WO2018160868A1 - Methods for prophylactically preventing, slowing the progression of, or treating alzheimer's disease - Google Patents
Methods for prophylactically preventing, slowing the progression of, or treating alzheimer's disease Download PDFInfo
- Publication number
- WO2018160868A1 WO2018160868A1 PCT/US2018/020502 US2018020502W WO2018160868A1 WO 2018160868 A1 WO2018160868 A1 WO 2018160868A1 US 2018020502 W US2018020502 W US 2018020502W WO 2018160868 A1 WO2018160868 A1 WO 2018160868A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- patient
- blood
- high density
- density lipoproteins
- solvent
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 151
- 208000024827 Alzheimer disease Diseases 0.000 title claims abstract description 134
- 108010010234 HDL Lipoproteins Proteins 0.000 claims abstract description 179
- 102000015779 HDL Lipoproteins Human genes 0.000 claims abstract description 179
- 150000002632 lipids Chemical class 0.000 claims abstract description 143
- 238000011282 treatment Methods 0.000 claims abstract description 129
- 210000004369 blood Anatomy 0.000 claims abstract description 125
- 239000008280 blood Substances 0.000 claims abstract description 125
- 239000000203 mixture Substances 0.000 claims abstract description 50
- 238000002156 mixing Methods 0.000 claims abstract description 45
- 208000024891 symptom Diseases 0.000 claims abstract description 28
- 208000037259 Amyloid Plaque Diseases 0.000 claims abstract description 26
- 238000012544 monitoring process Methods 0.000 claims abstract description 17
- 230000004796 pathophysiological change Effects 0.000 claims abstract description 12
- 230000000087 stabilizing effect Effects 0.000 claims abstract description 5
- 238000002560 therapeutic procedure Methods 0.000 claims description 40
- 108010080283 Pre-beta High-Density Lipoproteins Proteins 0.000 claims description 37
- 230000001149 cognitive effect Effects 0.000 claims description 32
- 108010007622 LDL Lipoproteins Proteins 0.000 claims description 30
- 102000007330 LDL Lipoproteins Human genes 0.000 claims description 30
- 230000000694 effects Effects 0.000 claims description 29
- 238000012360 testing method Methods 0.000 claims description 24
- 238000001802 infusion Methods 0.000 claims description 21
- 208000005145 Cerebral amyloid angiopathy Diseases 0.000 claims description 13
- 230000003542 behavioural effect Effects 0.000 claims description 12
- 238000002059 diagnostic imaging Methods 0.000 claims description 12
- 208000010877 cognitive disease Diseases 0.000 claims description 10
- 238000009825 accumulation Methods 0.000 claims description 9
- 230000006735 deficit Effects 0.000 claims description 9
- 208000028698 Cognitive impairment Diseases 0.000 claims description 7
- 230000007850 degeneration Effects 0.000 claims description 6
- 230000003920 cognitive function Effects 0.000 claims description 5
- 208000009668 Neurobehavioral Manifestations Diseases 0.000 claims description 4
- 210000000601 blood cell Anatomy 0.000 claims description 4
- 239000002904 solvent Substances 0.000 description 146
- 239000002245 particle Substances 0.000 description 138
- 210000002381 plasma Anatomy 0.000 description 103
- 239000012530 fluid Substances 0.000 description 78
- 230000008569 process Effects 0.000 description 48
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 43
- 239000000463 material Substances 0.000 description 38
- 238000000638 solvent extraction Methods 0.000 description 31
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 30
- 230000003412 degenerative effect Effects 0.000 description 29
- 108010090849 Amyloid beta-Peptides Proteins 0.000 description 28
- 230000003902 lesion Effects 0.000 description 28
- 102000013455 Amyloid beta-Peptides Human genes 0.000 description 27
- 239000003795 chemical substances by application Substances 0.000 description 25
- 238000005259 measurement Methods 0.000 description 25
- 239000000306 component Substances 0.000 description 22
- 108700028369 Alleles Proteins 0.000 description 21
- 230000015961 delipidation Effects 0.000 description 21
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 21
- 230000001225 therapeutic effect Effects 0.000 description 21
- 235000012000 cholesterol Nutrition 0.000 description 20
- 201000010099 disease Diseases 0.000 description 20
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 19
- 239000001301 oxygen Substances 0.000 description 19
- 229910052760 oxygen Inorganic materials 0.000 description 19
- 230000037361 pathway Effects 0.000 description 19
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 18
- 210000001367 artery Anatomy 0.000 description 18
- 210000003743 erythrocyte Anatomy 0.000 description 18
- 230000002829 reductive effect Effects 0.000 description 18
- 239000002699 waste material Substances 0.000 description 18
- 206010003210 Arteriosclerosis Diseases 0.000 description 17
- 208000037260 Atherosclerotic Plaque Diseases 0.000 description 17
- 208000031481 Pathologic Constriction Diseases 0.000 description 17
- 210000004027 cell Anatomy 0.000 description 17
- 230000002490 cerebral effect Effects 0.000 description 17
- 230000036262 stenosis Effects 0.000 description 17
- 208000037804 stenosis Diseases 0.000 description 17
- 206010012289 Dementia Diseases 0.000 description 16
- 230000006872 improvement Effects 0.000 description 16
- 238000002616 plasmapheresis Methods 0.000 description 16
- 239000011780 sodium chloride Substances 0.000 description 16
- 230000009760 functional impairment Effects 0.000 description 13
- 238000010261 blood fractionation Methods 0.000 description 12
- 210000004204 blood vessel Anatomy 0.000 description 12
- 238000003745 diagnosis Methods 0.000 description 12
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 11
- 206010045261 Type IIa hyperlipidaemia Diseases 0.000 description 11
- 230000008901 benefit Effects 0.000 description 11
- 239000008103 glucose Substances 0.000 description 11
- 230000036772 blood pressure Effects 0.000 description 10
- 239000003610 charcoal Substances 0.000 description 10
- 230000005484 gravity Effects 0.000 description 10
- 108010059886 Apolipoprotein A-I Proteins 0.000 description 9
- 102000005666 Apolipoprotein A-I Human genes 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 9
- 230000017531 blood circulation Effects 0.000 description 9
- 210000004556 brain Anatomy 0.000 description 9
- 238000003384 imaging method Methods 0.000 description 9
- 108090000623 proteins and genes Proteins 0.000 description 9
- 208000024172 Cardiovascular disease Diseases 0.000 description 8
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 8
- 230000001926 lymphatic effect Effects 0.000 description 8
- 102000004169 proteins and genes Human genes 0.000 description 8
- 238000001514 detection method Methods 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- 230000002441 reversible effect Effects 0.000 description 7
- 230000006641 stabilisation Effects 0.000 description 7
- 238000011105 stabilization Methods 0.000 description 7
- 101710095339 Apolipoprotein E Proteins 0.000 description 6
- 102100029470 Apolipoprotein E Human genes 0.000 description 6
- 206010060965 Arterial stenosis Diseases 0.000 description 6
- 238000004891 communication Methods 0.000 description 6
- 230000000302 ischemic effect Effects 0.000 description 6
- 208000017169 kidney disease Diseases 0.000 description 6
- 230000037452 priming Effects 0.000 description 6
- 239000013557 residual solvent Substances 0.000 description 6
- DFEYYRMXOJXZRJ-UHFFFAOYSA-N sevoflurane Chemical compound FCOC(C(F)(F)F)C(F)(F)F DFEYYRMXOJXZRJ-UHFFFAOYSA-N 0.000 description 6
- 229960002078 sevoflurane Drugs 0.000 description 6
- 239000011877 solvent mixture Substances 0.000 description 6
- 238000011269 treatment regimen Methods 0.000 description 6
- 208000005764 Peripheral Arterial Disease Diseases 0.000 description 5
- 208000030831 Peripheral arterial occlusive disease Diseases 0.000 description 5
- 230000005856 abnormality Effects 0.000 description 5
- 238000010923 batch production Methods 0.000 description 5
- 230000006399 behavior Effects 0.000 description 5
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 238000010924 continuous production Methods 0.000 description 5
- 230000006378 damage Effects 0.000 description 5
- 238000000605 extraction Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000001991 pathophysiological effect Effects 0.000 description 5
- 150000003904 phospholipids Chemical class 0.000 description 5
- 238000002600 positron emission tomography Methods 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 208000004476 Acute Coronary Syndrome Diseases 0.000 description 4
- 108010017384 Blood Proteins Proteins 0.000 description 4
- 102000004506 Blood Proteins Human genes 0.000 description 4
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 4
- 208000030673 Homozygous familial hypercholesterolemia Diseases 0.000 description 4
- 102100024640 Low-density lipoprotein receptor Human genes 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- 239000000090 biomarker Substances 0.000 description 4
- 238000002591 computed tomography Methods 0.000 description 4
- 208000029078 coronary artery disease Diseases 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 238000002405 diagnostic procedure Methods 0.000 description 4
- 238000003748 differential diagnosis Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000003925 fat Substances 0.000 description 4
- 238000005194 fractionation Methods 0.000 description 4
- 238000002595 magnetic resonance imaging Methods 0.000 description 4
- 229920000344 molecularly imprinted polymer Polymers 0.000 description 4
- 238000002610 neuroimaging Methods 0.000 description 4
- 230000003557 neuropsychological effect Effects 0.000 description 4
- -1 normal sera Substances 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 229940068196 placebo Drugs 0.000 description 4
- 239000000902 placebo Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 201000001320 Atherosclerosis Diseases 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 208000000563 Hyperlipoproteinemia Type II Diseases 0.000 description 3
- 208000032382 Ischaemic stroke Diseases 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 230000037396 body weight Effects 0.000 description 3
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 3
- 230000003931 cognitive performance Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000012631 diagnostic technique Methods 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 201000001386 familial hypercholesterolemia Diseases 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 238000011990 functional testing Methods 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 210000003734 kidney Anatomy 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 230000006996 mental state Effects 0.000 description 3
- 208000027061 mild cognitive impairment Diseases 0.000 description 3
- 230000036651 mood Effects 0.000 description 3
- 239000002504 physiological saline solution Substances 0.000 description 3
- 210000004180 plasmocyte Anatomy 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000000750 progressive effect Effects 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000010897 surface acoustic wave method Methods 0.000 description 3
- 230000009885 systemic effect Effects 0.000 description 3
- 230000002792 vascular Effects 0.000 description 3
- 210000005166 vasculature Anatomy 0.000 description 3
- 208000019901 Anxiety disease Diseases 0.000 description 2
- 230000007082 Aβ accumulation Effects 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 102000012336 Cholesterol Ester Transfer Proteins Human genes 0.000 description 2
- 108010061846 Cholesterol Ester Transfer Proteins Proteins 0.000 description 2
- 201000000057 Coronary Stenosis Diseases 0.000 description 2
- 206010011089 Coronary artery stenosis Diseases 0.000 description 2
- 208000031124 Dementia Alzheimer type Diseases 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- 206010019233 Headaches Diseases 0.000 description 2
- 206010020772 Hypertension Diseases 0.000 description 2
- 206010022998 Irritability Diseases 0.000 description 2
- 208000000112 Myalgia Diseases 0.000 description 2
- 206010028813 Nausea Diseases 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 206010033425 Pain in extremity Diseases 0.000 description 2
- 206010037660 Pyrexia Diseases 0.000 description 2
- 239000003146 anticoagulant agent Substances 0.000 description 2
- 229940127219 anticoagulant drug Drugs 0.000 description 2
- 230000036506 anxiety Effects 0.000 description 2
- 238000002617 apheresis Methods 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 210000002808 connective tissue Anatomy 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 210000003722 extracellular fluid Anatomy 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 150000008282 halocarbons Chemical class 0.000 description 2
- 150000005826 halohydrocarbons Chemical class 0.000 description 2
- 231100000869 headache Toxicity 0.000 description 2
- 239000012510 hollow fiber Substances 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000002608 intravascular ultrasound Methods 0.000 description 2
- 208000028867 ischemia Diseases 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 210000002540 macrophage Anatomy 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 210000004165 myocardium Anatomy 0.000 description 2
- 230000008693 nausea Effects 0.000 description 2
- 230000002572 peristaltic effect Effects 0.000 description 2
- 238000005373 pervaporation Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000001509 sodium citrate Substances 0.000 description 2
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 210000003371 toe Anatomy 0.000 description 2
- 238000005199 ultracentrifugation Methods 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- 238000010200 validation analysis Methods 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- 208000016261 weight loss Diseases 0.000 description 2
- OILXMJHPFNGGTO-UHFFFAOYSA-N (22E)-(24xi)-24-methylcholesta-5,22-dien-3beta-ol Natural products C1C=C2CC(O)CCC2(C)C2C1C1CCC(C(C)C=CC(C)C(C)C)C1(C)CC2 OILXMJHPFNGGTO-UHFFFAOYSA-N 0.000 description 1
- RQOCXCFLRBRBCS-UHFFFAOYSA-N (22E)-cholesta-5,7,22-trien-3beta-ol Natural products C1C(O)CCC2(C)C(CCC3(C(C(C)C=CCC(C)C)CCC33)C)C3=CC=C21 RQOCXCFLRBRBCS-UHFFFAOYSA-N 0.000 description 1
- UJPMYEOUBPIPHQ-UHFFFAOYSA-N 1,1,1-trifluoroethane Chemical compound CC(F)(F)F UJPMYEOUBPIPHQ-UHFFFAOYSA-N 0.000 description 1
- RKIMETXDACNTIE-UHFFFAOYSA-N 1,1,2,2,3,3,4,4,5,5,6,6-dodecafluorocyclohexane Chemical class FC1(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C1(F)F RKIMETXDACNTIE-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- OQMZNAMGEHIHNN-UHFFFAOYSA-N 7-Dehydrostigmasterol Natural products C1C(O)CCC2(C)C(CCC3(C(C(C)C=CC(CC)C(C)C)CCC33)C)C3=CC=C21 OQMZNAMGEHIHNN-UHFFFAOYSA-N 0.000 description 1
- 206010001497 Agitation Diseases 0.000 description 1
- 102000009091 Amyloidogenic Proteins Human genes 0.000 description 1
- 108010048112 Amyloidogenic Proteins Proteins 0.000 description 1
- 206010002942 Apathy Diseases 0.000 description 1
- 108010087614 Apolipoprotein A-II Proteins 0.000 description 1
- 102000009081 Apolipoprotein A-II Human genes 0.000 description 1
- 102100037320 Apolipoprotein A-IV Human genes 0.000 description 1
- 102000007592 Apolipoproteins Human genes 0.000 description 1
- 108010071619 Apolipoproteins Proteins 0.000 description 1
- 102000013933 Apolipoproteins D Human genes 0.000 description 1
- 108010025614 Apolipoproteins D Proteins 0.000 description 1
- 201000004569 Blindness Diseases 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 208000003174 Brain Neoplasms Diseases 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 208000017667 Chronic Disease Diseases 0.000 description 1
- 102000003780 Clusterin Human genes 0.000 description 1
- 108090000197 Clusterin Proteins 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 206010012239 Delusion Diseases 0.000 description 1
- 206010013142 Disinhibition Diseases 0.000 description 1
- 206010013954 Dysphoria Diseases 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- DNVPQKQSNYMLRS-NXVQYWJNSA-N Ergosterol Natural products CC(C)[C@@H](C)C=C[C@H](C)[C@H]1CC[C@H]2C3=CC=C4C[C@@H](O)CC[C@]4(C)[C@@H]3CC[C@]12C DNVPQKQSNYMLRS-NXVQYWJNSA-N 0.000 description 1
- 241001539473 Euphoria Species 0.000 description 1
- 206010015535 Euphoric mood Diseases 0.000 description 1
- 229920002449 FKM Polymers 0.000 description 1
- 208000004547 Hallucinations Diseases 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 208000010152 Huntington disease-like 3 Diseases 0.000 description 1
- 201000010252 Hyperlipoproteinemia Type III Diseases 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- 208000026350 Inborn Genetic disease Diseases 0.000 description 1
- PIWKPBJCKXDKJR-UHFFFAOYSA-N Isoflurane Chemical compound FC(F)OC(Cl)C(F)(F)F PIWKPBJCKXDKJR-UHFFFAOYSA-N 0.000 description 1
- 108010001831 LDL receptors Proteins 0.000 description 1
- 102000004895 Lipoproteins Human genes 0.000 description 1
- 108090001030 Lipoproteins Proteins 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 238000012879 PET imaging Methods 0.000 description 1
- 229920001774 Perfluoroether Polymers 0.000 description 1
- 208000005228 Pericardial Effusion Diseases 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229930182558 Sterol Natural products 0.000 description 1
- 102000001494 Sterol O-Acyltransferase Human genes 0.000 description 1
- 108010054082 Sterol O-acyltransferase Proteins 0.000 description 1
- 208000002667 Subdural Hematoma Diseases 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 206010060751 Type III hyperlipidaemia Diseases 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 210000004381 amniotic fluid Anatomy 0.000 description 1
- 108010064539 amyloid beta-protein (1-42) Proteins 0.000 description 1
- 108010073614 apolipoprotein A-IV Proteins 0.000 description 1
- 230000036528 appetite Effects 0.000 description 1
- 235000019789 appetite Nutrition 0.000 description 1
- 210000003567 ascitic fluid Anatomy 0.000 description 1
- 238000003287 bathing Methods 0.000 description 1
- 231100000871 behavioral problem Toxicity 0.000 description 1
- 238000009227 behaviour therapy Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000013060 biological fluid Substances 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000012503 blood component Substances 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000012578 cell culture reagent Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 229930183167 cerebroside Natural products 0.000 description 1
- 150000001784 cerebrosides Chemical class 0.000 description 1
- 208000026106 cerebrovascular disease Diseases 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229960001701 chloroform Drugs 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010968 computed tomography angiography Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000002484 cyclic voltammetry Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 231100000868 delusion Toxicity 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 235000013367 dietary fats Nutrition 0.000 description 1
- 238000001903 differential pulse voltammetry Methods 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000013399 early diagnosis Methods 0.000 description 1
- 230000020595 eating behavior Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000006056 electrooxidation reaction Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 230000007515 enzymatic degradation Effects 0.000 description 1
- DNVPQKQSNYMLRS-SOWFXMKYSA-N ergosterol Chemical compound C1[C@@H](O)CC[C@]2(C)[C@H](CC[C@]3([C@H]([C@H](C)/C=C/[C@@H](C)C(C)C)CC[C@H]33)C)C3=CC=C21 DNVPQKQSNYMLRS-SOWFXMKYSA-N 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000012894 fetal calf serum Substances 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 210000001733 follicular fluid Anatomy 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 208000016361 genetic disease Diseases 0.000 description 1
- 150000002327 glycerophospholipids Chemical class 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 210000001320 hippocampus Anatomy 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 208000020887 hyperlipoproteinemia type 3 Diseases 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000002642 intravenous therapy Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229960002725 isoflurane Drugs 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 238000004900 laundering Methods 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 102000006240 membrane receptors Human genes 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 230000009251 neurologic dysfunction Effects 0.000 description 1
- 208000015015 neurological dysfunction Diseases 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 238000010855 neuropsychological testing Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000002547 new drug Substances 0.000 description 1
- 201000003077 normal pressure hydrocephalus Diseases 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000035778 pathophysiological process Effects 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 210000004912 pericardial fluid Anatomy 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 210000004910 pleural fluid Anatomy 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 210000002254 renal artery Anatomy 0.000 description 1
- 230000008085 renal dysfunction Effects 0.000 description 1
- 210000004994 reproductive system Anatomy 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 210000000582 semen Anatomy 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 230000003997 social interaction Effects 0.000 description 1
- 238000004365 square wave voltammetry Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 150000003432 sterols Chemical class 0.000 description 1
- 235000003702 sterols Nutrition 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 239000004557 technical material Substances 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical compound FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 208000019553 vascular disease Diseases 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0033—Features or image-related aspects of imaging apparatus, e.g. for MRI, optical tomography or impedance tomography apparatus; Arrangements of imaging apparatus in a room
- A61B5/004—Features or image-related aspects of imaging apparatus, e.g. for MRI, optical tomography or impedance tomography apparatus; Arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
- A61B5/0042—Features or image-related aspects of imaging apparatus, e.g. for MRI, optical tomography or impedance tomography apparatus; Arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part for the brain
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/40—Detecting, measuring or recording for evaluating the nervous system
- A61B5/4076—Diagnosing or monitoring particular conditions of the nervous system
- A61B5/4088—Diagnosing of monitoring cognitive diseases, e.g. Alzheimer, prion diseases or dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/127—Synthetic bilayered vehicles, e.g. liposomes or liposomes with cholesterol as the only non-phosphatidyl surfactant
- A61K9/1275—Lipoproteins or protein-free species thereof, e.g. chylomicrons; Artificial high-density lipoproteins [HDL], low-density lipoproteins [LDL] or very-low-density lipoproteins [VLDL]; Precursors thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
- C07K14/4701—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
- C07K14/4711—Alzheimer's disease; Amyloid plaque core protein
Definitions
- the method of the present specification provides for successively repeated treatment procedure for selective removal of lipid from HDL to create a modified HDL particle while leaving LDL particles substantially intact and the administration of the modified HDL particle to an individual having Alzheimer's disease in order to delay, halt and stabilize, reverse or improve the progression of the disease or pathophysiologic process that leads to the symptoms related to Alzheimer's disease.
- AD Alzheimer's disease
- This diagnostic information includes, to varying degrees, the use of biomarkers reflecting underlying pathophysiological changes, which allows for the enrollment of patients in which there may be no apparent functional impairment or no detectable clinical abnormality. These patients are categorized as early onset AD patients.
- AD Alzheimer's disease
- AD is determined using results from several tests to arrive at a differential diagnosis. Thus, there is no definitive diagnosis for AD. Research has indicated that familial hypercholesterolemia is an early risk factor for AD. It is theorized that LDL receptors are involved in increasing the risk of AD. It has been observed that certain individuals are predisposed to AD, as demonstrated by family history or by genetic testing. Given that there is no established treatment for AD once lesions are formed, it would be desirable to provide a prophylactic way to treat AD or prevent the onset of AD altogether.
- the present specification discloses a method for delaying a progression of, halting and stabilizing, or reversing and improving symptoms related to Alzheimer's Disease (AD) in a patient, comprising: monitoring a pathophysiological change indicative of AD in a patient; based on said monitoring, determining if amyloid plaque is present in a perivascular space of the patient; determining an extent of amyloid plaque in said perivascular space; and, based on the presence of amyloid plaque in the perivascular space of the patient, determining a treatment protocol for the patient, wherein the treatment protocol comprises administering to the patient a high density lipoprotein composition derived from mixing a blood fraction with a lipid removing agent.
- AD Alzheimer's Disease
- diagnostic imaging is used to determine the presence and extent of amyloid plaque in the perivascular space of the patient.
- the high density lipoprotein composition is derived by obtaining the blood fraction from the patient, wherein the blood fraction has high-density lipoproteins; mixing the blood fraction with the lipid removing agent to yield modified high-density lipoproteins; separating the modified high-density lipoproteins; and delivering the modified high-density lipoproteins to the patient.
- the method further comprises connecting the patient to a device for withdrawing blood; withdrawing blood from the patient; and separating blood cells from the blood to yield the blood fraction containing high density lipoproteins and low density lipoproteins.
- the modified high density lipoproteins have an increased concentration of pre- beta high density lipoproteins relative to the high density lipoproteins from the blood fraction prior to mixing.
- the pathophysiological change is indicated by an accumulation of plaque in the perivascular space of the patient resulting in cerebral amyloid angiopathy.
- the high density lipoprotein composition derived from mixing the blood fraction with the lipid removing agent is delivered to the patient via infusion therapy in a dosage ranging from 1 mg/kg to 250 mg/kg.
- the high density lipoprotein composition derived from mixing the blood fraction of the patient with the lipid removing agent is delivered to the patient via infusion therapy at a rate of 999 mL/hour or another rate determined best for the patient.
- the method further comprises determining a severity of AD in the patient using at least one of global functioning, cognitive functioning, activities of daily living, or behavioral assessments.
- the patient experiences a halt in further accumulation or a decrease in the accumulation of amyloid plaque in the perivascular space.
- a rate of degeneration of the patient's physiological and/or cognitive parameters indicative of AD stabilizes and does not experience a further decrease.
- a rate of degeneration of the patient's physiological and/or cognitive parameters indicative of AD slows down relative to a rate of degeneration of the patient's physiological and/or cognitive parameters indicative of AD before administering to the patient the high density lipoprotein composition.
- the patient's physiological and/or cognitive symptoms indicative of AD improve relative to the patient's physiological and/or cognitive symptoms indicative of AD before administering to the patient the high density lipoprotein composition.
- the high density lipoprotein composition is derived by obtaining the blood fraction from an individual other than the patient, wherein the blood fraction has high-density lipoproteins; mixing the blood fraction with the lipid removing agent to yield modified high- density lipoproteins; separating the modified high-density lipoproteins; and delivering the modified high-density lipoproteins to the patient.
- the present specification discloses a method for delaying the progression of, halting and stabilizing, or reversing and improving symptoms related to Alzheimer's Disease (AD) in a patient, comprising: monitoring a pathophysiological change indicative of AD, or a potential future onset of AD, in the patient; based on said monitoring, determining if amyloid plaque is present in a perivascular space of the patient; based on the determination of the presence of amyloid plaque in the perivascular space of the patient, determining a treatment protocol for the patient, wherein the treatment protocol comprises administering to the patient a high density lipoprotein composition derived from mixing a blood fraction, having unmodified high density lipoproteins, with a lipid removing agent to yield modified high density lipoproteins, wherein the modified high density lipoproteins have an increased concentration of pre-beta high density lipoprotein relative to the unmodified high density lipoproteins.
- AD Alzheimer's Disease
- the composition is derived by obtaining the blood fraction from the patient; mixing the blood fraction with the lipid removing agent to yield the modified high-density lipoproteins; separating the modified high-density lipoproteins; and delivering the modified high- density lipoproteins to the patient.
- the method further comprises connecting the patient to a device for withdrawing blood; withdrawing blood from the patient; and separating blood cells from the blood to yield the blood fraction containing low density lipoproteins and the high density lipoproteins.
- the composition is derived by obtaining the blood fraction from an individual other than the patient; mixing the blood fraction with the lipid removing agent to yield the modified high-density lipoproteins; separating the modified high-density lipoproteins; and delivering the modified high-density lipoproteins to the patient.
- the present specification discloses a method for improving an impairment of cognitive function indicative of Alzheimer's Disease (AD) in a patient, comprising: determining if amyloid plaque is present in a perivascular space of the patient; determining an extent or severity of cognitive impairment in the patient using at least one of a global, cognitive, functional or behavioral assessment test; and, based on the determination of the presence of amyloid plaque in the perivascular space of the patient and said extent or severity of cognitive impairment in the patient, determining a treatment protocol for the patient, wherein the treatment protocol comprises administering to the patient a high density lipoprotein composition derived from mixing a blood fraction of the patient with a lipid removing agent.
- AD Alzheimer's Disease
- the method further comprises determining an extent of amyloid plaque in the perivascular space and determining the treatment protocol based at least in part on the determined extent of amyloid plaque.
- the modified high density lipoproteins have an increased concentration of pre- beta high density lipoprotein relative to high density lipoproteins from the blood fraction prior to mixing.
- the composition is derived by: obtaining the blood fraction from the patient; mixing said blood fraction with the lipid removing agent to yield modified high-density lipoproteins; separating said modified high-density lipoproteins; and delivering said modified high-density lipoproteins to said patient.
- the AD is indicated by at least one of homozygous familial hypercholesterolemia, heterozygous familial hypercholesterolemia, ischemic stroke, coronary artery disease, acute coronary syndrome, or peripheral arterial disease.
- periodically monitoring changes comprises monitoring changes within a period of three to six months.
- the mixing the blood fraction with a lipid removing agent yields modified high density lipoprotein that has an increased concentration of pre-beta high density lipoprotein relative to total protein.
- FIG. 1 A is a flow chart delineating the steps of treating cardiovascular diseases using the treatment systems and methods in accordance with embodiments of the present specification
- FIG. IB is another flow chart delineating the steps of treating cholesterol-related diseases, such as Atheroembolic Renal Disease (AERD), using the treatment systems and methods in accordance with embodiments of the present specification;
- AERD Atheroembolic Renal Disease
- FIG. 1C is a table illustrating the types of treatments that may be provided for different compositions of degenerative material determined from an analysis, in accordance with some embodiments of the present specification
- FIG. 2 is a schematic representation of a plurality of components used in accordance with some embodiments of the present specification to achieve the processes disclosed herein;
- FIG. 3 is a pictorial illustration of an exemplary embodiment of a configuration of a plurality of components used in accordance with some embodiments of the present specification to achieve the processes disclosed herein;
- FIG. 4 is a longitudinal transverse cross-sectional view of a cerebral blood vessel illustrating removal of beta amyloid by transport along a cerebral lymphatic perivascular pathway, in accordance with an embodiment of the present specification;
- FIG. 5 is a longitudinal transverse cross-sectional view of a cerebral blood vessel illustrating amyloid accumulation in a cerebral lymphatic perivascular pathway of an individual having a high level of the ⁇ 4 allele, in accordance with an embodiment of the present specification;
- FIG. 6A is a longitudinal transverse cross-sectional view of a cerebral blood vessel of an AD patient being treated for cerebral amyloid angiopathy (CAA), in accordance with an embodiment of the present specification;
- FIG. 6B illustrates a mechanism of removal of beta amyloid molecules by infusing pre- ⁇
- FIG. 6C shows modified pre- ⁇ HDL particles flowing through the blood stream of the blood vessel of FIG. 6 A, in accordance with an embodiment of the present specification
- FIG. 7 is a flowchart describing plurality of exemplary steps of a therapeutic protocol for treating an AD patient, in accordance with an embodiment of the present specification.
- the present specification relates to methods and systems for treating cholesterol-related diseases.
- Embodiments of the present specification monitor changes in one or more atheroma areas and volumes in a patient, regularly over a period of time. Atheroma areas and volumes are monitored using known imaging techniques, for lipid-containing degenerative material in stenosis.
- treatment is provided if accumulated lipid-containing degenerative material is identified to be present and above a threshold value.
- the treatment is repeated each time the atheroma areas and volumes are monitored, at pre-defined time intervals, and accumulated lipid- containing degenerative material is identified to be present and above the threshold.
- Embodiments of the present specification treat the condition through systems, apparatuses and methods useful for removing lipid from ⁇ -High Density Lipoprotein (a-HDL) particles derived primarily from plasma of the patient thereby creating modified HDL particles with reduced lipid content, particularly reduced cholesterol content.
- a-HDL ⁇ -High Density Lipoprotein
- Embodiments of the present specification create these modified HDL particles with reduced lipid content without substantially modifying LDL particles.
- Embodiments of the present specification modify original a-HDL particles to yield modified HDL particles that have an increased concentration of pre- ⁇ HDL relative to the original HDL.
- the newly formed derivatives of HDL particles are administered to the patient to enhance cellular cholesterol efflux and treat cardiovascular diseases and/or other lipid-associated diseases, including Atheroembolic Renal Disease (AERD).
- AERD Atheroembolic Renal Disease
- the regular periodic monitoring and treatment process renders the methods and systems of the present specification more effective in treating cardiovascular diseases including Homozygous Familial Hypercholesterolemia (HoFH), Heterozygous Familial Hypercholesterolemia (HeFH), Ischemic stroke, Coronary Artery Disease (CAD), Acute Coronary Syndrome (ACS), peripheral arterial disease (PAD), Renal Arterial Stenosis (RAS), and for treating the progression of Alzheimer's Disease.
- HoFH Homozygous Familial Hypercholesterolemia
- HeFH Heterozygous Familial Hypercholesterolemia
- Ischemic stroke Coronary Artery Disease
- ACS Acute Coronary Syndrome
- PAD peripheral arterial disease
- each of the words “comprise” “include” and “have”, and forms thereof, are not necessarily limited to members in a list with which the words may be associated.
- fluid may be defined as fluids from animals or humans that contain lipids or lipid containing particles, fluids from culturing tissues and cells that contain lipids and fluids mixed with lipid-containing cells.
- decreasing the amount of lipids in fluids includes decreasing lipids in plasma and particles contained in plasma, including but not limited to FIDL particles.
- Fluids include, but are not limited to: biological fluids; such as blood, plasma, serum, lymphatic fluid, cerebrospinal fluid, peritoneal fluid, pleural fluid, pericardial fluid, various fluids of the reproductive system including, but not limited to, semen, ejaculatory fluids, follicular fluid and amniotic fluid; cell culture reagents such as normal sera, fetal calf serum or serum derived from any animal or human; and immunological reagents, such as various preparations of antibodies and cytokines from culturing tissues and cells, fluids mixed with lipid-containing cells, and fluids containing lipid-containing organisms, such as a saline solution containing lipid-containing organisms.
- a preferred fluid treated with the methods of the present invention is plasma.
- lipid may be defined as any one or more of a group of fats or fat-like substances occurring in humans or animals.
- the fats or fat-like substances are characterized by their insolubility in water and solubility in organic solvents.
- the term "lipid” is known to those of ordinary skill in the art and includes, but is not limited to, complex lipid, simple lipid, triglycerides, fatty acids, glycerophospholipids (phospholipids), true fats such as esters of fatty acids, glycerol, cerebrosides, waxes, and sterols such as cholesterol and ergosterol.
- extraction solvent or "lipid removing agent” may be defined as one or more solvents used for extracting lipids from a fluid or from particles within the fluid. This solvent enters the fluid and remains in the fluid until removed by other subsystems. Suitable extraction solvents include solvents that extract or dissolve lipid, including but not limited to phenols, hydrocarbons, amines, ethers, esters, alcohols, halohydrocarbons, halocarbons, and combinations thereof.
- Suitable extraction solvents are ethers, esters, alcohols, halohydrocarbons, or halocarbons which include, but are not limited to di-isopropyl ether (DIPE), which is also referred to as isopropyl ether, diethyl ether (DEE), which is also referred to as ethyl ether, lower order alcohols such as butanol, especially n-butanol, ethyl acetate, dichloromethane, chloroform, isoflurane, sevoflurane (1, 1, 1,3, 3,3- hexafluoro-2- (fluoromethoxy) propane-d3), perfluorocyclohexanes, trifluoroethane, cyclofluorohexanol, and combinations thereof.
- DIPE di-isopropyl ether
- DEE diethyl ether
- ethyl ether diethyl ether
- lower order alcohols such as butan
- patient refers to animals and humans, which may be either a fluid source to be treated with the methods of the present invention or a recipient of derivatives of HDL particles and or plasma with reduced lipid content.
- HDL particles encompasses several types of particles defined based on a variety of methods such as those that measure charge, density, size and immuno-affinity, including but not limited to electrophoretic mobility, ultracentrifugation, immunoreactivity and other methods known to one of ordinary skill in the art.
- Such HDL particles include but are not limited to the following: a-HDL, pre- ⁇ HDL (including pre- ⁇ HDL, pre-p2 HDL and pre- p3HDL), HDL2 (including HDL2a and HDL2b), HDL3, VHDL, LpA-I, LpA-II, LpA-I/LpA-II (for a review see Barrans et al.
- modified HDL particles may be modified in numerous ways including but not limited to changes in one or more of the following metabolic and/or physico-chemical properties (for a review see Barrans et al., Biochemica Biophysica Acta 1300; 73-85, 1996); molecular mass (kDa); charge; diameter; shape; density; hydration density; flotation characteristics; content of cholesterol; content of free cholesterol; content of esterified cholesterol; molar ratio of free cholesterol to phospholipids; immuno-affinity; content, activity or helicity of one or more of the following enzymes or proteins: ApoA-I, ApoA-II, ApoD, ApoE, ApoJ, ApoA-IV, cholesterol ester transfer protein (CETP), lecithin; cholesterol acyltransferase (LCAT); capacity and/or rate for cholesterol
- CTP cholesterol ester transfer protein
- LCAT cholesterol ester transfer protein
- fractional flow reserve or "FFR” is used to refer to a measurement of pressure differences across a coronary artery stenosis (a narrowing, usually due to atherosclerosis) to determine the likelihood that the stenosis impedes oxygen delivery to the heart muscle.
- Fractional flow reserve is defined as the pressure after (distal to) a stenosis relative to the pressure before the stenosis and is presented as an absolute number.
- An FFR value of 0.70 means that a given stenosis causes a 30% drop in blood pressure.
- FFR is used to express the maximal flow down a vessel in the presence of stenosis compared to the maximal flow in the hypothetical absence of stenosis.
- a decrease in blood flow which is measured in terms of blood pressure using FFR, results in a decrease in oxygen delivery via blood (blood oxygen delivery).
- blockage due to lipid content is measured in a percentage and is used to refer to the extent of physical blockage in an artery.
- FIG. 1 A is a flow chart illustrating an exemplary process of treating cardiovascular diseases, such as, but not limited to HoFH, HeFH, Ischemic stroke, CAD, ACS, peripheral arterial disease (PAD) and for treating the progression of Alzheimer's Disease in accordance with some embodiments of the present specification.
- cardiovascular diseases such as, but not limited to HoFH, HeFH, Ischemic stroke, CAD, ACS, peripheral arterial disease (PAD) and for treating the progression of Alzheimer's Disease in accordance with some embodiments of the present specification.
- a subject or a patient who is diagnosed with a cardiovascular disease is monitored for one or more atheroma areas and/or volumes via a diagnostic procedure.
- advanced medical imaging techniques such as, but not limited to Computer Tomography (CT) angiogram and/or Intravascular Ultrasound (IVUS), may be used to detect areas within the inner layer of artery walls where lipid-containing degenerative material may have accumulated.
- CT Computer Tomography
- IVUS Intravascular Ultrasound
- Accumulated degenerative material may include fatty deposits which may include mostly macrophage cells, or debris, containing lipids, calcium and a variable amount of fibrous connective tissue. Analysis from the imaging techniques may also be used to identify and therefore monitor volumes of lipid-containing degenerative material accumulated within the inner layer of artery walls. Lipid-containing degenerative material and non-lipid- containing degenerative material may swell in the artery wall, thereby intruding into the channel of the artery and narrowing it, resulting in restriction of blood flow.
- step 104 Based on analysis from the diagnostic technique, in step 104, the presence and type of degenerative material is confirmed. In addition, the extent or percentage blockage caused by degenerative material (lipid-containing or non-lipid-containing) is determined by a physician using diagnostic imaging techniques. If no degenerative material is detected at step 104, or if the level of degenerative material falls outside a pre-determined range of values, the process is stopped. In an embodiment, the physician identifies one or more arteries with stenosis that have a blockage of 20% - 70% due to accumulated lipids, in order to implement treatment methods in accordance with the present specification. In step 106, a Fractional Flow Reserve (FFR) measurement is used to determine the extent of oxygen delivery in the presence of stenosis. In an embodiment, FFR is used to measure pressure differences across a coronary artery stenosis to determine the likelihood that the stenosis impedes blood oxygen delivery to the heart muscle (ischemia).
- FFR Fractional Flow Reserve
- the physician may determine that either the treatment in accordance with embodiments of the present specification is not required as the disease has subsided, is not present, is not sufficient, or has been treated, or an alternative form of treatment (such as a physical stent) is required.
- FIG. 1C is a table illustrating the types of treatments that may be provided for different compositions of degenerative material determined from the diagnosis for cardiovascular diseases, as described in the flow chart of FIG. 1A, in accordance with some embodiments of the present specification.
- the table compares different types of treatments that may be administered for combinations of various ranges of a Fractional Flow Reserve (FFR) 402, which is indicative of a rate of flow of blood after a blockage (which, in turn, is indicative of blood oxygen delivery), provided in terms of percentage (or fraction) of Fractional Flow Reserve, and various ranges of physical blockage due to lipid content 404, provided in terms of percentage of blockage due to lipid content.
- FFR Fractional Flow Reserve
- each cell such as cells 406 corresponds to a combination of a range 402 (indicative of FFR) and a range 404 (indicative of the percentage or extent of blockage due to lipid content), which further indicates at least one method of treatment that may be suitable for that combination.
- the different types of treatments are coded as A, B, C, and D.
- Treatment type 'A' corresponds to an invasive treatment process where a stent is embedded through physical intervention.
- Treatment type 'B' corresponds to implementing the treatment methods of selectively modifying HDL particles, in accordance with the embodiments of the present specification.
- FFR Fractional Flow Reserve
- a FFR measurement of 1-79% represents an ischemic condition, wherein a FFR measurement of 80-100%) represents a non-ischemic condition.
- treatment types 'A' and/or 'B' may be able to address the condition.
- Treatment type 'D' corresponds to cases where neither of the stated treatment types (A and/or B) is required.
- cells 408 two treatment options may be indicated and the physician would decide upon the appropriate course of treatment.
- Treatment type 'C corresponds to cases where a combination of both a stent as well as selective modification of HDL particles is administered (as described in greater detail below with respect to 114a in FIG. 1 A).
- Atherosclerosis is a systemic disease and patients may have multiple lesions throughout their vasculature. Therefore, it should be noted herein that the treatment methods of the present specification are not implemented based on an overall patient health-based treatment strategy, but rather a "lesion/plaque/area/region" -based treatment strategy. Thus, in a few cases, a physician may decide to combine the treatments and administer treatment type 'C .
- a physician determines whether the amount of accumulated lipid-containing degenerative material, covering a lesion/plaque/area/region, falls above a predetermined threshold value or within a range of values, as measured in terms of a percentage of blockage due to lipid content. If arteries with atheroma lesion(s) having an amount or volume of lipid-containing material above the threshold percentage value or that fall within a range of values are not identified, an alternative treatment process (which may include no treatment or physical intervention) is determined by the physician, in step 110b.
- arteries with lipid- containing atheroma lesion/plaque/area/region(s) having an amount or volume of lipid blockage above the predetermined threshold percentage or within a predetermined range of percentages are identified, the patient is then subjected to the delipidation process, in step 110a.
- the delipidation process of the present specification is described in greater detail below.
- a physician determines whether, based on the FFR measurement, blood oxygen delivery is impeded below a threshold value or within a range of values (which is expressed as the maximal flow of blood down a vessel in the presence of stenosis compared to the maximal flow in the hypothetical absence of stenosis). If blood oxygen delivery is impeded below a threshold value or within a predetermined range of values, then in step 112a, a physician treats with physical intervention, such as a stent. In step 1 12b, if it is determined that blood oxygen delivery is not impeded below a threshold value or does not fall within a predetermined range of values, the physician explores an alternate treatment option (which may include no treatment or the delipidation process of the present specification).
- the threshold value is 80%.
- the range of values is l%-79%.
- a physician determines whether both the accumulated lipid-containing degenerative material, covering a lesion/plaque/area/region(s) is of an amount or volume falling within a predetermined range of percentages and blood oxygen delivery is impeded as determined by a predetermine range of percentages. If both conditions are met, in step 1 14a, the physician treats those areas identified as ischemic areas (FFR measurement in a range of 1% to 79%, and preferably below 80%) with a stent implant procedure and subsequently, the remaining areas with the delipidation process of the present specification. In step 1 14b, if both threshold conditions are not met, then the physician determines if either one of the conditions or neither condition is met and determines an appropriate course of treatment as outlined above.
- ischemic areas FFR measurement in a range of 1% to 79%, and preferably below 80%
- the physical intervention is performed by surgically embedding a stent in order to increase the rate of blood flow in the identified atheroma area.
- the physician may opt for treatment methods that remove or reduce the lipids.
- embodiments of the present specification that enable selective modification of HDL particles are utilized.
- the physician may opt to proceed with the surgical process of embedding a stent. It should be appreciated that when a percentage blockage is stated, such as 20%-70%, it means that a cross-sectional area of a vessel is blocked with lipid containing material and that such blockage occupies a range of 20% to 70%) of the cross-sectional area of the vessel.
- arteries with lipid-containing atheroma lesion/plaque/area/region(s) having an amount or volume of lipid blockage within a predetermined range of percentages are identified in step 110a, the patient is then subjected to the delipidation process.
- a blood fraction of the patient is obtained.
- the process of blood fractionation is typically done by filtration, centrifuging the blood, aspiration, or any other method known to persons skilled in the art. Blood fractionation separates the plasma from the blood.
- blood is withdrawn from a patient in a volume sufficient to produce about 12ml/kg of plasma based on body weight.
- the blood is separated into plasma and red blood cells using methods commonly known to one of skill in the art, such as plasmapheresis. Then the red blood cells are stored in an appropriate storage solution or returned to the patient during plasmapheresis. The red blood cells are preferably returned to the patient during plasmapheresis. Physiological saline is also optionally administered to the patient to replenish volume.
- Blood fractionation is known to persons of ordinary skill in the art, and is performed remotely from the method described in context of FIG. 1A.
- the blood can optionally be combined with an anticoagulant, such as sodium citrate, and centrifuged at forces approximately equal to 2,000 times gravity.
- the red blood cells are then aspirated from the plasma.
- the cells are returned to the patient.
- Low Density Lipoprotein (LDL) is also separated from the plasma. Separated LDL is usually discarded.
- LDL is retained in the plasma.
- blood fraction obtained at 120 includes plasma with High Density Lipoprotein (HDL), and may or may not include other protein particles.
- autologous plasma collected from the patient is subsequently treated via an approved plasmapheresis device.
- the plasma may be transported using a continuous or batch process.
- the blood fraction obtained at 120 is mixed with one or more solvents, such as lipid removing agents.
- the solvents used include either or both of organic solvents sevoflurane and n-butanol.
- the plasma and solvent are introduced into at least one apparatus for mixing, agitating, or otherwise contacting the plasma with the solvent.
- the solvent system is optimally designed such that only the HDL particles are treated to reduce their lipid levels and LDL levels are not affected.
- the solvent system includes factoring in variables such as solvent employed, mixing method, time, and temperature. Solvent type, ratios and concentrations may vary in this step. Acceptable ratios of solvent to plasma include any combination of solvent and plasma.
- ratios used are 2 parts plasma to 1 part solvent, 1 part plasma to 1 part solvent, or 1 part plasma to 2 parts solvent.
- a ratio of two parts solvent per one part plasma is used.
- the present specification uses a ratio of solvent to plasma that yields at least 3% n-butanol in the final solvent/plasma mixture.
- a final concentration of n- butanol in the final solvent/plasma mixture is 3.33%.
- the plasma may be transported using a continuous or batch process. Further, various sensing means may be included to monitor pressures, temperatures, flow rates, solvent levels, and the like.
- the solvents dissolve lipids from the plasma. In embodiments of the present specification, the solvents dissolve lipids to yield treated plasma that contains modified HDL particles with reduced lipid content. The process is designed such that HDL particles are treated to reduce their lipid levels and yield modified HDL particles without destruction of plasma proteins or substantially affecting LDL particles.
- Energy is introduced into the system in the form of varied mixing methods, time, and speed.
- bulk solvents are removed from the modified HDL particles via centrifugation.
- any remaining soluble solvent is removed via charcoal adsorption, evaporation, or Hollow Fiber Contractors (HFC) pervaporation.
- the mixture is optionally tested for residual solvent via use of chromatography (GC), or similar means.
- the test for residual solvent may optionally be eliminated based on statistical validation.
- the treated plasma containing modified HDL particles with reduced lipid content which was separated from the solvents at 124, is treated appropriately and subsequently returned to the patient.
- the modified HDL particles are HDL particles with an increased concentration of pre-beta HDL. Concentration of pre-beta HDL is greater in the modified HDL, relative to the original HDL that was present in the plasma before treating it with the solvent.
- the resulting treated plasma containing the HDL particles with reduced lipid and increased pre-beta concentration is optionally combined with the patient's red blood cells, if the red cells were not already returned during plasmapheresis, and administered to the patient.
- One route of administration is through the vascular system, preferably intravenously.
- the patient is monitored again for changes in the previously monitored atheroma areas and volumes, specifically for lipid-containing degenerative material. Therefore the process is repeated from step 102, as described above.
- the patient is monitored repeatedly within a period of three to six months.
- the treatment cycle is also repeated at this frequency until the monitoring suggests substantially or completely enhanced cholesterol efflux.
- the atheroma area and volume are monitored to be below threshold, the patient may be considered to have been treated and may not require further repetition of the treatment cycle.
- frequency of treatment may vary depending on the volume to be treated and the severity of the condition of the patient.
- Renal Arterial Stenosis is a systemic disease and patients may have multiple lesions throughout their vasculature. Sometimes, the plaque within the arteries may break away and damage kidneys, resulting in Atheroembolic Renal Disease (AERD). Therefore, it should be noted herein that the treatment methods of the present specification are not implemented based on an overall patient health-based treatment strategy, but rather a "lesion/plaque/area/region" -based treatm ent strategy .
- FIG. IB is a flow chart illustrating another exemplary process of treating cholesterol- related diseases, such as, but not limited to Atheroembolic Renal Disease (AERD), in accordance with some embodiments of the present specification.
- AERD Atheroembolic Renal Disease
- a patient first presents with renal arterial stenosis - a blockage in an artery that supplies blood to the kidney.
- BP Blood Pressure
- HBP High BP
- the physician may look for atheroembolic renal disease (AERD) at step 134.
- HBP High BP
- AERD may not cause any symptoms, some of the following symptoms may appear slowly and worsen over time: blood in the urine, fever, muscle aches, headache, weight loss, foot pain or blue toes, nausea, among other symptoms. If AERD is not identified, then at 136, a stent is placed in the patient to reverse any blockage that may be resulting in HBP.
- the physician may place a stent at step 138 in order to reverse blockage and elevations in BP. Additionally, at step 140, the physician may determine whether the procedure of placing a stent has worked to address both elevated BP levels and AERD. If not, an additional stent may be placed, or the delipidation process, in accordance with embodiments of the present specification and described with respect to FIG. 1A, may be used. The treatment decision may be based on "lesion/plaque/area/region" determination.
- the physician may still check for symptoms or signs of AERD at step 142.
- the check may be conducted on the basis of symptoms such as, but not limited to, blindness, blood in the urine, fever, muscle aches, headache, weight loss, foot pain or blue toes, nausea, among other symptoms. If, at 142, AERD is not detected, then, at step 144, the physician may determine an appropriate course of treatment, based on the symptoms and any other diagnosis. If there is renal stenosis (the presence of cholesterol-containing plaque) absent both elevated HBP and AERD, then the physician may opt to follow the procedure outlined above in context of FIG. 1A for cardiovascular diseases, which can result in either one or both of a stent and/or the delipidation process of the present specification.
- the physician may proceed to step 146, and the subject or the patient is monitored for one or more atheroma areas and/or volumes via a diagnostic procedure to determine the cause of renal dysfunction, and the extent of renal arterial stenosis.
- advanced medical imaging techniques such as, but not limited to Computer Tomography (CT) angiogram and/or Intravascular Ultrasound (IVUS) and/or Near IR spectroscopy, may be used to detect areas within the inner layer of artery walls where lipid-containing degenerative material may have accumulated.
- Accumulated degenerative material may include fatty deposits which may include mostly macrophage cells, or debris, containing lipids, calcium and a variable amount of fibrous connective tissue.
- Analysis from the imaging techniques may also be used to identify and therefore monitor volumes of lipid- containing degenerative material accumulated within the inner layer of artery walls.
- Lipid- containing degenerative material and non-lipid-containing degenerative material may swell in the artery wall, thereby intruding into the channel of the artery and narrowing it, resulting in restricting of blood flow and causing renal abnormalities.
- the presence and type of degenerative material is confirmed, the extent or percentage of degenerative material (lipid-containing or non- lipid-containing) is determined, and the extent of blood oxygen delivery based on Fractional Flow Reserve (FFR) is identified.
- the process is stopped if no degenerative material is detected, or if the level of degenerative material is below a predetermined threshold or falls outside of a predetermined range of values.
- the physician identifies one or more renal arteries with stenosis that have a blockage of 20% - 70% due to accumulated lipids, in order to implement treatment methods in accordance with the present specification.
- FFR is used to measure pressure differences across arterial stenosis to determine the likelihood that the stenosis impedes blood flow, and thus, oxygen delivery to the kidney (ischemia).
- the physician may determine that either the treatment in accordance with embodiments of the present specification is not required as the disease has subsided, is not present, is not sufficient, or has been treated; or an alternative form of treatment is required.
- the table compares different types of treatments that may be administered for combinations of various ranges of a Fractional Flow Reserve (FFR) 402, which is indicative of a change in rate of flow of blood associated with a blockage (and thus blood oxygen delivery), provided in terms of percentage of FFR, and various ranges of blockage due to lipid content 404, provided in terms of percentage of blockage due to lipid content.
- FFR Fractional Flow Reserve
- each cell such as cells 406 correspond to a combination of a range 402 (indicative of FFR) and a range 404 (indicative of the percentage or extent of blockage due to lipid content), which further indicates at least one method of treatment that may be suitable for that combination.
- the different types of treatments are coded as A, B, C, and D.
- Treatment type 'A' corresponds to an invasive treatment process where a stent is embedded through physical intervention.
- Treatment type 'B' corresponds to implementing the treatment methods of selectively modifying HDL particles, in accordance with the embodiments of the present specification.
- FFR Fractional Flow Reserve
- a FFR of 1-79% represents an ischemic condition, wherein 80-100% FFR represents a non-ischemic condition.
- Treatment type 'C corresponds to cases where a combination of both a stent as well as selective modification of HDL particles is administered. In most cases, treatment types 'A' and/or 'B' may be able to address the condition. Treatment type 'D' corresponds to cases where neither of the stated treatment types (A, B, or C) is required. In some cells, such as cells 408, two treatment options may be indicated and the physician would decide upon the appropriate course of treatment. Renal Arterial Stenosis (RAS) is a systemic disease and patients may have multiple lesions throughout their vasculature.
- RAS Renal Arterial Stenosis
- the treatment methods of the present specification are not implemented based on an overall patient health-based treatment strategy, but rather a "lesion/plaque/area/region" -based treatment strategy.
- a physician may decide to combine the treatments and administer treatment type 'C . If, in a particular patient, one or more areas or lesions have a FFR percentage measured at 79% or less, then those areas would have a stent implanted. If the same patient presents with additional, remaining lesions that exhibit lipid-based blockage in the range of 20-70% and also an FFR of 80-100%), then the patient would undergo a subsequent delipidation. Therefore, both interventions may be used for patients having multiple lesions with different levels of disease at each lesion.
- the physician determines whether the amount of accumulated lipid-containing degenerative material, covering a lesion/plaque/area/region, falls above or below a predetermined threshold percentage or within a predetermined range of percentages, as measured in terms of a percentage of blockage due to lipid content. If arteries with lipid-containing atheroma lesion(s) having an amount or volume above or below a threshold percentage or falling within a predetermined range of percentages are not identified, an alternative treatment process (which may include no treatment or physical intervention) is determined by the physician.
- arteries with lipid- containing atheroma lesion/plaque/area/region(s) having an amount or volume of lipid blockage falling within a predetermined range of percentages are identified, the patient is then subjected to the delipidation process.
- the delipidation process of the present specification is described in greater detail with respect to FIG. 1 A.
- the physician determines whether, based on the FFR measurement, blood oxygen delivery is impeded below a threshold value or falls within a range of values (which is expressed as the maximal flow of blood down a vessel in the presence of stenosis compared to the maximal flow in the hypothetical absence of stenosis). If blood oxygen delivery is impeded below a threshold value or falls within a range of values, a physician treats with physical intervention, such as a stent. If it is determined that blood oxygen delivery is not impeded above a threshold value, the physician explores an alternate treatment option (which may include no treatment or the delipidation process of the present specification).
- the threshold value is 80%>.
- the range of values is l%>-79%>.
- a physician determines whether both the accumulated lipid-containing degenerative material, covering a lesion/plaque/area/region(s) is in an amount or volume within a predetermined range of percentages and blood oxygen delivery is impeded above a threshold value or within a predetermined range of values. If both threshold conditions are met, the physician treats those areas identified as ischemic areas (FFR below 80%, or within a range of 1% to79%) with a stent implant procedure and subsequently, the remaining areas with the delipidation process of the present specification. If both threshold conditions are not met, then the physician determines if either one of the conditions or neither condition is met and determines an appropriate course of treatment as outlined above.
- a physician may decide to physically intervene to improve blood oxygen delivery, as measured by FFR.
- the physical intervention is performed by surgically embedding a stent in order to increase the rate of blood flow in the identified atheroma area.
- the physician may opt for treatment methods that remove or reduce the lipids.
- embodiments of the present specification that enable selective modification of HDL particles are utilized.
- the physician may opt to proceed with the surgical process of embedding a stent.
- a percentage blockage such as 20%-70%, it means that a cross-sectional area of a vessel is blocked with lipid containing material and that such blockage occupies a range of 20% to 70% of the cross- sectional area of the vessel.
- arteries with lipid-containing atheroma area/volume within a predetermined range of percentages are identified, the patient is then subjected to the delipidation process.
- a blood fraction of the patient is obtained.
- the process of blood fractionation is typically done by filtration, centrifuging the blood, aspiration, or any other method known to persons skilled in the art.
- Blood fractionation separates the plasma from the blood.
- blood is withdrawn from a patient in a volume sufficient to produce about 12ml/kg of plasma based on body weight.
- the blood is separated into plasma and red blood cells using methods commonly known to one of skill in the art, such as plasmapheresis.
- the red blood cells are stored in an appropriate storage solution or returned to the patient during plasmapheresis.
- the red blood cells are preferably returned to the patient during plasmapheresis.
- Physiological saline is also optionally administered to the patient to replenish volume.
- Blood fractionation is known to persons of ordinary skill in the art, and is performed remotely from the method described in context of FIG. 1A.
- the blood can optionally be combined with an anticoagulant, such as sodium citrate, and centrifuged at forces approximately equal to 2,000 times gravity.
- the red blood cells are then aspirated from the plasma.
- the cells are returned to the patient.
- Low Density Lipoprotein (LDL) is also separated from the plasma. Separated LDL is usually discarded.
- LDL is retained in the plasma.
- obtained blood fraction includes plasma with High Density Lipoprotein (HDL), and may or may not include other protein particles.
- autologous plasma collected from the patient is subsequently treated via an approved plasmapheresis device.
- the plasma may be transported using a continuous or batch process.
- the blood fraction obtained is mixed with one or more solvents, such as lipid removing agents.
- the solvents used include either or both of organic solvents sevoflurane and n-butanol.
- the plasma and solvent are introduced into at least one apparatus for mixing, agitating, or otherwise contacting the plasma with the solvent.
- the solvent system is optimally designed such that only the HDL particles are treated to reduce their lipid levels and LDL levels are not affected.
- the solvent system includes factoring in variables such as solvent employed, mixing method, time, and temperature. Solvent type, ratios and concentrations may vary in this step. Acceptable ratios of solvent to plasma include any combination of solvent and plasma.
- ratios used are 2 parts plasma to 1 part solvent, 1 part plasma to 1 part solvent, or 1 part plasma to 2 parts solvent.
- a ratio of two parts solvent per one part plasma is used.
- the present specification uses a ratio of solvent to plasma that yields at least 3% n-butanol in the final solvent/plasma mixture.
- a final concentration of n- butanol in the final solvent/plasma mixture is 3.33%.
- the plasma may be transported using a continuous or batch process. Further, various sensing means may be included to monitor pressures, temperatures, flow rates, solvent levels, and the like.
- the solvents dissolve lipids from the plasma. In embodiments of the present specification, the solvents dissolve lipids to yield treated plasma that contains modified HDL particles with reduced lipid content. The process is designed such that HDL particles are treated to reduce their lipid levels and yield modified HDL particles without destruction of plasma proteins or substantially affecting LDL particles.
- Energy is introduced into the system in the form of varied mixing methods, time, and speed.
- Bulk solvents are removed from the modified HDL particles via centrifugation.
- any remaining soluble solvent is removed via charcoal adsorption, evaporation, or Hollow Fiber Contractors (HFC) pervaporation.
- the mixture is optionally tested for residual solvent via use of chromatography (GC), or similar means.
- the test for residual solvent may optionally be eliminated based on statistical validation.
- the treated plasma containing modified HDL particles with reduced lipid content which was separated from the solvents, is treated appropriately and subsequently returned to the patient.
- the modified HDL particles are HDL particles with an increased concentration of pre-beta HDL. Concentration of pre-beta HDL is greater in the modified HDL, relative to the original HDL that was present in the plasma before treating it with the solvent.
- the resulting treated plasma containing the HDL particles with reduced lipid and increased pre-beta concentration is optionally combined with the patient's red blood cells, if the red cells were not already returned during plasmapheresis, and administered to the patient.
- One route of administration is through the vascular system, preferably intravenously.
- the patient is monitored again for changes in the previously monitored atheroma areas and volumes, specifically for lipid-containing degenerative material. Therefore the process is repeated, as described above.
- the patient is monitored repeatedly within a period of three to six months.
- the treatment cycle is also repeated at this frequency until the monitoring suggests substantially or completely enhanced cholesterol efflux.
- the atheroma area and volume are monitored to be below threshold, the patient may be considered to have been treated and may not require further repetition of the treatment cycle.
- frequency of treatment may vary depending on the volume to be treated and the severity of the condition of the patient. Alzheimer's disease
- Alzheimer's disease is determined using results from several tests to arrive at a differential diagnosis. Thus, there is no definitive diagnosis for Alzheimer's disease.
- treatments and protocols of the present specification are applicable to patients exhibiting pre- symptomatology of AD, in addition to symptoms related to altered global function, cognitive function, activities of daily living (ADL)/functional impairment, and behavior.
- patients suffering from AD can be characterized as having early stage (pre-symptomatic)/Stages 1-4, mild, moderate, or severe AD based upon the totality of symptoms.
- Stage 1 is representative of a class of patients with characteristic pathophysiologic changes of early onset AD but no evidence of clinical impact. These patients are truly asymptomatic with no subjective complaint, functional impairment, or detectable abnormalities on sensitive neuropsychological measures. The characteristic pathophysiologic changes are typically demonstrated by assessment of various biomarker measures.
- Stage 2 includes the group of patients with characteristic pathophysiologic changes of early onset AD and subtle detectable abnormalities on sensitive neuropsychological measures, but no functional impairment. The emergence of subtle functional impairment signals a transition to Stage 3.
- Stage 3 is representative of a class of patients with characteristic pathophysiologic changes of early onset AD, subtle or more apparent detectable abnormalities on sensitive neuropsychological measures, and mild but detectable functional impairment.
- the functional impairment in this stage is not severe enough to warrant a diagnosis of overt dementia.
- Stage 4 includes a group of patients with overt dementia. This diagnosis is made as functional impairment worsens from that seen in Stage 3. This stage may be refined into additional categories which correspond to mild, moderate, and severe Alzheimer's disease states as described below.
- Stages 5, 6, and 7 correspond to increasing degrees of overt dementia and/or functional impairment. As such, stages 5, 6, and 7 correspond to mild, moderate, and severe AD.
- a baseline, starting or initial severity level is diagnosed/assessed using at least one physiological diagnostic or advanced medical imaging technique. In some embodiments, a baseline, starting or initial severity level is additionally assessed by at least one cognitive measurement or test. Given the panoply of available neuropsychological tests, a pattern of putatively beneficial effects demonstrated across multiple individual tests may be used to assess impact in early AD or a large magnitude of effect on a single sensitive measure of neuropsychological performance may be used. For example, measuring the level of amyloid peptide (including 40 and 42) may be used to assess a possible treatment benefit.
- Differential diagnosis and the assessment of the severity level of Alzheimer's disease may be based on one or more global, cognitive, functional and behavioral measurements, assessments, or tests.
- global assessment tests may include assessments such as, but not limited to Clinician's Interview-Based Impression of Change plus caregiver assessment (the CIBIC-plus), and Clinical Dementia Rating-sum of boxes (CDR-SB).
- assessments such as, but not limited to Clinician's Interview-Based Impression of Change plus caregiver assessment (the CIBIC-plus), and Clinical Dementia Rating-sum of boxes (CDR-SB).
- CIBIC-plus Clinician's Interview-Based Impression of Change plus caregiver input
- ADAS-cog the ADAS-cog described below.
- Clinical trials for investigational drugs have used a variety of CIBIC formats, each different in terms of depth and structure.
- results from a CIBIC-plus reflect clinical experiences from the trial or trials in which it was used and cannot be compared directly with the results of CIBIC-plus evaluations from other clinical trials.
- the CIBIC-plus used in some major trials is a semi- structured instrument that was intended to examine four major areas of patient function: General, Cognitive, Behavioral, and Activities of Daily Living.
- the CIBIC- plus is scored as a seven-point categorical rating, ranging from a score of 1, indicating "markedly improved,” to a score of 4, indicating "no change” to a score of 7, indicating "markedly worse.”
- the CIBIC-plus has not been systematically compared directly to assessments not using information from caregivers (CIBIC) or other global methods.
- CDR-SB Clinical Dementia Rating-sum of boxes
- cognitive tests may include assessments such as, but not limited to, the cognitive subscale of the Alzheimer's Disease Assessment Scale (ADAS-cog) and Mini Mental State Examination (MMSE).
- assessments such as, but not limited to, the cognitive subscale of the Alzheimer's Disease Assessment Scale (ADAS-cog) and Mini Mental State Examination (MMSE).
- ADAS-cog Alzheimer's Disease Assessment Scale
- MMSE Mini Mental State Examination
- the cognitive subscale of the Alzheimer's Disease Assessment Scale is a multi-factor instrument that has been extensively validated in longitudinal cohorts of Alzheimer's disease patients.
- the ADAS-cog examines selected aspects of cognitive performance including elements of memory, orientation, attention, reasoning, language, and praxis.
- the ADAS-cog scoring range is from 0 to 70, with higher scores indicating greater cognitive impairment.
- Elderly adults with normal cognitive functionality may score as low as 0 or 1, but it is not unusual for adults not presenting with typical dementia to score slightly higher.
- the Mini Mental State Examination includes 11 questions regarding orientation, memory, concentration, language, and praxis.
- the scoring scale ranges from 0 to 30, with a higher score indicating lower impairment.
- functional tests or tests that assess impairment in activities of daily living may include assessments such as, but not limited to, Severe Impairment Battery (SIB), Modified Alzheimer's disease Cooperative Study-activities of daily living inventory (ADCS-ADL) and Modified Alzheimer's disease Cooperative Study-activities of daily living inventory for severe Alzheimer's disease (ADCS-ADL-severe), Progressive Deterioration Scale (PDS), Instrumental Activities of Daily Living (IADL), and the Katz Activities of Daily Living (ADL) index.
- SIB Severe Impairment Battery
- ADCS-ADL Modified Alzheimer's disease Cooperative Study-activities of daily living inventory
- ADCS-ADL-severe Modified Alzheimer's disease Cooperative Study-activities of daily living inventory for severe Alzheimer's disease
- PDS Progressive Deterioration Scale
- IADL Instrumental Activities of Daily Living
- ADL Katz Activities of Daily Living
- the Severe Impairment Battery (SIB) assessment is a multi-item instrument and has been validated for the evaluation of cognitive function in patients presenting with moderate to severe dementia.
- the SIB evaluates selective aspects of cognitive performance, including elements of memory, language, orientation, attention, praxis, visuospatial ability, construction, and social interaction.
- the SIB scoring range is from 0 to 100, with lower scores indicating greater cognitive impairment.
- the Modified Alzheimer's Disease Cooperative Study -Activities of Daily Living inventory (ADCS-ADL) consists of a comprehensive battery of ADL questions used to measure the functional capabilities of patients. Each ADL item is rated from the highest level of independent performance to complete loss. The investigator performs the inventory by interviewing a caregiver familiar with the behavior of the patient. A subset of 19 items, including ratings of the patient's ability to eat, dress, bathe, telephone, travel, shop, and perform other household chores has been validated for the assessment of patients with moderate to severe dementia.
- the modified ADCS-ADL has a scoring range of 0 to 54, with the lower scores indicative of greater functional impairment.
- the Modified Alzheimer's Disease Cooperative Study - Activities of Daily Living Inventory for Severe Alzheimer's Disease is derived from the Alzheimer's Disease Cooperative Study-Activities of Daily Living Inventory described above, which is a comprehensive battery of ADL questions used to measure the functional capabilities of patients. Each ADL item is rated from the highest level of independent performance to complete loss.
- the ADCS-ADL-severe is a subset of 19 items, including ratings of the patient's ability to eat, dress, bathe, use the telephone, get around (or travel), and perform other activities of daily living; it has been validated for the assessment of patients with moderate to severe dementia.
- the ADCS-ADL- severe has a scoring range of 0 to 54, with the lower scores indicative of greater functional impairment.
- the investigator performs the inventory by interviewing a caregiver, such as a nurse staff member, who is familiar with the overall functional capability of the patient.
- the Progressive Deterioration Scale examines activities of daily living (ADL) and instrumental ADL in 11 areas, including the extent to which the patient can leave the immediate neighborhood, the use of familiar household implements, involvement in family finances and budgeting, self-care, and routine tasks.
- the scoring scale ranges from 0 to 100, wherein a higher score indicating better overall functional capability.
- IADL Instrumental Activities of Daily Living
- the Katz Activities of Daily Living (ADL) index is used to assess a patient's ability to perform ADL independently in six functions of bathing, dressing, toileting, transferring, continence, and feeding. Each function is assigned a score of yes or no for independence in that function, whereby each "yes" answer generates one point. A total score of 6 indicates full functional capability while a score of 2 or less is indicative of severe functional impairment.
- behavioral and mood tests may include assessments such as, but not limited to, Neuropsychiatric Inventory ( PI) and are employed to determine an extent of depression, anxiety, irritability, and overall mood shifts.
- PI Neuropsychiatric Inventory
- the Neuropsychiatric Inventory evaluates 10 items including delusions, hallucinations, dysphoria, anxiety, agitation, euphoria, apathy, irritability, disinhibition, aberrant motor behavior (pacing and rummaging). Two more items may also be assessed, specifically, night-time behavior and changes in appetite and eating behaviors. The frequency of behavioral disturbances are rated on a four-point scale with the severity rated on three-point scale. A higher total score is indicative of more behavioral problems.
- diagnostic imaging tests are used to determine the accumulation or regional lesions of plaque in the perivascular space.
- the advanced medical imaging techniques are used to both determine the extent of plaque in the perivascular space and to assess a severity level of Alzheimer's disease.
- advanced medical imaging techniques such as, but not limited to, Positron Emission Tomography (PET), Magnetic Resonance Imaging (MRI) and Spinal Fluid Test (Beta Amyloid Fragments), may be used.
- a specific Amyloid Positron Emission Tomography (PET) Scan also referred to as Amyloid PET imaging, represents a potential major advance in an early diagnosis of Alzheimer's disease and/or an assessment of the degree of cognitive impairment.
- the scan visualizes plaque regions or lesions present in the brain, which are prime suspects in damaging and killing nerve cells in Alzheimer's patients.
- the scan technique employs radioactive tracers to highlight amyloid protein plaque regions or lesions within the brain, which are a hallmark of Alzheimer's disease.
- Amyloid PET scanning enables the "illumination" of amyloid plaques on a brain PET scan, enabling accurate detection of plaques in living people.
- the scan may allow for an earlier diagnosis or assessment of Alzheimer's disease, prior to the presentation of symptomatology.
- MRI Magnetic Resonance Imaging
- Neuroimaging is widely believed to be generally useful for excluding reversible causes of dementia syndrome, such as normal -pressure hydrocephalus, brain tumors, and subdural hematoma, and for excluding other likely causes of dementia, such as cerebrovascular disease, thereby enabling a differential diagnosis of AD.
- dementia syndrome such as normal -pressure hydrocephalus, brain tumors, and subdural hematoma
- other likely causes of dementia such as cerebrovascular disease
- CSF cerebrospinal fluid
- MCI mild cognitive impairment
- Alzheimer's disease was identified in three independent study groups wherein the participants exhibited low levels of the amyloid protein amyloid-beta 1- 42, along with high levels of total tau and elevated phospho-tau 181 (P-tau 181).
- Apolipoprotein E is a class of proteins involved in the metabolism of fats in the body and is the principal cholesterol carrier in the brain.
- ApoE is polymorphic, with three major alleles, namely ⁇ - ⁇ 2, ⁇ - ⁇ 3, and ⁇ - ⁇ 4.
- ⁇ - ⁇ 2 has an allele frequency of approximately 7% to 8% in the general population.
- This variant of the apolipoprotein binds poorly to cell surface receptors while ⁇ - ⁇ 3 and ⁇ - ⁇ 4 bind relatively well.
- ⁇ - ⁇ 2 is associated with both increased and decreased risk for atherosclerosis. Individuals with a ⁇ 2/ ⁇ 2 combination tend to clear dietary fat more slowly and be at greater risk for early vascular disease and the genetic disorder type III hyperlipoproteinemia.
- ⁇ - ⁇ 3 has an allele frequency of approximately 80% in the general population. It is considered the "neutral" ApoE genotype of the three.
- ⁇ - ⁇ 4 has an allele frequency of approximately 14% in the general population.
- the ⁇ 4 variant is the largest known genetic risk factor for late-onset sporadic Alzheimer's disease (AD).
- ⁇ - ⁇ 4 is not a definitive determinant of the disease; at least one-third of patients with AD are ⁇ - ⁇ 4 negative and some people with ⁇ - ⁇ 4 homozygotes never develop the disease. Yet, studies show that those with two ⁇ 4 alleles have up to 20 times the risk of developing AD and thus, it can be implicated as at least a contributing factor. There is also evidence that the ⁇ - ⁇ 2 allele may serve a protective role in AD. Thus, the genotype most at risk for Alzheimer's disease and at an earlier age is ⁇ - ⁇ 4, ⁇ - ⁇ 4.
- genotype ⁇ - ⁇ 3, ⁇ - ⁇ 3 as a benchmark (allocating a risk factor of 1.0 to the persons who have this genotype), individuals with genotype ⁇ - ⁇ 4, ⁇ - ⁇ 4 have a relative risk factor of 14.9 of developing Alzheimer's disease.
- Individuals with the ⁇ - ⁇ 3, ⁇ - ⁇ 4 genotype exhibit a relative risk factor of 3.2, while people with the ⁇ 2 allele and the ⁇ 4 allele ( ⁇ - ⁇ 2, ⁇ - ⁇ 4) have a relative risk factor of 2.6.
- Persons with one copy each of the ⁇ 2 allele and the ⁇ 3 allele ( ⁇ - ⁇ 2, ⁇ - ⁇ 3) have a relative risk factor of 0.6, as do persons with two copies of the 2 allele ( ⁇ - ⁇ 2, ⁇ - ⁇ 2).
- ⁇ - ⁇ 4 has been found to greatly increase the likelihood that an individual will develop Alzheimer's disease
- persons with any combination of independent risk factors such as but not limited to different levels of certain ApoE alleles as described above, high overall serum total cholesterol levels, and high blood pressure have an amplified risk of developing AD at some point in their lifetime. Accordingly, research has suggested that lowering serum cholesterol levels may reduce a person's risk for Alzheimer's disease, even if they have two ⁇ - ⁇ 4 alleles, thus reducing the risk from nine or ten times the odds of developing AD down to just two times the odds. Women are more likely to develop AD than men across most ages and persons with at least one ⁇ 4 allele have significantly more neurological dysfunction than men.
- a treated plasma that contains modified HDL particles with reduced lipid content is delivered to the patient via infusion therapy.
- the process is designed such that HDL particles are treated to reduce their lipid levels and yield modified HDL particles without destruction of plasma proteins or substantially affecting LDL particles.
- the HDL lipoprotein particles are comprised of ApoA-I, phospholipids and cholesterol.
- ApoA-I Apolipoprotein A-I particles comprise of two sub-fractions, pre- ⁇ HDL and a-HDL, which have pre-beta and alpha electrophoretic mobility, respectively.
- pre- ⁇ HDL 645 represents ApoA-I molecules complexed with phospholipids.
- a treated plasma that contains modified HDL particles with reduced lipid content is delivered to the patient via infusion therapy.
- the modified high density lipoproteins have a concentration of alpha high density lipoproteins in addition to the pre-beta high density lipoproteins from the blood fraction prior to mixing.
- isolated pre- ⁇ HDL particles are infused into the patient' s blood stream to bind to beta amyloid particles and clear the cerebral perivascular pathway.
- FIG. 4 is a longitudinal transverse cross-sectional view 405 of a cerebral blood vessel 410 illustrating removal of beta amyloid by transport along the cerebral lymphatic perivascular pathway, in accordance with an embodiment of the present specification.
- blood circulates through the lumen 415 of the vessel 410 while Interstitial Fluid (ISF) and solutes, including beta amyloid ( ⁇ ) 420, are eliminated from the brain through the perivascular drainage pathway 425, which is, effective, the lymphatic drainage of the brain.
- ISF Interstitial Fluid
- ⁇ beta amyloid
- the ⁇ 3 allele 430 binds to beta amyloid particles 420, forming modified ⁇ 3 particles, and thereby transporting beta amyloid particles 420 from the brain along the perivascular drainage pathway 425.
- Apolipoprotein A-I particles 435 and HDL particles 440 as part of the blood circulation 455 through the lumen 415 along with other particles such as, for example, red blood cells 450.
- AD is, in some cases, characterized by build-ups of aggregates of the peptide beta-amyloid in the cerebral lymphatic perivascular pathways. As illustrated in Table A, in AD patients the distribution of ⁇ 2, ⁇ 3 and ⁇ 4 alleles is approximately 4%, 60% and 37%, respectively. The isoform ⁇ - ⁇ 4 is not as effective as the alleles at promoting clearance of beta amyloid from the cerebral perivascular drainage pathways. Thus, a skewed abundance of ⁇ 4 allele is associated with increased vulnerability to AD in individuals with that gene variation and in AD patients is also associated with an increase in the severity of AD and loss of cognitive function.
- FIG. 5 is a longitudinal transverse cross-sectional view 505 of a cerebral blood vessel 510 illustrating amyloid accumulation in cerebral lymphatic perivascular pathways of individuals with an increased presence of the ⁇ 4 allele, in accordance with an embodiment of the present specification.
- blood circulates through the lumen 515 of the vessel 510 while beta amyloid ( ⁇ ) particles 520 are accumulated in the cerebral perivascular pathway 525 due to an increased presence of ⁇ 4 particles 530.
- beta amyloid 520 is deposited in the walls of the blood vessel 510 as cerebral amyloid angiopathy (CAA).
- CAA in AD reflects a failure of elimination of amyloid-beta ( ⁇ ) from the brain along perivascular lymphatic drainage pathways 525.
- FIG. 6A is a longitudinal transverse cross-sectional view 605 of a cerebral blood vessel 610 of an AD patient being treated for cerebral amyloid angiopathy (CAA), in accordance with an embodiment of the present specification.
- blood circulates through the lumen 615 of the vessel 610 while beta amyloid ( ⁇ ) particles 620 accumulate in the cerebral perivascular pathway 625 along with a high presence of ⁇ 4 particles 630, thereby essentially blocking pathway 625.
- treated plasma or isolated pre- ⁇ HDL particles 645 are infused into the patient's blood stream 655 to bind to beta amyloid particles 620 and clear the cerebral perivascular pathway 625.
- Pre- ⁇ HDL 645 represents ApoA-I molecules complexed with phospholipids.
- a blood fraction is obtained.
- the process of blood fractionation is typically done by filtration, centrifuging the blood, aspiration, or any other method known to persons skilled in the art.
- Blood fractionation separates the plasma from the blood.
- blood is withdrawn from a patient in a volume sufficient to produce about 12ml/kg of plasma based on body weight.
- the blood is separated into plasma and red blood cells using methods commonly known to one of skill in the art, such as plasmapheresis.
- the red blood cells are stored in an appropriate storage solution or returned to the patient during plasmapheresis.
- the red blood cells are preferably returned to the patient during plasmapheresis.
- Physiological saline is also optionally administered to the patient to replenish volume.
- LDL Low Density Lipoprotein
- the resultant blood fraction includes plasma with HDL, and may or may not include other protein particles.
- the process of blood fractionation is performed by withdrawing blood from the patient presenting with AD, and who is being treated by the physician.
- the process of blood fractionation is performed by withdrawing blood from a person other than the patient. Therefore, the plasma obtained as a result of the blood fractionation process may be either autologous or non-autologous.
- the autologous or non-autologous plasma obtained is subjected to a delipidation process as described in greater detail above with respect to FIG. 1 A but repeated briefly herein.
- the resultant blood fraction is mixed with one or more solvents, such as lipid removing agents.
- the solvents used include either or both of organic solvents sevoflurane and n-butanol.
- the plasma and solvent are introduced into at least one apparatus for mixing, agitating, or otherwise contacting the plasma with the solvent.
- the solvent system is optimally designed such that only the HDL particles are treated to reduce their lipid levels and LDL levels are not affected.
- the solvent system includes factoring in variables such as solvent employed, mixing method, time, and temperature. Solvent type, ratios and concentrations may vary in this step.
- the plasma and solvent are introduced into at least one apparatus for mixing, agitating, or otherwise contacting the plasma with the solvent.
- the plasma may be transported using a continuous or batch process.
- the solvents dissolve lipids from the plasma. In embodiments of the present specification, the solvents dissolve lipids to yield treated plasma that contains modified HDL particles with reduced lipid content.
- the process is designed such that HDL particles are treated to reduce their lipid levels and yield modified HDL particles without destruction of plasma proteins or substantially affecting LDL particles.
- the resultant treated plasma containing modified HDL particles with reduced lipid content, which was separated from the solvents, is treated appropriately and may subsequently returned to the patient in an embodiment.
- the resultant fluid containing modified HDL particles is further processed, in a second stage, to separate or to isolate pre- ⁇ HDL particles.
- the second stage occurs in a separate and discrete area from the delipidation process.
- the second stage processing occurs in-line with the delipidation system, whereby the system may be connected to an affinity column sub-system or ultracentrifugation sub-system. The resultant separated pre- ⁇ HDL particles may then be introduced to the bloodstream of the patient as described below.
- FIG. 6A illustrates a presence of non-modified HDL particles 640 in the blood stream 655 along with other particles such as, for example, red blood cells 650.
- the modified HDL particles may be HDL particles with an increased concentration of pre- ⁇ HDL particles 645. Concentration of pre- ⁇ HDL 645 is greater in the modified HDL, relative to the original HDL that was present in the plasma before treating it with the solvent.
- the resulting treated plasma containing the HDL particles with reduced lipid and increased pre- ⁇ concentration is optionally combined with the patient's red blood cells, if the red cells were not already returned during plasmapheresis, and administered to the patient.
- One route of administration is through the vascular system, preferably intravenously, such as via infusion therapy.
- FIG. 6B illustrates a mechanism of removal of beta amyloid molecules 620 by infused pre- ⁇ HDL particles 645 within the blood vessel 610 of an AD patient, in accordance with an embodiment of the present specification.
- a relatively higher number of pre- ⁇ HDL particles 645 are available to bind to and pull out beta-amyloid particles 620 from the perivascular pathway 625.
- the pre- ⁇ HDL particles 645 in the blood stream 655 enter the perivascular pathway 1025 and bind with beta-amyloid particles 620 to form modified pre- ⁇ HDL particles 645' that re-enter the blood stream 655.
- FIG. 6C shows a plurality of modified pre- ⁇ HDL particles 645' flowing in the blood stream 655 (in the lumen 615 of the blood vessel 610) and serving to transport the bound beta amyloid 620 to the liver for degradation and subsequent excretion.
- the pre- ⁇ HDL particles 6145 also pull the ⁇ 4 particles 630 along with the beta amyloid molecules 620 from the perivascular pathway 625.
- the modified pre- ⁇ HDL particles 645' are pre- ⁇ HDL 645 binding both beta amyloid 620 and ⁇ 4 630.
- the infused isolated pre- ⁇ HDL particles 1145 initiate reverse cholesterol, specifically beta amyloid 620, transport process from the cerebral perivascular pathways 625 to liver.
- non-modified HDL particles 640 in the blood stream 655 along with other particles such as, for example, red blood cells 650.
- HDL particles with reduced lipid and/or increased pre- ⁇ concentration is administered to a patient in accordance with a plurality of therapeutic protocols.
- therapy is based on a level of severity of AD, as described above.
- the plurality of therapy protocols comprises at least one or any combination of a plurality of therapeutic parameters such as, but not limited to: • Dosing range: 1 mg/kg to 250 mg/kg, and any increment therein, where a specific fixed dose may be calculated based on one or both of a patient's weight and the severity of the disease state.
- Dosing volume the average dosing volume is dependent upon the dose (in mg/kg) and the concentration of the product to be infused into the patient (treated plasma containing modified
- the volume that is returned to the patient is substantially equal to the volume that was removed from the patient prior to the delipidation process. In embodiments, the volume that is returned to the patient is a concentrated volume. In embodiments, the volume delivered to a patient via infusion therapy is dependent upon the preparation of the product, whether it is treated plasma or concentrated, isolated pre-beta and the overall solubility of that product in a buffer or saline.
- Dosing rate the dose is provided via infusion therapy. It should be noted herein that the rate of infusion is the normal infusion rate for intravenous therapy, or 999 mL/hour and is thus dependent on overall volume and concentration. In an embodiment, the time of infusion ranges from one hour to eight hours.
- Duration or course of therapy at least one day to at least one year
- FIG. 7 is a flowchart describing a plurality of exemplary steps of a therapy protocol for treating an AD patient, in accordance with an embodiment of the present specification.
- a patient first presents with a pathophysiological change that is consistent with early onset AD. Any of the aforementioned diagnostic techniques may be used in this step.
- various biomarkers may be used to determine the pathophysiological change. For example, measuring the level of amyloid peptide (including 40 and 42) may be used to assess the extent of a pathophysiological change characteristic of AD.
- the patient may present with cerebral amyloid angiopathy (CAA) as detected using a diagnostic imaging technique.
- CAA cerebral amyloid angiopathy
- a patient who is diagnosed with CAA is monitored to determine an extent of accumulation of plaque in the perivascular space, via at least one diagnostic procedure.
- advanced medical imaging techniques such as, but not limited to, Positron Emission Tomography (PET), Magnetic Resonance Imaging (MRI) and Spinal Fluid Test (Beta Amyloid Fragments), may be used.
- PET Positron Emission Tomography
- MRI Magnetic Resonance Imaging
- Beta Amyloid Fragments Spinal Fluid Test
- the diagnosis and severity level of AD in the patient are additionally assessed based on one or more global, cognitive, functional, and behavioral measurements or tests, as described above.
- global assessment tests may include assessments such as, but not limited to Clinician' s Interview-Based Impression of Change plus caregiver assessment (the CIBIC-plus), and Clinical Dementia Rating-sum of boxes (CDR-SB).
- assessments such as, but not limited to Clinician' s Interview-Based Impression of Change plus caregiver assessment (the CIBIC-plus), and Clinical Dementia Rating-sum of boxes (CDR-SB).
- cognitive tests may include assessments such as, but not limited to, cognitive subscale of the Alzheimer's Disease Assessment Scale (ADAS-cog), and Mini Mental State Examination (MMSE).
- assessments such as, but not limited to, cognitive subscale of the Alzheimer's Disease Assessment Scale (ADAS-cog), and Mini Mental State Examination (MMSE).
- ADAS-cog Alzheimer's Disease Assessment Scale
- MMSE Mini Mental State Examination
- functional tests may include assessments such as, but not limited to, severe impairment battery (SIB), modified Alzheimer's disease cooperative study -activities of daily living inventory (ADCS-ADL) and modified Alzheimer's disease cooperative study activities of daily living inventory for severe Alzheimer's disease (ADCS-ADL-severe), Progressive Deterioration Scale (PDS), Instrumental Activities of Daily Living (IADL), and Katz activities of daily living (ADL) index.
- SIB severe impairment battery
- ADCS-ADL modified Alzheimer's disease cooperative study -activities of daily living inventory
- ADCS-ADL-severe modified Alzheimer's disease cooperative study activities of daily living inventory for severe Alzheimer's disease
- PDS Progressive Deterioration Scale
- IADL Instrumental Activities of Daily Living
- Katz activities of daily living (ADL) index such as, but not limited to, severe impairment battery (SIB), modified Alzheimer's disease cooperative study -activities of daily living inventory (ADCS-ADL) and modified Alzheimer's disease cooperative study activities of daily living inventory for severe Alzheimer's disease
- behavioral and mood tests may include assessments such as, but not limited to, Neuropsychiatric Inventory (PI).
- assessments such as, but not limited to, Neuropsychiatric Inventory (PI).
- one or more physiological parameters of the patient are recorded.
- the one or more physiological parameters are those that may be incidental to determining one or more therapy parameters.
- the patient's weight is recorded to determine a dosing range for the patient. It should be appreciated that the physiological parameters may be first recorded prior to step 705.
- the patient is infused with modified HDL particles in accordance with a therapy protocol.
- a blood fraction is withdrawn from the patient presenting with the CAA.
- a blood fraction is obtained withdrawing blood from a person other than the patient. Therefore, the plasma obtained as a result of the blood fractionation process may be either autologous or non-autologous.
- the blood fraction is subsequently treated, using the delipidation process described above to obtain treated plasma containing modified HDL particles.
- the treated plasma is optionally processed further to generate a product with an increased concentration of isolated pre- ⁇ HDL.
- the therapy protocol comprises an infusion delivery of modified HDL particles or a concentrated volume of isolated pre-beta particles over a period ranging from 1 hour to 8 hours, and any increment therein, depending upon the concentration of the therapeutic product to be delivered.
- the dose ranges from 1 mg/kg to 250 mg/kg, and any increment therein, and is administered at an infusion delivery rate of 999 mL/hour +/- lOOml/hour or a rate deemed more appropriate for the patient.
- the treatment is repeated at specified frequency or cycle of treatment depending upon a course of therapy.
- the frequency or cycle of administering the treatment may range from once a week, twice a week, three times per week, daily, once a month, twice a month, three times per month, to at least once in three, six, nine or twelve months.
- the course of therapy may range from at least one day, at least one week, at least one month to at least one year.
- the therapy protocol comprises at least one, and up to three, seven or ten treatments every three, six, nine or twelve months for an annual course of therapy.
- the at least one treatment may comprise a continuous infusion (IV) of modified HDL particles over a predetermined time period at a rate of 999 mL/hour.
- the therapy protocol may be titrated or modulated up or down based on a therapeutic endpoint.
- one or more intra-treatment severity level assessments are made using diagnostic and/or cognitive procedures/tests.
- the one or more intra-treatment severity level assessments are made at predetermined points in time during the course of therapy. If the intra-treatment severity level assessments show a delay in the onset of additional symptoms, a halting in the worsening of symptoms, or an improvement in the patient's condition, it is considered to be of therapeutic benefit.
- the therapeutic amount may be titrated down wherein parameters such as, but not limited to, the dose range, frequency or cycle of treatment and/or course of therapy may be reduced. Alternately, the therapy protocol may be titrated up depending on various factors. Still alternately, if the intra- treatment severity level assessments show or do not show improvement in the patient's condition, the therapy protocol is not modulated.
- the overall volume delivered to the patient via infusion therapy depends on the therapeutic product that is solubilized in a buffer or saline.
- the therapeutic product is autologous treated plasma
- the patient will receive a volume of therapeutic product equivalent to the volume that was extracted from the patient.
- the therapeutic product is non-autologous treated plasma
- the patient may receive a volume of 1L as one example. If the therapeutic product is non-autologous isolated, concentrated pre-beta particles, the volume may be much lower.
- an AD patient's baseline, starting or initial severity level is diagnosed/assessed and categorized as, one of early onset, mild, moderate or severe as described above.
- the baseline, starting or initial severity level refers to the severity of AD before the patient is treated with the modified HDL and/or isolated pre- ⁇ HDL therapy of the present specification.
- the baseline, starting or initial severity level is diagnosed/assessed using at least one physiological diagnostic or advanced medical imaging technique. In some embodiments, the baseline, starting or initial severity level is additionally assessed by at least one global, cognitive, functional, behavioral measurement or test.
- a therapeutic benefit is recognized when a patient is able to maintain or be stabilized in their current state when treated with a therapy protocol of the present specification.
- a therapeutic benefit is recognized when a patient maintains/stabilizes symptoms when treated with a therapy protocol of the present specification when compared to a placebo.
- a therapeutic benefit is recognized when a patient shows a delay or halting of worsening of symptoms when treated with a therapy protocol of the present specification when compared to a placebo.
- a therapeutic benefit is recognized when a patient shows a delay in the rate of progression of symptoms when treated with a therapy protocol of the present specification when compared to a placebo.
- a therapeutic benefit is recognized when a patient shows an improvement in symptoms when treated with a therapy protocol of the present specification when compared to a placebo.
- the rate of progression, level or amount of a patient's physiological and/or cognitive parameter is unchanged relative to the rate, level or amount of that patient's physiological and/or cognitive parameter before therapy treatment.
- the rate of progression, level or amount of a patient's physiological and/or cognitive parameter is delayed relative to the rate, level or amount of that patient's physiological and/or cognitive parameter before therapy treatment.
- the rate of progression, level or amount of a patient's physiological and/or cognitive parameter is modified relative to the rate of progression, level or amount of that patient's physiological and/or cognitive parameter before therapy treatment.
- the rate of progression, level or amount of that patient's physiological and/or cognitive parameter is improved relative to the rate of progression, level or amount of that patient's physiological and/or cognitive parameter before therapy treatment.
- the patient experiences an improvement of the ADAS-cog score indicative of an improvement in, or stabilization of, AD-related symptoms.
- the patient experiences an improvement of the CIBIC-plus score indicative of an improvement in, or stabilization of, AD-related symptoms.
- the patient experiences an improvement of the SIB score indicative of an improvement in, or stabilization of, AD-related symptoms.
- the patient experiences an improvement of the ADCS-ADL score indicative of an improvement in, or stabilization of, AD-related symptoms.
- the patient experiences an improvement of the ADCS-ADL-severe score indicative of an improvement in, or stabilization of, AD-related symptoms.
- the patient experiences an improvement of any one of the global, cognitive, functional, or behavioral test scores indicative of an improvement in, or stabilization of, AD-related symptoms.
- the patient experiences a decrease in the accumulation of amyloid plaque in the perivascular space indicative of an improvement or stabilization of AD-related symptoms.
- FIG. 2 illustrates an exemplary embodiment of a system and its components used to achieve the methods of the present specification.
- the figure depicts an exemplary basic component flow diagram defining elements of the HDL modification system 200.
- Embodiments of the components of system 200 are utilized after obtaining a blood fraction from a patient or another individual (donor).
- the plasma, separated from the blood is brought in a sterile bag to system 200 for further processing.
- the plasma may be separated from blood using a known plasmapheresis device.
- the plasma may be collected from the patient into a sterile bag using standard apheresis techniques.
- the plasma is then brought in the form of a fluid input to system 200 for further processing.
- system 200 is not connected to the patient at any time and is a discrete, stand-along system for delipidating plasma.
- the patient' s plasma is processed by system 200 and brought back to the patient' s location to be reinfused back into the patient.
- the system may be a continuous flow system that is connected to the patient in which both plasmapheresis and delipidation are performed in an excorporeal, parallel system and the delipidated plasma product is returned to the patient.
- a fluid input 205 (containing blood plasma) is provided and connected via tubing to a mixing device 220.
- a solvent input 210 is provided and also connected via tubing to mixing device 220.
- valves 215, 216 are used to control the flow of fluid from fluid input 205 and solvent from solvent input 210 respectively.
- the fluid input 205 contains any fluid that includes HDL particles, including plasma having LDL particles or devoid of LDL particles, as discussed above.
- solvent input 210 can include a single solvent, a mixture of solvents, or a plurality of different solvents that are mixed at the point of solvent input 210. While depicted as a single solvent container, solvent input 210 can comprise a plurality of separate solvent containers. Embodiments of types of solvents that may be used are discussed above.
- Mixer 220 mixes fluid from fluid input 205 and solvent from solvent input 210 to yield a fluid-solvent mixture.
- mixer 220 is capable of using a shaker bag mixing method with the input fluid and input solvent in a plurality of batches, such as 1, 2, 3 or more batches.
- An exemplary mixer is a Barnstead Labline orbital shaker table. In alternative embodiments, other known methods of mixing are utilized.
- the fluid-solvent mixture is directed, through tubing and controlled by at least one valve 215a, to a separator 225.
- separator 225 is capable of performing bulk solvent separation through gravity separation in a funnel-shaped bag.
- the fluid-solvent mixture separates into a first layer and second layer.
- the first layer comprises a mixture of solvent and lipid that has been removed from the HDL particles.
- the first layer is transported through a valve 215b to a first waste container 235.
- the second layer comprises a mixture of residual solvent, modified HDL particles, and other elements of the input fluid.
- the composition of the first layer and the second layer would differ based upon the nature of the input fluid.
- the second layer is transported through tubing to a solvent extraction device 240.
- a pressure sensor 229 and valve 230 is positioned in the flow stream to control the flow of the second layer to solvent extraction device 240.
- valves 215, 216 to enable the flow of fluid from input containers 205, 210 may be timed using mass balance calculations derived from weight determinations of the fluid inputs 205, 210 and separator 225.
- the valve 215b between separator 225 and first waste container 235 and valve 230 between separator 225 and solvent extraction device 240 open after the input masses (fluid and solvent) substantially balances with the mass in separator 225 and a sufficient period of time has elapsed to permit separation between the first and second layers.
- valve 215b between separator 225 and first waste container 235 is opened or valve 230 between separator 225 and solvent extraction device 240 is opened.
- valve 215b between separator 225 and first waste container 235 is open just long enough to remove all of the first layer and some of the second layer, thereby ensuring that as much solvent as possible has been removed from the fluid being sent to solvent extraction device 240.
- an infusion grade fluid may be employed via one or more inputs 260 which are in fluid communication with the fluid path 221 leading from separator 225 to solvent extraction device 240 for priming.
- IGF infusion grade fluid
- saline is employed as the infusion grade priming fluid in at least one of inputs 260.
- 0.9% sodium chloride (saline) is employed.
- glucose may be employed as the infusion grade priming fluid in any one of inputs 260.
- a glucose input 255 and one or more saline inputs 260 are in fluid communication with the fluid path 221 leading from separator 225 to solvent extraction device 240.
- a plurality of valves 215c and 215d are also be incorporated in the flow stream from glucose input 255 and saline input 260 respectively, to the tubing providing the flow path 221 from separator 225 to solvent extraction device 240.
- IGF such as saline and/or glucose are incorporated into embodiments of the present specification in order to prime solvent extraction device 240 prior to operation of the system.
- saline is used to prime most of the fluid communication lines and solvent extraction device 240. If priming is not required, the IGF inputs are not employed. Where such priming is not required, the glucose and saline inputs are not required. Also, one of ordinary skill in the art would appreciate that the glucose and saline inputs can be replaced with other primers if required by the solvent extraction device 240 requires it.
- solvent extraction device 240 is a charcoal column designed to remove the specific solvent used in solvent input 210.
- An exemplary solvent extraction device 240 is an Asahi Hemosorber charcoal column, or the Bazter/Gambro Adsorba 300C charcoal column or any other charcoal column that is employed in blood hemoglobin perfusion procedures.
- a pump 250 is used to move the second layer from separator 225, through solvent extraction device 240, and to an output container 245.
- pump 250 is a rotary peristaltic pump, such as a Masterflex Model 77201-62.
- the first layer is directed to waste container 235 that is in fluid communication with separator 225 through tubing and at least one valve 215b. Additionally, other waste, if generated, can be directed from the fluid path connecting solvent extraction device 240 and output container 245 to a second waste container 255.
- a valve 215f is included in the path from the solvent extraction device 240 to the output container 245.
- a valve 215g is included in the path from the solvent extraction device 240 to the second waste container 255.
- gravity is used, wherever practical, to move fluid through each of the plurality of components.
- gravity is used to drain input plasma 205 and input solvent 210 into mixer 220.
- mixer 220 comprises a shaker bag and separator 225 comprises a funnel bag
- fluid is moved from the shaker bag to the funnel bag and, subsequently, to first waste container 235, if appropriate, using gravity.
- the output fluid in output container 245 is subjected to a solvent detection system, or lipid removing agent detection system, to determine if any solvent, or other undesirable component, is in the output fluid.
- a solvent sensor is only employed in a continuous flow system.
- the output fluid is subjected to sensors that are capable of determining the concentrations of solvents introduced in the solvent input, such as n-butanol or di-isopropyl ether. The output fluid is returned to the bloodstream of the patient and the solvent concentrations must be below a predetermined level to carry out this operation safely.
- the sensors are capable of providing such concentration information on a real-time basis and without having to physically transport a sample of the output fluid, or air in the headspace, to a remote device.
- the resultant separated modified HDL particles are then introduced to the bloodstream of the patient.
- molecularly imprinted polymer technology is used to enable surface acoustic wave sensors.
- a surface acoustic wave sensor receives an input, through some interaction of its surface with the surrounding environment, and yields an electrical response, generated by the piezoelectric properties of the sensor substrate.
- molecularly imprinted polymer technology is used.
- Molecularly imprinted polymers are plastics programmed to recognize target molecules, like pharmaceuticals, toxins or environmental pollutants, in complex biological samples.
- the molecular imprinting technology is enabled by the polymerization of one or more functional monomers with an excess of a crosslinking monomer in presence of a target template molecule exhibiting a structure similar to the target molecule that is to be recognized, i.e. the target solvent.
- molecularly imprinted polymer technology to enable surface acoustic wave sensors can be made more specific to the concentrations of targeted solvents and are capable of differentiating such targeted solvents from other possible interferents. As a result, the presence of acceptable interferents that may have similar structures and/or properties to the targeted solvents would not prevent the sensor from accurately reporting existing respective solvent concentrations.
- the input solvent comprises certain solvents, such as n-butanol
- electrochemical oxidation could be used to measure the solvent concentration. Electrochemical measurements have several advantages. They are simple, sensitive, fast, and have a wide dynamic range. The instrumentation is simple and not affected by humidity.
- the target solvent such as n-butanol
- Electrodes such as gold, silver, iridium, or graphite, could be used.
- cyclic voltammetric techniques are used, other pulse techniques such as differential pulse voltammetry or square wave voltammetry may increase the speed and sensitivity of measurements.
- Embodiments of the present specification expressly cover any and all forms of automatically sampling and measuring, detecting, and analyzing an output fluid, or the headspace above the output fluid.
- automated detection can be achieved by integrating a mini-gas chromatography (GC) measuring device that automatically samples air in the output container, transmits it to a GC device optimized for the specific solvents used in the delipidation process, and, using known GC techniques, analyzes the sample for the presence of the solvents.
- GC mini-gas chromatography
- suitable materials for use in any of the apparatus components as described herein include materials that are biocompatible, approved for medical applications that involve contact with internal body fluids, and in compliance with U. S. PVI or ISO 10993 standards. Further, the materials do not substantially degrade from, for instance, exposure to the solvents used in the present specification, during at least a single use.
- the materials are sterilizable either by radiation or ethylene oxide (EtO) sterilization.
- EtO ethylene oxide
- Such suitable materials are capable of being formed into objects using conventional processes, such as, but not limited to, extrusion, injection molding and others.
- Materials meeting these requirements include, but are not limited to, nylon, polypropylene, polycarbonate, acrylic, polysulfone, polyvinylidene fluoride (PVDF), fluoroelastomers such as VITON, available from DuPont Dow Elastomers L.L.C., thermoplastic elastomers such as SANTOPRE E, available from Monsanto, polyurethane, polyvinyl chloride (PVC), polytetrafluoroethylene (PTFE), polyphenylene ether (PFE), perfluoroalkoxy copolymer (PFA), which is available as TEFLON PFA from E.I. du Pont de Nemours and Company, and combinations thereof.
- PVDF polyvinylidene fluoride
- VITON available from DuPont Dow Elastomers L.L.C.
- thermoplastic elastomers such as SANTOPRE E, available from Monsanto, polyurethane, polyvinyl chloride (PVC), polytetraflu
- Valves 215, 215a, 215b, 215c, 215d, 215e, 215f, 215g, 216 and any other valve used in each embodiment may be composed of, but are not limited to, pinch, globe, ball, gate or other conventional valves.
- the valves are occlusion valves such as Aero Associates' Model 955 valve.
- the present specification is not limited to a valve having a particular style.
- the components of each system described in accordance with embodiments of the present specification may be physically coupled together or coupled together using conduits that may be composed of flexible or rigid pipe, tubing or other such devices known to those of ordinary skill in the art.
- FIG. 3 illustrates an exemplary configuration of a system used in accordance with some embodiments of the present specification to achieve the processes disclosed herein.
- a configuration of basic components of the HDL modification system 300 is shown.
- a fluid input 305 is provided and connected via tubing to a mixing device 320.
- a solvent input 310 is provided and also connected via tubing to a mixing device 320.
- valves 316 are used to control the flow of fluid from fluid input 305 and solvent from solvent input 310.
- the fluid input 305 preferably contains any fluid that includes HDL particles, including plasma having LDL particles or devoid of LDL particles, as discussed above.
- solvent input 310 can include a single solvent, a mixture of solvents, or a plurality of different solvents that are mixed at the point of solvent input 310. While depicted as a single solvent container, solvent input 310 can comprise a plurality of separate solvent containers. The types of solvents that are used and preferred are discussed above.
- the mixer 320 mixes fluid from fluid input 305 and solvent from solvent input 310 to yield a fluid-solvent mixture.
- mixer 320 is capable of using a shaker bag mixing method with the input fluid and input solvent in a plurality of batches, such as 1, 2, 3 or more batches.
- the fluid-solvent mixture is directed, through tubing and controlled by at least one valve 321, to a separator 325.
- separator 325 is capable of performing bulk solvent separation through gravity separation in a funnel-shaped bag.
- the fluid-solvent mixture separates into a first layer and second layer.
- the first layer comprises a mixture of solvent and lipid that has been removed from the HDL particles.
- the second layer comprises a mixture of residual solvent, modified HDL particles, and other elements of the input fluid.
- the composition of the first layer and the second layer would differ based upon the nature of the input fluid.
- the second layer is transported through tubing to a solvent extraction device 340.
- a pressure sensor 326 and valve 327 is positioned in the flow stream to control the flow of the second layer to the solvent extraction device 340.
- a glucose input 330 and saline input 350 is in fluid communication with the fluid path leading from the separator 325 to the solvent extraction device 340.
- a plurality of valves 331 is also preferably incorporated in the flow stream from the glucose input 330 and saline input 350 to the tubing providing the flow path from the separator 325 to the solvent extraction device 340.
- Glucose and saline are incorporated into the present specification in order to prime the solvent extraction device 340 prior to operation of the system. Where such priming is not required, the glucose and saline inputs are not required. Also, one of ordinary skill in the art would appreciate that the glucose and saline inputs can be replaced with other primers if the solvent extraction device 340 requires it.
- the solvent extraction device 340 is preferably a charcoal column designed to remove the specific solvent used in the solvent input 310.
- An exemplary solvent extraction device 340 is an Asahi Hemosorber charcoal column.
- a pump 335 is used to move the second layer from the separator 325, through the solvent extraction device 340, and to an output container 315.
- the pump is preferably a peristaltic pump, such as a Masterflex Model 77201-62.
- the first layer is directed to a waste container 355 that is in fluid communication with separator 325 through tubing and at least one valve 356. Additionally, other waste, if generated, can be directed from the fluid path connecting solvent extraction device 340 and output container 315 to waste container 355.
- an embodiment of the present specification uses gravity, wherever practical, to move fluid through each of the plurality of components.
- gravity is used to drain the input plasma 305 and input solvent 310 into the mixer 320.
- separator 325 comprises a funnel bag
- fluid is moved from the shaker bag to the funnel bag and, subsequently, to the waste container 355, if appropriate, using gravity.
- the present specification preferably comprises configurations wherein all inputs, such as input plasma and input solvents, disposable elements, such as mixing bags, separator bags, waste bags, solvent extraction devices, and solvent detection devices, and output containers are in easily accessible positions and can be readily removed and replaced by a technician.
- inputs such as input plasma and input solvents
- disposable elements such as mixing bags, separator bags, waste bags, solvent extraction devices, and solvent detection devices
- output containers are in easily accessible positions and can be readily removed and replaced by a technician.
- kits may include an input fluid container (i.e. a high density lipoprotein source container), a lipid removing agent source container (i.e. a solvent container), disposable components of a mixer, such as a bag or other container, disposable components of a separator, such as a bag or other container, disposable components of a solvent extraction device (i.e.
- an input fluid container i.e. a high density lipoprotein source container
- a lipid removing agent source container i.e. a solvent container
- disposable components of a mixer such as a bag or other container
- disposable components of a separator such as a bag or other container
- disposable components of a solvent extraction device i.e.
- a charcoal column an output container
- disposable components of a waste container such as a bag or other container
- solvent detection devices and, a plurality of tubing and a plurality of valves for controlling the flow of input fluid (high density lipoprotein) from the input container and lipid removing agent (solvent) from the solvent container to the mixer, for controlling the flow of the mixture of lipid removing agent, lipid, and particle derivative to the separator, for controlling the flow of lipid and lipid removing agent to a waste container, for controlling the flow of residual lipid removing agent, residual lipid, and particle derivative to the extraction device, and for controlling the flow of particle derivative to the output container.
- input fluid high density lipoprotein
- lipid removing agent solvent
- a kit comprises a plastic container having disposable components of a mixer, such as a bag or other container, disposable components of a separator, such as a bag or other container, disposable components of a waste container, such as a bag or other container, and, a plurality of tubing and a plurality of valves for controlling the flow of input fluid (high density lipoprotein) from the input container and lipid removing agent (solvent) from the solvent container to the mixer, for controlling the flow of the mixture of lipid removing agent, lipid, and particle derivative to the separator, for controlling the flow of lipid and lipid removing agent to a waste container, for controlling the flow of residual lipid removing agent, residual lipid, and particle derivative to the extraction device, and for controlling the flow of particle derivative to the output container.
- Disposable components of a solvent extraction device i.e. a charcoal column
- the input fluid, the input solvent, and solvent extraction devices may be provided separately.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Neurology (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Neurosurgery (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Radiology & Medical Imaging (AREA)
- Pathology (AREA)
- Psychiatry (AREA)
- Surgery (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Hospice & Palliative Care (AREA)
- Biophysics (AREA)
- Dispersion Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Child & Adolescent Psychology (AREA)
- Developmental Disabilities (AREA)
- Psychology (AREA)
- Physiology (AREA)
- Dermatology (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019547373A JP2020509036A (en) | 2017-03-01 | 2018-03-01 | Methods for prophylactically preventing, delaying the progression or treating Alzheimer's disease |
AU2018226803A AU2018226803A1 (en) | 2017-03-01 | 2018-03-01 | Methods for prophylactically preventing, slowing the progression of, or treating Alzheimer's Disease |
EP18761409.4A EP3589272A4 (en) | 2017-03-01 | 2018-03-01 | Methods for prophylactically preventing, slowing the progression of, or treating alzheimer's disease |
CA3053491A CA3053491A1 (en) | 2017-03-01 | 2018-03-01 | Methods for prophylactically preventing, slowing the progression of, or treating alzheimer's disease |
CN201880020544.0A CN110545797A (en) | 2017-03-01 | 2018-03-01 | Methods of prophylactically preventing, slowing progression of, or treating alzheimer's disease |
JP2023007457A JP2023071648A (en) | 2017-03-01 | 2023-01-20 | Methods for prophylactically preventing, slowing progression of, or treating alzheimer's disease |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762465262P | 2017-03-01 | 2017-03-01 | |
US62/465,262 | 2017-03-01 | ||
US201762516100P | 2017-06-06 | 2017-06-06 | |
US62/516,100 | 2017-06-06 | ||
US201762537581P | 2017-07-27 | 2017-07-27 | |
US62/537,581 | 2017-07-27 | ||
US15/876,808 US20190021674A1 (en) | 2017-01-23 | 2018-01-22 | Methods for Treating Cholesterol-Related Diseases |
US15/876,808 | 2018-01-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018160868A1 true WO2018160868A1 (en) | 2018-09-07 |
Family
ID=63371433
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2018/020502 WO2018160868A1 (en) | 2017-03-01 | 2018-03-01 | Methods for prophylactically preventing, slowing the progression of, or treating alzheimer's disease |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018160868A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020113041A1 (en) * | 2018-11-30 | 2020-06-04 | Hdl Therapeutics, Inc | Methods for treating lipid-related diseases including xanthomas, carotid artery stenoses, and cerebral atherosclerosis |
EP3790573A4 (en) * | 2018-05-11 | 2022-05-11 | HDL Therapeutics, Inc. | Methods for prophylactically preventing, slowing the progression of, or treating cerebral amyloid angiopathy, alzheimer's disease and/or acute stroke |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040106556A1 (en) | 2002-08-26 | 2004-06-03 | Yanhong Zhu | Method of treating and preventing alzheimer disease through administration of delipidated protein and lipoprotein particles |
-
2018
- 2018-03-01 WO PCT/US2018/020502 patent/WO2018160868A1/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040106556A1 (en) | 2002-08-26 | 2004-06-03 | Yanhong Zhu | Method of treating and preventing alzheimer disease through administration of delipidated protein and lipoprotein particles |
Non-Patent Citations (4)
Title |
---|
BARRANS ET AL., BIOCHEMICA BIOPHYSICA ACTA, vol. 1300, 1996, pages 73 - 85 |
HAWKES, CA ET AL.: "Disruption of Arterial Perivascular Drainage of Amyloid beta from the Brains of Mice Expressing the Human APOE e4 Allele", PLOS ONE, vol. 7, no. 7, 25 July 2012 (2012-07-25), pages 1 - 11, XP055544822, Retrieved from the Internet <URL:doi:10.1371/journal.pone.0041636> * |
ROHER, AE ET AL.: "Cortical and Leptomeningeal Cerebrovascular Amyloid and White Matter Pathology in Alzheimer's Disease", MOLECULAR MEDICINE, vol. 9, no. 3-4, March 2003 (2003-03-01), pages 112 - 122, XP055544819, Retrieved from the Internet <URL:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1430731/pdf/mol9p112.pdf> * |
See also references of EP3589272A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3790573A4 (en) * | 2018-05-11 | 2022-05-11 | HDL Therapeutics, Inc. | Methods for prophylactically preventing, slowing the progression of, or treating cerebral amyloid angiopathy, alzheimer's disease and/or acute stroke |
WO2020113041A1 (en) * | 2018-11-30 | 2020-06-04 | Hdl Therapeutics, Inc | Methods for treating lipid-related diseases including xanthomas, carotid artery stenoses, and cerebral atherosclerosis |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230355180A1 (en) | Methods for Treating Cholesterol-Related Diseases | |
US20080214438A1 (en) | Methods and Apparatus for Creating Particle Derivatives of HDL with Reduced Lipid Content | |
US20180355021A1 (en) | Methods and Apparatus for Creating Particle Derivatives of HDL with Reduced Lipid Content | |
US20190381070A1 (en) | Methods for Prophylactically Preventing, Slowing the Progression of, or Treating Cerebral Amyloid Angiopathy, Alzheimer's Disease and/or Acute Stroke | |
US20220202857A1 (en) | Systems and methods for reducing low attenuation plaque and/or plaque burden in patients | |
JP2023071648A (en) | Methods for prophylactically preventing, slowing progression of, or treating alzheimer's disease | |
WO2018160868A1 (en) | Methods for prophylactically preventing, slowing the progression of, or treating alzheimer's disease | |
EP3790573A1 (en) | Methods for prophylactically preventing, slowing the progression of, or treating cerebral amyloid angiopathy, alzheimer's disease and/or acute stroke | |
US20190070257A1 (en) | Methods for Prophylactically Preventing, Slowing the Progression of, or Treating Alzheimer's Disease | |
US20230140014A1 (en) | Methods and Systems for Prophylactically Preventing, Slowing the Progression of, or Treating Cerebral Amyloid Angiopathy, Alzheimer’s Disease, and/or Acute Stroke | |
WO2023064794A1 (en) | Methods and systems for prophylactically preventing, slowing the progression of, or treating cerebral amyloid angiopathy, alzheimer's disease and/or acute stroke | |
CN113365643A (en) | Methods for treating lipid-related disorders including xanthoma, carotid stenosis and cerebral atherosclerosis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18761409 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3053491 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2018226803 Country of ref document: AU Date of ref document: 20180301 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019547373 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018761409 Country of ref document: EP Effective date: 20191001 |