WO2018163319A1 - Rotor and rotating electric machine provided with said rotor - Google Patents
Rotor and rotating electric machine provided with said rotor Download PDFInfo
- Publication number
- WO2018163319A1 WO2018163319A1 PCT/JP2017/009235 JP2017009235W WO2018163319A1 WO 2018163319 A1 WO2018163319 A1 WO 2018163319A1 JP 2017009235 W JP2017009235 W JP 2017009235W WO 2018163319 A1 WO2018163319 A1 WO 2018163319A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotor
- permanent magnet
- insertion hole
- rotation axis
- magnet
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
Definitions
- the present invention relates to a rotor and a rotary electric motor including the rotor.
- Rotating motors are known to have an annular stator that is fixedly supported by shrink fitting or the like on the inner wall surface of a sealed container, and a rotor that is rotatably attached to the inner side surface of the stator.
- the rotor has a rotor core formed by stacking a plurality of electromagnetic steel sheets punched into a predetermined shape, permanent magnets inserted into a plurality of magnet insertion holes formed in the rotor core, and both end surfaces of the rotor core in the rotation axis direction. And an arranged end plate.
- the size of the magnet insertion hole is designed to be larger than the dimension of the permanent magnet. This is for avoiding the generation of thermal stress due to temperature changes, as well as making it easier to insert the permanent magnet into the magnet insertion hole.
- the permanent magnet moves inside the magnet insertion hole when the rotor rotates, so that the rotation balance of the rotor fluctuates and noise is generated during operation of the rotary motor.
- Patent Document 1 discloses a motor rotor having a structure in which a pressing portion that presses a permanent magnet in the rotation axis direction is formed on an end plate.
- the pressing portion is formed by deforming a part of the end plate so that a part thereof enters the magnet insertion hole at a position corresponding to the magnet insertion hole.
- a rotor of a rotary motor is manufactured by separate processes for an electromagnetic steel plate and an end plate. Therefore, when the rotor is small, it is difficult to align the pressing portion formed on the end plate with the magnet insertion hole formed on the electromagnetic steel plate, and there is a possibility that the permanent magnet cannot be sufficiently pressed by the pressing portion.
- the rotary electric motor disclosed in Patent Document 1 requires a separate mold for forming the pressing portion on the end plate, which increases manufacturing costs.
- the present invention has been made to solve the above-described problems, and can firmly fix the permanent magnet inserted into the magnet insertion hole of the rotor core, thereby reducing noise generated during operation of the rotary motor.
- An object of the present invention is to provide a rotor and a rotary electric motor including the rotor.
- a rotor according to the present invention is formed by laminating a plurality of steel plates in the rotation axis direction, and has a rotor core having a plurality of magnet insertion holes penetrated in the rotation axis direction, and a permanent magnet inserted into the magnet insertion hole, An end plate disposed on an end surface of the rotor core in the rotation axis direction, and the steel plate disposed on one end side or the other end side of the rotor core is inserted into the magnet insertion hole.
- a pressing portion is formed in contact with the end of the permanent magnet to press the permanent magnet in the direction of the rotation axis.
- the steel plate in which the pressing portion that contacts the end portion of the permanent magnet inserted into the magnet insertion hole and presses in the direction of the rotation axis is disposed on one end side or the other end side of the rotor core. Therefore, the position of the permanent magnet can be firmly fixed by the pressing portion, and noise generated during operation of the rotary motor can be reduced.
- FIG. 3 is a plan view illustrating the rotor according to the first embodiment of the present invention with the end plate omitted.
- FIG. 4 is an enlarged cross-sectional view taken along line AA shown in FIG. 3.
- FIG. 5 is an enlarged cross-sectional view taken along line AA in FIG. 3 showing a modification of the rotor according to the first embodiment of the present invention.
- FIG. 5 is an enlarged cross-sectional view taken along line AA in FIG. 3 showing a modification of the rotor according to the first embodiment of the present invention.
- FIG. 10 is a longitudinal cross-sectional view showing a magnet insertion hole portion in which the end plate is omitted, which is a modification of the rotor according to the third embodiment.
- FIG. 1 is a plan view showing a rotary electric motor including a rotor according to Embodiment 1 of the present invention.
- FIG. 2 is a longitudinal sectional view showing the rotor according to the first embodiment.
- FIG. 3 is a plan view illustrating the rotor according to the first embodiment with the end plates omitted.
- FIG. 4 is an enlarged cross-sectional view taken along line AA shown in FIG.
- the rotary motor 300 is attached to an annular stator 200 fixedly supported by shrink fitting or the like on an inner wall surface of a sealed container (not shown) and rotatably attached to the inner surface of the stator 200. And the rotor 100.
- the stator 200 includes a stator core 201 formed by laminating a plurality of electromagnetic steel plates made of a high permeability material in the rotation axis direction P, and windings (not shown) wound around the stator core 201.
- the stator core 201 includes a core back part 202 configured in an annular shape and a plurality of teeth parts 203 extending inward from the core back part 202. Note that the winding is provided by winding the conductive wire around the tooth portion 203 a plurality of times.
- the rotor 100 is disposed on the rotor core 1, the permanent magnet 4 inserted in the magnet insertion hole 3 formed in the rotor core 1, and both end faces of the rotor core 1 in the rotation axis direction P. And an end plate 5 made of a non-magnetic material.
- the rotor 100 is placed vertically for convenience of explanation.
- the rotor core 1 is formed by laminating a plurality of electromagnetic steel plates 2 made of a high permeability material punched into an annular shape in the rotation axis direction P.
- Six substantially rectangular magnet insertion holes 3 are formed in the vicinity of the outer periphery of the rotor core 1 along the circumferential direction.
- a neodymium permanent magnet 4 is inserted (embedded) in each magnet insertion hole 3.
- the number of magnet insertion holes 3 is not limited to the six shown in the figure as long as the number corresponds to the number of magnetic poles.
- the waveform of the counter electromotive force generated in the winding wound around the stator core 201 is brought close to a sine wave on each outer peripheral side of the magnet insertion hole 3 to suppress vibration and noise of the rotary motor 300.
- a plurality of slits 11 to be opened are formed.
- seven slits 11 are formed as an example on each outer peripheral side of the magnet insertion hole 3.
- an air hole portion 12 through which discharge gas passing through the rotary electric motor 300 passes and a rivet insertion hole 13 for inserting a rivet are formed therethrough.
- a shaft insertion hole 10 for inserting a shaft such as a compression mechanism portion is formed through the center of the inner circumference side of the magnet insertion hole 3.
- the rotor 100 is fixed to a shaft such as a compression mechanism portion that is passed through the shaft insertion hole 10 by shrink fitting or the like.
- each end plate 5 is formed with a shaft insertion hole through which the shaft is inserted, an air hole portion through which the discharge gas passes through the rotary electric motor 300, and a rivet insertion hole through which the rivet is inserted.
- the rotor 100 is formed by providing end plates 5 on both end faces of the rotor core 1 to which the permanent magnets 4 are mounted, and inserting the rivets into a plurality of rivet insertion holes and caulking and fixing.
- the rotor 100 of the rotary motor 300 rotates by receiving a rotational force from a rotating magnetic field generated by the stator 200 to which the current is supplied. Along with this, a shaft (not shown) inserted through the shaft insertion hole 10 of the rotor 100 is rotationally driven.
- the size of the magnet insertion hole 3 is designed to be larger than the dimension of the permanent magnet 4. This is for avoiding generation of thermal stress due to temperature change, in addition to facilitating insertion of the permanent magnet 4 into the magnet insertion hole 3.
- the permanent magnet 4 moves inside the magnet insertion hole 3 during rotation of the rotor, so that the rotation balance of the rotor fluctuates and noise is generated during the operation of the rotary electric motor 300. .
- the magnetic steel sheet 2 a arranged at the top of the plurality of electromagnetic steel sheets 2 constituting the rotor core 1 is provided in the magnet insertion hole 3.
- a pressing portion 6 is formed in contact with the end portion of the inserted permanent magnet 4 to press the permanent magnet downward in the rotation axis direction P.
- the pressing portion 6 includes an inclined surface portion 60 inclined toward the permanent magnet 4 from the opening edge facing in the circumferential direction of the magnet insertion hole 3, and magnet insertion from the end of the inclined surface portion 60. It is formed in a pair of left and right spring plates that project toward the center of the hole 3 and have a flat surface portion 61 that contacts the end of the permanent magnet 4 and presses downward in the rotational axis direction P. That is, the pressing part 6 formed in the shape of a spring plate can strongly press the permanent magnet 4 downward in the rotation axis direction P by using the elastic force. Since the pressed permanent magnet 4 is strongly pressed against the lower end plate 5 at the lower end surface, the position in the rotation axis direction P is firmly fixed. Further, the permanent magnet 4 is strongly pressed and sandwiched between the pressing portion 6 and the end plate 5, and the movement in the direction orthogonal to the rotational axis direction P is also restricted by the action of each frictional force.
- the pressing part 6 is not limited to the structure formed in the uppermost electromagnetic steel plate 2a shown in FIG.
- the pressing portion 6 may be formed on the electromagnetic steel sheet 2 (for example, the electromagnetic steel sheet 2 located in the second or third stage from the top) disposed in the upper part of the plurality of electromagnetic steel sheets 2 constituting the rotor core 1. .
- the pressing portion 6 is the electromagnetic steel plate 2 arranged at the lowest stage among the plurality of electromagnetic steel plates 2 constituting the rotor core 1 and is inserted into the magnet insertion hole 3.
- the permanent magnet 4 may be in contact with the end of the permanent magnet 4 and pressed upward in the rotational axis direction P. That is, since the upper end surface of the permanent magnet 4 pressed upward by the pressing portion 6 is strongly pressed against the upper end plate 5, the position in the rotation axis direction P is firmly fixed.
- the pressing part 6 is formed on the electromagnetic steel sheet 2 (for example, the electromagnetic steel sheet 2 located in the second or third stage from the bottom) disposed in the lower part of the plurality of electromagnetic steel sheets 2 constituting the rotor core 1. Also good.
- the rotor 100 is in contact with the end of the permanent magnet 4 inserted into the magnet insertion hole 3 on the electromagnetic steel plate 2 disposed on one end side (upper part) of the rotor core 1. Since the pressing portion 6 that presses the permanent magnet 4 in the rotation axis direction P is formed, the position of the permanent magnet 4 can be firmly fixed by the pressing portion 6, and noise generated during operation of the rotary motor 300. Can be reduced.
- the pressing portion 6 is inclined from the opposed opening edge of the magnet insertion hole 3 toward the permanent magnet 4 and the magnet insertion hole 3 from the end of the inclined surface portion 60.
- the permanent magnet 4 can be strongly pressed in the rotation axis direction P. Therefore, the rotor 100 according to the first embodiment can firmly fix the position of the permanent magnet 4 in the rotation axis direction P, and can more effectively reduce noise generated during the operation of the rotary electric motor 300. .
- the pressing portion 6 may be formed on a plurality of (three in the illustrated example) electromagnetic steel sheets 2 including the uppermost stage of the rotor core 1.
- the rotor can strongly press the permanent magnet 4 downward in the rotation axis direction P by the elastic force of the plurality of pressing portions 6.
- the rotor 100 shown in FIG. 6 has a configuration in which the permanent magnet 4 is divided into a plurality of parts in order to reduce magnet eddy current loss.
- the permanent magnet 4 shown in FIG. 6 is composed of two pieces that are divided in the circumferential direction of the rotor core 1.
- the pair of left and right pressing portions 6 are configured to press each of the two permanent magnets 4 and 4 into which the respective pressing portions are divided downward in the rotation axis direction P. Therefore, even if the rotor 100 is composed of the two permanent magnets 4 divided to reduce the magnet eddy current loss, the pair of pressing portions 6 press the permanent magnet 4 to be strong. Since it can fix, the noise which generate
- each permanent magnet 4 inserted into the magnet insertion hole 3 repel each other inside the magnet insertion hole 3 and are pressed against the inner surface of the magnet insertion hole 3. Therefore, each permanent magnet 4 is not fixed obliquely with respect to the rotation axis direction P.
- FIG. 7 is a plan view showing the rotor according to the second embodiment with the end plates omitted.
- FIG. 8 is a longitudinal sectional view showing a magnet insertion hole portion of the rotor according to the second embodiment, with the end plate omitted.
- symbol is attached
- the rotor of the second embodiment includes four permanent magnets 4 divided in the circumferential direction of the rotor core 1 in order to reduce magnet eddy current loss.
- the electromagnetic steel sheet 2 arranged at the uppermost stage of the rotor core 1 is formed with a pressing portion 7 that contacts the end of the permanent magnet 4 and presses the permanent magnet 4 downward in the rotation axis direction P.
- the pressing portion 7 is formed in a zigzag shape from one opening edge facing in the circumferential direction of the magnet insertion hole 3 toward the other opening edge as seen from the rotation axis direction P.
- the cross-sectional shape is also formed in a zigzag shape.
- the pressing portion 7 has four protrusions 70 protruding toward the permanent magnet 4. Each protrusion 70 of the pressing portion 7 abuts against an end portion of each corresponding permanent magnet 4 to press the permanent magnet 4 downward in the rotation axis direction P.
- the pressing portion 7 can be secured in length by being formed in a zigzag shape when viewed from the rotation axis direction P, and the permanent magnet 4 can be strongly pushed in the rotation axis direction P.
- the permanent magnet 4 is constituted by a plurality (for example, three or more) divided in the circumferential direction of the rotor core 1 in order to reduce magnet eddy current loss.
- the plurality of permanent magnets 4 can be pressed and firmly fixed by the pressing portion 7, and noise generated during operation of the rotary electric motor 300 can be reduced.
- the plurality of permanent magnets 4 inserted into the magnet insertion hole 3 repel each other inside the magnet insertion hole 3, and the permanent magnets 4 at the left and right ends are pressed against the inner surface of the magnet insertion hole 3. Therefore, each permanent magnet 4 is not fixed obliquely with respect to the rotation axis direction P.
- the zigzag-shaped pressing portion 7 may have a configuration in which a single permanent magnet 4 is pressed downward in the rotation axis direction P with two or more protrusions 70, for example.
- the zigzag-shaped pressing part 7 is not limited to the structure which has the four protrusions 70 shown in figure.
- the zigzag-shaped pressing portion 7 may be configured to have a number of protrusions corresponding to the number of divided permanent magnets 4.
- the zigzag-shaped pressing portion 7 is formed on the electromagnetic steel sheet 2 (for example, the electromagnetic steel sheet 2 located in the second or third stage from the top) disposed in the upper part of the plurality of electromagnetic steel sheets 2 constituting the rotor core 1.
- the formed structure may be sufficient.
- the zigzag pressing portion 7 may be formed on the electromagnetic steel plate 2 disposed in the lower portion of the plurality of electromagnetic steel plates 2 constituting the rotor core 1.
- FIG. 9 is a longitudinal sectional view showing a magnet insertion hole portion of the rotor according to the third embodiment, with the end plate omitted.
- symbol is attached
- the pressing portion 8 is formed in a pair of flat plates protruding from the opening edge facing in the circumferential direction of the magnet insertion hole 3 toward the center of the magnet insertion hole 3. It is a configuration.
- the flat pressing portion 8 can strongly press the permanent magnet 4 downward in the rotation axis direction P using the elastic force of the electromagnetic steel plate 2.
- FIG. 10 is a plan view showing a rotor provided with a magnet stopper for positioning the permanent magnet inserted into the magnet insertion hole, with the end plate omitted.
- FIG. 11 is an enlarged plan view showing the magnet insertion portion shown in FIG.
- FIG. 12 is an enlarged plan view showing a magnet insertion portion of the rotor which is pressed by flatly pressing the magnet stopper.
- the embedded magnet type rotor has a configuration in which a magnet stopper 9 is provided for positioning and fixing the position of the permanent magnet 4 inserted in each magnet insertion hole 3.
- the flat pressing portion 8 can be formed by flat-pressing the magnet stopper 9 in advance as shown in FIG.
- FIG. 13 is a longitudinal sectional view showing a magnet insertion hole portion in which the end plate is omitted, which is a modification of the rotor according to the third embodiment.
- the flat pressing portion 8 may have a configuration formed on a plurality of (three in the illustrated example) electromagnetic steel plates 2 disposed on the top of the rotor core 1. In this case, the flat pressing portion 8 can strongly press the permanent magnet 4 downward in the rotation axis direction P by its elastic force.
- the rotor according to the third embodiment is in contact with the end of the permanent magnet 4 inserted into the magnet insertion hole 3 on the electromagnetic steel plate 2 arranged on the upper portion of the rotor core 1 so that the permanent magnet 4 is rotated. Since the flat pressing portion 8 that presses in the direction P is formed, the position of the permanent magnet 4 can be firmly fixed by the pressing portion 8 and noise generated during operation of the rotary electric motor 300 can be reduced. Can do.
- the rotor according to the third embodiment is configured by a pair of flat plates in which the pressing portion 8 protrudes from the opening edge facing the magnet insertion hole 3 toward the center of the magnet insertion hole 3. 9 can be formed by flat-pressing, and the pressing portion 8 can be easily molded and the manufacturing cost can be reduced.
- the rotor according to the third embodiment has a pair of presses even when the permanent magnet 4 is constituted by two pieces divided in the circumferential direction of the rotor core 1 in order to reduce magnet eddy current loss.
- Each pressing portion of the portion 8 can press the divided permanent magnets 4 in the rotation axis direction P.
- the flat pressing part 8 is not limited to the structure formed in the electromagnetic steel plate 2 of the 2nd step
- the flat pressing portion 8 is an electromagnetic steel plate 2 disposed in the lower part of the plurality of electromagnetic steel plates 2 constituting the rotor core 1, and is provided at the end of the permanent magnet 4 inserted into the magnet insertion hole 3.
- a configuration in which the permanent magnet 4 is pressed upward in the rotation axis direction P may be used.
- the present invention has been described above based on the embodiment, the present invention is not limited to the configuration of the embodiment described above.
- the pressing portion 6 may be configured to be formed on the opening edge facing in the radial direction of the magnet insertion hole 3.
- the scope of the present invention also includes the scope of various changes, applications, and uses made by those skilled in the art as needed.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Abstract
This rotor is provided with: a rotor core formed by stacking a plurality of steel plates in the axial direction of a rotating shaft, and having a plurality of magnet insertion holes that penetrate in the axial direction of the rotating shaft; permanent magnets inserted into the magnet insertion holes; and an end plate disposed on an end surface in the axial direction of the rotating shaft of the rotor core. A pressing part that presses the permanent magnets in the axial direction of the rotating shaft while in contact with an end part of the permanent magnets inserted in the permanent magnet insertion holes is formed on the steel plate disposed on one end section side or on the other end section side of the rotor core.
Description
本発明は、ロータ及びそのロータを備えた回転電動機に関するものである。
The present invention relates to a rotor and a rotary electric motor including the rotor.
回転電動機は、密閉容器の内壁面に焼き嵌め等により固着支持された円環状のステータと、ステータの内側面に対向して回転可能に取り付けられたロータと、を有する構成が知られている。ロータは、所定の形状に打ち抜いた電磁鋼板を複数枚積層して構成されたロータコアと、ロータコアに形成された複数の磁石挿入孔に挿入された永久磁石と、ロータコアの回転軸方向の両端面に配置された端板と、を備えている。
Rotating motors are known to have an annular stator that is fixedly supported by shrink fitting or the like on the inner wall surface of a sealed container, and a rotor that is rotatably attached to the inner side surface of the stator. The rotor has a rotor core formed by stacking a plurality of electromagnetic steel sheets punched into a predetermined shape, permanent magnets inserted into a plurality of magnet insertion holes formed in the rotor core, and both end surfaces of the rotor core in the rotation axis direction. And an arranged end plate.
上記した埋め込み磁石形ロータでは、磁石挿入孔の大きさが、永久磁石の寸法よりも大きく設計されている。これは、磁石挿入孔に永久磁石を挿入し易くするための他、温度変化による熱応力の発生を回避するためである。しかし、埋込み磁石形ロータでは、ロータの回転時に磁石挿入孔の内部で永久磁石が移動することで、ロータの回転バランスが変動し、回転電動機の運転中に騒音が発生する。
In the above-described embedded magnet type rotor, the size of the magnet insertion hole is designed to be larger than the dimension of the permanent magnet. This is for avoiding the generation of thermal stress due to temperature changes, as well as making it easier to insert the permanent magnet into the magnet insertion hole. However, in the embedded magnet type rotor, the permanent magnet moves inside the magnet insertion hole when the rotor rotates, so that the rotation balance of the rotor fluctuates and noise is generated during operation of the rotary motor.
そこで、特許文献1には、永久磁石を回転軸方向に押圧する押圧部が端板に形成された構成のモータ用ロータが開示されている。押圧部は、磁石挿入孔に対応する位置において、一部が磁石挿入孔に入り込むように端板の一部を変形させて形成されている。
Therefore, Patent Document 1 discloses a motor rotor having a structure in which a pressing portion that presses a permanent magnet in the rotation axis direction is formed on an end plate. The pressing portion is formed by deforming a part of the end plate so that a part thereof enters the magnet insertion hole at a position corresponding to the magnet insertion hole.
一般に、回転電動機のロータは、電磁鋼板と端板とが別工程で製造される。そのため、ロータが小型である場合には、端板に形成した押圧部と、電磁鋼板に形成した磁石挿入孔との位置合わせが難しく、押圧部で永久磁石を十分に押圧できない虞がある。また、特許文献1に開示された回転電動機では、端板に押圧部を形成するための金型が別途必要となり、製造コストがかかる。
Generally, a rotor of a rotary motor is manufactured by separate processes for an electromagnetic steel plate and an end plate. Therefore, when the rotor is small, it is difficult to align the pressing portion formed on the end plate with the magnet insertion hole formed on the electromagnetic steel plate, and there is a possibility that the permanent magnet cannot be sufficiently pressed by the pressing portion. In addition, the rotary electric motor disclosed in Patent Document 1 requires a separate mold for forming the pressing portion on the end plate, which increases manufacturing costs.
本発明は、上記のような課題を解決するためになされたものであり、ロータコアの磁石挿入孔に挿入した永久磁石を強固に固定でき、回転電動機の運転中に発生する騒音を低減させることができる、ロータ及びそのロータを備えた回転電動機を提供することを目的とする。
The present invention has been made to solve the above-described problems, and can firmly fix the permanent magnet inserted into the magnet insertion hole of the rotor core, thereby reducing noise generated during operation of the rotary motor. An object of the present invention is to provide a rotor and a rotary electric motor including the rotor.
本発明に係るロータは、複数枚の鋼板を回転軸方向に積層して形成され、回転軸方向に貫通させた複数の磁石挿入孔を有するロータコアと、前記磁石挿入孔に挿入された永久磁石と、前記ロータコアの回転軸方向の端面に配置された端板と、を備え、前記ロータコアの一方の端部側又は他方の端部側に配置された鋼板には、前記磁石挿入孔に挿入された永久磁石の端部に当接して、前記永久磁石を回転軸方向に押圧する押圧部が形成されているものである。
A rotor according to the present invention is formed by laminating a plurality of steel plates in the rotation axis direction, and has a rotor core having a plurality of magnet insertion holes penetrated in the rotation axis direction, and a permanent magnet inserted into the magnet insertion hole, An end plate disposed on an end surface of the rotor core in the rotation axis direction, and the steel plate disposed on one end side or the other end side of the rotor core is inserted into the magnet insertion hole. A pressing portion is formed in contact with the end of the permanent magnet to press the permanent magnet in the direction of the rotation axis.
本発明によれば、磁石挿入孔に挿入された永久磁石の端部に当接して回転軸方向に押圧する押圧部が、ロータコアの一方の端部側又は他方の端部側に配置された鋼板に形成されているので、押圧部で永久磁石の位置を強固に固定することができ、回転電動機の運転中に発生する騒音を低減することができる。
According to the present invention, the steel plate in which the pressing portion that contacts the end portion of the permanent magnet inserted into the magnet insertion hole and presses in the direction of the rotation axis is disposed on one end side or the other end side of the rotor core. Therefore, the position of the permanent magnet can be firmly fixed by the pressing portion, and noise generated during operation of the rotary motor can be reduced.
以下、図面を参照して、本発明の実施の形態について説明する。なお、各図中、同一又は相当する部分には、同一符号を付して、その説明を適宜省略又は簡略化する。また、各図に記載の構成について、その形状、大きさ、及び配置等は、本発明の範囲内で適宜変更することができる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and the description thereof is omitted or simplified as appropriate. Moreover, about the structure as described in each figure, the shape, a magnitude | size, arrangement | positioning, etc. can be suitably changed within the scope of the present invention.
実施の形態1.
図1は、本発明の実施の形態1に係るロータを備えた回転電動機を示した平面図である。図2は、実施の形態1に係るロータを示した縦断面図である。図3は、実施の形態1に係るロータであって端板を省略して示した平面図である。図4は、図3に示したA-A線矢視拡大断面図である。Embodiment 1 FIG.
FIG. 1 is a plan view showing a rotary electric motor including a rotor according toEmbodiment 1 of the present invention. FIG. 2 is a longitudinal sectional view showing the rotor according to the first embodiment. FIG. 3 is a plan view illustrating the rotor according to the first embodiment with the end plates omitted. FIG. 4 is an enlarged cross-sectional view taken along line AA shown in FIG.
図1は、本発明の実施の形態1に係るロータを備えた回転電動機を示した平面図である。図2は、実施の形態1に係るロータを示した縦断面図である。図3は、実施の形態1に係るロータであって端板を省略して示した平面図である。図4は、図3に示したA-A線矢視拡大断面図である。
FIG. 1 is a plan view showing a rotary electric motor including a rotor according to
回転電動機300は、図1に示すように、図示省略の密閉容器の内壁面に焼き嵌め等により固着支持された円環状のステータ200と、ステータ200の内側面に対向して回転可能に取り付けられたロータ100とで構成されている。
As shown in FIG. 1, the rotary motor 300 is attached to an annular stator 200 fixedly supported by shrink fitting or the like on an inner wall surface of a sealed container (not shown) and rotatably attached to the inner surface of the stator 200. And the rotor 100.
ステータ200は、高透磁率材料からなる電磁鋼板を回転軸方向Pに複数枚積層して形成されたステータコア201と、ステータコア201に巻回される図示省略の巻線とで構成されている。ステータコア201は、円環状に構成されたコアバック部202と、コアバック部202から内側に向かって延びる複数のティース部203とを備えている。なお、巻線は、ティース部203に導線を複数回巻き付けて設けられている。
The stator 200 includes a stator core 201 formed by laminating a plurality of electromagnetic steel plates made of a high permeability material in the rotation axis direction P, and windings (not shown) wound around the stator core 201. The stator core 201 includes a core back part 202 configured in an annular shape and a plurality of teeth parts 203 extending inward from the core back part 202. Note that the winding is provided by winding the conductive wire around the tooth portion 203 a plurality of times.
ロータ100は、図2及び図3に示すように、ロータコア1と、ロータコア1に形成された磁石挿入孔3に挿入された永久磁石4と、ロータコア1の回転軸方向Pの両端面に配置された非磁性体から成る端板5と、を備えている。なお、図示した実施の形態1のロータ100では、説明の便宜上、縦置きにしている。
As shown in FIGS. 2 and 3, the rotor 100 is disposed on the rotor core 1, the permanent magnet 4 inserted in the magnet insertion hole 3 formed in the rotor core 1, and both end faces of the rotor core 1 in the rotation axis direction P. And an end plate 5 made of a non-magnetic material. In the illustrated rotor 100 according to the first embodiment, the rotor 100 is placed vertically for convenience of explanation.
ロータコア1は、円環形状に打ち抜いた高透磁率材料からなる電磁鋼板2を回転軸方向Pに複数枚積層して形成されている。ロータコア1の外周近傍の位置には、略長方形状の磁石挿入孔3が周方向に沿って6つ形成されている。各磁石挿入孔3には、ネオジウム永久磁石4が挿入(埋設)されている。なお、磁石挿入孔3は、磁極に相当する数であればよく、図示した6つに限定されない。
The rotor core 1 is formed by laminating a plurality of electromagnetic steel plates 2 made of a high permeability material punched into an annular shape in the rotation axis direction P. Six substantially rectangular magnet insertion holes 3 are formed in the vicinity of the outer periphery of the rotor core 1 along the circumferential direction. A neodymium permanent magnet 4 is inserted (embedded) in each magnet insertion hole 3. The number of magnet insertion holes 3 is not limited to the six shown in the figure as long as the number corresponds to the number of magnetic poles.
また、ロータコア1には、磁石挿入孔3のそれぞれの外周側に、ステータコア201に巻回された巻線に生じる逆起電力の波形を正弦波に近づけて、回転電動機300の振動及び騒音を抑制する複数のスリット11が開口形成されている。実施の形態1では、磁石挿入孔3のそれぞれの外周側に、スリット11が一例として7つ形成されている。また、磁石挿入孔3の内周側には、回転電動機300を通過する吐出ガスを通す風穴部12と、リベットを挿通するためのリベット挿通孔13とが貫通して形成されている。また、磁石挿入孔3の内周側の中央には、圧縮機構部等のシャフトを挿入するためのシャフト挿入孔10が貫通して形成されている。ロータ100は、例えば回転電動機300が圧縮機に組み込まれた場合、シャフト挿入孔10に通した圧縮機構部等のシャフトに焼き嵌め等により固定されている。
Further, in the rotor core 1, the waveform of the counter electromotive force generated in the winding wound around the stator core 201 is brought close to a sine wave on each outer peripheral side of the magnet insertion hole 3 to suppress vibration and noise of the rotary motor 300. A plurality of slits 11 to be opened are formed. In the first embodiment, seven slits 11 are formed as an example on each outer peripheral side of the magnet insertion hole 3. Further, on the inner peripheral side of the magnet insertion hole 3, an air hole portion 12 through which discharge gas passing through the rotary electric motor 300 passes and a rivet insertion hole 13 for inserting a rivet are formed therethrough. A shaft insertion hole 10 for inserting a shaft such as a compression mechanism portion is formed through the center of the inner circumference side of the magnet insertion hole 3. For example, when the rotary electric motor 300 is incorporated in a compressor, the rotor 100 is fixed to a shaft such as a compression mechanism portion that is passed through the shaft insertion hole 10 by shrink fitting or the like.
端板5は、図2に示すように、ロータコア1の回転軸方向Pの両端面に設けられている。詳細に図示することは省略したが、各端板5には、シャフトが挿通するシャフト挿入孔、回転電動機300を通過する吐出ガスを通す風穴部、及びリベットが挿通するリベット挿通孔がそれぞれ形成されている。すなわち、ロータ100は、永久磁石4が装着されたロータコア1の両端面に端板5を設け、複数のリベット挿通孔にリベットを挿通してかしめ固定して形成されている。
The end plates 5 are provided on both end faces of the rotor core 1 in the rotation axis direction P as shown in FIG. Although not shown in detail, each end plate 5 is formed with a shaft insertion hole through which the shaft is inserted, an air hole portion through which the discharge gas passes through the rotary electric motor 300, and a rivet insertion hole through which the rivet is inserted. ing. That is, the rotor 100 is formed by providing end plates 5 on both end faces of the rotor core 1 to which the permanent magnets 4 are mounted, and inserting the rivets into a plurality of rivet insertion holes and caulking and fixing.
回転電動機300のロータ100は、ステータ200の巻線に電流が供給されると、電流が供給されたステータ200が発生する回転磁界からの回転力を受けて回転する。それに伴ってロータ100のシャフト挿入孔10に挿通された図示省略のシャフトが回転駆動する。
When a current is supplied to the winding of the stator 200, the rotor 100 of the rotary motor 300 rotates by receiving a rotational force from a rotating magnetic field generated by the stator 200 to which the current is supplied. Along with this, a shaft (not shown) inserted through the shaft insertion hole 10 of the rotor 100 is rotationally driven.
ここで、上記した埋め込み磁石形ロータでは、磁石挿入孔3の大きさが、永久磁石4の寸法よりも大きく設計されている。これは、磁石挿入孔3に永久磁石4を挿入し易くするための他、温度変化による熱応力の発生を回避するためである。しかし、埋込み磁石形ロータでは、ロータの回転時に磁石挿入孔3の内部で永久磁石4が移動することで、ロータの回転バランスが変動し、回転電動機300の運転中に騒音が発生する問題がある。
Here, in the above-described embedded magnet type rotor, the size of the magnet insertion hole 3 is designed to be larger than the dimension of the permanent magnet 4. This is for avoiding generation of thermal stress due to temperature change, in addition to facilitating insertion of the permanent magnet 4 into the magnet insertion hole 3. However, in the embedded magnet type rotor, the permanent magnet 4 moves inside the magnet insertion hole 3 during rotation of the rotor, so that the rotation balance of the rotor fluctuates and noise is generated during the operation of the rotary electric motor 300. .
そこで、実施の形態1のロータ100では、図3及び図4に示すように、ロータコア1を構成する複数枚の電磁鋼板2のうち最上段に配置された電磁鋼板2aに、磁石挿入孔3に挿入された永久磁石4の端部に当接して、同永久磁石を回転軸方向Pにおいて下向きに押圧する押圧部6が形成されている。
Therefore, in the rotor 100 of the first embodiment, as shown in FIG. 3 and FIG. 4, the magnetic steel sheet 2 a arranged at the top of the plurality of electromagnetic steel sheets 2 constituting the rotor core 1 is provided in the magnet insertion hole 3. A pressing portion 6 is formed in contact with the end portion of the inserted permanent magnet 4 to press the permanent magnet downward in the rotation axis direction P.
押圧部6は、図3及び図4に示すように、磁石挿入孔3の周方向において対向する開口縁辺から永久磁石4へ向かって傾斜する傾斜面部60と、傾斜面部60の端部から磁石挿入孔3の中心に向かって突き出し、永久磁石4の端部に当接して回転軸方向Pにおける下向きに押圧する平面部61と、を有する左右一対のバネ板状に形成されている。つまり、バネ板状に形成された押圧部6は、その弾性力を利用して、永久磁石4を回転軸方向Pにおける下向きに強く押圧することができる。押圧された永久磁石4は、下端面が下側の端板5に強く押し付けられるため、回転軸方向Pの位置がしっかりと固定される。さらに、永久磁石4は、押圧部6と端板5とによって強く押圧されて挟まれていると共に、各々の摩擦力の作用によって、回転軸方向Pに対する直交方向の動きも規制される。
As shown in FIGS. 3 and 4, the pressing portion 6 includes an inclined surface portion 60 inclined toward the permanent magnet 4 from the opening edge facing in the circumferential direction of the magnet insertion hole 3, and magnet insertion from the end of the inclined surface portion 60. It is formed in a pair of left and right spring plates that project toward the center of the hole 3 and have a flat surface portion 61 that contacts the end of the permanent magnet 4 and presses downward in the rotational axis direction P. That is, the pressing part 6 formed in the shape of a spring plate can strongly press the permanent magnet 4 downward in the rotation axis direction P by using the elastic force. Since the pressed permanent magnet 4 is strongly pressed against the lower end plate 5 at the lower end surface, the position in the rotation axis direction P is firmly fixed. Further, the permanent magnet 4 is strongly pressed and sandwiched between the pressing portion 6 and the end plate 5, and the movement in the direction orthogonal to the rotational axis direction P is also restricted by the action of each frictional force.
なお、押圧部6は、図4に示す最上段の電磁鋼板2aに形成された構成に限定されない。押圧部6は、ロータコア1を構成する複数枚の電磁鋼板2のうち上部に配置された電磁鋼板2(例えば上から2段目又は3段目に位置する電磁鋼板2)に形成してもよい。
In addition, the pressing part 6 is not limited to the structure formed in the uppermost electromagnetic steel plate 2a shown in FIG. The pressing portion 6 may be formed on the electromagnetic steel sheet 2 (for example, the electromagnetic steel sheet 2 located in the second or third stage from the top) disposed in the upper part of the plurality of electromagnetic steel sheets 2 constituting the rotor core 1. .
また、詳細に図示することは省略したが、押圧部6は、ロータコア1を構成する複数枚の電磁鋼板2のうち最下段に配置された電磁鋼板2であって、磁石挿入孔3に挿入された永久磁石4の端部に当接して、永久磁石4を回転軸方向Pにおける上向きに押圧した構成でもよい。つまり、押圧部6によって上方向へ押圧された永久磁石4は、上端面が上側の端板5に強く押し付けられるため、回転軸方向Pの位置がしっかりと固定される。もちろん、押圧部6は、ロータコア1を構成する複数枚の電磁鋼板2のうち下部に配置された電磁鋼板2(例えば下から2段目又は3段目に位置する電磁鋼板2)に形成してもよい。
Although not shown in detail, the pressing portion 6 is the electromagnetic steel plate 2 arranged at the lowest stage among the plurality of electromagnetic steel plates 2 constituting the rotor core 1 and is inserted into the magnet insertion hole 3. Alternatively, the permanent magnet 4 may be in contact with the end of the permanent magnet 4 and pressed upward in the rotational axis direction P. That is, since the upper end surface of the permanent magnet 4 pressed upward by the pressing portion 6 is strongly pressed against the upper end plate 5, the position in the rotation axis direction P is firmly fixed. Of course, the pressing part 6 is formed on the electromagnetic steel sheet 2 (for example, the electromagnetic steel sheet 2 located in the second or third stage from the bottom) disposed in the lower part of the plurality of electromagnetic steel sheets 2 constituting the rotor core 1. Also good.
したがって、実施の形態1のロータ100は、ロータコア1の一方の端部側(上部)に配置された電磁鋼板2に、磁石挿入孔3に挿入された永久磁石4の端部に当接して、同永久磁石4を回転軸方向Pに押圧する押圧部6が形成されているので、押圧部6で永久磁石4の位置を強固に固定することができ、回転電動機300の運転中に発生する騒音を低減させることができる。
Therefore, the rotor 100 according to the first embodiment is in contact with the end of the permanent magnet 4 inserted into the magnet insertion hole 3 on the electromagnetic steel plate 2 disposed on one end side (upper part) of the rotor core 1. Since the pressing portion 6 that presses the permanent magnet 4 in the rotation axis direction P is formed, the position of the permanent magnet 4 can be firmly fixed by the pressing portion 6, and noise generated during operation of the rotary motor 300. Can be reduced.
また、実施の形態1のロータ100は、押圧部6が、磁石挿入孔3の対向する開口縁辺から永久磁石4へ向かって傾斜する傾斜面部60と、傾斜面部60の端部から磁石挿入孔3の中心に向かって突き出し、永久磁石4の端部に当接して回転軸方向Pに押圧する平面部61と、を有する一対のバネ板状に形成されているので、その弾性力を利用して、永久磁石4を回転軸方向Pへ強く押圧することができる。よって、実施の形態1のロータ100は、永久磁石4の回転軸方向Pの位置をしっかりと固定することができ、回転電動機300の運転中に発生する騒音をより効果的に低減させることができる。
Further, in the rotor 100 of the first embodiment, the pressing portion 6 is inclined from the opposed opening edge of the magnet insertion hole 3 toward the permanent magnet 4 and the magnet insertion hole 3 from the end of the inclined surface portion 60. Is formed in a pair of spring plates having a flat surface portion 61 that protrudes toward the center of the permanent magnet 4 and abuts against the end portion of the permanent magnet 4 and presses in the rotational axis direction P. The permanent magnet 4 can be strongly pressed in the rotation axis direction P. Therefore, the rotor 100 according to the first embodiment can firmly fix the position of the permanent magnet 4 in the rotation axis direction P, and can more effectively reduce noise generated during the operation of the rotary electric motor 300. .
図5及び図6は、本発明の実施の形態1に係るロータの変形例をそれぞれ示した図3のA-A線矢視拡大断面図である。押圧部6は、図5に示すように、ロータコア1の最上段を含む複数枚(図示例では3枚)の電磁鋼板2に形成してもよい。このロータは、複数の押圧部6の弾性力によって、永久磁石4を回転軸方向Pにおける下向きに強く押圧することができる。
5 and 6 are enlarged cross-sectional views taken along line AA in FIG. 3, each showing a modification of the rotor according to Embodiment 1 of the present invention. As shown in FIG. 5, the pressing portion 6 may be formed on a plurality of (three in the illustrated example) electromagnetic steel sheets 2 including the uppermost stage of the rotor core 1. The rotor can strongly press the permanent magnet 4 downward in the rotation axis direction P by the elastic force of the plurality of pressing portions 6.
また、図6に示すロータ100では、磁石渦電流損を低減するために、永久磁石4を複数個に分割した構成である。図6に示した永久磁石4は、ロータコア1の周方向に分割された2個で構成されている。左右一対で成る押圧部6は、各押圧部が分割された2個の永久磁石4、4のそれぞれを回転軸方向Pにおける下向きに押圧する構成である。したがって、このロータ100では、磁石渦電流損を低減するために分割された2個の永久磁石4で構成された場合であっても、一対の押圧部6で永久磁石4を押圧して強固に固定することができるので、回転電動機300の運転中に発生する騒音を低減させることができる。なお、磁石挿入孔3に挿入した2個の永久磁石4は、磁石挿入孔3の内部で互いに反発し合い、磁石挿入孔3の内側面に押しつけられる。そのため、各永久磁石4は、回転軸方向Pに対して斜めに固定されることはない。
Further, the rotor 100 shown in FIG. 6 has a configuration in which the permanent magnet 4 is divided into a plurality of parts in order to reduce magnet eddy current loss. The permanent magnet 4 shown in FIG. 6 is composed of two pieces that are divided in the circumferential direction of the rotor core 1. The pair of left and right pressing portions 6 are configured to press each of the two permanent magnets 4 and 4 into which the respective pressing portions are divided downward in the rotation axis direction P. Therefore, even if the rotor 100 is composed of the two permanent magnets 4 divided to reduce the magnet eddy current loss, the pair of pressing portions 6 press the permanent magnet 4 to be strong. Since it can fix, the noise which generate | occur | produces during the driving | operation of the rotary electric motor 300 can be reduced. The two permanent magnets 4 inserted into the magnet insertion hole 3 repel each other inside the magnet insertion hole 3 and are pressed against the inner surface of the magnet insertion hole 3. Therefore, each permanent magnet 4 is not fixed obliquely with respect to the rotation axis direction P.
実施の形態2.
次に、本発明の実施の形態2に係るロータを図7及び図8に基づいて説明する。図7は、実施の形態2に係るロータであって端板を省略して示した平面図である。図8は、実施の形態2に係るロータの磁石挿入孔部分であって端板を省略して示した縦断面図である。なお、実施の形態1で説明したロータと同一の構成については、同一の符号を付して、その説明を適宜省略する。Embodiment 2. FIG.
Next, a rotor according toEmbodiment 2 of the present invention will be described with reference to FIGS. FIG. 7 is a plan view showing the rotor according to the second embodiment with the end plates omitted. FIG. 8 is a longitudinal sectional view showing a magnet insertion hole portion of the rotor according to the second embodiment, with the end plate omitted. In addition, the same code | symbol is attached | subjected about the structure same as the rotor demonstrated in Embodiment 1, and the description is abbreviate | omitted suitably.
次に、本発明の実施の形態2に係るロータを図7及び図8に基づいて説明する。図7は、実施の形態2に係るロータであって端板を省略して示した平面図である。図8は、実施の形態2に係るロータの磁石挿入孔部分であって端板を省略して示した縦断面図である。なお、実施の形態1で説明したロータと同一の構成については、同一の符号を付して、その説明を適宜省略する。
Next, a rotor according to
図7及び図8に示す実施の形態2のロータでは、磁石渦電流損を低減するために、永久磁石4がロータコア1の周方向に分割された4個で構成されている。そして、ロータコア1の最上段に配置された電磁鋼板2には、永久磁石4の端部に当接して永久磁石4を回転軸方向Pにおける下向きに押圧する押圧部7が形成されている。
7 and 8, the rotor of the second embodiment includes four permanent magnets 4 divided in the circumferential direction of the rotor core 1 in order to reduce magnet eddy current loss. The electromagnetic steel sheet 2 arranged at the uppermost stage of the rotor core 1 is formed with a pressing portion 7 that contacts the end of the permanent magnet 4 and presses the permanent magnet 4 downward in the rotation axis direction P.
押圧部7は、図7に示すように、回転軸方向Pから見て、磁石挿入孔3の周方向において対向する一方の開口縁辺から他方の開口縁辺に向かってジグザク状に形成され、且つ図8に示すように断面形状もジグザグ状に形成されている。押圧部7は、図8に示すように、永久磁石4に向かって突き出す4つの突部70が形成されている。押圧部7の各突部70が、対応する各永久磁石4の端部に当接して永久磁石4を回転軸方向Pにおける下向きに押圧する。また、押圧部7は、回転軸方向Pから見てジグザク状に形成することで長さを確保することができ、永久磁石4を回転軸方向Pに強く押し込むことができる。
As shown in FIG. 7, the pressing portion 7 is formed in a zigzag shape from one opening edge facing in the circumferential direction of the magnet insertion hole 3 toward the other opening edge as seen from the rotation axis direction P. As shown in FIG. 8, the cross-sectional shape is also formed in a zigzag shape. As shown in FIG. 8, the pressing portion 7 has four protrusions 70 protruding toward the permanent magnet 4. Each protrusion 70 of the pressing portion 7 abuts against an end portion of each corresponding permanent magnet 4 to press the permanent magnet 4 downward in the rotation axis direction P. Further, the pressing portion 7 can be secured in length by being formed in a zigzag shape when viewed from the rotation axis direction P, and the permanent magnet 4 can be strongly pushed in the rotation axis direction P.
したがって、実施の形態2のロータでは、磁石渦電流損を低減するために、永久磁石4がロータコア1の周方向に分割された複数個(例えば3個以上)で構成された場合であっても、押圧部7で複数個の永久磁石4を押圧して強固に固定することができ、回転電動機300の運転中に発生する騒音を低減させることができる。なお、磁石挿入孔3に挿入した複数個の永久磁石4は、磁石挿入孔3の内部で互いに反発し合い、左右両端の永久磁石4が磁石挿入孔3の内側面に押しつけられる。そのため、各永久磁石4は、回転軸方向Pに対して斜めに固定されることはない。
Therefore, in the rotor according to the second embodiment, even if the permanent magnet 4 is constituted by a plurality (for example, three or more) divided in the circumferential direction of the rotor core 1 in order to reduce magnet eddy current loss. The plurality of permanent magnets 4 can be pressed and firmly fixed by the pressing portion 7, and noise generated during operation of the rotary electric motor 300 can be reduced. The plurality of permanent magnets 4 inserted into the magnet insertion hole 3 repel each other inside the magnet insertion hole 3, and the permanent magnets 4 at the left and right ends are pressed against the inner surface of the magnet insertion hole 3. Therefore, each permanent magnet 4 is not fixed obliquely with respect to the rotation axis direction P.
なお、ジグザグ状の押圧部7は、例えば2つ以上の突部70で、永久磁石4の単体を回転軸方向Pにおける下向きに押圧した構成でもよい。また、ジグザグ状の押圧部7は、図示した4つの突部70を有する構成に限定されない。ジグザグ状の押圧部7は、分割した永久磁石4の個数に応じた数の突部を有する構成であればよい。また、ジグザグ状の押圧部7は、ロータコア1を構成する複数枚の電磁鋼板2のうち上部に配置された電磁鋼板2(例えば上から2段目又は3段目に位置する電磁鋼板2)に形成した構成でもよい。更に、ジグザグ状の押圧部7は、ロータコア1を構成する複数枚の電磁鋼板2のうち下部に配置された電磁鋼板2に形成した構成でもよい。
Note that the zigzag-shaped pressing portion 7 may have a configuration in which a single permanent magnet 4 is pressed downward in the rotation axis direction P with two or more protrusions 70, for example. Moreover, the zigzag-shaped pressing part 7 is not limited to the structure which has the four protrusions 70 shown in figure. The zigzag-shaped pressing portion 7 may be configured to have a number of protrusions corresponding to the number of divided permanent magnets 4. Further, the zigzag-shaped pressing portion 7 is formed on the electromagnetic steel sheet 2 (for example, the electromagnetic steel sheet 2 located in the second or third stage from the top) disposed in the upper part of the plurality of electromagnetic steel sheets 2 constituting the rotor core 1. The formed structure may be sufficient. Further, the zigzag pressing portion 7 may be formed on the electromagnetic steel plate 2 disposed in the lower portion of the plurality of electromagnetic steel plates 2 constituting the rotor core 1.
実施の形態3.
次に、本発明の実施の形態3に係るロータを図9~図13に基づいて説明する。図9は、実施の形態3に係るロータの磁石挿入孔部分であって端板を省略して示した縦断面図である。なお、実施の形態1及び2で説明したロータと同一の構成については、同一の符号を付して、その説明を適宜省略する。Embodiment 3 FIG.
Next, a rotor according toEmbodiment 3 of the present invention will be described with reference to FIGS. FIG. 9 is a longitudinal sectional view showing a magnet insertion hole portion of the rotor according to the third embodiment, with the end plate omitted. In addition, the same code | symbol is attached | subjected about the structure same as the rotor demonstrated in Embodiment 1 and 2, and the description is abbreviate | omitted suitably.
次に、本発明の実施の形態3に係るロータを図9~図13に基づいて説明する。図9は、実施の形態3に係るロータの磁石挿入孔部分であって端板を省略して示した縦断面図である。なお、実施の形態1及び2で説明したロータと同一の構成については、同一の符号を付して、その説明を適宜省略する。
Next, a rotor according to
実施の形態3に係るロータでは、図9に示すように、押圧部8が磁石挿入孔3の周方向において対向する開口縁辺から磁石挿入孔3の中心に向かって突き出す一対の平板状に形成された構成である。平板状の押圧部8は、電磁鋼板2が有する弾性力を利用して、永久磁石4を回転軸方向Pにおける下向きに強く押圧することができる。
In the rotor according to the third embodiment, as shown in FIG. 9, the pressing portion 8 is formed in a pair of flat plates protruding from the opening edge facing in the circumferential direction of the magnet insertion hole 3 toward the center of the magnet insertion hole 3. It is a configuration. The flat pressing portion 8 can strongly press the permanent magnet 4 downward in the rotation axis direction P using the elastic force of the electromagnetic steel plate 2.
図10は、磁石挿入孔に挿入した永久磁石を位置決めする磁石ストッパを備えたロータであって端板を省略して示した平面図である。図11は、図10に示した磁石挿入部分を拡大して示した平面図である。図12は、磁石ストッパを平押しして押圧部としたロータの磁石挿入部分を拡大して示した平面図である。埋込み磁石形ロータでは、図10及び図11に示すように、磁石挿入孔3毎に挿入した永久磁石4の位置を位置決めして固定するための磁石ストッパ9が設けられた構成がある。この場合、平板状の押圧部8は、図12に示すように、磁石ストッパ9をあらかじめ平押しすることで形成することができる。
FIG. 10 is a plan view showing a rotor provided with a magnet stopper for positioning the permanent magnet inserted into the magnet insertion hole, with the end plate omitted. FIG. 11 is an enlarged plan view showing the magnet insertion portion shown in FIG. FIG. 12 is an enlarged plan view showing a magnet insertion portion of the rotor which is pressed by flatly pressing the magnet stopper. As shown in FIGS. 10 and 11, the embedded magnet type rotor has a configuration in which a magnet stopper 9 is provided for positioning and fixing the position of the permanent magnet 4 inserted in each magnet insertion hole 3. In this case, the flat pressing portion 8 can be formed by flat-pressing the magnet stopper 9 in advance as shown in FIG.
図13は、実施の形態3に係るロータの変形例であって、端板を省略した磁石挿入孔部分を示した縦断面図である。平板状の押圧部8は、図13に示すように、ロータコア1の上部に配置された複数枚(図示例では3枚)の電磁鋼板2に形成された構成でよい。この場合、平板状の押圧部8は、その弾性力によって、永久磁石4を回転軸方向Pにおける下向きに強く押圧することができる。
FIG. 13 is a longitudinal sectional view showing a magnet insertion hole portion in which the end plate is omitted, which is a modification of the rotor according to the third embodiment. As shown in FIG. 13, the flat pressing portion 8 may have a configuration formed on a plurality of (three in the illustrated example) electromagnetic steel plates 2 disposed on the top of the rotor core 1. In this case, the flat pressing portion 8 can strongly press the permanent magnet 4 downward in the rotation axis direction P by its elastic force.
したがって、実施の形態3に係るロータは、ロータコア1の上部に配置された電磁鋼板2に、磁石挿入孔3に挿入された永久磁石4の端部に当接して、同永久磁石4を回転軸方向Pに押圧する平板状の押圧部8が形成された構成なので、押圧部8で永久磁石4の位置を強固に固定することができ、回転電動機300の運転中に発生する騒音を低減させることができる。
Therefore, the rotor according to the third embodiment is in contact with the end of the permanent magnet 4 inserted into the magnet insertion hole 3 on the electromagnetic steel plate 2 arranged on the upper portion of the rotor core 1 so that the permanent magnet 4 is rotated. Since the flat pressing portion 8 that presses in the direction P is formed, the position of the permanent magnet 4 can be firmly fixed by the pressing portion 8 and noise generated during operation of the rotary electric motor 300 can be reduced. Can do.
また、実施の形態3に係るロータは、押圧部8が、磁石挿入孔3の対向する開口縁辺から磁石挿入孔3の中心に向かって突き出す一対の平板状で構成されているので、例えば磁石ストッパ9を平押して形成することもでき、押圧部8の成形が容易で製造コストを抑えることができる。
Further, the rotor according to the third embodiment is configured by a pair of flat plates in which the pressing portion 8 protrudes from the opening edge facing the magnet insertion hole 3 toward the center of the magnet insertion hole 3. 9 can be formed by flat-pressing, and the pressing portion 8 can be easily molded and the manufacturing cost can be reduced.
また、実施の形態3に係るロータは、磁石渦電流損を低減するために、永久磁石4がロータコア1の周方向に分割された2個で構成された場合であっても、一対で成る押圧部8の各押圧部が、分割されたそれぞれの永久磁石4を回転軸方向Pに押圧することができる。
Further, the rotor according to the third embodiment has a pair of presses even when the permanent magnet 4 is constituted by two pieces divided in the circumferential direction of the rotor core 1 in order to reduce magnet eddy current loss. Each pressing portion of the portion 8 can press the divided permanent magnets 4 in the rotation axis direction P.
なお、平板状の押圧部8は、図9に示すように、上から2段目の電磁鋼板2に形成された構成に限定されない。平板状の押圧部8は、ロータコア1を構成する複数枚の電磁鋼板2のうち上部に配置された電磁鋼板2(例えば最上段又は3段目等に位置する電磁鋼板2)に形成してもよい。
In addition, the flat pressing part 8 is not limited to the structure formed in the electromagnetic steel plate 2 of the 2nd step | paragraph from the top, as shown in FIG. Even if the flat pressing part 8 is formed on the electromagnetic steel sheet 2 (for example, the electromagnetic steel sheet 2 positioned at the uppermost stage or the third stage) disposed at the upper part of the plurality of electromagnetic steel sheets 2 constituting the rotor core 1. Good.
更に、平板状の押圧部8は、ロータコア1を構成する複数枚の電磁鋼板2のうち下部に配置された電磁鋼板2であって、磁石挿入孔3に挿入された永久磁石4の端部に当接して、永久磁石4を回転軸方向Pにおける上向き押圧した構成でもよい。
Further, the flat pressing portion 8 is an electromagnetic steel plate 2 disposed in the lower part of the plurality of electromagnetic steel plates 2 constituting the rotor core 1, and is provided at the end of the permanent magnet 4 inserted into the magnet insertion hole 3. A configuration in which the permanent magnet 4 is pressed upward in the rotation axis direction P may be used.
以上に本発明を実施の形態に基づいて説明したが、本発明は上述した実施の形態の構成に限定されるものではない。例えば、押圧部6は、磁石挿入孔3の径方向において対向する開口縁辺に形成した構成でもよい。要するに、いわゆる当業者が必要に応じてなす種々なる変更、応用、利用の範囲をも本発明の要旨(技術的範囲)に含むことを念のため申し添える。
Although the present invention has been described above based on the embodiment, the present invention is not limited to the configuration of the embodiment described above. For example, the pressing portion 6 may be configured to be formed on the opening edge facing in the radial direction of the magnet insertion hole 3. In short, it should be noted that the scope of the present invention also includes the scope of various changes, applications, and uses made by those skilled in the art as needed.
1 ロータコア、2、2a 電磁鋼板、3 磁石挿入孔、4 永久磁石、5 端板、6、7、8 押圧部、9 磁石ストッパ、10 シャフト挿入孔、11 スリット、12 風穴部、13 リベット挿通孔、60 傾斜面部、61 平面部、70 突部、100 ロータ、200 ステータ、201 ステータコア、202 コアバック部、203 ティース部、300 回転電動機。
1 rotor core, 2, 2a electromagnetic steel plate, 3 magnet insertion hole, 4 permanent magnet, 5 end plate, 6, 7, 8 pressing part, 9 magnet stopper, 10 shaft insertion hole, 11 slit, 12 air hole part, 13 rivet insertion hole , 60 inclined surface part, 61 flat part, 70 projecting part, 100 rotor, 200 stator, 201 stator core, 202 core back part, 203 teeth part, 300 rotary motor.
Claims (7)
- 複数枚の鋼板を回転軸方向に積層して形成され、回転軸方向に貫通させた複数の磁石挿入孔を有するロータコアと、
前記磁石挿入孔に挿入された永久磁石と、
前記ロータコアの回転軸方向の端面に配置された端板と、を備え、
前記ロータコアの一方の端部側又は他方の端部側に配置された鋼板には、前記磁石挿入孔に挿入された永久磁石の端部に当接して、前記永久磁石を回転軸方向に押圧する押圧部が形成されている、ロータ。 A rotor core having a plurality of magnet insertion holes formed by laminating a plurality of steel plates in the rotation axis direction and penetrating in the rotation axis direction;
A permanent magnet inserted into the magnet insertion hole;
An end plate disposed on an end surface of the rotor core in the rotation axis direction,
The steel plate disposed on one end side or the other end side of the rotor core is in contact with the end of the permanent magnet inserted into the magnet insertion hole and presses the permanent magnet in the direction of the rotation axis. The rotor in which the pressing part is formed. - 前記押圧部は、
前記磁石挿入孔の対向する開口縁辺から前記永久磁石へ向かって傾斜する傾斜面部と、
前記傾斜面部の端部から前記磁石挿入孔の中心に向かって突き出し、前記永久磁石の端部に当接して回転軸方向に押圧する平面部と、
を有する一対のバネ板状に形成されている、請求項1に記載のロータ。 The pressing portion is
An inclined surface portion inclined toward the permanent magnet from the opposite opening edge of the magnet insertion hole;
A flat surface portion that protrudes from the end of the inclined surface portion toward the center of the magnet insertion hole, contacts the end of the permanent magnet, and presses in the rotation axis direction;
The rotor according to claim 1, wherein the rotor is formed in a pair of spring plate shapes. - 前記押圧部は、前記磁石挿入孔の一方の対向する開口縁辺から前記磁石挿入孔の中心に向かって突き出す一対の平板状に形成されている、請求項1に記載のロータ。 2. The rotor according to claim 1, wherein the pressing portion is formed in a pair of flat plates protruding from one opposing opening edge of the magnet insertion hole toward the center of the magnet insertion hole.
- 前記永久磁石は、前記ロータコアの周方向に分割された2個で構成されており、
一対で成る前記押圧部は、各押圧部が分割されたそれぞれの前記永久磁石を回転軸方向に押圧する構成である、請求項2又は3に記載のロータ。 The permanent magnet is composed of two divided in the circumferential direction of the rotor core,
The rotor according to claim 2 or 3, wherein the pair of pressing portions is configured to press each permanent magnet into which the pressing portions are divided in the direction of the rotation axis. - 前記永久磁石は、前記ロータコアの周方向に分割された複数個で構成されており、
前記押圧部は、回転軸方向から見て前記磁石挿入孔の対向する一方の開口縁辺から他方の開口縁辺に向かってジグザク状に形成され、且つ断面形状もジグザグ状に形成されており、
回転軸方向における前記押圧部の各突部が、対応する前記永久磁石の端部に当接して複数個の前記永久磁石を回転軸方向に押圧する構成である、請求項1に記載のロータ。 The permanent magnet is composed of a plurality of parts divided in the circumferential direction of the rotor core,
The pressing portion is formed in a zigzag shape from one opening edge facing the magnet insertion hole to the other opening edge as seen from the rotation axis direction, and the cross-sectional shape is also formed in a zigzag shape,
2. The rotor according to claim 1, wherein each protrusion of the pressing portion in the rotation axis direction abuts against a corresponding end portion of the permanent magnet and presses the plurality of permanent magnets in the rotation axis direction. - 前記押圧部は、前記ロータコアの上部又は下部に配置された複数枚の鋼板に形成されている、請求項1~5のいずれか一項に記載のロータ。 The rotor according to any one of claims 1 to 5, wherein the pressing portion is formed on a plurality of steel plates disposed at an upper portion or a lower portion of the rotor core.
- 前記請求項1~6のいずれか一項に記載のロータを備えた回転電動機。 A rotary electric motor comprising the rotor according to any one of claims 1 to 6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/009235 WO2018163319A1 (en) | 2017-03-08 | 2017-03-08 | Rotor and rotating electric machine provided with said rotor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/009235 WO2018163319A1 (en) | 2017-03-08 | 2017-03-08 | Rotor and rotating electric machine provided with said rotor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018163319A1 true WO2018163319A1 (en) | 2018-09-13 |
Family
ID=63449044
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/009235 WO2018163319A1 (en) | 2017-03-08 | 2017-03-08 | Rotor and rotating electric machine provided with said rotor |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018163319A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109660099A (en) * | 2018-12-10 | 2019-04-19 | 陕西法士特齿轮有限责任公司 | A kind of hybrid exciting synchronous motor |
JPWO2020249994A1 (en) * | 2019-06-14 | 2020-12-17 | ||
US20220216755A1 (en) * | 2021-01-07 | 2022-07-07 | Toyota Jidosha Kabushiki Kaisha | Rotor of rotary electric machine |
US20230140075A1 (en) * | 2021-11-03 | 2023-05-04 | Nidec Motor Corporation | Retention cap for permanent magnet rotor |
WO2023127756A1 (en) * | 2021-12-28 | 2023-07-06 | ニデック株式会社 | Rotor, dynamo-electric machine, and method for manufacturing rotor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003070195A (en) * | 2001-08-28 | 2003-03-07 | Mitsuba Corp | Structure of fixing magnet of rotary electric machine |
JP2013034335A (en) * | 2011-08-03 | 2013-02-14 | Tamagawa Seiki Co Ltd | Rotor structure of magnet-embedded motor |
JP2016019300A (en) * | 2014-07-04 | 2016-02-01 | 株式会社三井ハイテック | Rotor laminated iron core and manufacturing method thereof |
-
2017
- 2017-03-08 WO PCT/JP2017/009235 patent/WO2018163319A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003070195A (en) * | 2001-08-28 | 2003-03-07 | Mitsuba Corp | Structure of fixing magnet of rotary electric machine |
JP2013034335A (en) * | 2011-08-03 | 2013-02-14 | Tamagawa Seiki Co Ltd | Rotor structure of magnet-embedded motor |
JP2016019300A (en) * | 2014-07-04 | 2016-02-01 | 株式会社三井ハイテック | Rotor laminated iron core and manufacturing method thereof |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109660099A (en) * | 2018-12-10 | 2019-04-19 | 陕西法士特齿轮有限责任公司 | A kind of hybrid exciting synchronous motor |
JPWO2020249994A1 (en) * | 2019-06-14 | 2020-12-17 | ||
WO2020249994A1 (en) * | 2019-06-14 | 2020-12-17 | 日産自動車株式会社 | Rotor and method for manufacturing rotor |
JP7188588B2 (en) | 2019-06-14 | 2022-12-13 | 日産自動車株式会社 | Rotor and rotor manufacturing method |
US20220216755A1 (en) * | 2021-01-07 | 2022-07-07 | Toyota Jidosha Kabushiki Kaisha | Rotor of rotary electric machine |
JP2022106421A (en) * | 2021-01-07 | 2022-07-20 | トヨタ自動車株式会社 | Rotating electric rotor |
JP7327418B2 (en) | 2021-01-07 | 2023-08-16 | トヨタ自動車株式会社 | Rotor of rotary electric machine |
US11824405B2 (en) | 2021-01-07 | 2023-11-21 | Toyota Jidosha Kabushiki Kaisha | Rotor of rotary electric machine |
US20230140075A1 (en) * | 2021-11-03 | 2023-05-04 | Nidec Motor Corporation | Retention cap for permanent magnet rotor |
US12255497B2 (en) * | 2021-11-03 | 2025-03-18 | Nidec Motor Corporation | Retention cap for permanent magnet rotor |
WO2023127756A1 (en) * | 2021-12-28 | 2023-07-06 | ニデック株式会社 | Rotor, dynamo-electric machine, and method for manufacturing rotor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018163319A1 (en) | Rotor and rotating electric machine provided with said rotor | |
WO2018043026A1 (en) | Surface magnet type motor | |
US7622841B2 (en) | Motor | |
US9190878B2 (en) | Rotor including anti-rotation feature for multi-pole structure | |
US20120139382A1 (en) | End plate, and rotor for rotary electric machine which employs the end plate | |
WO2018189822A1 (en) | Ipm rotor | |
JP5685506B2 (en) | Rotating electric machine rotor, rotating electric machine and rotor end face member | |
WO2013150652A1 (en) | Rotor and electric motor having embedded permanent magnet | |
US20130285500A1 (en) | Rotor for a motor and a motor | |
WO2017141361A1 (en) | Rotary electric machine and method for manufacturing rotary electric machine | |
WO2017195498A1 (en) | Rotor and rotary electric machine | |
JP2008263719A (en) | Insulator, rotating electric machine stator, and rotating electric machine | |
JP5353939B2 (en) | Rotating electrical machine rotor | |
JP6110062B2 (en) | Rotating electric machine | |
EP3101789B1 (en) | Single-phase outer-rotor motor and stator thereof | |
CN115528830A (en) | Rotor for an electric machine, electric machine and method for producing such a rotor | |
KR100624381B1 (en) | Rotor of permanent magnet embedded motor and its manufacturing method | |
JP2015106966A (en) | Rotor and permanent magnet motor | |
US20160329789A1 (en) | Single-phase Outer-rotor Motor And Rotor Thereof | |
JP2013009561A (en) | Rotating electric machine | |
JP2020108277A (en) | Rotor of dynamo-electric machine | |
JP2015056911A (en) | Rotor and rotating electric machine provided with the rotor | |
JP2012120353A (en) | Rotor for rotary electric machine | |
JP2009033912A (en) | Rotor and rotating electric machine | |
JPWO2020208924A1 (en) | Manufacturing method of permanent magnet type rotary electric machine and permanent magnet type rotary electric machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17899787 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17899787 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |