+

WO2018159733A1 - Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element - Google Patents

Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element Download PDF

Info

Publication number
WO2018159733A1
WO2018159733A1 PCT/JP2018/007686 JP2018007686W WO2018159733A1 WO 2018159733 A1 WO2018159733 A1 WO 2018159733A1 JP 2018007686 W JP2018007686 W JP 2018007686W WO 2018159733 A1 WO2018159733 A1 WO 2018159733A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
ppm
formula
carbon atoms
Prior art date
Application number
PCT/JP2018/007686
Other languages
French (fr)
Japanese (ja)
Inventor
司 藤枝
一平 福田
美希 豊田
雄介 山本
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to CN202210301600.6A priority Critical patent/CN114609830B/en
Priority to JP2019503096A priority patent/JP7096534B2/en
Priority to CN201880028793.4A priority patent/CN110573952B/en
Priority to KR1020197027969A priority patent/KR102588036B1/en
Publication of WO2018159733A1 publication Critical patent/WO2018159733A1/en
Priority to JP2022090434A priority patent/JP7409431B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/76Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings and etherified hydroxy groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/78Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C217/80Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings
    • C07C217/82Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring
    • C07C217/90Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring the oxygen atom of at least one of the etherified hydroxy groups being further bound to a carbon atom of a six-membered aromatic ring, e.g. amino-diphenylethers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C219/00Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C219/32Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings and esterified hydroxy groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/52Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C229/54Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton with amino and carboxyl groups bound to carbon atoms of the same non-condensed six-membered aromatic ring
    • C07C229/62Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton with amino and carboxyl groups bound to carbon atoms of the same non-condensed six-membered aromatic ring with amino groups and at least two carboxyl groups bound to carbon atoms of the same six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/28Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton
    • C07C237/40Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton having the nitrogen atom of the carboxamide group bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J41/00Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring
    • C07J41/0033Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring not covered by C07J41/0005
    • C07J41/0088Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring not covered by C07J41/0005 containing unsubstituted amino radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Definitions

  • the present invention relates to a liquid crystal aligning agent, a liquid crystal alignment film, and a liquid crystal display element, which are excellent in the ability to align liquid crystal vertically.
  • a liquid crystal display element of a method in which liquid crystal molecules aligned perpendicular to the substrate respond by an electric field also referred to as a vertical alignment (VA) method
  • VA vertical alignment
  • a photopolymerizable compound is previously added to the liquid crystal composition, and a polyimide-based vertical alignment film is used, and ultraviolet rays are applied while applying a voltage to the liquid crystal cell. Therefore, a technique for increasing the response speed of liquid crystal (PSA (Polymer Sustained Alignment) type element, for example, see Patent Document 1 and Non-Patent Document 1) is known.
  • PSA Polymer Sustained Alignment
  • the alignment film has a problem in that the ability to align the liquid crystal vertically decreases, and as a result, the obtained liquid crystal display element partially causes a display defect.
  • the liquid crystal alignment film and the column spacer come into contact with each other, and the liquid crystal alignment film is damaged, so that an alignment defect (bright spot) is generated in that portion.
  • a liquid crystal aligning agent having the following constitution, and completed the present invention. That is, the configuration of the present invention is as follows. 1. A liquid crystal containing at least one polymer selected from a polyimide precursor which is a reaction product of a diamine component containing a diamine represented by the following formula [1] and a tetracarboxylic acid component and a polyimide which is an imidized product thereof. Alignment agent.
  • X represents a single bond, —O—, —C (CH 3 ) 2 —, —NH—, —CO—, —NHCO—, —COO—, — (CH 2 ) m —, — It represents a divalent organic group composed of SO 2 — and any combination thereof, and m represents an integer of 1 to 8.
  • Y independently represents a structure of the following formula [1-1].
  • Y 1 and Y 3 each independently represent a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O— , -CONH-, -NHCO-, -COO-, and -OCO-.
  • Y 2 represents a single bond or — (CH 2 ) b — (b is an integer of 1 to 15) (provided that Y 1 or Y 3 is a single bond, — (CH 2 ) a — 2 is a single bond, and Y 1 is at least one selected from the group consisting of —O—, —CH 2 O—, —CONH—, —NHCO—, —COO—, and —OCO—, and / or Or when Y 3 is at least one selected from the group consisting of —O—, —CH 2 O—, —CONH—, —NHCO—, —COO— and —OCO—, Y 2 is a single bond or — ( CH 2 ) b — (provided that when Y 1 is —CONH—, they are Y 2 and Y 3 single bonds)).
  • Y 4 represents at least one divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring, or a divalent organic group having 17 to 51 carbon atoms having a steroid skeleton and a tocophenol skeleton
  • the optional hydrogen atom on the cyclic group includes an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, and a fluorine-containing alkoxy group having 1 to 3 carbon atoms. Alternatively, it may be substituted with a fluorine atom.
  • Y 5 represents at least one cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring, and a heterocyclic ring, and an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, a carbon number of 1 It may be substituted with 1 to 3 alkoxy groups, 1 to 3 fluorine-containing alkyl groups, 1 to 3 fluorine-containing alkoxy groups or fluorine atoms.
  • Y 6 represents a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, and 1 to 18 carbon atoms. And at least one selected from the group consisting of fluorine-containing alkoxy groups.
  • n represents an integer of 0 to 4.
  • a liquid crystal aligning agent capable of obtaining a liquid crystal alignment film that does not deteriorate the ability to align liquid crystals vertically even when exposed to excessive heating.
  • a liquid crystal aligning agent capable of obtaining a liquid crystal alignment film that does not deteriorate the ability to align liquid crystal vertically even when some foreign matter comes into contact with the film and is damaged.
  • a liquid crystal alignment film obtained from the liquid crystal alignment agent and a method for obtaining a liquid crystal alignment film using the liquid crystal alignment agent can be provided.
  • the liquid crystal aligning agent of the present invention contains a diamine represented by the above formula [1] (hereinafter, the “diamine represented by the above formula [1]” may be abbreviated as “specific diamine”). And at least one polymer selected from a polyimide precursor that is a reaction product with a tetracarboxylic acid component and a polyimide that is an imidized product thereof (hereinafter sometimes abbreviated as “specific polymer”).
  • the specific polymer contains a specific diamine, but may have a diamine other than the specific diamine.
  • the amount of the specific diamine and other diamines is such that the specific diamine is 5 mol% to 70 mol%, preferably 10 mol% to 50 mol%, more preferably 10 mol% to 40 mol% in the specific polymer. It is good.
  • the liquid crystal aligning agent of this invention may contain "polyimide which is a polyimide precursor and / or its imidized substance" other than a specific polymer.
  • specific diamine will be described, and then diamines other than “specific diamine” will be described.
  • X represents a single bond, —O—, —C (CH 3 ) 2 —, —NH—, —CO—, —NHCO—, —COO—, — (CH 2 ) m —, — It represents a divalent organic group composed of SO 2 — and any combination thereof, and m represents an integer of 1 to 8.
  • X is preferably a single bond, —O—, —NH—, —O— (CH 2 ) m —O—.
  • Y may be in the meta position or in the ortho position from the position of X, but is preferably in the ortho position. That is, the formula [1] is preferably the following formula [1 ′].
  • the position of “—NH 2 ” in the above formula [1] may be any position as shown in formula [1], but preferably the following formula [1] -a1, [1] -a2, [ 1] -a3 is preferable, and [1] -a1 is more preferable.
  • the above formula [1] may be any structure selected from the following formulas, preferably the formula [1] ] -A1-1 is preferable.
  • Y independently represents the structure of the following formula [1-1].
  • Y 1 and Y 3 each independently represent a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O— , -CONH-, -NHCO-, -COO-, and -OCO-.
  • Y 2 represents a single bond or — (CH 2 ) b — (b is an integer of 1 to 15) (provided that Y 1 or Y 3 is a single bond, — (CH 2 ) a — 2 is a single bond, and Y 1 is at least one selected from the group consisting of —O—, —CH 2 O—, —CONH—, —NHCO—, —COO—, and —OCO—, and / or Or when Y 3 is at least one selected from the group consisting of —O—, —CH 2 O—, —CONH—, —NHCO—, —COO— and —OCO—, Y 2 is a single bond or — ( CH 2 ) b — (provided that when Y 1 is —CONH—, they are Y 2 and Y 3 single bonds)).
  • Y 4 represents at least one divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring, or a divalent organic group having 17 to 51 carbon atoms having a steroid skeleton and a tocophenol skeleton
  • the optional hydrogen atom on the cyclic group includes an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, and a fluorine-containing alkoxy group having 1 to 3 carbon atoms. Alternatively, it may be substituted with a fluorine atom.
  • Y 5 represents at least one cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring, and a heterocyclic ring, and an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, a carbon number of 1 It may be substituted with 1 to 3 alkoxy groups, 1 to 3 fluorine-containing alkyl groups, 1 to 3 fluorine-containing alkoxy groups or fluorine atoms.
  • Y 6 represents a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, and 1 to 18 carbon atoms. And at least one selected from the group consisting of fluorine-containing alkoxy groups.
  • n represents an integer of 0 to 4.
  • Examples of the group represented by the above formula [1-1] include, but are not limited to, the following groups [1-1] -1 to [1-1] -22. Of these, [1-1] -1 to [1-1] -4, [1-1] -8, and [1-1] -10 are preferable. Note that * indicates the position of bonding with the phenyl group in the above formula [1], the above formula [1 '], the above formula [1] -a1 to the above formula [1] -a3. m represents an integer of 1 to 15, and n represents an integer of 0 to 18.
  • the polymer contained in the liquid crystal aligning agent of the present invention may have a photoreactive side chain.
  • the photoreactive side chain is possessed by “polyimide precursor and / or imidized product thereof” which is a polymer other than “specific polymer”, even if “specific polymer” has. May be.
  • ⁇ Diamine containing photoreactive side chain> In order to introduce a photoreactive side chain into a polymer other than the “specific polymer” and / or “specific polymer”, a diamine having a photoreactive side chain is used as a part of the diamine component. Good. Examples of the diamine having a photoreactive side chain include, but are not limited to, a diamine having a side chain represented by Formula [VIII] or Formula [IX].
  • the bonding positions of the two amino groups (—NH 2 ) in Formula [VIII] and Formula [IX] are not limited. Specifically, with respect to the linking group of the side chain, 2, 3 position, 2, 4 position, 2, 5 position, 2, 6 position, 3, 4 position on the benzene ring, 3, 4 position, 5 positions. Among these, from the viewpoint of reactivity when synthesizing a polyamic acid, positions 2, 4, 2, 5, or 3, 5 are preferable. Considering the ease in synthesizing the diamine, the positions 2, 4 or 3, 5 are more preferable.
  • R 8 , R 9 and R 10 in formula [VIII] are as follows. That is, R 8 is a single bond, —CH 2 —, —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, —CH 2 O—, —N (CH 3 ). —, —CON (CH 3 ) —, or —N (CH 3 ) CO— is represented.
  • R 8 is preferably a single bond, —O—, —COO—, —NHCO—, or —CONH—.
  • R 9 represents a single bond or an alkylene group having 1 to 20 carbon atoms which may be substituted with a fluorine atom, and —CH 2 — in the alkylene group is optionally substituted with —CF 2 — or —CH ⁇ CH—. If any of the following groups are not adjacent to each other, these groups may be substituted; —O—, —COO—, —OCO—, —NHCO—, —CONH—, — NH-, divalent carbocyclic or heterocyclic ring. Specific examples of the divalent carbocycle or heterocycle include, but are not limited to, the following.
  • R 9 can be formed by a general organic synthetic method, but a single bond or an alkylene group having 1 to 12 carbon atoms is preferable from the viewpoint of ease of synthesis.
  • R 10 represents a photoreactive group selected from the following formulae.
  • R 10 is preferably a methacryl group, an acryl group or a vinyl group from the viewpoint of photoreactivity.
  • Y 1 represents —CH 2 —, —O—, —CONH—, —NHCO—, —COO—, —OCO—, —NH—, or —CO—.
  • Y 2 is an alkylene group having 1 to 30 carbon atoms, a divalent carbocycle or a heterocycle, and one or more hydrogen atoms of the alkylene group, divalent carbocycle or heterocycle are fluorine atoms or organic It may be substituted with a group.
  • Y 2 when the following groups are not adjacent to each other, —CH 2 — may be substituted with these groups; —O—, —NHCO—, —CONH—, —COO—, —OCO—, —NH—, —NHCONH—, —CO—.
  • Y 3 represents —CH 2 —, —O—, —CONH—, —NHCO—, —COO—, —OCO—, —NH—, —CO—, or a single bond.
  • Y 4 represents a cinnamoyl group.
  • Y 5 is a single bond, an alkylene group having 1 to 30 carbon atoms, a divalent carbocycle or a heterocycle, and one or more hydrogen atoms of the alkylene group, divalent carbocycle or heterocycle are fluorine atoms Alternatively, it may be substituted with an organic group.
  • —CH 2 — may be substituted with these groups; —O—, —NHCO—, —CONH—, —COO—, —OCO—, —NH—, —NHCONH—, —CO—.
  • Y 6 represents a photopolymerizable group which is an acrylic group or a methacryl group.
  • X 9 and X 10 are each independently a single bond, a bonding group that is —O—, —COO—, —NHCO—, or —NH—, and Y may be substituted with a fluorine atom Represents an alkylene group having 1 to 20 carbon atoms.
  • examples of the diamine having a photoreactive side chain include a diamine having a group causing a photodimerization reaction and a group causing a photopolymerization reaction represented by the following formula in the side chain.
  • Y 1 to Y 6 are the same as defined above.
  • the diamine having a photoreactive side chain depends on the liquid crystal alignment property when it is used as a liquid crystal alignment film, the pretilt angle, the voltage holding property, the characteristics such as accumulated charge, the response speed of the liquid crystal when it is used as a liquid crystal display device, etc. 1 type or 2 types or more can be mixed and used.
  • the diamine having a photoreactive side chain is preferably used in an amount of 10 to 70 mol%, more preferably 20 to 60 mol%, particularly preferably 30 to 50 mol% of the diamine component used for the synthesis of the polyamic acid. It is.
  • the diamine having a photoreactive side chain include a diamine having a side chain having a site having a radical generating structure that is decomposed by ultraviolet irradiation to generate radicals.
  • Ar, R 1 , R 2 , T 1 , T 2 , S and Q in the above formula (1) have the following definitions. That is, Ar represents an aromatic hydrocarbon group selected from phenylene, naphthylene, and biphenylene, in which an organic group may be substituted, and a hydrogen atom may be substituted with a halogen atom.
  • R 1 and R 2 are each independently an alkyl or alkoxy group having 1 to 10 carbon atoms.
  • T1 and T2 are each independently a single bond or —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, —CH 2 O—, —N (CH 3 ) —, It is a bonding group of —CON (CH 3 ) — and —N (CH 3 ) CO—.
  • S is a single bond, unsubstituted or an alkylene group having 1 to 20 carbon atoms substituted by a fluorine atom.
  • the alkylene group —CH 2 — or —CF 2 — may be optionally replaced with —CH ⁇ CH—, and when any of the following groups is not adjacent to each other, these groups are replaced with these groups: -O-, -COO-, -OCO-, -NHCO-, -CONH-, -NH-, a divalent carbocycle, and a divalent heterocycle.
  • Q is a structure selected from the following (in the structural formula, R represents water, an elementary atom, or an alkyl group having 1 to 4 carbon atoms, and R 3 represents —CH 2 —, —NR—, —O—, or —S Represents-).
  • Ar to which carbonyl is bonded is involved in the absorption wavelength of ultraviolet rays. Therefore, when the wavelength is increased, a structure having a long conjugate length such as naphthylene or biphenylene is preferable.
  • Ar may be substituted with a substituent, and the substituent is preferably an electron-donating organic group such as an alkyl group, a hydroxyl group, an alkoxy group, and an amino group.
  • R 1 and R 2 are each independently an alkyl group having 1 to 10 carbon atoms, an alkoxy group, a benzyl group, or a phenethyl group. In the case of an alkyl group or an alkoxy group, R 1 and R 2 are May be formed.
  • Q is preferably an electron donating organic group, and the above group is preferable.
  • Q is an amino derivative
  • the diaminobenzene in the formula (1) may have any structure of o-phenylenediamine, m-phenylenediamine, or p-phenylenediamine. However, in terms of reactivity with acid dianhydride, m-phenylenediamine, or p-Phenylenediamine is preferred.
  • n is an integer of 2 to 8.
  • a diamine other than the specific diamine represented by the formula [1] (hereinafter also referred to as other diamine) may be contained.
  • Such a diamine is represented by the following general formula [2].
  • Other diamines may be used alone or in combination of two or more.
  • a 1 and A 2 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkynyl group having 2 to 5 carbon atoms. It is. From the viewpoint of monomer reactivity, A 1 and A 2 are preferably a hydrogen atom or a methyl group.
  • An example of the structure of Y 1 is as follows.
  • n is an integer of 1 to 6 unless otherwise specified.
  • Boc represents a tert-butoxycarbonyl group.
  • diamine components used in the liquid crystal aligning agent of the present invention are not particularly limited, but (Y-7), (Y-8), from the viewpoints of coatability, voltage holding ratio characteristics, residual DC voltage characteristics, and the like.
  • (Y-16), (Y-17), (Y-21), (Y-22), (Y-28), (Y-37), (Y-38), (Y-60), (Y -67), (Y-68), (Y-71) to (Y-73), and (Y-160) to (Y-180) are particularly preferably selected and used in combination.
  • tetracarboxylic acid component examples include tetracarboxylic acid, tetracarboxylic dianhydride, tetracarboxylic acid dihalide, tetracarboxylic acid dialkyl ester, and tetracarboxylic acid dialkyl ester dihalide. Then, these are also collectively referred to as a tetracarboxylic acid component.
  • tetracarboxylic acid component examples include tetracarboxylic dianhydride and its derivatives, tetracarboxylic acid, tetracarboxylic acid dihalide, tetracarboxylic acid dialkyl ester, and tetracarboxylic acid dialkyl ester dihalide (collectively, 1 tetracarboxylic acid component).
  • tetracarboxylic dianhydrides include aliphatic tetracarboxylic dianhydrides, alicyclic tetracarboxylic dianhydrides, and aromatic tetracarboxylic dianhydrides. Specific examples of these include the following groups [1] to [5].
  • aliphatic tetracarboxylic dianhydride for example, 1,2,3,4-butanetetracarboxylic dianhydride;
  • Examples of alicyclic tetracarboxylic dianhydrides include acid dianhydrides such as the following formulas (X1-1) to (X1-13),
  • R 3 to R 23 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, carbon An alkynyl group having 2 to 6 carbon atoms, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, or a phenyl group, which may be the same or different,
  • R M represents a hydrogen atom or a methyl group
  • Xa is a tetravalent organic group represented by the following formulas (Xa-1) to (Xa-7).
  • aromatic tetracarboxylic dianhydrides for example, pyromellitic anhydride, 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic Acid dianhydrides, acid dianhydrides represented by the following formulas (Xb-1) to (Xb-10), and the like, and
  • the said tetracarboxylic dianhydride can be used individually by 1 type or in combination of 2 or more types.
  • the tetracarboxylic dianhydride component used in the liquid crystal aligning agent of the present invention is not particularly limited, but from the viewpoints of coatability, voltage holding ratio characteristics, residual DC voltage characteristics, etc., (X1-1), (X1- 2), (X1-3), (X1-6), (X1-7), (X1-8), (X1-9), (Xa-2), pyromellitic anhydride, 3,3 ′, It is preferable to select and use a tetracarboxylic dianhydride selected from 4,4′-diphenylsulfonetetracarboxylic dianhydride, (Xb-6) and (Xb-9).
  • the method for producing these polymers is usually obtained by reacting a diamine component and a tetracarboxylic acid component.
  • a polyamic acid is obtained by reacting at least one tetracarboxylic acid component selected from the group consisting of a tetracarboxylic dianhydride and a derivative of the tetracarboxylic acid and a diamine component composed of one or more diamines.
  • a method is mentioned. Specifically, a method is used in which polycarboxylic acid is obtained by polycondensation of tetracarboxylic dianhydride and primary or secondary diamine.
  • a method of polycondensing a tetracarboxylic acid obtained by dialkyl esterifying a carboxylic acid group with a primary or secondary diamine, a tetracarboxylic acid dihalide obtained by halogenating a carboxylic acid group and a primary a method of polycondensation with a secondary diamine or a method of converting a carboxy group of a polyamic acid into an ester is used.
  • polyimide a method is used in which the polyamic acid or polyamic acid alkyl ester is cyclized to form polyimide.
  • the reaction of the diamine component and the tetracarboxylic acid component is usually performed in a solvent.
  • the solvent used at that time is not particularly limited as long as the produced polyimide precursor is soluble. Although the specific example of the solvent used for reaction below is given, it is not limited to these examples. Examples include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or ⁇ -butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide or 1,3-dimethyl-imidazolidinone. It is done.
  • the solvent solubility of the polyimide precursor is high, it is represented by methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or the following formulas [D-1] to [D-3]. Can be used.
  • D 1 represents an alkyl group having 1 to 3 carbon atoms
  • D 2 represents an alkyl group having 1 to 3 carbon atoms
  • D-3 represents an alkyl group having 1 to 4 carbon atoms.
  • solvents may be used alone or in combination. Furthermore, even if it is a solvent which does not dissolve a polyimide precursor, you may mix and use it for the said solvent in the range which the produced
  • diamine components or tetracarboxylic acid components when reacting using a plurality of diamine components or tetracarboxylic acid components, they may be reacted in a premixed state, individually or sequentially, or further individually reacted low molecular weight substances. May be mixed and reacted to form a polymer.
  • the temperature for polycondensation of the diamine component and the tetracarboxylic acid component can be selected from -20 to 150 ° C., but is preferably in the range of ⁇ 5 to 100 ° C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring becomes difficult. . Therefore, it is preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the initial reaction is carried out at a high concentration, and then a solvent can be added.
  • the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid component is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the molecular weight of the polyimide precursor formed increases as the molar ratio approaches 1.0.
  • Polyimide is a polyimide obtained by ring closure of the polyimide precursor, and in this polyimide, the ring closure rate (also referred to as imidation rate) of the amic acid group is not necessarily 100%. It can be adjusted as desired.
  • the method for imidizing the polyimide precursor include thermal imidization in which the polyimide precursor solution is heated as it is, or catalytic imidization in which a catalyst is added to the polyimide precursor solution.
  • the temperature when the polyimide precursor is thermally imidized in a solution is 100 to 400 ° C., preferably 120 to 250 ° C., and a method of removing water generated by the imidation reaction from the system is preferable.
  • the catalytic imidation of the polyimide precursor can be carried out by adding a basic catalyst and an acid anhydride to the polyimide precursor solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amidic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol times the amido group. 30 mole times.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has a basicity suitable for advancing the reaction.
  • the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. In particular, it is preferable to use acetic anhydride because purification after completion of the reaction is easy.
  • the imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • the reaction solution may be poured into a solvent and precipitated.
  • the solvent used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, and water.
  • the polymer precipitated in the solvent can be recovered by filtration, and then dried at normal temperature or under reduced pressure at room temperature or by heating.
  • the solvent at this time include alcohols, ketones, hydrocarbons and the like. It is preferable to use three or more kinds of solvents selected from these, since the purification efficiency is further increased.
  • More specific methods for producing the polyamic acid alkyl ester of the present invention are shown in the following (1) to (3).
  • (1) Method of producing by polyamic acid esterification reaction Polyamic acid is produced from a diamine component and a tetracarboxylic acid component, and the carboxy group (COOH group) is subjected to a chemical reaction, that is, an esterification reaction.
  • This is a method for producing an alkyl ester.
  • the esterification reaction is a method in which a polyamic acid and an esterifying agent are reacted at ⁇ 20 to 150 ° C. (preferably 0 to 50 ° C.) for 30 minutes to 24 hours (preferably 1 to 4 hours) in the presence of a solvent. is there.
  • the esterifying agent is preferably one that can be easily removed after the esterification reaction.
  • N N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl -3-p-tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like.
  • the amount of the esterifying agent used is preferably 2 to 6 molar equivalents per 1 mol of the polyamic acid repeating unit. Of these, 2 to 4 molar equivalents are preferred.
  • the solvent used for the esterification reaction examples include a solvent used for the reaction of the diamine component and the tetracarboxylic acid component from the viewpoint of solubility of the polyamic acid in the solvent.
  • a solvent used for the reaction of the diamine component and the tetracarboxylic acid component from the viewpoint of solubility of the polyamic acid in the solvent.
  • N, N-dimethylformamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or ⁇ -butyrolactone is preferable.
  • These solvents may be used alone or in combination of two or more.
  • the concentration of the polyamic acid in the solvent in the esterification reaction is preferably 1 to 30% by mass from the viewpoint that the polyamic acid does not easily precipitate. Among these, 5 to 20% by mass is preferable.
  • the diamine component and tetracarboxylic acid diester dichloride are ⁇ 20 to 150 ° C. (preferably in the presence of a base and a solvent) (0 to 50 ° C.) for 30 minutes to 24 hours (preferably 1 to 4 hours).
  • a base pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used. Of these, pyridine is preferable because the reaction proceeds gently.
  • the amount of the base used is preferably an amount that can be easily removed after the reaction, and is preferably 2 to 4 moles relative to the tetracarboxylic acid diester dichloride. Of these, 2 to 3 moles are more preferred.
  • the solvent examples include a solvent used for the reaction of the diamine component and the tetracarboxylic acid component from the viewpoint of solubility of the obtained polymer, that is, the polyamic acid alkyl ester in the solvent.
  • a solvent used for the reaction of the diamine component and the tetracarboxylic acid component from the viewpoint of solubility of the obtained polymer, that is, the polyamic acid alkyl ester in the solvent.
  • N, N-dimethylformamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or ⁇ -butyrolactone is preferable.
  • These solvents may be used alone or in combination of two or more.
  • the concentration of the polyamic acid alkyl ester in the solvent in the reaction is preferably 1 to 30% by mass from the viewpoint that precipitation of the polyamic acid alkyl ester hardly occurs. Among these, 5 to 20% by mass is preferable.
  • the solvent used for preparing the polyamic acid alkyl ester is dehydrated as much as possible. Furthermore, the reaction is preferably performed in a nitrogen atmosphere to prevent outside air from being mixed.
  • Condensation agents include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazinyl Methylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like can be used.
  • the amount of the condensing agent used is preferably 2 to 3 moles, and more preferably 2 to 2.5 moles, based on
  • tertiary amines such as pyridine and triethylamine can be used.
  • the amount of the base used is preferably an amount that can be easily removed after the polycondensation reaction, preferably 2 to 4 times by mole, more preferably 2 to 3 times by mole with respect to the diamine component.
  • the solvent used for the polycondensation reaction include a solvent used for the reaction of the diamine component and the tetracarboxylic acid component from the viewpoint of the solubility of the resulting polymer, that is, the polyamic acid alkyl ester, in the solvent.
  • N, N-dimethylformamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or ⁇ -butyrolactone is preferable.
  • These solvents may be used alone or in combination of two or more.
  • the reaction proceeds efficiently by adding Lewis acid as an additive.
  • Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the amount of Lewis acid used is preferably 0.1 to 10 times the mole of the diamine component. Among these, 2.0 to 3.0 moles are preferable.
  • the reaction solution may be poured into a solvent and precipitated.
  • the solvent used for precipitation include water, methanol, ethanol, 2-propanol, hexane, butyl cellosolve, acetone, toluene and the like.
  • the polymer deposited in the solvent is preferably washed with the solvent several times for the purpose of removing the additives and catalysts used above. After washing, filtration and recovery, the polymer can be dried at normal temperature or reduced pressure at room temperature or with heating.
  • the impurities in the polymer can be reduced by re-dissolving the polymer recovered by precipitation in a solvent and repeating the operation of re-precipitation recovery 2 to 10 times.
  • the production method of (2) or (3) above is preferable for the polyamic acid alkyl ester.
  • the liquid crystal aligning agent of this invention contains the above-mentioned specific polymer, Preferably it is a solution for forming a liquid crystal aligning film.
  • the content of the polymer in the liquid crystal aligning agent is preferably 2 to 10% by mass and more preferably 3 to 8% by mass in the liquid crystal aligning agent.
  • All the polymer components in the liquid crystal aligning agent of the present invention may all be the specific polymer of the present invention, or other polymers may be mixed.
  • examples of other polymers include cellulose polymers, acrylic polymers, methacrylic polymers, polystyrenes, polyamides, polysiloxanes, etc., in addition to polyimides and polyimide precursors.
  • the content of the other polymer is preferably 1 to 90% by mass and more preferably 30 to 80% by mass in the resin component contained in the liquid crystal aligning agent.
  • the good solvent used for the liquid crystal aligning agent of this invention will not be specifically limited if the specific polymer of this invention melt
  • the specific example of the solvent used for a liquid crystal aligning agent below is given, it is not limited to these examples. Examples include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or ⁇ -butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide or 1,3-dimethyl-imidazolidinone. It is done.
  • the solvent solubility of the polyimide precursor is high, it is represented by methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone or the above formula [D-1] to formula [D-3].
  • the solvent used can also be used.
  • the said good solvent may be used by 1 type, and may be used by the combination and ratio which are more suitable according to the application
  • the good solvent in the liquid crystal aligning agent of the present invention is preferably 20 to 99% by mass of the whole solvent contained in the liquid crystal aligning agent. Of these, 20 to 90% by mass is preferable. More preferred is 30 to 80% by mass.
  • the liquid crystal aligning agent of this invention can use the solvent (it is also called a poor solvent) which improves the coating property and surface smoothness of a liquid crystal aligning film at the time of apply
  • the solvent it is also called a poor solvent
  • Specific examples are given below.
  • ethanol isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol 2-heptanol, 3-heptanol, 1-octan
  • preferred solvent combinations include N-methyl-2-pyrrolidone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone, ⁇ -butyrolactone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone and ⁇ - Butyrolactone and propylene glycol monobutyl ether, N-ethyl-2-pyrrolidone and propylene glycol monobutyl ether, N-methyl-2-pyrrolidone, ⁇ -butyrolactone, 4-hydroxy-4-methyl-2-pentanone and diethylene glycol diethyl ether, N- Methyl-2-pyrrolidone, ⁇ -butyrolactone, propylene glycol monobutyl ether, 2,6-dimethyl-4-heptanone, N-methyl-2-pyrrolidone, ⁇ -butyrolactone, and propylene glycol Monobutyl ether and diisopropyl ether, N-methyl
  • These poor solvents are preferably 1 to 80% by mass, more preferably 10 to 80% by mass, and particularly preferably 20 to 70% by mass with respect to the total solvent contained in the liquid crystal aligning agent.
  • the kind and content of such a solvent are appropriately selected according to the application device, application conditions, application environment, and the like of the liquid crystal aligning agent.
  • the liquid crystal aligning agent of the present invention includes a polymer other than the polymer described in the present invention, a dielectric for the purpose of changing electrical properties such as dielectric constant and conductivity of the liquid crystal aligning film, Silane coupling agent for the purpose of improving adhesion to the substrate, crosslinkable compound for the purpose of increasing the hardness and density of the liquid crystal alignment film, and heating of the polyimide precursor when the coating film is baked
  • a dielectric for the purpose of changing electrical properties such as dielectric constant and conductivity of the liquid crystal aligning film
  • Silane coupling agent for the purpose of improving adhesion to the substrate
  • crosslinkable compound for the purpose of increasing the hardness and density of the liquid crystal alignment film
  • An imidization accelerator for the purpose of efficiently proceeding imidization by the above may be contained.
  • Examples of the compound that improves the adhesion between the liquid crystal alignment film and the substrate include a functional silane-containing compound and an epoxy group-containing compound, such as 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3- Glycidoxypropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2- Aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl- 3-aminopropyl
  • additives may be added to the liquid crystal aligning agent of the present invention in order to increase the mechanical strength of the liquid crystal aligning film.
  • the above-mentioned additive is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. If the amount is less than 0.1 parts by mass, the effect cannot be expected. If the amount exceeds 30 parts by mass, the orientation of the liquid crystal is lowered.
  • the liquid crystal alignment film of the present invention can be formed by applying the liquid crystal aligning agent of the present invention on a substrate and baking it.
  • the cured film obtained by baking can also be used as a liquid crystal aligning film as it is.
  • the cured film is rubbed, irradiated with polarized light or light of a specific wavelength, or treated with an ion beam, or a voltage is applied to the liquid crystal display element after filling the liquid crystal as a PSA alignment film It is also possible to irradiate with UV. In particular, it is useful to use as an alignment film for PSA.
  • the substrate to be used is not particularly limited as long as it is a highly transparent substrate.
  • Glass plate polycarbonate, poly (meth) acrylate, polyethersulfone, polyarylate, polyurethane, polysulfone, polyether, polyetherketone ,
  • Plastic substrates such as trimethylpentene, polyolefin, polyethylene terephthalate, (meth) acrylonitrile, triacetyl cellulose, diacetyl cellulose, and acetate butyrate cellulose can be used.
  • a substrate on which an ITO electrode or the like for driving liquid crystal is formed from the viewpoint of simplifying the process.
  • an opaque material such as a silicon wafer can be used as long as the substrate is only on one side, and in this case, a material that reflects light such as aluminum can be used.
  • the method for applying the liquid crystal aligning agent is not particularly limited, and examples thereof include printing methods such as screen printing, offset printing, flexographic printing, ink jet method, spray method, roll coating method, dip, roll coater, slit coater, and spinner. From the standpoint of productivity, the transfer printing method is widely used industrially, and is preferably used in the present invention.
  • the coating film formed by applying the liquid crystal aligning agent by the above method can be baked to obtain a cured film.
  • the drying process after applying the liquid crystal aligning agent is not necessarily required, but if the time from application to baking is not constant for each substrate, or if baking is not performed immediately after application, the drying process is performed. It is preferable.
  • the drying is not particularly limited as long as the solvent is removed to such an extent that the shape of the coating film is not deformed by transporting the substrate or the like. For example, a method of drying on a hot plate at a temperature of 40 ° C. to 150 ° C., preferably 60 ° C. to 100 ° C., for 0.5 minutes to 30 minutes, preferably 1 minute to 5 minutes.
  • the baking temperature of the coating film formed by applying the liquid crystal aligning agent is not limited, and is, for example, 100 to 350 ° C, preferably 120 to 350 ° C, and more preferably 150 ° C to 330 ° C.
  • the firing time is 5 minutes to 240 minutes, preferably 10 minutes to 90 minutes, and more preferably 10 minutes to 30 minutes. Heating can be performed by a generally known method such as a hot plate, a hot air circulating furnace, an infrared furnace, or the like.
  • the thickness of the liquid crystal alignment film obtained by firing is not particularly limited, but is preferably 5 to 300 nm, more preferably 20 to 200 nm.
  • the liquid crystal display element can produce a liquid crystal cell by a known method after forming a liquid crystal alignment film on a substrate by the above method.
  • the two substrates disposed so as to face each other, the liquid crystal layer provided between the substrates, and the liquid crystal alignment agent provided between the substrate and the liquid crystal layer are formed by the above-described liquid crystal display element.
  • the polymerizable compound contained in the liquid crystal is reacted by irradiating ultraviolet rays while applying a voltage to the liquid crystal alignment film and the liquid crystal layer.
  • a PSA type liquid crystal display element having a remarkably excellent vertical alignment ability is obtained.
  • the substrate of the liquid crystal display element is not particularly limited as long as it is a highly transparent substrate, but is usually a substrate in which a transparent electrode for driving liquid crystal is formed on the substrate.
  • a substrate provided with a conventional electrode pattern or protrusion pattern may be used.
  • the liquid crystal aligning agent containing the polyimide polymer of the present invention is used. It is possible to operate even in a structure in which a line / slit electrode pattern of 1 to 10 ⁇ m is formed and no slit pattern or protrusion pattern is formed on the counter substrate.
  • the liquid crystal display element of this structure simplifies the manufacturing process. And high transmittance can be obtained.
  • a high-performance element such as a TFT type element
  • an element in which an element such as a transistor is formed between an electrode for driving a liquid crystal and a substrate is used.
  • a transmissive liquid crystal display element it is common to use a substrate as described above.
  • an opaque substrate such as a silicon wafer may be used. Is possible.
  • a material such as aluminum that reflects light may be used for the electrode formed on the substrate.
  • the liquid crystal material constituting the liquid crystal layer of the liquid crystal display element is not particularly limited, and the liquid crystal material used in the conventional vertical alignment method, for example, negative types such as MLC-6608, MLC-6609, MLC-3023 manufactured by Merck The liquid crystal can be used.
  • the PSA type liquid crystal display element for example, a polymerizable compound-containing liquid crystal represented by the following formula can be used.
  • a known method can be exemplified. For example, a pair of substrates on which a liquid crystal alignment film is formed is prepared, and spacers such as beads are dispersed on the liquid crystal alignment film on one substrate so that the surface on which the liquid crystal alignment film is formed is on the inside. Then, the other substrate is bonded, and liquid crystal is injected under reduced pressure to seal.
  • a liquid crystal cell can also be produced by a method in which the other substrate is bonded to each other so as to be inside, and sealing is performed.
  • the thickness of the spacer is preferably 1 to 30 ⁇ m, more preferably 2 to 10 ⁇ m.
  • the step of producing a liquid crystal cell by irradiating ultraviolet rays while applying a voltage to the liquid crystal alignment film and the liquid crystal layer includes, for example, applying an electric field between the electrodes installed on the substrate to apply an electric field to the liquid crystal alignment film and the liquid crystal layer. And applying ultraviolet rays while maintaining this electric field.
  • the voltage applied between the electrodes is, for example, 5 to 30 Vp-p, preferably 5 to 20 Vp-p.
  • the irradiation amount of ultraviolet rays is, for example, 1 to 60 J, preferably 40 J or less, and the smaller the irradiation amount of ultraviolet rays, the lowering of reliability caused by the destruction of the members constituting the liquid crystal display element can be suppressed, and the irradiation time of ultraviolet rays can be reduced. This is preferable because the manufacturing efficiency is increased.
  • the polymerizable compound when ultraviolet rays are irradiated while applying a voltage to the liquid crystal alignment film and the liquid crystal layer, the polymerizable compound reacts to form a polymer, and the direction in which the liquid crystal molecules are tilted is stored by this polymer.
  • the response speed of the obtained liquid crystal display element can be increased.
  • a polyimide precursor having a side chain for vertically aligning liquid crystal and a photoreactive side chain when irradiated with ultraviolet rays while applying a voltage to the liquid crystal alignment film and the liquid crystal layer, and the polyimide precursor as an imide Since the photoreactive side chains of at least one polymer selected from the polyimide obtained by the reaction or the photoreactive side chains of the polymer react with the polymerizable compound, the liquid crystal display element obtained The response speed can be increased.
  • W-A1 Compound W-A2 represented by the formula [W-A1]: Compound W-A3 represented by the formula [W-A2]: Compound W-A4 represented by the formula [W-A3]: Formula Compound W-A5 represented by [W-A4]: Compound W-A6 represented by formula [W-A5]: Compound W-A7 represented by formula [W-A6]: Formula [W-A7]
  • A1 Compound represented by Formula [A1]
  • A2 Compound represented by Formula [A2]
  • A3 Compound represented by Formula [A3]
  • (Tetracarboxylic acid component) D1: 1,2,3,4-cyclobutanetetracarboxylic dianhydride
  • D2 bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride
  • D3 pyromellitic dianhydride
  • D4 2,3,5-tricarboxycyclopentyl acetic acid dianhydride
  • D5 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride
  • the molecular weight of the polyimide precursor and polyimide is as follows using a normal temperature gel permeation chromatography (GPC) apparatus (GPC-101) (manufactured by Showa Denko KK) and a column (KD-803, KD-805) (manufactured by Shodex). It measured as follows.
  • the imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid appearing in the vicinity of 9.5 to 10.0 ppm. It calculated
  • Imidization rate (%) (1 ⁇ ⁇ x / y) ⁇ 100
  • x is a proton peak integrated value derived from NH group of amic acid
  • y is a peak integrated value of reference proton
  • is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
  • the viscosity of the polyimide polymer is an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), a sample amount of 1.1 mL, a cone rotor TE-1 (1 ° 34 ′, R24), measured at a temperature of 25 ° C.
  • W-A1 to W-A3 and W-A4 to W-A10 are novel compounds that have not been disclosed yet, and the synthesis method will be described in detail below.
  • the products described in Synthesis Examples 1 to 3 and Synthesis Examples 4 to 10 were identified by 1 H-NMR analysis (analysis conditions are as follows).
  • activated carbon brand: special white birch, 2.27 g
  • the obtained filtrate was concentrated under reduced pressure to obtain an oily compound.
  • the oily compound was dispersed in hexane (100 g), crystals were precipitated under dry ice / ethanol cooling conditions, filtered and dried to obtain compound [8] (yield: 27.5 g, 101 mmol, yield: 75%).
  • the obtained concentrate was crystallized from ethyl acetate (346 g) and hexane (395 g) and filtered to collect crystals. Further, the filtrate was concentrated, recrystallized and filtered again with chloroform (223 g) and hexane (434 g), and dried to obtain a crude product of compound [16] (crude yield: 21.3 g, crude yield). : 37%).
  • NMP (28.2 g) was added to the polyimide powder (1) (3.00 g) obtained in Synthesis Example 1, and dissolved by stirring at 70 ° C. for 24 hours.
  • NMP (g) and BCS (18.8 g) were added to this solution, and the mixture was stirred at room temperature for 5 hours to obtain a liquid crystal aligning agent (V-1).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • Example 2> and ⁇ Example 3> In Example 1, using the polyimide powders (2) and (3) in place of the polyimide powder (1), the liquid crystal aligning agents (V-2) and (V-3) were prepared in the same procedure as in Example 1. Got. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • Example 1 In Example 1, using the polyimide powder (4) obtained in Control Synthesis Example 1 instead of the polyimide powder (1), the liquid crystal aligning agent (V-4) was obtained by the same procedure as in Example 1. It was. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • Example 4 3.0 g of the liquid crystal aligning agent (V-1) obtained from Example 1 was mixed as the first component, and 7.0 g of the liquid crystal aligning agent (V-4) obtained in Control 1 was mixed as the second component.
  • the liquid crystal aligning agent (V-5) was obtained by stirring for 1 hour.
  • Example 4 using the liquid crystal aligning agent (V-2) or (V-3) instead of the liquid crystal aligning agent (V-1) as the first component, respectively, by the same procedure as in Example 4, respectively. Liquid crystal aligning agents (V-6) and (V-7) were obtained.
  • NMP (22.0 g) was added to the polyimide powder (5) (3.00 g) obtained in Synthesis Example 5, and dissolved by stirring at 70 ° C. for 24 hours.
  • 3.0 g of E2 (1 wt% NMP solution) and BCS (20.0 g) were added and stirred at room temperature for 5 hours to obtain a liquid crystal aligning agent (V-8).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormalities such as turbidity and precipitation.
  • NEP (22.0 g) was added to the polyimide powder (12) (3.00 g) obtained in Synthesis Example 12, and dissolved by stirring at 70 ° C. for 24 hours.
  • NEP (3.0 g) and BCS (20.0 g) were added to this solution, and the mixture was stirred at room temperature for 5 hours to obtain a liquid crystal aligning agent (V-15).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormalities such as turbidity and precipitation.
  • Example 18 For the polyimide powder (16) obtained in Synthesis Example 16, the same operation as in Example 14 was performed to obtain a liquid crystal alignment film treating agent (V-19).
  • Example 21 > 3.0 g of the liquid crystal aligning agent (V-15) obtained from Example 14 as the first component, 7.0 g of the liquid crystal aligning agent (V-19) obtained in Example 18 as the second component, The cross-linking agent E1 was mixed at 5% by weight with respect to the resin component in the liquid crystal alignment film agent, and stirred for 1 hour to obtain a liquid crystal aligning agent (W-2).
  • Example 22 to 24 Liquid crystal alignment agents (W-3) to (W-5) were obtained in the same manner as in Example 21 for the liquid crystal alignment agents (V-16) to (V-21) obtained in Examples 15 to 20. It was.
  • liquid crystal aligning agent obtained in the examples Using the liquid crystal aligning agent obtained in the examples and the liquid crystal aligning agent obtained in the comparative example, production of a liquid crystal display element, evaluation of vertical alignment, scratch test, evaluation of pretilt angle, evaluation of voltage holding ratio Afterimage characteristics were evaluated.
  • the liquid crystal aligning agent obtained in the examples and the liquid crystal aligning agent obtained in the comparative example were subjected to pressure filtration with a membrane filter having a pore diameter of 1 ⁇ m.
  • the obtained solution was spin-coated on an ITO surface of a 40 mm ⁇ 30 mm ITO electrode glass substrate (length: 40 mm, width: 30 mm, thickness: 1.1 mm) washed with pure water and IPA (isopropyl alcohol), Heat treatment was performed on a hot plate at 70 ° C. for 90 seconds and in a heat circulation type clean oven at 230 ° C. for 30 minutes to obtain an ITO substrate with a liquid crystal alignment film having a film thickness of 100 nm.
  • Liquid crystal MLC-3023 (trade name, manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method to prepare a liquid crystal cell. After that, in the state where a DC voltage of 15 V was applied to the obtained liquid crystal cell, ultraviolet light passing through a band pass filter with a wavelength of 365 nm was irradiated at 15 J / cm 2 using an ultraviolet irradiation device using a high pressure mercury lamp as a light source. Thus, a vertically aligned liquid crystal display element was obtained. The UV irradiation amount was measured by connecting a UV-35 light receiver to UV-M03A manufactured by ORC.
  • the liquid crystal aligning agent obtained in the examples was filtered under pressure through a membrane filter having a pore diameter of 1 ⁇ m.
  • the obtained solution was washed with pure water and IPA (isopropyl alcohol), and an ITO electrode substrate (vertical: 35 mm, horizontal: 30 mm) on which an ITO electrode pattern having a pixel size of 200 ⁇ m ⁇ 600 ⁇ m and a line / space of 3 ⁇ m was formed.
  • Thickness 0.7 mm
  • ITO electrode substrate on which the ITO electrode pattern is formed is divided into four in a cross checker (checkered) pattern, and can be driven separately for each of the four areas.
  • the periphery was coated with a sealant (XN-1500T manufactured by Mitsui Chemicals).
  • a sealant XN-1500T manufactured by Mitsui Chemicals.
  • Liquid crystal MLC-3023 (trade name, manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method to prepare a liquid crystal cell. Thereafter, a DC voltage of 15 V was applied to the obtained liquid crystal cell, and all the pixel areas were driven and passed through a band-pass filter having a wavelength of 365 nm using an ultraviolet irradiation device using a high-pressure mercury lamp as a light source.
  • a vertical alignment type liquid crystal display device was obtained by irradiation with ultraviolet rays at 10 J / cm 2 .
  • a UV-35 light receiver was connected to UV-M03A manufactured by ORC for measurement of the amount of ultraviolet irradiation.
  • vertical alignment was performed under the same conditions as described above except that the liquid crystal alignment film was formed under severe conditions by heating at 230 ° C. for 120 minutes.
  • Type liquid crystal display element was prepared.
  • Afterimage characteristics Using the afterimage evaluation liquid crystal display element produced above, 60 Hz, 20 Vp-p AC voltage was applied to two diagonal areas of the four pixel areas, and the device was driven at a temperature of 23 ° C. for 168 hours. Thereafter, all four pixel areas were driven with an AC voltage of 5 Vp-p, and the luminance difference of the pixels was visually observed. A state in which almost no difference in luminance was confirmed was considered good.
  • the evaluation results are shown in Table 3.
  • a scratch test was performed on the alignment film surface of the substrate with the polyimide coating film obtained in the example using UMT-2 (Bruker AXS Co., Ltd.). FVL was selected as the UMT-2 sensor, and a 1.6 mm sapphire sphere was attached to the tip of the scratch part.
  • a scratch test was conducted by changing the load from 1 mN to 20 mN over 100 seconds in a range of 0.5 mm in width and 2.0 mm in length with the tip of the scratch part in contact with the surface of the liquid crystal alignment film at a load of 1 mN. At this time, the moving direction of the tip of the scratch part was reciprocating to the side, and the moving speed was 5.0 mm / sec.
  • the scratch area was moved in the vertical direction by moving the substrate with the liquid crystal alignment film in the vertical direction at 20 ⁇ m / second.
  • MLC-3022 (a negative type liquid crystal manufactured by Merck & Co., Inc.) was dropped onto the liquid crystal alignment film surface that had been scratch-tested.
  • another substrate with a liquid crystal alignment film obtained in Example 1 and a 4 ⁇ m spacer dispersed thereon was superimposed so that the liquid crystal alignment film surfaces face each other, and the dropped MLC-3022 was sandwiched.
  • the liquid crystal display element using the liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of the present invention is It was found that the pretilt angle was not changed even under severe conditions, and the liquid crystal orientation was good. Further, as shown in Table 5, it was found that in Example 4 to Example 6 in which the liquid crystal aligning agent (V-4) was mixed, the afterimage characteristics were satisfactory. Furthermore, from this example, it was found that the liquid crystal alignment film obtained using a specific side chain diamine was excellent in pretilt angle stability even when baked under severe conditions. It was also confirmed that even when there was physical contact with the liquid crystal alignment film as in the scratch test, good vertical alignment could be maintained with little damage to the alignment film.
  • a liquid crystal display element using a liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of the present invention can be suitably used for a liquid crystal display element. These elements are also useful in liquid crystal displays for display purposes, and in light control windows and optical shutters for controlling transmission and blocking of light.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Liquid Crystal (AREA)

Abstract

The present invention provides a liquid crystal alignment agent whereby a liquid crystal alignment film is obtained in which the ability thereof to align liquid crystals vertically is not reduced even when the liquid crystal alignment film is exposed to excessive heating, and provides a liquid crystal alignment agent whereby a liquid crystal alignment film is obtained in which the ability thereof to align liquid crystals vertically is not reduced even when some foreign matter touches or damages the film. The present invention provides a liquid crystal alignment agent containing a diamine component containing a diamine represented by formula [1] (In formula [1], X represents a single bond or –O- or another divalent group, Y represents a group represented by formula [1-1], and Y1 through Y6 represent specific groups described in the specification.), and at least one species of polymer selected from a polyimide precursor and a polyimide that is an imidization product of the polyimide precursor, the polyimide precursor being a product of reaction with a tetracarboxylic acid component.

Description

液晶配向剤、液晶配向膜及び液晶表示素子Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
 本発明は、液晶を垂直に配向させる能力に優れる液晶配向剤、液晶配向膜、及び液晶表示素子に関する。 The present invention relates to a liquid crystal aligning agent, a liquid crystal alignment film, and a liquid crystal display element, which are excellent in the ability to align liquid crystal vertically.
 基板に対して垂直に配向している液晶分子を電界によって応答させる方式(垂直配向(VA)方式ともいう)の液晶表示素子には、その製造過程において液晶分子に電圧を印加しながら紫外線を照射する工程を含むものがある。 A liquid crystal display element of a method in which liquid crystal molecules aligned perpendicular to the substrate respond by an electric field (also referred to as a vertical alignment (VA) method) is irradiated with ultraviolet rays while applying a voltage to the liquid crystal molecules in the manufacturing process. There is a thing including the process to do.
 このような垂直配向方式の液晶表示素子では、予め液晶組成物中に光重合性化合物を添加し、かつポリイミド系などの垂直配向膜を用い、液晶セルに電圧を印加しながら紫外線を照射することで、液晶の応答速度を速くする技術(PSA(Polymer Sustained Alignment)方式素子、例えば、特許文献1及び非特許文献1参照。)が知られている。 In such a vertical alignment type liquid crystal display element, a photopolymerizable compound is previously added to the liquid crystal composition, and a polyimide-based vertical alignment film is used, and ultraviolet rays are applied while applying a voltage to the liquid crystal cell. Therefore, a technique for increasing the response speed of liquid crystal (PSA (Polymer Sustained Alignment) type element, for example, see Patent Document 1 and Non-Patent Document 1) is known.
 かかるPSA方式素子に用いられる液晶配向剤として、特定の環構造を有する側鎖を用いた液晶配向剤が提案されている(特許文献2参照)。この特定の環構造は、液晶を垂直に配向させる能力が高く、この液晶配向剤が用いられた垂直配向方式の液晶表示素子は、表示特性が良好であった。 As a liquid crystal aligning agent used in such a PSA element, a liquid crystal aligning agent using a side chain having a specific ring structure has been proposed (see Patent Document 2). This specific ring structure has a high ability to align the liquid crystal vertically, and the vertical alignment type liquid crystal display element using this liquid crystal aligning agent has good display characteristics.
特開2003-307720号公報JP 2003-307720 A WO2006/070819号公報WO2006 / 070819
 しかし、近年の垂直配向方式の液晶表示素子では、用いられる基板の薄型化、大型化の影響で、焼成時に、同じ基板内の異なる部分間で温度差が生じ、過度に加熱された部分の液晶配向膜は、液晶を垂直に配向させる能力が低下し、その結果、得られる液晶表示素子が部分的に表示不良を来す問題が生じる。
 また、液晶パネル製造工程において、液晶配向膜とカラムスペーサーが接触し、液晶配向膜に傷がついてしまうことで、その部分に配向欠陥(輝点)が生じることも問題である。
However, in recent vertical alignment type liquid crystal display elements, due to the reduction in thickness and size of the substrate used, a temperature difference occurs between different parts of the same substrate during firing, and the liquid crystal in the excessively heated part The alignment film has a problem in that the ability to align the liquid crystal vertically decreases, and as a result, the obtained liquid crystal display element partially causes a display defect.
In addition, in the liquid crystal panel manufacturing process, the liquid crystal alignment film and the column spacer come into contact with each other, and the liquid crystal alignment film is damaged, so that an alignment defect (bright spot) is generated in that portion.
 本発明は、過度の加熱にさらされた場合であっても、液晶を垂直に配向させる能力が低下しない液晶配向膜を得られる液晶配向剤を提供することにある。
 また、膜に何らかの異物が接触し、傷ついた際も、液晶を垂直に配向させる能力が低下しない液晶配向膜を得られる液晶配向剤を提供することにある。
An object of the present invention is to provide a liquid crystal aligning agent capable of obtaining a liquid crystal alignment film in which the ability to align liquid crystals vertically does not decrease even when exposed to excessive heating.
Another object of the present invention is to provide a liquid crystal aligning agent capable of obtaining a liquid crystal alignment film that does not deteriorate the ability to align liquid crystals vertically even when some foreign matter comes into contact with the film and is damaged.
 発明者らは、下記構成の液晶配向剤により目的を達成できることを見出し、本発明を完成させた。
 即ち、本発明の構成は以下の通りである。
 1.下記式[1]で表されるジアミンを含有するジアミン成分と、テトラカルボン酸成分との反応物であるポリイミド前駆体及びそのイミド化物であるポリイミドから選ばれる少なくとも1種の重合体を含有する液晶配向剤。
The inventors have found that the object can be achieved by a liquid crystal aligning agent having the following constitution, and completed the present invention.
That is, the configuration of the present invention is as follows.
1. A liquid crystal containing at least one polymer selected from a polyimide precursor which is a reaction product of a diamine component containing a diamine represented by the following formula [1] and a tetracarboxylic acid component and a polyimide which is an imidized product thereof. Alignment agent.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式[1]中、Xは、単結合、-O-、-C(CH-、-NH-、-CO-、-NHCO-、-COO-、-(CH-、-SO-、及びそれらの任意の組み合わせからなる2価の有機基を表し、mは1~8の整数を表す。
 Yはそれぞれ独立して下記式[1-1]の構造を表す。
In the formula [1], X represents a single bond, —O—, —C (CH 3 ) 2 —, —NH—, —CO—, —NHCO—, —COO—, — (CH 2 ) m —, — It represents a divalent organic group composed of SO 2 — and any combination thereof, and m represents an integer of 1 to 8.
Y independently represents a structure of the following formula [1-1].
 式[1-1]中、Y及びYはそれぞれ独立して、単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-CONH-、-NHCO-、-COO-及び-OCO-からなる群から選ばれる少なくとも1種を示す。
 Yは単結合又は-(CH-(bは1~15の整数である)を示す(ただし、Y又はYが単結合、-(CH-である場合、Yは単結合であり、Yが-O-、-CHO-、-CONH-、-NHCO-、-COO-及び-OCO-からなる群から選ばれる少なくとも1種であるか、及び/又はYが-O-、-CHO-、-CONH-、-NHCO-、-COO-及び-OCO-からなる群から選ばれる少なくとも1種である場合、Yは単結合又は-(CH-である(ただし、Yが-CONH-である場合、Y及びY単結合である))。
 Yはベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる少なくとも1種の2価の環状基、又はステロイド骨格およびトコフェノール骨格を有する炭素数17~51の2価の有機基を示し、前記環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。
 Yはベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる少なくとも1種の環状基を示し、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。
 Yは、水素原子、炭素数1~18のアルキル基、炭素数2~18のアルケニル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシ基及び炭素数1~18のフッ素含有アルコキシ基からなる群から選ばれる少なくとも1種を示す。nは0~4の整数を示す。
In formula [1-1], Y 1 and Y 3 each independently represent a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O— , -CONH-, -NHCO-, -COO-, and -OCO-.
Y 2 represents a single bond or — (CH 2 ) b — (b is an integer of 1 to 15) (provided that Y 1 or Y 3 is a single bond, — (CH 2 ) a2 is a single bond, and Y 1 is at least one selected from the group consisting of —O—, —CH 2 O—, —CONH—, —NHCO—, —COO—, and —OCO—, and / or Or when Y 3 is at least one selected from the group consisting of —O—, —CH 2 O—, —CONH—, —NHCO—, —COO— and —OCO—, Y 2 is a single bond or — ( CH 2 ) b — (provided that when Y 1 is —CONH—, they are Y 2 and Y 3 single bonds)).
Y 4 represents at least one divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring, or a divalent organic group having 17 to 51 carbon atoms having a steroid skeleton and a tocophenol skeleton, The optional hydrogen atom on the cyclic group includes an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, and a fluorine-containing alkoxy group having 1 to 3 carbon atoms. Alternatively, it may be substituted with a fluorine atom.
Y 5 represents at least one cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring, and a heterocyclic ring, and an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, a carbon number of 1 It may be substituted with 1 to 3 alkoxy groups, 1 to 3 fluorine-containing alkyl groups, 1 to 3 fluorine-containing alkoxy groups or fluorine atoms.
Y 6 represents a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, and 1 to 18 carbon atoms. And at least one selected from the group consisting of fluorine-containing alkoxy groups. n represents an integer of 0 to 4.
 本発明により、過度の加熱にさらされた場合であっても、液晶を垂直に配向させる能力が低下しない液晶配向膜を得られる液晶配向剤を提供することができる。
 また、本発明により、上記効果に加えて、又は上記効果以外に、膜に何らかの異物が接触し、傷ついた際も、液晶を垂直に配向させる能力が低下しない液晶配向膜を得られる液晶配向剤を提供することができる。
 さらに、本発明により、上記液晶配向剤から得られる液晶配向膜、上記液晶配向剤を用いて液晶配向膜を得る方法を提供することができる。
According to the present invention, it is possible to provide a liquid crystal aligning agent capable of obtaining a liquid crystal alignment film that does not deteriorate the ability to align liquid crystals vertically even when exposed to excessive heating.
Further, according to the present invention, in addition to the above effects or in addition to the above effects, a liquid crystal aligning agent capable of obtaining a liquid crystal alignment film that does not deteriorate the ability to align liquid crystal vertically even when some foreign matter comes into contact with the film and is damaged. Can be provided.
Furthermore, according to the present invention, a liquid crystal alignment film obtained from the liquid crystal alignment agent and a method for obtaining a liquid crystal alignment film using the liquid crystal alignment agent can be provided.
 本発明の液晶配向剤は、上記式[1]で表されるジアミン(以下、「上記式[1]で表されるジアミン」を「特定ジアミン」と略記する場合がある)を含有するジアミン成分と、テトラカルボン酸成分との反応物であるポリイミド前駆体及びそのイミド化物であるポリイミドから選ばれる少なくとも1種の重合体(以下、「特定重合体」と略記する場合がある)を含有する。 The liquid crystal aligning agent of the present invention contains a diamine represented by the above formula [1] (hereinafter, the “diamine represented by the above formula [1]” may be abbreviated as “specific diamine”). And at least one polymer selected from a polyimide precursor that is a reaction product with a tetracarboxylic acid component and a polyimide that is an imidized product thereof (hereinafter sometimes abbreviated as “specific polymer”).
 特定重合体は、特定ジアミンを含有するが、特定ジアミン以外のジアミンを有してもよい。
 特定ジアミンとそれ以外のジアミンとの量は、特定重合体中、特定ジアミンが5mol%~70mol%、好ましくは10mol%~50mol%、より好ましくは10mol%~40mol%となる量で特定ジアミンを有するのがよい。
 また、本発明の液晶配向剤は、特定重合体以外の「ポリイミド前駆体及び/又はそのイミド化物であるポリイミド」を含有してもよい。
 以下、「特定ジアミン」について述べ、次いで「特定ジアミン」以外のジアミンについて述べる。
The specific polymer contains a specific diamine, but may have a diamine other than the specific diamine.
The amount of the specific diamine and other diamines is such that the specific diamine is 5 mol% to 70 mol%, preferably 10 mol% to 50 mol%, more preferably 10 mol% to 40 mol% in the specific polymer. It is good.
Moreover, the liquid crystal aligning agent of this invention may contain "polyimide which is a polyimide precursor and / or its imidized substance" other than a specific polymer.
Hereinafter, “specific diamine” will be described, and then diamines other than “specific diamine” will be described.
<特定ジアミン>
 本発明の液晶配向剤に用いられる特定ジアミンは、下記式[1]で表される。
<Specific diamine>
The specific diamine used for the liquid crystal aligning agent of this invention is represented by following formula [1].
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式[1]中、Xは、単結合、-O-、-C(CH-、-NH-、-CO-、-NHCO-、-COO-、-(CH-、-SO-、及びそれらの任意の組み合わせからなる2価の有機基を表し、mは1~8の整数を表す。
 「それらの任意の組み合わせ」として、-O-(CH-O-、-O-C(CH-、-CO-(CH-、-NH-(CH-、-SO-(CH-、-CONH-(CH-、-CONH-(CH-NHCO-、-COO-(CH-OCO-などを挙げることができるがこれらに限定されない。
 Xは、好ましくは、単結合、-O-、-NH-、-O-(CH-O-であるのがよい。
In the formula [1], X represents a single bond, —O—, —C (CH 3 ) 2 —, —NH—, —CO—, —NHCO—, —COO—, — (CH 2 ) m —, — It represents a divalent organic group composed of SO 2 — and any combination thereof, and m represents an integer of 1 to 8.
As “any combination thereof”, —O— (CH 2 ) m —O—, —O—C (CH 3 ) 2 —, —CO— (CH 2 ) m —, —NH— (CH 2 ) m -, -SO 2- (CH 2 ) m- , -CONH- (CH 2 ) m- , -CONH- (CH 2 ) m -NHCO-, -COO- (CH 2 ) m -OCO-, etc. However, it is not limited to these.
X is preferably a single bond, —O—, —NH—, —O— (CH 2 ) m —O—.
 式[1]中、Yは、Xの位置からメタ位であってもオルト位であってもよいが、好ましくはオルト位であるのがよい。即ち、式[1]は、以下の式[1’]であるのが好ましい。 In formula [1], Y may be in the meta position or in the ortho position from the position of X, but is preferably in the ortho position. That is, the formula [1] is preferably the following formula [1 ′].
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記式[1]における「-NH」の位置は、式[1]に示すとおり、いずれの位置であってもよいが、好ましくは下記式[1]-a1、[1]-a2、[1]-a3で表される位置であるのがよく、より好ましくは[1]-a1であるのがよい。 The position of “—NH 2 ” in the above formula [1] may be any position as shown in formula [1], but preferably the following formula [1] -a1, [1] -a2, [ 1] -a3 is preferable, and [1] -a1 is more preferable.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 上記式[1]-a1~式[1]-a3及び上記式[1’]から、上記式[1]は、下記式から選ばれるいずれかの構造であるのがよく、好ましくは式[1]-a1-1で表される構造であるのがよい。 From the above formulas [1] -a1 to [1] -a3 and the above formula [1 ′], the above formula [1] may be any structure selected from the following formulas, preferably the formula [1] ] -A1-1 is preferable.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 Yはそれぞれ独立して下記式[1-1]の構造を表す。 Y independently represents the structure of the following formula [1-1].
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式[1-1]中、Y及びYはそれぞれ独立して、単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-CONH-、-NHCO-、-COO-及び-OCO-からなる群から選ばれる少なくとも1種を示す。
 Yは単結合又は-(CH-(bは1~15の整数である)を示す(ただし、Y又はYが単結合、-(CH-である場合、Yは単結合であり、Yが-O-、-CHO-、-CONH-、-NHCO-、-COO-及び-OCO-からなる群から選ばれる少なくとも1種であるか、及び/又はYが-O-、-CHO-、-CONH-、-NHCO-、-COO-及び-OCO-からなる群から選ばれる少なくとも1種である場合、Yは単結合又は-(CH-である(ただし、Yが-CONH-である場合、Y及びY単結合である))。
 Yはベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる少なくとも1種の2価の環状基、又はステロイド骨格およびトコフェノール骨格を有する炭素数17~51の2価の有機基を示し、前記環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。
 Yはベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる少なくとも1種の環状基を示し、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。
 Yは、水素原子、炭素数1~18のアルキル基、炭素数2~18のアルケニル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシ基及び炭素数1~18のフッ素含有アルコキシ基からなる群から選ばれる少なくとも1種を示す。nは0~4の整数を示す。
In formula [1-1], Y 1 and Y 3 each independently represent a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O— , -CONH-, -NHCO-, -COO-, and -OCO-.
Y 2 represents a single bond or — (CH 2 ) b — (b is an integer of 1 to 15) (provided that Y 1 or Y 3 is a single bond, — (CH 2 ) a2 is a single bond, and Y 1 is at least one selected from the group consisting of —O—, —CH 2 O—, —CONH—, —NHCO—, —COO—, and —OCO—, and / or Or when Y 3 is at least one selected from the group consisting of —O—, —CH 2 O—, —CONH—, —NHCO—, —COO— and —OCO—, Y 2 is a single bond or — ( CH 2 ) b — (provided that when Y 1 is —CONH—, they are Y 2 and Y 3 single bonds)).
Y 4 represents at least one divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring, or a divalent organic group having 17 to 51 carbon atoms having a steroid skeleton and a tocophenol skeleton, The optional hydrogen atom on the cyclic group includes an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, and a fluorine-containing alkoxy group having 1 to 3 carbon atoms. Alternatively, it may be substituted with a fluorine atom.
Y 5 represents at least one cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring, and a heterocyclic ring, and an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, a carbon number of 1 It may be substituted with 1 to 3 alkoxy groups, 1 to 3 fluorine-containing alkyl groups, 1 to 3 fluorine-containing alkoxy groups or fluorine atoms.
Y 6 represents a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, and 1 to 18 carbon atoms. And at least one selected from the group consisting of fluorine-containing alkoxy groups. n represents an integer of 0 to 4.
 上記式[1-1]で表される基として、以下の基[1-1]-1~[1-1]-22を挙げることができるがこれらに限定されない。これらのうち、[1-1]-1~[1-1]-4、[1-1]-8、[1-1]-10であるのが好ましい。なお、*は、上記式[1]、上記式[1’]、上記式[1]-a1~上記式[1]-a3におけるフェニル基との結合している位置を示す。mは1~15の整数を示し、nは0~18の整数を示す。 Examples of the group represented by the above formula [1-1] include, but are not limited to, the following groups [1-1] -1 to [1-1] -22. Of these, [1-1] -1 to [1-1] -4, [1-1] -8, and [1-1] -10 are preferable. Note that * indicates the position of bonding with the phenyl group in the above formula [1], the above formula [1 '], the above formula [1] -a1 to the above formula [1] -a3. m represents an integer of 1 to 15, and n represents an integer of 0 to 18.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
<光反応性の側鎖>
 本発明の液晶配向剤に含有される重合体は、光反応性の側鎖を有していてもよい。
 該光反応性の側鎖は、「特定重合体」が有していても、「特定重合体」以外の重合体である「ポリイミド前駆体及び/又はそのイミド化物であるポリイミド」が有していてもよい。
<光反応性側鎖を含有するジアミン>
 光反応性を有する側鎖を「特定重合体」及び/又は「特定重合体」以外の重合体に導入するには、光反応性の側鎖を有するジアミンをジアミン成分の一部に用いるのがよい。光反応性の側鎖を有するジアミンとしては、式[VIII]、又は式[IX]で表される側鎖を有するジアミンを挙げることができるがこれらに限定されない。
<Photoreactive side chain>
The polymer contained in the liquid crystal aligning agent of the present invention may have a photoreactive side chain.
The photoreactive side chain is possessed by “polyimide precursor and / or imidized product thereof” which is a polymer other than “specific polymer”, even if “specific polymer” has. May be.
<Diamine containing photoreactive side chain>
In order to introduce a photoreactive side chain into a polymer other than the “specific polymer” and / or “specific polymer”, a diamine having a photoreactive side chain is used as a part of the diamine component. Good. Examples of the diamine having a photoreactive side chain include, but are not limited to, a diamine having a side chain represented by Formula [VIII] or Formula [IX].
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式[VIII]、式[IX]における二つのアミノ基(-NH)の結合位置は限定されない。具体的には、側鎖の結合基に対して、ベンゼン環上の2,3の位置、2,4の位置、2,5の位置、2,6の位置、3,4の位置、3,5の位置が挙げられる。なかでも、ポリアミック酸を合成する際の反応性の観点から、2,4の位置、2,5の位置、又は3,5の位置が好ましい。ジアミンを合成する際の容易性も加味すると、2,4の位置、又は3,5の位置がより好ましい。 The bonding positions of the two amino groups (—NH 2 ) in Formula [VIII] and Formula [IX] are not limited. Specifically, with respect to the linking group of the side chain, 2, 3 position, 2, 4 position, 2, 5 position, 2, 6 position, 3, 4 position on the benzene ring, 3, 4 position, 5 positions. Among these, from the viewpoint of reactivity when synthesizing a polyamic acid, positions 2, 4, 2, 5, or 3, 5 are preferable. Considering the ease in synthesizing the diamine, the positions 2, 4 or 3, 5 are more preferable.
 式[VIII]中のR、R及びR10の定義は、次のとおりである。
 即ち、Rは、単結合、-CH-、-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、又は-N(CH)CO-を表す。特に、Rは、単結合、-O-、-COO-、-NHCO-、又は-CONH-であるのが好ましい。
 Rは、単結合、フッ素原子で置換されていてもよい炭素数1~20のアルキレン基を表し、アルキレン基の-CH-は-CF-又は-CH=CH-で任意に置換されていてもよく、次のいずれかの基が互いに隣り合わない場合、これらの基に置換されていてもよい;-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、二価の炭素環若しくは複素環。
 なお、上記二価の炭素環若しくは複素環は、具体的には以下のものを例示することができるが、これらに限定されない。
The definitions of R 8 , R 9 and R 10 in formula [VIII] are as follows.
That is, R 8 is a single bond, —CH 2 —, —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, —CH 2 O—, —N (CH 3 ). —, —CON (CH 3 ) —, or —N (CH 3 ) CO— is represented. In particular, R 8 is preferably a single bond, —O—, —COO—, —NHCO—, or —CONH—.
R 9 represents a single bond or an alkylene group having 1 to 20 carbon atoms which may be substituted with a fluorine atom, and —CH 2 — in the alkylene group is optionally substituted with —CF 2 — or —CH═CH—. If any of the following groups are not adjacent to each other, these groups may be substituted; —O—, —COO—, —OCO—, —NHCO—, —CONH—, — NH-, divalent carbocyclic or heterocyclic ring.
Specific examples of the divalent carbocycle or heterocycle include, but are not limited to, the following.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 Rは、通常の有機合成的手法で形成させることができるが、合成の容易性の観点から、単結合又は炭素数1~12のアルキレン基が好ましい。
 R10は、下記式から選択される光反応性基を表す。
R 9 can be formed by a general organic synthetic method, but a single bond or an alkylene group having 1 to 12 carbon atoms is preferable from the viewpoint of ease of synthesis.
R 10 represents a photoreactive group selected from the following formulae.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 R10は、光反応性の点から、メタクリル基、アクリル基又はビニル基であることが好ましい。 R 10 is preferably a methacryl group, an acryl group or a vinyl group from the viewpoint of photoreactivity.
 また、式[IX]中のY1、Y、Y、Y、Y、及びYの定義は、次のとおりである。
 即ち、Yは-CH-、-O-、-CONH-、-NHCO-、-COO-、-OCO-、-NH-、又は-CO-を表す。
 Yは、炭素数1~30のアルキレン基、二価の炭素環若しくは複素環であり、このアルキレン基、二価の炭素環若しくは複素環の1つ又は複数の水素原子は、フッ素原子若しくは有機基で置換されていてもよい。Yは、次の基が互いに隣り合わない場合、-CH-がこれらの基に置換されていてもよい;-O-、-NHCO-、-CONH-、-COO-、-OCO-、-NH-、-NHCONH-、-CO-。
 Yは、-CH-、-O-、-CONH-、-NHCO-、-COO-、-OCO-、-NH-、-CO-、又は単結合を表す。
 Yはシンナモイル基を表す。 Yは単結合、炭素数1~30のアルキレン基、二価の炭素環若しくは複素環であり、このアルキレン基、二価の炭素環若しくは複素環の1つ又は複数の水素原子は、フッ素原子若しくは有機基で置換されていてもよい。
 Yは、次の基が互いに隣り合わない場合、-CH-がこれらの基に置換されていてもよい;-O-、-NHCO-、-CONH-、-COO-、-OCO-、-NH-、-NHCONH-、-CO-。
 Yはアクリル基又はメタクリル基である光重合性基を示す。
In addition, the definitions of Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , and Y 6 in the formula [IX] are as follows.
That is, Y 1 represents —CH 2 —, —O—, —CONH—, —NHCO—, —COO—, —OCO—, —NH—, or —CO—.
Y 2 is an alkylene group having 1 to 30 carbon atoms, a divalent carbocycle or a heterocycle, and one or more hydrogen atoms of the alkylene group, divalent carbocycle or heterocycle are fluorine atoms or organic It may be substituted with a group. In Y 2 , when the following groups are not adjacent to each other, —CH 2 — may be substituted with these groups; —O—, —NHCO—, —CONH—, —COO—, —OCO—, —NH—, —NHCONH—, —CO—.
Y 3 represents —CH 2 —, —O—, —CONH—, —NHCO—, —COO—, —OCO—, —NH—, —CO—, or a single bond.
Y 4 represents a cinnamoyl group. Y 5 is a single bond, an alkylene group having 1 to 30 carbon atoms, a divalent carbocycle or a heterocycle, and one or more hydrogen atoms of the alkylene group, divalent carbocycle or heterocycle are fluorine atoms Alternatively, it may be substituted with an organic group.
In Y 5 , when the following groups are not adjacent to each other, —CH 2 — may be substituted with these groups; —O—, —NHCO—, —CONH—, —COO—, —OCO—, —NH—, —NHCONH—, —CO—.
Y 6 represents a photopolymerizable group which is an acrylic group or a methacryl group.
 光反応性の側鎖を有するジアミンは、具体的には以下のものが挙げられるが、これに限定される訳ではない。下記式中、X、X10は、それぞれ独立に、単結合、-O-、-COO-、-NHCO-、又は-NH-である結合基、Yはフッ素原子で置換されていてもよい炭素数1~20のアルキレン基を表す。 Specific examples of the diamine having a photoreactive side chain include, but are not limited to, the following. In the following formulae, X 9 and X 10 are each independently a single bond, a bonding group that is —O—, —COO—, —NHCO—, or —NH—, and Y may be substituted with a fluorine atom Represents an alkylene group having 1 to 20 carbon atoms.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 また、光反応性の側鎖を有するジアミンとしては、下記式で表わされる光二量化反応を起こす基及び光重合反応を起こす基を側鎖に有するジアミンも挙げられる。 Also, examples of the diamine having a photoreactive side chain include a diamine having a group causing a photodimerization reaction and a group causing a photopolymerization reaction represented by the following formula in the side chain.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 上記式中、Y~Yは、上記定義と同じである。
 上記光反応性の側鎖を有するジアミンは、液晶配向膜とした際の液晶配向性、プレチルト角、電圧保持特性、蓄積電荷などの特性、液晶表示素子とした際の液晶の応答速度などに応じて、1種類又は2種類以上を混合して使用できる。
In the above formula, Y 1 to Y 6 are the same as defined above.
The diamine having a photoreactive side chain depends on the liquid crystal alignment property when it is used as a liquid crystal alignment film, the pretilt angle, the voltage holding property, the characteristics such as accumulated charge, the response speed of the liquid crystal when it is used as a liquid crystal display device, etc. 1 type or 2 types or more can be mixed and used.
 また、光反応性の側鎖を有するジアミンは、ポリアミック酸の合成に用いるジアミン成分の10~70モル%を用いることが好ましく、より好ましくは20~60モル%、特に好ましくは30~50モル%である。
 また、光反応性の側鎖を有するジアミンとしては、紫外線照射により分解しラジカルが発生するラジカル発生構造を有する部位を側鎖に有するジアミンも挙げられる。
The diamine having a photoreactive side chain is preferably used in an amount of 10 to 70 mol%, more preferably 20 to 60 mol%, particularly preferably 30 to 50 mol% of the diamine component used for the synthesis of the polyamic acid. It is.
Examples of the diamine having a photoreactive side chain include a diamine having a side chain having a site having a radical generating structure that is decomposed by ultraviolet irradiation to generate radicals.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 上記式(1)におけるAr、R、R、T、T、S及びQは、以下の定義を有する。
 即ち、Arはフェニレン、ナフチレン、及びビフェニレンから選ばれる芳香族炭化水素基を示し、それらには有機基が置換していても良く、水素原子はハロゲン原子に置換していても良い。
 R1、Rはそれぞれ独立して炭素原子数1~10のアルキル基もしくはアルコキシ基である。
 T1、T2はそれぞれ独立して、単結合又は-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、-N(CH)CO-の結合基である。
 Sは単結合もしくは非置換もしくはフッ素原子によって置換されている炭素原子数1~20のアルキレン基。ただしアルキレン基の-CH-または-CF-は-CH=CH-で任意に置き換えられていてもよく、次に挙げるいずれかの基が互いに隣り合わない場合において、これらの基に置き換えられていてもよい;-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、二価の炭素環、二価の複素環。
 Qは下記から選ばれる構造(構造式中、Rは水、素原子又は炭素原子数1~4のアルキル基を表し、Rは-CH-、-NR-、-O-、又は-S-を表す。)を表す。
Ar, R 1 , R 2 , T 1 , T 2 , S and Q in the above formula (1) have the following definitions.
That is, Ar represents an aromatic hydrocarbon group selected from phenylene, naphthylene, and biphenylene, in which an organic group may be substituted, and a hydrogen atom may be substituted with a halogen atom.
R 1 and R 2 are each independently an alkyl or alkoxy group having 1 to 10 carbon atoms.
T1 and T2 are each independently a single bond or —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, —CH 2 O—, —N (CH 3 ) —, It is a bonding group of —CON (CH 3 ) — and —N (CH 3 ) CO—.
S is a single bond, unsubstituted or an alkylene group having 1 to 20 carbon atoms substituted by a fluorine atom. However, the alkylene group —CH 2 — or —CF 2 — may be optionally replaced with —CH═CH—, and when any of the following groups is not adjacent to each other, these groups are replaced with these groups: -O-, -COO-, -OCO-, -NHCO-, -CONH-, -NH-, a divalent carbocycle, and a divalent heterocycle.
Q is a structure selected from the following (in the structural formula, R represents water, an elementary atom, or an alkyl group having 1 to 4 carbon atoms, and R 3 represents —CH 2 —, —NR—, —O—, or —S Represents-).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 上記式(I)において、カルボニルが結合しているArは紫外線の吸収波長に関与するため、長波長化する場合、ナフチレンやビフェニレンのような共役長の長い構造が好ましい。また、Arには置換基が置換していても良く、かかる置換基は、アルキル基、ヒドロキシル基、アルコキシ基、アミノ基などのような電子供与性の有機基が好ましい。 In the above formula (I), Ar to which carbonyl is bonded is involved in the absorption wavelength of ultraviolet rays. Therefore, when the wavelength is increased, a structure having a long conjugate length such as naphthylene or biphenylene is preferable. Ar may be substituted with a substituent, and the substituent is preferably an electron-donating organic group such as an alkyl group, a hydroxyl group, an alkoxy group, and an amino group.
 式(I)中、Arがナフチレンやビフェニレンのような構造になると溶解性が悪くなり、合成の難易度も高くなる。紫外線の波長が250nm~380nmの範囲であればフェニル基でも十分な特性が得られるため、フェニル基が最も好ましい。 In the formula (I), when Ar has a structure such as naphthylene or biphenylene, the solubility becomes worse and the difficulty of synthesis becomes higher. If the ultraviolet wavelength is in the range of 250 nm to 380 nm, a phenyl group is most preferable because sufficient characteristics can be obtained even with a phenyl group.
 また、R、Rは、それぞれ独立して炭素原子数1~10のアルキル基、アルコキシ基、ベンジル基、又はフェネチル基であり、アルキル基やアルコキシ基の場合、R、Rで環を形成していてもよい。 R 1 and R 2 are each independently an alkyl group having 1 to 10 carbon atoms, an alkoxy group, a benzyl group, or a phenethyl group. In the case of an alkyl group or an alkoxy group, R 1 and R 2 are May be formed.
 式(I)中、Qは、電子供与性の有機基が好ましく、上記の基が好ましい。
 Qがアミノ誘導体の場合、ポリイミドの前駆体であるポリアミック酸の重合の際に、発生するカルボン酸基とアミノ基が塩を形成するなどの不具合が生じる可能性があるため、より好ましくはヒドロキシル基又はアルコキシル基である。
In the formula (I), Q is preferably an electron donating organic group, and the above group is preferable.
In the case where Q is an amino derivative, there is a possibility that in the polymerization of polyamic acid which is a precursor of polyimide, there is a possibility that a carboxylic acid group generated and an amino group form a salt. Or it is an alkoxyl group.
 式(1)におけるジアミノベンゼンは、o-フェニレンジアミン、m-フェニレンジアミン、又はp-フェニレンジアミンのいずれの構造でもよいが、酸二無水物との反応性の点では、m-フェニレンジアミン、又はp-フェニレンジアミンが好ましい。 The diaminobenzene in the formula (1) may have any structure of o-phenylenediamine, m-phenylenediamine, or p-phenylenediamine. However, in terms of reactivity with acid dianhydride, m-phenylenediamine, or p-Phenylenediamine is preferred.
 具体的には、合成の容易さ、汎用性の高さ、特性などの点から、下記式で表される構造が最も好ましい。なお、式中nは2~8の整数である。 Specifically, the structure represented by the following formula is most preferable from the viewpoints of ease of synthesis, high versatility, and characteristics. In the formula, n is an integer of 2 to 8.
<その他のジアミン>
 特定重合体を得るためのその他のジアミン成分としては、上記[1]式で表される特定ジアミン以外のジアミン(以下、その他のジアミンとも言う)を含有しても良い。そのようなジアミンは、以下の一般式[2]で表される。その他ジアミンは1種又は2種以上を併用することもできる。
<Other diamines>
As another diamine component for obtaining the specific polymer, a diamine other than the specific diamine represented by the formula [1] (hereinafter also referred to as other diamine) may be contained. Such a diamine is represented by the following general formula [2]. Other diamines may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 上記式[2]中、A及びAは、それぞれ独立して、水素原子又は、炭素数1~5のアルキル基、炭素数2~5のアルケニル基、又は炭素数2~5のアルキニル基である。モノマーの反応性の観点から、A及びAは水素原子、又はメチル基が好ましい。Yの構造を例示すると、以下の通りである。 In the above formula [2], A 1 and A 2 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkynyl group having 2 to 5 carbon atoms. It is. From the viewpoint of monomer reactivity, A 1 and A 2 are preferably a hydrogen atom or a methyl group. An example of the structure of Y 1 is as follows.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 式中、特記しない限り、nは、1~6の整数である。下記式中、Bocは、tert-ブトキシカルボニル基を表す。 In the formula, n is an integer of 1 to 6 unless otherwise specified. In the following formula, Boc represents a tert-butoxycarbonyl group.
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 本発明の液晶配向剤に使用されるその他のジアミン成分は、特に限定されないが、塗布性、電圧保持率特性、残留DC電圧特性などの観点から、(Y-7)、(Y-8)、(Y-16)、(Y-17)、(Y-21)、(Y-22)、(Y-28)、(Y-37)、(Y-38)、(Y-60)、(Y-67)、(Y-68)、(Y-71)~(Y-73)、(Y-160)~(Y-180)から選ばれるジアミンを選定し併用することが特に好ましい。 Other diamine components used in the liquid crystal aligning agent of the present invention are not particularly limited, but (Y-7), (Y-8), from the viewpoints of coatability, voltage holding ratio characteristics, residual DC voltage characteristics, and the like. (Y-16), (Y-17), (Y-21), (Y-22), (Y-28), (Y-37), (Y-38), (Y-60), (Y -67), (Y-68), (Y-71) to (Y-73), and (Y-160) to (Y-180) are particularly preferably selected and used in combination.
(テトラカルボン酸成分)
 特定重合体を得るためのテトラカルボン酸成分としては、テトラカルボン酸、テトラカルボン酸二無水物、テトラカルボン酸ジハライド、テトラカルボン酸ジアルキルエステル、又はテトラカルボン酸ジアルキルエステルジハライドが挙げられ、本発明では、これらを総称してテトラカルボン酸成分ともいう。
 テトラカルボン酸成分としては、テトラカルボン酸二無水物、その誘導体である、テトラカルボン酸、テトラカルボン酸ジハライド、テトラカルボン酸ジアルキルエステル、又はテトラカルボン酸ジアルキルエステルジハライド(これらを総称して、第1のテトラカルボン酸成分という。)を用いることもできる。
(Tetracarboxylic acid component)
Examples of the tetracarboxylic acid component for obtaining the specific polymer include tetracarboxylic acid, tetracarboxylic dianhydride, tetracarboxylic acid dihalide, tetracarboxylic acid dialkyl ester, and tetracarboxylic acid dialkyl ester dihalide. Then, these are also collectively referred to as a tetracarboxylic acid component.
Examples of the tetracarboxylic acid component include tetracarboxylic dianhydride and its derivatives, tetracarboxylic acid, tetracarboxylic acid dihalide, tetracarboxylic acid dialkyl ester, and tetracarboxylic acid dialkyl ester dihalide (collectively, 1 tetracarboxylic acid component).
<テトラカルボン酸二無水物>
 テトラカルボン酸二無水物としては、例えば脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、芳香族テトラカルボン酸二無水物などを挙げることができる。 これらの具体例としては、以下の[1]~[5]の群のものなどをそれぞれ挙げることができる。
<Tetracarboxylic dianhydride>
Examples of tetracarboxylic dianhydrides include aliphatic tetracarboxylic dianhydrides, alicyclic tetracarboxylic dianhydrides, and aromatic tetracarboxylic dianhydrides. Specific examples of these include the following groups [1] to [5].
[1] 脂肪族テトラカルボン酸二無水物として、例えば1,2,3,4-ブタンテトラカルボン酸二無水物など; [1] As aliphatic tetracarboxylic dianhydride, for example, 1,2,3,4-butanetetracarboxylic dianhydride;
[2] 脂環式テトラカルボン酸二無水物として、例えば下記式(X1-1)~(X1-13)などの酸二無水物、 [2] Examples of alicyclic tetracarboxylic dianhydrides include acid dianhydrides such as the following formulas (X1-1) to (X1-13),
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 式(X1-1)~(X1-4)において、RからR23はそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基であり、同一でも異なってもよく、
 前記式中、Rは水素原子、又はメチル基であり、
 Xa、は下記式(Xa-1)~(Xa-7)で表される4価の有機基である。
In formulas (X1-1) to (X1-4), R 3 to R 23 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, carbon An alkynyl group having 2 to 6 carbon atoms, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, or a phenyl group, which may be the same or different,
In the above formula, R M represents a hydrogen atom or a methyl group,
Xa is a tetravalent organic group represented by the following formulas (Xa-1) to (Xa-7).
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
 [3] 3-オキサビシクロ[3.2.1]オクタン-2,4-ジオン-6-スピロ-3’-(テトラヒドロフラン-2’,5’-ジオン)、3,5,6-トリカルボキシ-2-カルボキシメチルノルボルナン-2:3,5:6-二無水物、4,9-ジオキサトリシクロ[5.3.1.02,6]ウンデカン-3,5,8,10-テトラオンなど; [3] 3-Oxabicyclo [3.2.1] octane-2,4-dione-6-spiro-3 ′-(tetrahydrofuran-2 ′, 5′-dione), 3,5,6-tricarboxy- 2-carboxymethylnorbornane-2: 3,5: 6-dianhydride, 4,9-dioxatricyclo [5.3.1.02,6] undecane-3,5,8,10-tetraone and the like;
 [4] 芳香族テトラカルボン酸二無水物として、例えばピロメリット酸無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、下記式(Xb-1)~(Xb-10)で表される酸二無水物など、および [4] As aromatic tetracarboxylic dianhydrides, for example, pyromellitic anhydride, 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic Acid dianhydrides, acid dianhydrides represented by the following formulas (Xb-1) to (Xb-10), and the like, and
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
[5] さらに、式(X1-44)~(X1-52)で表される酸二無水物、特開2010-97188号公報に記載のテトラカルボン酸二無水物を挙げることができる。 [5] Further, acid dianhydrides represented by the formulas (X1-44) to (X1-52) and tetracarboxylic dianhydrides described in JP-A-2010-97188 can be exemplified.
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
 なお、上記テトラカルボン酸二無水物は、1種を単独で又は2種以上組み合わせて使用することができる。
 本発明の液晶配向剤に使用されるテトラカルボン酸二無水物成分は、特に限定されないが、塗布性、電圧保持率特性、残留DC電圧特性などの観点から、(X1-1)、(X1-2)、(X1-3)、(X1-6)、(X1-7)、(X1-8)、(X1-9)、(Xa-2)、ピロメリット酸無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、(Xb-6)、(Xb-9)から選ばれるテトラカルボン酸二無水物を選定し用いることが好ましい。
In addition, the said tetracarboxylic dianhydride can be used individually by 1 type or in combination of 2 or more types.
The tetracarboxylic dianhydride component used in the liquid crystal aligning agent of the present invention is not particularly limited, but from the viewpoints of coatability, voltage holding ratio characteristics, residual DC voltage characteristics, etc., (X1-1), (X1- 2), (X1-3), (X1-6), (X1-7), (X1-8), (X1-9), (Xa-2), pyromellitic anhydride, 3,3 ′, It is preferable to select and use a tetracarboxylic dianhydride selected from 4,4′-diphenylsulfonetetracarboxylic dianhydride, (Xb-6) and (Xb-9).
<重合体の製造方法>
 これらの重合体を製造する方法は、通常、ジアミン成分とテトラカルボン酸成分とを反応させて得られる。テトラカルボン酸二無水物及びそのテトラカルボン酸の誘導体からなる群から選ばれる少なくとも1種のテトラカルボン酸成分と、1種又は複数種のジアミンからなるジアミン成分とを反応させて、ポリアミド酸を得る方法が挙げられる。具体的には、テトラカルボン酸二無水物と1級又は2級のジアミンとを重縮合させてポリアミック酸を得る方法が用いられる。
<Method for producing polymer>
The method for producing these polymers is usually obtained by reacting a diamine component and a tetracarboxylic acid component. A polyamic acid is obtained by reacting at least one tetracarboxylic acid component selected from the group consisting of a tetracarboxylic dianhydride and a derivative of the tetracarboxylic acid and a diamine component composed of one or more diamines. A method is mentioned. Specifically, a method is used in which polycarboxylic acid is obtained by polycondensation of tetracarboxylic dianhydride and primary or secondary diamine.
 ポリアミド酸アルキルエステルを得るためには、カルボン酸基をジアルキルエステル化したテトラカルボン酸と1級又は2級のジアミンとを重縮合させる方法、カルボン酸基をハロゲン化したテトラカルボン酸ジハライドと1級又は2級のジアミンとを重縮合させる方法、又はポリアミド酸のカルボキシ基をエステルに変換する方法が用いられる。
 ポリイミドを得るには、前記のポリアミド酸又はポリアミド酸アルキルエステルを閉環させてポリイミドとする方法が用いられる。
In order to obtain a polyamic acid alkyl ester, a method of polycondensing a tetracarboxylic acid obtained by dialkyl esterifying a carboxylic acid group with a primary or secondary diamine, a tetracarboxylic acid dihalide obtained by halogenating a carboxylic acid group and a primary Alternatively, a method of polycondensation with a secondary diamine or a method of converting a carboxy group of a polyamic acid into an ester is used.
In order to obtain polyimide, a method is used in which the polyamic acid or polyamic acid alkyl ester is cyclized to form polyimide.
 ジアミン成分とテトラカルボン酸成分との反応は、通常、溶媒中で行う。その際に用いる溶媒としては、生成したポリイミド前駆体が溶解するものであれば特に限定されない。下記に、反応に用いる溶媒の具体例を挙げるが、これらの例に限定されない。
 例えば、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン又はγ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド又は1,3-ジメチル-イミダゾリジノンが挙げられる。また、ポリイミド前駆体の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン又は下記式[D-1]~式[D-3]で表される溶媒を用いることができる。
The reaction of the diamine component and the tetracarboxylic acid component is usually performed in a solvent. The solvent used at that time is not particularly limited as long as the produced polyimide precursor is soluble. Although the specific example of the solvent used for reaction below is given, it is not limited to these examples.
Examples include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or γ-butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide or 1,3-dimethyl-imidazolidinone. It is done. Further, when the solvent solubility of the polyimide precursor is high, it is represented by methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or the following formulas [D-1] to [D-3]. Can be used.
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
 式[D-1]中、Dは炭素数1~3のアルキル基を示し、式[D-2]中、Dは炭素数1~3のアルキル基を示し、式[D-3]中、Dは炭素数1~4のアルキル基を示す。 In the formula [D-1], D 1 represents an alkyl group having 1 to 3 carbon atoms, and in the formula [D-2], D 2 represents an alkyl group having 1 to 3 carbon atoms, and the formula [D-3] In the formula, D 3 represents an alkyl group having 1 to 4 carbon atoms.
 これらの溶媒は単独で使用しても、混合して使用してもよい。更に、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、前記溶媒に混合して使用してもよい。また、溶媒中の水分は、重合反応を阻害し、更には、生成したポリイミド前駆体を加水分解させる原因となるので、溶媒は脱水乾燥させたものを用いることが好ましい。 These solvents may be used alone or in combination. Furthermore, even if it is a solvent which does not dissolve a polyimide precursor, you may mix and use it for the said solvent in the range which the produced | generated polyimide precursor does not precipitate. Moreover, since the water | moisture content in a solvent inhibits a polymerization reaction and also causes the produced | generated polyimide precursor to be hydrolyzed, it is preferable to use what dehydrated and dried the solvent.
 ジアミン成分とテトラカルボン酸成分とを溶媒中で反応させる際には、ジアミン成分を溶媒に分散或いは溶解させた溶液を攪拌させ、テトラカルボン酸成分をそのまま、又は溶媒に分散或いは溶解させて添加する方法、逆にテトラカルボン酸成分を溶媒に分散、或いは溶解させた溶液にジアミン成分を添加する方法、ジアミン成分とテトラカルボン酸成分とを交互に添加する方法等が挙げられ、これらのいずれの方法を用いてもよい。また、ジアミン成分又はテトラカルボン酸成分を、それぞれ複数種用いて反応させる場合は、あらかじめ混合した状態で反応させてもよく、個別に順次反応させてもよく、更に個別に反応させた低分子量体を混合反応させ重合体としてもよい。 When the diamine component and the tetracarboxylic acid component are reacted in the solvent, the solution in which the diamine component is dispersed or dissolved in the solvent is stirred, and the tetracarboxylic acid component is added as it is or dispersed or dissolved in the solvent. Methods, conversely, a method of adding a diamine component to a solution in which a tetracarboxylic acid component is dispersed or dissolved in a solvent, a method of adding a diamine component and a tetracarboxylic acid component alternately, and the like. May be used. In addition, when reacting using a plurality of diamine components or tetracarboxylic acid components, they may be reacted in a premixed state, individually or sequentially, or further individually reacted low molecular weight substances. May be mixed and reacted to form a polymer.
 ジアミン成分とテトラカルボン酸成分とを重縮合せしめる温度は、-20~150℃の任意の温度を選択することができるが、好ましくは-5~100℃の範囲である。反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となる。そのため、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、溶媒を追加できる。
 ポリイミド前駆体の重合反応においては、ジアミン成分の合計モル数とテトラカルボン酸成分の合計モル数の比は0.8~1.2であることが好ましい。通常の重縮合反応と同様に、このモル比が1.0に近いほど生成するポリイミド前駆体の分子量は大きくなる。
The temperature for polycondensation of the diamine component and the tetracarboxylic acid component can be selected from -20 to 150 ° C., but is preferably in the range of −5 to 100 ° C. The reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring becomes difficult. . Therefore, it is preferably 1 to 50% by mass, more preferably 5 to 30% by mass. The initial reaction is carried out at a high concentration, and then a solvent can be added.
In the polymerization reaction of the polyimide precursor, the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid component is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the molecular weight of the polyimide precursor formed increases as the molar ratio approaches 1.0.
 ポリイミドは、前記のポリイミド前駆体を閉環させて得られるポリイミドであり、このポリイミドにおいては、アミド酸基の閉環率(イミド化率ともいう)は必ずしも100%である必要はなく、用途や目的に応じて任意に調整できる。
 ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化、又はポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。
Polyimide is a polyimide obtained by ring closure of the polyimide precursor, and in this polyimide, the ring closure rate (also referred to as imidation rate) of the amic acid group is not necessarily 100%. It can be adjusted as desired.
Examples of the method for imidizing the polyimide precursor include thermal imidization in which the polyimide precursor solution is heated as it is, or catalytic imidization in which a catalyst is added to the polyimide precursor solution.
 ポリイミド前駆体を溶液中で熱イミド化させる場合の温度は、100~400℃、好ましくは120~250℃であり、イミド化反応により生成する水を系外に除きながら行う方法が好ましい。ポリイミド前駆体の触媒イミド化は、ポリイミド前駆体の溶液に、塩基性触媒と酸無水物とを添加し、-20~250℃、好ましくは0~180℃で攪拌することにより行うことができる。 The temperature when the polyimide precursor is thermally imidized in a solution is 100 to 400 ° C., preferably 120 to 250 ° C., and a method of removing water generated by the imidation reaction from the system is preferable. The catalytic imidation of the polyimide precursor can be carried out by adding a basic catalyst and an acid anhydride to the polyimide precursor solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C.
 塩基性触媒の量は、アミド酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量は、アミド酸基の1~50モル倍、好ましくは3~30モル倍である。
 塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。なかでも、ピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。
 酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸等を挙げることができる。特に、無水酢酸を用いると反応終了後の精製が容易となるので好ましい。
 触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。
The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amidic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol times the amido group. 30 mole times.
Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has a basicity suitable for advancing the reaction.
Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. In particular, it is preferable to use acetic anhydride because purification after completion of the reaction is easy.
The imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
 ポリイミド前駆体又はポリイミドの反応溶液から、生成したポリイミド前駆体又はポリイミドを回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。沈殿に用いる溶媒としては、メタノール、エタノール、イソプロピルアルコール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、トルエン、ベンゼン、水等を挙げることができる。溶媒に投入して沈殿させたポリマーは、濾過して回収した後、常圧或いは減圧下で、常温或いは加熱して乾燥することができる。また、沈殿回収した重合体を、溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の溶媒として、例えば、アルコール類、ケトン類、炭化水素等が挙げられる。これら中から選ばれる3種類以上の溶媒を用いると、より一層精製の効率が上がるので好ましい。 When recovering the produced polyimide precursor or polyimide from the polyimide precursor or polyimide reaction solution, the reaction solution may be poured into a solvent and precipitated. Examples of the solvent used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, and water. The polymer precipitated in the solvent can be recovered by filtration, and then dried at normal temperature or under reduced pressure at room temperature or by heating. In addition, when the polymer collected by precipitation is redissolved in a solvent and reprecipitation and collection is repeated 2 to 10 times, impurities in the polymer can be reduced. Examples of the solvent at this time include alcohols, ketones, hydrocarbons and the like. It is preferable to use three or more kinds of solvents selected from these, since the purification efficiency is further increased.
 本発明のポリアミド酸アルキルエステルを製造するための、より具体的な方法を下記(1)~(3)に示す。
 (1)ポリアミド酸のエステル化反応で製造する方法
 ジアミン成分とテトラカルボン酸成分とからポリアミド酸を製造し、そのカルボキシ基(COOH基)に、化学反応、すなわち、エステル化反応を行い、ポリアミド酸アルキルエステルを製造する方法である。
 エステル化反応は、ポリアミド酸とエステル化剤を溶媒の存在下で、-20~150℃(好ましくは0~50℃)において、30分~24時間(好ましくは1~4時間)反応させる方法である。
More specific methods for producing the polyamic acid alkyl ester of the present invention are shown in the following (1) to (3).
(1) Method of producing by polyamic acid esterification reaction Polyamic acid is produced from a diamine component and a tetracarboxylic acid component, and the carboxy group (COOH group) is subjected to a chemical reaction, that is, an esterification reaction. This is a method for producing an alkyl ester.
The esterification reaction is a method in which a polyamic acid and an esterifying agent are reacted at −20 to 150 ° C. (preferably 0 to 50 ° C.) for 30 minutes to 24 hours (preferably 1 to 4 hours) in the presence of a solvent. is there.
 前記エステル化剤としては、エステル化反応後に、容易に除去できるものが好ましく、N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジメチルホルムアミドジエチルアセタール、N,N-ジメチルホルムアミドジプロピルアセタール、N,N-ジメチルホルムアミドジネオペンチルブチルアセタール、N,N-ジメチルホルムアミドジ-t-ブチルアセタール、1-メチル-3-p-トリルトリアゼン、1-エチル-3-p-トリルトリアゼン、1-プロピル-3-p-トリルトリアゼン、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド等が挙げられる。エステル化剤の使用量は、ポリアミド酸の繰り返し単位1モルに対して、2~6モル当量が好ましい。なかでも、2~4モル当量が好ましい。 The esterifying agent is preferably one that can be easily removed after the esterification reaction. N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl -3-p-tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like. The amount of the esterifying agent used is preferably 2 to 6 molar equivalents per 1 mol of the polyamic acid repeating unit. Of these, 2 to 4 molar equivalents are preferred.
 前記エステル化反応に用いる溶媒としては、ポリアミド酸の溶媒への溶解性の点から、前記ジアミン成分とテトラカルボン酸成分との反応に用いる溶媒が挙げられる。なかでも、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン又はγ-ブチロラクトンが好ましい。これら溶媒は、1種又は2種以上を混合して用いてもよい。
 前記エステル化反応における溶媒中のポリアミド酸の濃度は、ポリアミド酸の析出が起こりにくい点から、1~30質量%が好ましい。なかでも、5~20質量%が好ましい。
Examples of the solvent used for the esterification reaction include a solvent used for the reaction of the diamine component and the tetracarboxylic acid component from the viewpoint of solubility of the polyamic acid in the solvent. Of these, N, N-dimethylformamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or γ-butyrolactone is preferable. These solvents may be used alone or in combination of two or more.
The concentration of the polyamic acid in the solvent in the esterification reaction is preferably 1 to 30% by mass from the viewpoint that the polyamic acid does not easily precipitate. Among these, 5 to 20% by mass is preferable.
 (2)ジアミン成分とテトラカルボン酸ジエステルジクロリドとの反応で製造する方法
 具体的には、ジアミン成分とテトラカルボン酸ジエステルジクロリドとを、塩基と溶媒の存在下で、-20~150℃(好ましくは0~50℃)において、30分~24時間(好ましくは1~4時間)反応させる方法である。
 塩基は、ピリジン、トリエチルアミン、4-ジメチルアミノピリジン等を用いることができる。なかでも、反応が穏和に進行するため、ピリジンが好ましい。塩基の使用量は、反応後に、容易に除去できる量が好ましく、テトラカルボン酸ジエステルジクロリドに対して、2~4倍モルであることが好ましい。なかでも、2~3倍モルがより好ましい。
(2) Method of producing by reaction of diamine component and tetracarboxylic acid diester dichloride Specifically, the diamine component and tetracarboxylic acid diester dichloride are −20 to 150 ° C. (preferably in the presence of a base and a solvent) (0 to 50 ° C.) for 30 minutes to 24 hours (preferably 1 to 4 hours).
As the base, pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used. Of these, pyridine is preferable because the reaction proceeds gently. The amount of the base used is preferably an amount that can be easily removed after the reaction, and is preferably 2 to 4 moles relative to the tetracarboxylic acid diester dichloride. Of these, 2 to 3 moles are more preferred.
 溶媒には、得られる重合体、すなわち、ポリアミド酸アルキルエステルの溶媒への溶解性の点から、前記ジアミン成分とテトラカルボン酸成分との反応に用いる溶媒が挙げられる。なかでも、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン又はγ-ブチロラクトンが好ましい。これらの溶媒は、1種又は2種以上を混合して用いてもよい。
 反応における溶媒中のポリアミド酸アルキルエステルの濃度は、ポリアミド酸アルキルエステルの析出が起こりにくい点から、1~30質量%が好ましい。なかでも、5~20質量%が好ましい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミド酸アルキルエステルの作製に用いる溶媒は、できるだけ脱水されていることが好ましい。更に、反応は窒素雰囲気中で行い、外気の混入を防ぐのが好ましい。
Examples of the solvent include a solvent used for the reaction of the diamine component and the tetracarboxylic acid component from the viewpoint of solubility of the obtained polymer, that is, the polyamic acid alkyl ester in the solvent. Of these, N, N-dimethylformamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or γ-butyrolactone is preferable. These solvents may be used alone or in combination of two or more.
The concentration of the polyamic acid alkyl ester in the solvent in the reaction is preferably 1 to 30% by mass from the viewpoint that precipitation of the polyamic acid alkyl ester hardly occurs. Among these, 5 to 20% by mass is preferable. In order to prevent hydrolysis of the tetracarboxylic acid diester dichloride, it is preferable that the solvent used for preparing the polyamic acid alkyl ester is dehydrated as much as possible. Furthermore, the reaction is preferably performed in a nitrogen atmosphere to prevent outside air from being mixed.
 (3)ジアミン成分とテトラカルボン酸ジエステルとの反応で製造する方法
 具体的には、ジアミン成分とテトラカルボン酸ジエステルとを、縮合剤、塩基及び溶媒の存在下で、0~150℃(好ましくは0~100℃)において、30分~24時間(好ましくは3~15時間)重縮合反応させる方法である。
(3) Method of producing by reaction of diamine component and tetracarboxylic acid diester Specifically, the diamine component and tetracarboxylic acid diester are heated at 0 to 150 ° C. (preferably in the presence of a condensing agent, a base and a solvent). 0 to 100 ° C.) for 30 minutes to 24 hours (preferably 3 to 15 hours).
 縮合剤には、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムテトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニル等を用いることができる。縮合剤の使用量は、テトラカルボン酸ジエステルに対して、2~3倍モルが好ましく、特に、2~2.5倍モルが好ましい。 Condensation agents include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazinyl Methylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like can be used. The amount of the condensing agent used is preferably 2 to 3 moles, and more preferably 2 to 2.5 moles, based on the tetracarboxylic acid diester.
 塩基には、ピリジン、トリエチルアミン等の3級アミンを用いることができる。塩基の使用量は、重縮合反応後に、容易に除去できる量が好ましく、ジアミン成分に対して、2~4倍モルが好ましく、2~3倍モルがより好ましい。
 重縮合反応に用いる溶媒は、得られる重合体、すなわち、ポリアミド酸アルキルエステルの溶媒への溶解性の点から、前記ジアミン成分とテトラカルボン酸成分との反応に用いる溶媒が挙げられる。なかでも、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン又はγ-ブチロラクトンが好ましい。これら溶媒は、1種又は2種以上用いてもよい。
As the base, tertiary amines such as pyridine and triethylamine can be used. The amount of the base used is preferably an amount that can be easily removed after the polycondensation reaction, preferably 2 to 4 times by mole, more preferably 2 to 3 times by mole with respect to the diamine component.
Examples of the solvent used for the polycondensation reaction include a solvent used for the reaction of the diamine component and the tetracarboxylic acid component from the viewpoint of the solubility of the resulting polymer, that is, the polyamic acid alkyl ester, in the solvent. Of these, N, N-dimethylformamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or γ-butyrolactone is preferable. These solvents may be used alone or in combination of two or more.
 また、重縮合反応においては、ルイス酸を添加剤として加えることで、反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウム等のハロゲン化リチウムが好ましい。ルイス酸の使用量は、ジアミン成分に対して、0.1~10倍モルが好ましい。なかでも、2.0~3.0倍モルが好ましい。 In the polycondensation reaction, the reaction proceeds efficiently by adding Lewis acid as an additive. As the Lewis acid, lithium halides such as lithium chloride and lithium bromide are preferable. The amount of Lewis acid used is preferably 0.1 to 10 times the mole of the diamine component. Among these, 2.0 to 3.0 moles are preferable.
 上記(1)~(3)の手法で得られたポリアミド酸アルキルエステルの溶液から、ポリアミド酸アルキルエステルを回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。沈殿に用いる溶媒としては、水、メタノール、エタノール、2-プロパノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等を挙げることができる。溶媒に投入して沈殿させた重合体は、前記で使用した添加剤、触媒類を除去することを目的に、上記溶媒で、複数回洗浄操作を行うことが好ましい。洗浄し、ろ過して回収した後、重合体は常圧或いは減圧下、常温或いは加熱して乾燥することができる。また、沈殿回収した重合体を、溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すことにより、重合体中の不純物を少なくすることができる。
 ポリアミド酸アルキルエステルは、前記(2)又は(3)の製造方法が好ましい。
When recovering the polyamic acid alkyl ester from the polyamic acid alkyl ester solution obtained by the methods (1) to (3) above, the reaction solution may be poured into a solvent and precipitated. Examples of the solvent used for precipitation include water, methanol, ethanol, 2-propanol, hexane, butyl cellosolve, acetone, toluene and the like. The polymer deposited in the solvent is preferably washed with the solvent several times for the purpose of removing the additives and catalysts used above. After washing, filtration and recovery, the polymer can be dried at normal temperature or reduced pressure at room temperature or with heating. In addition, the impurities in the polymer can be reduced by re-dissolving the polymer recovered by precipitation in a solvent and repeating the operation of re-precipitation recovery 2 to 10 times.
The production method of (2) or (3) above is preferable for the polyamic acid alkyl ester.
<液晶配向剤>
 本発明の液晶配向剤は、上述の特定重合体を含有し、好ましくは液晶配向膜を形成するための溶液であるのがよい。液晶配向剤における重合体の含有量は、液晶配向剤中、2~10質量%が好ましく、3~8質量%がより好ましい。
<Liquid crystal aligning agent>
The liquid crystal aligning agent of this invention contains the above-mentioned specific polymer, Preferably it is a solution for forming a liquid crystal aligning film. The content of the polymer in the liquid crystal aligning agent is preferably 2 to 10% by mass and more preferably 3 to 8% by mass in the liquid crystal aligning agent.
 本発明の液晶配向剤における全ての重合体成分は、全てが本発明の特定重合体であってもよく、それ以外の他の重合体が混合されていても良い。それ以外の重合体としては、ポリイミドおよびポリイミド前駆体に加えて、セルロース系重合体、アクリルポリマー、メタクリルポリマー、ポリスチレン、ポリアミド、ポリシロキサン等も挙げられる。それ以外の他の重合体の含有量は、液晶配向剤に含まれる樹脂成分のうち、1~90質量%が好ましく、30~80質量がより好ましい。 All the polymer components in the liquid crystal aligning agent of the present invention may all be the specific polymer of the present invention, or other polymers may be mixed. Examples of other polymers include cellulose polymers, acrylic polymers, methacrylic polymers, polystyrenes, polyamides, polysiloxanes, etc., in addition to polyimides and polyimide precursors. The content of the other polymer is preferably 1 to 90% by mass and more preferably 30 to 80% by mass in the resin component contained in the liquid crystal aligning agent.
 本発明の液晶配向剤に使用される良溶媒は、本発明の特定重合体が溶解するものであれば特に限定されない。下記に、液晶配向剤に用いる溶媒の具体例を挙げるが、これらの例に限定されない。
 例えば、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン又はγ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド又は1,3-ジメチル-イミダゾリジノンが挙げられる。
 また、ポリイミド前駆体の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン又は上記式[D-1]~式[D-3]で表される溶媒を用いることもできる。
 上記良溶媒は1種類で使用してもよいし、塗布方法などに合わせてより適する組み合わせ、および比率で使用してもよい。
 本発明の液晶配向剤における良溶媒は、液晶配向剤に含まれる溶媒全体の20~99質量%であることが好ましい。なかでも、20~90質量%が好ましい。より好ましいのは、30~80質量%である。
The good solvent used for the liquid crystal aligning agent of this invention will not be specifically limited if the specific polymer of this invention melt | dissolves. Although the specific example of the solvent used for a liquid crystal aligning agent below is given, it is not limited to these examples.
Examples include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or γ-butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide or 1,3-dimethyl-imidazolidinone. It is done.
Further, when the solvent solubility of the polyimide precursor is high, it is represented by methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone or the above formula [D-1] to formula [D-3]. The solvent used can also be used.
The said good solvent may be used by 1 type, and may be used by the combination and ratio which are more suitable according to the application | coating method.
The good solvent in the liquid crystal aligning agent of the present invention is preferably 20 to 99% by mass of the whole solvent contained in the liquid crystal aligning agent. Of these, 20 to 90% by mass is preferable. More preferred is 30 to 80% by mass.
 本発明の液晶配向剤は、液晶配向剤を塗布した際の液晶配向膜の塗膜性や表面平滑性を向上させる溶媒(貧溶媒ともいう)を使用できる。下記にその具体例を挙げる。
 例えば、エタノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、2,6-ジメチル-4-ヘプタノール、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、ジイソプロピルエーテル、ジプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、2-ペンタノン、3-ペンタノン、2-ヘキサノン、2-ヘプタノン、4-ヘプタノン、2,6-ジメチル-4-ヘプタノン、4,6-ジメチル-2-ヘプタノン、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、2-(メトキシメトキシ)エタノール、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、2-(ヘキシルオキシ)エタノール、フルフリルアルコール、ジエチレングリコール、プロピレングリコール、プロピレングリコールモノブチルエーテル、1-(ブトキシエトキシ)プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコール、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル、前記式[D-1]~[D-3]で表される溶媒等を挙げることができる。
The liquid crystal aligning agent of this invention can use the solvent (it is also called a poor solvent) which improves the coating property and surface smoothness of a liquid crystal aligning film at the time of apply | coating a liquid crystal aligning agent. Specific examples are given below.
For example, ethanol, isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 2,6- Dimethyl 4-heptanol, 1,2-ethanediol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3- Butanediol, 1,5-pentanediol, 2-methyl-2,4-pentanediol, 2-ethyl-1,3-hexanediol, diisopropyl ether, dipropyl ether, dibutyl ether, dihexyl ether, dioxane, ethylene glycol dimethyl ether , Ethylene glycol diethyl ether, ethylene glycol dibutyl ether, 1,2-butoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, 4-hydroxy-4-methyl-2-pentanone, diethylene glycol methyl Tyl ether, diethylene glycol dibutyl ether, 2-pentanone, 3-pentanone, 2-hexanone, 2-heptanone, 4-heptanone, 2,6-dimethyl-4-heptanone, 4,6-dimethyl-2-heptanone, 3-ethoxybutyl Acetate, 1-methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, ethylene glycol monoacetate, ethylene glycol diacetate, propylene carbonate, ethylene carbonate, 2- (methoxymethoxy) ethanol, ethylene Glycol monobutyl ether, ethylene glycol monoisoamyl ether, ethylene glycol monohexyl ether, 2- (hexyloxy) ethanol, furfuryl alcohol, diethylene glycol, Lopylene glycol, propylene glycol monobutyl ether, 1- (butoxyethoxy) propanol, propylene glycol monomethyl ether acetate, dipropylene glycol, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, di Propylene glycol dimethyl ether, tripropylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, ethylene glycol monoacetate, ethylene glycol diacetate, diethylene glycol monoethyl ether Acetate, diethylene glycol monobutyl ether acetate, 2- (2-ethoxyethoxy) ethyl acetate, diethylene glycol acetate, triethylene glycol, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, methyl lactate, ethyl lactate, methyl acetate, Ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, methylethyl 3-ethoxypropionate, 3-methoxypropionic acid Ethyl, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, methyl lactate, milk Ethyl ester, lactic acid n- propyl ester, lactate n- butyl ester, lactic acid isoamyl ester, the formula [D-1] ~ can be exemplified solvents represented by [D-3].
 なかでも、好ましい溶媒の組み合わせとしては、N-メチル-2-ピロリドンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとジエチレングリコールジエチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルと2,6-ジメチル-4-ヘプタノン、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソプロピルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルと2,6-ジメチル-4-ヘプタノール、N-メチル-2-ピロリドンとγ-ブチロラクトンとジプロピレングリコールジメチルエーテル、などを挙げることができる。これら貧溶媒は、液晶配向剤に含まれる溶媒全体の1~80質量%が好ましく、10~80質量%がより好ましく、20~70質量%が特に好ましい。このような溶媒の種類及び含有量は、液晶配向剤の塗布装置、塗布条件、塗布環境などに応じて適宜選択される。 Among these, preferred solvent combinations include N-methyl-2-pyrrolidone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone, γ-butyrolactone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone and γ- Butyrolactone and propylene glycol monobutyl ether, N-ethyl-2-pyrrolidone and propylene glycol monobutyl ether, N-methyl-2-pyrrolidone, γ-butyrolactone, 4-hydroxy-4-methyl-2-pentanone and diethylene glycol diethyl ether, N- Methyl-2-pyrrolidone, γ-butyrolactone, propylene glycol monobutyl ether, 2,6-dimethyl-4-heptanone, N-methyl-2-pyrrolidone, γ-butyrolactone, and propylene glycol Monobutyl ether and diisopropyl ether, N-methyl-2-pyrrolidone and γ-butyrolactone and propylene glycol monobutyl ether and 2,6-dimethyl-4-heptanol, N-methyl-2-pyrrolidone, γ-butyrolactone and dipropylene glycol dimethyl ether , Etc. These poor solvents are preferably 1 to 80% by mass, more preferably 10 to 80% by mass, and particularly preferably 20 to 70% by mass with respect to the total solvent contained in the liquid crystal aligning agent. The kind and content of such a solvent are appropriately selected according to the application device, application conditions, application environment, and the like of the liquid crystal aligning agent.
 本発明の液晶配向剤には、上記の他、本発明に記載の重合体以外の重合体、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体、液晶配向膜と基板との密着性を向上させる目的のシランカップリング剤、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物、更には塗膜を焼成する際にポリイミド前駆体の加熱によるイミド化を効率よく進行させる目的のイミド化促進剤等を含有せしめてもよい。 In addition to the above, the liquid crystal aligning agent of the present invention includes a polymer other than the polymer described in the present invention, a dielectric for the purpose of changing electrical properties such as dielectric constant and conductivity of the liquid crystal aligning film, Silane coupling agent for the purpose of improving adhesion to the substrate, crosslinkable compound for the purpose of increasing the hardness and density of the liquid crystal alignment film, and heating of the polyimide precursor when the coating film is baked An imidization accelerator for the purpose of efficiently proceeding imidization by the above may be contained.
 液晶配向膜と基板との密着性を向上させる化合物としては、官能性シラン含有化合物やエポキシ基含有化合物が挙げられ、例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’,-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサンまたはN,N,N’,N’,-テトラグリシジル-4、4’-ジアミノジフェニルメタンなどが挙げられる。 Examples of the compound that improves the adhesion between the liquid crystal alignment film and the substrate include a functional silane-containing compound and an epoxy group-containing compound, such as 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3- Glycidoxypropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2- Aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl- 3-aminopropyltrimethoxy Sisilane, N-ethoxycarbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4,7-triazadecane, 10 -Triethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-amino Propyltrimethoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis (oxyethylene) -3 Aminopropyltrimethoxysilane, -Bis (oxyethylene) -3-aminopropyltriethoxysilane, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol di Glycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, N, N, N ', N',-Tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane or N, N, N ', N',-tetraglycyl Such as Gilles-4,4'-diaminodiphenylmethane and the like.
 また、本発明の液晶配向剤には、液晶配向膜の機械的強度を上げるために以下のような添加物を添加してもよい。 In addition, the following additives may be added to the liquid crystal aligning agent of the present invention in order to increase the mechanical strength of the liquid crystal aligning film.
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
 上記の添加剤は、液晶配向剤に含有される重合体成分の100質量部に対して0.1~30質量部であることが好ましい。0.1質量部未満であると効果が期待できず、30質量部を超えると液晶の配向性を低下させるため、より好ましくは0.5~20質量部である。 The above-mentioned additive is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. If the amount is less than 0.1 parts by mass, the effect cannot be expected. If the amount exceeds 30 parts by mass, the orientation of the liquid crystal is lowered.
<液晶配向膜及び液晶表示素子>
本発明の液晶配向膜は、本発明の液晶配向剤を基板上に塗布して焼成することにより形成できる。
 例えば、本発明の液晶配向剤を、基板に塗布した後、必要に応じて乾燥し、焼成を行うことで得られる硬化膜を、そのまま液晶配向膜として用いることもできる。また、この硬化膜をラビングしたり、偏光又は特定の波長の光等を照射したり、イオンビーム等の処理をしたり、PSA用配向膜として液晶充填後の液晶表示素子に電圧を印加した状態でUVを照射することも可能である。特に、PSA用配向膜として使用することが有用である。
<Liquid crystal alignment film and liquid crystal display element>
The liquid crystal alignment film of the present invention can be formed by applying the liquid crystal aligning agent of the present invention on a substrate and baking it.
For example, after apply | coating the liquid crystal aligning agent of this invention to a board | substrate, after drying as needed, the cured film obtained by baking can also be used as a liquid crystal aligning film as it is. In addition, the cured film is rubbed, irradiated with polarized light or light of a specific wavelength, or treated with an ion beam, or a voltage is applied to the liquid crystal display element after filling the liquid crystal as a PSA alignment film It is also possible to irradiate with UV. In particular, it is useful to use as an alignment film for PSA.
 この際、用いる基板としては、透明性の高い基板であれば特に限定されず、ガラス板、ポリカーボネート、ポリ(メタ)アクリレート、ポリエーテルサルホン、ポリアリレート、ポリウレタン、ポリサルホン、ポリエーテル、ポリエーテルケトン、トリメチルペンテン、ポリオレフィン、ポリエチレンテレフタレート、(メタ)アクリロニトリル、トリアセチルセルロース、ジアセチルセルロース、アセテートブチレートセルロースなどのプラスチック基板などを用いることができる。また、液晶駆動のためのITO電極などが形成された基板を用いることがプロセスの簡素化の観点から好ましい。また、反射型の液晶表示素子では片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミ等の光を反射する材料も使用できる。 In this case, the substrate to be used is not particularly limited as long as it is a highly transparent substrate. Glass plate, polycarbonate, poly (meth) acrylate, polyethersulfone, polyarylate, polyurethane, polysulfone, polyether, polyetherketone , Plastic substrates such as trimethylpentene, polyolefin, polyethylene terephthalate, (meth) acrylonitrile, triacetyl cellulose, diacetyl cellulose, and acetate butyrate cellulose can be used. In addition, it is preferable to use a substrate on which an ITO electrode or the like for driving liquid crystal is formed from the viewpoint of simplifying the process. Further, in the reflection type liquid crystal display element, an opaque material such as a silicon wafer can be used as long as the substrate is only on one side, and in this case, a material that reflects light such as aluminum can be used.
 液晶配向剤の塗布方法は特に限定されず、スクリーン印刷、オフセット印刷、フレキソ印刷等の印刷法、インクジェット法、スプレー法、ロールコート法や、ディップ、ロールコーター、スリットコーター、スピンナー等が挙げられる。生産性の面から工業的には転写印刷法が広く用いられており、本発明でも好適に用いられる。 The method for applying the liquid crystal aligning agent is not particularly limited, and examples thereof include printing methods such as screen printing, offset printing, flexographic printing, ink jet method, spray method, roll coating method, dip, roll coater, slit coater, and spinner. From the standpoint of productivity, the transfer printing method is widely used industrially, and is preferably used in the present invention.
 上記の方法で液晶配向剤を塗布して形成される塗膜は、焼成して硬化膜とすることができる。液晶配向剤を塗布した後の乾燥の工程は、必ずしも必要とされないが、塗布後から焼成までの時間が基板ごとに一定していない場合、又は塗布後ただちに焼成されない場合には、乾燥工程を行うことが好ましい。この乾燥は、基板の搬送等により塗膜形状が変形しない程度に溶媒が除去されていればよく、その乾燥手段については特に限定されない。例えば、温度40℃~150℃、好ましくは60℃~100℃のホットプレート上で、0.5分~30分、好ましくは1分~5分乾燥させる方法が挙げられる。 The coating film formed by applying the liquid crystal aligning agent by the above method can be baked to obtain a cured film. The drying process after applying the liquid crystal aligning agent is not necessarily required, but if the time from application to baking is not constant for each substrate, or if baking is not performed immediately after application, the drying process is performed. It is preferable. The drying is not particularly limited as long as the solvent is removed to such an extent that the shape of the coating film is not deformed by transporting the substrate or the like. For example, a method of drying on a hot plate at a temperature of 40 ° C. to 150 ° C., preferably 60 ° C. to 100 ° C., for 0.5 minutes to 30 minutes, preferably 1 minute to 5 minutes.
 液晶配向剤を塗布することにより形成された塗膜の焼成温度は限定されず、例えば100~350℃、好ましくは120~350℃であり、さらに好ましくは150℃~330℃である。焼成時間は5分~240分、好ましくは10分~90分であり、より好ましくは10分~30分である。加熱は、通常公知の方法、例えば、ホットプレート、熱風循環炉、赤外線炉などで行うことができる。 The baking temperature of the coating film formed by applying the liquid crystal aligning agent is not limited, and is, for example, 100 to 350 ° C, preferably 120 to 350 ° C, and more preferably 150 ° C to 330 ° C. The firing time is 5 minutes to 240 minutes, preferably 10 minutes to 90 minutes, and more preferably 10 minutes to 30 minutes. Heating can be performed by a generally known method such as a hot plate, a hot air circulating furnace, an infrared furnace, or the like.
 また、焼成して得られる液晶配向膜の厚みは特に限定されないが、好ましくは5~300nm、より好ましくは20~200nmである。 The thickness of the liquid crystal alignment film obtained by firing is not particularly limited, but is preferably 5 to 300 nm, more preferably 20 to 200 nm.
 液晶表示素子は、上記の方法により、基板に液晶配向膜を形成した後、公知の方法で液晶セルを作製できる。液晶表示素子の具体例としては、対向するように配置された2枚の基板と、基板間に設けられた液晶層と、基板と液晶層との間に設けられ液晶配向剤により形成された上記液晶配向膜とを有する液晶セルを具備する垂直配向方式の液晶表示素子である。具体的には、液晶配向剤を2枚の基板上に塗布して焼成することにより液晶配向膜を形成し、この液晶配向膜が対向するように2枚の基板を配置し、この2枚の基板の間に液晶で構成された液晶層を挟持することで作製される液晶セルを具備する垂直配向方式の液晶表示素子である。 The liquid crystal display element can produce a liquid crystal cell by a known method after forming a liquid crystal alignment film on a substrate by the above method. As a specific example of the liquid crystal display element, the two substrates disposed so as to face each other, the liquid crystal layer provided between the substrates, and the liquid crystal alignment agent provided between the substrate and the liquid crystal layer are formed by the above-described liquid crystal display element. A liquid crystal display element of a vertical alignment system including a liquid crystal cell having a liquid crystal alignment film. Specifically, a liquid crystal alignment film is formed by applying and baking a liquid crystal alignment agent on two substrates, and the two substrates are arranged so that the liquid crystal alignment films face each other. This is a vertical alignment type liquid crystal display element including a liquid crystal cell manufactured by sandwiching a liquid crystal layer composed of liquid crystal between substrates.
 本発明の特定重合体を含有する液晶配向剤により形成された液晶配向膜を用い、液晶配向膜及び液晶層に電圧を印加しながら紫外線を照射して液晶中に含まれる重合性化合物を反応させることにより、垂直配向能が顕著に優れたPSA方式液晶表示素子となる。 Using the liquid crystal alignment film formed of the liquid crystal alignment agent containing the specific polymer of the present invention, the polymerizable compound contained in the liquid crystal is reacted by irradiating ultraviolet rays while applying a voltage to the liquid crystal alignment film and the liquid crystal layer. As a result, a PSA type liquid crystal display element having a remarkably excellent vertical alignment ability is obtained.
 液晶表示素子の基板としては、透明性の高い基板であれば特に限定されないが、通常は、基板上に液晶を駆動するための透明電極が形成された基板である。具体例としては、上記液晶配向膜で記載した基板と同様のものを挙げることができる。従来の電極パターンや突起パターンが設けられた基板を用いてもよいが、PSA方式液晶表示素子においては、本発明のポリイミド系重合体を含有する液晶配向剤を用いているため、片側基板に例えば1から10μmのライン/スリット電極パターンを形成し、対向基板にはスリットパターンや突起パターンを形成していない構造においても動作可能であり、この構造の液晶表示素子によって、製造時のプロセスを簡略化でき、高い透過率を得ることができる。 The substrate of the liquid crystal display element is not particularly limited as long as it is a highly transparent substrate, but is usually a substrate in which a transparent electrode for driving liquid crystal is formed on the substrate. As a specific example, the thing similar to the board | substrate described with the said liquid crystal aligning film can be mentioned. A substrate provided with a conventional electrode pattern or protrusion pattern may be used. However, in the PSA type liquid crystal display element, the liquid crystal aligning agent containing the polyimide polymer of the present invention is used. It is possible to operate even in a structure in which a line / slit electrode pattern of 1 to 10 μm is formed and no slit pattern or protrusion pattern is formed on the counter substrate. The liquid crystal display element of this structure simplifies the manufacturing process. And high transmittance can be obtained.
 また、TFT型の素子のような高機能素子においては、液晶駆動のための電極と基板の間にトランジスタの如き素子が形成されたものが用いられる。
 透過型の液晶表示素子の場合は、上記の如き基板を用いることが一般的であるが、反射型の液晶表示素子では、片側の基板のみにならばシリコンウエハー等の不透明な基板も用いることが可能である。その際、基板に形成された電極には、光を反射するアルミニウムの如き材料を用いることもできる。
As a high-performance element such as a TFT type element, an element in which an element such as a transistor is formed between an electrode for driving a liquid crystal and a substrate is used.
In the case of a transmissive liquid crystal display element, it is common to use a substrate as described above. However, in a reflective liquid crystal display element, if only one substrate is used, an opaque substrate such as a silicon wafer may be used. Is possible. At that time, a material such as aluminum that reflects light may be used for the electrode formed on the substrate.
 液晶表示素子の液晶層を構成する液晶材料は特に限定されず、従来の垂直配向方式で使用される液晶材料、例えば、メルク社製のMLC-6608やMLC-6609、MLC-3023などのネガ型の液晶を用いることができる。また、PSA方式液晶表示素子では、例えば下記式で表されるような重合性化合物含有の液晶を使用することができる。 The liquid crystal material constituting the liquid crystal layer of the liquid crystal display element is not particularly limited, and the liquid crystal material used in the conventional vertical alignment method, for example, negative types such as MLC-6608, MLC-6609, MLC-3023 manufactured by Merck The liquid crystal can be used. In the PSA type liquid crystal display element, for example, a polymerizable compound-containing liquid crystal represented by the following formula can be used.
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
 液晶層を2枚の基板の間に挟持させる方法としては、公知の方法を挙げることができる。例えば、液晶配向膜が形成された1対の基板を用意し、一方の基板の液晶配向膜上にビーズ等のスペーサーを散布し、液晶配向膜が形成された側の面が内側になるようにしてもう一方の基板を貼り合わせ、液晶を減圧注入して封止する方法が挙げられる。また、液晶配向膜が形成された1対の基板を用意し、一方の基板の液晶配向膜上にビーズ等のスペーサーを散布した後に液晶を滴下し、その後液晶配向膜が形成された側の面が内側になるようにしてもう一方の基板を貼り合わせて封止を行う方法でも液晶セルを作製できる。上記スペーサーの厚みは、好ましくは1~30μm、より好ましくは2~10μmである。 As a method for sandwiching the liquid crystal layer between two substrates, a known method can be exemplified. For example, a pair of substrates on which a liquid crystal alignment film is formed is prepared, and spacers such as beads are dispersed on the liquid crystal alignment film on one substrate so that the surface on which the liquid crystal alignment film is formed is on the inside. Then, the other substrate is bonded, and liquid crystal is injected under reduced pressure to seal. Also, a pair of substrates on which a liquid crystal alignment film is formed are prepared, and spacers such as beads are dispersed on the liquid crystal alignment film on one substrate, and then liquid crystal is dropped, and then the surface on which the liquid crystal alignment film is formed A liquid crystal cell can also be produced by a method in which the other substrate is bonded to each other so as to be inside, and sealing is performed. The thickness of the spacer is preferably 1 to 30 μm, more preferably 2 to 10 μm.
 液晶配向膜及び液晶層に電圧を印加しながら紫外線を照射することにより液晶セルを作製する工程は、例えば基板上に設置されている電極間に電圧をかけることで液晶配向膜及び液晶層に電界を印加し、この電界を保持したまま紫外線を照射する方法が挙げられる。ここで、電極間にかける電圧としては、例えば5~30Vp-p、好ましくは5~20Vp-pである。紫外線の照射量は、例えば、1~60J、好ましくは40J以下であり、紫外線照射量が少ないほうが、液晶表示素子を構成する部材の破壊により生じる信頼性低下を抑制でき、かつ紫外線照射時間を減らせることで製造効率が上がるので好適である。 The step of producing a liquid crystal cell by irradiating ultraviolet rays while applying a voltage to the liquid crystal alignment film and the liquid crystal layer includes, for example, applying an electric field between the electrodes installed on the substrate to apply an electric field to the liquid crystal alignment film and the liquid crystal layer. And applying ultraviolet rays while maintaining this electric field. Here, the voltage applied between the electrodes is, for example, 5 to 30 Vp-p, preferably 5 to 20 Vp-p. The irradiation amount of ultraviolet rays is, for example, 1 to 60 J, preferably 40 J or less, and the smaller the irradiation amount of ultraviolet rays, the lowering of reliability caused by the destruction of the members constituting the liquid crystal display element can be suppressed, and the irradiation time of ultraviolet rays can be reduced. This is preferable because the manufacturing efficiency is increased.
 上記のように、液晶配向膜及び液晶層に電圧を印加しながら紫外線を照射すると、重合性化合物が反応して重合体を形成し、この重合体により液晶分子が傾く方向が記憶されることで、得られる液晶表示素子の応答速度を速くすることができる。また、液晶配向膜及び液晶層に電圧を印加しながら紫外線を照射すると、液晶を垂直に配向させる側鎖と、光反応性の側鎖とを有するポリイミド前駆体、及び、このポリイミド前駆体をイミド化して得られるポリイミドから選択される少なくとも一種の重合体が有する光反応性の側鎖同士や、重合体が有する光反応性の側鎖と重合性化合物が反応するため、得られる液晶表示素子の応答速度を速くすることができる。 As described above, when ultraviolet rays are irradiated while applying a voltage to the liquid crystal alignment film and the liquid crystal layer, the polymerizable compound reacts to form a polymer, and the direction in which the liquid crystal molecules are tilted is stored by this polymer. Thus, the response speed of the obtained liquid crystal display element can be increased. In addition, a polyimide precursor having a side chain for vertically aligning liquid crystal and a photoreactive side chain when irradiated with ultraviolet rays while applying a voltage to the liquid crystal alignment film and the liquid crystal layer, and the polyimide precursor as an imide Since the photoreactive side chains of at least one polymer selected from the polyimide obtained by the reaction or the photoreactive side chains of the polymer react with the polymerizable compound, the liquid crystal display element obtained The response speed can be increased.
 以下に実施例を挙げ、本発明をさらに詳しく説明するが、本発明は、これらに限定して解釈されるものではない。使用した化合物の略語は、以下の通りである。
(液晶)
MLC-3023(メルク社製、ネガ型重合性化合物含有液晶)
The present invention will be described in more detail with reference to the following examples, but the present invention should not be construed as being limited thereto. Abbreviations of the compounds used are as follows.
(liquid crystal)
MLC-3023 (manufactured by Merck, liquid crystal containing negative polymerizable compound)
(特定側鎖型ジアミン成分)
W-A1:式[W-A1]で表される化合物
W-A2:式[W-A2]で表される化合物
W-A3:式[W-A3]で表される化合物
W-A4:式[W-A4]で表される化合物
W-A5:式[W-A5]で表される化合物
W-A6:式[W-A6]で表される化合物
W-A7:式[W-A7]で表される化合物
W-A8:式[W-A8]で表される化合物
W-A9:式[W-A9]で表される化合物
W-A10:式[W-A10]で表される化合物
(Specific side chain diamine component)
W-A1: Compound W-A2 represented by the formula [W-A1]: Compound W-A3 represented by the formula [W-A2]: Compound W-A4 represented by the formula [W-A3]: Formula Compound W-A5 represented by [W-A4]: Compound W-A6 represented by formula [W-A5]: Compound W-A7 represented by formula [W-A6]: Formula [W-A7] Compound W-A8 represented by the formula: Compound W-A9 represented by the formula [W-A8]: Compound W-A10 represented by the formula [W-A9]: Compound represented by the formula [W-A10]
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
(その他側鎖型ジアミン化合物)
 A1:式[A1]で表される化合物
 A2:式[A2]で表される化合物
 A3:式[A3]で表される化合物
(Other side chain diamine compounds)
A1: Compound represented by Formula [A1] A2: Compound represented by Formula [A2] A3: Compound represented by Formula [A3]
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
(その他のジアミン化合物)
 C1:式[C1]で表される化合物
 C2:式[C2]で表される化合物
 C3:式[C3]で表される化合物
 C4:式[C4]で表される化合物
 C5:式[C5]で表される化合物
 C6:式[C6]で表される化合物
 C7:式[C7]で表される化合物
 C8:式[C8]で表される化合物
 C9:式[C9]で表される化合物
 C10:式[C10]で表される化合物
(Other diamine compounds)
C1: Compound represented by formula [C1] C2: Compound represented by formula [C2] C3: Compound represented by formula [C3] C4: Compound represented by formula [C4] C5: Formula [C5] Compound represented by formula C6: Compound represented by formula [C6] C7: Compound represented by formula [C7] C8: Compound represented by formula [C8] C9: Compound represented by formula [C9] C10 : Compound represented by the formula [C10]
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
(テトラカルボン酸成分)
 D1:1,2,3,4-シクロブタンテトラカルボン酸二無水物
 D2:ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物
 D3:ピロメリット酸二無水物
 D4:2,3,5‐トリカルボキシシクロペンチル酢酸二無水物
 D5:3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物
(Tetracarboxylic acid component)
D1: 1,2,3,4-cyclobutanetetracarboxylic dianhydride D2: bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride D3: pyromellitic dianhydride D4: 2,3,5-tricarboxycyclopentyl acetic acid dianhydride D5: 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
(溶媒)
 NMP:N-メチル-2-ピロリドン
 BCS:エチレングリコールモノブチルエーテル
 NEP:N-エチル-2-ピロリドン
(架橋剤)
 E1:下記式(E1)であらわされる架橋剤
(添加剤)
 E2:3-ピコリルアミン
(solvent)
NMP: N-methyl-2-pyrrolidone BCS: ethylene glycol monobutyl ether NEP: N-ethyl-2-pyrrolidone (crosslinking agent)
E1: Cross-linking agent (additive) represented by the following formula (E1)
E2: 3-picolylamine
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
(分子量測定)
 ポリイミド前駆体及びポリイミドの分子量は、常温ゲル浸透クロマトグラフィー(GPC)装置(GPC-101)(昭和電工社製)、カラム(KD-803,KD-805)(Shodex社製)を用いて、以下のようにして測定した。
 カラム温度:50℃
 溶離液:N,N’-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L(リットル)、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
 流速:1.0ml/分
 検量線作成用標準サンプル:TSK 標準ポリエチレンオキサイド(分子量;約900,000、150,000、100,000及び30,000)(東ソー社製)及びポリエチレングリコール(分子量;約12,000、4,000及び1,000)(ポリマーラボラトリー社製)。
(Molecular weight measurement)
The molecular weight of the polyimide precursor and polyimide is as follows using a normal temperature gel permeation chromatography (GPC) apparatus (GPC-101) (manufactured by Showa Denko KK) and a column (KD-803, KD-805) (manufactured by Shodex). It measured as follows.
Column temperature: 50 ° C
Eluent: N, N′-dimethylformamide (as additive, lithium bromide-hydrate (LiBr · H 2 O) 30 mmol / L (liter), phosphoric acid / anhydrous crystal (o-phosphoric acid) 30 mmol) / L, 10 ml / L of tetrahydrofuran (THF))
Flow rate: 1.0 ml / min Standard sample for preparing a calibration curve: TSK standard polyethylene oxide (molecular weight; about 900,000, 150,000, 100,000 and 30,000) (manufactured by Tosoh Corporation) and polyethylene glycol (molecular weight; about 12,000, 4,000 and 1,000) (manufactured by Polymer Laboratory).
(ポリイミドのイミド化率の測定)
 ポリイミド粉末20mgをNMR(核磁気共鳴)サンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6,0.05質量%TMS(テトラメチルシラン)混合品)(0.53ml)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500)(日本電子データム社製)にて、500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
 イミド化率(%)=(1-α・x/y)×100
 上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
(Measurement of imidization ratio of polyimide)
20 mg of polyimide powder was put into an NMR (nuclear magnetic resonance) sample tube (NMR sampling tube standard, φ5 (manufactured by Kusano Kagaku)), and deuterated dimethyl sulfoxide (DMSO-d6, 0.05 mass% TMS (tetramethylsilane)). (Mixed product) (0.53 ml) was added and completely dissolved by applying ultrasonic waves. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) (manufactured by JEOL Datum). The imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid appearing in the vicinity of 9.5 to 10.0 ppm. It calculated | required by the following formula | equation using the integrated value.
Imidization rate (%) = (1−α · x / y) × 100
In the above formula, x is a proton peak integrated value derived from NH group of amic acid, y is a peak integrated value of reference proton, α is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
(粘度測定)
 合成例または比較合成例において、ポリイミド系重合体の粘度はE型粘度計TVE-22H(東機産業株式会社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
(Viscosity measurement)
In the synthesis example or the comparative synthesis example, the viscosity of the polyimide polymer is an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), a sample amount of 1.1 mL, a cone rotor TE-1 (1 ° 34 ′, R24), measured at a temperature of 25 ° C.
 W-A1~W-A3及びW-A4~W-A10は文献等未公開の新規化合物であり、以下に合成法を詳述する。
 下記合成例1~3及び合成例4~10に記載の生成物は1H-NMR分析により同定した(分析条件は下記の通り)。
 装置:Varian NMR System 400 NB (400 MHz)。
 測定溶媒:CDCl3、DMSO-d
 基準物質:テトラメチルシラン(TMS)(δ0.0 ppm for H)。
W-A1 to W-A3 and W-A4 to W-A10 are novel compounds that have not been disclosed yet, and the synthesis method will be described in detail below.
The products described in Synthesis Examples 1 to 3 and Synthesis Examples 4 to 10 were identified by 1 H-NMR analysis (analysis conditions are as follows).
Instrument: Varian NMR System 400 NB (400 MHz).
Measurement solvent: CDCl 3, DMSO-d 6 .
Reference material: Tetramethylsilane (TMS) (δ0.0 ppm for 1 H).
<<合成例1 W-A1の合成>>  << Synthesis Example 1 Synthesis of W-A1 >>
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
<化合物[1]及び化合物[2]の合成>
 テトラヒドロフラン(165.6g)中、4,4’-ジニトロ-1,1’-ビフェニル-2,2’-ジメタノール(41.1g、135mmol)とトリエチルアミン(31.5g)を仕込み、窒素雰囲気氷冷条件にてメタンスルホニルクロリド(33.2g)を滴下し、1時間反応させることで化合物[1]を得た。続いて、テトラヒドロフラン(246.6g)に溶解させたp-(trans-4-ヘプチルシクロヘキシル)フェノール(77.8g)を加え、40℃で1時間撹拌後、純水(233g)に溶解させた水酸化カリウム(41.0g)を同温度にて加え、21時間反応させた。反応終了後、1.0M塩酸水溶液(311ml)及び純水(1050g)を加えて粗物を析出させ、ろ過により粗物を回収した。得られた粗物をテトラヒドロフラン(574g)に50℃加熱溶解させ、メタノール(328g)を加えて結晶を析出させ、ろ過、乾燥することで化合物[2]を得た(収量:97.9g、収率:89%)。
H-NMR(400MHz) in CDCl:0.87-0.90ppm(m,6H), 0.96-1.05ppm(m,4H), 1.19-1.39ppm(m,30H), 1.80-1.85ppm(m,8H), 2.33-2.40ppm(m,2H), 4.77ppm(s,4H), 6.66-6.70ppm(m,4H), 7.02-7.06ppm(m,4H),7.40ppm(d,2H,8.4), 8.25ppm(dd,2H,J=2.4Hz,J=8.4Hz), 8.54ppm(d,2H,J=2.4Hz).
<Synthesis of Compound [1] and Compound [2]>
In tetrahydrofuran (165.6 g), 4,4′-dinitro-1,1′-biphenyl-2,2′-dimethanol (41.1 g, 135 mmol) and triethylamine (31.5 g) were charged and ice-cooled in a nitrogen atmosphere. Under conditions, methanesulfonyl chloride (33.2 g) was added dropwise and reacted for 1 hour to obtain Compound [1]. Subsequently, p- (trans-4-heptylcyclohexyl) phenol (77.8 g) dissolved in tetrahydrofuran (246.6 g) was added, stirred at 40 ° C. for 1 hour, and then dissolved in pure water (233 g). Potassium oxide (41.0 g) was added at the same temperature and allowed to react for 21 hours. After completion of the reaction, 1.0 M hydrochloric acid aqueous solution (311 ml) and pure water (1050 g) were added to precipitate a crude product, and the crude product was collected by filtration. The obtained crude product was dissolved in tetrahydrofuran (574 g) with heating at 50 ° C., methanol (328 g) was added to precipitate crystals, filtered and dried to obtain compound [2] (yield: 97.9 g, yield). Rate: 89%).
1 H-NMR (400 MHz) in CDCl 3 : 0.87-0.90 ppm (m, 6H), 0.96-1.05 ppm (m, 4H), 1.19-1.39 ppm (m, 30H), 6.80-1.85 ppm (m, 8H), 2.32-2.40 ppm (m, 2H), 4.77 ppm (s, 4H), 6.66-6.70 ppm (m, 4H), 02-7.06 ppm (m, 4H), 7.40 ppm (d, 2H, 8.4), 8.25 ppm (dd, 2H, J = 2.4 Hz, J = 8.4 Hz), 8.54 ppm (d , 2H, J = 2.4 Hz).
<W-A1の合成>
 テトラヒドロフラン(1783g)中、化合物[2](74.3g,90.9mmol)と3%プラチナカーボン(5.94g)を仕込み、水素雰囲気室温条件で反応させた。反応終了後、反応混合物をろ過し、ろ液を減圧濃縮することで内部総重量を145gとした。続いて、濃縮溶液にメタノール(297g)を加え、氷冷撹拌し、ろ過、乾燥することでW-A1を得た(収量:59.2g、収率:86%)。
H-NMR(400MHz) in CDCl:0.87-0.90ppm(m,6H), 0.96-1.05ppm(m,4H), 1.19-1.40ppm(m,30H), 1.81-1.84ppm(m,8H), 2.32-2.38ppm(m,2H), 3.67ppm(s,4H),4.69ppm(d,2H,J=12.0Hz), 4.74ppm(d,2H,J=11.6Hz), 6.62ppm(dd,2H,J=2.4Hz,J=8.0Hz), 6.70-6.75ppm(m,4H), 6.91ppm(d,2H,J=2.4Hz), 6.97-7.03ppm(m,6H).
<Synthesis of W-A1>
Compound [2] (74.3 g, 90.9 mmol) and 3% platinum carbon (5.94 g) were charged in tetrahydrofuran (1783 g), and reacted in a hydrogen atmosphere at room temperature. After completion of the reaction, the reaction mixture was filtered, and the filtrate was concentrated under reduced pressure to adjust the total internal weight to 145 g. Subsequently, methanol (297 g) was added to the concentrated solution, stirred under ice-cooling, filtered and dried to obtain W-A1 (yield: 59.2 g, yield: 86%).
1 H-NMR (400 MHz) in CDCl 3 : 0.87-0.90 ppm (m, 6H), 0.96-1.05 ppm (m, 4H), 1.19-1.40 ppm (m, 30H), 1.81-1.84 ppm (m, 8H), 2.32-2.38 ppm (m, 2H), 3.67 ppm (s, 4H), 4.69 ppm (d, 2H, J = 12.0 Hz), 4.74 ppm (d, 2H, J = 11.6 Hz), 6.62 ppm (dd, 2H, J = 2.4 Hz, J = 8.0 Hz), 6.70-6.75 ppm (m, 4H), 6 .91 ppm (d, 2H, J = 2.4 Hz), 6.97-7.03 ppm (m, 6H).
<<合成例2 W-A2の合成>> << Synthesis Example 2 Synthesis of WA-2 >>
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
<化合物[3]の合成>
 テトラヒドロフラン(327.2g)中、4,4’-ジニトロ-2,2’-ジフェン酸(40.9g、123mmol)とp-(trans-4-ヘプチルシクロヘキシル)フェノール(72.1g)、4-ジメチルアミノピリジン(1.50g)を仕込み、窒素雰囲気室温条件下で1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(56.6g)を投入し、3時間反応させた。反応終了後、純水(1226g)中に反応液を注ぎ込み、粗物を析出させ、ろ過により回収した。続いて、粗物をメタノール(245g)でスラリー洗浄後、ろ過し、得られた粗物をテトラヒドロフラン(245g)に60℃加熱溶解させた。ろ過により不溶物を除去後、減圧濃縮により内部総重量を232gとした後に、メタノール(163g)を加えて結晶を析出させ、氷冷条件下で撹拌後、ろ過、乾燥することで化合物[3]を得た(収量:73.9g、収率:71%)。
H-NMR(400MHz) in CDCl: 0.87-0.90ppm(m,6H), 0.98-1.06ppm(m,4H), 1.18-1.43ppm(m,30H), 1.83-1.86ppm(m,8H), 2.41-2.47ppm(m,2H), 6.89-6.92ppm(m,4H), 7.17-7.20ppm(m,4H), 7.48ppm(d,2H,8.4), 8.49ppm(dd,2H,J=2.4Hz,J=8.4Hz), 9.11ppm(d,2H,J=2.4Hz).
<Synthesis of Compound [3]>
4,4′-Dinitro-2,2′-diphenic acid (40.9 g, 123 mmol) and p- (trans-4-heptylcyclohexyl) phenol (72.1 g), 4-dimethyl in tetrahydrofuran (327.2 g) Aminopyridine (1.50 g) was charged, and 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (56.6 g) was added under a nitrogen atmosphere at room temperature, followed by reaction for 3 hours. After completion of the reaction, the reaction solution was poured into pure water (1226 g) to precipitate a crude product, which was collected by filtration. Subsequently, the crude product was subjected to slurry washing with methanol (245 g) and filtered, and the obtained crude product was dissolved in tetrahydrofuran (245 g) by heating at 60 ° C. After removing insoluble matter by filtration, the total internal weight was reduced to 232 g by concentration under reduced pressure, methanol (163 g) was added to precipitate crystals, and the mixture was stirred under ice-cooling conditions, filtered and dried to give compound [3] (Yield: 73.9 g, Yield: 71%).
1 H-NMR (400 MHz) in CDCl 3 : 0.87-0.90 ppm (m, 6H), 0.98-1.06 ppm (m, 4H), 1.18-1.43 ppm (m, 30H), 1.83-1.86 ppm (m, 8H), 2.41-2.47 ppm (m, 2H), 6.89-6.92 ppm (m, 4H), 7.17-7.20 ppm (m, 4H) ), 7.48 ppm (d, 2H, 8.4), 8.49 ppm (dd, 2H, J = 2.4 Hz, J = 8.4 Hz), 9.11 ppm (d, 2H, J = 2.4 Hz) .
<W-A2の合成>
 テトラヒドロフラン(443g)及びメタノール(73.9g)中、化合物[3](73.9g、87.4mmol)と5%パラジウムカーボン(8.80g)を仕込み、水素雰囲気室温条件で反応させた。反応終了後、ろ過によりパラジウムカーボンを除去し、減圧濃縮により内部総重量を171gとした。続いて、濃縮溶液にメタノール(222g)を加えて結晶を析出させ、氷冷撹拌し、ろ過、乾燥することでW-A2を得た(収量:66.6g、収率:97%)。
H-NMR(400MHz) in CDCl: 0.87-0.90ppm(m,6H), 0.96-1.05ppm(m,4H), 1.17-1.42ppm(m,30H),1.82-1.85ppm(m,8H), 2.38-2.44ppm(m,2H), 3.77ppm(s,4H), 6.80-6.87ppm(m,6H),7.08-7.13ppm(m,6H), 7.41ppm(d,2H,J=2.4Hz).
<Synthesis of W-A2>
Compound [3] (73.9 g, 87.4 mmol) and 5% palladium carbon (8.80 g) were charged in tetrahydrofuran (443 g) and methanol (73.9 g), and reacted in a hydrogen atmosphere at room temperature. After completion of the reaction, palladium carbon was removed by filtration, and the total internal weight was reduced to 171 g by concentration under reduced pressure. Subsequently, methanol (222 g) was added to the concentrated solution to precipitate crystals, stirred under ice cooling, filtered and dried to obtain WA2 (yield: 66.6 g, yield: 97%).
1 H-NMR (400 MHz) in CDCl 3 : 0.87-0.90 ppm (m, 6H), 0.96-1.05 ppm (m, 4H), 1.17-1.42 ppm (m, 30H), 1.82-1.85 ppm (m, 8H), 2.38-2.44 ppm (m, 2H), 3.77 ppm (s, 4H), 6.80-6.87 ppm (m, 6H), 7. 08-7.13 ppm (m, 6H), 7.41 ppm (d, 2H, J = 2.4 Hz).
<<合成例3 W-A3の合成>> << Synthesis Example 3 Synthesis of W-A3 >>
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
<化合物[4]及び化合物[5]の合成>
 トルエン(366g)中、4-(trans-4-ヘプチルシクロヘキシル)-安息香酸(73.1g、242mmol)とN,N-ジメチルホルムアミド(0.73g)を仕込み、窒素雰囲気50℃条件下で塩化チオニル(35.9g)を滴下した。滴下後、同温度で1時間反応させた後、反応溶液を減圧濃縮することで化合物[4]を得た。続いて、テトラヒドロフラン(210g)中、4,4’-ジニトロ-1,1’-ビフェニル-2,2’-ジメタノール(35.0g、115mmol)とトリエチルアミン(26.8g)を仕込み、窒素雰囲気氷冷条件下にて、テトラヒドロフラン(73.1g)に溶解させた化合物[4]を滴下した。滴下終了後、反応温度を室温にして18時間反応させた。反応終了後、ろ過によりトリエチルアミン塩酸塩を除去後、減圧濃縮によりオイル状化合物を得た。得られたオイル状化合物を純水(1015g)中に加えることで結晶を析出させ、ろ過により粗物を回収した。続いて、得られた粗物をメタノール(291g)で室温スラリー洗浄、酢酸エチル(175g)で室温スラリー洗浄し、ろ過、乾燥することで化合物[5]を得た(収量:92.7g、 収率:92%)。
H-NMR(400MHz) in CDCl: 0.89-0.91ppm(m,6H), 0.99-1.09ppm(m,4H), 1.20-1.47ppm(m,30H),1.85-1.88ppm(m,8H), 2.46-2.52ppm(m,2H), 5.14ppm(s,4H), 7.23-7.26ppm(m,4H),7.45ppm(d,2H,J=8.4Hz),7.83-7.86ppm(m,4H),8.27ppm(dd,2H,J=2.4Hz,J=8.4Hz), 8.47ppm(d,2H,J=2.4Hz).
<Synthesis of Compound [4] and Compound [5]>
Charge 4- (trans-4-heptylcyclohexyl) -benzoic acid (73.1 g, 242 mmol) and N, N-dimethylformamide (0.73 g) in toluene (366 g), and thionyl chloride under nitrogen atmosphere at 50 ° C. (35.9 g) was added dropwise. After the dropwise addition, the mixture was reacted at the same temperature for 1 hour, and then the reaction solution was concentrated under reduced pressure to obtain compound [4]. Subsequently, 4,4′-dinitro-1,1′-biphenyl-2,2′-dimethanol (35.0 g, 115 mmol) and triethylamine (26.8 g) were charged in tetrahydrofuran (210 g), and the nitrogen atmosphere ice was charged. Compound [4] dissolved in tetrahydrofuran (73.1 g) was added dropwise under cold conditions. After completion of the dropwise addition, the reaction temperature was set to room temperature and the reaction was allowed to proceed for 18 hours. After completion of the reaction, triethylamine hydrochloride was removed by filtration, and an oily compound was obtained by concentration under reduced pressure. The obtained oily compound was added into pure water (1015 g) to precipitate crystals, and the crude product was collected by filtration. Subsequently, the obtained crude product was washed with slurry at room temperature with methanol (291 g), washed with slurry at room temperature with ethyl acetate (175 g), filtered and dried to obtain compound [5] (yield: 92.7 g, yield). Rate: 92%).
1 H-NMR (400 MHz) in CDCl 3 : 0.89-0.91 ppm (m, 6H), 0.99-1.09 ppm (m, 4H), 1.20-1.47 ppm (m, 30H), 1.85-1.88 ppm (m, 8H), 2.46-2.52 ppm (m, 2H), 5.14 ppm (s, 4H), 7.23-7.26 ppm (m, 4H), 7. 45ppm (d, 2H, J = 8.4Hz), 7.83-7.86ppm (m, 4H), 8.27ppm (dd, 2H, J = 2.4Hz, J = 8.4Hz), 8.47ppm (D, 2H, J = 2.4 Hz).
<W-A3の合成>
 テトラヒドロフラン(484g)及びメタノール(161g)中、化合物[5](80.5g、92.2mmol)と3%プラチナカーボン(6.44g)を仕込み、水素雰囲気室温条件下で反応させた。反応終了後、ろ過によりプラチナカーボンを除去し、減圧濃縮により溶媒を除去することで内部総重量を96.6gとした。続いて、濃縮溶液にメタノール(322g)を加えて結晶を析出させ、氷冷撹拌し、ろ過することで粗物を得た。続いて、得られた粗物を酢酸エチル(322g)で60℃加熱溶解させ、メタノール(700g)を加え、氷冷条件下で結晶を析出させ、ろ過、乾燥することでW-A3を得た(収量:67.9g、収率:91%)。
H-NMR(400MHz) in CDCl: 0.87-0.91ppm(m,6H), 0.98-1.08ppm(m,4H), 1.19-1.47ppm(m,30H),1.84-1.87ppm(m,8H), 2.44-2.51ppm(m,2H), 3.71ppm(s,4H), 5.02ppm(d,2H,J=12.8Hz), 5.09ppm(d,2H,J=12.4Hz),6.66ppm(dd,2H,J=2.4Hz,J=8.0Hz),6.84ppm(d,2H,J=2.4Hz),7.03ppm(d,2H,J=8.0Hz),7.19-7.25ppm(m,4H),7.89-7.92ppm(m,4H).
<Synthesis of W-A3>
Compound [5] (80.5 g, 92.2 mmol) and 3% platinum carbon (6.44 g) were charged in tetrahydrofuran (484 g) and methanol (161 g), and reacted in a hydrogen atmosphere at room temperature. After completion of the reaction, platinum carbon was removed by filtration, and the solvent was removed by concentration under reduced pressure, so that the total internal weight was 96.6 g. Subsequently, methanol (322 g) was added to the concentrated solution to precipitate crystals, stirred under ice cooling, and filtered to obtain a crude product. Subsequently, the obtained crude product was heated and dissolved in ethyl acetate (322 g) at 60 ° C., methanol (700 g) was added, crystals were precipitated under ice-cooling conditions, filtered and dried to obtain WA-3. (Yield: 67.9 g, Yield: 91%).
1 H-NMR (400 MHz) in CDCl 3 : 0.87-0.91 ppm (m, 6H), 0.98-1.08 ppm (m, 4H), 1.19-1.47 ppm (m, 30H), 1.84 to 1.87 ppm (m, 8H), 2.44 to 2.51 ppm (m, 2H), 3.71 ppm (s, 4H), 5.02 ppm (d, 2H, J = 12.8 Hz), 5.09ppm (d, 2H, J = 12.4Hz), 6.66ppm (dd, 2H, J = 2.4Hz, J = 8.0Hz), 6.84ppm (d, 2H, J = 2.4Hz) 7.03 ppm (d, 2H, J = 8.0 Hz), 7.19-7.25 ppm (m, 4H), 7.89-7.92 ppm (m, 4H).
<<合成例4 W-A4の合成>> << Synthesis Example 4 Synthesis of W-A4 >>
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
<化合物[6]及び化合物[7]の合成>
 トルエン(134g)中、trans, trans-4’-アミルビシクロヘキシル-4-カルボン酸(26.7g、95.1mmol)とN,N-ジメチルホルムアミド(0.401g)を仕込み、窒素雰囲気50℃条件下で塩化チオニル(13.6g、114mmol)を滴下した。滴下後、同温度で1時間反応させた後、反応溶液を減圧濃縮することで化合物[6]を得た。続いて、テトラヒドロフラン(63.0g)中、4,4’-ジニトロ-1,1’-ビフェニル-2,2’-ジメタノール(12.6g、41.4mmol)とトリエチルアミン(10.9g、108mmol)を仕込み、窒素雰囲気氷冷条件下にて、テトラヒドロフラン(12.6g)に溶解させた化合物[6]を滴下した。滴下終了後、反応温度を室温にして17時間反応させた。反応終了後、純水(731g)中に反応液を加える事で結晶を析出させ、ろ過、純水洗浄、メタノール洗浄した後に粗物を回収した。続いて、得られた粗物をトルエン(56.0g)に加熱溶解させ、ヘキサン(112g)を加えて結晶を析出させ、室温条件下で撹拌後、ろ過、乾燥することで化合物[7]を得た(収量:17.0g、20.6mmol、収率:50%)。
H-NMR(400MHz) in CDCl:0.82―1.38ppm(m,44H), 1.67-1.81ppm(m,12H), 1.90-1.98ppm(m,4H), 2.19-2.25ppm(m,2H), 4.82ppm(d,2H,J=13.6Hz), 4.88ppm(d,2H,J=13.6Hz), 7.39ppm(d,2H,J=8.4Hz), 8.26ppm(dd,2H,J=2.4Hz,J=8.4Hz), 8.38ppm(d,2H,J=2.0Hz)
<Synthesis of Compound [6] and Compound [7]>
In toluene (134 g), trans, trans-4′-amylbicyclohexyl-4-carboxylic acid (26.7 g, 95.1 mmol) and N, N-dimethylformamide (0.401 g) were charged under a nitrogen atmosphere at 50 ° C. Below, thionyl chloride (13.6 g, 114 mmol) was added dropwise. After the dropwise addition, the mixture was reacted at the same temperature for 1 hour, and then the reaction solution was concentrated under reduced pressure to obtain compound [6]. Subsequently, 4,4′-dinitro-1,1′-biphenyl-2,2′-dimethanol (12.6 g, 41.4 mmol) and triethylamine (10.9 g, 108 mmol) in tetrahydrofuran (63.0 g) The compound [6] dissolved in tetrahydrofuran (12.6 g) was added dropwise under ice-cooling conditions in a nitrogen atmosphere. After completion of the dropwise addition, the reaction temperature was raised to room temperature and reacted for 17 hours. After completion of the reaction, the reaction solution was added to pure water (731 g) to precipitate crystals. After filtration, pure water washing, and methanol washing, the crude product was recovered. Subsequently, the obtained crude product is dissolved by heating in toluene (56.0 g), hexane (112 g) is added to precipitate crystals, and the mixture is stirred at room temperature, filtered, and dried to obtain compound [7]. Obtained (yield: 17.0 g, 20.6 mmol, yield: 50%).
1 H-NMR (400 MHz) in CDCl 3 : 0.82-1.38 ppm (m, 44H), 1.67-1.81 ppm (m, 12H), 1.90-1.98 ppm (m, 4H), 2.19-2.25 ppm (m, 2H), 4.82 ppm (d, 2H, J = 13.6 Hz), 4.88 ppm (d, 2H, J = 13.6 Hz), 7.39 ppm (d, 2H) , J = 8.4 Hz), 8.26 ppm (dd, 2H, J = 2.4 Hz, J = 8.4 Hz), 8.38 ppm (d, 2H, J = 2.0 Hz)
<W-A4の合成>
 テトラヒドロフラン(136g)及びメタノール(34.0g)中、化合物[7](17.0g、20.6mmol)と3%プラチナカーボン(1.36g)を仕込み、水素雰囲気室温条件下で約41時間反応させた。反応終了後、ろ過、減圧濃縮により内部総重量を40gとした。続いて、メタノール(68.0g)を加えて結晶を析出させ、ろ過、乾燥する事でW-A4を得た(収量:15.2g、19.9mmol、収率:97%)。
H-NMR(400MHz) in CDCl:0.81-1.39ppm(m,44H), 1.67-1.78ppm(m,12H), 1.90-1.97ppm(m,4H), 2.14-2.20ppm(m,2H), 3.71ppm(br,4H), 4.73ppm(d,2H,J=12.4Hz), 4.78ppm(d,2H,J=12.4Hz), 6.62ppm(dd,2H,J=2.4Hz,J=8.0Hz), 6.73ppm(d,2H,J=2.8Hz), 6.94ppm(d,2H,J=8.0Hz)
<Synthesis of W-A4>
Compound [7] (17.0 g, 20.6 mmol) and 3% platinum carbon (1.36 g) were charged in tetrahydrofuran (136 g) and methanol (34.0 g), and allowed to react for about 41 hours in a hydrogen atmosphere at room temperature. It was. After completion of the reaction, the total internal weight was adjusted to 40 g by filtration and concentration under reduced pressure. Subsequently, methanol (68.0 g) was added to precipitate crystals, which was filtered and dried to obtain WA-4 (yield: 15.2 g, 19.9 mmol, yield: 97%).
1 H-NMR (400 MHz) in CDCl 3 : 0.81-1.39 ppm (m, 44H), 1.67-1.78 ppm (m, 12H), 1.90-1.97 ppm (m, 4H), 2.14-2.20 ppm (m, 2H), 3.71 ppm (br, 4H), 4.73 ppm (d, 2H, J = 12.4 Hz), 4.78 ppm (d, 2H, J = 12.4 Hz) ), 6.62 ppm (dd, 2H, J = 2.4 Hz, J = 8.0 Hz), 6.73 ppm (d, 2H, J = 2.8 Hz), 6.94 ppm (d, 2H, J = 8. 0Hz)
<<合成例5 W-A5の合成>> << Synthesis Example 5 Synthesis of W-A5 >>
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
<化合物[8]の合成>
 トルエン(227g)中、trans-1-ブロモ-4-(4-ヘプチルシクロヘキシル)ベンゼン(45.4g、135mmol)とリチウムビス(トリメチルシリル)アミド (約26%テトラヒドロフラン溶液、 約1.30mol/L、218mL) 、トリ-tert-ブチルホスホニウムテトラフルオロボラート(1.58g、5.44mmol)、ビス(ジベンジリデンアセトン)パラジウム(0)(3.14g、5.46mmol)を仕込み、窒素雰囲気室温条件下で17時間反応させた。反応終了後、5.7mol/L塩酸水溶液(80.0mL)を加えて結晶を析出させ、ろ過により化合物[8]の塩酸塩を回収した。得られた塩酸塩をトルエン(300g)及び酢酸エチル(200g)、テトラヒドロフラン(100g)混合溶液に分散させ、3.0 mol/L水酸化ナトリウム水溶液(200g)で分液し、更に有機相を飽和食塩水で洗浄した。続いて、有機相に活性炭(銘柄:特製白鷺、2.27g)を加えて撹拌した後、ろ過により活性炭を除去した。得られたろ液を減圧濃縮する事でオイル状化合物を得た。オイル状化合物をヘキサン(100g)に分散させ、ドライアイス/エタノール冷却条件下で結晶を析出させ、ろ過、乾燥する事で化合物[8]を得た(収量:27.5g、101mmol、収率:75%)。
H-NMR(400MHz) in CDCl:0.87-1.43ppm(m,20H), 1.83-1.85ppm(m,4H), 2.31-2.38ppm(m,1H), 3.54ppm(br,2H), 6.62-6.65ppm(m,2H), 6.99-7.02ppm(m,2H)
<Synthesis of Compound [8]>
Trans-1-bromo-4- (4-heptylcyclohexyl) benzene (45.4 g, 135 mmol) and lithium bis (trimethylsilyl) amide (about 26% tetrahydrofuran solution, about 1.30 mol / L, 218 mL) in toluene (227 g) ), Tri-tert-butylphosphonium tetrafluoroborate (1.58 g, 5.44 mmol), bis (dibenzylideneacetone) palladium (0) (3.14 g, 5.46 mmol), and a nitrogen atmosphere at room temperature. The reaction was carried out for 17 hours. After completion of the reaction, a 5.7 mol / L aqueous hydrochloric acid solution (80.0 mL) was added to precipitate crystals, and the hydrochloride of compound [8] was recovered by filtration. The obtained hydrochloride was dispersed in a mixed solution of toluene (300 g), ethyl acetate (200 g) and tetrahydrofuran (100 g), and separated with a 3.0 mol / L aqueous sodium hydroxide solution (200 g), and the organic phase was saturated. Washed with brine. Subsequently, activated carbon (brand: special white birch, 2.27 g) was added to the organic phase and stirred, and then the activated carbon was removed by filtration. The obtained filtrate was concentrated under reduced pressure to obtain an oily compound. The oily compound was dispersed in hexane (100 g), crystals were precipitated under dry ice / ethanol cooling conditions, filtered and dried to obtain compound [8] (yield: 27.5 g, 101 mmol, yield: 75%).
1 H-NMR (400 MHz) in CDCl 3 : 0.87-1.43 ppm (m, 20H), 1.83-1.85 ppm (m, 4H), 2.31-2.38 ppm (m, 1H), 3.54 ppm (br, 2H), 6.62-6.65 ppm (m, 2H), 6.99-7.02 ppm (m, 2H)
<化合物[9]の合成>
 テトラヒドロフラン(120g)及び塩化メチレン(60.0g)中、4,4’-ジニトロ-2,2’-ジフェン酸(14.9g、45.0mmol)と化合物[8](25.8g、94.3mmol)、4-ジメチルアミノピリジン(0.550g、4.50mmol)、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(20.0g、104mmol)を仕込み、窒素雰囲気室温条件下で14時間反応させた。反応終了後、酢酸エチル(375g)で希釈し、純水(149g)で有機相を3回洗浄後、得られた有機相を硫酸マグネシウム脱水処理した。続いて、有機相を減圧濃縮し、内部総重量を112gとした後にメタノール(120g)を加えて結晶を析出させ、ろ過、乾燥する事で化合物[9]を得た(収量:28.0g、33.2mmol、収率:74%)
H-NMR(400MHz) in CDCl:0.87-1.43ppm(m,40H), 1.82-1.84ppm(m,8H), 2.37-2.44ppm(m,2H), 7.10ppm(d,4H,J=8.8Hz), 7.26-7.30ppm(m,4H), 7.40ppm(d,2H,J=8.4Hz), 8.27ppm(dd,2H,J=2.4Hz,J=8.4Hz), 8.53ppm(d,2H,J=2.4Hz), 9.10ppm(s,2H)
<Synthesis of Compound [9]>
4,4′-dinitro-2,2′-diphenic acid (14.9 g, 45.0 mmol) and compound [8] (25.8 g, 94.3 mmol) in tetrahydrofuran (120 g) and methylene chloride (60.0 g). ), 4-dimethylaminopyridine (0.550 g, 4.50 mmol), 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (20.0 g, 104 mmol), and 14 under nitrogen atmosphere at room temperature. Reacted for hours. After completion of the reaction, the reaction mixture was diluted with ethyl acetate (375 g), washed with the organic phase three times with pure water (149 g), and the obtained organic phase was dehydrated with magnesium sulfate. Subsequently, the organic phase was concentrated under reduced pressure, the internal total weight was adjusted to 112 g, methanol (120 g) was added to precipitate crystals, filtered and dried to obtain compound [9] (yield: 28.0 g, (33.2 mmol, yield: 74%)
1 H-NMR (400 MHz) in CDCl 3 : 0.87-1.43 ppm (m, 40H), 1.82-1.84 ppm (m, 8H), 2.37-2.44 ppm (m, 2H), 7.10ppm (d, 4H, J = 8.8Hz), 7.26-7.30ppm (m, 4H), 7.40ppm (d, 2H, J = 8.4Hz), 8.27ppm (dd, 2H) , J = 2.4 Hz, J = 8.4 Hz), 8.53 ppm (d, 2H, J = 2.4 Hz), 9.10 ppm (s, 2H)
<W-A5の合成>
 テトラヒドロフラン(140g)及びメタノール(56.0g)中、化合物[9](28.0g、33.2mmol)と5%パラジウムカーボン(2.10g)を仕込み、水素雰囲気室温条件下で約3日間反応させた。反応終了後、ろ過することでパラジウムカーボンを除去し、減圧濃縮する事で内部総重量を122gとした。得られた溶液にメタノール(168g)を加えて結晶を析出させ、ろ過、乾燥する事でW-A5を得た(収量:23.8g、30.4mmol、収率:92%)。
H-NMR(400MHz) in CDCl:0.87-1.42ppm(m,40H), 1.81-1.84ppm(m,8H), 2.36-2.42ppm(m,2H), 3.73ppm(br,4H), 6.58-6.60ppm(m,2H), 6.88-6.90ppm(m,4H), 7.07-7.09ppm(m,4H), 7.34-7.36ppm(m,4H), 8.85ppm(s,2H)
<Synthesis of W-A5>
Compound [9] (28.0 g, 33.2 mmol) and 5% palladium carbon (2.10 g) were charged in tetrahydrofuran (140 g) and methanol (56.0 g) and allowed to react for about 3 days in a hydrogen atmosphere at room temperature. It was. After completion of the reaction, palladium carbon was removed by filtration and the total internal weight was 122 g by concentrating under reduced pressure. Methanol (168 g) was added to the resulting solution to precipitate crystals, which was filtered and dried to obtain WA5 (yield: 23.8 g, 30.4 mmol, yield: 92%).
1 H-NMR (400 MHz) in CDCl 3 : 0.87-1.42 ppm (m, 40H), 1.81-1.84 ppm (m, 8H), 2.36-2.42 ppm (m, 2H), 3.73 ppm (br, 4H), 6.58-6.60 ppm (m, 2H), 6.88-6.90 ppm (m, 4H), 7.07-7.09 ppm (m, 4H), 7. 34-7.36 ppm (m, 4H), 8.85 ppm (s, 2H)
<<合成例6 W-A6の合成>> << Synthesis Example 6 Synthesis of WA-6 >>
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
<化合物[10]の合成>
 テトラヒドロフラン(113g)及び塩化メチレン(113g)中、4,4’-ジニトロ-2,2’-ジフェン酸(25.0g、75.4mmol)とコレステロール(61.7g、160mmol)、4-ジメチルアミノピリジン(0.919g、7.54mmol)、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(33.6g、175mmol)を仕込み、窒素雰囲気室温条件下で18時間反応させた。反応終了後、反応溶液に塩化メチレン(375g)を加え、有機相を飽和食塩水(200g)で3回洗浄後、有機相を硫酸マグネシウム脱水処理した。続いて、得られた溶液を減圧濃縮することで褐色オイル状化合物とし、酢酸エチル(200g)及びイソプロピルアルコール(200g)混合溶液を加えて結晶を析出させ、ろ過する事で粗物を得た。得られた粗物をクロロホルム(500g)及びメタノール(600g)混合溶液で2度再結晶し、ろ過、乾燥する事で化合物[10]を得た(収量:41.8g、39.1mmol、収率:52%)。
H-NMR(400MHz) in CDCl:0.67-2.21ppm(m,86H), 4.58-4.63ppm(m,2H), 5.31-5.33ppm(m,2H), 7.37-7.39ppm(m,2H), 8.42-8.44ppm(m,2H), 8.93ppm(m,2H) 
<Synthesis of Compound [10]>
4,4′-dinitro-2,2′-diphenic acid (25.0 g, 75.4 mmol) and cholesterol (61.7 g, 160 mmol), 4-dimethylaminopyridine in tetrahydrofuran (113 g) and methylene chloride (113 g) (0.919 g, 7.54 mmol), 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (33.6 g, 175 mmol) were charged and allowed to react for 18 hours in a nitrogen atmosphere at room temperature. After completion of the reaction, methylene chloride (375 g) was added to the reaction solution, the organic phase was washed three times with saturated brine (200 g), and the organic phase was dehydrated with magnesium sulfate. Subsequently, the obtained solution was concentrated under reduced pressure to obtain a brown oily compound, a mixed solution of ethyl acetate (200 g) and isopropyl alcohol (200 g) was added to precipitate crystals, and a crude product was obtained by filtration. The obtained crude product was recrystallized twice with a mixed solution of chloroform (500 g) and methanol (600 g), filtered and dried to obtain compound [10] (yield: 41.8 g, 39.1 mmol, yield). : 52%).
1 H-NMR (400 MHz) in CDCl 3 : 0.67-2.21 ppm (m, 86H), 4.58-4.63 ppm (m, 2H), 5.31-5.33 ppm (m, 2H), 7.37-7.39 ppm (m, 2H), 8.42-8.44 ppm (m, 2H), 8.93 ppm (m, 2H)
<W-A6の合成>
 テトラヒドロフラン(320g)及びメタノール(80.8g)中、化合物[10](40.4g、37.8mmol)と5%パラジウムカーボン(3.03g)を仕込み、水素雰囲気室温条件下で約3日間反応させた。反応終了後、ろ過することでパラジウムカーボンを除去し、減圧濃縮する事で内部総重量を112gとした。得られた溶液にメタノール(160g)を加えて結晶を析出させ、ろ過、乾燥する事でW-A6を得た(収量:35.0g、34.7mmol、収率:92%)。
H-NMR(400MHz) in CDCl:0.66-2.17ppm(m,86H), 3.74ppm(br,4H), 4.50-4.56ppm(m,2H), 5.28ppm(m,2H), 6.78-6.80ppm(m,2H), 6.95-6.97ppm(m,2H), 7.26-7.28ppm(m,2H) 
<Synthesis of W-A6>
Compound [10] (40.4 g, 37.8 mmol) and 5% palladium carbon (3.03 g) were charged in tetrahydrofuran (320 g) and methanol (80.8 g), and reacted for about 3 days in a hydrogen atmosphere at room temperature. It was. After completion of the reaction, the palladium carbon was removed by filtration, and the total internal weight was 112 g by concentrating under reduced pressure. Methanol (160 g) was added to the resulting solution to precipitate crystals, which was filtered and dried to obtain WA6 (yield: 35.0 g, 34.7 mmol, yield: 92%).
1 H-NMR (400 MHz) in CDCl 3 : 0.66-2.17 ppm (m, 86H), 3.74 ppm (br, 4H), 4.50-4.56 ppm (m, 2H), 5.28 ppm ( m, 2H), 6.78-6.80 ppm (m, 2H), 6.95-6.97 ppm (m, 2H), 7.26-7.28 ppm (m, 2H)
<<合成例7 W-A7の合成>> << Synthesis Example 7 Synthesis of WA-7 >>
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
<化合物[11]及び化合物[12]の合成>
 テトラヒドロフラン(152g)中、4,4’-ジニトロ-1,1’-ビフェニル-2,2’-ジメタノール(40.0g、132mmol)とトリエチルアミン(36.6g、362mmol)を仕込み、窒素雰囲気下氷冷条件にてエタンスルホニルクロリド(44.4g、 345mmol)を滴下した。滴下終了後、反応温度を40℃で3時間撹拌する事で化合物[11]を得た。続いて、テトラヒドロフラン(240g)に溶解させたp-(trans-4-プロピルシクロヘキシル)フェノール(63.1g、289mmol)と純水(228g)に溶解させた水酸化カリウム(85.0%品、45.1g、683mmol)を化合物[11]の反応溶液に加え、50℃に加熱し39時間反応させた。反応終了後、純水(1500g)中に反応液を注ぎ込み、粗物を析出させ、濾過および純水洗浄を行った。続いて、純水(378g)及びメタノール(378g)混合溶液でスラリー洗浄を行い、再度濾過およびメタノールで洗浄した。得られた結晶粗物をテトラヒドロフラン(600g)に60℃加熱溶解させ、メタノール(400g)を加えて結晶を析出させ、室温条件下で撹拌後、濾過、乾燥する事で化合物[12]を得た(収量:77.7g、110mmol、収率:83%)。
H-NMR(400MHz) in CDCl:0.87-0.97ppm(m,6H), 0.97-1.05ppm(m,4H), 1.12-1.62ppm(m,14H), 1.81-1.87ppm(m,8H), 2.34-2.40ppm(m,2H), 4.77ppm(s,4H),6.67-6.69ppm(m,4H), 7.00-7.05ppm(m,4H), 7.40ppm(d,2H,J=8.0Hz), 8.25ppm(dd,2H,J=2.0Hz,J=8.4Hz), 8.54ppm(s,2H).
<Synthesis of Compound [11] and Compound [12]>
In tetrahydrofuran (152 g), 4,4′-dinitro-1,1′-biphenyl-2,2′-dimethanol (40.0 g, 132 mmol) and triethylamine (36.6 g, 362 mmol) were charged and iced in a nitrogen atmosphere. Ethanesulfonyl chloride (44.4 g, 345 mmol) was added dropwise under cold conditions. After completion of the dropwise addition, compound [11] was obtained by stirring the reaction temperature at 40 ° C. for 3 hours. Subsequently, potassium hydroxide (85.0% product, 45%) dissolved in p- (trans-4-propylcyclohexyl) phenol (63.1 g, 289 mmol) and pure water (228 g) dissolved in tetrahydrofuran (240 g). 0.1 g, 683 mmol) was added to the reaction solution of compound [11], and the mixture was heated to 50 ° C. and reacted for 39 hours. After completion of the reaction, the reaction solution was poured into pure water (1500 g) to precipitate a crude product, followed by filtration and washing with pure water. Subsequently, slurry washing was performed with a mixed solution of pure water (378 g) and methanol (378 g), followed by filtration and washing with methanol again. The obtained crude crystal was dissolved in tetrahydrofuran (600 g) with heating at 60 ° C., methanol (400 g) was added to precipitate crystals, and the mixture was stirred at room temperature, filtered and dried to obtain compound [12]. (Yield: 77.7 g, 110 mmol, yield: 83%).
1 H-NMR (400 MHz) in CDCl 3 : 0.87 to 0.97 ppm (m, 6H), 0.97 to 1.05 ppm (m, 4H), 1.12 to 1.62 ppm (m, 14H), 1.81-1.87 ppm (m, 8H), 2.34-2.40 ppm (m, 2H), 4.77 ppm (s, 4H), 6.67-6.69 ppm (m, 4H), 00-7.05ppm (m, 4H), 7.40ppm (d, 2H, J = 8.0Hz), 8.25ppm (dd, 2H, J = 2.0Hz, J = 8.4Hz), 8.54ppm (S, 2H).
<W-A7の合成>
 テトラヒドロフラン(741g)及びメタノール(155g)中、化合物[12](77.7g、110mmol)と3%プラチナカーボン(6.22g)を仕込み、水素雰囲気下室温条件で約2日間反応させた。反応終了後、濾過することでプラチナカーボンを除去し、濾液を減圧濃縮した。得られた濃縮粗物にテトラヒドロフラン(122g)を加えて60℃加熱溶解させ、アセトニトリル(159g)を加えて結晶を析出させ、室温条件下で撹拌後、濾過、乾燥する事でW-A7を得た(収量:58.6g、88.1mmol、収率:80%)。
H-NMR(400MHz) in CDCl:0.86-0.91ppm(m,6H), 0.96-1.06ppm(m,4H), 1.12-1.44ppm(m,14H), 1.81-1.84ppm(m,8H), 2.32-2.34ppm(m,2H), 3.71-3.75ppm(br,4H), 4.67-4.76ppm(q,4H,J=10.0Hz), 6.61-6.64ppm(m,2H), 6.71-6.75ppm(m,4H), 6.91-6.92ppm(m,2H), 6.97-7.03ppm(m,6H).
<Synthesis of WA-7>
Compound [12] (77.7 g, 110 mmol) and 3% platinum carbon (6.22 g) were charged in tetrahydrofuran (741 g) and methanol (155 g), and reacted under a hydrogen atmosphere at room temperature for about 2 days. After completion of the reaction, platinum carbon was removed by filtration, and the filtrate was concentrated under reduced pressure. Tetrahydrofuran (122 g) was added to the resulting concentrated crude product and dissolved by heating at 60 ° C., acetonitrile (159 g) was added to precipitate crystals, and the mixture was stirred at room temperature, filtered and dried to obtain WA7. (Yield: 58.6 g, 88.1 mmol, Yield: 80%).
1 H-NMR (400 MHz) in CDCl 3 : 0.86-0.91 ppm (m, 6H), 0.96-1.06 ppm (m, 4H), 1.12-1.44 ppm (m, 14H), 1.81-1.84 ppm (m, 8H), 2.32-2.34 ppm (m, 2H), 3.71-3.75 ppm (br, 4H), 4.67-4.76 ppm (q, 4H) , J = 10.0 Hz), 6.61-6.64 ppm (m, 2H), 6.71-6.75 ppm (m, 4H), 6.91-6.92 ppm (m, 2H), 6.97 −7.03 ppm (m, 6H).
<<合成例8 W-A8の合成>> << Synthesis Example 8 W-A8 Synthesis >>
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
<化合物[11]及び化合物[13]の合成>
 テトラヒドロフラン(156g)中、4,4’-ジニトロ-1,1’-ビフェニル-2,2’-ジメタノール(39.2g、129mmol)とトリエチルアミン(35.0g、346mmol)を仕込み、窒素雰囲気下氷冷条件にてエタンスルホニルクロリド(34.8g、 271mmol)を滴下した。滴下後、反応温度を40℃で3時間撹拌する事で化合物[11]を得た。続いて、テトラヒドロフラン(230g)に溶解させた4-シクロヘキシルフェノール(50.0g、284mmol)と純水(231g)に溶解させた水酸化カリウム(85.0%品、47.1g、714mmol)を化合物[11]の反応溶液に加え、50℃に加熱し39時間反応させた。反応終了後、純水(660g)中に反応液を注ぎ込み、クロロホルム(588g×4回)で分液抽出した。回収した有機相を減圧濃縮し、粗物をテトラヒドロフラン(118g)に60℃加熱溶解させ、メタノール(235g)を加えて結晶を析出させ、室温条件で撹拌後、濾過した。結晶を純水/メタノール=1/1混合溶媒(118g)、メタノール(118g×2回)でケーキ洗浄し、乾燥する事で化合物[13]を得た(収量:67.6g、120mmol、収率:93%)。
H-NMR(400MHz) in CDCl:1.18-1.30ppm(m,2H), 1.31-1.38ppm(m,8H), 1.71-1.75ppm(m,2H), 1.80-1.82ppm(m,8H), 2.36-2.44ppm(m,2H), 4.77ppm(s,4H),6.67-6.70ppm(m,4H), 7.03-7.06ppm(m,4H), 7.40ppm(d,2H,J=8.4Hz), 8.24ppm(d,1H,J=2.0Hz), 8.26ppm(d,1H,J=2.0Hz), 8.54ppm(d,2H,J=2.0Hz).
<Synthesis of Compound [11] and Compound [13]>
In tetrahydrofuran (156 g), 4,4′-dinitro-1,1′-biphenyl-2,2′-dimethanol (39.2 g, 129 mmol) and triethylamine (35.0 g, 346 mmol) were charged and iced in a nitrogen atmosphere. Ethanesulfonyl chloride (34.8 g, 271 mmol) was added dropwise under cold conditions. After the dropwise addition, the reaction temperature was stirred at 40 ° C. for 3 hours to obtain compound [11]. Subsequently, 4-cyclohexylphenol (50.0 g, 284 mmol) dissolved in tetrahydrofuran (230 g) and potassium hydroxide (85.0% product, 47.1 g, 714 mmol) dissolved in pure water (231 g) were compounded. In addition to the reaction solution of [11], the mixture was heated to 50 ° C. and reacted for 39 hours. After completion of the reaction, the reaction solution was poured into pure water (660 g) and subjected to liquid separation extraction with chloroform (588 g × 4 times). The collected organic phase was concentrated under reduced pressure, the crude product was dissolved in tetrahydrofuran (118 g) by heating at 60 ° C., methanol (235 g) was added to precipitate crystals, and the mixture was stirred at room temperature and filtered. The crystal was washed with a cake with pure water / methanol = 1/1 mixed solvent (118 g) and methanol (118 g × 2 times) and dried to obtain compound [13] (yield: 67.6 g, 120 mmol, yield) : 93%).
1 H-NMR (400 MHz) in CDCl 3 : 1.18-1.30 ppm (m, 2H), 1.31-1.38 ppm (m, 8H), 1.71-1.75 ppm (m, 2H), 1.80-1.82 ppm (m, 8H), 2.36-2.44 ppm (m, 2H), 4.77 ppm (s, 4H), 6.67-6.70 ppm (m, 4H), 03-7.06ppm (m, 4H), 7.40ppm (d, 2H, J = 8.4Hz), 8.24ppm (d, 1H, J = 2.0Hz), 8.26ppm (d, 1H, J = 2.0 Hz), 8.54 ppm (d, 2H, J = 2.0 Hz).
<W-A8の合成>
 テトラヒドロフラン(325g)及びメタノール(65.0g)中、化合物[13](65.0g、105mmol)と3%プラチナカーボン(5.20g)を仕込み、水素雰囲気下室温条件で約2日間反応させた。反応終了後、濾過することでプラチナカーボンを除去し、減圧濃縮した。粗物をテトラヒドロフラン(70.4g)に60℃加熱溶解させ、メタノール(130g)を加えて結晶を析出させ、室温条件下で撹拌後、濾過した。結晶をメタノール(130g×2回)でケーキ洗浄し、乾燥する事でW-A8を得た(収量:54.2g、96.7mmol、収率:92%)。
H-NMR(400MHz) in CDCl:1.19-1.28ppm(m,2H), 1.31-1.41ppm(m,8H), 1.70-1.73ppm(m,2H), 1.79-1.87ppm(m,8H), 1.87-2.39ppm(m,2H), 3.60-3.79ppm(br,4H), 4.67-4.76ppm(q,4H,J=9.6Hz), 6.61-6.64ppm(m,2H), 6.72-6.75ppm(m,4H), 6.91-6.92ppm(d,2H,J=2.4Hz), 6.97-7.03ppm(m,6H).
<Synthesis of W-A8>
Compound [13] (65.0 g, 105 mmol) and 3% platinum carbon (5.20 g) were charged in tetrahydrofuran (325 g) and methanol (65.0 g), and reacted under a hydrogen atmosphere at room temperature for about 2 days. After completion of the reaction, the platinum carbon was removed by filtration and concentrated under reduced pressure. The crude product was dissolved in tetrahydrofuran (70.4 g) with heating at 60 ° C., methanol (130 g) was added to precipitate crystals, and the mixture was stirred at room temperature and filtered. The crystals were cake washed with methanol (130 g × 2 times) and dried to obtain WA8 (yield: 54.2 g, 96.7 mmol, yield: 92%).
1 H-NMR (400 MHz) in CDCl 3 : 1.19-1.28 ppm (m, 2H), 1.31-1.41 ppm (m, 8H), 1.70-1.73 ppm (m, 2H), 1.79-1.87 ppm (m, 8H), 1.87-2.39 ppm (m, 2H), 3.60-3.79 ppm (br, 4H), 4.67-4.76 ppm (q, 4H) , J = 9.6 Hz), 6.61-6.64 ppm (m, 2H), 6.72-6.75 ppm (m, 4H), 6.91-6.92 ppm (d, 2H, J = 2. 4 Hz), 6.97-7.03 ppm (m, 6H).
<<合成例9 W-A9の合成>> << Synthesis Example 9 Synthesis of W-A9 >>
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
<化合物[11]及び化合物[14]の合成>
 テトラヒドロフラン(83.6g)中、4,4’-ジニトロ-1,1’-ビフェニル-2,2’-ジメタノール(20.9g,68.7mmol)とトリエチルアミン(15.3g、151mmol)を仕込み、窒素雰囲気氷冷条件にてエタンスルホニルクロリド(18.6g、145mmol)を滴下した。滴下後、反応温度を40℃で3時間撹拌する事で化合物[11]を得た。続いて、テトラヒドロフラン(188g)に溶解させた4-[(trans, trans)-4‘-ペンチル[1,1’-ビシクロヘキシル]-4-イル]フェノール(48.6g、149mmol)と純水(119.2g)に溶解させた水酸化カリウム(85.0%品、20.9g、317mmol)を化合物[11]の反応溶液に加え、20時間反応させた。反応終了後、純水(800g)中に反応液を注ぎ込み、粗物を析出させ、ろ過、純水洗浄を行った。続いて、純水(100g)及びメタノール(100g)混合溶液でスラリー洗浄を行い、再度ろ過、純水及びメタノールで洗浄した。粗物をテトラヒドロフラン(400g)に60℃加熱溶解させ、メタノール(100g)を加えて結晶を析出させ、室温条件下で撹拌後、ろ過、乾燥する事で化合物[14]を得た(収量:49.7g、53.9mmol、収率:78%)。
H-NMR(400MHz) in CDCl:0.83-1.34ppm(m,44H), 1.71-1.85ppm(m,16H), 2.29-2.36ppm(m,2H), 4.77ppm(s,4H), 6.66-6.68ppm(m,4H), 7.01-7.03ppm(m,4H), 7.39ppm(d,2H,J=8.0Hz), 8.24ppm(dd,2H,J=2.0Hz,J=8.4Hz), 8.54ppm(d,2H,J=2.4Hz)
<Synthesis of Compound [11] and Compound [14]>
In tetrahydrofuran (83.6 g), 4,4′-dinitro-1,1′-biphenyl-2,2′-dimethanol (20.9 g, 68.7 mmol) and triethylamine (15.3 g, 151 mmol) were charged. Ethanesulfonyl chloride (18.6 g, 145 mmol) was added dropwise under ice-cooling conditions in a nitrogen atmosphere. After the dropwise addition, the reaction temperature was stirred at 40 ° C. for 3 hours to obtain compound [11]. Subsequently, 4-[(trans, trans) -4′-pentyl [1,1′-bicyclohexyl] -4-yl] phenol (48.6 g, 149 mmol) dissolved in tetrahydrofuran (188 g) and pure water ( Potassium hydroxide (85.0% product, 20.9 g, 317 mmol) dissolved in 119.2 g) was added to the reaction solution of compound [11] and allowed to react for 20 hours. After completion of the reaction, the reaction solution was poured into pure water (800 g) to precipitate a crude product, followed by filtration and washing with pure water. Subsequently, slurry washing was performed with a mixed solution of pure water (100 g) and methanol (100 g), followed by filtration and washing with pure water and methanol again. The crude product was dissolved in tetrahydrofuran (400 g) with heating at 60 ° C., methanol (100 g) was added to precipitate crystals, and the mixture was stirred at room temperature, filtered and dried to obtain compound [14] (yield: 49 0.7 g, 53.9 mmol, yield: 78%).
1 H-NMR (400 MHz) in CDCl 3 : 0.83-1.34 ppm (m, 44H), 1.71-1.85 ppm (m, 16H), 2.29-2.36 ppm (m, 2H), 4.77 ppm (s, 4H), 6.66-6.68 ppm (m, 4H), 7.01-7.03 ppm (m, 4H), 7.39 ppm (d, 2H, J = 8.0 Hz), 8.24 ppm (dd, 2H, J = 2.0 Hz, J = 8.4 Hz), 8.54 ppm (d, 2H, J = 2.4 Hz)
<W-A9の合成>
 テトラヒドロフラン(361g)及びメタノール(90.2g)中、化合物[14](45.1g、48.7mmol)と3%プラチナカーボン(3.60g)を仕込み、0.4MPa水素圧雰囲気40℃条件下で約9時間反応させた。反応終了後、ろ過、減圧濃縮により溶媒を除去し、メタノール(135g)を加えてスラリー洗浄を実施した。続いて、ろ過により得られた粗物をテトラヒドロフラン(180g)に60℃加熱溶解させ、酢酸エチル(120g)を加え、室温条件下で撹拌する事で結晶を析出させ、ろ過、乾燥する事でW-A9を得た(収量:17.8g、20.7mmol、収率:43%)。
H-NMR(400MHz) in CDCl:0.88-1.34ppm(m,44H), 1.71-1.86ppm(m,16H), 2.29-2.36ppm(m,2H), 3.69ppm(br,4H), 4.70ppm(d,2H,J=12.4Hz), 4.76ppm(d,2H,J=12.4Hz), 6.62ppm(dd,2H,J=2.4Hz,J=8.0Hz), 6.71-6.73ppm(m,4H), 6.91ppm(d,2H,J=2.4Hz), 6.96-6.99ppm(m,6H)
<Synthesis of WA9>
Compound [14] (45.1 g, 48.7 mmol) and 3% platinum carbon (3.60 g) were charged in tetrahydrofuran (361 g) and methanol (90.2 g), and the pressure was 0.4 MPa under a hydrogen pressure atmosphere at 40 ° C. The reaction was performed for about 9 hours. After completion of the reaction, the solvent was removed by filtration and concentration under reduced pressure, and methanol (135 g) was added to carry out slurry washing. Subsequently, the crude product obtained by filtration was dissolved in tetrahydrofuran (180 g) with heating at 60 ° C., ethyl acetate (120 g) was added, and the mixture was stirred under room temperature conditions to precipitate crystals. -A9 was obtained (yield: 17.8 g, 20.7 mmol, yield: 43%).
1 H-NMR (400 MHz) in CDCl 3 : 0.88-1.34 ppm (m, 44H), 1.71-1.86 ppm (m, 16H), 2.29-2.36 ppm (m, 2H), 3.69 ppm (br, 4H), 4.70 ppm (d, 2H, J = 12.4 Hz), 4.76 ppm (d, 2H, J = 12.4 Hz), 6.62 ppm (dd, 2H, J = 2) .4 Hz, J = 8.0 Hz), 6.71-6.73 ppm (m, 4H), 6.91 ppm (d, 2H, J = 2.4 Hz), 6.96-6.99 ppm (m, 6H)
<<合成例10 W-A10の合成>> << Synthesis Example 10 Synthesis of WA10 >>
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
<化合物[15]の合成>
 N-メチルピロリドン(540g)中、2-フルオロ-5-ニトロトルエン(91.0g、587mmol)、1,3-プロパンジオール(22.3g、291mmol)、水酸化カリウム(85.0%品、71.6g、1.08mol)を仕込み、窒素雰囲気下80℃で20時間撹拌した。反応終了後、純水(1440g)を加えて水割り晶析を行い、濾過後、結晶を純水(540g×3回)、メタノール(360g×2回)でそれぞれケーキ洗浄し、乾燥する事で化合物[15]を得た(収量:57.2g、165mmol、収率:54%)。
<Synthesis of Compound [15]>
In N-methylpyrrolidone (540 g), 2-fluoro-5-nitrotoluene (91.0 g, 587 mmol), 1,3-propanediol (22.3 g, 291 mmol), potassium hydroxide (85.0% product, 71. 6 g, 1.08 mol), and stirred at 80 ° C. for 20 hours under a nitrogen atmosphere. After completion of the reaction, pure water (1440 g) is added to perform water split crystallization, and after filtration, the crystals are washed with cake with pure water (540 g × 3 times) and methanol (360 g × 2 times), respectively, and dried to give a compound. [15] was obtained (yield: 57.2 g, 165 mmol, yield: 54%).
<化合物[16]の合成>
 1,2-ジクロロエタン(540g)中、化合物[15](40.0g、116mmol)、N-ブロモスクシンイミド(45.2g、254mmol)、2,2’-アゾビス(イソブチロニトリル)(3.79g、23.1mmol)を仕込み、窒素置換した後100℃で約7日間撹拌した。反応液を濾過し不溶のコハク酸イミドを除去後、濾液に酢酸エチル(250g)を加え、純水(250g×3回)で分液抽出および洗浄を行い、有機相を回収して濃縮した。得られた濃縮物に対し酢酸エチル(346g)およびヘキサン(395g)で晶析および濾過し、結晶を回収した。さらに、濾液を濃縮し、クロロホルム(223g)およびヘキサン(434g)で再度晶析および濾過し、それぞれ乾燥する事で化合物[16]の粗物を得た(粗収量:21.3g,粗収率:37%)。
<Synthesis of Compound [16]>
Compound [15] (40.0 g, 116 mmol), N-bromosuccinimide (45.2 g, 254 mmol), 2,2′-azobis (isobutyronitrile) (3.79 g) in 1,2-dichloroethane (540 g) 23.1 mmol), and after purging with nitrogen, the mixture was stirred at 100 ° C. for about 7 days. The reaction solution was filtered to remove insoluble succinimide, ethyl acetate (250 g) was added to the filtrate, liquid separation extraction and washing were performed with pure water (250 g × 3 times), and the organic phase was recovered and concentrated. The obtained concentrate was crystallized from ethyl acetate (346 g) and hexane (395 g) and filtered to collect crystals. Further, the filtrate was concentrated, recrystallized and filtered again with chloroform (223 g) and hexane (434 g), and dried to obtain a crude product of compound [16] (crude yield: 21.3 g, crude yield). : 37%).
<化合物[17]の合成>
 N,N-ジメチルアセトアミド(96.0g)中、p-(trans-4-ヘプチルシクロヘキシル)フェノール(24.0g、87.5mmol)、炭酸カリウム(12.1g、87.5mmol)を仕込み100℃で撹拌した。N,N-ジメチルアセトアミド(54.0g)に溶解させた化合物[16]粗物(20.0g)を滴下し、24時間反応させた。反応液から析出した結晶を濾過で分離し、メタノール(66.0g)、純水(67.0g)でそれぞれスラリー洗浄した後再度濾過、乾燥する事で化合物[17]を得た(収量:4.23g、4.75mmol、収率:4.1%(仕込み化合物[15]を基準とした収率))。
H-NMR(400MHz) in CDCl:0.89ppm(t,6H,J=6.8Hz), 0.99-1.07ppm(m,4H), 1.19-1.43ppm(m,30H), 1.84-1.87ppm(m,8H), 2.36-2.44ppm(m,4H), 4.29ppm(t,4H,J=6.0Hz), 5.04ppm(s,4H), 6.84-6.90ppm(m,6H), 7.10-7.13ppm(m,4H), 8.17ppm(dd,2H,J=3.2Hz,9.0Hz), 8.38ppm(d,2H,J=2.8Hz).
<Synthesis of Compound [17]>
In N, N-dimethylacetamide (96.0 g), p- (trans-4-heptylcyclohexyl) phenol (24.0 g, 87.5 mmol) and potassium carbonate (12.1 g, 87.5 mmol) were charged at 100 ° C. Stir. Compound [16] crude product (20.0 g) dissolved in N, N-dimethylacetamide (54.0 g) was added dropwise and reacted for 24 hours. Crystals precipitated from the reaction solution were separated by filtration, washed with slurry with methanol (66.0 g) and pure water (67.0 g), respectively, filtered and dried again to obtain compound [17] (yield: 4). .23 g, 4.75 mmol, yield: 4.1% (yield based on charged compound [15])).
1 H-NMR (400 MHz) in CDCl 3 : 0.89 ppm (t, 6H, J = 6.8 Hz), 0.99-1.07 ppm (m, 4H), 1.19-1.43 ppm (m, 30H) ), 1.84-1.87 ppm (m, 8H), 2.36-2.44 ppm (m, 4H), 4.29 ppm (t, 4H, J = 6.0 Hz), 5.04 ppm (s, 4H) ), 6.84-6.90 ppm (m, 6H), 7.10-7.13 ppm (m, 4H), 8.17 ppm (dd, 2H, J = 3.2 Hz, 9.0 Hz), 8.38 ppm (D, 2H, J = 2.8 Hz).
<W-A10の合成>
 テトラヒドロフラン(28.8g)及びメタノール(7.5g)中、化合物[17](3.60g、4.04mmol)と3%プラチナカーボン(0.290g)を仕込み、水素雰囲気0.4MPa加圧条件下、40℃で3時間撹拌した。反応終了後、濾過することでプラチナカーボンを除去し、減圧濃縮した。粗物を酢酸エチルおよびメタノールを加えて結晶を析出させ、室温条件下で撹拌後、濾過し、乾燥する事でW-A10を得た(収量:2.05g、2.47mmol、収率:54%)。
H-NMR(400MHz) in CDCl:0.89ppm(t,6H,J=6.8Hz), 0.98-1.06ppm(m,4H), 1.18-1.44ppm(m,30H), 1.83-1.86ppm(m,8H), 2.15-2.21ppm(m,2H), 2.36-2.42ppm(m,2H), 3.42ppm(br,4H), 4.09ppm(t,4H,J=6.0Hz), 5.00ppm(s,4H), 6.55-6.57ppm(m,2H), 6.70ppm(d,2H,J=8.8Hz), 6.82-6.89ppm(m,6H), 7.07-7.10ppm(m,4H).
<Synthesis of WA-10>
Compound [17] (3.60 g, 4.04 mmol) and 3% platinum carbon (0.290 g) were charged in tetrahydrofuran (28.8 g) and methanol (7.5 g) under a hydrogen atmosphere at a pressure of 0.4 MPa. And stirred at 40 ° C. for 3 hours. After completion of the reaction, the platinum carbon was removed by filtration and concentrated under reduced pressure. Crystals were precipitated by adding ethyl acetate and methanol to the crude product, stirred under room temperature conditions, filtered and dried to obtain WA10 (yield: 2.05 g, 2.47 mmol, yield: 54). %).
1 H-NMR (400 MHz) in CDCl 3 : 0.89 ppm (t, 6H, J = 6.8 Hz), 0.98-1.06 ppm (m, 4H), 1.18-1.44 ppm (m, 30H) ), 1.83 to 1.86 ppm (m, 8H), 2.15 to 2.21 ppm (m, 2H), 2.36-2.42 ppm (m, 2H), 3.42 ppm (br, 4H), 4.09 ppm (t, 4H, J = 6.0 Hz), 5.00 ppm (s, 4H), 6.55-6.57 ppm (m, 2H), 6.70 ppm (d, 2H, J = 8.8 Hz) ), 6.82-6.89 ppm (m, 6H), 7.07-7.10 ppm (m, 4H).
<ポリイミド系重合体の合成>
[合成例1]
 D2(2.50g,10.0mmol)、W-A1(3.03g,4.00mmol)、C1(1.73g,16.0mmol)をNMP(36.2g)中で混合し、60℃で3時間反応させた後、D1(1.78g,9.10mmol)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、840mPa・sであった。
 得られたポリアミド酸溶液(20.0g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(4.43g)及びピリジン(1.37g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(382ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(1)を得た。このポリイミドのイミド化率は76.4%であり、数平均分子量は16,165であり、重量平均分子量は49,988であった。
<Synthesis of polyimide polymer>
[Synthesis Example 1]
D2 (2.50 g, 10.0 mmol), W-A1 (3.03 g, 4.00 mmol), C1 (1.73 g, 16.0 mmol) were mixed in NMP (36.2 g) and mixed at 60 ° C. 3 After reacting for hours, D1 (1.78 g, 9.10 mmol) was added and reacted at 40 ° C. for 3 hours to obtain a polyamic acid solution having a resin solid content concentration of 20 mass%. It was 840 mPa * s when the viscosity of this polyamic-acid solution was measured.
After adding NMP to the obtained polyamic acid solution (20.0 g) and diluting to 6.5% by mass, acetic anhydride (4.43 g) and pyridine (1.37 g) were added as an imidization catalyst at 80 ° C. The reaction was performed for 3 hours. This reaction solution was put into methanol (382 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (1). The imidation ratio of this polyimide was 76.4%, the number average molecular weight was 16,165, and the weight average molecular weight was 49,988.
[合成例2]
 D2(2.50g,10.0mmol)、W-A2(3.14g,4.00mmol)、C1(1.84g,16.0mmol)をNMP(36.9g)中で混合し、60℃で3時間反応させた後、D1(1.84g,9.38mmol)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、658mPa・sであった。
 得られたポリアミド酸溶液(20.0g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(4.38g)及びピリジン(1.36g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(382ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(2)を得た。このポリイミドのイミド化率は75.8%であり、数平均分子量は15,430であり、重量平均分子量は45,756であった。
[Synthesis Example 2]
D2 (2.50 g, 10.0 mmol), W-A2 (3.14 g, 4.00 mmol), C1 (1.84 g, 16.0 mmol) were mixed in NMP (36.9 g) and 3 ° C. at 60 ° C. After reacting for hours, D1 (1.84 g, 9.38 mmol) was added and reacted at 40 ° C. for 3 hours to obtain a polyamic acid solution having a resin solid content concentration of 20 mass%. The viscosity of this polyamic acid solution was measured and found to be 658 mPa · s.
After adding NMP to the obtained polyamic acid solution (20.0 g) and diluting to 6.5% by mass, acetic anhydride (4.38 g) and pyridine (1.36 g) were added as an imidization catalyst at 80 ° C. The reaction was performed for 3 hours. This reaction solution was put into methanol (382 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (2). The imidation ratio of this polyimide was 75.8%, the number average molecular weight was 15,430, and the weight average molecular weight was 45,756.
[合成例3]
 D2(2.50g,10.0mmol)、W-A3(3.25g,4.00mmol)、C1(1.73g,16.0mmol)をNMP(37.3g)中で混合し、60℃で3時間反応させた後、D1(1.84g,9.38mmol)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、656mPa・sであった。
 得られたポリアミド酸溶液(20.0g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(4.32g)及びピリジン(1.34g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(382ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(3)を得た。このポリイミドのイミド化率は74.7%であり、数平均分子量は13,340であり、重量平均分子量は41,948であった。
[Synthesis Example 3]
D2 (2.50 g, 10.0 mmol), W-A3 (3.25 g, 4.00 mmol), C1 (1.73 g, 16.0 mmol) were mixed in NMP (37.3 g) and 3 at 60 ° C. After reacting for hours, D1 (1.84 g, 9.38 mmol) was added and reacted at 40 ° C. for 3 hours to obtain a polyamic acid solution having a resin solid content concentration of 20 mass%. It was 656 mPa * s when the viscosity of this polyamic-acid solution was measured.
After adding NMP to the obtained polyamic acid solution (20.0 g) and diluting to 6.5% by mass, acetic anhydride (4.32 g) and pyridine (1.34 g) were added as an imidization catalyst at 80 ° C. The reaction was performed for 3 hours. This reaction solution was put into methanol (382 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (3). The imidation ratio of this polyimide was 74.7%, the number average molecular weight was 13,340, and the weight average molecular weight was 41,948.
[コントロール合成例1]
 D2(1.50g、 6.0mmol)、C2(1.83g、12.0mmol)、C3(2.18g、9.0mmol)、A1(3.43g、9.0mmol)をNMP(41.1g)中で溶解し、60℃で3時間反応させたのち、D3(1.31g、6.0mmol)、続いてD1(3.47g、17.7mmol)とNMP(13.71g)を加え、25℃で10時間反応させポリアミック酸溶液を得た。
 このポリアミック酸溶液(50g)にNMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(11.1g)、およびピリジン(3.4g)を加え、60℃で3時間反応させた。この反応溶液をメタノール(700ml)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(4)を得た。このポリイミドのイミド化率は79%であり、数平均分子量は11000、重量平均分子量は24000であった。
[Control Synthesis Example 1]
D2 (1.50 g, 6.0 mmol), C2 (1.83 g, 12.0 mmol), C3 (2.18 g, 9.0 mmol), A1 (3.43 g, 9.0 mmol) NMP (41.1 g) After dissolving for 3 hours at 60 ° C., D3 (1.31 g, 6.0 mmol) was added followed by D1 (3.47 g, 17.7 mmol) and NMP (13.71 g) at 25 ° C. For 10 hours to obtain a polyamic acid solution.
After adding NMP to this polyamic acid solution (50 g) and diluting to 6.5% by mass, acetic anhydride (11.1 g) and pyridine (3.4 g) were added as an imidization catalyst and reacted at 60 ° C. for 3 hours. It was. This reaction solution was poured into methanol (700 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (4). The imidation ratio of this polyimide was 79%, the number average molecular weight was 11000, and the weight average molecular weight was 24000.
[比較合成例1]
 D2(2.88g,11.5mmol)、A1(3.50g,9.20mmol)、C1(1.49g,13.8mmol)をNMP(40.2g)中で混合し、60℃で3時間反応させた後、D1(2.19g,11.2mmol)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、680mPa・sであった。
 得られたポリアミド酸溶液(20.0g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(4.64g)及びピリジン(1.44g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(382ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(R1)を得た。このポリイミドのイミド化率は75.1%であり、数平均分子量は15,322であり、重量平均分子量は45,800であった。
[Comparative Synthesis Example 1]
D2 (2.88 g, 11.5 mmol), A1 (3.50 g, 9.20 mmol), C1 (1.49 g, 13.8 mmol) were mixed in NMP (40.2 g) and reacted at 60 ° C. for 3 hours. Then, D1 (2.19 g, 11.2 mmol) was added and reacted at 40 ° C. for 3 hours to obtain a polyamic acid solution having a resin solid content concentration of 20 mass%. It was 680 mPa * s when the viscosity of this polyamic-acid solution was measured.
After adding NMP to the obtained polyamic acid solution (20.0 g) and diluting to 6.5% by mass, acetic anhydride (4.64 g) and pyridine (1.44 g) were added as an imidization catalyst at 80 ° C. The reaction was performed for 3 hours. This reaction solution was put into methanol (382 ml), and the resulting precipitate was separated by filtration. This precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide powder (R1). The imidation ratio of this polyimide was 75.1%, the number average molecular weight was 15,322, and the weight average molecular weight was 45,800.
[合成例5]
 D2(2.50g,10.0mmol)、W-A4(4.62g,6.00mmol)、C1(1.51g,14.0mmol)をNMP(24.5g)中で混合し、60℃で3時間反応させた後、D1(1.92g,9.80mmol)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、783mPa・sであった。
 得られたポリアミド酸溶液(20.0g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(3.86g)及びピリジン(1.20g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(233ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(5)を得た。このポリイミドのイミド化率は76.7%であり、数平均分子量は14,399であり、重量平均分子量は38,573であった。
[Synthesis Example 5]
D2 (2.50 g, 10.0 mmol), W-A4 (4.62 g, 6.00 mmol), C1 (1.51 g, 14.0 mmol) were mixed in NMP (24.5 g) and mixed at 60 ° C. with 3 After reacting for hours, D1 (1.92 g, 9.80 mmol) was added and reacted at 40 ° C. for 3 hours to obtain a polyamic acid solution having a resin solid content concentration of 20 mass%. The viscosity of this polyamic acid solution was measured and found to be 783 mPa · s.
After adding NMP to the obtained polyamic acid solution (20.0 g) and diluting to 6.5% by mass, acetic anhydride (3.86 g) and pyridine (1.20 g) were added as an imidization catalyst at 80 ° C. The reaction was performed for 3 hours. This reaction solution was poured into methanol (233 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (5). The imidation ratio of this polyimide was 76.7%, the number average molecular weight was 14,399, and the weight average molecular weight was 38,573.
[合成例6]
 D2(2.50g,10.0mmol)、W-A5(4.70g,6.00mmol)、C1(1.51g,14.0mmol)をNMP(24.9g)中で混合し、60℃で3時間反応させた後、D1(1.92g,9.80mmol)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、769mPa・sであった。
 得られたポリアミド酸溶液(20.0g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(3.83g)及びピリジン(1.19g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(232ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(6)を得た。このポリイミドのイミド化率は73.4%であり、数平均分子量は13,841であり、重量平均分子量は37,284であった。
[Synthesis Example 6]
D2 (2.50 g, 10.0 mmol), W-A5 (4.70 g, 6.00 mmol) and C1 (1.51 g, 14.0 mmol) were mixed in NMP (24.9 g) and 3 After reacting for hours, D1 (1.92 g, 9.80 mmol) was added and reacted at 40 ° C. for 3 hours to obtain a polyamic acid solution having a resin solid content concentration of 20 mass%. When the viscosity of this polyamic acid solution was measured, it was 769 mPa · s.
After adding NMP to the obtained polyamic acid solution (20.0 g) and diluting to 6.5% by mass, acetic anhydride (3.83 g) and pyridine (1.19 g) were added as an imidization catalyst at 80 ° C. The reaction was performed for 3 hours. This reaction solution was put into methanol (232 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (6). The imidation ratio of this polyimide was 73.4%, the number average molecular weight was 13,841, and the weight average molecular weight was 37,284.
[合成例7]
 D2(6.26g,25.0mmol)、W-A6(5.05g,5.00mmol)、C1(4.87g,45.0mmol)をNMP(62.0g)中で混合し、60℃で3時間反応させた後、D1(4.51g,23.0mmol)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、658mPa・sであった。
 得られたポリアミド酸溶液(75.0g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(18.2g)及びピリジン(5.6g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(1000ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(7)を得た。このポリイミドのイミド化率は72.9%であり、数平均分子量は13,362であり、重量平均分子量は38,725であった。
[Synthesis Example 7]
D2 (6.26 g, 25.0 mmol), WA6 (5.05 g, 5.00 mmol), C1 (4.87 g, 45.0 mmol) were mixed in NMP (62.0 g) and mixed at 60 ° C. with 3 After reacting for hours, D1 (4.51 g, 23.0 mmol) was added and reacted at 40 ° C. for 3 hours to obtain a polyamic acid solution having a resin solid content concentration of 20 mass%. The viscosity of this polyamic acid solution was measured and found to be 658 mPa · s.
After adding NMP to the obtained polyamic acid solution (75.0 g) and diluting to 6.5% by mass, acetic anhydride (18.2 g) and pyridine (5.6 g) were added as an imidization catalyst at 80 ° C. The reaction was performed for 3 hours. This reaction solution was poured into methanol (1000 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (7). The imidation ratio of this polyimide was 72.9%, the number average molecular weight was 13,362, and the weight average molecular weight was 38,725.
[合成例8]
 D2(6.26g,25.0mmol)、W-A7(8.06g,12.5mmol)、C1(4.06g,37.5mmol)をNMP(69.2g)中で混合し、60℃で3時間反応させた後、D1(4.71g,24.0mmol)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、725mPa・sであった。
 得られたポリアミド酸溶液(75.0g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(16.5g)及びピリジン(5.1g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(1000ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(8)を得た。このポリイミドのイミド化率は73.1%であり、数平均分子量は13,628であり、重量平均分子量は39,937であった。
[Synthesis Example 8]
D2 (6.26 g, 25.0 mmol), WA-7 (8.06 g, 12.5 mmol), C1 (4.06 g, 37.5 mmol) were mixed in NMP (69.2 g) and 3 After reacting for hours, D1 (4.71 g, 24.0 mmol) was added and reacted at 40 ° C. for 3 hours to obtain a polyamic acid solution having a resin solid content concentration of 20 mass%. The viscosity of this polyamic acid solution was measured and found to be 725 mPa · s.
After adding NMP to the obtained polyamic acid solution (75.0 g) and diluting to 6.5% by mass, acetic anhydride (16.5 g) and pyridine (5.1 g) were added as an imidization catalyst at 80 ° C. The reaction was performed for 3 hours. This reaction solution was poured into methanol (1000 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (8). The imidation ratio of this polyimide was 73.1%, the number average molecular weight was 13,628, and the weight average molecular weight was 39,937.
[合成例9]
 D2(6.26g,25.0mmol)、W-A8(7.01g,12.5mmol)、C1(4.06g,37.5mmol)をNMP(66.1g)中で混合し、60℃で3時間反応させた後、D1(4.71g,24.0mmol)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、674mPa・sであった。
 得られたポリアミド酸溶液(75.0g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(17.2g)及びピリジン(5.3g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(1000ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(9)を得た。このポリイミドのイミド化率は73.2%であり、数平均分子量は10,425であり、重量平均分子量は37,759であった。
[Synthesis Example 9]
D2 (6.26 g, 25.0 mmol), WA8 (7.01 g, 12.5 mmol), C1 (4.06 g, 37.5 mmol) were mixed in NMP (66.1 g) and 3 After reacting for hours, D1 (4.71 g, 24.0 mmol) was added and reacted at 40 ° C. for 3 hours to obtain a polyamic acid solution having a resin solid content concentration of 20 mass%. The viscosity of this polyamic acid solution was measured and found to be 674 mPa · s.
After adding NMP to the obtained polyamic acid solution (75.0 g) and diluting to 6.5% by mass, acetic anhydride (17.2 g) and pyridine (5.3 g) were added as an imidization catalyst at 80 ° C. The reaction was performed for 3 hours. This reaction solution was poured into methanol (1000 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (9). The imidation ratio of this polyimide was 73.2%, the number average molecular weight was 10,425, and the weight average molecular weight was 37,759.
[合成例10]
 D2(6.26g,25.0mmol)、W-A9(2.16g,2.5mmol)、C1(5.14g,47.5mmol)をNMP(54.8g)中で混合し、60℃で3時間反応させた後、D1(4.71g,24.0mmol)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、823mPa・sであった。
 得られたポリアミド酸溶液(75.0g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(20.7g)及びピリジン(6.4g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(1000ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(10)を得た。このポリイミドのイミド化率は71.5%であり、数平均分子量は13,732であり、重量平均分子量は38,921であった。
[Synthesis Example 10]
D2 (6.26 g, 25.0 mmol), WA-9 (2.16 g, 2.5 mmol), C1 (5.14 g, 47.5 mmol) were mixed in NMP (54.8 g) and 3 After reacting for hours, D1 (4.71 g, 24.0 mmol) was added and reacted at 40 ° C. for 3 hours to obtain a polyamic acid solution having a resin solid content concentration of 20 mass%. When the viscosity of this polyamic acid solution was measured, it was 823 mPa · s.
After adding NMP to the obtained polyamic acid solution (75.0 g) and diluting to 6.5% by mass, acetic anhydride (20.7 g) and pyridine (6.4 g) were added as an imidization catalyst at 80 ° C. The reaction was performed for 3 hours. This reaction solution was poured into methanol (1000 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (10). The imidation ratio of this polyimide was 71.5%, the number average molecular weight was 13,732, and the weight average molecular weight was 38,921.
[合成例11]
 D2(2.50g,10.0mmol)、W-A10(3.31g,4.00mmol)、C1(1.73g,16.0mmol)をNMP(30.2g)中で混合し、60℃で3時間反応させた後、D1(1.84g,9.40mmol)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、695mPa・sであった。
 得られたポリアミド酸溶液(20.0g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(4.35g)及びピリジン(1.35g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(235ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(11)を得た。このポリイミドのイミド化率は76.1%であり、数平均分子量は12,913であり、重量平均分子量は39,182であった。
[Synthesis Example 11]
D2 (2.50 g, 10.0 mmol), WA10 (3.31 g, 4.00 mmol), C1 (1.73 g, 16.0 mmol) were mixed in NMP (30.2 g) and mixed at 60 ° C. with 3 After reacting for hours, D1 (1.84 g, 9.40 mmol) was added and reacted at 40 ° C. for 3 hours to obtain a polyamic acid solution having a resin solid content concentration of 20 mass%. The viscosity of this polyamic acid solution was measured and found to be 695 mPa · s.
After adding NMP to the obtained polyamic acid solution (20.0 g) and diluting to 6.5% by mass, acetic anhydride (4.35 g) and pyridine (1.35 g) were added as an imidization catalyst at 80 ° C. The reaction was performed for 3 hours. This reaction solution was put into methanol (235 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (11). The imidation ratio of this polyimide was 76.1%, the number average molecular weight was 12,913, and the weight average molecular weight was 39,182.
[合成例12]
 D2(25.0g,100mmol)、W-A1(37.9g,50.0mmol)、C3(12.1g,50.0mmol)、C8(33.0g,100mmol)をNMP(432g)中で混合し、60℃で3時間反応させた後、D1(18.8g,96.0mmol)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、721mPa・sであった。
 得られたポリアミド酸溶液(100g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(16.0g)及びピリジン(4.96g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(1150ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(12)を得た。このポリイミドのイミド化率は75.1%であり、数平均分子量は14,736、重量平均分子量は39,645であった。
[Synthesis Example 12]
D2 (25.0 g, 100 mmol), W-A1 (37.9 g, 50.0 mmol), C3 (12.1 g, 50.0 mmol), C8 (33.0 g, 100 mmol) were mixed in NMP (432 g). After reacting at 60 ° C. for 3 hours, D1 (18.8 g, 96.0 mmol) was added and reacted at 40 ° C. for 3 hours to obtain a polyamic acid solution having a resin solid content concentration of 20 mass%. It was 721 mPa * s when the viscosity of this polyamic-acid solution was measured.
After adding NMP to the obtained polyamic acid solution (100 g) and diluting to 6.5% by mass, acetic anhydride (16.0 g) and pyridine (4.96 g) were added as an imidization catalyst, and the mixture was heated at 80 ° C. for 3 hours. Reacted. This reaction solution was poured into methanol (1150 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (12). The imidation ratio of this polyimide was 75.1%, the number average molecular weight was 14,736, and the weight average molecular weight was 39,645.
[合成例13]
 D2(25.0g,100mmol)、W-A1(37.9g,50.0mmol)、C6(20.5g,60.0mmol)、C8(6.61g,20,0mmol)、C7(27.9g,70,0mmol)をNMP(471g)中で混合し、60℃で3時間反応させた後、D1(18.8g,96.0mmol)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、771mPa・sであった。
 得られたポリアミド酸溶液(100g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(14.9g)及びピリジン(4.63g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(1150ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末(13)を得た。このポリイミドのイミド化率は76.2%であり、数平均分子量は15,835、重量平均分子量は39,145であった。
[Synthesis Example 13]
D2 (25.0 g, 100 mmol), W-A1 (37.9 g, 50.0 mmol), C6 (20.5 g, 60.0 mmol), C8 (6.61 g, 20, 0 mmol), C7 (27.9 g, 70,0 mmol) in NMP (471 g) and reacted at 60 ° C. for 3 hours, and then D1 (18.8 g, 96.0 mmol) was added and reacted at 40 ° C. for 3 hours to obtain a resin solid concentration of 20 A mass% polyamic acid solution was obtained. It was 771 mPa * s when the viscosity of this polyamic-acid solution was measured.
After adding NMP to the obtained polyamic acid solution (100 g) and diluting to 6.5% by mass, acetic anhydride (14.9 g) and pyridine (4.63 g) were added as an imidization catalyst, and the mixture was heated at 80 ° C. for 3 hours. Reacted. This reaction solution was poured into methanol (1150 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 60 degreeC, and obtained the polyimide powder (13). The imidation ratio of this polyimide was 76.2%, the number average molecular weight was 15,835 and the weight average molecular weight was 39,145.
[合成例14]
 D2(25.0g,100mmol)、W-A1(37.9g,50.0mmol)、C6(17.0g,50.0mmol)、C8(16.5g,50.0mmol)、C3(12.1g,50.0mmol)をNMP(434g)中で混合し、60℃で3時間反応させた後、D1(18.8g,96.0mmol)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、701mPa・sであった。
 得られたポリアミド酸溶液(100g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(16.0g)及びピリジン(4.97g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(1150ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末(14)を得た。このポリイミドのイミド化率は74.8%であり、数平均分子量は17,635、重量平均分子量は41,647であった。
[Synthesis Example 14]
D2 (25.0 g, 100 mmol), W-A1 (37.9 g, 50.0 mmol), C6 (17.0 g, 50.0 mmol), C8 (16.5 g, 50.0 mmol), C3 (12.1 g, 50.0 mmol) was mixed in NMP (434 g) and reacted at 60 ° C. for 3 hours, then D1 (18.8 g, 96.0 mmol) was added and reacted at 40 ° C. for 3 hours to obtain a resin solid content concentration of 20 A mass% polyamic acid solution was obtained. The viscosity of this polyamic acid solution was measured and found to be 701 mPa · s.
After adding NMP to the obtained polyamic acid solution (100 g) and diluting to 6.5% by mass, acetic anhydride (16.0 g) and pyridine (4.97 g) were added as an imidization catalyst, and the mixture was heated at 80 ° C. for 3 hours. Reacted. This reaction solution was poured into methanol (1150 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 60 degreeC, and obtained the polyimide powder (14). The imidation ratio of this polyimide was 74.8%, the number average molecular weight was 17,635 and the weight average molecular weight was 41,647.
[合成例15]
 D4(43.9g,196mmol)、W-A1(30.3g,40.0mmol)、C4(13.9g,70.0mmol)、C8(16.5g,50.0mmol)、C5(7.59g,40.0mmol)をNMP(455g)中で混合し、60℃で15時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、662mPa・sであった。
 得られたポリアミド酸溶液(100g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(17.9g)及びピリジン(5.55g)を加え、100℃で3時間反応させた。この反応溶液をメタノール(1160ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末(15)を得た。このポリイミドのイミド化率は71.7%であり、数平均分子量は13,329、重量平均分子量は40,527であった。
[Synthesis Example 15]
D4 (43.9 g, 196 mmol), W-A1 (30.3 g, 40.0 mmol), C4 (13.9 g, 70.0 mmol), C8 (16.5 g, 50.0 mmol), C5 (7.59 g, 40.0 mmol) was mixed in NMP (455 g) and reacted at 60 ° C. for 15 hours to obtain a polyamic acid solution having a resin solid content concentration of 20 mass%. The viscosity of this polyamic acid solution was measured and found to be 662 mPa · s.
After adding NMP to the obtained polyamic acid solution (100 g) and diluting to 6.5% by mass, acetic anhydride (17.9 g) and pyridine (5.55 g) were added as imidization catalysts, and the mixture was heated at 100 ° C. for 3 hours. Reacted. This reaction solution was put into methanol (1160 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 60 degreeC, and obtained the polyimide powder (15). The imidation ratio of this polyimide was 71.7%, the number average molecular weight was 13,329, and the weight average molecular weight was 40,527.
[合成例16]
 D2(25.0g、100mmol)、C2(21.3g、140mmol)、C10(24.6g、60.0mmol)をNMP(284g)中で溶解し、60℃で3時間反応させたのち、D5(14.3g、40.0mmol)、続いてD1(11.0g、56.0mmol)とNMP(100g)を加え、25℃で10時間反応させポリアミック酸溶液を得た。
 このポリアミック酸溶液(100g)にNMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(21.0g)、およびピリジン(6.52g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(1170ml)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(16)を得た。このポリイミドのイミド化率は75.8%であり、数平均分子量は14679、重量平均分子量は35747であった。
[Synthesis Example 16]
D2 (25.0 g, 100 mmol), C2 (21.3 g, 140 mmol), C10 (24.6 g, 60.0 mmol) were dissolved in NMP (284 g), reacted at 60 ° C. for 3 hours, and then D5 ( 14.3 g, 40.0 mmol) followed by D1 (11.0 g, 56.0 mmol) and NMP (100 g) were added and reacted at 25 ° C. for 10 hours to obtain a polyamic acid solution.
After adding NMP to this polyamic acid solution (100 g) and diluting to 6.5% by mass, acetic anhydride (21.0 g) and pyridine (6.52 g) were added as imidization catalysts, and the mixture was reacted at 80 ° C. for 3 hours. It was. This reaction solution was poured into methanol (1170 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (16). The imidation ratio of this polyimide was 75.8%, the number average molecular weight was 14679, and the weight average molecular weight was 35747.
[合成例17]
 D2(25.0g、100mmol)、C6(50.0g、120mmol)、C9(15.1g、60.0mmol)、W-A1(15.1g、20.0mmol)をNMP(385g)中で溶解し、60℃で3時間反応させたのち、D1(18.8g、96.0mmol)とNMP(75.3g)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、753mPa・sであった。
 このポリアミック酸溶液(100g)にNMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(17.6g)、およびピリジン(5.47g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(1160ml)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末(17)を得た。このポリイミドのイミド化率は71.1%であり、数平均分子量は17635、重量平均分子量は38427であった。
[Synthesis Example 17]
D2 (25.0 g, 100 mmol), C6 (50.0 g, 120 mmol), C9 (15.1 g, 60.0 mmol), W-A1 (15.1 g, 20.0 mmol) were dissolved in NMP (385 g). After reacting at 60 ° C. for 3 hours, D1 (18.8 g, 96.0 mmol) and NMP (75.3 g) were added and reacted at 40 ° C. for 3 hours to obtain a polyamic acid solution having a resin solid content concentration of 20% by mass. Got. The viscosity of this polyamic acid solution was measured and found to be 753 mPa · s.
After adding NMP to this polyamic acid solution (100 g) and diluting to 6.5% by mass, acetic anhydride (17.6 g) and pyridine (5.47 g) were added as imidization catalysts, and the mixture was reacted at 80 ° C. for 3 hours. It was. This reaction solution was poured into methanol (1160 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 60 degreeC, and obtained the polyimide powder (17). The imidation ratio of this polyimide was 71.1%, the number average molecular weight was 17635, and the weight average molecular weight was 38427.
[比較合成例2]
 D2(6.26g,25.0mmol)、A2(12.23g,30.0mmol)、C1(2.16g,20.0mmol)をNMP(76.7g)中で混合し、80℃で5時間反応させた後、D1(4.90g,25.0mmol)を加え、40℃で12時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、338mPa・sであった。
 得られたポリアミド酸溶液(75.0g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(15.0g)及びピリジン(4.6g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(1000ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(R2)を得た。このポリイミドのイミド化率は73.0%であり、数平均分子量は10,175であり、重量平均分子量は23,642であった。
[Comparative Synthesis Example 2]
D2 (6.26 g, 25.0 mmol), A2 (12.23 g, 30.0 mmol) and C1 (2.16 g, 20.0 mmol) were mixed in NMP (76.7 g) and reacted at 80 ° C. for 5 hours. Then, D1 (4.90 g, 25.0 mmol) was added and reacted at 40 ° C. for 12 hours to obtain a polyamic acid solution having a resin solid content concentration of 20 mass%. The viscosity of this polyamic acid solution was measured and found to be 338 mPa · s.
After adding NMP to the obtained polyamic acid solution (75.0 g) and diluting to 6.5% by mass, acetic anhydride (15.0 g) and pyridine (4.6 g) were added as an imidization catalyst at 80 ° C. The reaction was performed for 3 hours. This reaction solution was poured into methanol (1000 ml), and the resulting precipitate was filtered off. This precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide powder (R2). The imidation ratio of this polyimide was 73.0%, the number average molecular weight was 10,175, and the weight average molecular weight was 23,642.
[比較合成例3]
 D2(6.26g,25.0mmol)、A3(7.06g,25.0mmol)、C1(2.70g,25.0mmol)をNMP(62.8g)中で混合し、80℃で5時間反応させた後、D1(4.90g,25.0mmol)を加え、40℃で12時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、446mPa・sであった。
 得られたポリアミド酸溶液(75.0g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(18.3g)及びピリジン(5.7g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(1000ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(R3)を得た。このポリイミドのイミド化率は72.2%であり、数平均分子量は11,636であり、重量平均分子量は24,624であった。
 合成例および比較合成例にて得られたポリイミド粉末の組成を表1にまとめる。
[Comparative Synthesis Example 3]
D2 (6.26 g, 25.0 mmol), A3 (7.06 g, 25.0 mmol) and C1 (2.70 g, 25.0 mmol) were mixed in NMP (62.8 g) and reacted at 80 ° C. for 5 hours. Then, D1 (4.90 g, 25.0 mmol) was added and reacted at 40 ° C. for 12 hours to obtain a polyamic acid solution having a resin solid content concentration of 20 mass%. It was 446 mPa * s when the viscosity of this polyamic-acid solution was measured.
After adding NMP to the obtained polyamic acid solution (75.0 g) and diluting to 6.5% by mass, acetic anhydride (18.3 g) and pyridine (5.7 g) were added as an imidization catalyst at 80 ° C. The reaction was performed for 3 hours. This reaction solution was poured into methanol (1000 ml), and the resulting precipitate was filtered off. This precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide powder (R3). The imidation ratio of this polyimide was 72.2%, the number average molecular weight was 11,636, and the weight average molecular weight was 24,624.
Table 1 summarizes the compositions of the polyimide powders obtained in the synthesis examples and comparative synthesis examples.
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000064
<液晶配向処理剤の調製>
 実施例及び比較例では、液晶配向処理剤の調製例を記載する。実施例及び比較例で得られた液晶配向処理剤を用い、液晶表示素子の作製、及び各種評価を行った。
<Preparation of liquid crystal aligning agent>
In Examples and Comparative Examples, preparation examples of liquid crystal alignment treatment agents are described. Using the liquid-crystal aligning agent obtained by the Example and the comparative example, preparation of a liquid crystal display element and various evaluation were performed.
<実施例1>
 合成例1で得られたポリイミド粉末(1)(3.00g)に、NMP(28.2g)を加え70℃にて24時間撹拌して溶解させた。この溶液に、NMP(g)、BCS(18.8g)を加え、室温で5時間攪拌して、液晶配向処理剤(V-1)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 1>
NMP (28.2 g) was added to the polyimide powder (1) (3.00 g) obtained in Synthesis Example 1, and dissolved by stirring at 70 ° C. for 24 hours. NMP (g) and BCS (18.8 g) were added to this solution, and the mixture was stirred at room temperature for 5 hours to obtain a liquid crystal aligning agent (V-1). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<実施例2>及び<実施例3>
 実施例1において、ポリイミド粉末(1)の代わりにポリイミド粉末(2)及び(3)を用いて、実施例1と同様の手順により、液晶配向処理剤(V-2)及び(V-3)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 2> and <Example 3>
In Example 1, using the polyimide powders (2) and (3) in place of the polyimide powder (1), the liquid crystal aligning agents (V-2) and (V-3) were prepared in the same procedure as in Example 1. Got. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<コントロール1>
 実施例1において、ポリイミド粉末(1)の代わりに、コントロール合成例1で得たポリイミド粉末(4)を用いて、実施例1と同様の手順により、液晶配向処理剤(V-4)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Control 1>
In Example 1, using the polyimide powder (4) obtained in Control Synthesis Example 1 instead of the polyimide powder (1), the liquid crystal aligning agent (V-4) was obtained by the same procedure as in Example 1. It was. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<実施例4>
 実施例1から得られた液晶配向処理剤(V-1)を第一成分として3.0g、コントロール1で得られた液晶配向処理剤(V-4)を第2成分として7.0g混合し、1時間撹拌することにより液晶配向処理剤(V-5)を得た。
<Example 4>
3.0 g of the liquid crystal aligning agent (V-1) obtained from Example 1 was mixed as the first component, and 7.0 g of the liquid crystal aligning agent (V-4) obtained in Control 1 was mixed as the second component. The liquid crystal aligning agent (V-5) was obtained by stirring for 1 hour.
<実施例5>~<実施例6>
 実施例4において、第一成分として液晶配向処理剤(V-1)の代わりに液晶配向処理剤(V-2)又は(V-3)を用いて、実施例4と同様の手順により、それぞれ液晶配向処理剤(V-6)及び(V-7)を得た。
<Example 5> to <Example 6>
In Example 4, using the liquid crystal aligning agent (V-2) or (V-3) instead of the liquid crystal aligning agent (V-1) as the first component, respectively, by the same procedure as in Example 4, respectively. Liquid crystal aligning agents (V-6) and (V-7) were obtained.
<比較例1>
 比較合成例1で得られたポリイミド粉末(R1)(3.00g)に、NMP(28.2g)及びBCS(18.8g)を加え、70℃で24時間攪拌して、液晶配向処理剤(R-V1)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(R-V1)を用いて、液晶表示素子の作製、垂直配向性の評価、プレチルト角の評価、電圧保持率の評価、残像特性の評価を行った。
<Comparative Example 1>
NMP (28.2 g) and BCS (18.8 g) were added to the polyimide powder (R1) (3.00 g) obtained in Comparative Synthesis Example 1, and the mixture was stirred at 70 ° C. for 24 hours to obtain a liquid crystal alignment treatment agent ( R-V1) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (R-V1), production of a liquid crystal display element, evaluation of vertical alignment, evaluation of pretilt angle, evaluation of voltage holding ratio, and evaluation of afterimage characteristics were performed.
<実施例7>
 合成例5で得られたポリイミド粉末(5)(3.00g)に、NMP(22.0g)を加え70℃にて24時間撹拌して溶解させた。この溶液に、E2 (1wt%NMP溶液)3.0g、BCS(20.0g)を加え、室温で5時間攪拌して、液晶配向処理剤(V-8)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることを確認した。
<Example 7>
NMP (22.0 g) was added to the polyimide powder (5) (3.00 g) obtained in Synthesis Example 5, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, 3.0 g of E2 (1 wt% NMP solution) and BCS (20.0 g) were added and stirred at room temperature for 5 hours to obtain a liquid crystal aligning agent (V-8). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormalities such as turbidity and precipitation.
<実施例8~13、15~17、19、20、比較例2~4>
 実施例7と同様の操作で合成例6~11、13~15、17、比較合成例1~3、コントロール合成例1で得られたポリイミド粉末(6)~(11)、(13)~(15)、(17)、(R1~R3)、(4)を用いて液晶配向処理剤(V-9~V-21)、(R-V2~R-V4)を調製した。
<Examples 8 to 13, 15 to 17, 19, 20 and Comparative Examples 2 to 4>
Polyimide powders (6) to (11), (13) to (13) obtained in Synthesis Examples 6 to 11, 13 to 15, and 17 and Comparative Synthesis Examples 1 to 3 and Control Synthesis Example 1 in the same manner as in Example 7. Liquid crystal alignment agents (V-9 to V-21) and (R-V2 to R-V4) were prepared using 15), (17), (R1 to R3), and (4).
<実施例14>
 合成例12で得られたポリイミド粉末(12)(3.00g)に、NEP(22.0g)を加え70℃にて24時間撹拌して溶解させた。この溶液に、NEP(3.0g)、BCS(20.0g)を加え、室温で5時間攪拌して、液晶配向処理剤(V-15)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることを確認した。
<Example 14>
NEP (22.0 g) was added to the polyimide powder (12) (3.00 g) obtained in Synthesis Example 12, and dissolved by stirring at 70 ° C. for 24 hours. NEP (3.0 g) and BCS (20.0 g) were added to this solution, and the mixture was stirred at room temperature for 5 hours to obtain a liquid crystal aligning agent (V-15). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormalities such as turbidity and precipitation.
<実施例18>
 合成例16で得られたポリイミド粉末(16)についても実施例14と同様の操作を行い、液晶配向膜処理剤(V-19)を得た。
<Example 18>
For the polyimide powder (16) obtained in Synthesis Example 16, the same operation as in Example 14 was performed to obtain a liquid crystal alignment film treating agent (V-19).
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000065
<実施例21>
 実施例14から得られた液晶配向処理剤(V-15)を第一成分として3.0g、実施例18で得られた液晶配向処理剤(V-19)を第2成分として7.0g、架橋剤E1を液晶配向膜剤中の樹脂成分に対し5重量%となるように混合し、1時間撹拌することで液晶配向処理剤(W-2)を得た。
<Example 21>
3.0 g of the liquid crystal aligning agent (V-15) obtained from Example 14 as the first component, 7.0 g of the liquid crystal aligning agent (V-19) obtained in Example 18 as the second component, The cross-linking agent E1 was mixed at 5% by weight with respect to the resin component in the liquid crystal alignment film agent, and stirred for 1 hour to obtain a liquid crystal aligning agent (W-2).
<実施例22~24>
 実施例15~20で得られた液晶配向処理剤(V-16)~(V-21)について実施例21と同様の操作で液晶配向処理剤(W-3)~(W-5)を得た。
<Examples 22 to 24>
Liquid crystal alignment agents (W-3) to (W-5) were obtained in the same manner as in Example 21 for the liquid crystal alignment agents (V-16) to (V-21) obtained in Examples 15 to 20. It was.
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000066
 実施例で得られた液晶配向処理剤及び比較例で得られた液晶配向処理剤を用いて、液晶表示素子の作製、垂直配向性の評価、スクラッチ試験、プレチルト角の評価、電圧保持率の評価、残像特性の評価を行った。 Using the liquid crystal aligning agent obtained in the examples and the liquid crystal aligning agent obtained in the comparative example, production of a liquid crystal display element, evaluation of vertical alignment, scratch test, evaluation of pretilt angle, evaluation of voltage holding ratio Afterimage characteristics were evaluated.
<電圧保持率測定用液晶表示素子の作製>
 実施例で得られた液晶配向処理剤及び比較例で得られた液晶配向処理剤を、細孔径1μmのメンブランフィルタで加圧濾過した。得られた溶液を純水及びIPA(イソプロピルアルコール)で洗浄した40mm×30mmのITO電極付きガラス基板(縦:40mm、横:30mm、厚さ:1.1mm)のITO面上にスピンコートし、ホットプレート上にて70℃で90秒間、熱循環型クリーンオーブンにて230℃で30分間の加熱処理をして、膜厚が100nmの液晶配向膜付きのITO基板を得た。得られた液晶配向膜付きのITO基板を2枚用意し、その一方の基板の液晶配向膜面に、直径4μmのビーズスペーサー(日揮触媒化成社製、真絲球、SW-D1)を塗布した。
 次に、シール剤(三井化学製XN-1500T)で周囲を塗布した。次いで、もう一方の基板の液晶配向膜が形成された側の面を内側にして、先の基板と張り合わせた後、シール材を硬化させて空セルを作成した。この空セルに液晶MLC-3023(メルク社製商品名)を減圧注入法によって注入し、液晶セルを作成した。
 その後、得られた液晶セルに15Vの直流電圧を印加した状態で、光源に高圧水銀ランプを使用した紫外線照射装置を用いて、波長365nmのバンドパスフィルターを通した紫外線を15J/cm照射して、垂直配向型液晶表示素子を得た。なお、紫外線照射量の測定にはORC社製UV-M03AにUV-35の受光器を接続し用いた。
<Production of liquid crystal display element for measuring voltage holding ratio>
The liquid crystal aligning agent obtained in the examples and the liquid crystal aligning agent obtained in the comparative example were subjected to pressure filtration with a membrane filter having a pore diameter of 1 μm. The obtained solution was spin-coated on an ITO surface of a 40 mm × 30 mm ITO electrode glass substrate (length: 40 mm, width: 30 mm, thickness: 1.1 mm) washed with pure water and IPA (isopropyl alcohol), Heat treatment was performed on a hot plate at 70 ° C. for 90 seconds and in a heat circulation type clean oven at 230 ° C. for 30 minutes to obtain an ITO substrate with a liquid crystal alignment film having a film thickness of 100 nm. Two obtained ITO substrates with a liquid crystal alignment film were prepared, and bead spacers (manufactured by JGC Catalysts & Chemicals Co., Ltd., true ball, SW-D1) having a diameter of 4 μm were applied to the liquid crystal alignment film surface of one of the substrates.
Next, the periphery was coated with a sealant (XN-1500T manufactured by Mitsui Chemicals). Next, the surface of the other substrate on which the liquid crystal alignment film was formed was faced inward and bonded to the previous substrate, and then the sealing material was cured to create an empty cell. Liquid crystal MLC-3023 (trade name, manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method to prepare a liquid crystal cell.
After that, in the state where a DC voltage of 15 V was applied to the obtained liquid crystal cell, ultraviolet light passing through a band pass filter with a wavelength of 365 nm was irradiated at 15 J / cm 2 using an ultraviolet irradiation device using a high pressure mercury lamp as a light source. Thus, a vertically aligned liquid crystal display element was obtained. The UV irradiation amount was measured by connecting a UV-35 light receiver to UV-M03A manufactured by ORC.
<プレチルト角及び残像評価用液晶表示素子の作製>
 実施例で得られた液晶配向処理剤を、細孔径1μmのメンブランフィルタで加圧濾過した。得られた溶液を純水及びIPA(イソプロピルアルコール)で洗浄した、画素サイズが200μm×600μmでライン/スペースがそれぞれ3μmのITO電極パターンが形成されているITO電極基板(縦:35mm、横:30mm、厚さ:0.7mm)と、高さ3.2μmのフォトスペーサーがパターニングされているITO電極付きガラス基板(縦:35mm、横:30mm、厚さ:0.7mm)のITO面上にそれぞれスピンコートし、ホットプレート上にて70℃で90秒間、熱循環型クリーンオーブンにて230℃で30分間の加熱処理をして、膜厚が100nmの液晶配向膜付きのITO基板を得た。
 なお、このITO電極パターンが形成されているITO電極基板は、クロスチェッカー(市松)模様に4分割されており4つのエリアごとで別々に駆動ができるようになっている。
 次に、シール剤(三井化学製XN-1500T)で周囲を塗布した。次いで、もう一方の基板の液晶配向膜が形成された側の面を内側にして、先の基板と張り合わせた後、シール材を硬化させて空セルを作成した。この空セルに液晶MLC-3023(メルク社製商品名)を減圧注入法によって注入し、液晶セルを作成した。
 その後、得られた液晶セルに15Vの直流電圧を印加し、全ての画素エリアが駆動した状態で、光源に高圧水銀ランプを使用した紫外線照射装置を用いて、波長365nmのバンドパスフィルターを通した紫外線を10J/cm照射して、垂直配向型液晶表示素子を得た。紫外線照射量の測定にはORC社製UV-M03AにUV-35の受光器を接続し用いた。
 更に、実施例1~3、比較例1では、上記の標準条件に加えて、過酷条件として、加熱処理を230℃で120分間として液晶配向膜を形成した以外は、上記と同条件で垂直配向型液晶表示素子を作成した。
<Preparation of liquid crystal display element for pretilt angle and afterimage evaluation>
The liquid crystal aligning agent obtained in the examples was filtered under pressure through a membrane filter having a pore diameter of 1 μm. The obtained solution was washed with pure water and IPA (isopropyl alcohol), and an ITO electrode substrate (vertical: 35 mm, horizontal: 30 mm) on which an ITO electrode pattern having a pixel size of 200 μm × 600 μm and a line / space of 3 μm was formed. , Thickness: 0.7 mm) and on the ITO surface of a glass substrate with ITO electrodes (length: 35 mm, width: 30 mm, thickness: 0.7 mm) on which a photo spacer having a height of 3.2 μm is patterned, respectively. Spin coating was performed, and heat treatment was performed on a hot plate at 70 ° C. for 90 seconds and in a heat circulation type clean oven at 230 ° C. for 30 minutes to obtain an ITO substrate with a liquid crystal alignment film having a film thickness of 100 nm.
The ITO electrode substrate on which the ITO electrode pattern is formed is divided into four in a cross checker (checkered) pattern, and can be driven separately for each of the four areas.
Next, the periphery was coated with a sealant (XN-1500T manufactured by Mitsui Chemicals). Next, the surface of the other substrate on which the liquid crystal alignment film was formed was faced inward and bonded to the previous substrate, and then the sealing material was cured to create an empty cell. Liquid crystal MLC-3023 (trade name, manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method to prepare a liquid crystal cell.
Thereafter, a DC voltage of 15 V was applied to the obtained liquid crystal cell, and all the pixel areas were driven and passed through a band-pass filter having a wavelength of 365 nm using an ultraviolet irradiation device using a high-pressure mercury lamp as a light source. A vertical alignment type liquid crystal display device was obtained by irradiation with ultraviolet rays at 10 J / cm 2 . A UV-35 light receiver was connected to UV-M03A manufactured by ORC for measurement of the amount of ultraviolet irradiation.
Further, in Examples 1 to 3 and Comparative Example 1, in addition to the standard conditions described above, vertical alignment was performed under the same conditions as described above except that the liquid crystal alignment film was formed under severe conditions by heating at 230 ° C. for 120 minutes. Type liquid crystal display element was prepared.
<評価>
(垂直配向性)
 液晶表示素子の液晶配向性は、偏光顕微鏡(ECLIPSE E600WPOL)(ニコン社製)で観察し、液晶が垂直に配向しているかどうかを確認した。具体的には、液晶の流動による不良や配向欠陥による輝点が見られていないものを、良好とした。評価結果を、表2に示す。
<Evaluation>
(Vertical alignment)
The liquid crystal orientation of the liquid crystal display element was observed with a polarizing microscope (ECLIPSE E600WPOL) (manufactured by Nikon Corporation), and it was confirmed whether or not the liquid crystal was vertically aligned. Specifically, those in which no defects due to liquid crystal flow or bright spots due to alignment defects were observed were considered good. The evaluation results are shown in Table 2.
(電圧保持率)
 上記で作製した電圧保持率評価用の液晶表示素子に、1Vの電圧を60マイクロ秒の印加時間、1667ミリ秒の間隔で印加した後、印加解除から1667ミリ秒後の電圧保持率(%)を測定した。測定装置は東陽テクニカ製VHR-1を使用した。評価結果を、表2に示す。
(Voltage holding ratio)
The voltage holding ratio (%) after applying 1V voltage to the liquid crystal display element for evaluating the voltage holding ratio produced above with an application time of 60 microseconds at an interval of 1667 milliseconds and 1667 milliseconds after release of the application. Was measured. The measurement device used was VHR-1 manufactured by Toyo Technica. The evaluation results are shown in Table 2.
(プレチルト角)
 LCDアナライザー(名菱テクニカ社製LCA-LUV42A)を使用して、上記で作製したプレチルト角評価用の液晶表示素子の内、液晶の流動による不良が見られていない液晶表示素子について測定を行った。評価結果を表2に示す。
(Pretilt angle)
Using an LCD analyzer (LCA-LUV42A manufactured by Meiryo Technica Co., Ltd.), among the liquid crystal display elements for pretilt angle evaluation prepared above, liquid crystal display elements in which defects due to liquid crystal flow were not observed were measured. . The evaluation results are shown in Table 2.
(残像特性)
 上記で作製した残像評価用液晶表示素子を用いて、4つの画素エリアのうち対角線の2つのエリアに60Hz、20Vp-pの交流電圧を印加し、23℃の温度下で168時間駆動させた。その後、4つの画素エリアすべてを5Vp-pの交流電圧で駆動させ、画素の輝度差を目視で観察した。輝度差がほぼ確認できない状態を良好とした。評価結果を表3に示す。
(Afterimage characteristics)
Using the afterimage evaluation liquid crystal display element produced above, 60 Hz, 20 Vp-p AC voltage was applied to two diagonal areas of the four pixel areas, and the device was driven at a temperature of 23 ° C. for 168 hours. Thereafter, all four pixel areas were driven with an AC voltage of 5 Vp-p, and the luminance difference of the pixels was visually observed. A state in which almost no difference in luminance was confirmed was considered good. The evaluation results are shown in Table 3.
(スクラッチ試験)
 実施例で得たポリイミド塗膜付き基板の配向膜面に対して、UMT-2(ブルカー・エイエックスエス株式会社製)を用いてスクラッチ試験を行った。
 UMT-2のセンサーにはFVLを選択し、スクラッチ部先端には1.6mmのサファイア球を取り付けた。
 スクラッチ部先端を液晶配向膜表面に荷重1mNで接触させた状態で、横0.5mm、縦2.0mmの範囲を、100秒間かけて1mNから20mNまで荷重を変化させスクラッチ試験をおこなった。この時スクラッチ部先端の移動方向は横への往復とし、移動速度は5.0mm/秒で行った。スクラッチエリアの縦方向への移動は、液晶配向膜付きの基板を縦方向に20μm/秒で移動させ行った。
 スクラッチ試験後、MLC-3022(メルク社製ネガ型液晶)をスクラッチ試験済の液晶配向膜面へ滴下した。そこへ実施例1で得たもう1枚の液晶配向膜付き基板に4μmのスペーサーを散布したものを、互いの液晶配向膜面が向かい合うように重ね合わせ、滴下したMLC-3022を挟み込んだ。
 偏光顕微鏡(ECLIPSE E600WPOL)(ニコン社製)の上下の偏光板の偏光軸が90°(クロスニコル)となるようにした状態で、スクラッチ試験を行った箇所を観察し、光が透過するかを観察した。スクラッチ試験を行った箇所について、輝点や光抜けが全く見られない状態を○、僅かな輝点や光抜けが見られる状態を△、スクラッチした箇所全体が光抜けとなった状態を×として表6に示す。
(Scratch test)
A scratch test was performed on the alignment film surface of the substrate with the polyimide coating film obtained in the example using UMT-2 (Bruker AXS Co., Ltd.).
FVL was selected as the UMT-2 sensor, and a 1.6 mm sapphire sphere was attached to the tip of the scratch part.
A scratch test was conducted by changing the load from 1 mN to 20 mN over 100 seconds in a range of 0.5 mm in width and 2.0 mm in length with the tip of the scratch part in contact with the surface of the liquid crystal alignment film at a load of 1 mN. At this time, the moving direction of the tip of the scratch part was reciprocating to the side, and the moving speed was 5.0 mm / sec. The scratch area was moved in the vertical direction by moving the substrate with the liquid crystal alignment film in the vertical direction at 20 μm / second.
After the scratch test, MLC-3022 (a negative type liquid crystal manufactured by Merck & Co., Inc.) was dropped onto the liquid crystal alignment film surface that had been scratch-tested. Thereto, another substrate with a liquid crystal alignment film obtained in Example 1 and a 4 μm spacer dispersed thereon was superimposed so that the liquid crystal alignment film surfaces face each other, and the dropped MLC-3022 was sandwiched.
In a state where the polarization axis of the upper and lower polarizing plates of the polarizing microscope (ECLIPSE E600WPOL) (made by Nikon Corporation) is set to 90 ° (crossed Nicols), the place where the scratch test was performed is observed, and whether light is transmitted. Observed. Regarding the spot where the scratch test was performed, the state where no bright spot or light omission was observed was indicated as ◯, the state where a slight luminescent spot or light omission was observed was indicated as △, and the state where the entire scratched area was exposed to light was indicated as x. Table 6 shows.
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000069
 上記の結果、具体的には、表4に示す実施例1~3と比較例1との比較からわかるように、本発明の液晶配向処理剤から得られる液晶配向膜を用いた液晶表示素子は、過酷条件においてもプレチルト角に変化はなく、液晶配向性が良好であることがわかった。
 また、表5に示すように液晶配向処理剤(V-4)を混合した実施例4~実施例6では残像特性は良好な結果になることがわかった。
 さらに、本実施例から、特定の側鎖型ジアミンを用いて得られる液晶配向膜は過酷な条件で焼成された場合でもプレチルト角の安定性に優れることがわかった。また、スクラッチ試験のように液晶配向膜へ物理的接触があった場合でも、配向膜へのダメージが少なく良好な垂直配向性を維持できることも確認された。
As a result of the above, specifically, as can be seen from the comparison between Examples 1 to 3 and Comparative Example 1 shown in Table 4, the liquid crystal display element using the liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of the present invention is It was found that the pretilt angle was not changed even under severe conditions, and the liquid crystal orientation was good.
Further, as shown in Table 5, it was found that in Example 4 to Example 6 in which the liquid crystal aligning agent (V-4) was mixed, the afterimage characteristics were satisfactory.
Furthermore, from this example, it was found that the liquid crystal alignment film obtained using a specific side chain diamine was excellent in pretilt angle stability even when baked under severe conditions. It was also confirmed that even when there was physical contact with the liquid crystal alignment film as in the scratch test, good vertical alignment could be maintained with little damage to the alignment film.
 本発明の液晶配向処理剤から得られる液晶配向膜を用いた液晶表示素子は、液晶表示素子に、好適に用いることができる。そして、これらの素子は、表示を目的とする液晶ディスプレイ、さらには、光の透過と遮断を制御する調光窓や光シャッターなどにおいても有用である。 A liquid crystal display element using a liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of the present invention can be suitably used for a liquid crystal display element. These elements are also useful in liquid crystal displays for display purposes, and in light control windows and optical shutters for controlling transmission and blocking of light.

Claims (9)

  1.  下記式[1]で表されるジアミンを含有するジアミン成分と、テトラカルボン酸成分との反応物であるポリイミド前駆体及びそのイミド化物であるポリイミドから選ばれる少なくとも1種の重合体を含有する液晶配向剤:
     式[1]中、Xは、単結合、-O-、-C(CH-、-NH-、-CO-、-(CH-、-SO-、及びそれらの任意の組み合わせからなる2価の有機基を表し、mは1~8の整数を表し、Yはそれぞれ独立して下記式[1-1]の構造を表す;
     式[1-1]中、Y及びYはそれぞれ独立して、単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-CONH-、-NHCO-、-COO-及び-OCO-からなる群から選ばれる少なくとも1種を示す;
     Yは単結合又は-(CH-(bは1~15の整数である)を示す(ただし、Y又はYが単結合、-(CH-である場合、Yは単結合であり、Yが-O-、-CHO-、-CONH-、-NHCO-、-COO-及び-OCO-からなる群から選ばれる少なくとも1種であるか、及び/又はYが-O-、-CHO-、-CONH-、-NHCO-、-COO-及び-OCO-からなる群から選ばれる少なくとも1種である場合、Yは単結合又は-(CH-である(ただし、Yが-CONH-である場合、Y及びY単結合である));
     Yはベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる少なくとも1種の2価の環状基、又はステロイド骨格およびトコフェノール骨格を有する炭素数17~51の2価の有機基を示し、前記環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい;
     Yはベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる少なくとも1種の環状基を示し、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい;
     Yは炭素数1~18のアルキル基、炭素数2~18のアルケニル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシ基及び炭素数1~18のフッ素含有アルコキシ基からなる群から選ばれる少なくとも1種を示す;
     nは0~4の整数を示す。
    Figure JPOXMLDOC01-appb-C000001
    A liquid crystal containing at least one polymer selected from a polyimide precursor which is a reaction product of a diamine component containing a diamine represented by the following formula [1] and a tetracarboxylic acid component and a polyimide which is an imidized product thereof. Alignment agent:
    In the formula [1], X represents a single bond, —O—, —C (CH 3 ) 2 —, —NH—, —CO—, — (CH 2 ) m —, —SO 2 —, and any of them And m represents an integer of 1 to 8, and each Y independently represents a structure of the following formula [1-1];
    In formula [1-1], Y 1 and Y 3 each independently represent a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O— , -CONH-, -NHCO-, -COO-, and -OCO-, at least one selected from the group consisting of;
    Y 2 represents a single bond or — (CH 2 ) b — (b is an integer of 1 to 15) (provided that Y 1 or Y 3 is a single bond, — (CH 2 ) a2 is a single bond, and Y 1 is at least one selected from the group consisting of —O—, —CH 2 O—, —CONH—, —NHCO—, —COO—, and —OCO—, and / or Or when Y 3 is at least one selected from the group consisting of —O—, —CH 2 O—, —CONH—, —NHCO—, —COO— and —OCO—, Y 2 is a single bond or — ( CH 2 ) b — (provided that when Y 1 is —CONH—, they are Y 2 and Y 3 single bonds));
    Y 4 represents at least one divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring, or a divalent organic group having 17 to 51 carbon atoms having a steroid skeleton and a tocophenol skeleton, The optional hydrogen atom on the cyclic group includes an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, and a fluorine-containing alkoxy group having 1 to 3 carbon atoms. Or may be substituted with a fluorine atom;
    Y 5 represents at least one cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring, and a heterocyclic ring, and an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, a carbon number of 1 Substituted with an alkoxy group having 3 to 3, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxy group having 1 to 3 carbon atoms, or a fluorine atom;
    Y 6 represents an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, and a fluorine-containing alkoxy group having 1 to 18 carbon atoms. At least one selected from the group consisting of groups;
    n represents an integer of 0 to 4.
    Figure JPOXMLDOC01-appb-C000001
  2.  前記式[1]で表されるジアミンが、下記式[1’]で表される請求項1に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000002
    The liquid crystal aligning agent of Claim 1 by which the diamine represented by the said Formula [1] is represented by following formula [1 '].
    Figure JPOXMLDOC01-appb-C000002
  3.  前記式[1]で表されるジアミンが、下記式[1]-a1、下記式[1]-a2、又は下記式[1]-a3で表される請求項1又は請求項2に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000003
    The diamine represented by the formula [1] is represented by the following formula [1] -a1, the following formula [1] -a2, or the following formula [1] -a3. Liquid crystal aligning agent.
    Figure JPOXMLDOC01-appb-C000003
  4.  前記式[1]で表されるジアミンが、下記式[1]-a1-1、下記式[1]-a2-1~下記式[1]-a2-4、下記式[1]-a3-1又は下記式[1]-a3-2で表される請求項1~3のいずれか一項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000004
    The diamine represented by the formula [1] is represented by the following formula [1] -a1-1, the following formula [1] -a2-1 to the following formula [1] -a2-4, the following formula [1] -a3- 4. The liquid crystal aligning agent according to claim 1, which is represented by 1 or the following formula [1] -a3-2.
    Figure JPOXMLDOC01-appb-C000004
  5.  前記式[1-1]の構造で表されるYが、下記式[1-1]-1~[1-1]-22(式中、*は、前記式[1]、前記式[1’]、前記式[1]-a1~前記式[1]-a3におけるフェニル基との結合している位置を示す;mは1~15の整数を示し、nは0~18の整数を示す)のいずれかで表される請求項1~4のいずれか一項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000005
    Y represented by the structure of the formula [1-1] is represented by the following formulas [1-1] -1 to [1-1] -22 (wherein * represents the formula [1], the formula [1] '] Represents the position of bonding to the phenyl group in the formula [1] -a1 to the formula [1] -a3; m represents an integer of 1 to 15, and n represents an integer of 0 to 18 The liquid crystal aligning agent according to any one of claims 1 to 4, which is represented by any one of
    Figure JPOXMLDOC01-appb-C000005
  6.  前記ジアミン成分が、下記式[2]で表されるジアミンをさらに含有する
    (式[2]中、A及びAは、それぞれ独立して、水素原子又は、炭素数1~5のアルキル基、炭素数2~5のアルケニル基、又は炭素数2~5のアルキニル基を表す;
     Yは、2価の有機基を表す。)
    請求項1~5のいずれか一項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000006
    The diamine component further contains a diamine represented by the following formula [2] (in the formula [2], A 1 and A 2 are each independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. Represents an alkenyl group having 2 to 5 carbon atoms or an alkynyl group having 2 to 5 carbon atoms;
    Y 1 represents a divalent organic group. )
    The liquid crystal aligning agent according to any one of claims 1 to 5.
    Figure JPOXMLDOC01-appb-C000006
  7.  請求項1~6のいずれか一項に記載の液晶配向剤を用いて形成された液晶配向膜。 A liquid crystal alignment film formed using the liquid crystal aligning agent according to any one of claims 1 to 6.
  8.  請求項1~6のいずれか一項に記載の液晶配向剤を基板上に塗布して塗膜を形成する工程;
     前記塗膜を焼成する工程;及び
     焼成して得られた膜を配向処理する工程;
    を有することにより、液晶配向膜を形成する、液晶配向膜の製造方法。
    Applying the liquid crystal aligning agent according to any one of claims 1 to 6 on a substrate to form a coating film;
    Baking the coating film; and aligning the film obtained by baking;
    A method for producing a liquid crystal alignment film, which comprises forming a liquid crystal alignment film.
  9.  請求項7に記載の液晶配向膜;又は請求項8に記載の製造方法により得られた液晶配向膜;を具備する液晶表示素子。 A liquid crystal display device comprising: a liquid crystal alignment film according to claim 7; or a liquid crystal alignment film obtained by the production method according to claim 8.
PCT/JP2018/007686 2017-03-02 2018-03-01 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element WO2018159733A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202210301600.6A CN114609830B (en) 2017-03-02 2018-03-01 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2019503096A JP7096534B2 (en) 2017-03-02 2018-03-01 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
CN201880028793.4A CN110573952B (en) 2017-03-02 2018-03-01 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
KR1020197027969A KR102588036B1 (en) 2017-03-02 2018-03-01 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
JP2022090434A JP7409431B2 (en) 2017-03-02 2022-06-02 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-039880 2017-03-02
JP2017039880 2017-03-02

Publications (1)

Publication Number Publication Date
WO2018159733A1 true WO2018159733A1 (en) 2018-09-07

Family

ID=63370317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007686 WO2018159733A1 (en) 2017-03-02 2018-03-01 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Country Status (5)

Country Link
JP (2) JP7096534B2 (en)
KR (1) KR102588036B1 (en)
CN (2) CN114609830B (en)
TW (2) TWI767870B (en)
WO (1) WO2018159733A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019026848A (en) * 2017-08-02 2019-02-21 三星電子株式会社Samsung Electronics Co.,Ltd. Monomer, polymer, compensation film, optical film and display device
WO2020105561A1 (en) * 2018-11-19 2020-05-28 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
JPWO2020203110A1 (en) * 2019-03-29 2020-10-08
WO2021261281A1 (en) * 2020-06-26 2021-12-30 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
US11518734B2 (en) 2017-08-02 2022-12-06 Samsung Electronics Co., Ltd. Monomer and polymer, compensation film, optical film, and display device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020121979A1 (en) * 2018-12-10 2020-06-18 日産化学株式会社 Liquid-crystal alignment agent, liquid-crystal alignment film, and liquid-crystal display element
WO2021177080A1 (en) * 2020-03-06 2021-09-10 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR20230002334A (en) * 2020-04-10 2023-01-05 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
CN116234857B (en) * 2020-07-17 2024-04-26 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
CN114545668B (en) * 2022-02-23 2024-04-23 深圳市尊绅投资有限公司 Screen impurity processing method, device and system and electronic equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11322927A (en) * 1998-05-11 1999-11-26 Mitsui Toatsu Chem Inc Polyamic acid copolymer and polyimide copolymer, and heat resistant adhesive
WO2003034102A2 (en) * 2001-10-16 2003-04-24 Lightwave Microsystems Corporation Waveplate and optical circuit formed from mesogen-containing polymer

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3117152A1 (en) * 1981-04-30 1982-11-18 Merck Patent Gmbh, 6100 Darmstadt "FLUORINE 4,4'-BIS (CYCLOHEXYL) BIPHENYL DERIVATIVES, THESE DIELECTRICS AND ELECTRO-OPTICAL DISPLAY ELEMENT"
JP4175826B2 (en) 2002-04-16 2008-11-05 シャープ株式会社 Liquid crystal display
JP5109371B2 (en) 2004-12-28 2012-12-26 日産化学工業株式会社 Liquid crystal aligning agent for vertical alignment, liquid crystal alignment film, and liquid crystal display device using the same
JP4788896B2 (en) * 2006-02-22 2011-10-05 Jsr株式会社 Vertical alignment type liquid crystal aligning agent and vertical alignment type liquid crystal display element
JP2010101999A (en) * 2008-10-22 2010-05-06 Chisso Corp Liquid crystal alignment layer, liquid crystal aligning agent, and liquid crystal display element
JP2013011755A (en) * 2011-06-29 2013-01-17 Sony Corp Liquid crystal display and method of manufacturing the same
KR102000316B1 (en) * 2011-11-30 2019-07-15 닛산 가가쿠 가부시키가이샤 Liquid crystal alignment film, method for producing liquid crystal alignment film, and liquid crystal display element
KR102234876B1 (en) * 2013-09-03 2021-03-31 닛산 가가쿠 가부시키가이샤 Liquid-crystal orientation treatment agent, liquid-crystal orientation film, and liquid-crystal display element
US9976086B2 (en) * 2013-10-23 2018-05-22 Nissan Chemical Industries, Ltd. Liquid crystal aligning agent containing polyimide precursor having thermally-leaving group and/or polyimide
KR102609036B1 (en) * 2015-03-04 2023-12-01 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
TWI773689B (en) * 2016-09-29 2022-08-11 日商日產化學工業股份有限公司 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11322927A (en) * 1998-05-11 1999-11-26 Mitsui Toatsu Chem Inc Polyamic acid copolymer and polyimide copolymer, and heat resistant adhesive
WO2003034102A2 (en) * 2001-10-16 2003-04-24 Lightwave Microsystems Corporation Waveplate and optical circuit formed from mesogen-containing polymer

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11518734B2 (en) 2017-08-02 2022-12-06 Samsung Electronics Co., Ltd. Monomer and polymer, compensation film, optical film, and display device
US12037304B2 (en) 2017-08-02 2024-07-16 Samsung Electronics Co., Ltd. Monomer and polymer, compensation film, optical film, and display device
JP2019026848A (en) * 2017-08-02 2019-02-21 三星電子株式会社Samsung Electronics Co.,Ltd. Monomer, polymer, compensation film, optical film and display device
JP7187203B2 (en) 2017-08-02 2022-12-12 三星電子株式会社 Monomers, polymers, compensation films, optical films and display devices
JP7414006B2 (en) 2018-11-19 2024-01-16 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN113168052A (en) * 2018-11-19 2021-07-23 日产化学株式会社 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
JPWO2020105561A1 (en) * 2018-11-19 2021-10-07 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR20210092194A (en) * 2018-11-19 2021-07-23 닛산 가가쿠 가부시키가이샤 A liquid crystal aligning agent, a liquid crystal aligning film, and a liquid crystal display element
TWI816939B (en) * 2018-11-19 2023-10-01 日商日產化學股份有限公司 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2020105561A1 (en) * 2018-11-19 2020-05-28 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
KR102775262B1 (en) 2018-11-19 2025-02-28 닛산 가가쿠 가부시키가이샤 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN113711117A (en) * 2019-03-29 2021-11-26 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, and diamine
WO2020203110A1 (en) * 2019-03-29 2020-10-08 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, and diamine
JPWO2020203110A1 (en) * 2019-03-29 2020-10-08
JP7428177B2 (en) 2019-03-29 2024-02-06 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element and diamine
WO2021261281A1 (en) * 2020-06-26 2021-12-30 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP7622744B2 (en) 2020-06-26 2025-01-28 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Also Published As

Publication number Publication date
CN114609830A (en) 2022-06-10
JP7096534B2 (en) 2022-07-06
KR20190125992A (en) 2019-11-07
JPWO2018159733A1 (en) 2019-12-26
CN114609830B (en) 2025-02-21
CN110573952A (en) 2019-12-13
TW201842172A (en) 2018-12-01
KR102588036B1 (en) 2023-10-11
JP2022113743A (en) 2022-08-04
TWI767870B (en) 2022-06-11
TW202214749A (en) 2022-04-16
TWI752177B (en) 2022-01-11
JP7409431B2 (en) 2024-01-09
CN110573952B (en) 2022-03-22

Similar Documents

Publication Publication Date Title
JP7409431B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
TW201534656A (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2015060363A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP7093059B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using it
TW201700538A (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP6795074B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP7428145B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same
JP7348597B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
CN114466882B (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, polymer, and diamine
JP7409375B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same
TWI865340B (en) Liquid crystal alignment agent for photo-alignment, liquid crystal alignment film and liquid crystal display element
JP7302744B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP7315106B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP7161147B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element using the same, and method for producing the liquid crystal alignment film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761330

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019503096

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197027969

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18761330

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载