+

WO2018164078A1 - 建築作業機械における回転部材の回転中心取得方法 - Google Patents

建築作業機械における回転部材の回転中心取得方法 Download PDF

Info

Publication number
WO2018164078A1
WO2018164078A1 PCT/JP2018/008413 JP2018008413W WO2018164078A1 WO 2018164078 A1 WO2018164078 A1 WO 2018164078A1 JP 2018008413 W JP2018008413 W JP 2018008413W WO 2018164078 A1 WO2018164078 A1 WO 2018164078A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
rotation
rotation center
center
construction
Prior art date
Application number
PCT/JP2018/008413
Other languages
English (en)
French (fr)
Inventor
貴司 小川
亮一 草場
博 村松
康隆 片山
Original Assignee
株式会社トプコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トプコン filed Critical 株式会社トプコン
Publication of WO2018164078A1 publication Critical patent/WO2018164078A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/10Supports for movable superstructures mounted on travelling or walking gears or on other superstructures
    • E02F9/12Slewing or traversing gears
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00

Definitions

  • the present invention relates to a method for acquiring the rotation center of a rotating member in a construction machine.
  • FIG. 5 is a diagram for explaining a conventional method for acquiring the rotation center of a rotating member
  • (a) is a side view of a hydraulic excavator
  • (b) is a schematic diagram showing acquisition of the rotation center by the conventional method.
  • the excavator 10 includes a moving unit 12 provided with a crawler 11, an upper revolving unit 13 that can be swiveled around a rotation center O1 on the moving unit 12, and a rotating center O2 that can be rotated about the upper revolving unit 13 as a center.
  • a boom 14, an arm 15 disposed on the boom 14 so as to be pivotable about a rotation center O 3, and a bucket 16 disposed on the arm 15 so that the rotation center O 4 can be pivotally driven are provided.
  • the tip of the bucket 16 is a construction end 16a, and it is necessary to accurately acquire the position of the construction end 16a for automatic operation and auxiliary control. Therefore, it is necessary to accurately measure and acquire the dimensions of the upper swing body 13, the boom 14, the arm 15, and the bucket 16, and the positions of the rotation centers O1 to O4.
  • these information can be obtained from the blueprint of the excavator 10, but there are no blueprints or modifications in the existing excavator, and these information are You may not be able to get it. In this case, it is necessary to accurately measure the dimensions of each member and the position of the turning center.
  • the rotation centers O2 to O4 of the boom 14, the arm 15, and the bucket 16 can be observed from the outside in many cases, and it is easy to grasp this position.
  • the rotation center O1 of the upper swing body 13 cannot be observed from the outside.
  • the center of rotation may not be visible. In such a case, it is difficult to quickly and accurately grasp the rotation center of the rotating member.
  • the turning center is often positioned by the reference amount.
  • the estimated center Oa can be set, and the set estimated center Oa and the actual rotation center O1 often do not coincide with each other.
  • the estimation must be repeated by trial and error.
  • Patent Document 1 As a method for acquiring the turning center of each member constituting the construction work machine, Patent Document 1 includes an arm configured to support a construction end via a plurality of movable parts so that the construction machine body can turn.
  • the plurality of position sensors detect the respective states of the plurality of movable parts, and a GPS antenna is provided at a predetermined position of the arm. Based on the three-dimensional position information of the antenna and the outputs from the plurality of position sensors, A technique for calculating the three-dimensional position of the pivot center of the arm is described.
  • Patent Document 1 has a problem that it is necessary to arrange a plurality of position sensors and GPS devices on the construction work machine, which is expensive and the measurement procedure is complicated.
  • This invention is made in view of the subject mentioned above, and provides the rotation center acquisition method of the rotation member in the construction work machine which can acquire the rotation center of the rotation member of a construction work machine easily and reliably. Objective.
  • the invention according to claim 1, which solves the above-mentioned problem, is a method for obtaining the position of the rotation center of a member that is rotatably arranged on a construction machine, and includes one measurement point for a measurement target member that measures the rotation center.
  • the measurement target member is rotated around the rotation center and arranged at at least three different measurement positions. At each measurement position, the coordinates of the measurement points of the measurement target member are measured by a surveying instrument.
  • the rotation center of the rotating member in the construction machine is obtained by calculating the rotation center of the member to be measured from at least three measured coordinates.
  • the invention according to claim 2 is the rotation center acquisition method of the rotating member in the construction machine according to claim 1, wherein the surveying device has its own position, the azimuth angle of the measurement location, the depression angle of the measurement location, or It is a total station that measures the elevation angle and the distance to the measurement location and digitally outputs it.
  • the invention according to claim 3 is the method of obtaining the rotation center of the rotating member in the construction machine according to claim 1, wherein the construction machine is a hydraulic excavator provided with an upper swing body, and the member to be measured Is an upper revolving structure.
  • the invention according to claim 4 is the rotation center acquisition method of the rotating member in the construction machine according to claim 1, wherein the construction machine can swing around the rotation center arranged in the upper swing body.
  • a hydraulic excavator provided with an arm member, wherein the measurement target member is the arm member.
  • the invention according to claim 5 is the rotation center acquisition method of the rotating member in the construction machine according to claim 1, wherein the measurement result is input to a computer, and the calculator calculates the measurement target member from the measurement result. The coordinates of the center of rotation are calculated.
  • the rotation center of the rotation member of the construction machine can be acquired easily and reliably.
  • one measurement point is set on the measurement target member for measuring the rotation center, and the measurement target member is set around the rotation center. Rotate and place in at least three different measurement positions. At each measurement position, measure the coordinates of the measurement point of the measurement target member with the surveying device, and calculate the rotation center of the measurement target member from the measured at least three coordinates. . Therefore, even when the rotation center of the measurement target cannot be visually recognized, the rotation center of the measurement target member can be acquired easily and reliably.
  • the surveying device has its own position, the azimuth angle of the measurement location, the depression angle or elevation angle of the measurement location, and the distance to the measurement location. It is a total station that measures and outputs digitally. Therefore, the coordinates of the measurement point of the construction machine can be accurately and quickly measured and digitally output.
  • the construction work machine is a hydraulic excavator provided with an upper swing body, and the measurement target member is an upper swing body. Therefore, the rotation center in the upper swing body of the hydraulic excavator can be acquired easily and reliably.
  • the excavator provided with the arm member that can swing about the rotation center arranged on the upper swing body. And the member to be measured is an arm member. Therefore, the center of rotation of the arm member of the hydraulic excavator can be acquired easily and reliably.
  • a measurement result is input into a computer and a computer calculates the coordinate of the rotation center of a measurement object member from a measurement result. Therefore, the calculation can be performed automatically and accurately.
  • FIG. It is a schematic diagram which shows the rotation center acquisition method of the rotation member in the construction work machine which concerns on embodiment of this invention, (a) The top view which shows the arrangement
  • FIG. 1 is a schematic view showing a method for acquiring the rotation center of a rotating member in a construction machine according to an embodiment of the present invention, (a) a plan view showing an arrangement state of a hydraulic excavator and a surveying instrument, and (b) a measurement state.
  • FIG. 2 is a block diagram showing a data flow in the method of acquiring the rotation center of the rotating member in the construction work machine.
  • the upper swing body 13 of the hydraulic excavator 10 which is a construction work machine is used as a measurement target member.
  • the upper turning body 13 rotation center O1 is acquired.
  • the excavator 10 includes a moving unit 12 including a crawler 11, an upper swing body 13, a boom 14, an arm 15, and a bucket 16.
  • the upper swing body 13 is rotatable (turnable) in a horizontal plane with respect to the moving unit 12 around the rotation center O1.
  • the boom 14 can rotate (swing) in the vertical direction with respect to the upper swing body 13 around the rotation center O2.
  • the arm 15 can rotate (swing) in the vertical direction with respect to the boom 14 around the rotation center O3.
  • the bucket 16 can rotate (swing) in the vertical direction with respect to the arm 15 about the rotation center O4.
  • the surveying device 20 is disposed on the side of the hydraulic excavator 10 disposed on a plane, and the surveying device 20 sets the construction end 16 a of the bucket 16 as a measurement point.
  • the surveying device 20 sets the construction end 16 a of the bucket 16 as a measurement point.
  • the upper swing body 13 that is a measurement target member is driven to rotate, and the boom 14, arm 15, and bucket 16 are not driven.
  • the upper turning body 13 is rotated and the buckets 16 are arranged at three different positions on the same circumference.
  • reference numeral 21 denotes a tripod for fixing the surveying instrument 20
  • reference numeral 40 denotes an operator.
  • the measurement point can be measured at any position of the upper turning body 13, that is, the upper turning body 13, the boom 14, the arm 15, and the bucket 16. Further, the accuracy of measurement increases as the distance from the rotation center O1 of the upper swing body 13 increases.
  • the surveying device 20 used in the present embodiment is a total station, and measures the azimuth angle of the measurement location, the depression angle or elevation angle surrounding price of the measurement location, and the distance to the measurement location, and outputs them digitally.
  • the surveying instrument 20 can perform measurement in a prism mode that receives and measures reflected light from a mirror or a prism, and a non-prism mode that receives and measures reflected light from a measurement target member.
  • the coordinates of the construction end 16a at three locations ((A), (B), (C) in FIG. 1A) that are the trajectory drawn by the construction end 16a can be acquired.
  • the construction end portion 16a can be measured by arranging a prism on the construction end portion 16a and using the surveying instrument 20 in the prism mode. Note that the construction end 16a may be measured in the non-prism mode.
  • these measurement data are input to the computer 30, and the coordinates of the rotation center O1 of the upper swing body 13 are calculated by software installed in the computer 30.
  • Spreadsheet software can be used as the software installed in the computer 30.
  • FIG. 1B two strings a and b can be identified from the coordinates at the three measurement positions (A), (B), and (C) of the construction end portion 16a.
  • the center of rotation O1 of the upper swing body 13 exists at the intersection of the perpendicular bisectors c and d of the strings a and b.
  • the calculator 30 performs this calculation based on the input measurement data.
  • FIG. 3 is a flowchart showing a process flow of the rotation center acquisition method of the rotating member in the construction work machine.
  • the excavator 10 is placed on the plane G (step ST1).
  • the location where the excavator 10 is disposed is preferably horizontal.
  • the measurement location is determined (step ST2).
  • the construction end 16a located at the tip of the bucket 16 is selected as the measurement location.
  • a prism can be disposed at the construction end 16a.
  • the surveying device 20 is arranged and measurement is started.
  • the construction end 16a of the bucket 16 in the initial state is arranged at one place on the turning circle, and the coordinates of the construction end 16a are measured by the surveying device 20 (step ST3). That is, the measurement is performed with the hydraulic excavator 10 placed first.
  • step ST5 the coordinate measurement of the construction end 16a by the surveying device 20 is performed by turning the upper turning body 13 (step ST5) and repeatedly three times or more (step S4).
  • step ST6 the measurement is terminated (step ST6), and the measurement results, that is, the coordinates at the three positions of the construction end portion 16a are input to the software of the computer 30.
  • the coordinates are specified by (X, Y, H).
  • the calculator 30 performs the above-described calculation (step ST7), and outputs the coordinates of the rotation center O1 of the upper swing body 13.
  • the coordinates of the rotation center of the upper swing body 13 can be acquired easily and accurately. Thereby, it is possible to perform accurate control using this value for automatic operation control of the excavator 10 and driving support.
  • FIG. 4 is a schematic view showing another embodiment of the present invention.
  • the rotation center O2 of the boom 14 that is a swingable arm member of the excavator 10 is acquired.
  • one point 14a is set on the boom 14, and only the boom 14 is rotated without driving other members, and the boom 14 is moved at three locations ((D), (E), (F) in the figure).
  • the coordinates of one point 14a are measured.
  • the rotation center O2 of the boom 14 is acquirable similarly to embodiment mentioned above.
  • rotation center can be obtained in the same manner even when attached to other rotating members, for example, the arm 15 and the bucket 16.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

【課題】建築作業機械の回転部材の回転中心を簡単かつ確実に取得する。 【解決手段】油圧ショベル10に回転可能に配置された上部旋回体13の回転中心O1の位置を取得する方法である。回転中心O1を測定する上部旋回体13に一つの測定点である施工端部16aを設定し(ステップST2)、回転中心O1を中心として、上部旋回体13を回転して、少なくとも3つの異なる測定位置に配置し(ステップST4,5)、各測定位置において、施工端部16aの座標を測量装置で測量し(ステップST3)、測定した少なくとも3つの座標から前記測定対象部材の回転中心を計算する(ステップST7)。

Description

建築作業機械における回転部材の回転中心取得方法
 本発明は建築作業機械における回転する部材の回転中心を取得する方法に関する。
 従来、土木、建設分野では、整地、舗装を行うに際し、建設作業機械として油圧ショベルが使用される。近年この油圧ショベルの操作、油圧ショベル本体の移動や上部旋回体、ブーム、アーム、バケットの駆動や回転を、指定した整地形状にあわせて自動的に制御したり、オペレータによる油圧ショベルの操作を補助したりする制御が行われている。このような制御を行うためには、バケットの刃先の位置(座標)を正確に把握しておく必要がある。このためには、上部旋回体、ブーム、アームの寸法や回転中心の位置を正確に測定する必要がある。
 図5は従来の回転部材の回転中心取得方法を説明する図であり、(a)は油圧ショベルの側面図、(b)は従来の方法による回転中心の取得を示す模式図である。図5(a)に示すように。油圧ショベル10は、クローラ11を備えた移動部12、この移動部12の上に回転中心O1を中心に旋回可能な上部旋回体13、この上部旋回体13に回転中心O2を中心として回転可能なブーム14、このブーム14に回転中心O3を中心に旋回可能に配置されたアーム15、このアーム15に回転中心O4を旋回駆動可能に配置されたバケット16を備える。バケット16の先端は施工端部16aであり、自動運転や補助制御には、この施工端部16aの位置を正確に取得する必要がある。このため、上部旋回体13、ブーム14、アーム15、バケット16の寸法や、各回転中心O1~O4の位置を正確に測定し、取得する必要がある。
 これらの情報は、一般には油圧ショベル10の設計図等から取得することができるが、既存の油圧ショベルの中には、設計図等がなかったり、改造が施されたりして、これらの情報が取得できない場合がある。この場合は各部材の寸法や、旋回中心の位置を正確に測定する必要がある。
 ここで、ブーム14、アーム15、バケット16の回転中心O2~O4は多くの場合において外部から観察でき、この位置を把握することは容易である。しかし、上部旋回体13の回転中心O1は外部から観察できない。また、上部旋回体13のほかにも回転中心を視認できない場合がある。このような場合には、回体部材の回転中心を迅速かつ正確に把握することは難しい。
 このような場合、旋回中心は目分量で位置決めされることが多い。しかし、図5(b)に示すように、この方法では、推定中心Oaしか設定でできず、設定した推定中心Oaと、実際の回転中心O1とが一致しないことが多く、回転中心の位置の推定を試行錯誤で繰り返すほかない。
 建築作業機械を構成する各部材の旋回中心を取得する方法として、特許文献1には、複数の可動部を介して施工端部を支持する構成にしたアームが建設機械本体に旋回可能に設けられており、複数のポジションセンサーが複数の可動部のそれぞれの状態を検出し、GPS用のアンテナがアームの所定位置に設けられ、アンテナの3次元位置情報と複数のポジションセンサーからの出力に基づき、アームの旋回中心の3次元位置を演算する技術が記載されている。
特開2002-181539号公報
 しかし、特許文献1に記載のものは、建築作業機械に複数のポジションセンサーやGPS装置を配置する必要があり費用が嵩むほか、測定の手順が煩雑であるいう問題がある。
 本発明は上述した課題に鑑みてなされたものであり、建築作業機械の回転部材の回転中心を簡単かつ確実に取得することができる建築作業機械における回転部材の回転中心取得方法を提供することを目的とする。
 前記課題を解決する請求項1に記載の発明は建設作業機械に回転可能に配置された部材の回転中心の位置を取得する方法であって、回転中心を測定する測定対象部材に一つの測定点を設定し、前記回転中心を中心として、前記測定対象部材を回転して、少なくとも3つの異なる測定位置に配置し、各測定位置において、前記測定対象部材の測定点の座標を測量装置で測量し、測定した少なくとも3つの座標から前記測定対象部材の回転中心を計算する、ことを特徴とする建築作業機械における回転部材の回転中心取得方法である。
 同じく請求項2に記載の発明は、請求項1に記載の建築作業機械における回転部材の回転中心取得方法において、前記測量装置は、自己の位置、測定箇所の方位角、前記測定箇所の俯角又は仰角、及び前記測定箇所までの距離を測定し、デジタル出力するトータルステーションであることを特徴とする。
 同じく請求項3に記載の発明は、請求項1に記載の建築作業機械における回転部材の回転中心取得方法において、前記建築作業機械が上部旋回体を備えた油圧ショベルでのあり、前記測定対象部材が上部旋回体であることを特徴とする。
 同じく請求項4に記載の発明は、請求項1に記載の建築作業機械における回転部材の回転中心取得方法において、前記建築作業機械が上部旋回体に配置された回転中心を中心として揺動可能な腕部材を備えた油圧ショベルであり、前記測定対象部材が前記腕部材であることを特徴とする。
 同じく請求項5に記載の発明は、請求項1に記載の建築作業機械における回転部材の回転中心取得方法において、計算機に測定結果を入力し、前記計算機が前記測定結果から前記測定対象部材の前記回転中心の座標を演算することを特徴とする。
 本発明に係る建築作業機械における回転部材の回転中心取得方法によれば、建築作業機械の回転部材の回転中心を簡単かつ確実に取得することができる。
 即ち、請求項1に記載の建築作業機械における回転部材の回転中心取得方法によれば、回転中心を測定する測定対象部材に一つの測定点を設定し、回転中心を中心として、測定対象部材を回転して、少なくとも3つの異なる測定位置に配置し、各測定位置において、測定対象部材の測定点の座標を測量装置で測量し、測定した少なくとも3つの座標から測定対象部材の回転中心を計算する。
 よって、測定対象物の回転中心が視認できない場合であっても、簡単かつ確実に測定対象部材の回転中心を取得することができる。
 また、請求項2に記載の建築作業機械における回転部材の回転中心取得方法によれば、測量装置は、自己の位置、測定箇所の方位角、測定箇所の俯角又は仰角、及び測定箇所までの距離を測定し、デジタル出力するトータルステーションである。
 よって、建設作業機械の測定点の座標を正確かつ迅速に測定してデジタル出力することができる。
 また、請求項3に記載の建築作業機械における回転部材の回転中心取得方法によれば、建築作業機械が上部旋回体を備えた油圧ショベルであり、測定対象部材が上部旋回体である。
 よって、油圧ショベルの上部旋回体における回転中心を簡単かつ確実に取得できる。
 更に、請求項4に記載の建築作業機械における回転部材の回転中心取得方法によれば、建築作業機械が上部旋回体に配置された回転中心を中心として揺動可能な腕部材を備えた油圧ショベルであり、測定対象部材が腕部材である。
 よって、油圧ショベルの腕部材における回転中心を簡単かつ確実に取得できる。
 そして、請求項5に記載の建築作業機械における回転部材の回転中心取得方法によれば、計算機に測定結果を入力し、計算機が測定結果から測定対象部材の回転中心の座標を演算する。
 よって、演算を自動的に正確かつ迅速に行うことができる。
本発明の実施形態に係る建築作業機械における回転部材の回転中心取得方法を示す模式図であり、(a)油圧ショベルと測量機の配置状態を示す平面図、(b)は測定状態を示す模式図である。 同建築作業機械における回転部材の回転中心取得方法におけるデータの流れを示すブロック図である。 同建築作業機械における回転部材の回転中心取得方法の処理の流れを示すフローチャートである。 本発明のほかの実施形態を示す模式図である。 従来の回転部材の回転中心取得方法を説明する図であり、(a)は油圧ショベルの側面図、(b)は従来の方法による回転中心の取得を示す模式図である。
 以下、本発明を実施するための形態に係る建築作業機械における回転部材の回転中心取得方法について説明する。図1は本発明の実施形態に係る建築作業機械における回転部材の回転中心取得方法を示す模式図であり、(a)油圧ショベルと測量機の配置状態を示す平面図、(b)は測定状態を示す模式図、図2は同建築作業機械における回転部材の回転中心取得方法におけるデータの流れを示すブロック図である。
 実施形態に係る建築作業機械における回転部材の回転中心取得方法では、図1及び図5(a)に示すように、建設作業機械である油圧ショベル10の上部旋回体13を測定対象部材とし、この上部旋回体13回転中心O1を取得する。油圧ショベル10は、クローラ11を備えた移動部12と、上部旋回体13と、ブーム14と、アーム15と、バケット16を備える。上部旋回体13は回転中心O1を中心として移動部12に対して水平面において回転可能(旋回可能)である。また、ブーム14は、回転中心O2を中心として上部旋回体13に対して上下方向に回転(揺動)可能である。同様に、アーム15は、回転中心O3を中心としてブーム14に対して上下方向に回転(揺動)可能である。そして、バケット16は、回転中心O4を中心としてアーム15に対して上下方向に回転(揺動)可能である。
 本実施形態では、図1及び図2に示すように、平面に配置した油圧ショベル10の側方に測量装置20を配置し、この測量装置20でバケット16の施工端部16aを測定点として設定する。この測定では、測定対象部材である上部旋回体13だけを回転駆動し、ブーム14、アーム15、バケット16を駆動しない状態とする。上部旋回体13を回転させバケット16を同一円周上の異なる3つの位置に配置する。なお、4箇所以上の配置位置で測定しても差し支えない。なお、図中符号21は測量装置20を固定する三脚、符号40はオペレータを示している。また、測定点は、上部旋回体13と共に回転する位置、即ち上部旋回体13、ブーム14、アーム15、バケット16の任意の箇所を測定できる。また、上部旋回体13の回転中心O1からの離れるほど測定の精度が上がる。
 本実施形態で使用する測量装置20は、トータルステーションであり、測定箇所の方位角、測定箇所の俯角又は仰角包囲価格、及び測定箇所までの距離を測定し、デジタル出力する。測量装置20はミラーやプリズムからの反射光を受信して計測するプリズムモード、及び測定対象部材からの反射光を受信して計測を行うノンプリズムモードでの測定ができる。
 この測定により、施工端部16aが描く軌跡である旋回円の3箇所(図1(a)中(A)、(B)、(C))における施工端部16aの座標が取得できる。施工端部16aの測定は、施工端部16aにプリズムを配置して測量装置20をプリズムモードとして測定できる。なお、施工端部16aをノンプリズムモードで測定しても差し支えない。
 そして、図2に示すように、これら測定データを計算機30に入力して、計算機30にインストールされているソフトウエアにより上部旋回体13の回転中心O1の座標を演算する。計算機30にインストールされているソフトウエアとしては表計算ソフトウエアを使用することができる。
 本実施形態に係る建築作業機械における回転部材の回転中心取得方法における上部旋回体13の回転中心O1の取得手法について一つの例を説明する。図1(b)に示すように、施工端部16aの3つの測定位置(A)、(B)、(C)における座標から2つの弦a、bが特定できる。上部旋回体13の回転中心O1は、図2に示すように、弦a、bの垂直二等分線c、dの交点に存在する。計算機30は、入力された測定データに基づいてこの演算を行う。
 次に実施形態に係る建築作業機械における回転部材の回転中心取得方法の処理について説明する。図3は同建築作業機械における回転部材の回転中心取得方法の処理の流れを示すフローチャートである。測定に際しては、まず、油圧ショベル10を平面Gに配置する(ステップST1)。油圧ショベル10を配置する箇所は水平であることが望ましい。
 そして、測定箇所を定める(ステップST2)。本例では、測定箇所としてバケット16先端に位置する施工端部16aを選択する。施工端部16aにプリズムを配置することができる。測量装置20を配置し、測定を開始する。
 まず、初期状態にあるバケット16の施工端部16aを旋回円上の一箇所に配置して測量装置20により施工端部16aの座標を測定する(ステップST3)。即ち、最初に油圧ショベル10を配置した状態で測定する。
 次いで、測量装置20による施工端部16aの座標測定を、上部旋回体13を旋回して(ステップST5)、繰り返し3回以上行う(ステップS4)。測定を3回以上行ったら(ステップST4のYes)、測定を終了し(ステップST6)、測定結果、即ち施工端部16aの3箇所における座標を計算機30のソフトウエアに入力する。座標は(X,Y、H)で指定される。計算機30は、上述した計算を行い(ステップST7)、上部旋回体13の回転中心O1の座標を出力する。
 以上のように、本実施形態に係る建築作業機械における回転部材の回転中心取得方法によれば、容易かつ正確に上部旋回体13の回転中心の座標を取得できる。これにより、油圧ショベル10の自動運転制御や、運転支援にこの値を使用して正確な制御を行うことができる。
 次に本発明のほかの実施形態について説明する。図4は本発明のほかの実施形態を示す模式図である。この実施形態では、油圧ショベル10の揺動可能な腕部材であるブーム14の回転中心O2を取得する。本実施形態では、ブーム14に一点14aを定め、他の部材を駆動することなくブーム14だけを回転させ、3箇所(図中(D)、(E)、(F))において、ブーム14の一点14aの座標を測定する。これにより、上述した実施形態と同様にブーム14の回転中心O2を取得することができる。
 なお、他の回転部材、例えばアーム15、バケット16に付いても同様に回転中心を取得することができる。
10:油圧ショベル(建築作業機械)
11:クローラ
12:移動部
13:上部旋回体(測定対象部材)
14:ブーム
14a:一点
15:アーム                   
16:バケット
16a:施工端部(測定点)
20:測量装置
30:計算機

Claims (5)

  1.  建設作業機械に回転可能に配置された部材の回転中心の位置を取得する方法であって、
     前記回転中心を測定する測定対象部材に一つの測定点を設定し、
     前記回転中心を中心として、前記測定対象部材を回転して、少なくとも3つの異なる測定位置に配置し、
     各測定位置において、前記測定対象部材の測定点の座標を測量装置で測量し、
     測定した少なくとも3つの座標から前記測定対象部材の回転中心を計算する、
    ことを特徴とする建築作業機械における回転部材の回転中心取得方法。
  2.  前記測量装置は、自己の位置、測定箇所の方位角、前記測定箇所の俯角又は仰角、及び前記測定箇所までの距離を測定し、デジタル出力するトータルステーションであることを特徴とする請求項1に記載の建築作業機械における回転部材の回転中心取得方法。
  3.  前記建築作業機械が上部旋回体を備えた油圧ショベルであり、前記測定対象部材が上部旋回体であることを特徴とする請求項1に記載の建築作業機械における回転部材の回転中心取得方法。
  4.  前記建築作業機械が上部旋回体に配置された前記回転中心を中心として揺動可能な腕部材を備えた油圧ショベルであり、前記測定対象部材が前記腕部材であることを特徴とする請求項1に記載の建築作業機械における回転部材の回転中心取得方法。
  5.  計算機に測定結果を入力し、前記計算機が前記測定結果から前記測定対象部材の前記回転中心の座標を演算することを特徴とする請求項1に記載の建築作業機械における回転部材の回転中心取得方法。
     
PCT/JP2018/008413 2017-03-06 2018-03-05 建築作業機械における回転部材の回転中心取得方法 WO2018164078A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-042207 2017-03-06
JP2017042207A JP2018146407A (ja) 2017-03-06 2017-03-06 建築作業機械における回転部材の回転中心取得方法

Publications (1)

Publication Number Publication Date
WO2018164078A1 true WO2018164078A1 (ja) 2018-09-13

Family

ID=63448607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008413 WO2018164078A1 (ja) 2017-03-06 2018-03-05 建築作業機械における回転部材の回転中心取得方法

Country Status (2)

Country Link
JP (1) JP2018146407A (ja)
WO (1) WO2018164078A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11624169B2 (en) 2020-06-18 2023-04-11 Deere & Company Excavator with improved movement sensing

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6966108B2 (ja) 2020-03-18 2021-11-10 Totalmasters株式会社 建設作業機械の測位較正方法及びその測位較正コントローラ
JP7675569B2 (ja) 2021-06-18 2025-05-13 株式会社トプコン 計測システム、計測方法および計測用プログラム
JP2024041326A (ja) * 2022-09-14 2024-03-27 株式会社小松製作所 作業機械における車体座標系を設定するためのシステムおよび方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5404661A (en) * 1994-05-10 1995-04-11 Caterpillar Inc. Method and apparatus for determining the location of a work implement
JPH07150597A (ja) * 1993-12-01 1995-06-13 Kumagai Gumi Co Ltd 建設機械の位置及び姿勢表示方法
JPH09500700A (ja) * 1994-05-10 1997-01-21 キャタピラー インコーポレイテッド 作業機械の位置と方向を決定する方法と装置
US20040020083A1 (en) * 2002-07-29 2004-02-05 Staub Michael David Method and apparatus for determining machine location

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001159518A (ja) * 1999-11-30 2001-06-12 Komatsu Ltd 建設機械のツール位置計測装置、ヨー角検出装置、作業機自動制御装置及び校正装置
JP4477209B2 (ja) * 2000-09-14 2010-06-09 株式会社トプコン 建設機械用の方向角測定装置
JP2002340556A (ja) * 2001-05-18 2002-11-27 Hitachi Constr Mach Co Ltd 走行式建設機械の位置計測システム、位置計測コンピュータ及び位置計測プログラム
JP2006226810A (ja) * 2005-02-17 2006-08-31 Alps Electric Co Ltd 方位計測装置
JP5150229B2 (ja) * 2007-12-07 2013-02-20 株式会社トプコン 測量システム
JP5312890B2 (ja) * 2008-10-01 2013-10-09 西松建設株式会社 インバート部の掘削管理方法
JP2011058269A (ja) * 2009-09-10 2011-03-24 Caterpillar Sarl 作業機の位置管理装置
JP5389604B2 (ja) * 2009-10-20 2014-01-15 株式会社ディスコ 切削装置における切削ブレードの消耗量管理方法
JP6233740B2 (ja) * 2013-09-30 2017-11-22 五洋建設株式会社 クレーン船用吊り位置検出装置の自動設定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07150597A (ja) * 1993-12-01 1995-06-13 Kumagai Gumi Co Ltd 建設機械の位置及び姿勢表示方法
US5404661A (en) * 1994-05-10 1995-04-11 Caterpillar Inc. Method and apparatus for determining the location of a work implement
JPH09500700A (ja) * 1994-05-10 1997-01-21 キャタピラー インコーポレイテッド 作業機械の位置と方向を決定する方法と装置
US20040020083A1 (en) * 2002-07-29 2004-02-05 Staub Michael David Method and apparatus for determining machine location

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11624169B2 (en) 2020-06-18 2023-04-11 Deere & Company Excavator with improved movement sensing

Also Published As

Publication number Publication date
JP2018146407A (ja) 2018-09-20

Similar Documents

Publication Publication Date Title
WO2018164079A1 (ja) 建築作業機械における傾斜センサー補正量取得方法
US8060344B2 (en) Method and system for automatically performing a study of a multidimensional space
WO2018164078A1 (ja) 建築作業機械における回転部材の回転中心取得方法
US9428885B2 (en) Guidance system for earthmoving machinery
US11149413B2 (en) Construction machine
FI125464B (en) Arrangement and method for positioning the machine
JP6966108B2 (ja) 建設作業機械の測位較正方法及びその測位較正コントローラ
US20060230645A1 (en) Method and apparatus for satellite positioning of earth-moving equipment
WO2008124657A1 (en) Methods and systems utilizing 3d control to define a path of operation for a construction machine
JP2019525039A (ja) 掘削器具の機首方位制御
JP2019536926A (ja) レーザ距離計を用いた機械のリムの長さおよび角度オフセットの決定
JP2019503443A (ja) 掘削具先頭方向の制御
JP2001159518A (ja) 建設機械のツール位置計測装置、ヨー角検出装置、作業機自動制御装置及び校正装置
JP7016297B2 (ja) 作業機械
JPWO2019012650A1 (ja) 測定冶具および油圧ショベルの較正方法
CN111851634B (zh) 测量第一轴的中心轴线相对于第二轴的中心轴线的三维位置和方向的测量布置
JP2002181538A (ja) Gpsを用いた施工端部位置検出装置
JP6905137B2 (ja) 建築作業機械における傾斜センサー補正量取得方法
Yamamoto et al. Basic technology toward autonomous hydraulic excavator
JP2011058269A (ja) 作業機の位置管理装置
JP2002181539A (ja) 土木用建設機械におけるgps使用の位置検出方法及び装置
JP6878051B2 (ja) 排土板の位置補正量取得方法
JP6292562B1 (ja) 水平認識装置の設置装置
US20250084617A1 (en) System and method of work machine implement control for subterranean mapping applications
JP2002090143A (ja) 建設機械用の方向角測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18763929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18763929

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载