ヒータ84は、電気ヒータである。第1ヒータ84は、シート状の形状を有し、冷凍機収容部76に円筒状の側面に巻き付けられている。第1ヒータ84は、冷凍機収容部76の全周を囲んでいるが、それは必須ではない。第1ヒータ84は、冷凍機収容部76の周方向に部分的に設けられていてもよい。第1ヒータ84の形状は任意であり、シート状には限られない。例えば、第1ヒータ84は、線状のヒータであってもよい。 The cryopump 10 includes a first heater 84 disposed on the outer surface of the refrigerator housing portion 76 so as to apply heat from the outside to the inside of the cryopump housing 70. The first heater 84 is an electric heater. The first heater 84 has a sheet-like shape and is wound around a cylindrical side surface of the refrigerator housing portion 76. Although the 1st heater 84 has enclosed the perimeter of the refrigerator accommodating part 76, it is not essential. The first heater 84 may be partially provided in the circumferential direction of the refrigerator housing unit 76. The shape of the first heater 84 is arbitrary and is not limited to a sheet shape. For example, the first heater 84 may be a linear heater.
 第1ヒータ84はヒータ電源85に接続されている。クライオポンプ10の再生は一般に、昇温工程、排出工程、及びクールダウン工程を含む。昇温工程においてはクライオパネルが再生温度に加熱される。排出工程においてはクライオポンプ10に捕捉された気体が排出される。クールダウン工程においてはクライオパネルが真空排気運転のための極低温に再冷却される。ヒータ電源85は、クライオポンプ10の再生開始(例えば昇温工程の開始)に応答して第1ヒータ84をオンとし、排出工程の完了またはクールダウン工程の開始に応答して第1ヒータ84をオフとするよう構成されていてもよい。 The first heater 84 is connected to a heater power supply 85. The regeneration of the cryopump 10 generally includes a temperature raising process, a discharging process, and a cool-down process. In the temperature raising step, the cryopanel is heated to the regeneration temperature. In the discharge process, the gas captured by the cryopump 10 is discharged. In the cool-down process, the cryopanel is re-cooled to a cryogenic temperature for evacuation operation. The heater power supply 85 turns on the first heater 84 in response to the start of regeneration of the cryopump 10 (for example, the start of the temperature raising process), and turns off the first heater 84 in response to the completion of the discharge process or the start of the cool-down process. It may be configured to be off.
 第1ヒータ84の加熱温度の下限は水の氷結を妨げるよう選択され、上限は冷凍機16の耐熱温度に基づき選択されてもよい。第1ヒータ84の加熱温度は例えば、10℃から50℃の範囲、または20℃から40℃の範囲から選択されてもよい。この温度設定は、後述する第2ヒータ86についても同様である。 The lower limit of the heating temperature of the first heater 84 may be selected so as to prevent freezing of water, and the upper limit may be selected based on the heat resistant temperature of the refrigerator 16. The heating temperature of the first heater 84 may be selected from a range of 10 ° C. to 50 ° C., or a range of 20 ° C. to 40 ° C., for example. This temperature setting is the same for the second heater 86 described later.
 第1ヒータ84は、これに限られず、任意の形式の加熱器具であってもよい。例えば、第1ヒータ84は、冷凍機収容部76の外面に巻き付けられ、または冷凍機収容部76の外面に沿って延びる温調流体の配管を備え、この配管に例えば温水または暖かいガスが流れることで、クライオポンプハウジング70の外から中に熱が与えられてもよい。 The first heater 84 is not limited to this, and may be any type of heating device. For example, the 1st heater 84 is provided with the piping of the temperature control fluid wound around the outer surface of the refrigerator accommodating part 76, or extended along the outer surface of the refrigerator accommodating part 76, for example, warm water or warm gas flows through this piping. Thus, heat may be applied from the outside to the inside of the cryopump housing 70.
 後述する第2ヒータについても、第1ヒータ84と同様に、任意の形状を有してもよい。また第2ヒータは、任意の形式の加熱器具であってもよい。 Similarly to the first heater 84, the second heater described later may have an arbitrary shape. The second heater may be any type of heating device.
 なお、パージバルブ82及びパージガス源83からなるパージガス供給部によるクライオポンプ10へのパージガスの供給は一種の加熱手段とみなせるが、第1ヒータ84はこれを含まない。第1ヒータ84は、パージガス供給部とは異なる加熱器具としてクライオポンプ10に設けられている。 Note that the supply of purge gas to the cryopump 10 by the purge gas supply unit including the purge valve 82 and the purge gas source 83 can be regarded as a kind of heating means, but the first heater 84 does not include this. The first heater 84 is provided in the cryopump 10 as a heating device different from the purge gas supply unit.
 第1ヒータ84は、室温部26に隣接する冷凍機収容部76の基部76bの外面に配置されている。ここで、冷凍機収容部76の基部76bとは、冷凍機収容部76のうち室温部26に近い部分をいう。第1ヒータ84は、取付フランジ76aに隣接して冷凍機収容部76の基部76bに装着されている。図示のように冷凍機収容部76にバルブが設けられている場合には、第1ヒータ84は、室温部26に最も近いバルブ(例えばベントバルブ80)と室温部26の間に配置される。 The first heater 84 is disposed on the outer surface of the base portion 76 b of the refrigerator housing portion 76 adjacent to the room temperature portion 26. Here, the base portion 76 b of the refrigerator housing portion 76 refers to a portion of the refrigerator housing portion 76 that is close to the room temperature portion 26. The first heater 84 is attached to the base portion 76b of the refrigerator housing portion 76 adjacent to the mounting flange 76a. As shown in the figure, when the refrigerator housing unit 76 is provided with a valve, the first heater 84 is disposed between a valve (for example, the vent valve 80) closest to the room temperature unit 26 and the room temperature unit 26.
 クライオポンプ10は、図示される向きで真空チャンバに吸気口フランジ72が取り付けられうる。クライオポンプ10は、いわば縦向きで使用されうる。すなわち、吸気口12及びハウジング底面70aが上方に位置し冷凍機16の室温部26が下方に位置する状態で、クライオポンプ10が使用される場合がある。 The cryopump 10 can have an inlet flange 72 attached to the vacuum chamber in the illustrated direction. The cryopump 10 can be used in a so-called vertical orientation. That is, the cryopump 10 may be used in a state in which the air inlet 12 and the housing bottom surface 70a are located above and the room temperature portion 26 of the refrigerator 16 is located below.
 クライオポンプ10の真空排気運転中にクライオパネル表面に凝縮により捕捉された水(すなわち氷)は、クライオポンプ10の再生中に加熱され溶ける。図示されるクライオポンプ10の縦向き配置の場合、溶けた水は、重力により下方へと流れ、冷凍機収容部76の底(室温部26の直上)に溜まりうる。水位がベントバルブ80を超えればベントバルブ80から水を液体のままクライオポンプ10の外に排出することができる。しかし、水位がベントバルブ80に達しない場合、排出するには溜まった水を蒸発させる必要がある。 During the evacuation operation of the cryopump 10, water (that is, ice) captured by condensation on the cryopanel surface is heated and melted during the regeneration of the cryopump 10. In the case of the vertically arranged cryopump 10 shown in the figure, the melted water flows downward due to gravity and can accumulate on the bottom of the refrigerator housing unit 76 (directly above the room temperature unit 26). If the water level exceeds the vent valve 80, water can be discharged from the vent valve 80 to the outside of the cryopump 10 in a liquid state. However, if the water level does not reach the vent valve 80, it is necessary to evaporate the accumulated water for discharging.
 蒸発による冷却作用は、冷凍機収容部76の底に溜まった水の温度を低下させる。最悪の場合、溜まった水の水面または全体が再び氷結されうる。典型的なクライオポンプは再生のために加熱手段を備える。しかし、この典型的な加熱手段は冷凍機収容部76の底から離れた場所(例えば冷凍機16の冷却ステージ)に配置されている。そのため、冷凍機収容部76の底に溜まった水を速やかに蒸発させるほどの加熱をしがたい。 The cooling action by evaporation lowers the temperature of the water accumulated at the bottom of the refrigerator housing section 76. In the worst case, the water surface or the whole of the accumulated water can be frozen again. A typical cryopump is equipped with heating means for regeneration. However, this typical heating means is disposed at a location away from the bottom of the refrigerator accommodating portion 76 (for example, the cooling stage of the refrigerator 16). For this reason, it is difficult to heat the water stored in the bottom of the refrigerator housing portion 76 so as to quickly evaporate it.
 冷凍機収容部76の底に溜まった水が、室温よりも低い温度、例えば水の凝固点近くまで冷却されると、冷凍機収容部76の底に溜まった水の水面からの水分の蒸発は顕著に抑制される。気化による水の排出が実質的に困難となり、再生時間が極端に長くなりうる。実用上許容できる時間内に再生が完了されないこともありうる。 When the water accumulated at the bottom of the refrigerator accommodating portion 76 is cooled to a temperature lower than room temperature, for example, near the freezing point of water, the evaporation of moisture from the water surface accumulated at the bottom of the refrigerator accommodating portion 76 is significant. To be suppressed. Discharge of water by vaporization becomes substantially difficult, and the regeneration time can be extremely long. There is a possibility that the reproduction is not completed within a practically acceptable time.
 ところが、第1実施形態に係るクライオポンプ10には、第1ヒータ84が冷凍機収容部76の基部76bに配置されている。したがって、第1ヒータ84を用いて、冷凍機収容部76の底に溜まった水を加熱し、その氷結を防ぐことができる。また、加熱により、水の蒸発を促進することもできる。よって、水を効率的に排出することができ、再生時間を短縮することができる。 However, in the cryopump 10 according to the first embodiment, the first heater 84 is disposed in the base portion 76b of the refrigerator housing unit 76. Therefore, the water accumulated at the bottom of the refrigerator housing portion 76 can be heated using the first heater 84 to prevent icing. Moreover, evaporation of water can be promoted by heating. Therefore, water can be discharged efficiently and the regeneration time can be shortened.
 なお、冷凍機収容部76に溜まりうる水に有効に熱を与えられる限り、第1ヒータ84は、任意の場所に配置されてもよい。例えば、第1ヒータ84は、冷凍機収容部76の基部76bから離れてシールド収容部74に近接して配置されてもよい。バルブやセンサなど付加的な構造物が冷凍機収容部76の基部76bに設けられている場合には、そうした構造物を避けた第1ヒータ84の配置が適当でありうる。 It should be noted that the first heater 84 may be disposed at any place as long as heat can be effectively applied to the water that can be accumulated in the refrigerator housing unit 76. For example, the first heater 84 may be disposed in the vicinity of the shield housing portion 74 away from the base portion 76 b of the refrigerator housing portion 76. When an additional structure such as a valve or a sensor is provided in the base portion 76b of the refrigerator housing portion 76, the arrangement of the first heater 84 avoiding such a structure may be appropriate.
 また、第1ヒータ84は、冷凍機収容部76の外面に装着されるので、こうしたヒータを有しない既設のクライオポンプに追加的に設置することができるという利点もある。 Also, since the first heater 84 is mounted on the outer surface of the refrigerator housing portion 76, there is an advantage that it can be additionally installed in an existing cryopump that does not have such a heater.
(第2実施形態)
 図2は、第2実施形態に係るクライオポンプ10を概略的に示す。クライオポンプ10は、図示される向きで真空チャンバに吸気口フランジ72が取り付けられうる。クライオポンプ10は、いわば横向きで使用されうる。すなわち、吸気口12が上方に位置しハウジング底面70aが下方に位置する状態で、クライオポンプ10が使用される場合がある。
(Second Embodiment)
FIG. 2 schematically shows a cryopump 10 according to the second embodiment. The cryopump 10 can have an inlet flange 72 attached to the vacuum chamber in the orientation shown. The cryopump 10 can be used in a horizontal direction. In other words, the cryopump 10 may be used in a state where the air inlet 12 is located above and the housing bottom surface 70a is located below.
 放射シールド30の底部には水抜き穴87が形成されていてもよい。この場合、再生中に溶けた水が水抜き穴87を通ってシールド収容部74の底に溜まりやすい。 A drain hole 87 may be formed at the bottom of the radiation shield 30. In this case, water melted during regeneration tends to accumulate at the bottom of the shield housing portion 74 through the drain hole 87.
 クライオポンプ10は、クライオポンプハウジング70の外から中に熱を与えるようハウジング底面70aに配置された第2ヒータ86を備える。このようにすれば、図示されるクライオポンプ10の横向き配置の場合にシールド収容部74の底に溜まりうる水を第2ヒータ86で加熱することができる。よって、第2実施形態に係るクライオポンプ10によっても、第1実施形態に係るクライオポンプ10と同様に、水を効率的に排出し再生時間を短縮することができる。 The cryopump 10 includes a second heater 86 disposed on the housing bottom surface 70 a so as to apply heat from the outside to the inside of the cryopump housing 70. In this way, water that can accumulate at the bottom of the shield housing portion 74 can be heated by the second heater 86 in the case where the illustrated cryopump 10 is disposed sideways. Therefore, also by the cryopump 10 according to the second embodiment, water can be efficiently discharged and the regeneration time can be shortened, similarly to the cryopump 10 according to the first embodiment.
 第2ヒータ86は、シールド収容部74においてハウジング底面70aにのみ配置されている。第2ヒータ86は、シールド収容部74の側面には設けられていない。このようにすれば、平面的な形状の市販のヒータを第2ヒータ86として容易に用いることができる。シールド収容部74の側面及びハウジング底面70aの両方にヒータを取り付ける場合に比べて、第2ヒータ86の設置が容易である。ただし、必要に応じて、シールド収容部74の側面及びハウジング底面70aの両方に第2ヒータ86が設けられてもよい。 The second heater 86 is disposed only on the housing bottom surface 70 a in the shield housing portion 74. The second heater 86 is not provided on the side surface of the shield housing portion 74. In this way, a commercially available heater having a planar shape can be easily used as the second heater 86. The installation of the second heater 86 is easier than when the heaters are attached to both the side surface of the shield housing portion 74 and the housing bottom surface 70a. However, the 2nd heater 86 may be provided in both the side surface of the shield accommodating part 74, and the housing bottom face 70a as needed.
 第1ヒータ84と同様に、第2ヒータ86は、ヒータ電源85に接続されている。 Like the first heater 84, the second heater 86 is connected to a heater power supply 85.
 クライオポンプ10は、第1ヒータ84と第2ヒータ86の両方を備えてもよい。 The cryopump 10 may include both the first heater 84 and the second heater 86.
 続いて、図2を参照して、クライオポンプ10の内部の構成要素について例示的な構成を説明する。この構成は、図1に示されるクライオポンプ10に適用可能である。また、後述の図3に示されるクライオポンプ10にも適用可能である。 Subsequently, an exemplary configuration of the internal components of the cryopump 10 will be described with reference to FIG. This configuration is applicable to the cryopump 10 shown in FIG. Moreover, it is applicable also to the cryopump 10 shown in FIG.
 なお以下では、クライオポンプ10の構成要素の位置関係をわかりやすく表すために、「軸方向」、「径方向」との用語を使用することがある。軸方向は吸気口12を通る方向(図1において中心軸Aに沿う方向)を表し、径方向は吸気口12に沿う方向(中心軸Aに垂直な方向)を表す。便宜上、軸方向に関して吸気口12に相対的に近いことを「上」、相対的に遠いことを「下」と呼ぶことがある。つまり、クライオポンプ10の底部から相対的に遠いことを「上」、相対的に近いことを「下」と呼ぶことがある。径方向に関しては、吸気口12の中心(図1において中心軸A)に近いことを「内」、吸気口12の周縁に近いことを「外」と呼ぶことがある。なお、こうした表現はクライオポンプ10が真空チャンバに取り付けられたときの配置とは関係しない。例えば、クライオポンプ10は鉛直方向に吸気口12を下向きにして真空チャンバに取り付けられてもよい。 In the following description, the terms “axial direction” and “radial direction” are sometimes used to express the positional relationship of the components of the cryopump 10 in an easy-to-understand manner. The axial direction represents the direction passing through the intake port 12 (the direction along the central axis A in FIG. 1), and the radial direction represents the direction along the intake port 12 (the direction perpendicular to the central axis A). For convenience, the fact that it is relatively close to the inlet 12 in the axial direction may be referred to as “up”, and that it is relatively distant may be called “down”. In other words, the distance from the bottom of the cryopump 10 may be referred to as “up” and the distance from the bottom of the cryopump 10 as “lower”. Regarding the radial direction, the proximity to the center of the intake port 12 (center axis A in FIG. 1) may be referred to as “inside” and the proximity to the peripheral edge of the intake port 12 may be referred to as “outside”. Such an expression is not related to the arrangement when the cryopump 10 is attached to the vacuum chamber. For example, the cryopump 10 may be attached to the vacuum chamber with the inlet 12 facing downward in the vertical direction.
 また、軸方向を囲む方向を「周方向」と呼ぶことがある。周方向は、吸気口12に沿う第2の方向であり、径方向に直交する接線方向である。 Also, the direction surrounding the axial direction may be called “circumferential direction”. The circumferential direction is a second direction along the air inlet 12 and is a tangential direction orthogonal to the radial direction.
 クライオポンプ10は、冷凍機16、第1クライオパネルユニット18、第2クライオパネルユニット20、及び、クライオポンプハウジング70を備える。 The cryopump 10 includes a refrigerator 16, a first cryopanel unit 18, a second cryopanel unit 20, and a cryopump housing 70.
 冷凍機16は、例えばギフォード・マクマホン式冷凍機(いわゆるGM冷凍機)などの極低温冷凍機である。冷凍機16は、二段式の冷凍機である。そのため、冷凍機16は、第1冷却ステージ22及び第2冷却ステージ24を備える。冷凍機16は、第1冷却ステージ22を第1冷却温度に冷却し、第2冷却ステージ24を第2冷却温度に冷却するよう構成されている。第2冷却温度は第1冷却温度よりも低温である。例えば、第1冷却ステージ22は65K~120K程度、好ましくは80K~100Kに冷却され、第2冷却ステージ24は10K~20K程度に冷却される。 The refrigerator 16 is a cryogenic refrigerator such as a Gifford-McMahon refrigerator (so-called GM refrigerator). The refrigerator 16 is a two-stage refrigerator. Therefore, the refrigerator 16 includes a first cooling stage 22 and a second cooling stage 24. The refrigerator 16 is configured to cool the first cooling stage 22 to the first cooling temperature and to cool the second cooling stage 24 to the second cooling temperature. The second cooling temperature is lower than the first cooling temperature. For example, the first cooling stage 22 is cooled to about 65K to 120K, preferably 80K to 100K, and the second cooling stage 24 is cooled to about 10K to 20K.
 また、冷凍機16は、第2冷却ステージ24を第1冷却ステージ22に構造的に支持するとともに第1冷却ステージ22を冷凍機16の室温部26に構造的に支持する冷凍機構造部21を備える。そのため冷凍機構造部21は、径方向に沿って同軸に延在する第1シリンダ23及び第2シリンダ25を備える。第1シリンダ23は、冷凍機16の室温部26を第1冷却ステージ22に接続する。第2シリンダ25は、第1冷却ステージ22を第2冷却ステージ24に接続する。室温部26、第1シリンダ23、第1冷却ステージ22、第2シリンダ25、及び第2冷却ステージ24は、この順に直線状に一列に並ぶ。 The refrigerator 16 also includes a refrigerator structure portion 21 that structurally supports the second cooling stage 24 on the first cooling stage 22 and structurally supports the first cooling stage 22 on the room temperature portion 26 of the refrigerator 16. Prepare. Therefore, the refrigerator structure unit 21 includes a first cylinder 23 and a second cylinder 25 that extend coaxially along the radial direction. The first cylinder 23 connects the room temperature part 26 of the refrigerator 16 to the first cooling stage 22. The second cylinder 25 connects the first cooling stage 22 to the second cooling stage 24. The room temperature section 26, the first cylinder 23, the first cooling stage 22, the second cylinder 25, and the second cooling stage 24 are arranged in a straight line in this order.
 第1シリンダ23及び第2シリンダ25それぞれの内部には第1ディスプレーサ及び第2ディスプレーサ(図示せず)が往復動可能に配設されている。第1ディスプレーサ及び第2ディスプレーサにはそれぞれ第1蓄冷器及び第2蓄冷器(図示せず)が組み込まれている。また、室温部26は、第1ディスプレーサ及び第2ディスプレーサを往復動させるための駆動機構(図示せず)を有する。駆動機構は、冷凍機16の内部への作動気体(例えばヘリウム)の供給と排出を周期的に繰り返すよう作動気体の流路を切り替える流路切替機構を含む。 In each of the first cylinder 23 and the second cylinder 25, a first displacer and a second displacer (not shown) are disposed so as to be able to reciprocate. A first regenerator and a second regenerator (not shown) are incorporated in the first displacer and the second displacer, respectively. The room temperature section 26 has a drive mechanism (not shown) for reciprocating the first displacer and the second displacer. The drive mechanism includes a flow path switching mechanism that switches the flow path of the working gas so as to periodically repeat the supply and discharge of the working gas (for example, helium) to the inside of the refrigerator 16.
 冷凍機16は、作動気体の圧縮機(図示せず)に接続されている。冷凍機16は、圧縮機により加圧された作動気体を内部で膨張させて第1冷却ステージ22及び第2冷却ステージ24を冷却する。膨張した作動気体は圧縮機に回収され再び加圧される。冷凍機16は、作動気体の給排とこれに同期した第1ディスプレーサ及び第2ディスプレーサの往復動とを含む熱サイクルを繰り返すことによって寒冷を発生させる。 The refrigerator 16 is connected to a working gas compressor (not shown). The refrigerator 16 expands the working gas pressurized by the compressor to cool the first cooling stage 22 and the second cooling stage 24. The expanded working gas is collected in the compressor and pressurized again. The refrigerator 16 generates cold by repeating a heat cycle including supply and discharge of the working gas and reciprocation of the first displacer and the second displacer in synchronization therewith.
 図示されるクライオポンプ10は、いわゆる横型のクライオポンプである。横型のクライオポンプとは一般に、冷凍機16がクライオポンプ10の中心軸Aに交差する(通常は直交する)よう配設されているクライオポンプである。 The illustrated cryopump 10 is a so-called horizontal cryopump. The horizontal type cryopump is generally a cryopump in which the refrigerator 16 is disposed so as to intersect (usually orthogonal) the central axis A of the cryopump 10.
 第1クライオパネルユニット18は、放射シールド30と入口クライオパネル32とを備え、第2クライオパネルユニット20を包囲する。第1クライオパネルユニット18は、クライオポンプ10の外部またはクライオポンプハウジング70からの輻射熱から第2クライオパネルユニット20を保護するための極低温表面を提供する。第1クライオパネルユニット18は第1冷却ステージ22に熱的に結合されている。よって第1クライオパネルユニット18は第1冷却温度に冷却される。第1クライオパネルユニット18は第2クライオパネルユニット20との間に隙間を有しており、第1クライオパネルユニット18は第2クライオパネルユニット20と接触していない。第1クライオパネルユニット18はクライオポンプハウジング70とも接触していない。 The first cryopanel unit 18 includes a radiation shield 30 and an entrance cryopanel 32 and surrounds the second cryopanel unit 20. The first cryopanel unit 18 provides a cryogenic surface for protecting the second cryopanel unit 20 from radiant heat from the outside of the cryopump 10 or from the cryopump housing 70. The first cryopanel unit 18 is thermally coupled to the first cooling stage 22. Therefore, the first cryopanel unit 18 is cooled to the first cooling temperature. The first cryopanel unit 18 has a gap with the second cryopanel unit 20, and the first cryopanel unit 18 is not in contact with the second cryopanel unit 20. The first cryopanel unit 18 is not in contact with the cryopump housing 70.
 放射シールド30は、クライオポンプハウジング70の輻射熱から第2クライオパネルユニット20を保護するために設けられている。放射シールド30は、クライオポンプハウジング70と第2クライオパネルユニット20との間にあり、第2クライオパネルユニット20を囲む。放射シールド30は、クライオポンプ10の外部から内部空間14に気体を受け入れるためのシールド主開口34を有する。シールド主開口34は、吸気口12に位置する。 The radiation shield 30 is provided to protect the second cryopanel unit 20 from the radiant heat of the cryopump housing 70. The radiation shield 30 is located between the cryopump housing 70 and the second cryopanel unit 20 and surrounds the second cryopanel unit 20. The radiation shield 30 has a shield main opening 34 for receiving gas from the outside of the cryopump 10 into the internal space 14. The shield main opening 34 is located at the air inlet 12.
 放射シールド30は、シールド主開口34を定めるシールド前端36と、シールド主開口34と反対側に位置するシールド底部38と、シールド前端36をシールド底部38に接続するシールド側部40と、を備える。シールド側部40は、軸方向にシールド前端36からシールド主開口34と反対側へと延在し、周方向に第2冷却ステージ24を包囲するよう延在する。 The radiation shield 30 includes a shield front end 36 that defines the shield main opening 34, a shield bottom 38 that is located on the opposite side of the shield main opening 34, and a shield side 40 that connects the shield front end 36 to the shield bottom 38. The shield side portion 40 extends in the axial direction from the shield front end 36 to the side opposite to the shield main opening 34, and extends in the circumferential direction so as to surround the second cooling stage 24.
 シールド側部40は、冷凍機構造部21が挿入されるシールド側部開口44を有する。シールド側部開口44を通じて放射シールド30の外から第2冷却ステージ24及び第2シリンダ25が放射シールド30の中に挿入される。シールド側部開口44は、シールド側部40に形成された取付穴であり、例えば円形である。第1冷却ステージ22は放射シールド30の外に配置されている。 The shield side part 40 has a shield side part opening 44 into which the refrigerator structure part 21 is inserted. The second cooling stage 24 and the second cylinder 25 are inserted into the radiation shield 30 from outside the radiation shield 30 through the shield side opening 44. The shield side part opening 44 is an attachment hole formed in the shield side part 40, and is circular, for example. The first cooling stage 22 is disposed outside the radiation shield 30.
 シールド側部40は、冷凍機16の取付座46を備える。取付座46は、第1冷却ステージ22を放射シールド30に取り付けるための平坦部分であり、放射シールド30の外から見てわずかに窪んでいる。取付座46は、シールド側部開口44の外周を形成する。第1冷却ステージ22が取付座46に取り付けられることによって、放射シールド30が第1冷却ステージ22に熱的に結合されている。 The shield side portion 40 includes a mounting seat 46 for the refrigerator 16. The mounting seat 46 is a flat portion for mounting the first cooling stage 22 to the radiation shield 30 and is slightly recessed when viewed from the outside of the radiation shield 30. The mounting seat 46 forms the outer periphery of the shield side opening 44. The radiation shield 30 is thermally coupled to the first cooling stage 22 by attaching the first cooling stage 22 to the mounting seat 46.
 このように放射シールド30を第1冷却ステージ22に直接取り付けることに代えて、ある実施形態においては、放射シールド30は、追加の伝熱部材を介して第1冷却ステージ22に熱的に結合されていてもよい。伝熱部材は、例えば、両端にフランジを有する中空の短筒であってもよい。伝熱部材は、その一端のフランジにより取付座46に固定され、他端のフランジにより第1冷却ステージ22に固定されてもよい。伝熱部材は、冷凍機構造部21を囲んで第1冷却ステージ22から放射シールド30に延在してもよい。シールド側部40は、こうした伝熱部材を含んでもよい。 Instead of attaching the radiation shield 30 directly to the first cooling stage 22 in this manner, in some embodiments, the radiation shield 30 is thermally coupled to the first cooling stage 22 via an additional heat transfer member. It may be. The heat transfer member may be a hollow short cylinder having flanges at both ends, for example. The heat transfer member may be fixed to the mounting seat 46 by a flange at one end and fixed to the first cooling stage 22 by a flange at the other end. The heat transfer member may extend from the first cooling stage 22 to the radiation shield 30 so as to surround the refrigerator structure 21. The shield side part 40 may include such a heat transfer member.
 図示される実施形態においては、放射シールド30は一体の筒状に構成されている。これに代えて、放射シールド30は、複数のパーツにより全体として筒状の形状をなすように構成されていてもよい。これら複数のパーツは互いに間隙を有して配設されていてもよい。例えば、放射シールド30は軸方向に2つの部分に分割されていてもよい。この場合、放射シールド30の上部は、両端が開放された筒であり、シールド前端36とシールド側部40の第1部分とを備える。放射シールド30の下部も両端が開放された筒であり、シールド側部40の第2部分とシールド底部38とを備える。シールド側部40の第1部分と第2部分との間には周方向に延びるスリットが形成されている。このスリットが、シールド側部開口44の少なくとも一部を形成してもよい。あるいは、シールド側部開口44は、その上半分がシールド側部40の第1部分に形成され、下半分がシールド側部40の第2部分に形成されてもよい。 In the illustrated embodiment, the radiation shield 30 is configured as an integral cylinder. Instead of this, the radiation shield 30 may be configured to have a tubular shape as a whole by a plurality of parts. The plurality of parts may be arranged with a gap therebetween. For example, the radiation shield 30 may be divided into two parts in the axial direction. In this case, the upper part of the radiation shield 30 is a cylinder whose both ends are open, and includes a shield front end 36 and a first portion of the shield side part 40. The lower part of the radiation shield 30 is also a cylinder open at both ends, and includes a second part of the shield side part 40 and a shield bottom part 38. A slit extending in the circumferential direction is formed between the first portion and the second portion of the shield side portion 40. This slit may form at least a part of the shield side opening 44. Alternatively, the upper half of the shield side opening 44 may be formed in the first part of the shield side part 40, and the lower half may be formed in the second part of the shield side part 40.
 放射シールド30は、第2クライオパネルユニット20を囲むガス受入空間50を、吸気口12とシールド底部38との間に形成する。ガス受入空間50は、クライオポンプ10の内部空間14の一部であり、第2クライオパネルユニット20に径方向に隣接する領域である。 The radiation shield 30 forms a gas receiving space 50 surrounding the second cryopanel unit 20 between the air inlet 12 and the shield bottom 38. The gas receiving space 50 is a part of the internal space 14 of the cryopump 10 and is a region adjacent to the second cryopanel unit 20 in the radial direction.
 入口クライオパネル32は、クライオポンプ10の外部の熱源(例えば、クライオポンプ10が取り付けられる真空チャンバ内の熱源)からの輻射熱から第2クライオパネルユニット20を保護するために、吸気口12(またはシールド主開口34、以下同様)に設けられている。また、入口クライオパネル32の冷却温度で凝縮する気体(例えば水分)がその表面に捕捉される。 The inlet cryopanel 32 is configured to protect the second cryopanel unit 20 from radiant heat from a heat source outside the cryopump 10 (for example, a heat source in a vacuum chamber to which the cryopump 10 is attached). Main opening 34, and so on). Further, a gas (for example, moisture) that condenses at the cooling temperature of the inlet cryopanel 32 is captured on the surface thereof.
 入口クライオパネル32は、吸気口12において第2クライオパネルユニット20に対応する場所に配置されている。入口クライオパネル32は、吸気口12の開口面積の中心部分を占有し、放射シールド30との間に環状の開放領域51を形成する。開放領域51は、吸気口12においてガス受入空間50に対応する場所にある。ガス受入空間50が第2クライオパネルユニット20を囲むように内部空間14の外周部にあるので、開放領域51は、吸気口12の外周部に位置する。開放領域51はガス受入空間50の入口であり、クライオポンプ10は、開放領域51を通じてガス受入空間50にガスを受け入れる。 The inlet cryopanel 32 is disposed at a location corresponding to the second cryopanel unit 20 at the air inlet 12. The inlet cryopanel 32 occupies the central portion of the opening area of the air inlet 12, and forms an annular open region 51 with the radiation shield 30. The open area 51 is at a location corresponding to the gas receiving space 50 in the intake port 12. Since the gas receiving space 50 is on the outer peripheral portion of the internal space 14 so as to surround the second cryopanel unit 20, the open region 51 is located on the outer peripheral portion of the intake port 12. The open area 51 is an inlet of the gas receiving space 50, and the cryopump 10 receives gas into the gas receiving space 50 through the open area 51.
 入口クライオパネル32は取付部材(図示せず)を介してシールド前端36に取り付けられる。こうして入口クライオパネル32は放射シールド30に固定され、放射シールド30に熱的に接続されている。入口クライオパネル32は第2クライオパネルユニット20に近接しているが、接触はしていない。 The inlet cryopanel 32 is attached to the shield front end 36 via an attachment member (not shown). Thus, the inlet cryopanel 32 is fixed to the radiation shield 30 and is thermally connected to the radiation shield 30. The inlet cryopanel 32 is close to the second cryopanel unit 20 but is not in contact with it.
 入口クライオパネル32は、吸気口12に配設される平面的な構造を備える。入口クライオパネル32は例えば、同心円状または格子状に形成されたルーバーまたはシェブロンを備えてもよいし、平板(例えば円板)のプレートを備えてもよい。入口クライオパネル32は、吸気口12の全体を横断するように配設されていてもよい。その場合、開放領域51は、プレートの一部を欠落させ、または、ルーバーまたはシェブロンの一部の羽板を欠落させることによって形成されていてもよい。 The inlet cryopanel 32 has a planar structure disposed at the air inlet 12. The inlet cryopanel 32 may include, for example, a louver or chevron formed concentrically or in a lattice shape, or may include a flat plate (for example, a circular plate). The inlet cryopanel 32 may be disposed so as to cross the entire inlet 12. In that case, the open area | region 51 may be formed by missing a part of plate, or missing the louver of a part of louver or chevron.
 第2クライオパネルユニット20は、クライオポンプ10の内部空間14の中心部に設けられている。第2クライオパネルユニット20は、複数のクライオパネル60と、パネル取付部材62と、を備える。パネル取付部材62は、第2冷却ステージ24から軸方向に上方および下方に向けて延びている。第2クライオパネルユニット20は、パネル取付部材62を介して第2冷却ステージ24に取り付けられている。このようにして、第2クライオパネルユニット20は、第2冷却ステージ24に熱的に接続されている。よって、第2クライオパネルユニット20は第2冷却温度に冷却される。 The second cryopanel unit 20 is provided in the center of the internal space 14 of the cryopump 10. The second cryopanel unit 20 includes a plurality of cryopanels 60 and a panel mounting member 62. The panel attachment member 62 extends upward and downward in the axial direction from the second cooling stage 24. The second cryopanel unit 20 is attached to the second cooling stage 24 via a panel attachment member 62. In this way, the second cryopanel unit 20 is thermally connected to the second cooling stage 24. Therefore, the second cryopanel unit 20 is cooled to the second cooling temperature.
 第2クライオパネルユニット20においては、少なくとも一部の表面に吸着領域64が形成されている。吸着領域64は非凝縮性気体(例えば水素)を吸着により捕捉するために設けられている。吸着領域64は、吸気口12から見えないように、上方に隣接するクライオパネル60の陰となる場所に形成されている。つまり、吸着領域64は各クライオパネル60の上面中心部と下面全域に形成されている。ただし、トップクライオパネル60aの上面に吸着領域64は設けられていない。吸着領域64は例えば吸着材(例えば活性炭)をクライオパネル表面に接着することにより形成される。 In the second cryopanel unit 20, an adsorption region 64 is formed on at least a part of the surface. The adsorption region 64 is provided for capturing a non-condensable gas (for example, hydrogen) by adsorption. The adsorption region 64 is formed in a location behind the cryopanel 60 adjacent above so as not to be seen from the air inlet 12. That is, the suction region 64 is formed in the upper surface central portion and the entire lower surface of each cryopanel 60. However, the suction region 64 is not provided on the upper surface of the top cryopanel 60a. The adsorption region 64 is formed by adhering an adsorbent (for example, activated carbon) to the cryopanel surface, for example.
 また、第2クライオパネルユニット20の少なくとも一部の表面には凝縮性気体を凝縮により捕捉するための凝縮領域66が形成されている。凝縮領域66は例えば、クライオパネル表面上で吸着材の欠落した区域であり、クライオパネル基材表面例えば金属面が露出されている。 Further, a condensing region 66 for capturing condensable gas by condensation is formed on at least a part of the surface of the second cryopanel unit 20. The condensation area 66 is, for example, an area where the adsorbent is missing on the cryopanel surface, and the cryopanel substrate surface, for example, a metal surface is exposed.
 複数のクライオパネル60が、シールド主開口34からシールド底部38へと向かう方向に沿って(即ち中心軸Aに沿って)パネル取付部材62上に配列されている。複数のクライオパネル60はそれぞれ中心軸Aに垂直に延在する平板(例えば円板)であり、互いに平行にパネル取付部材62に取り付けられている。説明の便宜上、複数のクライオパネル60のうち最も吸気口12に近いものをトップクライオパネル60aと呼び、複数のクライオパネル60のうち最もシールド底部38に近いものをボトムクライオパネル60bと呼ぶことがある。 A plurality of cryopanels 60 are arranged on the panel mounting member 62 along the direction from the shield main opening 34 toward the shield bottom 38 (that is, along the central axis A). Each of the plurality of cryopanels 60 is a flat plate (for example, a circular plate) extending perpendicularly to the central axis A, and is attached to the panel attachment member 62 in parallel with each other. For convenience of explanation, the one closest to the inlet 12 among the plurality of cryopanels 60 may be referred to as the top cryopanel 60a, and the one closest to the shield bottom 38 among the plurality of cryopanels 60 may be referred to as the bottom cryopanel 60b. .
 第2クライオパネルユニット20は、吸気口12とシールド底部38との間で軸方向に沿って細長く延びている。第2クライオパネルユニット20の軸方向の垂直投影の外形寸法よりも、軸方向における第2クライオパネルユニット20の上端から下端までの距離は長い。例えば、クライオパネル60の幅または直径よりも、トップクライオパネル60aとボトムクライオパネル60bとの間隔が大きい。 The second cryopanel unit 20 extends elongated along the axial direction between the air inlet 12 and the shield bottom 38. The distance from the upper end to the lower end of the second cryopanel unit 20 in the axial direction is longer than the external dimension of the vertical projection of the second cryopanel unit 20 in the axial direction. For example, the distance between the top cryopanel 60a and the bottom cryopanel 60b is larger than the width or diameter of the cryopanel 60.
 複数のクライオパネル60は図示されるようにそれぞれ同一形状を有してもよいし、異なる形状(例えば異なる径)を有してもよい。複数のクライオパネル60のうちあるクライオパネル60は、その上方に隣接するクライオパネル60と同一形状を有するか、または大型であってもよい。その結果、ボトムクライオパネル60bはトップクライオパネル60aより大きくてもよい。ボトムクライオパネル60bの面積は、トップクライオパネル60aの面積の約1.5倍~約5倍であってもよい。 The plurality of cryopanels 60 may have the same shape as illustrated, or may have different shapes (for example, different diameters). A certain cryopanel 60 among the plurality of cryopanels 60 may have the same shape as that of the cryopanel 60 adjacent above the cryopanel 60 or may be large. As a result, the bottom cryopanel 60b may be larger than the top cryopanel 60a. The area of the bottom cryopanel 60b may be about 1.5 times to about 5 times the area of the top cryopanel 60a.
 また、複数のクライオパネル60の間隔は図示されるように一定であってもよいし、互いに異なっていてもよい。 Further, the intervals between the plurality of cryopanels 60 may be constant as shown in the figure, or may be different from each other.
 クライオポンプハウジング70は、第1クライオパネルユニット18、第2クライオパネルユニット20、及び冷凍機16を収容するクライオポンプ10の筐体であり、内部空間14の真空気密を保持するよう構成されている真空容器である。クライオポンプハウジング70は、第1クライオパネルユニット18及び冷凍機構造部21を非接触に包含する。クライオポンプハウジング70は、冷凍機16の室温部26に取り付けられている。 The cryopump housing 70 is a housing of the cryopump 10 that houses the first cryopanel unit 18, the second cryopanel unit 20, and the refrigerator 16, and is configured to maintain the vacuum airtightness of the internal space 14. It is a vacuum vessel. The cryopump housing 70 includes the first cryopanel unit 18 and the refrigerator structure portion 21 in a non-contact manner. The cryopump housing 70 is attached to the room temperature portion 26 of the refrigerator 16.
 クライオポンプハウジング70の前端によって、吸気口12が画定されている。クライオポンプハウジング70は、その前端から径方向外側に向けて延びている吸気口フランジ72を備える。吸気口フランジ72は、クライオポンプハウジング70の全周にわたって設けられている。クライオポンプ10は、吸気口フランジ72を用いて真空排気対象の真空チャンバに取り付けられる。 The inlet 12 is defined by the front end of the cryopump housing 70. The cryopump housing 70 includes an inlet flange 72 that extends radially outward from its front end. The inlet flange 72 is provided over the entire circumference of the cryopump housing 70. The cryopump 10 is attached to a vacuum chamber to be evacuated using an intake port flange 72.
 上記の構成のクライオポンプ10の真空排気運転を以下に説明する。クライオポンプ10の作動に際しては、まずその作動前に他の適当な粗引きポンプで真空チャンバ内部を1Pa程度にまで粗引きする。その後、クライオポンプ10を作動させる。冷凍機16の駆動により第1冷却ステージ22及び第2冷却ステージ24がそれぞれ第1冷却温度及び第2冷却温度に冷却される。よって、これらに熱的に結合されている第1クライオパネルユニット18、第2クライオパネルユニット20もそれぞれ第1冷却温度及び第2冷却温度に冷却される。 The vacuum evacuation operation of the cryopump 10 having the above configuration will be described below. When the cryopump 10 is operated, the vacuum chamber is first roughed to about 1 Pa with another appropriate roughing pump before the operation. Thereafter, the cryopump 10 is operated. The first cooling stage 22 and the second cooling stage 24 are cooled to the first cooling temperature and the second cooling temperature, respectively, by driving the refrigerator 16. Therefore, the first cryopanel unit 18 and the second cryopanel unit 20 that are thermally coupled to these are also cooled to the first cooling temperature and the second cooling temperature, respectively.
 入口クライオパネル32は、真空チャンバからクライオポンプ10に向かって飛来する気体を冷却する。入口クライオパネル32の表面には、第1冷却温度で蒸気圧が充分に低い(例えば10-8Pa以下の)気体が凝縮する。この気体は、第1種気体と称されてもよい。第1種気体は例えば水蒸気である。こうして、入口クライオパネル32は、第1種気体を排気することができる。第1冷却温度で蒸気圧が充分に低くない気体の一部は、吸気口12から内部空間14へと進入する。あるいは、気体の他の一部は、入口クライオパネル32で反射され、内部空間14に進入しない。 The inlet cryopanel 32 cools the gas flying from the vacuum chamber toward the cryopump 10. A gas having a sufficiently low vapor pressure (for example, 10 −8 Pa or less) condenses on the surface of the inlet cryopanel 32 at the first cooling temperature. This gas may be referred to as a first type gas. The first type gas is, for example, water vapor. Thus, the inlet cryopanel 32 can exhaust the first type gas. A part of the gas whose vapor pressure is not sufficiently low at the first cooling temperature enters the internal space 14 from the air inlet 12. Alternatively, the other part of the gas is reflected by the inlet cryopanel 32 and does not enter the internal space 14.
 内部空間14に進入した気体は、第2クライオパネルユニット20によって冷却される。第2クライオパネルユニット20の表面には、第2冷却温度で蒸気圧が充分に低い(例えば10-8Pa以下の)気体が凝縮する。この気体は、第2種気体と称されてもよい。第2種気体は例えばアルゴンである。こうして、第2クライオパネルユニット20は、第2種気体を排気することができる。 The gas that has entered the internal space 14 is cooled by the second cryopanel unit 20. A gas having a sufficiently low vapor pressure (for example, 10 −8 Pa or less) is condensed on the surface of the second cryopanel unit 20 at the second cooling temperature. This gas may be referred to as a second type gas. The second type gas is, for example, argon. Thus, the second cryopanel unit 20 can exhaust the second type gas.
 第2冷却温度で蒸気圧が充分に低くない気体は、第2クライオパネルユニット20の吸着材に吸着される。この気体は、第3種気体と称されてもよい。第3種気体は例えば水素である。こうして、第2クライオパネルユニット20は、第3種気体を排気することができる。したがって、クライオポンプ10は、種々の気体を凝縮または吸着により排気し、真空チャンバの真空度を所望のレベルに到達させることができる。 The gas whose vapor pressure is not sufficiently low at the second cooling temperature is adsorbed by the adsorbent of the second cryopanel unit 20. This gas may be referred to as a third type gas. The third type gas is, for example, hydrogen. Thus, the second cryopanel unit 20 can exhaust the third type gas. Therefore, the cryopump 10 can exhaust various gases by condensation or adsorption, and can reach the desired vacuum level of the vacuum chamber.
 排気運転が継続されることによりクライオポンプ10には気体が蓄積されていく。蓄積した気体を外部に排出するために、クライオポンプ10の再生が行われる。 The gas is accumulated in the cryopump 10 by continuing the exhaust operation. In order to discharge the accumulated gas to the outside, the cryopump 10 is regenerated.
(第3実施形態)
 図3は、第3実施形態に係るクライオポンプ10を概略的に示す。
(Third embodiment)
FIG. 3 schematically shows a cryopump 10 according to the third embodiment.
 クライオポンプ10は、第1冷却ステージ22に熱的に結合され、冷凍機収容部76と冷凍機16との隙間に配置された伝熱部材88を備える。図示される伝熱部材88は、2本の伝熱棒を含むが、1本または3本以上の伝熱棒を含んでもよい。伝熱部材88は、第1冷却ステージ22と同様に、高熱伝導率材料、例えば銅で形成されている。 The cryopump 10 includes a heat transfer member 88 that is thermally coupled to the first cooling stage 22 and disposed in a gap between the refrigerator housing unit 76 and the refrigerator 16. The illustrated heat transfer member 88 includes two heat transfer rods, but may include one or three or more heat transfer rods. Similar to the first cooling stage 22, the heat transfer member 88 is formed of a high thermal conductivity material, such as copper.
 伝熱部材88は、一端が第1冷却ステージ22に固定され、他端が冷凍機収容部76の基部76bの近傍に位置する。伝熱部材88は、冷凍機収容部76と第1シリンダ23との間で第1シリンダ23に沿って延びている。伝熱部材88は、第1シリンダ23と平行に直線的に延びていてもよいし、湾曲して(例えば第1シリンダ23のまわりをらせん状に)延びていてもよい。伝熱部材88の形状は任意である。 One end of the heat transfer member 88 is fixed to the first cooling stage 22, and the other end is located in the vicinity of the base portion 76 b of the refrigerator housing portion 76. The heat transfer member 88 extends along the first cylinder 23 between the refrigerator housing portion 76 and the first cylinder 23. The heat transfer member 88 may extend linearly in parallel with the first cylinder 23, or may be curved (for example, spirally around the first cylinder 23). The shape of the heat transfer member 88 is arbitrary.
 伝熱部材88の末端は、冷凍機16の室温部26から僅かに離れており、室温部26とは物理的に非接触である。伝熱部材88と室温部26との距離は例えば数mm程度である。伝熱部材88は、第1シリンダ23とも接触していない。 The end of the heat transfer member 88 is slightly separated from the room temperature part 26 of the refrigerator 16 and is not physically in contact with the room temperature part 26. The distance between the heat transfer member 88 and the room temperature portion 26 is, for example, about several mm. The heat transfer member 88 is not in contact with the first cylinder 23.
 冷凍機16は、いわゆる逆転昇温を可能とする。冷凍機16は、逆転可能モータ90を備え、逆転可能モータ90の回転方向に応じて第1冷却ステージ22及び第2冷却ステージ24冷却と加熱とを切り替えるよう構成されている。第1冷却ステージ22が冷却されるとき伝熱部材88も冷却され、第1冷却ステージ22が加熱されるとき伝熱部材88も加熱される。逆転可能モータ90は、室温部26に収容されている。冷凍機16の逆転昇温をクライオポンプ10の再生のための熱源として用いることは、既によく知られているので、ここではその詳細は述べない。 The refrigerator 16 enables so-called reverse temperature increase. The refrigerator 16 includes a reversible motor 90 and is configured to switch between cooling and heating of the first cooling stage 22 and the second cooling stage 24 according to the rotation direction of the reversible motor 90. When the first cooling stage 22 is cooled, the heat transfer member 88 is also cooled, and when the first cooling stage 22 is heated, the heat transfer member 88 is also heated. The reversible motor 90 is accommodated in the room temperature portion 26. Since it is already well known that the reverse temperature rise of the refrigerator 16 is used as a heat source for the regeneration of the cryopump 10, details thereof will not be described here.
 なお、第1冷却ステージ22に電気ヒータなどの加熱要素が配置され、これにより伝熱部材88が加熱されてもよい。 It should be noted that a heating element such as an electric heater may be disposed on the first cooling stage 22 so that the heat transfer member 88 may be heated.
 図示されるクライオポンプ10の縦向き配置の場合、伝熱部材88の末端が冷凍機収容部76の底に溜まる水に浸りうる。よって、第1冷却ステージ22によって加熱された伝熱部材88は、冷凍機収容部76の底に溜まる水を加熱することができる。第3実施形態に係るクライオポンプ10によっても、第1実施形態に係るクライオポンプ10と同様に、水を効率的に排出し再生時間を短縮することができる。 In the case of the vertically arranged cryopump 10 shown in the figure, the end of the heat transfer member 88 can be immersed in the water accumulated at the bottom of the refrigerator accommodating portion 76. Therefore, the heat transfer member 88 heated by the first cooling stage 22 can heat the water accumulated at the bottom of the refrigerator housing unit 76. Similarly to the cryopump 10 according to the first embodiment, the cryopump 10 according to the third embodiment can efficiently discharge water and shorten the regeneration time.
 クライオポンプ10は、第1ヒータ84と伝熱部材88の組み合わせ、または、第2ヒータ86と伝熱部材88の組み合わせを備えてもよい。クライオポンプ10は、第1ヒータ84、第2ヒータ86、及び伝熱部材88を備えてもよい。 The cryopump 10 may include a combination of the first heater 84 and the heat transfer member 88 or a combination of the second heater 86 and the heat transfer member 88. The cryopump 10 may include a first heater 84, a second heater 86, and a heat transfer member 88.
 以上、本発明を実施例にもとづいて説明した。本発明は上記実施形態に限定されず、種々の設計変更が可能であり、様々な変形例が可能であること、またそうした変形例も本発明の範囲にあることは、当業者に理解されるところである。 The present invention has been described above based on the embodiments. It will be understood by those skilled in the art that the present invention is not limited to the above-described embodiment, and various design changes are possible, various modifications are possible, and such modifications are within the scope of the present invention. By the way.
 上記の説明においては横型のクライオポンプを例示したが、本発明は、縦型その他のクライオポンプにも適用可能である。なお、縦型のクライオポンプとは、冷凍機16がクライオポンプ10の中心軸Aに沿って配設されているクライオポンプをいう。この場合、クライオポンプハウジング70においては、冷凍機16を挿通する開口がハウジング底面70aに形成される。冷凍機収容部76はこの開口から冷凍機16の室温部26へと延び、シールド収容部74を室温部26に接続する。第1ヒータ84が、冷凍機収容部76の外面、例えば、冷凍機収容部76の基部76bの外面に配置されてもよい。第2ヒータ86が、ハウジング底面70aに配置されてもよい。 In the above description, a horizontal cryopump is illustrated, but the present invention can also be applied to other vertical cryopumps. The vertical cryopump refers to a cryopump in which the refrigerator 16 is disposed along the central axis A of the cryopump 10. In this case, in the cryopump housing 70, an opening through which the refrigerator 16 is inserted is formed in the housing bottom surface 70a. The refrigerator accommodating portion 76 extends from this opening to the room temperature portion 26 of the refrigerator 16, and connects the shield accommodating portion 74 to the room temperature portion 26. The first heater 84 may be disposed on the outer surface of the refrigerator housing portion 76, for example, the outer surface of the base portion 76 b of the refrigerator housing portion 76. The second heater 86 may be disposed on the housing bottom surface 70a.
 10 クライオポンプ、 12 吸気口、 16 冷凍機、 22 第1冷却ステージ、 24 第2冷却ステージ、 26 室温部、 30 放射シールド、 70 クライオポンプハウジング、 70a ハウジング底面、 74 シールド収容部、 76 冷凍機収容部、 84 第1ヒータ、 86 第2ヒータ、 88 伝熱部材、 90 逆転可能モータ。 10 cryopump, 12 inlet, 16 freezer, 22 1st cooling stage, 24 2nd cooling stage, 26 room temperature section, 30 radiation shield, 70 cryopump housing, 70a housing bottom, 74 shield housing section, 76 refrigerator housing Part, 84, first heater, 86, second heater, 88 heat transfer member, 90 reversible motor.
 本発明は、クライオポンプの分野における利用が可能である。 The present invention can be used in the field of cryopumps.

Claims (5)

  1.  室温部と第1冷却ステージと第2冷却ステージとを備える冷凍機と、
     前記第1冷却ステージに熱的に結合され、前記第2冷却ステージと非接触に前記第2冷却ステージを囲む放射シールドと、
     クライオポンプ吸気口を有し、前記クライオポンプ吸気口と反対側にハウジング底面を備え、前記放射シールドと非接触に前記放射シールドを囲むシールド収容部と、前記シールド収容部を前記冷凍機の前記室温部に接続する冷凍機収容部と、を備えるクライオポンプハウジングと、
     前記クライオポンプハウジングの外から中に熱を与えるよう前記冷凍機収容部の外面または前記ハウジング底面に配置されたヒータと、を備えることを特徴とするクライオポンプ。
    A refrigerator having a room temperature section, a first cooling stage, and a second cooling stage;
    A radiation shield that is thermally coupled to the first cooling stage and surrounds the second cooling stage in non-contact with the second cooling stage;
    A cryopump air inlet, a housing bottom surface on the opposite side of the cryopump air inlet, a shield housing portion surrounding the radiation shield in a non-contact manner with the radiation shield, and the shield housing portion serving as the room temperature of the refrigerator A cryopump housing comprising a refrigerator housing unit connected to the unit,
    A cryopump comprising: a heater disposed on an outer surface of the refrigerator housing portion or a bottom surface of the housing so as to apply heat from the outside to the inside of the cryopump housing.
  2.  前記ヒータは、前記室温部に隣接する前記冷凍機収容部の基部の外面に配置されていることを特徴とする請求項1に記載のクライオポンプ。 The cryopump according to claim 1, wherein the heater is disposed on an outer surface of a base portion of the refrigerator housing portion adjacent to the room temperature portion.
  3.  前記第1冷却ステージに熱的に結合され、前記冷凍機収容部と前記冷凍機との隙間に配置された伝熱部材をさらに備えることを特徴とする請求項1または2に記載のクライオポンプ。 The cryopump according to claim 1 or 2, further comprising a heat transfer member that is thermally coupled to the first cooling stage and disposed in a gap between the refrigerator housing portion and the refrigerator.
  4.  前記冷凍機は、逆転可能モータを備え、前記逆転可能モータの回転方向に応じて前記第1冷却ステージ及び前記伝熱部材の冷却と加熱とを切り替えるよう構成されていることを特徴とする請求項3に記載のクライオポンプ。 The refrigerating machine includes a reversible motor, and is configured to switch between cooling and heating of the first cooling stage and the heat transfer member according to a rotation direction of the reversible motor. 3. The cryopump according to 3.
  5.  室温部と第1冷却ステージと第2冷却ステージとを備える冷凍機と、
     前記第1冷却ステージに熱的に結合され、前記第2冷却ステージを囲む放射シールドと、
     クライオポンプ吸気口を有し、前記クライオポンプ吸気口と反対側にハウジング底面を備え、前記放射シールドと非接触に前記放射シールドを囲むシールド収容部と、前記シールド収容部を前記冷凍機の前記室温部に接続する冷凍機収容部と、を備えるクライオポンプハウジングと、
     前記第1冷却ステージに熱的に結合され、前記冷凍機収容部と前記冷凍機との隙間に配置された伝熱部材と、を備えることを特徴とするクライオポンプ。
    A refrigerator having a room temperature section, a first cooling stage, and a second cooling stage;
    A radiation shield thermally coupled to the first cooling stage and surrounding the second cooling stage;
    A cryopump air inlet, a housing bottom surface on the opposite side of the cryopump air inlet, a shield housing portion surrounding the radiation shield in a non-contact manner with the radiation shield, and the shield housing portion serving as the room temperature of the refrigerator A cryopump housing comprising a refrigerator housing unit connected to the unit,
    A cryopump comprising: a heat transfer member thermally coupled to the first cooling stage and disposed in a gap between the refrigerator housing portion and the refrigerator.
PCT/JP2018/008132 2017-03-10 2018-03-02 Cryopump WO2018164011A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880005340.XA CN110352301B (en) 2017-03-10 2018-03-02 Low-temperature pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-046442 2017-03-10
JP2017046442A JP6762672B2 (en) 2017-03-10 2017-03-10 Cryopump

Publications (1)

Publication Number Publication Date
WO2018164011A1 true WO2018164011A1 (en) 2018-09-13

Family

ID=63447600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008132 WO2018164011A1 (en) 2017-03-10 2018-03-02 Cryopump

Country Status (4)

Country Link
JP (1) JP6762672B2 (en)
CN (1) CN110352301B (en)
TW (1) TWI655365B (en)
WO (1) WO2018164011A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223538A (en) * 2007-03-09 2008-09-25 Canon Anelva Technix Corp Cryopump
JP2016153617A (en) * 2015-02-20 2016-08-25 住友重機械工業株式会社 Cryopump system, cryopump control device and cryopump regeneration method
JP2016160884A (en) * 2015-03-04 2016-09-05 住友重機械工業株式会社 Cryopump system, cryopump control device and cryopump regeneration method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH652804A5 (en) * 1981-03-10 1985-11-29 Balzers Hochvakuum Method for regenerating the low-temperature condensation surfaces of a cryopump and cryopump appliance for implementing the method
CA2250453A1 (en) * 1996-03-26 1997-10-02 D'arcy H. Lorimer Combination cryopump/getter pump and method for regenerating same
DE10331201A1 (en) * 2003-07-10 2005-01-27 Leybold Vakuum Gmbh cryopump
JP4150745B2 (en) * 2006-05-02 2008-09-17 住友重機械工業株式会社 Cryopump and regeneration method thereof
JP5028142B2 (en) * 2007-05-17 2012-09-19 キヤノンアネルバ株式会社 Cryo trap
WO2010002884A2 (en) * 2008-07-01 2010-01-07 Brooks Automation, Inc. Method and apparatus for providing temperature control to a cryopump
JP6084119B2 (en) * 2013-05-27 2017-02-22 住友重機械工業株式会社 Cryopump

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223538A (en) * 2007-03-09 2008-09-25 Canon Anelva Technix Corp Cryopump
JP2016153617A (en) * 2015-02-20 2016-08-25 住友重機械工業株式会社 Cryopump system, cryopump control device and cryopump regeneration method
JP2016160884A (en) * 2015-03-04 2016-09-05 住友重機械工業株式会社 Cryopump system, cryopump control device and cryopump regeneration method

Also Published As

Publication number Publication date
CN110352301B (en) 2021-01-08
JP6762672B2 (en) 2020-09-30
CN110352301A (en) 2019-10-18
TWI655365B (en) 2019-04-01
JP2018150846A (en) 2018-09-27
TW201833439A (en) 2018-09-16

Similar Documents

Publication Publication Date Title
JP6124626B2 (en) Cryopump and regeneration method thereof
TWI624594B (en) Cryopump
KR101047398B1 (en) Cryopump and vacuum exhaust method
KR101045488B1 (en) Vacuum processing apparatus with cryo trap and cryo trap
KR102499169B1 (en) cryopump
TWI688710B (en) Cryopump
KR102663120B1 (en) cryopump
WO2018164011A1 (en) Cryopump
TWI614406B (en) Cryopump
TWI697621B (en) Cryopump
JP6857046B2 (en) Cryopump
JP4751405B2 (en) Cryopump
KR20060013344A (en) Cryo pump
JP2011117464A (en) Cryopump
TWI825586B (en) cryopump
TWI845097B (en) Cryogenic pump
JP2009281363A (en) Cryopump
TWI570326B (en) Low temperature pump and cryogenic pump installation structure
JP2011153629A (en) Cryopump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18763927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18763927

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载