+

WO2018162859A1 - Systeme electrique avec un circuit consommateur de courant pour decharger une capacite, vehicule automobile et procede associes - Google Patents

Systeme electrique avec un circuit consommateur de courant pour decharger une capacite, vehicule automobile et procede associes Download PDF

Info

Publication number
WO2018162859A1
WO2018162859A1 PCT/FR2018/050543 FR2018050543W WO2018162859A1 WO 2018162859 A1 WO2018162859 A1 WO 2018162859A1 FR 2018050543 W FR2018050543 W FR 2018050543W WO 2018162859 A1 WO2018162859 A1 WO 2018162859A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
transistor
electrical
terminal
consuming
Prior art date
Application number
PCT/FR2018/050543
Other languages
English (en)
Inventor
Philippe LOY-LAFOND
Original Assignee
Valeo Equipements Electriques Moteur
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Equipements Electriques Moteur filed Critical Valeo Equipements Electriques Moteur
Priority to CN201880030270.3A priority Critical patent/CN110603699B/zh
Priority to EP18715771.4A priority patent/EP3593430A1/fr
Priority to US16/492,243 priority patent/US11557892B2/en
Publication of WO2018162859A1 publication Critical patent/WO2018162859A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/14Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to occurrence of voltage on parts normally at earth potential
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/1213Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for DC-DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. DC/AC converters
    • H02H7/1222Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. DC/AC converters responsive to abnormalities in the input circuit, e.g. transients in the DC input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other DC sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other DC sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/322Means for rapidly discharging a capacitor of the converter for protecting electrical components or for preventing electrical shock

Definitions

  • TITLE ELECTRICAL SYSTEM WITH A CURRENT CONSUMER CIRCUIT FOR DISCHARGING A CAPACITY, MOTOR VEHICLE AND
  • the present invention relates to the discharge of a capacitor, particularly in the field of electric motor vehicles.
  • US Patent No. 6,204,612 B1 discloses a capacitance across which an electric power power module is to be connected. It also describes a current-consuming electrical circuit comprising a stabilized transistor connected to the terminals of the capacitor.
  • the electrical current consuming circuit is designed to be energized to consume a substantially constant discharge current when the power module is mechanically and electrically disconnected from the capacitance. Thus, the current consumption discharges the capacity to prevent electric shocks that could occur if an operator was touching the capacity.
  • the power module comprises a conductor arranged to short-circuit a controlled switch in order to deactivate the current-consuming circuit. Thus, when the power module is disconnected, the driver is detached from the controlled switch which causes the activation of the electrical current consuming circuit.
  • This solution has the disadvantage of requiring the presence of a mechanical element (the driver) on the side of the power module.
  • this solution does not allow to discharge the capacity when the power module is still mechanically in place, but electrically disconnected from the capacitance, for example in case of fault of the electrical connections.
  • the object of the invention is to remedy at least in part the preceding disadvantages.
  • an electrical system comprising:
  • an electrical energy receiving device connected to the terminals of the capacitor in order to receive electrical energy supplied by the electrical energy supply device
  • a current-consuming electrical circuit having two interface terminals respectively connected across the capacitors and adapted to consume a current entering through a first interface terminal and exiting through a second interface terminal,
  • the electrical system being designed such that the current-consuming electrical circuit consumes the current when the electric power supply device is connected across the capacitance
  • the electrical system being characterized in that the electrical current-consuming circuit comprises a transistor arranged so that the current consumed enters through a current input terminal of the transistor and so by a current output terminal of the transistor, and in that the current output terminal is connected to a control terminal of the transistor to stabilize the transistor.
  • the current-consuming electrical circuit comprises a Zener diode connected between the current output terminal of the transistor and the control terminal of the transistor in order to stabilize the transistor.
  • the current-consuming electrical circuit comprises a resistor connected between the control terminal of the transistor and the first interface terminal.
  • the current-consuming electrical circuit includes a resistor connected between the current input terminal of the transistor and the first interface terminal.
  • the current-consuming electrical circuit comprises a resistor connected between the current output terminal and the second interface terminal.
  • the electric power supply device is adapted to apply a DC supply voltage.
  • the DC supply voltage is greater than 60 V, preferably greater than 300 V.
  • the electric power supply device comprises one of: a battery charger and a battery.
  • the electrical energy receiving device comprises one of: a battery, an inverter and a DC-DC converter.
  • the current-consuming electrical circuit can be a passive circuit.
  • This current-consuming electrical circuit can be electrically powered only through the two interface terminals, in particular by the capacity to discharge when the electric power supply device is not operational.
  • This electric discharge circuit can also be devoid of any computer component, that is, that is, any component designed to run a computer program, such as a microcontroller or a microprocessor.
  • a current-consuming electrical circuit having two interface terminals respectively connected to the terminals of the capacitor the capacitor, consumes a current entering through a first interface terminal and exiting through a second interface terminal,
  • the electrical current consuming circuit consumes the current so as to discharge the capacitance
  • the process characterized in that the current-consuming electrical circuit used in the preceding steps comprises a transistor arranged so that the current consumed enters a current input terminal of the transistor and outputs through a current output terminal of the transistor, and in that the current output terminal of the transistor is connected to a control terminal of the transistor to stabilize the transistor.
  • the electric current-consuming circuit used in the previously described steps of the discharge method further comprises a Zener diode connected between the current output terminal of the transistor and the control terminal of the transistor to stabilize the transistor.
  • the electrical current-consuming circuit used in the previously described steps of the discharge method furthermore comprises a resistor connected between the current input terminal of the transistor and the first terminal of the invention. 'interface. DESCRIPTION OF THE FIGURES
  • Figure 1 is an electrical diagram of an electrical system according to the invention comprising a current-consuming electrical circuit for discharging a capacitor.
  • Figure 2 is a timing diagram illustrating the evolution over time of a capacitance voltage and a current entering the current-consuming electrical circuit.
  • FIG. 3 is a diagram illustrating a motor vehicle comprising at least one electrical system as illustrated in FIG. 1.
  • the electrical system 100 firstly comprises an electrical energy supply device 102 provided with two power supply terminals Bc, BD between which it is designed to supply a supply voltage E.
  • the supply voltage E is substantially constant.
  • the power supply terminal BD is connected to an electric ground of the electrical system 100 and the power supply terminal Bc is intended to be at the positive potential of + E V.
  • the electrical system 100 further comprises an electrical energy receiver device 104 connected between the power supply terminals Bc, BD and adapted to receive electrical energy supplied by the electric power supply device 102.
  • the electrical system 100 further comprises a capacitor C having two terminals BE, BF respectively connected to the power supply terminals Bc, BD and designed for example to smooth the supply voltage E.
  • the capacitor C has between its terminals BE, BF a voltage of capacitance uc equal to the supply voltage E when the electric power supply device 102 is operational.
  • the electrical system 100 further comprises a current-consuming electrical circuit 108 having two interface terminals BA, BB respectively connected to the terminals BE, BF of the capacitor C so as to receive the capacitance voltage uc.
  • the current-consuming electrical circuit 108 is adapted to consume a current i entering through the first interface terminal BA and exiting through the second interface terminal BB.
  • the electrical current consuming circuit 108 is intended in particular to discharge the capacitor C when the electrical energy supply device 102 is not operational, for example when it is disconnected. This situation occurs, for example, in FIG. 1, when one of the links connecting the power supply terminals Bc, BD to the interface terminals BA, BB is broken.
  • the current-consuming electrical circuit 108 comprises a transistor Q1 having a current input terminal C1, a current output terminal E1 and a control terminal B1.
  • the transistor Q1 is a bipolar transistor having a a collector, an emitter and a base respectively corresponding to the current input terminal C1, the current output terminal E1 and the control terminal B1.
  • the state of the transistor Q1, open or closed, is defined by a voltage of control VI present between the control terminal B1 and the current output terminal E1.
  • the current i passes through the transistor Q1 by entering through the current input terminal C1 and exiting through the current output terminal E1. .
  • the current-consuming electrical circuit 108 further comprises a resistor RI connected between the current input terminal C1 and the interface terminal BA.
  • the current-consuming electrical circuit 108 further comprises a resistor R2 connected between the current output terminal E1 and the interface terminal BB.
  • the electrical current consuming circuit 108 further comprises a resistor R4 connected between the control terminal B1 and the interface terminal BA.
  • the electrical current consuming circuit 108 further comprises a Zener diode D1 connected between the control terminal B1 and the interface terminal BB.
  • the current output terminal E1 of the transistor Q1 is connected to the control terminal B1 of the transistor Q1 through the resistor R2 and the Zener diode D1 in order to stabilize the transistor Q1.
  • the power supply device 102 is operational and supplies the supply voltage E which is 500 V in the example described.
  • the supply voltage E is a "high voltage", that is to say, in the automotive field, that it is worth more than 60 V, preferably more than 300 V.
  • the capacitor C is charged to the supply voltage E so that the capacitance voltage uc is equal to the supply voltage E.
  • the control terminal B1 of the transistor Q1 is charged through the resistor R4 so that the transistor Q1 is in the closed state (passing).
  • a non-zero current i flows from the interface terminal BA to the interface terminal BB through the transistor Q1. Since the transistor Q1 is stabilized, the current i is substantially constant, even if the supply voltage E fluctuates, and is 5 mA in the example illustrated. In general, the current i is preferably more than 1 mA.
  • the electrical energy supply device 102 goes into the non-operational state, for example being disconnected from the rest of the electrical system 100.
  • the current i consumed causes the discharge of the capacitor C and therefore the fall of the capacitance voltage uc. Since the transistor Q1 is stabilized, the current i passing through it is substantially constant (in fact, slightly decreasing) to a level much higher than it would be in case of discharge in a simple resistance. In fact, in the latter case, the current decreases according to a decreasing exponential and therefore very rapidly in the first moments following the disconnection of the electrical energy supply device 102. Thus, since the current consumed remains at a high level, close to the level before the moment to, the voltage of uc capacity drops rapidly.
  • the components are chosen so that the capacitance C is discharged to less than 60 V in less than 60 s (time t 1 in FIG. 2).
  • the stabilization of the transistor Ql it is possible to dimension the current-consuming electric circuit 108 so that the starting current i (that is to say before to, when the electric power supply device 102 is operational) is weak, in any case lower than using a discharge resistor.
  • the starting current i that is to say before to, when the electric power supply device 102 is operational
  • losses from power consumption i when the power supply device 102 is operational are lower than when a resistor is used.
  • the current-consuming electrical circuit 108 is a passive circuit which means, on the one hand, that it is designed to be electrically powered only through the two terminals.
  • interface BA, BB in particular by the capacitance C when the electrical energy supplier device 102 is not operational and, secondly, that it has no computer component, that is to say no component designed to run a computer program, such as a microcontroller or a microprocessor.
  • a computer program such as a microcontroller or a microprocessor.
  • the electric motor vehicle 300 includes a charger 302 designed to be connected to an electrical network and to provide a DC voltage.
  • the electric motor vehicle 300 further comprises a high voltage battery 304 designed to be charged by the charger 302.
  • the electric motor vehicle 300 further comprises a capacitor C1 interposed between the charger 302 and the high voltage battery 304.
  • the electric motor vehicle 300 further comprises an inverter 306 designed to provide AC voltages from the DC voltage of the high voltage battery 304.
  • the electric motor vehicle 300 further comprises a capacitor C2 interposed between the high voltage battery 304 and the inverter 306.
  • the electric motor vehicle 300 further comprises an electric motor 308 designed to be electrically powered by the inverter 306 and to drive wheels of the electric motor vehicle 300.
  • the electric motor vehicle 300 further comprises a DC-DC converter 310 designed to provide a low voltage from the high voltage provided by the high voltage battery 304.
  • the electric motor vehicle 300 further comprises a capacity
  • the electric motor vehicle 300 further comprises a low-voltage battery 312 designed to be charged by the DC-DC converter 310.
  • the low-voltage battery 312 serves, for example, to supply electrical power to the accessories of the electric motor vehicle 300.
  • the electrical current consuming circuit 108 described with reference to FIG. 1 can be used for each of the capacitors C1, C2, C3.
  • the electrical energy supply device 102 thus comprises one of: the charger 302 and the high-voltage battery 304 and the The electrical energy receiving device comprises one of: the high voltage battery 304, the inverter 306 and the DC-DC converter 310.
  • resistors R1 and R2 could be omitted.
  • Zener diode D1 could be replaced by a resistor.
  • each of one or more of the resistors R1, R2 and R4 is preferably a resistance varying little with temperature, for example varying at most 100 millionths of an ohms per degree Celsius between 0 ° C and 150 ° C.
  • the term “electric motor vehicle” also covers the case of hybrid motor vehicles, comprising both an electric motor and a heat engine for driving the wheels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Relay Circuits (AREA)

Abstract

Le système électrique (100) comporte : - une capacité (C); - un dispositif fournisseur d'énergie électrique (102); - un dispositif récepteur d'énergie électrique (104); - un circuit électrique consommateur de courant (108) conçu pour consommer un courant (i) entrant par une première borne d'interface (BA) et sortant par une deuxième borne d'interface (BB). Le système électrique (100) étant conçu de sorte que le circuit électrique consommateur de courant (108) consomme le courant de décharge (i) lorsque le dispositif fournisseur d'énergie électrique (102) est connecté aux bornes de la capacité (C). Le circuit électrique consommateur de courant (108) comporte un transistor (Q1) agencé de sorte que le courant (i) consommé entre par une borne d'entrée de courant (C1) du transistor (Q1) et sorte par une borne de sortie de courant (E1) du transistor (Q1), et en ce que la borne de sortie de courant (E1) est connectée à une borne de commande (B1) du transistor (Q1) afin de stabiliser le transistor (Q1).

Description

TITRE
TITRE : SYSTEME ELECTRIQUE AVEC UN CIRCUIT CONSOMMATEUR DE COURANT POUR DECHARGER UNE CAPACITE, VEHICULE AUTOMOBILE ET
PROCEDE ASSOCIES DOMAINE TECHNIQUE
La présente invention concerne la décharge d'une capacité, en particulier dans le domaine des véhicules automobiles électriques.
ARRIÈRE-PLAN TECHNOLOGIQUE
Le brevet américain publié sous le numéro US 6 204 612 Bl décrit une capacité aux bornes de laquelle un module de puissance d'énergie électrique est destiné à être connecté. Il décrit en outre un circuit électrique consommateur de courant comportant un transistor stabilisé, connecté aux bornes de la capacité. Dans cette publication, le circuit électrique consommateur de courant est conçu pour être activé afin de consommer un courant de décharge sensiblement constant lorsque le module de puissance est mécaniquement et électriquement déconnecté de la capacité. Ainsi, la consommation de courant décharge la capacité afin de prévenir les chocs électriques qui pourraient survenir si un opérateur touchait la capacité. Plus précisément, le module de puissance comporte un conducteur agencé pour court-circuiter un interrupteur commandé afin de désactiver le circuit consommateur de courant. Ainsi, lorsque le module de puissance est déconnecté, le conducteur est détaché de l'interrupteur commandé ce qui provoque l'activation du circuit électrique consommateur de courant. Cette solution présente comme inconvénient de nécessiter la présence d'un élément mécanique (le conducteur) du côté du module de puissance. En outre, cette solution ne permet pas de décharger la capacité lorsque le module de puissance est toujours mécaniquement en place, mais électriquement déconnecté de la capacité, par exemple en cas de défaut des liaisons électriques.
Par ailleurs, il est connu de prévoir une résistance connectée aux bornes d'une capacité alimentée par une source de haute tension afin de décharger la capacité en cas de déconnexion de la source de haute tension. Cette solution présente comme inconvénient que la résistance consomme tout le temps un courant important, y compris lorsque cela n'est pas souhaité c'est-à-dire lorsque la source de haute tension est connectée à la capacité.
L'invention a pour but de remédier au moins en partie aux inconvénients précédents.
RÉSUMÉ DE L'INVENTION
À cet effet, il est proposé un système électrique comportant :
- une capacité présentant deux bornes,
- un dispositif fournisseur d'énergie électrique connecté aux bornes de la capacité,
- un dispositif récepteur d'énergie électrique connecté aux bornes de la capacité afin de recevoir de l'énergie électrique fournie par le dispositif fournisseur d'énergie électrique,
- un circuit électrique consommateur de courant présentant deux bornes d'interface respectivement connectées aux bornes de la capacité et conçu pour consommer un courant entrant par une première borne d'interface et sortant par une deuxième borne d'interface,
le système électrique étant conçu de sorte que le circuit électrique consommateur de courant consomme le courant lorsque le dispositif fournisseur d'énergie électrique est connecté aux bornes de la capacité, le système électrique étant caractérisé en ce que le circuit électrique consommateur de courant comporte un transistor agencé de sorte que le courant consommé entre par une borne d'entrée de courant du transistor et sorte par une borne de sortie de courant du transistor, et en ce que la borne de sortie de courant est connectée à une borne de commande du transistor afin de stabiliser le transistor.
De façon optionnelle, le circuit électrique consommateur de courant comporte une diode Zener connectée entre la borne de sortie de courant du transistor et la borne de commande du transistor afin de stabiliser le transistor.
De façon optionnelle également, le circuit électrique consommateur de courant comporte une résistance connectée entre la borne de commande du transistor et la première borne d'interface.
De façon optionnelle également, le circuit électrique consommateur de courant comporte une résistance connectée entre la borne d'entrée de courant du transistor et la première borne d'interface.
De façon optionnelle également, le circuit électrique consommateur de courant comporte une résistance connectée entre la borne de sortie de courant et la deuxième borne d'interface.
De façon optionnelle également, le dispositif fournisseur d'énergie électrique est conçu pour appliquer une tension d'alimentation continue.
De façon optionnelle également, la tension d'alimentation continue est supérieure à 60 V, de préférence supérieure à 300 V.
De façon optionnelle également, le dispositif fournisseur d'énergie électrique comporte l'un parmi : un chargeur de batterie et une batterie.
De façon optionnelle également, le dispositif récepteur d'énergie électrique comporte l'un parmi : une batterie, un onduleur et un convertisseur continu-continu.
II est également proposé un système électrique selon l'invention.
Dans tout ce qui précède, le circuit électrique consommateur de courant peut être un circuit passif. Ce circuit électrique consommateur de courant peut être alimenté électriquement uniquement au travers des deux bornes d'interface, en particulier par la capacité à décharger lorsque le dispositif fournisseur d'énergie électrique n'est pas opérationnel. Ce circuit électrique de décharge peut par ailleurs être dépourvu de tout composant informatique, c'est- à-dire de tout composant conçu pour exécuter un programme d'ordinateur, tel qu'un microcontrôleur ou un microprocesseur.
Il est également proposé un procédé de décharge d'une capacité présentant deux bornes, comportant :
- alors qu'un dispositif fournisseur d'énergie électrique est connecté aux bornes de la capacité de manière à appliquer une tension d'alimentation aux bornes de la capacité, un circuit électrique consommateur de courant présentant deux bornes d'interface respectivement connectées aux bornes de la capacité, consomme un courant entrant par une première borne d'interface et sortant par une deuxième borne d'interface,
- alors que le dispositif fournisseur d'énergie électrique n'est plus opérationnel de manière à ne plus contraindre une tension de capacité présente aux bornes de la capacité, le circuit électrique consommateur de courant consomme le courant de manière à décharger la capacité, le procédé étant caractérisé en ce que le circuit électrique consommateur de courant utilisé lors des étapes précédentes comporte un transistor agencé de sorte que le courant consommé entre par une borne d'entrée de courant du transistor et sorte par une borne de sortie de courant du transistor, et en ce que la borne de sortie de courant du transistor est connectée à une borne de commande du transistor afin de stabiliser le transistor.
Dans un mode de réalisation particulier de l'invention, le circuit électrique consommateur de courant utilisé lors des étapes précédemment décrites du procédé de décharge, comporte en outre une diode Zener connectée entre la borne de sortie de courant du transistor et la borne de commande du transistor afin de stabiliser le transistor.
Dans un autre mode de réalisation particulier de l'invention, le circuit électrique consommateur de courant utilisé lors des étapes précédemment décrites du procédé de décharge, comporte en outre une résistance connectée entre la borne d'entrée de courant du transistor et la première borne d'interface. DESCRIPTION DES FIGURES
La figure 1 est un schéma électrique d'un système électrique selon l'invention comportant un circuit électrique consommateur de courant pour la décharge d'une capacité.
La figure 2 est un chronogramme illustrant l'évolution au cours du temps d'une tension de capacité et d'un courant entrant dans le circuit électrique consommateur de courant.
La figure 3 est un schéma illustrant un véhicule automobile comportant au moins un système électrique tel qu'illustré sur la figure 1.
DESCRIPTION DÉTAILLÉE
En référence à la figure 1, un système électrique 100 mettant en œuvre l'invention va à présent être décrit.
Le système électrique 100 comporte tout d'abord un dispositif fournisseur d'énergie électrique 102 muni de deux bornes d'alimentation électrique Bc, BD entre lesquelles il est conçu pour fournir une tension d'alimentation E. Par exemple, la tension d'alimentation E est sensiblement constante. En outre, dans l'exemple décrit, la borne d'alimentation électrique BD est connectée à une masse électrique du système électrique 100 et la borne d'alimentation électrique Bc est destinée à se trouver au potentiel positif de +E V.
Le système électrique 100 comporte en outre un dispositif récepteur d'énergie électrique 104 connecté entre les bornes d'alimentation électrique Bc, BD et conçu pour recevoir de l'énergie électrique fournie par le dispositif fournisseur d'énergie électrique 102.
Le système électrique 100 comporte en outre une capacité C présentant deux bornes BE, BF respectivement connectées aux bornes d'alimentation électrique Bc, BD et conçue par exemple pour lisser la tension d'alimentation E. La capacité C présente entre ses bornes BE, BF une tension de capacité uc égale à la tension d'alimentation E lorsque le dispositif fournisseur d'énergie électrique 102 est opérationnel.
Le système électrique 100 comporte en outre un circuit électrique consommateur de courant 108 présentant deux bornes d'interface BA, BB respectivement connectées aux bornes BE, BF de la capacité C de manière à recevoir la tension de capacité uc. Le circuit électrique consommateur de courant 108 est conçu pour consommer un courant i entrant par la première borne d'interface BA et sortant par la deuxième borne d'interface BB.
Le circuit électrique consommateur de courant 108 est destiné en particulier à décharger la capacité C lorsque le dispositif fournisseur d'énergie électrique 102 n'est pas opérationnel, par exemple lorsqu'il est déconnecté. Cette situation se produit par exemple, sur la figure 1, lorsque l'une des liaisons connectant les bornes d'alimentation électrique Bc, BD aux bornes d'interface BA, BB est rompue.
Le circuit électrique consommateur de courant 108 comporte un transistor Ql présentant une borne d'entrée de courant Cl, une borne de sortie de courant El et une borne de commande Bl. Dans l'exemple décrit, le transistor Ql est un transistor bipolaire présentant un collecteur, un émetteur et une base correspondant respectivement à la borne d'entrée de courant Cl, la borne de sortie de courant El et la borne de commande Bl. L'état du transistor Ql, ouvert ou fermé, est défini par une tension de commande VI présente entre la borne de commande Bl et la borne de sortie de courant El. En outre, le courant i traverse le transistor Ql en entrant par la borne d'entrée de courant Cl et en sortant par la borne de sortie de courant El.
Dans l'exemple décrit, le circuit électrique consommateur de courant 108 comporte en outre une résistance RI connectée entre la borne d'entrée de courant Cl et la borne d'interface BA.
Dans l'exemple décrit, le circuit électrique consommateur de courant 108 comporte en outre une résistance R2 connectée entre la borne de sortie de courant El et la borne d'interface BB. Dans l'exemple décrit, le circuit électrique consommateur de courant 108 comporte en outre une résistance R4 connectée entre la borne de commande Bl et la borne d'interface BA.
Dans l'exemple décrit, le circuit électrique consommateur de courant 108 comporte en outre une diode Zener Dl connectée entre la borne de commande Bl et la borne d'interface BB.
Ainsi, la borne de sortie de courant El du transistor Ql est connectée à la borne de commande Bl du transistor Ql au travers de la résistance R2 et de la diode Zener Dl afin de stabiliser le transistor Ql.
En référence à la figure 2, le fonctionnement du système électrique 100 va à présent être décrit.
Initialement, le dispositif fournisseur d'énergie électrique 102 est opérationnel et fournit la tension d'alimentation E qui vaut 500 V dans l'exemple décrit. De manière générale, la tension d'alimentation E est une « haute tension », c'est-à-dire, dans le domaine automobile, qu'elle vaut plus de 60 V, de préférence plus de 300 V.
Ainsi, la capacité C est chargée à la tension d'alimentation E de sorte que la tension de capacité uc est égale à la tension d'alimentation E.
La borne de commande Bl du transistor Ql est chargée au travers de la résistance R4 de sorte que le transistor Ql est à l'état fermé (passant). Ainsi, un courant i non nul s'écoule de la borne d'interface BA à la borne d'interface BB au travers du transistor Ql. Comme le transistor Ql est stabilisé, le courant i est sensiblement constant, même en cas de fluctuation de la tension d'alimentation E, et vaut 5 mA dans l'exemple illustré. De manière générale, le courant i vaut de préférence plus de 1 mA.
À un instant to, le dispositif fournisseur d'énergie électrique 102 passe à l'état non opérationnel, en étant par exemple déconnecté du reste du système électrique 100.
Ainsi, le courant i consommé entraîne la décharge de la capacité C et donc la chute de la tension de capacité uc. Comme le transistor Ql est stabilisé, le courant i le traversant est sensiblement constant (en fait, légèrement décroissant) à un niveau nettement supérieur de ce qu'il serait en cas de décharge dans une simple résistance. En effet, dans ce dernier cas, le courant diminuerait selon une exponentielle décroissante et donc très rapidement dans les premiers instants suivant la déconnexion du dispositif fournisseur d'énergie électrique 102. Ainsi, comme le courant i consommé reste à un niveau élevé, proche du niveau avant l'instant to, la tension de capacité uc chute rapidement.
De préférence, les composants sont choisis pour que la capacité C soit déchargée à moins de 60 V en moins de 60 s (instant t1 sur la figure 2).
Grâce à la stabilisation du transistor Ql, il est possible de dimensionne le circuit électrique consommateur de courant 108 pour que le courant i de départ (c'est-à-dire avant to, lorsque le dispositif fournisseur d'énergie électrique 102 est opérationnel) soit faible, en tout cas plus faible qu'en utilisant une résistance de décharge. Ainsi, dans le système électrique 100, les pertes provenant de la consommation du courant i lorsque le dispositif fournisseur d'énergie électrique 102 est opérationnel sont plus faible que lorsqu'une résistance est utilisée.
Par ailleurs, à un instant t2, lorsque la tension de capacité uc devient trop faible pour maintenir la stabilisation du transistor Ql, le dispositif consommateur de courant 108 « s'écroule » c'est-à-dire qu'il n'arrive plus à maintenir le courant i sensiblement constant et ce dernier chute très rapidement. Cet écroulement n'a pas de conséquence car la décharge souhaitée de la capacité (uc < 60 V) a déjà été obtenue.
Par ailleurs, d'après ce qui précède, il sera apprécié que le circuit électrique consommateur de courant 108 est un circuit passif ce qui signifie, d'une part, qu'il est conçu pour être alimenté électriquement uniquement au travers des deux bornes d'interface BA, BB, en particulier par la capacité C lorsque le dispositif fournisseur d'énergie électrique 102 n'est pas opérationnel et, d'autre part, qu'il ne comporte aucun composant informatique, c'est-à-dire aucun composant conçu pour exécuter un programme d'ordinateur, tel qu'un microcontrôleur ou un microprocesseur. En référence à la figure 3, un véhicule automobile électrique 300 va à présent être décrit.
Le véhicule automobile électrique 300 comporte un chargeur 302 conçu pour être connecté à un réseau électrique et pour fournir une tension continue.
Le véhicule automobile électrique 300 comporte en outre une batterie haute tension 304 conçue pour être chargée par le chargeur 302.
Le véhicule automobile électrique 300 comporte en outre une capacité Cl intercalée entre le chargeur 302 et la batterie haute tension 304.
Le véhicule automobile électrique 300 comporte en outre un onduleur 306 conçue pour fournir des tensions alternatives à partir de la tension continue de la batterie haute tension 304.
Le véhicule automobile électrique 300 comporte en outre une capacité C2 intercalée entre la batterie haute tension 304 et l'onduleur 306.
Le véhicule automobile électrique 300 comporte en outre un moteur électrique 308 conçu pour être alimenté électriquement par l'onduleur 306 et pour entraîner des roues du véhicule automobile électrique 300.
Le véhicule automobile électrique 300 comporte en outre un convertisseur continu-continu 310 conçu pour fournir une tension basse à partir de la tension haute fournie par la batterie haute tension 304.
Le véhicule automobile électrique 300 comporte en outre une capacité
C3 intercalée entre la batterie haute tension 304 et le convertisseur continu- continu 310.
Le véhicule automobile électrique 300 comporte en outre une batterie basse tension 312 conçue pour être chargée par le convertisseur continu- continu 310. La batterie basse tension 312 sert par exemple à l'alimentation électrique d'accessoires du véhicule automobile électrique 300.
Le circuit électrique consommateur de courant 108 décrit en référence à la figure 1 peut être utilisé pour chacune des capacités Cl, C2, C3. Ainsi, suivant la capacité concernée, le dispositif fournisseur d'énergie électrique 102 comporte ainsi l'un parmi : le chargeur 302 et la batterie haute tension 304 et le dispositif récepteur d'énergie électrique comporte l'un parmi : la batterie haute tension 304, l'onduleur 306 et le convertisseur continu-continu 310.
La présente invention n'est pas limitée au mode de réalisation décrit précédemment, mais est au contraire définie par les revendications qui suivent. Il sera en effet apparent à l'homme du métier que des modifications peuvent y être apportées.
Par exemple, l'une ou l'autre des résistances RI et R2 pourrait être omise.
En outre, la diode Zener Dl pourrait être remplacée par une résistance.
Par ailleurs, chacune d'une ou plusieurs des résistances RI, R2 et R4 est de préférence une résistance variant peu avec la température, par exemple variant au plus de 100 millionièmes d'Ohms par degré Celsius entre 0° C et 150°C.
Par ailleurs, les termes utilisés dans les revendications ne doivent pas être compris comme limités aux éléments du mode de réalisation décrit précédemment, mais doivent au contraire être compris comme couvrant tous les éléments équivalents que l'homme du métier peut déduire à partir de ses connaissances générales.
En particulier, les termes de « véhicule automobile électrique » couvrent également le cas des véhicules automobiles hybrides, comportant à la fois un moteur électrique et un moteur thermique pour l'entraînement des roues.

Claims

REVENDICATIONS
1. Système électrique (100) comportant :
- une capacité (C) présentant deux bornes (BE, BF),
- un dispositif fournisseur d'énergie électrique (102) connecté aux bornes (BE, BF) de la capacité (C),
- un dispositif récepteur d'énergie électrique (104) connecté aux bornes (BE, BF) de la capacité (C) afin de recevoir de l'énergie électrique fournie par le dispositif fournisseur d'énergie électrique (102),
- un circuit électrique consommateur de courant (108) présentant deux bornes d'interface (BA, BB) respectivement connectées aux bornes (BE,
BF) de la capacité (C) et conçu pour consommer un courant (i) entrant par une première borne d'interface (BA) et sortant par une deuxième borne d'interface (BB),
le système électrique (100) étant conçu de sorte que le circuit électrique consommateur de courant (108) consomme le courant (i) lorsque le dispositif fournisseur d'énergie électrique (102) est connecté aux bornes de la capacité
(C),
le système électrique (100) étant caractérisé en ce que le circuit électrique consommateur de courant (108) comporte un transistor (Ql) agencé de sorte que le courant (i) consommé entre par une borne d'entrée de courant (Cl) du transistor (Ql) et sorte par une borne de sortie de courant (El) du transistor (Ql), et en ce que la borne de sortie de courant (El) est connectée à une borne de commande (Bl) du transistor (Ql) afin de stabiliser le transistor (Ql).
2. Système électrique (100) selon la revendication 1, dans lequel le circuit électrique consommateur de courant (108) comporte une diode Zener (Dl) connectée entre la borne de sortie de courant (El) du transistor (Ql) et la borne de commande (Bl) du transistor (Ql) afin de stabiliser le transistor (Ql).
3. Système électrique (100) selon la revendication 1 ou 2, dans lequel le circuit électrique consommateur de courant (108) comporte une résistance (R4) connectée entre la borne de commande (Bl) du transistor (Ql) et la première borne d'interface (BA) .
4. Système électrique (100) selon l'une quelconque des revendications 1 à 3, dans lequel le circuit électrique consommateur de courant (108) comporte une résistance (RI) connectée entre la borne d'entrée de courant (Cl) du transistor (Ql) et la première borne d'interface (BA) .
5. Système électrique (100) selon l'une quelconque des revendications 1 à 4, dans lequel le circuit électrique consommateur de courant (108) comporte une résistance (R2) connectée entre la borne de sortie de courant (El) et la deuxième borne d'interface (BB) .
6. Système électrique (100) l'une quelconque des revendications 1 à 5, dans lequel le dispositif fournisseur d'énergie électrique (102) est conçu pour appliquer une tension d'alimentation (E) continue.
7. Système électrique (100) selon la revendication 6, dans lequel la tension d'alimentation (E) continue est supérieure à 60 V, de préférence supérieure à 300 V.
8. Système électrique (100) selon l'une quelconque des revendications 1 à 7, dans lequel le dispositif fournisseur d'énergie électrique (102) comporte l'un parmi : un chargeur de batterie (302) et une batterie (304).
9. Système électrique (100) selon l'une quelconque des revendications 1 à 8, dans lequel le dispositif récepteur d'énergie électrique (104) comporte l'un parmi : une batterie (304), un onduleur (306) et un convertisseur continu- continu (310).
10. Système électrique (100) selon l'une quelconque des revendications 1 à 9, dans lequel le circuit électrique consommateur de courant (108) est un circuit passif.
11. Véhicule automobile (300) comportant un système électrique (100) selon l'une quelconque des revendications 1 à 10.
12. Procédé de décharge d'une capacité (C) présentant deux bornes (BE, BF), comportant :
- alors qu'un dispositif fournisseur d'énergie électrique (102) est connecté aux bornes (BE, BF) de la capacité (C) de manière à appliquer une tension d'alimentation (E) aux bornes de la capacité (C), un circuit électrique consommateur de courant (108) présentant deux bornes d'interface (BA, BB) respectivement connectées aux bornes (BE, BF) de la capacité (C), consomme un courant (i) entrant par une première borne d'interface (BA) et sortant par une deuxième borne d'interface
(BB),
- alors que le dispositif fournisseur d'énergie électrique (102) n'est plus opérationnel de manière à ne plus contraindre une tension de capacité (uc) présente aux bornes de la capacité (C), le circuit électrique consommateur de courant (108) consomme le courant (i) de manière à décharger la capacité (C),
le procédé étant caractérisé en ce que le circuit électrique consommateur de courant (108) utilisé lors des étapes précédentes comporte un transistor (Ql) agencé de sorte que le courant (i) consommé entre par une borne d'entrée de courant (Cl) du transistor (Ql) et sorte par une borne de sortie de courant (El) du transistor (Ql), et en ce que la borne de sortie de courant (El) du transistor (Ql) est connectée à une borne de commande (Bl) du transistor (Ql) afin de stabiliser le transistor (Ql).
PCT/FR2018/050543 2017-03-08 2018-03-08 Systeme electrique avec un circuit consommateur de courant pour decharger une capacite, vehicule automobile et procede associes WO2018162859A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880030270.3A CN110603699B (zh) 2017-03-08 2018-03-08 具有用于使电容器放电的电流消耗电路的电气系统、相关的机动车辆和方法
EP18715771.4A EP3593430A1 (fr) 2017-03-08 2018-03-08 Systeme electrique avec un circuit consommateur de courant pour decharger une capacite, vehicule automobile et procede associes
US16/492,243 US11557892B2 (en) 2017-03-08 2018-03-08 Electrical system with current-consuming circuit for discharging a capacitor associated motor vehicle and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1751862 2017-03-08
FR1751862A FR3063844B1 (fr) 2017-03-08 2017-03-08 Systeme electrique avec un circuit consommateur de courant pour decharger une capacite, vehicule automobile et procede associes

Publications (1)

Publication Number Publication Date
WO2018162859A1 true WO2018162859A1 (fr) 2018-09-13

Family

ID=59070797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2018/050543 WO2018162859A1 (fr) 2017-03-08 2018-03-08 Systeme electrique avec un circuit consommateur de courant pour decharger une capacite, vehicule automobile et procede associes

Country Status (5)

Country Link
US (1) US11557892B2 (fr)
EP (1) EP3593430A1 (fr)
CN (1) CN110603699B (fr)
FR (1) FR3063844B1 (fr)
WO (1) WO2018162859A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109802475A (zh) * 2019-01-31 2019-05-24 大禹电气科技股份有限公司 一种用于储能电容的自放电系统
SE544783C2 (en) 2020-09-15 2022-11-15 Scania Cv Ab An apparatus and a method for discharging a capacitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6204612B1 (en) 1999-08-10 2001-03-20 Delta Electronics Inc. Discharge device
EP2093872A1 (fr) * 2008-02-21 2009-08-26 Schneider Toshiba Inverter Europe SAS Variateur de vitesse incluant un dispositif de protection contre les surintensités et les surtensions
EP2556980A2 (fr) * 2011-08-12 2013-02-13 Magneti Marelli S.p.A. Dispositif et procédé pour décharger un condensateur destiné à être utilisé dans le système d'alimentation électrique d'un véhicule à entraînement électrique

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8541987B2 (en) * 2010-07-07 2013-09-24 Monolithic Power Systems, Inc. Low loss discharge circuits for EMI filter capacitors
US9018865B2 (en) * 2012-04-30 2015-04-28 GM Global Technology Operations LLC Passive high-voltage DC bus discharge circuit for a vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6204612B1 (en) 1999-08-10 2001-03-20 Delta Electronics Inc. Discharge device
EP2093872A1 (fr) * 2008-02-21 2009-08-26 Schneider Toshiba Inverter Europe SAS Variateur de vitesse incluant un dispositif de protection contre les surintensités et les surtensions
EP2556980A2 (fr) * 2011-08-12 2013-02-13 Magneti Marelli S.p.A. Dispositif et procédé pour décharger un condensateur destiné à être utilisé dans le système d'alimentation électrique d'un véhicule à entraînement électrique

Also Published As

Publication number Publication date
EP3593430A1 (fr) 2020-01-15
CN110603699B (zh) 2022-12-20
US20200244093A1 (en) 2020-07-30
CN110603699A (zh) 2019-12-20
FR3063844A1 (fr) 2018-09-14
FR3063844B1 (fr) 2022-02-11
US11557892B2 (en) 2023-01-17

Similar Documents

Publication Publication Date Title
JP5376056B2 (ja) 充電装置
EP2794356B1 (fr) Dispositif de maintien de tension au demarrage pour vehicule automobile
JPH06504832A (ja) 自動車における電圧給電用装置
WO2007060348A2 (fr) Dispositif de gestion d&#39;alimentation d&#39;un reseau de consommateurs pour vehicule automobile
WO2006027481A1 (fr) Module de commande et de puissance pour une machine electrique tournante
FR2674381A1 (fr) Dispositif pour l&#39;alimentation en electricite dans un vehicule a moteur avec des generateurs montes en parallele.
FR2483699A1 (fr) Systeme electrique de charge et d&#39;entretien pour un vehicule a moteur
FR2829308A1 (fr) Systeme d&#39;alimentation electrique pour demarreur de moteur
WO2018162859A1 (fr) Systeme electrique avec un circuit consommateur de courant pour decharger une capacite, vehicule automobile et procede associes
FR2916914A1 (fr) Dispositif d&#39;inferface de compensation de tension a base de stockage de l&#39;energie sous forme capacitive et reseau electrique comprenant ce dispositif.
EP3593429B1 (fr) Circuit électrique de décharge d&#39;une capacité, système électrique et véhicule automobile comportant un tel circuit électrique de décharge
EP2206232A2 (fr) Système d&#39;alimentation de machine électrique
FR2928049A1 (fr) Cellule pour dispositif de stockage d&#39;energie electrique et systeme d&#39;alimentation electrique du reseau de bord d&#39;un vehicule.
FR2913825A1 (fr) Procede et dispositif de recharge d&#39;un stockage d&#39;energie electrique d&#39;un vehicule.
FR2945081A1 (fr) Procede et systeme d&#39;arret et de redemarrage automatique d&#39;un moteur thermique
EP1946972A1 (fr) Dispositif d&#39;élévation temporaire de tension électrique pour organe automobile
FR3087596A1 (fr) Systeme electrique et procede de charge d&#39;une batterie, notamment pour vehicule
FR3096842A1 (fr) Circuit electrique de vehicule automobile comprenant un alterno-demarreur et un dispositif de maintien de tension centralise
FR2965309A1 (fr) Procede de gestion de l&#39;arret et du redemarrage automatique d&#39;un moteur thermique de vehicule automobile et vehicule automobile correspondant
FR2838572A1 (fr) Systeme de charge d&#39;un dispositif de stockage d&#39;energie electrique, tel qu&#39;un super-condensateur a partir d&#39;une batterie et notamment d&#39;un vehicule automobile, et procede d&#39;utilisation de ce systeme
EP3894278B1 (fr) Dispositif de pre-charge d&#39;un reseau electrique de puissance
FR2869469A1 (fr) Dispositif de protection de reseau de bord
WO2013121133A2 (fr) Systeme d&#39;adaptation de tension et de courant d&#39;une batterie au lithium-ion, pour un vehicule automobile
WO2015004366A1 (fr) Systeme de stabilisation d&#39;une tension d&#39;alimentation d&#39;un reseau electrique de bord d&#39;un vehicule automobile
FR3080338A1 (fr) Circuit electrique de vehicule automobile comprenant un alterno-demarreur et un dispositif de maintien de tension

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18715771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018715771

Country of ref document: EP

Effective date: 20191008

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载