+

WO2018161214A1 - Component of generator, generator having the component and method for manufacturing the component - Google Patents

Component of generator, generator having the component and method for manufacturing the component Download PDF

Info

Publication number
WO2018161214A1
WO2018161214A1 PCT/CN2017/075754 CN2017075754W WO2018161214A1 WO 2018161214 A1 WO2018161214 A1 WO 2018161214A1 CN 2017075754 W CN2017075754 W CN 2017075754W WO 2018161214 A1 WO2018161214 A1 WO 2018161214A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
component
magnet
generator according
receiving part
Prior art date
Application number
PCT/CN2017/075754
Other languages
French (fr)
Inventor
Ganjun ZHU
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to PCT/CN2017/075754 priority Critical patent/WO2018161214A1/en
Publication of WO2018161214A1 publication Critical patent/WO2018161214A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • H02K1/2795Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures

Definitions

  • This disclosure relates to a component of a generator, such as a rotor or a stator, a generator having the component, which is particularly used for a railway freight wagon, and a method for manufacturing the component.
  • a disc type permanent magnet generator has been proposed as the electric power supplier for railway freight wagons.
  • the disc type generator is an easy-mounting, reliable and economical power supply solution for railway applications.
  • magnets 2 directly use glue 3 to attach magnets 2 to a rotor substrate 1.
  • the magnet 2 has the north pole and the south pole in an axial direction of the substrate 1.
  • Adjacent magnets 2 have different pole direction from each other.
  • the working environment of the railway freight wagon is very tough, e.g. huge vibration and shock impact exists, which gives a big challenge to the disc type generator or its component. That is, the direct gluing method may not be a feasible magnet mounting solution.
  • this disclosure provides a component of a generator, such as a rotor or a stator, and a generator having the component, in which magnets are attached reliably to a substrate.
  • This disclosure also provides a method for manufacturing the component of the generator.
  • a component of a generator comprises a substrate having a shape of disc or ring and at least one magnet attached to the substrate,
  • the substrate comprises at least one receiving part
  • the at least one magnet comprises at least one embedding part, at least a part of an outer shape of the embedding part corresponds to at least a part of an inner shape of the receiving part,
  • the at least one embedding part is received in the receiving part to prohibit the at least one magnet from moving relative to the substrate exceeding a predetermined extent in at least an axial direction of the substrate.
  • the receiving parts are recesses or slots spaced from each other in a circumferential direction of the substrate.
  • the at least one receiving part is at least one slot extending along a radial direction of the substrate.
  • the slot has a width decreasing radially inward in a lateral direction perpendicular to both the axial direction and a radial direction of the substrate, so as to prohibit the at least one magnet from moving radially inward relative to the substrate.
  • At least a part of the embedding part which corresponds to the receiving part has a width in the lateral direction decreasing stepwise or continuously along the axial direction of the substrate.
  • the at least one receiving part does not penetrate the whole thickness of the substrate along the axial direction.
  • the component is a rotor or a stator of a generator.
  • the component is a rotor or a stator of a disc type generator for a railway freight wagon.
  • the at least one embedding part and the at least one receiving part have shapes matching each other.
  • the embedding part has a dove tail shape.
  • the magnet has an exposed part exposed from the substrate
  • a width of the exposed part in the lateral direction is larger than the largest width of the embedding part of the same magnet, and/or the thickness of the exposed part in the axial direction is larger than that of the embedding part of the same magnet.
  • the embedding part of one magnet has at least two subparts spaced from each other in a lateral direction perpendicular to the axial direction and a radial direction of the substrate.
  • the at least two subparts are received in the receiving part in the form of at least two separated slots of the substrate.
  • the at least two subparts are received in the receiving part in the form of one slot of the substrate.
  • the embedding part extends continuously in substantially a lengthwise direction of the magnet.
  • the embedding part is disconnected in substantially a lengthwise direction of the magnet.
  • the magnet has an exposed part exposed from the substrate, and the embedding part is symmetrical about a center line of the exposed part along a radial direction of the substrate.
  • the at least one receiving part is configured in such way that the embedding part is able to be inserted into the receiving part in a radial direction of the substrate.
  • a distance exists between the embedding part and an inner surface of the corresponding receiving part.
  • the embedding part and the corresponding receiving part are fixed to each other by interference fit.
  • adhesive exists between the embedding part and an inner surface of the receiving part.
  • the component has a hoop embracing the at least one magnet peripherally.
  • the hoop embraces the at least one magnet and the substrate together to prevent the at least one magnet from separating from the substrate in a radial direction of the substrate.
  • the substrate includes a cover member with the at least one receiving part and a base member attached to the cover member, wherein the at least receiving part does not reach the periphery of the cover member.
  • the at least one receiving part is configured in such way that the embedding part is able to be inserted into the cover member in an axial direction of the cover member.
  • the substrate includes a cover member with the at least one receiving part and a base member attached to the cover member, wherein the base member has a recess for housing the cover member with the at least one magnet attached.
  • This disclosure also provides a generator having the component of the generator according to this disclosure.
  • a method for manufacturing a component of a generator comprises a substrate having a shape of disc or ring and at least one magnet attached to the substrate,
  • the substrate comprises at least one receiving part
  • the at least one magnet comprises at least one embedding part
  • at least a part of an outer shape of the embedding part corresponds to at least a part of an inner shape of the receiving part, so as to prohibit the at least one magnet from moving relative to the substrate exceeding a predetermined extent in at least an axial direction of the substrate
  • the method includes a step of assembling the embedding part into the receiving part.
  • the method includes a step of inserting the embedding part into the receiving part radially inward.
  • the component of the generator further comprises a hoop
  • the method includes a step of assembling the hoop to embrace peripherally the substrate with the at least one magnet attached. so as to prohibit the at least one magnet from moving radially relative to the substrate.
  • the receiving part is in the form of slot reaching the periphery of the substrate.
  • the substrate has a cover member having the at least one receiving part and a base member, and wherein the method includes a step of attaching the cover member with the base member.
  • the at least one receiving part is in the form of at least one slot penetrating the cover member and reaching the periphery of the cover member, and the at least one embedding part is inserted through the receiving part of the cover member in an axial direction of the cover member.
  • the base member has a recess for housing the cover member with the at least one magnet attached.
  • the method includes a step of applying adhesive to the receiving part of the substrate and/or the embedding part of the magnet.
  • the at least one receiving part does not penetrate the whole thickness of the substrate along the axial direction.
  • a mounting fixture for holding the magnets when attaching the magnets into the substrate can be omitted.
  • Fig. 1 schematically illustrates a rotor in the related art.
  • Fig. 2A schematically illustrates a component of a generator in the first embodiment of this disclosure.
  • Figs. 2B and 2C schematically illustrate a magnet of the component shown in Fig. 2A.
  • Fig. 2D schematically illustrates a substrate of the component shown in Fig. 2A.
  • Fig. 3 schematically illustrates the component of the generator in the second embodiment of this disclosure.
  • Figs. 4A to 4C schematically illustrate the component of the generator in the third embodiment of this disclosure.
  • Figs. 5A to 5I schematically illustrate variations of the component of the generator of this disclosure.
  • the substrate 10 has a shape of disc or ring, and the receiving parts in the form of recesses or slots 12 formed in its body 11 for receiving and holding the embedding parts 22 of the magnet 20.
  • the slot 12 does not penetrate the whole thickness of the substrate 10 in an axial direction of the substrate 10, and extends radially in the body 11 from the periphery 13 of the substrate 10 to a position near the center of the body 11.
  • the slots 12 are spaced from each other in a circumferential direction of the substrate 10.
  • the slot 12 has a width decreasing radially inward in a direction (hereinafter, referred as a lateral direction) perpendicular to both the axial direction and a radial direction of the substrate 10.
  • the magnet 20 has a first end 23 located radially outward of the substrate 10 and a second end 24 located radially inward of the substrate 10.
  • the end surface of the first end 23 has preferably the same center of a circle as that of the substrate 10, and more preferably an arc that has the same radius of curvature as that of the substrate 10.
  • the end surface of the second end 24 preferably is flat. By such end surfaces, sharp points can be reduced and line of magnetic flux or the magnetic field can be optimized.
  • the first end 23 has a width in the lateral direction preferably larger than that of the second end 24.
  • the width of the exposed part 21 is larger than the largest width of the embedding part 22.
  • the thickness of the exposed part 21 in the axial direction of the substrate 10 is preferably larger than that of the embedding part 22.
  • the exposed part 21 and the embedding part 22 both are trapezoid.
  • the cross section of the exposed part 21 in the lateral direction is rectangular.
  • the cross section of the embedding part 22 in the lateral direction has a trapezoid shape and preferably a shape of an isosceles trapezoid.
  • the embedding part 22 has a shape of a wedge or a dove tail.
  • the slot 12 of the substrate 10 has a shape corresponding to that of the embedding part 22 and a size the same as or slightly larger than the size of the embedding part 22.
  • a small distance may exist between the embedding part 22 and an inner surface of the slot 12. This distance can be eliminated by an adhesive or a cushion material.
  • the embedding part 22 and the slot 12 can also be fixed to each other by interference fit.
  • a dove tail structure is configured in the magnet 20 in a part facing the substrate 10. Meanwhile, the substrate 10 may have a dove tail slot.
  • the component of the generator 100 may be assembled by steps of:
  • a mounting fixture for holding the magnets when attaching magnets into the substrate can be omitted;
  • Fig. 3 illustrates a front view of the component of the generator 100 of the second embodiment. This embodiment has a similar structure as that of the first embodiment and only the differences therebetween will be described hereinafter.
  • the component 100 of the present embodiment includes a substrate 10 having a body and a plurality of slots, a plurality of magnets 20 each having an exposed part and an embedding part, and a hoop 40 embracing the substrate 10 and at least the embedding part of the magnet 20 peripherally.
  • the hoop 40 can prevent the magnets 20 from separating from the substrate 10 in the radial direction, even when the component 100 is a rotor which rotates in a high speed.
  • the hoop 40 can embrace the magnets 20 only.
  • the magnet 20 has a cross section of a trapezoid in the lateral direction, and the embedding part 22 and the exposed part 21 are continuously smooth.
  • the embedding part 22 has a larger width in the lateral direction than that of the exposed part 21.
  • an adhesive layer 30 is also shown in the figure. In other figures, illustration of the adhesive layer is omitted. Of course, an adhesive layer may or may not exist between the embedding part and the slot, even between the exposed part and the substrate.
  • the substrate 10 can include two separate members, i.e. a cover member 14 with the slots 12 and a base member 15.
  • the cover member 14 has a plurality of slots 12 penetrating through the cover member 14 in the axial direction.
  • the slots 12 do not reach the periphery of the cover member 14; therefore, the periphery part 16 of the cover member 14 can prevent the magnets 20 (not shown in Fig. 4B) in the slots 12 from separating from the substrate 10 in the radial direction.
  • the hoop in the second embodiment is formed integrally with the substrate.
  • the cover member 14 has a plurality of slots 12 penetrating through the cover member 14 in the axial direction.
  • the slots 12 reach the periphery of the cover member 14. Therefore, the magnets 20 can be inserted into the cover member 14 in the radial direction or in the axial direction.
  • the base member 15 has a recess 19 in the center of its body.
  • the base member 15 has a flange 18 in a shape of ring at the periphery part thereof.
  • the recess 19 is used to receive the cover member 14 and the magnets 20.
  • the flange 18 preferably has a thickness in the axial direction the same as that of the cover member 14.
  • the flange 18 has a similar function as the hoop in the second embodiment, that is, the flange 18 can prevent the magnets 20 in the slots 12 from separating from the substrate 10 in the radial direction.
  • the base member 15 can be attached to the cover member 14 with magnets 20 attached by various means.
  • Figs. 5A to 5F schematically illustrate cross sections of the magnets 20 and the substrate 10 along the lateral direction.
  • the magnet 20 in the cross section along the lateral direction, has the exposed part 21 with a rectangle shape and the embedding part 22 with a step.
  • the embedding part 22 has a first part 221 having the same width as that of the exposed part 21 and extending from the exposed part 21 smoothly, and a second part 222 having a larger width than that of the first part 221.
  • the slot 12 of the substrate 10 has a shape corresponding to that of the embedding part 22.
  • the substrate 10 can be a single piece or implemented as two members as similarly to the third embodiment.
  • the magnet 20 in the cross section along the lateral direction, has the exposed part 21 with a rectangle shape and the embedding part 22 with a step. A step is also formed between the exposed part 21 and the embedding part 22.
  • the embedding part 22 has a first part 221 having a width smaller than that of the exposed part 21, and a second part 222 having a larger width than that of the first part 221.
  • the width of the exposed part 21 is preferably larger than that of the second part 222.
  • the slot 12 of the substrate 10 has a shape corresponding to that of the embedding part 22.
  • the embedding part 22 is round.
  • the embedding part 22 in the cross section along the lateral direction, has a first subpart 223 and a second subpart 224 separated from each other in the lateral direction.
  • the first subpart 223 and the second subpart 224 connect to the exposed part 21 at their roots.
  • the slot 12 correspondingly has a first slot 121 and a second slot 122 for receiving the first subpart 223 and the second subpart 224, respectively.
  • each of the slot 12 i.e., the first slot 121 and the second slot 122
  • the embedding part 22 i.e., the first subpart 223 and the second subpart 224 is not symmetrical.
  • Fig. 5F has a similar structure as that shown in Fig. 5D, except that each of the first subpart 223 and the second subpart 224 is triangular.
  • one slot 120 can be used instead of the first slot 121 and the second slot 122.
  • the embedding part of course, can be separated into more than two subparts.
  • Figs. 5G and 5H schematically illustrate bottom views of the magnet 20.
  • the embedding part 22 and the exposed part 21 both are symmetrical about a center line of the exposed part 21 along the radial direction. As compared with that shown in Figs. 2B and 2C, the embedding part 22 does not extend to the same position radially inward as the exposed part 21.
  • the exposed part 21 is symmetrical about a center line of the exposed part 21 along the radial direction, but the embedding part 22 is not symmetrical about the same center line.
  • a first line L1 and a second line L2 along the radial direction of the substrate 10 are shown. It is clear that the exposed part 21 extends along and is symmetrical about a line along the radial direction of the substrate 10.
  • the slot 12 extends along a line inclined with respect to the radial direction of the substrate 10.
  • cover member 14 in Fig. 4C and the hoop 40 in Fig. 3 can constitute a substrate of this disclosure.
  • the example or embodiment having a structure that the embedding part is symmetrical about a line along the radial direction of the substrate is preferable.
  • the magnetic field has a better symmetry characteristic.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

This disclosure provides a component of a generator, such as a rotor or a stator, a generator having the component, which is particularly used for a railway freight wagon, and a method for manufacturing the component. The component of the generator comprises a substrate having a shape of disc or ring and at least one magnet attached to the substrate, wherein the substrate comprises at least one receiving part, and the at least one magnet comprises at least one embedding part, at least a part of an outer shape of the embedding part corresponds to at least a part of an inner shape of the receiving part, wherein the at least one embedding part is received in the receiving part to prohibit the at least one magnet from moving relative to the substrate exceeding a predetermined extent in at least an axial direction of the substrate.

Description

TITLE OF THE INVENTION
COMPONENT OF GENERATOR, GENERATOR HAVING THE COMPONENT AND METHOD FOR MANUFACTURING THE COMPONENT
FIELD
This disclosure relates to a component of a generator, such as a rotor or a stator, a generator having the component, which is particularly used for a railway freight wagon, and a method for manufacturing the component.
RELATED ART
Railway freight wagons used to have no electric power supplier, because in the past little electrical applications were implemented on railway freight wagons.
However, with the development of the railway freight wagons, more sensors and mechatronics parts are implemented on the freight wagons, and the electric power solution becomes a critical demand.
A disc type permanent magnet generator has been proposed as the electric power supplier for railway freight wagons.
The disc type generator is an easy-mounting, reliable and economical power supply solution for railway applications.
Currently, as shown in Fig. 1, most disc type generators directly use glue 3 to attach magnets 2 to a rotor substrate 1. The magnet 2 has the north pole and the south pole in an axial direction of the substrate 1. Adjacent magnets 2 have different pole direction from each other.
The working environment of the railway freight wagon is very tough, e.g. huge vibration and shock impact exists, which gives a big challenge to the disc type generator or its component. That is, the direct gluing method may not be a feasible magnet mounting solution.
SUMMARY
In view of the above condition, this disclosure provides a component of a generator, such as a rotor or a stator, and a generator having the component, in which magnets are attached reliably to a substrate.
This disclosure also provides a method for manufacturing the component of the generator.
A component of a generator comprises a substrate having a shape of disc or ring and at least one magnet attached to the substrate,
wherein the substrate comprises at least one receiving part, and
the at least one magnet comprises at least one embedding part, at least a part of an outer shape of the embedding part corresponds to at least a part of an inner shape of the receiving part,
wherein the at least one embedding part is received in the receiving part to prohibit the at least one magnet from moving relative to the substrate exceeding a predetermined extent in at least an axial direction of the substrate.
In at least one embodiment of this disclosure, the receiving parts are recesses or slots spaced from each other in a circumferential direction of the substrate.
In at least one embodiment of this disclosure, the at least one receiving part is at least one slot extending along a radial direction of the substrate.
In at least one embodiment of this disclosure, the slot has a width decreasing radially inward in a lateral direction perpendicular to both the axial direction and a radial direction of the substrate, so as to prohibit the at least one magnet from moving radially inward relative to the substrate.
In at least one embodiment of this disclosure, in a cross section of the magnet in a lateral direction perpendicular to the axial direction and a radial direction of the substrate, at least a part of the embedding part which corresponds to the receiving part has a width in the lateral direction decreasing stepwise or continuously along the axial direction of the substrate.
In at least one embodiment of this disclosure, the at least one receiving part does not penetrate the whole thickness of the substrate along the axial direction.
In at least one embodiment of this disclosure, the component is a rotor or  a stator of a generator.
In at least one embodiment of this disclosure, the component is a rotor or a stator of a disc type generator for a railway freight wagon.
In at least one embodiment of this disclosure, the at least one embedding part and the at least one receiving part have shapes matching each other.
In at least one embodiment of this disclosure, the embedding part has a dove tail shape.
In at least one embodiment of this disclosure, the magnet has an exposed part exposed from the substrate, and
in a cross section of the magnet in a lateral direction perpendicular to the axial direction and a radial direction of the substrate, a width of the exposed part in the lateral direction is larger than the largest width of the embedding part of the same magnet, and/or the thickness of the exposed part in the axial direction is larger than that of the embedding part of the same magnet.
In at least one embodiment of this disclosure, the embedding part of one magnet has at least two subparts spaced from each other in a lateral direction perpendicular to the axial direction and a radial direction of the substrate.
In at least one embodiment of this disclosure, the at least two subparts are received in the receiving part in the form of at least two separated slots of the substrate.
In at least one embodiment of this disclosure, the at least two subparts are received in the receiving part in the form of one slot of the substrate.
In at least one embodiment of this disclosure, the embedding part extends continuously in substantially a lengthwise direction of the magnet.
In at least one embodiment of this disclosure, the embedding part is disconnected in substantially a lengthwise direction of the magnet.
In at least one embodiment of this disclosure, the magnet has an exposed part exposed from the substrate, and the embedding part is symmetrical about a center line of the exposed part along a radial direction of the substrate.
In at least one embodiment of this disclosure, the at least one receiving  part is configured in such way that the embedding part is able to be inserted into the receiving part in a radial direction of the substrate.
In at least one embodiment of this disclosure, a distance exists between the embedding part and an inner surface of the corresponding receiving part.
In at least one embodiment of this disclosure, the embedding part and the corresponding receiving part are fixed to each other by interference fit.
In at least one embodiment of this disclosure, adhesive exists between the embedding part and an inner surface of the receiving part.
In at least one embodiment of this disclosure, the component has a hoop embracing the at least one magnet peripherally.
In at least one embodiment of this disclosure, the hoop embraces the at least one magnet and the substrate together to prevent the at least one magnet from separating from the substrate in a radial direction of the substrate.
In at least one embodiment of this disclosure, the substrate includes a cover member with the at least one receiving part and a base member attached to the cover member, wherein the at least receiving part does not reach the periphery of the cover member.
In at least one embodiment of this disclosure, the at least one receiving part is configured in such way that the embedding part is able to be inserted into the cover member in an axial direction of the cover member.
In at least one embodiment of this disclosure, the substrate includes a cover member with the at least one receiving part and a base member attached to the cover member, wherein the base member has a recess for housing the cover member with the at least one magnet attached.
This disclosure also provides a generator having the component of the generator according to this disclosure.
A method for manufacturing a component of a generator comprises a substrate having a shape of disc or ring and at least one magnet attached to the substrate,
wherein the substrate comprises at least one receiving part, and the at least one magnet comprises at least one embedding part, at least a part of an  outer shape of the embedding part corresponds to at least a part of an inner shape of the receiving part, so as to prohibit the at least one magnet from moving relative to the substrate exceeding a predetermined extent in at least an axial direction of the substrate, and
wherein the method includes a step of assembling the embedding part into the receiving part.
In at least one embodiment of this disclosure, the method includes a step of inserting the embedding part into the receiving part radially inward.
In at least one embodiment of this disclosure, the component of the generator further comprises a hoop, and the method includes a step of assembling the hoop to embrace peripherally the substrate with the at least one magnet attached. so as to prohibit the at least one magnet from moving radially relative to the substrate.
In at least one embodiment of this disclosure, the receiving part is in the form of slot reaching the periphery of the substrate.
In at least one embodiment of this disclosure, the substrate has a cover member having the at least one receiving part and a base member, and wherein the method includes a step of attaching the cover member with the base member.
In at least one embodiment of this disclosure, the at least one receiving part is in the form of at least one slot penetrating the cover member and reaching the periphery of the cover member, and the at least one embedding part is inserted through the receiving part of the cover member in an axial direction of the cover member.
In at least one embodiment of this disclosure, the base member has a recess for housing the cover member with the at least one magnet attached.
In at least one embodiment of this disclosure, the method includes a step of applying adhesive to the receiving part of the substrate and/or the embedding part of the magnet.
In at least one embodiment of this disclosure, the at least one receiving part does not penetrate the whole thickness of the substrate along the axial direction.
In the above component of the generator and/or the generator having the component and the method for manufacturing the component, at least one of the following advantages can be attained.
(1) A robust mechanical structure for anti-vibration and anti-shock impact is attained.
(2) A mounting fixture for holding the magnets when attaching the magnets into the substrate can be omitted.
(3) Installation time can be saved, as without waiting until the adhesive hardens or effects completely, the component can be removed from an assembly apparatus.
Further features of this disclosure will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 schematically illustrates a rotor in the related art.
Fig. 2A schematically illustrates a component of a generator in the first embodiment of this disclosure.
Figs. 2B and 2C schematically illustrate a magnet of the component shown in Fig. 2A.
Fig. 2D schematically illustrates a substrate of the component shown in Fig. 2A.
Fig. 3 schematically illustrates the component of the generator in the second embodiment of this disclosure.
Figs. 4A to 4C schematically illustrate the component of the generator in the third embodiment of this disclosure.
Figs. 5A to 5I schematically illustrate variations of the component of the generator of this disclosure.
List of reference numbers
1 substrate
2 magnet
3 glue
10 substrate
11 body of the substrate
12 slot (receiving part)
120 slot (receiving part)
121 first slot
122 second slot
13 periphery of the substrate
14 cover member
15 base member
16 periphery part of the cover member
18 flange
19 recess
20 magnet
21 exposed part
22 embedding part
221 first part
222 second part
223 first subpart
224 second subpart
23 first end of the magnet
24 second end of the magnet
30 adhesive layer
40 hoop
100 component of a generator
D diameter
DESCRIPTION OF THE EMBODIMENTS
The following describes in detail preferable exemplary embodiments of this disclosure with reference to the attached drawings.
The first embodiment
In this embodiment, there provides a new magnet-substrate structure and a new magnet-substrate mounting method, that is, a dove tail slot enhanced structure.
As shown in Figs. 2A to 2D, there provides a component of a generator 100 having magnets 20 and a substrate 10. This component 100 may be a rotor or a stator of a disc type generator with magnets 20 installed. Each magnet 20 has an exposed part 21 exposed from the substrate 10, and an embedding part 22 embedding in a receiving part in the form of recess or slot 12 of the substrate 10.
The substrate 10 has a shape of disc or ring, and the receiving parts in the form of recesses or slots 12 formed in its body 11 for receiving and holding the embedding parts 22 of the magnet 20. The slot 12 does not penetrate the whole thickness of the substrate 10 in an axial direction of the substrate 10, and extends radially in the body 11 from the periphery 13 of the substrate 10 to a position near the center of the body 11. The slots 12 are spaced from each other in a circumferential direction of the substrate 10. The slot 12 has a width decreasing radially inward in a direction (hereinafter, referred as a lateral direction) perpendicular to both the axial direction and a radial direction of the substrate 10.
The magnet 20 has a first end 23 located radially outward of the substrate 10 and a second end 24 located radially inward of the substrate 10. The end surface of the first end 23 has preferably the same center of a circle as that of the substrate 10, and more preferably an arc that has the same radius of curvature as that of the substrate 10. The end surface of the second end 24 preferably is flat. By such end surfaces, sharp points can be reduced and line of magnetic flux or the magnetic field can be optimized.
The first end 23 has a width in the lateral direction preferably larger than that of the second end 24. In any of cross sections of the magnet 20 along the lateral direction, the width of the exposed part 21 is larger than the largest  width of the embedding part 22. The thickness of the exposed part 21 in the axial direction of the substrate 10 is preferably larger than that of the embedding part 22.
When viewing from the axial direction of the substrate 10, the exposed part 21 and the embedding part 22 both are trapezoid. The cross section of the exposed part 21 in the lateral direction is rectangular. The cross section of the embedding part 22 in the lateral direction has a trapezoid shape and preferably a shape of an isosceles trapezoid. In a word, the embedding part 22 has a shape of a wedge or a dove tail.
The slot 12 of the substrate 10 has a shape corresponding to that of the embedding part 22 and a size the same as or slightly larger than the size of the embedding part 22. A small distance may exist between the embedding part 22 and an inner surface of the slot 12. This distance can be eliminated by an adhesive or a cushion material. The embedding part 22 and the slot 12 can also be fixed to each other by interference fit.
Therefore, when the magnet 20 is inserted into the slot 12 in the radial direction of the substrate 10, moving of the magnet 20 relative to the substrate 10 exceeding a predetermined extent in at least the axial direction of the substrate 10 is prohibited. In order to enhance these effects and prevent the magnet 20 from separating from the substrate 10 in the radial direction, adhesive may be applied between the embedding part 22 and the inner surface of the slot 12.
In summary, a dove tail structure is configured in the magnet 20 in a part facing the substrate 10. Meanwhile, the substrate 10 may have a dove tail slot.
The component of the generator 100 may be assembled by steps of:
(1) applying an adhesive layer to the slot 12 of the substrate 10 and/or the embedding part 22 of the magnet 20;
(2) inserting the embedding part 22 from the outside in the radial direction of the substrate 10 into the slot 12 of the substrate 10; and
(3) making the adhesive layer hardening or effecting to connect the magnet 20 to the substrate 10.
The steps are not necessarily carried out by the exemplified order described. One skilled in the art readily knows that certain steps can be carried out in different order without departing from the scope of this disclosure.
Contrary to conventional magnet mounting method in normal disc type generator, a new magnet mounting method is proposed for disc type generator which is particularly used in, but not limited to, railway freight wagons.
By adding the dove tail structure to the magnet and adding the dove tail slot to the substrate,
(1) a robust mechanical structure for anti-vibration and anti-shock impact is attained;
(2) a mounting fixture for holding the magnets when attaching magnets into the substrate can be omitted; and/or
(3) installation time can be saved, as without waiting until the adhesive hardens or effects completely, the component can be removed from an assembly apparatus.
The second embodiment
Fig. 3 illustrates a front view of the component of the generator 100 of the second embodiment. This embodiment has a similar structure as that of the first embodiment and only the differences therebetween will be described hereinafter.
The component 100 of the present embodiment includes a substrate 10 having a body and a plurality of slots, a plurality of magnets 20 each having an exposed part and an embedding part, and a hoop 40 embracing the substrate 10 and at least the embedding part of the magnet 20 peripherally.
As the magnets 20 extend to the periphery of the substrate 10 and thus the hoop 40 abuts against the magnets 20, the hoop 40 can prevent the magnets 20 from separating from the substrate 10 in the radial direction, even when the component 100 is a rotor which rotates in a high speed.
In a case that the magnets 20 extend beyond the periphery of the substrate 10, the hoop 40 can embrace the magnets 20 only.
In this embodiment, the hoop 40 can be made by material the same as or different from that of the substrate 10. The hoop 40 may have a thickness in the axial direction the same as or smaller than that of the substrate 10. The hoop 40 can be attached and fixed to the substrate 10 by means of adhesive, screw, welding or the like, or combination thereof. The hoop 40 can be attached and fixed to the substrate 10 by shape locking, such as by convex and concave, and/or interference fit, that is, the diameter of the substrate 10 may be a little larger than the inner diameter of the hoop 40. The hoop 40 may also be a spring ring.
In this embodiment, the numbers of the magnets 20 and the slots 12 are larger than that in the first embodiment. A person skilled in the art can set the numbers of the magnets and slots properly, without being limited to the number shown in the figures.
The third embodiment
Figs. 4A to 4C schematically illustrate some examples of the third embodiment of this disclosure. Fig. 4A schematically illustrates a cross section of magnets 20 and the substrate 10 along the lateral direction. Fig. 4B schematically illustrates front views of members of the substrate 10. Fig. 4C schematically illustrates isometric diagrams of members of the substrate 10.
As shown in Fig. 4A, the component of the generator 100 in this example has a substrate 10 and magnets 20. The substrate 10 has dove tail slots 12 similarly to the first embodiment. The magnet 20 has a different structure from the magnet 20 in the first embodiment.
To be specific, the magnet 20 has a cross section of a trapezoid in the lateral direction, and the embedding part 22 and the exposed part 21 are continuously smooth. The embedding part 22 has a larger width in the lateral direction than that of the exposed part 21.
In this example, an adhesive layer 30 is also shown in the figure. In other figures, illustration of the adhesive layer is omitted. Of course, an adhesive layer may or may not exist between the embedding part and the slot, even between the exposed part and the substrate.
In this example, the substrate 10 may have a similar integrated structure as that in the first embodiment. That is, the substrate 10 may be a single piece.
As an alternative, the substrate 10 can include two separate members, i.e. a cover member 14 with the slots 12 and a base member 15.
Figs. 4B and 4C illustrate details of the cover member 14 and the base member 15.
As shown in Fig. 4B, the cover member 14 has a plurality of slots 12 penetrating through the cover member 14 in the axial direction. The slots 12 do not reach the periphery of the cover member 14; therefore, the periphery part 16 of the cover member 14 can prevent the magnets 20 (not shown in Fig. 4B) in the slots 12 from separating from the substrate 10 in the radial direction. In other words, the hoop in the second embodiment is formed integrally with the substrate.
In the example shown in Fig. 4B, the magnet 20 can be attached to the slot 12 of the cover member 14 in the axial direction. And then the base member 15 can be attached to the cover member 14 by various means, for example, screw, bolt, rivet, welding, adhesive or the like, or combination thereof.
In the example shown in Fig. 4B, the cover member 14 and the base member 15 preferably have the same diameter D.
In the example shown in Fig. 4C, the cover member 14 has a plurality of slots 12 penetrating through the cover member 14 in the axial direction. The slots 12 reach the periphery of the cover member 14. Therefore, the magnets 20 can be inserted into the cover member 14 in the radial direction or in the axial direction.
In the example shown in Fig. 4C, the base member 15 has a recess 19 in the center of its body. In other words, the base member 15 has a flange 18 in a shape of ring at the periphery part thereof. The recess 19 is used to receive the cover member 14 and the magnets 20. The flange 18 preferably has a thickness in the axial direction the same as that of the cover member 14. The flange 18 has a similar function as the hoop in the second embodiment, that is, the flange 18 can prevent the magnets 20 in the slots 12 from separating from the substrate 10 in the radial direction.
The base member 15 can be attached to the cover member 14 with magnets 20 attached by various means.
Variations
Figs. 5A to 5F schematically illustrate cross sections of the magnets 20 and the substrate 10 along the lateral direction.
In the example shown in Fig. 5A, in the cross section along the lateral direction, the magnet 20 has the exposed part 21 with a rectangle shape and the embedding part 22 with a step.
To be specific, the embedding part 22 has a first part 221 having the same width as that of the exposed part 21 and extending from the exposed part 21 smoothly, and a second part 222 having a larger width than that of the first part 221. The slot 12 of the substrate 10 has a shape corresponding to that of the embedding part 22.
In this example, the substrate 10 can be a single piece or implemented as two members as similarly to the third embodiment.
In the example shown in Fig. 5B, in the cross section along the lateral direction, the magnet 20 has the exposed part 21 with a rectangle shape and the embedding part 22 with a step. A step is also formed between the exposed part 21 and the embedding part 22.
To be specific, the embedding part 22 has a first part 221 having a width smaller than that of the exposed part 21, and a second part 222 having a larger width than that of the first part 221. The width of the exposed part 21 is preferably larger than that of the second part 222. The slot 12 of the substrate 10 has a shape corresponding to that of the embedding part 22.
In the example shown in Fig. 5C, in the cross section along the lateral direction, the embedding part 22 is round.
In the example shown in Fig. 5D, in the cross section along the lateral direction, the embedding part 22 has a first subpart 223 and a second subpart 224 separated from each other in the lateral direction. The first subpart 223 and the second subpart 224 connect to the exposed part 21 at their roots. The  slot 12 correspondingly has a first slot 121 and a second slot 122 for receiving the first subpart 223 and the second subpart 224, respectively.
In examples shown in Figs. 5A to 5D, each of the slot 12 and the embedding part 22 is symmetrical about a center line of the exposed part 21 along the radial direction. However, the configuration of the slot 12 and the embedding part 22 is not limited thereto.
In the example shown in Fig. 5E, for example, each of the slot 12 (i.e., the first slot 121 and the second slot 122) and the embedding part 22 (i.e., the first subpart 223 and the second subpart 224) is not symmetrical.
The example shown in Fig. 5F has a similar structure as that shown in Fig. 5D, except that each of the first subpart 223 and the second subpart 224 is triangular.
As an alternative, as shown by the dash line, one slot 120 can be used instead of the first slot 121 and the second slot 122.
The embedding part, of course, can be separated into more than two subparts.
Figs. 5G and 5H schematically illustrate bottom views of the magnet 20.
In the example shown in Fig. 5G, the embedding part 22 and the exposed part 21 both are symmetrical about a center line of the exposed part 21 along the radial direction. As compared with that shown in Figs. 2B and 2C, the embedding part 22 does not extend to the same position radially inward as the exposed part 21.
In the example shown in Fig. 5H, the exposed part 21 is symmetrical about a center line of the exposed part 21 along the radial direction, but the embedding part 22 is not symmetrical about the same center line.
Fig. 5I schematically illustrates the example shown in Fig. 5H with the substrate 10.
In Fig. 5I, a first line L1 and a second line L2 along the radial direction of the substrate 10 are shown. It is clear that the exposed part 21 extends along and is symmetrical about a line along the radial direction of the substrate 10. The slot 12 extends along a line inclined with respect to the radial direction of the substrate 10.
Some embodiments or examples are described above with reference to the attached drawings, which can in practice be combined with each other. These embodiments or examples are only illustrative, and not used to limit this disclosure. For example, the cover member 14 in Fig. 4C and the hoop 40 in Fig. 3 can constitute a substrate of this disclosure.
The material of the substrate and the hoop can be selected by a person killed in the art properly. When magnetic shielding is needed, the substrate can be made by ferromagnetism material, such as iron, in which case the magnet needs to extend out from the substrate as shown in the figures. When no magnetic shielding is needed, the substrate can be made by non-magnetic material such as aluminum and copper, in which case the magnet can even be embedding in the substrate completely.
When the substrate is divided into two members, the two members can be made by the same material or different materials.
In the first embodiment in which the embedding part of the magnet has a dove tail shaped cross section, on one hand, the magnet can be easily machined and magnetized, the intensity and uniformity of magnetic field or the line of magnetic flux is high, and the degree of parallelism of the line of magnetic flux with respect to normal direction of the substrate is good; on the other hand, the volume of the embedding part can be relatively reduced, which means the cost of the magnet can be saved.
In the component of this disclosure, it is preferred that the slots do not penetrating the whole thickness of the substrate, especially in a case that the substrate is comprised of ferromagnetism material, in which case (1) the line of magnetic flux has good uniformity, (2) intensity and density of the magnetic field is high, (3) the line of magnetic flux in the direction of the substrate can be shielded, and (4) magnetization effect to adjacent interfaces can be avoided and additional torque is small.
In some examples, the slots penetrating the whole thickness of the substrate is also possible. For example, the cross section of the embedding part may have a shape of diamond or a sandglass.
Among some of the embodiments or examples shown in the figures, the example or embodiment having a structure that the embedding part is  symmetrical about a line along the radial direction of the substrate is preferable. As in such a case the magnetic field has a better symmetry characteristic.
The embedding part does not need extending continuously in a lengthwise direction of the magnet or the radial direction of the substrate. The embedding part disconnected in the lengthwise direction of the magnet or the radial direction of the substrate is also possible.
The magnet of this disclosure can be obtained by machining a magnet with a similar shape. As demagnetization may be caused by machining, preferably, the magnet of this disclosure can be obtained by sintering powder of raw material of the magnet, and then the magnet sintered can be magnetized.
This disclosure can be especially applied to applications in which vibration and shock impact is significant. And the dove tail structure can be used in an axle box generator for high speed freight wagons. Needless to say, the application of this disclosure is not limited to railway freight wagons. Even when this disclosure is used to a generator for static or low vibration environment, the attachment of the magnets into the substrate can be facilitated and the installation time can be reduced.
While this disclosure has been described with reference to exemplary embodiments, it is to be understood that this disclosure is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.

Claims (36)

  1. A component of a generator comprising a substrate having a shape of disc or ring and at least one magnet attached to the substrate,
    wherein the substrate comprises at least one receiving part, and
    the at least one magnet comprises at least one embedding part, at least a part of an outer shape of the embedding part corresponds to at least a part of an inner shape of the receiving part,
    wherein the at least one embedding part is received in the receiving part to prohibit the at least one magnet from moving relative to the substrate exceeding a predetermined extent in at least an axial direction of the substrate.
  2. The component of the generator according to claim 1, wherein the receiving parts are recesses or slots spaced from each other in a circumferential direction of the substrate.
  3. The component of the generator according to claim 2, wherein the at least one receiving part is at least one slot extending along a radial direction of the substrate.
  4. The component of the generator according to claim 2, wherein the slot has a width decreasing radially inward in a lateral direction perpendicular to both the axial direction and a radial direction of the substrate, so as to prohibit the at least one magnet from moving radially inward relative to the substrate.
  5. The component of the generator according to claim 1, wherein in a cross section of the magnet in a lateral direction perpendicular to the axial direction and a radial direction of the substrate, at least a part of the embedding part which corresponds to the receiving part has a width in the lateral direction decreasing stepwise or continuously along the axial direction of the substrate.
  6. The component of the generator according to claim 1, wherein the at least one receiving part does not penetrate the whole thickness of the substrate along the axial direction.
  7. The component of the generator according to any one of claims 1 to 6, wherein the component is a rotor or a stator of a generator.
  8. The component of the generator according to any one of claims 1 to 6,  wherein the component is a rotor or a stator of a disc type generator for a railway freight wagon.
  9. The component of the generator according to any one of claims 1 to 6, wherein the at least one embedding part and the at least one receiving part have shapes matching each other.
  10. The component of the generator according to claim 9, wherein the embedding part has a dove tail shape.
  11. The component of the generator according to any one of claims 1 to 6, wherein the magnet has an exposed part exposed from the substrate, and
    in a cross section of the magnet in a lateral direction perpendicular to the axial direction and a radial direction of the substrate, a width of the exposed part in the lateral direction is larger than the largest width of the embedding part of the same magnet, and/or the thickness of the exposed part in the axial direction is larger than that of the embedding part of the same magnet.
  12. The component of the generator according to any one of claims 1 to 6, wherein the embedding part of one magnet has at least two subparts spaced from each other in a lateral direction perpendicular to the axial direction and a radial direction of the substrate.
  13. The component of the generator according to claim 12, wherein the at least two subparts are received in the receiving part in the form of at least two separated slots of the substrate.
  14. The component of the generator according to claim 12, wherein the at least two subparts are received in the receiving part in the form of one slot of the substrate.
  15. The component of the generator according to any one of claims 1 to 6, wherein the embedding part extends continuously in substantially a lengthwise direction of the magnet.
  16. The component of the generator according to any one of claims 1 to 6, wherein the embedding part is disconnected in substantially a lengthwise direction of the magnet.
  17. The component of the generator according to any one of claims 1 to 6, wherein the magnet has an exposed part exposed from the substrate, and  the embedding part is symmetrical about a center line of the exposed part along a radial direction of the substrate.
  18. The component of the generator according to any one of claims 1 to 6, wherein the at least one receiving part is configured in such way that the embedding part is able to be inserted into the receiving part in a radial direction of the substrate.
  19. The component of the generator according to any one of claims 1 to 6, wherein a distance exists between the embedding part and an inner surface of the corresponding receiving part.
  20. The component of the generator according to any one of claims 1 to 6, wherein the embedding part and the corresponding receiving part are fixed to each other by interference fit.
  21. The component of the generator according to any one of claims 1 to 6, wherein adhesive exists between the embedding part and an inner surface of the receiving part.
  22. The component of the generator according to any one of claims 1 to 6, wherein the component has a hoop embracing the at least one magnet peripherally.
  23. The component of the generator according to claim 22, wherein the hoop embraces the at least one magnet and the substrate together to prevent the at least one magnet from separating from the substrate in a radial direction of the substrate.
  24. The component of the generator according to any one of claims 1 to 6, wherein the substrate includes a cover member with the at least one receiving part and a base member attached to the cover member, wherein the at least receiving part does not reach the periphery of the cover member.
  25. The component of the generator according to claim 24, wherein the at least one receiving part is configured in such way that the embedding part is able to be inserted into the cover member in an axial direction of the cover member.
  26. The component of the generator according to any one of claims 1 to 6, wherein the substrate includes a cover member with the at least one  receiving part and a base member attached to the cover member, wherein the base member has a recess for housing the cover member with the at least one magnet attached.
  27. A generator having the component of the generator according to any one of claims 1 to 26.
  28. A method for manufacturing a component of a generator comprising a substrate having a shape of disc or ring and at least one magnet attached to the substrate,
    wherein the substrate comprises at least one receiving part, and the at least one magnet comprises at least one embedding part, at least a part of an outer shape of the embedding part corresponds to at least a part of an inner shape of the receiving part, so as to prohibit the at least one magnet from moving relative to the substrate exceeding a predetermined extent in at least an axial direction of the substrate, and
    wherein the method includes a step of assembling the embedding part into the receiving part.
  29. The method for manufacturing the component of the generator according to claim 28, wherein the method includes a step of inserting the embedding part into the receiving part radially inward.
  30. The method for manufacturing the component of the generator according to claim 28, wherein the component of the generator further comprises a hoop, and the method includes a step of assembling the hoop to embrace peripherally the substrate with the at least one magnet attached. so as to prohibit the at least one magnet from moving radially relative to the substrate.
  31. The method for manufacturing the component of the generator according to claim 30, wherein the receiving part is in the form of slot reaching the periphery of the substrate.
  32. The method for manufacturing the component of the generator according to claim 28, wherein the substrate has a cover member having the at least one receiving part and a base member, and wherein the method includes a step of attaching the cover member with the base member.
  33. The method for manufacturing the component of the generator according to claim 32, wherein the at least one receiving part is in the form of at least one slot penetrating the cover member and reaching the periphery of the cover member, and the at least one embedding part is inserted through the receiving part of the cover member in an axial direction of the cover member.
  34. The method for manufacturing the component of the generator according to claim 32, wherein the base member has a recess for housing the cover member with the at least one magnet attached.
  35. The method for manufacturing the component of the generator according to any one of claims 28 to 34, wherein the method includes a step of applying adhesive to the receiving part of the substrate and/or the embedding part of the magnet.
  36. The method for manufacturing the component of the generator according to any one of claims 28 to 34, wherein the at least one receiving part does not penetrate the whole thickness of the substrate along the axial direction.
PCT/CN2017/075754 2017-03-06 2017-03-06 Component of generator, generator having the component and method for manufacturing the component WO2018161214A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/075754 WO2018161214A1 (en) 2017-03-06 2017-03-06 Component of generator, generator having the component and method for manufacturing the component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/075754 WO2018161214A1 (en) 2017-03-06 2017-03-06 Component of generator, generator having the component and method for manufacturing the component

Publications (1)

Publication Number Publication Date
WO2018161214A1 true WO2018161214A1 (en) 2018-09-13

Family

ID=63447164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075754 WO2018161214A1 (en) 2017-03-06 2017-03-06 Component of generator, generator having the component and method for manufacturing the component

Country Status (1)

Country Link
WO (1) WO2018161214A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024076871A1 (en) * 2022-10-05 2024-04-11 Ge Infrastructure Technology Llc End winding support bracket

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101159390A (en) * 2006-07-21 2008-04-09 株式会社日立产机系统 Salient pole single-phase motor and salient pole single-phase motor system
CN103378676A (en) * 2012-04-26 2013-10-30 西门子公司 Rotor magnet engagement assembly
US20140070656A1 (en) * 2012-09-12 2014-03-13 Abraham Edquiban Ballena Magnet alternator assembly
CN104348278A (en) * 2013-07-25 2015-02-11 株式会社东芝 Electric rotating apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101159390A (en) * 2006-07-21 2008-04-09 株式会社日立产机系统 Salient pole single-phase motor and salient pole single-phase motor system
CN103378676A (en) * 2012-04-26 2013-10-30 西门子公司 Rotor magnet engagement assembly
US20140070656A1 (en) * 2012-09-12 2014-03-13 Abraham Edquiban Ballena Magnet alternator assembly
CN104348278A (en) * 2013-07-25 2015-02-11 株式会社东芝 Electric rotating apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024076871A1 (en) * 2022-10-05 2024-04-11 Ge Infrastructure Technology Llc End winding support bracket

Similar Documents

Publication Publication Date Title
US8421303B2 (en) System for securing permanent magnets
CN108933495B (en) Motor with a stator having a stator core
EP3340436A1 (en) Axial gap type dynamo-electric machine
US20070046138A1 (en) Magnet protection mechanism for magnet body in rotor and magnet protection method
CN107872116B (en) The motor of band brake
CN107872115B (en) The motor of band brake
JP5298402B2 (en) Motor end plate structure
EP3113344A1 (en) Pole-piece structure for a magnetic gear
CN104734382A (en) Permanent magnet rotor assembly and method for manufacturing same
US9557564B2 (en) Rotary body driving apparatus
US10389201B2 (en) Motor with seal member having upper and lower seal portions and intervening portion positioned in radial opening
WO2018161214A1 (en) Component of generator, generator having the component and method for manufacturing the component
JP2007060860A (en) Permanent magnet type rotor
CN108933496B (en) Motor
WO2018180636A1 (en) Motor
JPWO2019021656A1 (en) Stator and motor
JP2020198659A (en) Permanent magnet attachment jig and permanent magnet attachment method
KR102087430B1 (en) A Rotor for a Bicycle Generator and a Generator Using the Same
JP2017085731A (en) Motor rotor
US9106111B2 (en) Outer body of an electromechanical energy converter
US12051946B2 (en) Rotor, motor, and rotor manufacturing method
JP2005130548A (en) Permanent magnet generator
WO2018232633A1 (en) Component of generator and generator having the component
JP5509052B2 (en) Electromagnetic clutch
JP6530530B2 (en) Brushless motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900223

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17900223

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载