+

WO2018163485A1 - アルカリ乾電池 - Google Patents

アルカリ乾電池 Download PDF

Info

Publication number
WO2018163485A1
WO2018163485A1 PCT/JP2017/035380 JP2017035380W WO2018163485A1 WO 2018163485 A1 WO2018163485 A1 WO 2018163485A1 JP 2017035380 W JP2017035380 W JP 2017035380W WO 2018163485 A1 WO2018163485 A1 WO 2018163485A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
mass
parts
active material
electrode active
Prior art date
Application number
PCT/JP2017/035380
Other languages
English (en)
French (fr)
Inventor
高橋 康文
福井 厚史
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201780074461.5A priority Critical patent/CN110024183B/zh
Priority to US16/490,269 priority patent/US11189844B2/en
Priority to JP2019504307A priority patent/JP6706823B2/ja
Publication of WO2018163485A1 publication Critical patent/WO2018163485A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc

Definitions

  • the present invention relates to an improvement in the negative electrode of an alkaline battery.
  • Alkaline batteries (alkali manganese batteries) are widely used because they have a larger capacity than a manganese battery and can extract a large current.
  • the alkaline dry battery includes a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, a positive electrode, a negative electrode, and an alkaline electrolyte contained in the separator.
  • the negative electrode includes a negative electrode active material containing zinc.
  • the depth of discharge increases and a high active material utilization rate is required. Therefore, in medium rate intermittent discharge, if the ratio of the amount of the negative electrode active material to the amount of the electrolyte in the battery is increased, the electrolyte solution in the negative electrode becomes insufficient at the end of discharge, and the particle surface of the negative electrode active material is covered with an oxide film. Thus, the negative electrode active material is easily passivated. That is, the battery voltage is likely to rapidly decrease at the end of discharge. In addition, the supply (movement) of water from the negative electrode to the positive electrode is hindered. Due to these factors, the medium rate intermittent discharge has a problem that the discharge time does not extend even if the negative electrode active material is increased.
  • Patent Document 1 the relationship between the arylcarboxylic acid and the medium rate intermittent discharge performance is not studied. The relationship between the balance between the amount of the electrolyte (water) and the amount of the negative electrode active material and the medium rate intermittent discharge performance has not been studied.
  • An alkaline dry battery includes a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, the positive electrode, the negative electrode, and an electrolyte solution included in the separator,
  • the electrolytic solution includes an alkaline aqueous solution.
  • the negative electrode includes a negative electrode active material containing zinc and an additive, and the additive includes at least one selected from the group consisting of benzoic acid, phthalic acid, isophthalic acid, and salts thereof.
  • the amount of the negative electrode active material contained in the negative electrode is 176 to 221 parts by mass per 100 parts by mass of water contained in the electrolytic solution (electrolytic solution in the battery), and the amount of the additive contained in the negative electrode is The amount is 0.1 to 1.0 part by mass per 100 parts by mass of the negative electrode active material.
  • An alkaline dry battery includes a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, a positive electrode, a negative electrode, and an electrolytic solution contained in the separator, and the electrolytic solution is an alkaline aqueous solution. including.
  • the negative electrode includes a negative electrode active material containing zinc and an additive A.
  • Additive A contains at least one selected from the group consisting of benzoic acid, phthalic acid (ortho form), isophthalic acid (meta form), and salts thereof.
  • the amount of the additive A contained in the negative electrode is 0.1 to 1.0 part by mass per 100 parts by mass of the negative electrode active material.
  • the amount of the negative electrode active material contained in the negative electrode is 176 to 221 parts by mass per 100 parts by mass of water contained in the electrolytic solution (the electrolytic solution in the battery).
  • the electrolyte in the battery is an electrolyte contained in the positive electrode, the negative electrode, and the separator.
  • the electrolytic solution in the negative electrode is efficiently used at the end of the discharge in the medium rate intermittent discharge. Accordingly, the medium rate intermittent discharge performance can be enhanced by increasing the utilization factor of the negative electrode active material during the medium rate intermittent discharge.
  • the amount of the additive A contained in the negative electrode is less than 0.1 parts by mass per 100 parts by mass of the negative electrode active material, the effect of the additive A is reduced.
  • the amount of the additive A contained in the negative electrode is more than 1.0 part by mass per 100 parts by mass of the negative electrode active material, the amount of the negative electrode active material contained in the negative electrode is reduced, so that the medium rate intermittent discharge performance is lowered. .
  • the amount of the additive A contained in the negative electrode is preferably 0.1 to 0.5 parts by mass per 100 parts by mass of the negative electrode active material, and more preferably 0.15 to 0.50 parts by mass per 100 parts by mass of the negative electrode active material.
  • the amount of the negative electrode active material contained in the negative electrode is less than 176 per 100 parts by mass of water contained in the electrolyte in the battery, the amount of the negative electrode active material contained in the negative electrode is reduced, so that the medium rate intermittent discharge performance is obtained. descend.
  • the amount of the negative electrode active material contained in the negative electrode is more than 221 parts by mass per 100 parts by mass of water contained in the electrolytic solution in the battery, the amount of the electrolytic solution (water) contained in the negative electrode is decreased. Intermittent discharge performance decreases.
  • the amount of the negative electrode active material contained in the negative electrode is preferably 184 to 214 parts by mass per 100 parts by mass of water contained in the electrolyte in the battery.
  • the amount of the negative electrode active material contained in the negative electrode can be determined, for example, by measuring the negative electrode taken out by disassembling the battery by ICP (high frequency inductively coupled plasma) emission spectrometry.
  • ICP high frequency inductively coupled plasma
  • the amount of water contained in the electrolytic solution in the battery can be determined by the following method, for example. First, the battery is disassembled, the contents (including the electrolyte, negative electrode, positive electrode, and separator) are taken out, and the mass W1 of the contents is obtained. Thereafter, the taken-out contents are dried, and the amounts of elements contained in each material of the contents (including the components other than water of the electrolytic solution, negative electrode, positive electrode, and separator) are determined. Find the mass. For example, the amount of manganese dioxide, which is a positive electrode active material, is determined based on the amount of manganese, and the amount of potassium hydroxide contained in the electrolytic solution is determined based on the amount of potassium. A value obtained by subtracting the mass W2 obtained by adding the masses of the respective materials from the mass W1 is obtained as the amount of water contained in the electrolytic solution in the battery.
  • the additive A at least one selected from the group consisting of benzoic acid, phthalic acid, isophthalic acid, and salts thereof is used.
  • the salt include alkali metal salts, alkaline earth metal salts, ammonium salts, phosphonium salts, and amine salts.
  • the alkali metal salt include sodium salt and potassium salt.
  • alkaline earth metal salts include magnesium salts and calcium salts.
  • benzoic acid as the additive A because excellent medium rate intermittent discharge performance can be obtained.
  • the amount of additive A contained in the negative electrode is, for example, that after disassembling the battery and taking out the negative electrode, the amount of benzoate ion, phthalate ion, or isophthalate ion in the negative electrode is measured by ion chromatography. Is required.
  • the negative electrode further contains, as additive B, at least one selected from the group consisting of potassium fluoride and terephthalic acid (para) in an amount of 0.05 to 0.5 parts by mass per 100 parts by mass of the negative electrode active material. Is preferred.
  • additive B at least one selected from the group consisting of potassium fluoride and terephthalic acid (para) in an amount of 0.05 to 0.5 parts by mass per 100 parts by mass of the negative electrode active material. Is preferred.
  • the additive B the effect of efficiently using the electrolytic solution (water) in the negative electrode by the additive A is further enhanced, and the medium rate intermittent discharge performance is further improved.
  • terephthalic acid is difficult to dissolve in a gelled negative electrode.
  • particulate terephthalic acid is included in the negative electrode, the surface of the terephthalic acid particles dissolves very slightly in the negative electrode, and most of them are present without being dissolved.
  • the amount of potassium fluoride contained in the negative electrode can be obtained, for example, by disassembling the battery and taking out the negative electrode, and then measuring the amount of fluoride ions in the negative electrode by ion chromatography.
  • the amount of terephthalic acid contained in the negative electrode can be determined, for example, by disassembling the battery and taking out the negative electrode, and then sufficiently adding water to the negative electrode to dissolve terephthalic acid. It is obtained by measuring by the method.
  • the positive electrode preferably contains 457 to 507 parts by mass of manganese dioxide per 100 parts by mass of water contained in the electrolyte in the battery.
  • the electrolytic solution water
  • the utilization factor of a positive electrode active material can fully be raised, and medium rate intermittent discharge performance can fully be improved.
  • the amount of manganese dioxide contained in the positive electrode can be obtained, for example, by measuring the amount of manganese by a capacity analysis method (for example, chelate titration) for the positive electrode taken out by disassembling the battery.
  • a capacity analysis method for example, chelate titration
  • the amount of the negative electrode active material contained in the negative electrode is preferably 350 to 394 parts by mass per 100 parts by mass of water contained in the electrolyte solution in the negative electrode.
  • the use of the additive A provides sufficient intermediate rate intermittent discharge performance. Can be increased.
  • the amount of water contained in the electrolyte solution in the negative electrode is determined based on, for example, a mass change at the time of performing a thermal analysis on the negative electrode taken out by disassembling the battery. In thermal analysis, the temperature is raised from room temperature to 200 ° C.
  • Examples of the alkaline dry battery according to an embodiment of the present invention include a cylindrical battery and a coin battery.
  • FIG. 1 is a front view of a cross section of a horizontal half of an alkaline battery according to an embodiment of the present invention.
  • FIG. 1 shows an example of a cylindrical battery having an inside-out type structure.
  • the alkaline dry battery includes a hollow cylindrical positive electrode 2, a gelled negative electrode 3 disposed in the hollow portion of the positive electrode 2, a separator 4 disposed therebetween, and an electrolyte (see FIG. 1). These are housed in a bottomed cylindrical battery case 1 that also serves as a positive electrode terminal.
  • An alkaline aqueous solution is used as the electrolytic solution.
  • the positive electrode 2 is arranged in contact with the inner wall of the battery case 1.
  • the positive electrode 2 contains manganese dioxide and an electrolytic solution.
  • the hollow portion of the positive electrode 2 is filled with a gelled negative electrode 3 via a separator 4.
  • the negative electrode 3 normally contains electrolyte solution and a gelatinizer.
  • the amount of the additive A contained in the negative electrode 3 is 0.1 to 1.0 part by mass per 100 parts by mass of the negative electrode active material.
  • the amount of the negative electrode active material contained in the negative electrode 3 is 176 to 221 parts by mass per 100 parts by mass of water contained in the alkaline electrolyte in the battery.
  • the separator 4 has a bottomed cylindrical shape and contains an electrolytic solution.
  • the separator 4 includes a cylindrical separator 4a and a bottom paper 4b.
  • the separator 4 a is disposed along the inner surface of the hollow portion of the positive electrode 2 and separates the positive electrode 2 and the negative electrode 3. Therefore, the separator disposed between the positive electrode and the negative electrode means the cylindrical separator 4a.
  • the bottom paper 4 b is disposed at the bottom of the hollow portion of the positive electrode 2 and separates the negative electrode 3 and the battery case 1.
  • the opening of the battery case 1 is sealed by a sealing unit 9.
  • the sealing unit 9 includes a gasket 5, a negative electrode terminal plate 7 that also serves as a negative electrode terminal, and a negative electrode current collector 6.
  • the negative electrode current collector 6 is inserted into the negative electrode 3.
  • the negative electrode current collector 6 has a nail-like shape having a head portion and a body portion, and the body portion is inserted into a through hole provided in the central cylinder portion of the gasket 5, so that the negative electrode current collector 6
  • the head is welded to the flat portion at the center of the negative terminal plate 7.
  • the opening end portion of the battery case 1 is caulked to the flange portion of the peripheral edge portion of the negative electrode terminal plate 7 via the outer peripheral end portion of the gasket 5.
  • the outer surface of the battery case 1 is covered with an exterior label 8.
  • Examples of the negative electrode active material include zinc and zinc alloys.
  • the zinc alloy may contain at least one selected from the group consisting of indium, bismuth and aluminum from the viewpoint of corrosion resistance.
  • the indium content in the zinc alloy is, for example, 0.01 to 0.1% by mass, and the bismuth content is, for example, 0.003 to 0.02% by mass.
  • the aluminum content in the zinc alloy is, for example, 0.001 to 0.03% by mass.
  • the proportion of elements other than zinc in the zinc alloy is preferably 0.025 to 0.08 mass% from the viewpoint of corrosion resistance.
  • the negative electrode active material is usually used in a powder form.
  • the average particle diameter (D50) of the negative electrode active material powder is, for example, 100 to 200 ⁇ m, preferably 110 to 160 ⁇ m.
  • the average particle diameter (D50) is a median diameter in a volume-based particle size distribution.
  • the average particle diameter can be obtained, for example, using a laser diffraction / scattering particle distribution measuring apparatus.
  • the negative electrode can be obtained, for example, by mixing negative electrode active material particles containing zinc, additive A, gelling agent, and electrolytic solution. If necessary, additive B may be further added.
  • a known gelling agent used in the field of alkaline batteries is used without particular limitation, and for example, a water-absorbing polymer can be used.
  • a gelling agent include polyacrylic acid and sodium polyacrylate.
  • the amount of gelling agent added is, for example, 0.5 to 2.5 parts by mass per 100 parts by mass of the negative electrode active material.
  • a surfactant such as a polyoxyalkylene group-containing compound or a phosphate ester may be used to adjust the viscosity.
  • phosphate esters or alkali metal salts thereof are preferable.
  • the surfactant is preferably added in advance to the electrolytic solution used in preparing the negative electrode.
  • a compound containing a metal having a high hydrogen overvoltage such as indium or bismuth may be appropriately added to the negative electrode.
  • a slight amount of silicic acid compound such as silicic acid or a potassium salt thereof may be appropriately added to the negative electrode.
  • the negative electrode current collector examples of the material of the negative electrode current collector inserted into the gelled negative electrode include metals and alloys.
  • the negative electrode current collector preferably contains copper, and may be made of an alloy containing copper and zinc such as brass, for example.
  • the negative electrode current collector may be subjected to a plating treatment such as tin plating, if necessary.
  • the positive electrode usually contains a conductive agent and an electrolytic solution in addition to manganese dioxide, which is a positive electrode active material. Moreover, the positive electrode may further contain a binder as necessary.
  • manganese dioxide electrolytic manganese dioxide is preferable.
  • crystal structure of manganese dioxide include ⁇ -type, ⁇ -type, ⁇ -type, ⁇ -type, ⁇ -type, ⁇ -type, ⁇ -type, ⁇ -type, and ramsdellite-type.
  • Manganese dioxide is used in the form of powder. From the viewpoint of easily ensuring the filling property of the positive electrode and the diffusibility of the electrolytic solution in the positive electrode, the average particle diameter (D50) of manganese dioxide is, for example, 25 to 60 ⁇ m.
  • the BET specific surface area of manganese dioxide may be, for example, in the range of 20 to 50 m 2 / g.
  • the BET specific surface area is obtained by measuring and calculating the surface area using the BET formula, which is a theoretical formula for multimolecular layer adsorption.
  • the BET specific surface area can be measured, for example, by using a specific surface area measuring apparatus by a nitrogen adsorption method.
  • the conductive agent examples include carbon black such as acetylene black and conductive carbon materials such as graphite. As graphite, natural graphite, artificial graphite and the like can be used.
  • the conductive agent may be fibrous or the like, but is preferably powdery.
  • the average particle diameter (D50) of the conductive agent is, for example, 3 to 20 ⁇ m.
  • the content of the conductive agent in the positive electrode is, for example, 3 to 10 parts by mass, preferably 5 to 9 parts by mass with respect to 100 parts by mass of manganese dioxide.
  • the positive electrode can be obtained, for example, by pressure-molding a positive electrode active material, a conductive agent, an alkaline electrolyte, and, if necessary, a positive electrode mixture containing a binder into a pellet form.
  • the positive electrode mixture may be once formed into flakes or granules, classified as necessary, and then pressed into pellets.
  • pellets are accommodated in the battery case, they are secondarily pressurized using a predetermined instrument so as to be in close contact with the inner wall of the battery case.
  • the separator examples include cellulose and polyvinyl alcohol.
  • the separator may be a non-woven fabric mainly using fibers of the above materials, or may be a cellophane or polyolefin microporous film. You may use a nonwoven fabric and a microporous film together.
  • the nonwoven fabric include nonwoven fabrics mainly composed of cellulose fibers and polyvinyl alcohol fibers, and nonwoven fabrics mainly composed of rayon fibers and polyvinyl alcohol fibers.
  • a cylindrical separator 4 with a bottom is formed by using a cylindrical separator 4a and a bottom paper 4b.
  • the bottomed cylindrical separator is not limited to this, and a known separator used in the field of alkaline batteries may be used.
  • the separator may be constituted by a single sheet, or may be constituted by overlapping a plurality of sheets if the sheet constituting the separator is thin.
  • the cylindrical separator may be configured by winding a thin sheet a plurality of times.
  • the thickness of the separator is, for example, 200 to 300 ⁇ m.
  • the separator preferably has the above-mentioned thickness as a whole. If the sheet constituting the separator is thin, a plurality of sheets may be stacked to obtain the above-described thickness.
  • the electrolytic solution is contained in the positive electrode, the negative electrode, and the separator.
  • the electrolytic solution for example, an alkaline aqueous solution containing potassium hydroxide is used.
  • the concentration of potassium hydroxide in the electrolytic solution is preferably 30 to 50% by mass.
  • the electrolytic solution may further contain zinc oxide.
  • the concentration of zinc oxide in the electrolytic solution is, for example, 1 to 5% by mass.
  • Battery case For example, a bottomed cylindrical metal case is used as the battery case. For example, a nickel-plated steel plate is used for the metal case. In order to improve the adhesion between the positive electrode and the battery case, it is preferable to use a battery case in which the inner surface of the metal case is covered with a carbon film.
  • Example 1 AA-type cylindrical alkaline batteries (LR6) shown in FIG. 1 were produced according to the following procedures (1) to (3).
  • the flake-shaped positive electrode mixture is pulverized into granules, and this is classified by a 10 to 100 mesh sieve, and 11 g of granules are pressure-formed into a predetermined hollow cylindrical shape having an outer diameter of 13.65 mm. Two positive electrode pellets were produced.
  • the content of benzoic acid (BA) in the negative electrode was 0.1 parts by mass per 100 parts by mass of the negative electrode active material.
  • the content of the negative electrode active material was 378 parts by mass per 100 parts by mass of water contained in the electrolytic solution used for producing the negative electrode.
  • the positive electrode active material content is 482 parts by mass per 100 parts by mass of water contained in the electrolyte solution in the battery
  • the negative electrode active material content A is 100 parts by mass of water contained in the electrolyte solution in the battery.
  • the amount of the electrolytic solution (water) injected into the separator was adjusted so as to be 202 parts by mass per unit.
  • the separator 4 was configured using a cylindrical separator 4a and a bottom paper 4b.
  • a non-woven sheet (basis weight 28 g / m 2 ) mainly composed of rayon fibers and polyvinyl alcohol fibers having a mass ratio of 1: 1 was used.
  • the thickness of the nonwoven fabric sheet used for the bottom paper 4b was 0.27 mm.
  • the separator 4a was configured by winding a nonwoven fabric sheet having a thickness of 0.09 mm in triplicate.
  • the negative electrode current collector 6 was obtained by pressing a general brass (Cu content: about 65% by mass, Zn content: about 35% by mass) into a nail mold and then performing tin plating on the surface. .
  • the diameter of the body part of the negative electrode current collector 6 was 1.15 mm.
  • the head of the negative electrode current collector 6 was electrically welded to a negative electrode terminal plate 7 made of a nickel-plated steel plate. Thereafter, the body of the negative electrode current collector 6 was press-fitted into the through hole at the center of the gasket 5 containing polyamide 6 and 12 as a main component. In this manner, a sealing unit 9 including the gasket 5, the negative electrode terminal plate 7, and the negative electrode current collector 6 was produced.
  • the sealing unit 9 was installed in the opening of the battery case 1.
  • the body of the negative electrode current collector 6 was inserted into the negative electrode 3.
  • the opening end of the battery case 1 was caulked to the peripheral edge of the negative electrode terminal plate 7 via the gasket 5 to seal the opening of the battery case 1.
  • the outer surface of the battery case 1 was covered with the exterior label 8. Thus, alkaline dry battery A1 was produced.
  • Comparative Example 1 An alkaline battery X1 was produced in the same manner as in Example 1 except that the additive A was not used in the production of the negative electrode.
  • Examples 2 to 4 Comparative Examples 2 to 3 >> Alkaline dry cells A2 to A4 and X2 to X3 were produced in the same manner as in Example 1 except that the content of additive A in the negative electrode (amount per 100 parts by mass of the negative electrode active material) was changed to the values shown in Table 1. .
  • Each battery was discharged with a resistance of 3.9 ⁇ per day for 1 hour in an environment of 20 ⁇ 2 ° C. At this time, the discharge time until the closed circuit voltage of the battery reached 0.8V was measured. The discharge time of each battery was expressed as an index with the discharge time of the battery X1 of Comparative Example 1 as 100.
  • (negative electrode active material / in-battery water) indicates the amount (part by mass) of the negative electrode active material per 100 parts by mass of water contained in the electrolyte solution in the battery.
  • (Negative electrode active material / negative electrode water) indicates the amount (parts by mass) of the negative electrode active material per 100 parts by mass of water contained in the electrolyte solution in the negative electrode.
  • (Positive electrode active material / battery water) indicates the amount (parts by mass) of the positive electrode active material per 100 parts by mass of water contained in the electrolyte solution in the battery.
  • the content of the negative electrode active material is 202 parts by mass per 100 parts by mass of water contained in the electrolyte in the battery, and the content of the additive A is 0.1 to 1 part by mass per 100 parts by mass of the negative electrode active material.
  • batteries A1 to A4 of certain Examples 1 to 4 excellent medium rate intermittent discharge performance was obtained.
  • Comparative Examples 4-7 In the production of the negative electrode, additive A was not used. The amount of the electrolyte in the battery and the amount of the negative electrode active material were adjusted so that (positive electrode active material / battery water) and (negative electrode active material / battery water) had the values shown in Table 2. In addition, the amount of the electrolytic solution used in the production of the negative electrode and the amount of the electrolytic solution injected into the separator was adjusted so that (negative electrode active material / negative electrode water) was a value shown in Table 2. Except for the above, alkaline dry batteries X4 to X7 were prepared and evaluated in the same manner as in Example 1.
  • the content of the negative electrode active material is 176 to 221 parts by mass per 100 parts by mass of water contained in the electrolyte in the battery, and the content of the additive A is 0.5 parts by mass per 100 parts by mass of the negative electrode active material.
  • excellent medium rate intermittent discharge performance was obtained.
  • the content of the negative electrode active material was increased to 176 parts by mass or more per 100 parts by mass of water contained in the electrolyte solution in the battery. Since it was not used, the medium rate intermittent discharge performance was lowered.
  • additive B was further added.
  • KF potassium fluoride
  • TPA terephthalic acid
  • the content of additive B (amount per 100 parts by mass of the negative electrode active material) was set to the values shown in Table 4. Except for the above, alkaline dry batteries A15 to A22 were prepared and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 4.
  • the intermediate rate intermittent discharge performance was further improved by further adding a specific amount of additive B to the negative electrode.
  • Examples 23 to 26 >> The amount of the electrolytic solution used in the production of the negative electrode and the amount of the electrolytic solution injected into the separator was adjusted so that (negative electrode active material / negative electrode water) was a value shown in Table 5. Except for the above, alkaline dry batteries A23 to A26 were prepared and evaluated in the same manner as in Example 3. The evaluation results are shown in Table 5.
  • Examples 27 to 30 The amount of the positive electrode active material (positive electrode mixture) was adjusted so that (positive electrode active material / in-battery water) was a value shown in Table 6. Except for the above, alkaline dry batteries A27 to A30 were prepared and evaluated in the same manner as in Example 3. The evaluation results are shown in Table 6.
  • the dry battery according to the embodiment of the present invention can be used in any device that uses a dry battery as a power source, and is suitable for portable audio equipment, electronic games, lights, toys, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

アルカリ乾電池は、正極と、負極と、正極と負極との間に配されたセパレータと、正極、負極、およびセパレータに含まれる電解液とを備え、電解液は、アルカリ水溶液を含む。負極は、亜鉛を含む負極活物質と、添加剤とを含み、添加剤は、安息香酸、フタル酸、イソフタル酸、およびそれらの塩よりなる群から選択される少なくとも1種を含む。負極に含まれる負極活物質の量は、電解液に含まれる水100質量部あたり176~221質量部である。負極に含まれる添加剤の量は、負極活物質100質量部あたり0.1~1.0質量部である。

Description

アルカリ乾電池
 本発明は、アルカリ乾電池の負極の改良に関する。
 アルカリ乾電池(アルカリマンガン乾電池)は、マンガン乾電池に比べて容量が大きく、大きな電流を取り出すことができるため、広く利用されている。アルカリ乾電池は、正極と、負極と、正極と負極との間に配されたセパレータと、正極、負極、およびセパレータに含まれるアルカリ電解液とを備える。負極は、亜鉛を含む負極活物質を含む。このようなアルカリ乾電池について、様々な検討が行われている。
 例えば、負極に、負極活物質の防食剤としてアリールカルボン酸を添加することが提案されている(特許文献1参照)。
特開昭61-208753号公報
 電池サイズ(電池内容積)を変えずに放電時間を延ばすためには、活物質、特に負極活物質の量を増やす必要がある一方、電解液の量を減らさざるを得なくなる。この場合、電池内の電解液(水)量に対する負極活物質量の比が大きくなる。
 一方、アルカリ乾電池では、中レート間欠放電性能を高めることが重要である。
 しかし、中レート間欠放電では、放電深度が大きくなり、高い活物質利用率が求められる。そのため、中レート間欠放電では、電池内の電解液量に対する負極活物質量の比を大きくすると、放電末期に負極内の電解液が不足することで、負極活物質の粒子表面が酸化被膜で覆われて、負極活物質が不動態化し易くなる。すなわち、放電末期に電池電圧が急激に低下し易くなる。また、負極から正極への水の供給(移動)にも支障が生じる。これらの要因により、中レート間欠放電では、負極活物質を増やしても、放電時間が延びないという問題があった。
 なお、特許文献1では、アリールカルボン酸と、中レート間欠放電性能との関係については、検討されていない。電解液(水)量および負極活物質量のバランスと、中レート間欠放電性能との関係についても、検討されていない。
 本開示の一局面のアルカリ乾電池は、正極と、負極と、前記正極と前記負極との間に配されたセパレータと、前記正極、前記負極、および前記セパレータに含まれる電解液とを備え、前記電解液は、アルカリ水溶液を含む。前記負極は、亜鉛を含む負極活物質と、添加剤とを含み、前記添加剤は、安息香酸、フタル酸、イソフタル酸、およびそれらの塩よりなる群から選択される少なくとも1種を含む。前記負極に含まれる前記負極活物質の量は、前記電解液(電池内の電解液)に含まれる水100質量部あたり176~221質量部であり、前記負極に含まれる前記添加剤の量は、前記負極活物質100質量部あたり0.1~1.0質量部である。
 本開示によれば、中レート間欠放電性能に優れたアルカリ乾電池を提供することができる。
本発明の一実施形態におけるアルカリ乾電池の一部を断面とする正面図である。
 本発明の実施形態に係るアルカリ乾電池は、正極と、負極と、正極と負極との間に配されたセパレータと、正極、負極、およびセパレータに含まれる電解液とを備え、電解液はアルカリ水溶液を含む。
 負極は、亜鉛を含む負極活物質と、添加剤Aとを含む。添加剤Aは、安息香酸、フタル酸(オルト体)、イソフタル酸(メタ体)、およびそれらの塩よりなる群から選択される少なくとも1種を含む。負極に含まれる添加剤Aの量は、負極活物質100質量部あたり0.1~1.0質量部である。負極に含まれる負極活物質の量は、電解液(電池内の電解液)に含まれる水100質量部あたり176~221質量部である。上記の電池内の電解液とは、正極、負極、およびセパレータに含まれる電解液である。
 負極に特定量の添加剤Aを含ませることにより、負極に含ませる負極活物質の量を、電解液に含まれる水100質量部あたり176~221質量部に増やした場合に、中レート間欠放電性能を高めることができる。負極に特定量の添加剤Aを含ませると、負極活物質粒子間における電解液(水)の循環性、および負極から正極への電解液の循環性が向上する。すなわち、負極活物質粒子間に電解液が移動したり、負極から正極へ電解液が移動したりし易くなる。このため、電解液量が比較的少ない場合でも、中レート間欠放電での放電末期に、負極内の電解液が効率良く利用される。これに伴い、中レート間欠放電時の負極活物質の利用率が高められる等により、中レート間欠放電性能を高めることができる。
 負極に含まれる添加剤Aの量が、負極活物質100質量部あたり0.1質量部未満であると、添加剤Aによる効果が小さくなる。負極に含まれる添加剤Aの量が、負極活物質100質量部あたり1.0質量部超であると、負極に含まれる負極活物質の量が減少するため、中レート間欠放電性能が低下する。
 負極に含まれる添加剤Aの量は、負極活物質100質量部あたり0.1~0.5質量部が好ましく、負極活物質100質量部あたり0.15~0.50質量部がより好ましい。
 負極に含まれる負極活物質の量が、電池内の電解液に含まれる水100質量部あたり176未満であると、負極に含まれる負極活物質の量が減少するため、中レート間欠放電性能が低下する。負極に含まれる負極活物質の量が、電池内の電解液に含まれる水100質量部あたり221質量部超であると、負極に含まれる電解液(水)の量が減少するため、中レート間欠放電性能が低下する。
 負極に含まれる負極活物質の量は、電池内の電解液に含まれる水100質量部あたり184~214質量部であることが好ましい。
 負極に含まれる負極活物質の量は、例えば、電池を解体して取り出した負極について、ICP(高周波誘導結合プラズマ)発光分光分析法による測定を行うことで求められる。
 電池内の電解液に含まれる水の量は、例えば、以下の手法で求めることができる。まず、電池を解体して内容物(電解液を含む、負極、正極、およびセパレータ)を取り出し、内容物の質量W1を求める。その後、取り出した内容物を乾燥し、当該内容物の各材料(電解液の水以外の成分を含む、負極、正極、およびセパレータ)に含まれる元素の量を求め、その量に基づき各材料の質量を求める。例えば、正極活物質である二酸化マンガンの量はマンガン量に基づき求められ、電解液中に含まれる水酸化カリウムの量は、カリウム量に基づき求められる。各材料の質量を合計した質量W2を、上記質量W1から差し引いた値を、電池内の電解液に含まれる水の量として求める。
 添加剤Aとして、安息香酸、フタル酸、イソフタル酸、およびそれらの塩よりなる群から選択される少なくとも1種が用いられる。上記の塩としては、例えば、アルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、ホスホニウム塩、アミン塩などが例示される。アルカリ金属塩としては、ナトリウム塩、カリウム塩などが例示される。アルカリ土類金属塩としては、マグネシウム塩、カルシウム塩などが例示される。
 優れた中レート間欠放電性能が得られることから、中でも、添加剤Aとして安息香酸を用いることが好ましい。
 負極に含まれる添加剤Aの量は、例えば、電池を解体して負極を取り出した後、負極中の安息香酸イオン、フタル酸イオン、またはイソフタル酸イオンの量をイオンクロマトグラフ法により測定することで求められる。
 負極は、更に、添加剤Bとして、フッ化カリウムおよびテレフタル酸(パラ体)よりなる群から選択される少なくとも1種を、負極活物質100質量部あたり0.05~0.5質量部含むことが好ましい。添加剤Bを含ませることで、添加剤Aによる負極中の電解液(水)が効率良く利用される効果が更に高められ、中レート間欠放電性能が更に向上する。テレフタル酸は、フタル酸(オルト体)やイソフタル酸(メタ体)とは異なり、ゲル状の負極に溶解し難い。負極に粒子状のテレフタル酸を含ませると、負極中では、テレフタル酸の粒子は、その表面がごく僅かに溶解するだけであり、その殆どは溶解せずに存在する。
 負極に含まれるフッ化カリウムの量は、例えば、電池を解体して負極を取り出した後、負極中のフッ化物イオンの量をイオンクロマトグラフ法により測定することで求められる。負極に含まれるテレフタル酸の量は、例えば、電池を解体して負極を取り出した後、負極に水を十分に加えてテレフタル酸を溶解させ、溶解により生じたテレフタル酸イオンの量をイオンクロマトグラフ法により測定することで求められる。
 正極は、二酸化マンガンを、電池内の電解液に含まれる水100質量部あたり457~507質量部含むことが好ましい。この場合に、添加剤Aを用いると、電解液(水)は、電池内で適度に移動することができ、放電末期でも正負極内にバランス良く含まれる。このため、正極活物質の利用率を十分に高めることができ、中レート間欠放電性能を十分に高めることができる。
 正極に含まれる二酸化マンガンの量は、例えば、電池を解体して取り出した正極について、容量分析法(例えばキレート滴定)によりマンガン量を測定することで求められる。
 負極に含まれる負極活物質の量は、負極中の電解液に含まれる水100質量部あたり350~394質量部であることが好ましい。負極に含ませる負極活物質の量を、負極中の電解液に含まれる水100質量部あたり350~394質量部に増やした場合に、添加剤Aを用いることで、中レート間欠放電性能を十分に高めることができる。
 負極中の電解液に含まれる水の量は、例えば、電池を解体して取り出した負極について熱分析を行い、その際の質量変化に基づき求められる。熱分析では、室温から200℃まで昇温する。
 本発明の一実施形態に係るアルカリ乾電池としては、円筒形電池、コイン形電池などが挙げられる。
 以下、本実施形態に係るアルカリ乾電池を図面に基づいて詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではない。また、本発明の効果を奏する範囲を逸脱しない範囲で、適宜変更は可能である。さらに、他の実施形態との組み合わせも可能である。
 図1は、本発明の一実施形態におけるアルカリ乾電池の横半分を断面とする正面図である。図1は、インサイドアウト型の構造を有する円筒形電池の一例を示す。図1に示すように、アルカリ乾電池は、中空円筒形の正極2と、正極2の中空部内に配されたゲル状の負極3と、これらの間に配されたセパレータ4と、電解液(図示せず)とを含み、これらが、正極端子を兼ねた有底円筒形の電池ケース1内に収容されている。電解液には、アルカリ水溶液が用いられる。
 正極2は、電池ケース1の内壁に接して配されている。正極2は、二酸化マンガンと電解液とを含む。正極2の中空部内には、セパレータ4を介して、ゲル状の負極3が充填されている。負極3は、亜鉛を含む負極活物質および添加剤Aに加え、通常、電解液とゲル化剤とを含む。負極3に含まれる添加剤Aの量は、負極活物質100質量部あたり0.1~1.0質量部である。負極3に含まれる負極活物質の量は、電池内のアルカリ電解液に含まれる水100質量部あたり176~221質量部である。
 セパレータ4は、有底円筒形であり、電解液を含む。セパレータ4は、円筒型のセパレータ4aと、底紙4bとで構成されている。セパレータ4aは、正極2の中空部の内面に沿って配され、正極2と負極3とを隔離している。よって、正極と負極との間に配されたセパレータとは、円筒型のセパレータ4aを意味する。底紙4bは、正極2の中空部の底部に配され、負極3と電池ケース1とを隔離している。
 電池ケース1の開口部は、封口ユニット9により封口されている。封口ユニット9は、ガスケット5、負極端子を兼ねる負極端子板7、および負極集電体6からなる。負極集電体6は負極3内に挿入されている。負極集電体6は、頭部と胴部とを有する釘状の形態を有しており、胴部はガスケット5の中央筒部に設けられた貫通孔に挿入され、負極集電体6の頭部は負極端子板7の中央部の平坦部に溶接されている。電池ケース1の開口端部は、ガスケット5の外周端部を介して負極端子板7の周縁部の鍔部にかしめつけられている。電池ケース1の外表面には外装ラベル8が被覆されている。
 以下、アルカリ乾電池の詳細について説明する。
 (負極)
 負極活物質としては、亜鉛、亜鉛合金などが挙げられる。亜鉛合金は、耐食性の観点から、インジウム、ビスマスおよびアルミニウムからなる群より選択される少なくとも一種を含んでもよい。亜鉛合金中のインジウム含有量は、例えば、0.01~0.1質量%であり、ビスマス含有量は、例えば、0.003~0.02質量%である。亜鉛合金中のアルミニウム含有量は、例えば、0.001~0.03質量%である。亜鉛合金中において亜鉛以外の元素が占める割合は、耐食性の観点から、0.025~0.08質量%であるのが好ましい。
 負極活物質は、通常、粉末状の形態で使用される。負極の充填性および負極内での電解液の拡散性の観点から、負極活物質粉末の平均粒径(D50)は、例えば、100~200μm、好ましくは110~160μmである。なお、本明細書中、平均粒径(D50)とは、体積基準の粒度分布におけるメジアン径である。平均粒径は、例えば、レーザ回折/散乱式粒子分布測定装置を用いて求められる。
 負極は、例えば、亜鉛を含む負極活物質粒子、添加剤A、ゲル化剤および電解液を混合することにより得られる。必要に応じて、添加剤Bを更に加えてもよい。
 ゲル化剤としては、アルカリ乾電池の分野で使用される公知のゲル化剤が特に制限なく使用され、例えば、吸水性ポリマーなどが使用できる。このようなゲル化剤としては、例えば、ポリアクリル酸、ポリアクリル酸ナトリウムが挙げられる。
 ゲル化剤の添加量は、負極活物質100質量部あたり、例えば、0.5~2.5質量部である。
 負極には、粘度の調整等のために、ポリオキシアルキレン基含有化合物やリン酸エステル等の界面活性剤を用いてもよい。中でも、リン酸エステルまたはそのアルカリ金属塩等が好ましい。負極中に界面活性剤をより均一に分散させる観点から、界面活性剤は、負極作製時に用いられる電解液に予め添加しておくことが好ましい。
 負極には、耐食性を向上させるために、インジウムやビスマス等の水素過電圧の高い金属を含む化合物を適宜添加してもよい。亜鉛等のデンドライトの成長を抑制するために、負極に、微量のケイ酸やそのカリウム塩などのケイ酸化合物を適宜添加してもよい。
 (負極集電体)
 ゲル状負極に挿入される負極集電体の材質としては、例えば、金属、合金などが挙げられる。負極集電体は、好ましくは、銅を含み、例えば、真鍮などの銅および亜鉛を含む合金製であってもよい。負極集電体は、必要により、スズメッキなどのメッキ処理がされていてもよい。
 (正極)
 正極は、通常、正極活物質である二酸化マンガンに加え、導電剤および電解液を含む。また、正極は、必要に応じて、さらに結着剤を含有してもよい。
 二酸化マンガンとしては、電解二酸化マンガンが好ましい。二酸化マンガンの結晶構造としては、α型、β型、γ型、δ型、ε型、η型、λ型、ラムスデライト型が挙げられる。
 二酸化マンガンは粉末の形態で用いられる。正極の充填性および正極内での電解液の拡散性などを確保し易い観点からは、二酸化マンガンの平均粒径(D50)は、例えば、25~60μmである。
 成形性や正極の膨張抑制の観点から、二酸化マンガンのBET比表面積は、例えば、20~50m2/gの範囲であってもよい。なお、BET比表面積とは、多分子層吸着の理論式であるBET式を用いて、表面積を測定および計算したものである。BET比表面積は、例えば、窒素吸着法による比表面積測定装置を用いることにより測定できる。
 導電剤としては、例えば、アセチレンブラックなどのカーボンブラックの他、黒鉛などの導電性炭素材料が挙げられる。黒鉛としては、天然黒鉛、人造黒鉛などが使用できる。導電剤は、繊維状などであってもよいが、粉末状であることが好ましい。導電剤の平均粒径(D50)は、例えば、3~20μmである。
 正極中の導電剤の含有量は、二酸化マンガン100質量部に対して、例えば、3~10質量部、好ましくは5~9質量部である。
 正極は、例えば、正極活物質、導電剤、アルカリ電解液、必要に応じて結着剤を含む正極合剤をペレット状に加圧成形することにより得られる。正極合剤を、一旦、フレーク状や顆粒状にし、必要により分級した後、ペレット状に加圧成形してもよい。
 ペレットは、電池ケース内に収容された後、所定の器具を用いて、電池ケース内壁に密着するように二次加圧される。
 (セパレータ)
 セパレータの材質としては、例えば、セルロース、ポリビニルアルコールなどが例示できる。セパレータは、上記材料の繊維を主体として用いた不織布であってもよく、セロファンやポリオレフィン系などの微多孔質フィルムであってもよい。不織布と微多孔質フィルムとを併用してもよい。不織布としては、セルロース繊維およびポリビニルアルコール繊維を主体として混抄した不織布、レーヨン繊維およびポリビニルアルコール繊維を主体として混抄した不織布などが例示できる。
 図1では、円筒型のセパレータ4aと、底紙4bとを用いて、有底円筒形のセパレータ4を構成している。有底円筒形のセパレータは、これに限らず、アルカリ乾電池の分野で使用される公知の形状のセパレータを用いればよい。セパレータは、1枚のシートで構成してもよく、セパレータを構成するシートが薄ければ、複数のシートを重ね合わせて構成してもよい。円筒型のセパレータは、薄いシートを複数回巻いて構成してもよい。
 セパレータの厚みは、例えば、200~300μmである。セパレータは、全体として上記の厚みを有しているのが好ましく、セパレータを構成するシートが薄ければ、複数のシートを重ねて、上記の厚みとなるようにしてもよい。
 (電解液)
 電解液は、正極、負極およびセパレータ中に含まれる。電解液としては、例えば、水酸化カリウムを含むアルカリ水溶液が用いられる。電解液中の水酸化カリウムの濃度は、30~50質量%が好ましい。電解液に、さらに酸化亜鉛を含ませてもよい。電解液中の酸化亜鉛の濃度は、例えば、1~5質量%である。
 (電池ケース)
 電池ケースには、例えば、有底円筒形の金属ケースが用いられる。金属ケースには、例えば、ニッケルめっき鋼板が用いられる。正極と電池ケースとの間の密着性を良くするためには、金属ケースの内面を炭素被膜で被覆した電池ケースを用いるのが好ましい。
 以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 《実施例1》
 下記の(1)~(3)の手順に従って、図1に示す単3形の円筒形アルカリ乾電池(LR6)を作製した。
 (1)正極の作製
 正極活物質である電解二酸化マンガン粉末(平均粒径(D50)35μm)に、導電剤である黒鉛粉末(平均粒径(D50)8μm)を加え、混合物を得た。電解二酸化マンガン粉末および黒鉛粉末の質量比は92.4:7.6とした。なお、電解二酸化マンガン粉末は、比表面積が41m2/gであるものを用いた。混合物に電解液を加え、充分に攪拌した後、フレーク状に圧縮成形して、正極合剤を得た。混合物および電解液の質量比は100:1.5とした。電解液には、水酸化カリウム(濃度35質量%)および酸化亜鉛(濃度2質量%)を含むアルカリ水溶液を用いた。
 フレーク状の正極合剤を粉砕して顆粒状とし、これを10~100メッシュの篩によって分級して得られた顆粒11gを、外径13.65mmの所定の中空円筒形に加圧成形して、正極ペレットを2個作製した。
 (2)負極の作製
 負極活物質である亜鉛合金粉末(平均粒径(D50)130μm)と、添加剤Aである安息香酸(BA)と、上記の電解液と、ゲル化剤とを混合し、ゲル状の負極3を得た。亜鉛合金としては、0.02質量%のインジウムと、0.01質量%のビスマスと、0.005質量%のアルミニウムとを含む亜鉛合金を用いた。ゲル化剤には、架橋分岐型ポリアクリル酸および高架橋鎖状型ポリアクリル酸ナトリウムの混合物を用いた。負極活物質と、ゲル化剤との質量比は、100:1とした。
 負極中の安息香酸(BA)の含有量は、負極活物質100質量部当たり0.1質量部とした。負極活物質の含有量は、負極の作製に用いる電解液に含まれる水100質量部あたり378質量部とした。
 (3)アルカリ乾電池の組立て
 ニッケルめっき鋼板製の有底円筒形の電池ケース(外径13.80mm、円筒部の肉厚0.15mm、高さ50.3mm)の内面に、日本黒鉛(株)製のバニーハイトを塗布して厚み約10μmの炭素被膜を形成し、電池ケース1を得た。電池ケース1内に正極ペレットを縦に2個挿入した後、加圧して、電池ケース1の内壁に密着した状態の正極2を形成した。有底円筒形のセパレータ4を正極2の内側に配置した後、上記の電解液を注入し、セパレータ4に含浸させた。この状態で所定時間放置し、電解液をセパレータ4から正極2へ浸透させた。その後、6gのゲル状負極3を、セパレータ4の内側に充填した。
 上記において、正極活物質の含有量が、電池内の電解液に含まれる水100質量部あたり482質量部、および負極活物質の含有量Aが、電池内の電解液に含まれる水100質量部あたり202質量部となるように、セパレータに注入する電解液(水)の量を調整した。
 セパレータ4は、円筒型のセパレータ4aおよび底紙4bを用いて構成した。円筒型のセパレータ4aおよび底紙4bには、質量比が1:1であるレーヨン繊維およびポリビニルアルコール繊維を主体として混抄した不織布シート(坪量28g/m2)を用いた。底紙4bに用いた不織布シートの厚みは0.27mmであった。セパレータ4aは、厚み0.09mmの不織布シートを三重に巻いて構成した。
 負極集電体6は、一般的な真鍮(Cu含有量:約65質量%、Zn含有量:約35質量%)を、釘型にプレス加工した後、表面にスズめっきを施すことにより得た。負極集電体6の胴部の径は1.15mmとした。ニッケルめっき鋼板製の負極端子板7に負極集電体6の頭部を電気溶接した。その後、負極集電体6の胴部を、ポリアミド6,12を主成分とするガスケット5の中心の貫通孔に圧入した。このようにして、ガスケット5、負極端子板7、および負極集電体6からなる封口ユニット9を作製した。
 次に、封口ユニット9を電池ケース1の開口部に設置した。このとき、負極集電体6の胴部を、負極3内に挿入した。電池ケース1の開口端部を、ガスケット5を介して、負極端子板7の周縁部にかしめつけ、電池ケース1の開口部を封口した。外装ラベル8で電池ケース1の外表面を被覆した。このようにして、アルカリ乾電池A1を作製した。
 《比較例1》
 負極の作製において、添加剤Aを用いなかったこと以外は、実施例1と同様にしてアルカリ乾電池X1を作製した。
 《実施例2~4、比較例2~3》
 負極中の添加剤Aの含有量(負極活物質100質量部あたりの量)を表1に示す値とした以外は、実施例1と同様にしてアルカリ乾電池A2~A4、X2~X3を作製した。
 [評価]
 得られた各電池について、以下の方法で、中レート間欠放電性能を評価した。
 各電池について、20±2℃の環境下、1日あたり3.9Ωの抵抗で1時間放電した。この時、電池の閉路電圧が0.8Vに達するまでの放電時間を測定した。各電池の放電時間を、比較例1の電池X1の放電時間を100とした指数として表した。
 評価結果を表1に示す。なお、表1および後述する表2~6中の(負極活物質/電池内水)は、電池内の電解液に含まれる水100質量部あたりの負極活物質の量(質量部)を示す。(負極活物質/負極内水)は、負極中の電解液に含まれる水100質量部あたりの負極活物質の量(質量部)を示す。(正極活物質/電池内水)は、電池内の電解液に含まれる水100質量部あたりの正極活物質の量(質量部)を示す。
Figure JPOXMLDOC01-appb-T000001
 負極活物質の含有量が、電池内の電解液に含まれる水100質量部あたり202質量部であり、添加剤Aの含有量が、負極活物質100質量部あたり0.1~1質量部である実施例1~4の電池A1~A4では、優れた中レート間欠放電性能が得られた。
 比較例1の電池X1では、添加剤Aを用いないため、中レート間欠放電性能が低下した。添加剤Aの含有量が、負極活物質100質量部あたり0.06質量部である比較例2の電池X2では、負極に含まれる添加剤Aの量が少ないため、中レート間欠放電性能が低下した。添加剤Aの含有量が、負極活物質100質量部あたり1.1質量部である比較例3の電池X3では、負極に含まれる負極活物質の量が減ったため、中レート間欠放電性能が低下した。
 《比較例4~7》
 負極の作製において、添加剤Aを用いなかった。(正極活物質/電池内水)および(負極活物質/電池内水)が表2に示す値となるように、電池内の電解液量、および負極活物質の量を調整した。また、(負極活物質/負極内水)が表2に示す値となるように、負極の作製で用いる電解液とセパレータに注入する電解液の量を調整した。上記以外は、実施例1と同様にしてアルカリ乾電池X4~X7を作製し、評価した。
 《実施例5~8、比較例8~9》
 (正極活物質/電池内水)および(負極活物質/電池内水)が表2に示す値となるように、電池内の電解液量、および負極活物質の量を調整した。また、(負極活物質/負極内水)が表2に示す値となるように、負極の作製で用いる電解液とセパレータに注入する電解液の量を調整した。上記以外は、実施例1と同様にしてアルカリ乾電池A5~A8、X8~X9を作製し、評価した。評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 負極活物質の含有量が、電池内の電解液に含まれる水100質量部あたり176~221質量部であり、添加剤Aの含有量が、負極活物質100質量部あたり0.5質量部である実施例3、5~8の電池A3、A5~A8では、優れた中レート間欠放電性能が得られた。
 比較例1、4~7の電池X1、X4~X7では、負極活物質の含有量を、電池内の電解液に含まれる水100質量部あたり176質量部以上に増やしたが、添加剤Aを用いないため、中レート間欠放電性能が低下した。
 負極活物質の含有量が、電池内の電解液に含まれる水100質量部あたり175質量部である比較例8のX8では、負極に含まれる負極活物質の量が少ないため、中レート間欠放電性能が低下した。
 負極活物質の含有量が、電池内の電解液に含まれる水100質量部あたり222質量部である比較例9のX9では、負極に含まれる電解液(水)の量が少ないため、放電末期に負極中の水が不足し、中レート間欠放電性能が低下した。
 《実施例9~14、比較例10~13》
 負極に用いる添加剤Aとして、安息香酸(BA)の代わりにフタル酸(PA)またはイソフタル酸(IPA)を用いた。負極中の添加剤Aの含有量(負極活物質100質量部あたりの量)を、表3に示す値とした。上記以外は、実施例1と同様にしてアルカリ乾電池A9~A14、X10~X13を作製し、評価した。評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 負極に添加剤Aとしてフタル酸またはイソフタル酸を特定量含ませた実施例9~14の電池A9~14では、優れた中レート間欠放電性能が得られた。
 《実施例15~22》
 負極の作製において、添加剤Bを更に加えた。添加剤Bとしてフッ化カリウム(KF)またはテレフタル酸(TPA)を用いた。添加剤Bの含有量(負極活物質100質量部あたりの量)を、表4に示す値とした。上記以外は、実施例1と同様にしてアルカリ乾電池A15~A22を作製し、評価した。評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 実施例15~17、19~21の電池A15~A17、A19~A21では、負極に特定量の添加剤Bを更に加えることで、中レート間欠放電性能が更に向上した。
 《実施例23~26》
 (負極活物質/負極内水)が表5に示す値となるように、負極の作製で用いる電解液とセパレータに注入する電解液の量を調整した。上記以外は、実施例3と同様にしてアルカリ乾電池A23~A26を作製し、評価した。評価結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 (負極活物質/負極内水)が350~394質量部の範囲内である実施例3、24、25の電池A3、24、25では、中レート間欠放電性能が更に向上した。
 《実施例27~30》
 (正極活物質/電池内水)が表6に示す値となるように、正極活物質(正極合剤)の量を調整した。上記以外は、実施例3と同様にしてアルカリ乾電池A27~A30を作製し、評価した。評価結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 (正極活物質/電池内水)が457~507質量部の範囲内である実施例3、28、29の電池A3、28、29では、中レート間欠放電性能が更に向上した。
 本発明の実施形態に係る乾電池は、乾電池を電源とするあらゆる機器に使用でき、例えば、ポータブルオーディオ機器、電子ゲーム、ライト、玩具などに好適である。
1 :電池ケース
2 :正極
3 :負極
4 :有底円筒形のセパレータ
4a:円筒型のセパレータ
4b:底紙
5 :ガスケット
6 :負極集電体
7 :負極端子板
8 :外装ラベル
9 :封口ユニット

Claims (6)

  1.  正極と、負極と、前記正極と前記負極との間に配されたセパレータと、前記正極、前記負極、および前記セパレータに含まれる電解液とを備え、
     前記電解液は、アルカリ水溶液を含み、
     前記負極は、亜鉛を含む負極活物質と、添加剤とを含み、
     前記添加剤は、安息香酸、フタル酸、イソフタル酸、およびそれらの塩よりなる群から選択される少なくとも1種を含み、
     前記負極に含まれる前記負極活物質の量は、前記電解液に含まれる水100質量部あたり176~221質量部であり、
     前記負極に含まれる前記添加剤の量は、前記負極活物質100質量部あたり0.1~1.0質量部である、アルカリ乾電池。
  2.  前記添加剤は、安息香酸を含む、請求項1に記載のアルカリ乾電池。
  3.  前記負極に含まれる前記添加剤の量は、前記負極活物質100質量部あたり0.1~0.5質量部である、請求項1または2に記載のアルカリ乾電池。
  4.  前記負極は、更に、フッ化カリウムおよびテレフタル酸よりなる群から選択される少なくとも1種を、前記負極活物質100質量部あたり0.05~0.5質量部含む、請求項1~3のいずれか1項に記載のアルカリ乾電池。
  5.  前記負極に含まれる前記負極活物質の量は、前記電解液に含まれる水のうち前記負極中に含まれる水100質量部あたり350~394質量部である、請求項1~4のいずれか1項に記載のアルカリ乾電池。
  6.  前記正極は、二酸化マンガンを、前記電解液に含まれる水100質量部あたり457~507質量部含む、請求項1~5のいずれか1項に記載のアルカリ乾電池。
PCT/JP2017/035380 2017-03-09 2017-09-29 アルカリ乾電池 WO2018163485A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780074461.5A CN110024183B (zh) 2017-03-09 2017-09-29 碱性干电池
US16/490,269 US11189844B2 (en) 2017-03-09 2017-09-29 Alkaline dry cell
JP2019504307A JP6706823B2 (ja) 2017-03-09 2017-09-29 アルカリ乾電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-045396 2017-03-09
JP2017045396 2017-03-09

Publications (1)

Publication Number Publication Date
WO2018163485A1 true WO2018163485A1 (ja) 2018-09-13

Family

ID=63447447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035380 WO2018163485A1 (ja) 2017-03-09 2017-09-29 アルカリ乾電池

Country Status (4)

Country Link
US (1) US11189844B2 (ja)
JP (1) JP6706823B2 (ja)
CN (1) CN110024183B (ja)
WO (1) WO2018163485A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020095820A (ja) * 2018-12-11 2020-06-18 Fdk株式会社 アルカリ電池用負極集電子、およびアルカリ電池
WO2021186805A1 (ja) * 2020-03-18 2021-09-23 パナソニックIpマネジメント株式会社 アルカリ乾電池
WO2022009967A1 (ja) * 2020-07-09 2022-01-13 マクセル株式会社 ボタン形アルカリ電池
WO2023074560A1 (ja) * 2021-10-29 2023-05-04 パナソニックIpマネジメント株式会社 アルカリ乾電池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3281278A (en) * 1963-10-28 1966-10-25 Union Carbide Corp Corrosion inhibitors
JPS61208753A (ja) * 1985-03-13 1986-09-17 Toshiba Corp アルカリ電池
JPH02226657A (ja) * 1989-02-27 1990-09-10 Ryuichi Yamamoto マンガン電池
JPH076759A (ja) * 1992-08-04 1995-01-10 Seiko Instr Inc アルカリ電池とその製造法およびアルカリ電池を用いた応用製品
JP2003338291A (ja) * 2002-03-15 2003-11-28 Toshiba Corp アルミニウム負極電池
US20110039148A1 (en) * 2009-08-14 2011-02-17 Yichun Wang Alkaline primary cells
WO2017056491A1 (ja) * 2015-09-30 2017-04-06 パナソニックIpマネジメント株式会社 アルカリ乾電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3981523B2 (ja) * 2000-09-29 2007-09-26 株式会社東芝 一次電池
WO2008001813A1 (fr) * 2006-06-28 2008-01-03 Panasonic Corporation Pile sèche alcaline
CN102210051A (zh) * 2008-12-12 2011-10-05 松下电器产业株式会社 碱性干电池
CN102859767B (zh) * 2011-04-18 2015-08-05 松下电器产业株式会社 碱性一次电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3281278A (en) * 1963-10-28 1966-10-25 Union Carbide Corp Corrosion inhibitors
JPS61208753A (ja) * 1985-03-13 1986-09-17 Toshiba Corp アルカリ電池
JPH02226657A (ja) * 1989-02-27 1990-09-10 Ryuichi Yamamoto マンガン電池
JPH076759A (ja) * 1992-08-04 1995-01-10 Seiko Instr Inc アルカリ電池とその製造法およびアルカリ電池を用いた応用製品
JP2003338291A (ja) * 2002-03-15 2003-11-28 Toshiba Corp アルミニウム負極電池
US20110039148A1 (en) * 2009-08-14 2011-02-17 Yichun Wang Alkaline primary cells
WO2017056491A1 (ja) * 2015-09-30 2017-04-06 パナソニックIpマネジメント株式会社 アルカリ乾電池

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020095820A (ja) * 2018-12-11 2020-06-18 Fdk株式会社 アルカリ電池用負極集電子、およびアルカリ電池
WO2021186805A1 (ja) * 2020-03-18 2021-09-23 パナソニックIpマネジメント株式会社 アルカリ乾電池
JP7607235B2 (ja) 2020-03-18 2024-12-27 パナソニックIpマネジメント株式会社 アルカリ乾電池
WO2022009967A1 (ja) * 2020-07-09 2022-01-13 マクセル株式会社 ボタン形アルカリ電池
JP7675720B2 (ja) 2020-07-09 2025-05-13 マクセル株式会社 ボタン形アルカリ電池
WO2023074560A1 (ja) * 2021-10-29 2023-05-04 パナソニックIpマネジメント株式会社 アルカリ乾電池

Also Published As

Publication number Publication date
JPWO2018163485A1 (ja) 2019-07-25
CN110024183B (zh) 2021-10-19
US20200014039A1 (en) 2020-01-09
JP6706823B2 (ja) 2020-06-10
US11189844B2 (en) 2021-11-30
CN110024183A (zh) 2019-07-16

Similar Documents

Publication Publication Date Title
WO2018163485A1 (ja) アルカリ乾電池
CN107851809B (zh) 碱性干电池
US10847786B2 (en) Alkaline dry battery
WO2012143984A1 (ja) アルカリ一次電池
WO2013157181A1 (ja) アルカリ電池
WO2020137440A1 (ja) リチウム含有複合酸化物の製造方法
JP6868794B2 (ja) アルカリ乾電池
JP6734155B2 (ja) アルカリ電池
JP6934629B2 (ja) アルカリ乾電池
WO2020166138A1 (ja) アルカリ乾電池
WO2020188900A1 (ja) アルカリ乾電池
WO2021186805A1 (ja) アルカリ乾電池
KR20100056256A (ko) 표면 개질된 음극 및 분리막을 사용한 알칼리 아연 이차전지
JP6948629B2 (ja) アルカリ乾電池
US20230163321A1 (en) Electrochemical cell with increased runtime and reduced internal shorting
WO2003044883A1 (en) Non-aqueous primary battery
JP2004259453A (ja) 密閉形アルカリ亜鉛一次電池
WO2023068122A1 (ja) アルカリ乾電池
JP5022526B1 (ja) アルカリ一次電池
JP2007250451A (ja) アルカリ電池
JP2018142516A (ja) アルカリ乾電池およびその製造方法
JP2007220374A (ja) アルカリ亜鉛一次電池
JP2007123051A (ja) アルカリ亜鉛一次電池、およびそれに用いるアルカリ亜鉛系化合物正極合剤
JP2007095675A (ja) アルカリ電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899731

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019504307

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17899731

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载