WO2018159794A1 - 無線基地局 - Google Patents
無線基地局 Download PDFInfo
- Publication number
- WO2018159794A1 WO2018159794A1 PCT/JP2018/007925 JP2018007925W WO2018159794A1 WO 2018159794 A1 WO2018159794 A1 WO 2018159794A1 JP 2018007925 W JP2018007925 W JP 2018007925W WO 2018159794 A1 WO2018159794 A1 WO 2018159794A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transmission power
- power control
- base station
- transmission
- radio base
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 175
- 238000004891 communication Methods 0.000 claims abstract description 74
- 238000010586 diagram Methods 0.000 description 29
- 238000000034 method Methods 0.000 description 10
- 230000008859 change Effects 0.000 description 9
- 238000005259 measurement Methods 0.000 description 8
- 238000000926 separation method Methods 0.000 description 8
- 230000008054 signal transmission Effects 0.000 description 7
- 230000011664 signaling Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/04—Transmission power control [TPC]
- H04W52/06—TPC algorithms
- H04W52/10—Open loop power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/04—Transmission power control [TPC]
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/54—Allocation or scheduling criteria for wireless resources based on quality criteria
Definitions
- the present invention relates to a radio base station that controls transmission power of a user apparatus.
- LTE including LTE-Advanced LTE-Advanced
- LTE Long Term Evolution
- 5G 5th generation mobile mobile communication systems
- LTE Long Term Evolution
- eNB radio base station
- UE user apparatus
- PUSCH Physical-Uplink-Shared-Channel
- UEs that perform communication in the sky with good visibility in all directions rather than on the ground, such as UEs installed in drones.
- Such a specific UE has a good line of sight, so the downlink path loss is small.
- the specific UE is highly likely to perform communication at a position where a plurality of cells with a small path loss can be detected. That is, since the specific UE has a good line of sight, the signal level received from the specific UE by a non-existing cell in which the specific UE is not located may be very high.
- Target SIR Target SIR
- the specific UEs when a plurality of specific UEs are connected to different neighboring cells, the specific UEs continuously increase the transmission power until the target reception quality is satisfied, and thus there is a possibility of causing large interference with each other. Moreover, such a state gives interference also to other UEs connected to the cell.
- An object of the present invention is to provide a radio base station that can reduce interference.
- the radio base station controls the transmission power of the physical uplink channel transmitted by the user apparatus.
- the radio base station receives at least one of an interference level in a plurality of cells formed in the vicinity of the own cell to which the user apparatus is connected or a reception communication quality in the user apparatus in the plurality of cells.
- An acquisition unit; and a power control unit that limits the transmission power when the interference level or the reception communication quality in the plurality of cells acquired by the reception state acquisition unit is within a predetermined range.
- FIG. 1 is an overall schematic configuration diagram of a wireless communication system 10.
- FIG. 2 is a functional block configuration diagram of the eNB 100A.
- FIG. 3 is a functional block configuration diagram of UE 200B.
- FIG. 4A is an explanatory diagram of interference caused by air communication.
- FIG. 4B is an explanatory diagram of interference caused by air communication.
- FIG. 4C is an explanatory diagram of interference caused by air communication.
- FIG. 5A is a diagram illustrating a relationship between path loss (horizontal axis), Target SIR, number of allocated radio resource blocks (number of allocated RBs), and PUSCH transmission power (vertical axis).
- FIG. 5B is a diagram illustrating a relationship between path loss (horizontal axis), Target SIR, number of allocated radio resource blocks (number of allocated RBs), and PUSCH transmission power (vertical axis).
- FIG. 6A is an explanatory diagram of an example of radio resource block allocation to the UE 200B.
- FIG. 6B is an explanatory diagram of an example of radio resource block allocation to the UE 200B.
- FIG. 7 is a diagram illustrating the relationship between the maximum transmission power and the PHR.
- FIG. 8A is a diagram showing a relationship between path loss (horizontal axis) and PHR / ProhibithibiTimer value (vertical axis).
- FIG. 8B is a diagram illustrating a relationship between a path loss (horizontal axis) and a PHR / Prohibit Timer value (vertical axis).
- FIG. 9 is a diagram illustrating an example of separation of radio resource block areas.
- FIG. 10 is a diagram illustrating an uplink (PUSCH) transmission power control flow by the eNB 100A.
- FIG. 11 is a diagram illustrating a specific UE identification operation flow (operation example 1).
- FIG. 12 is a diagram illustrating a specific UE identification operation flow (operation example 2).
- FIG. 13 is a diagram illustrating a specific UE identification operation flow (operation example 3).
- FIG. 14 is a diagram illustrating an example of a hardware configuration of the eNB 100A, the bag 100B, and the UEs 200A to 200C.
- FIG. 1 is an overall schematic configuration diagram of a radio communication system 10 according to the present embodiment.
- the radio communication system 10 is a radio communication system according to Long Term Evolution (LTE).
- LTE Long Term Evolution
- the radio communication system 10 includes a radio access network 20, radio base stations 100A, 100B (hereinafter, eNB100A, ⁇ ⁇ 100B) and user devices 200A to 200C (hereinafter, UEs 200A to 200C).
- a radio access network 20 radio base stations 100A, 100B (hereinafter, eNB100A, ⁇ ⁇ 100B) and user devices 200A to 200C (hereinafter, UEs 200A to 200C).
- the wireless access network 20 is an Evolved Universal Terrestrial Radio Access Network (E-UTRAN) defined in 3GPP.
- E-UTRAN Evolved Universal Terrestrial Radio Access Network
- the radio communication system 10 is not necessarily limited to LTE (E-UTRAN).
- the radio access network 20 may be a radio access network defined as 5G.
- ENB100A, 100B and UE200A-200C execute wireless communication according to LTE specifications.
- eNB100A forms cell C1
- eNB100B forms cell C2.
- ENB100A and eNB100B control the transmission power of the physical uplink channel transmitted by UEs 200A to 200C. Specifically, eNB100A and eNB100B control the transmission power of a physical uplink shared channel (PUSCH).
- PUSCH physical uplink shared channel
- UE 200A is a normal UE, and performs radio communication with eNB 100A and eNB 100B on the ground or the like.
- UE200B and UE200C are mounted on a small unmanned flying object such as a drone, and perform radio communication with eNB100A and eNB100B not only on the ground but also above cells C1 and C2 (for example, at an altitude of 30 m or more).
- UE200B and UE200C comprise a specific user apparatus (specific UE).
- FIG. 2 is a functional block configuration diagram of the eNB 100A.
- the eNB 100A includes a radio signal transmission / reception unit 110, a reception state acquisition unit 120, a device identification unit 130, and a power control unit 140.
- the eNB 100B has the same configuration as the eNB 100A.
- the radio signal transmission / reception unit 110 transmits / receives a radio signal to / from the UE 200B (the same applies to other UEs). Specifically, the radio signal transmission / reception unit 110 transmits / receives various physical channels (control channel and shared channel) in accordance with LTE regulations.
- the reception state acquisition unit 120 acquires the reception state of the UE 200B. Specifically, the reception state acquisition unit 120 can acquire interference levels in a plurality of cells (cells C1, C2) including the own cell (for example, the cell C1) to which the UE 200B is connected.
- the reception state acquisition unit 120 acquires interference levels in the own cell to which the UE 200B is connected (that is, the cell C1) and the neighboring cell (cell C2) formed in the vicinity of the own cell. To do. Note that the reception state acquisition unit 120 may acquire the interference power itself as the interference level, or perform interference using a ratio such as the signal level of the received signal from the SIR (Signal-to-Interference-Ratio) UE 200B set in the UE 200B. Electric power may be acquired.
- SIR Signal-to-Interference-Ratio
- the reception state acquisition unit 120 can acquire the received communication quality at the UE 200B in the plurality of cells. Specifically, the reception state acquisition unit 120 acquires a downlink path loss as the received communication quality in the own cell and neighboring cells to which the UE 200B is connected. Note that the reception state acquisition unit 120 may acquire RSRP (Reference Signal Received Power) that can be a determination index similar to the path loss.
- RSRP Reference Signal Received Power
- the device identification unit 130 identifies the type of the UE 200B. Specifically, the device identification unit 130 identifies whether or not the user device (UE) that performs wireless communication with the eNB 100A is a specific user device (specific UE) that can perform communication over the plurality of cells. .
- the device identification unit 130 identifies (i) identification using UE's IMEISV (International Mobile Equipment Identification Software Version) or contract type information, and (ii) separation by connection APN (Access Point Name). And (iii) Identification based on a measurement report from the UE can be performed. A specific identification procedure will be described later.
- the power control unit 140 controls uplink transmission power transmitted by the UE 200B.
- the power control unit 140 controls the transmission power of the physical uplink shared channel (PUSCH) transmitted by the UE 200B.
- PUSCH physical uplink shared channel
- the power control unit 140 when the interference level or the reception communication quality in the plurality of cells acquired by the reception state acquisition unit 120 is within a predetermined range (that is, when the possibility of being a specific UE is high) Limit transmit power.
- power control section 140 limits the PUSCH transmission power to a predetermined value or less. For example, when the interference level of the cell C2 is ⁇ 85 dBm and the predetermined range is set to ⁇ 90 dBm, the power control unit 140 limits the transmission power of the PUSCH to a predetermined value or less. Similarly, when the quality (path loss) is within a predetermined range (for example, a ydB range), the transmission power of the PUSCH is limited to a predetermined value or less.
- a predetermined range for example, a ydB range
- the power control unit 140 can limit the transmission power of the PUSCH to a predetermined value or less by the following method.
- the power control unit 140 limits the transmission power by setting the target reception quality (Target SIR) set for the UE 200B to a predetermined threshold value or less. Moreover, the power control unit 140 limits the transmission power by setting the number of radio resource blocks (number of RBs) allocated to the UE 200B to be equal to or less than a predetermined threshold.
- Target SIR target reception quality
- number of radio resource blocks number of radio resource blocks allocated to the UE 200B
- the power control unit 140 limits the transmission power by suppressing transmission of a transmission power control command (TPC command) that instructs the UE 200B to increase the transmission power.
- TPC command transmission power control command
- the power control unit 140 limits the transmission power by setting a lower predetermined threshold as the above-described interference level (interference power) is higher. Similarly, the power control unit 140 limits the transmission power by setting a lower predetermined threshold value as the above-described received communication quality is better, specifically, as the path loss is smaller. Thereby, when the interference level is high or the path loss is small, the transmission power of the PUSCH can be kept lower.
- the power control unit 140 can calculate the value of the limited transmission power based on the received communication quality (path loss), and can set the number of RBs equal to or less than a predetermined threshold according to the calculated transmission power. Specifically, power control section 140 sets the number of RBs corresponding to the transmission power calculated using the PUSCH transmission power calculation formula. A specific method for determining the number of RBs will be described later.
- the power control unit 140 can use, as the above-described “predetermined threshold”, a predetermined threshold that is a predetermined fixed value or a predetermined threshold acquired from the outside via the wireless access network 20.
- the power control unit 140 instructs the increase in the transmission power so that the surplus power with respect to the maximum transmission power of the uplink recognized by the UE 200B, specifically, PHR (Power Head Room) does not fall below the lower limit value. Suppresses command transmission. Further, when the PUSCH transmission power exceeds the upper limit value, the power control unit 140 suppresses transmission of a TPC command instructing an increase in transmission power.
- PHR Power Head Room
- the power control unit 140 suppresses substantial transmission of the TPC command by extending the transmission interval of the TPC command. Specifically, the power control unit 140 uses the TPC command “ProhibitTimer” to suppress transmission of the TPC command until the “Prohibit Timer” expires. A more specific method for suppressing transmission of the TPC command will be described later.
- the power control unit 140 can limit the transmission power of the PUSCH when the UE 200B is identified as the specific UE by the device identification unit 130. Specifically, when UE 200B is identified as a specific UE, power control section 140 limits the transmission power of PUSCH by any of the methods described above.
- the power control unit 140 determines the area of the radio resource block allocated to the UE 200B (specific UE) as another user. It can isolate
- the power control unit 140 secures a radio resource block to which only a specific UE is allocated among radio resource blocks (frequency, time, etc.) that can be allocated to the UEs 200A to 200C.
- radio resource blocks frequency, time, etc.
- FIG. 3 is a functional block configuration diagram of UE 200B.
- the UE 200B includes a radio signal transmission / reception unit 210, a control signal reception unit 220, and a transmission power setting unit 230.
- UE 200C has the same configuration as UE 200B.
- UE200A also has a difference whether it is mounted in a drone, it has the structure substantially the same as UE200B.
- the radio signal transmission / reception unit 210 transmits / receives radio signals to / from the eNB 100A and the eNB 100B. Specifically, the radio signal transmitting / receiving unit 210 transmits / receives various physical channels (control channel and shared channel) in accordance with LTE regulations.
- the control signal receiving unit 220 receives a control signal transmitted from the eNB100A (or eNB100B, hereinafter the same). In particular, in the present embodiment, the control signal receiving unit 220 receives a control signal related to transmission power control of the UE 200B.
- the transmission power setting unit 230 sets uplink transmission power based on a control signal related to transmission power control received by the control signal receiving unit 220. Specifically, the transmission power setting unit 230 sets various physical uplink channels (PUSCH, PUCCH, etc.) based on the control signal received by the control signal receiving unit 220 and sets the transmission power of the channel. To do.
- PUSCH physical uplink channels
- PUCCH Physical Uplink Channel
- Radio Communication System 10 Next, the operation of the radio communication system 10 will be described. Specifically, an operation when UE 200B and UE 200C mounted on the drone perform communication via cell C1 and cell C2 will be described. More specifically, an operation related to uplink (PUSCH) transmission power control for UE 200B and UE 200C will be described.
- PUSCH uplink
- 4A, 4B, and 4C are explanatory diagrams of interference caused by over-the-air communication. As shown in FIG. 4A, since UE 200B flies over the sky, the prospect of connection with eNB 100A (solid arrow) is good, but the prospect of adjacent eNB 100B (dotted arrow) is also good.
- both the downlink path loss from the eNB 100A and the downlink path loss from the eNB 100B are reduced.
- a high Target ⁇ SIR is set to improve throughput.
- the UE 200B becomes a high interference source for the eNB 100B (cell C2: see FIG. 1) and further other UEs located in the connection destination cell C1.
- the downlink path loss from the connected eNB 100A when the downlink path loss from the connected eNB 100A is small, the distance from the neighboring cell, that is, the eNB 100B is increased. Or there is a shielding object, the downlink path loss from the eNB 100B increases.
- each specific UE when a plurality of specific UEs (UE 200B and UE 200C) are connected to different neighboring cells, each specific UE continues to increase its transmission power until it satisfies Target SIR. There is a possibility of giving a big interference to each other.
- 4B and 4C show a state in which UE 200B is connected to eNB 100A (solid arrow) and UE 200C is connected to eNB 100B (solid arrow).
- Such a state also gives interference to other UEs (UE 200A) connected to the cell.
- the eNB 100A limits the target reception quality (Target SIR), that is, sets radio frequency resources below a predetermined threshold value, and executes scheduling of radio resources.
- Target SIR target reception quality
- the eNB 100A sets the Target SIR for the UE 200B (the same applies to the UE 200C).
- Target SIR is changed according to the downlink path loss in UE 200B.
- the eNB 100A measures the interference level (interference power) in its own cell and exchanges information on the interference level between neighboring cells. Note that the eNB 100A may change Target SIR according to the interference level of the neighboring cell.
- ENB100A sets a high Target SIR when the interference level of neighboring cells is low. On the other hand, when the interference level is high, the eNB 100A sets a low Target SIR.
- Target SIR may be changed according to path loss (received communication quality). That is, when UE 200B is located on the ground, the path loss increases, so Target SIR is increased. That is, in such a case, there is no need to provide PUSCH transmission power restriction).
- the eNB 100A may associate the path loss with the Target SIR. For example, AdB if path loss (dB) ⁇ X1, and BdB if X1 ⁇ path loss ⁇ X2.
- the eNB 100A may define Target SIR as (A * path loss + B, A and B are variables), and set A and B according to the situation or the like.
- FIGS. 5A and 5B are diagrams showing the relationship between path loss (horizontal axis), Target SIR, number of allocated radio resource blocks (number of allocated RBs), and PUSCH transmission power (vertical axis).
- the relationship between the path loss and the Target SIR may change stepwise (FIG. 5A) or may change continuously (FIG. 5B).
- the eNB 100A limits the maximum number of radio resource blocks (number of RBs) allocated to the UE 200B, that is, sets the radio resource block to a predetermined threshold value or less to schedule radio resources. Execute.
- the eNB 100A when performing scheduling of radio resources for the UE 200B, the eNB 100A allocates radio resource blocks equal to or less than the maximum number of allocated RBs. Also for the PUSCH, when the number of allocated RBs is increased, the transmission power increases. However, in this embodiment, the PUSCH transmission power is limited by providing an upper limit value for the number of RBs allocated in units of subframes.
- ENB100A sets a high maximum number of allocated RBs when the interference level of neighboring cells is low. On the other hand, when the interference level is high, eNB 100A sets a low maximum allocation RB number. Note that the eNB 100A may change the maximum number of RBs allocated according to the interference level of neighboring cells.
- FIGS. 6A and 6B are explanatory diagrams of examples of radio resource block allocation to the UE 200B.
- the eNB 100A notifies the UE 200B that 10 RBs (usually 100 RBs) are allocated per subframe using ULGrant.
- UE 200B transmits PUSCH using the notified 10RB. Since there are few radio resource blocks to be used, the transmission power is reduced as a result.
- the maximum number of allocated RBs may be changed according to path loss (received communication quality). That is, when UE 200B is located on the ground, the path loss increases, so the maximum number of allocated RBs is increased. That is, in such a case, there is no need to provide PUSCH transmission power restriction).
- the eNB 100A may associate the path loss with the maximum number of allocated RBs. For example, A (RB) if path loss (dB) ⁇ X1, B (RB) if X1 ⁇ path loss ⁇ X2, and so on.
- the eNB 100A may define the maximum number of allocated RBs as (A * path loss + B, A and B are variables), and set A and B according to the situation or the like.
- the relationship between the path loss and the number of allocated radio resource blocks is as shown in FIGS. 5A and 5B.
- the eNB 100A may determine the maximum number of allocated RBs using a predetermined transmission power as an input value. Specifically, eNB100A calculates the value of the transmission power after a restriction
- the following formulas are defined in 3GPP TS36.213 5.1.1.
- the eNB100A recognizes the number of allocated RBs (M PUSCH ), transmission power offset (P O_PUSCH ), transmission power coefficient ( ⁇ ) according to path loss, path loss (PL), and accumulated value (f (i)) of TPC commands. Therefore, PUSCH transmission power (P PUSCH ) can be estimated (calculated). Therefore, the eNB 100A can determine the number of allocated RBs (M PUSCH ) so that the calculated transmission power of the PUSCH is obtained.
- the eNB 100A suppresses transmission of the transmission power control command (TPC command), but specifically, executes the following three controls. That is, (i) the transmission of the increase instruction (plus) is suppressed with reference to the surplus power (PHR) with respect to the maximum transmission power of the uplink, and (ii) the increase instruction (plus) with reference to the uplink transmission power. ) TPC command transmission is suppressed, and (iii) TPC command transmission interval is extended using a Prohibit Timer. More specific description will be given below.
- PHR standard eNB100A suppresses transmission of a TPC command so that PHR (Power Head Room) may not become below a lower limit.
- FIG. 7 shows the relationship between maximum transmission power and PHR.
- PHR is the difference between the maximum uplink transmission power and the transmission power of the current uplink (specifically PUSCH) of the UE. If PHR is small, it means that transmission is performed with high transmission power.
- ENB100A suppresses transmission of a positive TPC command when PHR is likely to be less than a predetermined lower limit. That is, a negative (decrease instruction) TPC command may be transmitted.
- ENB 100A sets a lower lower limit value of PHR that suppresses transmission of a positive TPC command when the interference level of a neighboring cell is low.
- eNB 100A sets the lower limit value of PHR to be large. Note that the eNB 100A may change the PHR according to the interference level of neighboring cells.
- the lower limit value of PHR may be changed according to path loss (received communication quality) in consideration of the case where UE 200B performs communication on the ground. That is, when UE 200B is located on the ground, the path loss increases, so the lower limit value of PHR is reduced. That is, in such a case, there is no need to provide PUSCH transmission power restriction).
- eNB100A determines the value (PH) of PHR using the following numerical formula.
- the following formulas are defined in 3GPP TS36.213 5.1.2.
- P CMAX is the maximum transmission power of the UE, and the part enclosed in ⁇ is the current transmission power of the UE.
- ENB100A may associate the path loss with the lower limit value of PHR. For example, AdB if path loss (dB) ⁇ X1, and BdB if X1 ⁇ path loss ⁇ X2.
- the eNB 100A may define PHR as (A * path loss + B, A and B are variables), and set A and B according to the situation or the like.
- FIGS. 8A and 8B are diagrams showing the relationship between the path loss (horizontal axis) and the PHR / Prohibit ⁇ Timer value (vertical axis).
- the relationship between the path loss and the lower limit value of PHR may change stepwise (FIG. 8A) or may change continuously (FIG. 8B).
- the eNB 100A suppresses transmission of a TPC command when the uplink (PUSCH) transmission power exceeds the upper limit.
- a plus or minus command is transmitted so as to eliminate the difference between the required target power of the UE 200B and the current received power. For example, when the required target power is 10 dBm and the current reception quality (reception power) is 7 dBm, a TPC command for +3 dB is transmitted. Thereby, the transmission power of UE 200B increases.
- the eNB 100A when the transmission power of the PUSCH by the UE 200B exceeds the upper limit value, the eNB 100A stops transmitting a positive TPC command even if the reception quality does not reach the required target power.
- ENB100A sets a high upper limit value when the interference level of neighboring cells is low. On the other hand, when the interference level is high, eNB 100A sets a low upper limit value. In addition, eNB100A may change an upper limit according to the interference level of a neighboring cell.
- the upper limit value may be changed according to the path loss (received communication quality) in consideration of the case where the UE 200B performs communication on the ground. That is, when UE 200B is located on the ground, the path loss increases, so the upper limit value is increased. That is, in such a case, there is no need to provide PUSCH transmission power restriction).
- the eNB 100A may associate the path loss with the upper limit value of transmission power. For example, if the path loss (dB) ⁇ X1, AdBm, and if X1 ⁇ path loss ⁇ X2, BdBm or the like.
- the eNB 100A may define the upper limit value as (A * path loss + B, A and B are variables), and set A and B according to the situation or the like.
- the eNB 100A extends the TPC command transmission interval using the Prohibit Timer that measures the period during which TPC command transmission is prohibited.
- ENB100A recognizes the transmission timing of the TPC command transmitted to UE200B.
- eNB100A starts the Prohibit Timer in response to the transmission of the TPC command, and allows the transmission of the TPC command when the predetermined time has elapsed since the most recent TPC command transmission, that is, when the Prohibit Timer has expired. To do.
- the eNB 100A does not allow the transmission of the TPC command even when a positive TPC command transmission is required.
- PUSCH transmission increases rapidly. In this embodiment, such a rapid increase in transmission power is prevented.
- ENB100A sets short Prohibit Timer when the interference level of neighboring cells is low. On the other hand, when the interference level is high, the eNB 100A sets a long Prohibit Timer. Note that the eNB 100A may change the setting time of the Prohibit Timer (Prohibit Timer value) according to the interference level of the neighboring cell.
- the setting time of the Prohibit Timer may be changed according to the path loss (received communication quality). That is, when UE 200B is located on the ground, the path loss increases, so the Prohibit Timer value is shortened. That is, in such a case, there is no need to provide PUSCH transmission power restriction).
- ENB100A may associate the path loss with the Prohibit Timer value. For example, Ams if the path loss (dB) ⁇ X1, Bms if X1 ⁇ Path loss ⁇ X2.
- the eNB 100A may define the Prohibit Timer value as (A * path loss + B, A and B are variables), and set A and B according to the situation or the like.
- the relationship between the path loss and the Prohibit Timer value is as shown in FIGS. 8A and 8B.
- the eNB 100A assigns the radio resource block area allocated to the UE 200B, that is, the specific UE to another user apparatus, that is, a normal UE (UE 200A).
- the radio resource block is separated from the allocated radio resource block area, and radio resource scheduling is executed.
- separates beforehand the radio
- FIG. 9 shows an example of separation of radio resource block areas. As illustrated in FIG. 9, the entire RB area (for example, 100 RBs) is separated into an RB area A1 assigned to a normal UE and an RB area A2 assigned to a specific UE.
- the separation position between the RB area A1 and the RB area A2 may be fixed or variable.
- the RB area A2 may be changed according to the ratio of the number of specific UEs to the number of UEs connected (waiting) to the eNB 100A.
- eNB100A may determine the size of RB area
- (alpha) is UE ratio coefficient and can set arbitrary values.
- eNB100A may isolate
- the eNB 100A assigns RBs in the RB area A1 to normal UEs and assigns RBs in the RB area A2 to specific UEs.
- FIG. 10 shows an uplink (PUSCH) transmission power control flow by the eNB 100A.
- the eNB 100A acquires the interference level (interference power) in each cell (own cell and neighboring cells) or the received communication quality (path loss) at the UE 200B in the plurality of cells (S10).
- ENB 100A determines whether the interference level or the received communication quality in the plurality of cells is within a predetermined range (S20). Specifically, as described above, the eNB 100A determines that the interference level of the plurality of cells is within a predetermined range (for example, a range of xdBm), or the path loss of the plurality of cells is a predetermined range (for example, a range of ydB). ).
- the eNB 100A calculates a PUSCH transmission power limit value (S30).
- the specific transmission power limit value is determined by any of the methods described above.
- the transmission power value and the limit value may be values acquired from the outside via the radio access network 20.
- ENB100A instructs UE200B on the determined transmission power (S40). Specifically, a parameter for determining PUSCH transmission power is notified by broadcast information. In the case of a TPC command, UL Grant is used as described above.
- the eNB 100A is based on (i) identification using UE's IMEISV (International Mobile Equipment Identity Software Version) or contract type information, and (ii) separation of connection destination APN (Access Point Name). Identification and (iii) identification based on a measurement report from the UE can be performed.
- IMEISV International Mobile Equipment Identity Software Version
- APN Access Point Name
- FIG. 11 shows a specific UE identification operation flow (operation example 1).
- the eNB 100A acquires IMEISV or contract type information (S110). Based on IMEISV or contract type information, the type of UE (whether it is a UE installed in a drone or not) can be identified.
- the eNB 100A determines whether or not the transmission power control target UE is a specific UE based on the acquired IMEISV or contract type information (S120).
- the eNB 100A controls the transmission power of the PUSCH as the specific UE (S130).
- FIG. 12 shows a specific UE identification operation flow (operation example 2). Hereinafter, parts different from the operation example 1 will be mainly described.
- the eNB 100A separates the network to which the UE is connected, specifically, the APN (Access Point Name) according to the type of the UE (S210). That is, the specific UE is separated into an APN associated with the specific UE. Thereby, the classification of UE (whether it is UE mounted in the drone etc.) can be identified.
- APN Access Point Name
- S220 and S230 are the same as S120 and S130.
- FIG. 13 shows a specific UE identification operation flow (operation example 3). Hereinafter, parts different from the operation example 1 will be mainly described.
- the eNB 100A acquires a measurement report (Measurement Report) transmitted from the UE 200B (and other UEs) (S310).
- a measurement report (Measurement Report) transmitted from the UE 200B (and other UEs) (S310).
- the eNB 100A determines whether or not the acquired measurement report includes measurement results for a predetermined number (N) or more of cells (S320). Further, the eNB 100A determines whether or not the difference between the RSRP (Reference Signal Received Power) of the neighboring cell and the RSRP of the own cell is equal to or less than a predetermined value based on the acquired measurement report (S330).
- N predetermined number
- S320 Reference Signal Received Power
- the eNB 100A determines the PUSCH as the specific UE.
- the transmission power is controlled (S340).
- the following action / effect can be obtained.
- the eNB 100A eNB 100B, hereinafter the same
- Transmission power (hereinafter simply referred to as transmission power) is limited.
- the visibility with multiple cells is improved, and the interference level (interference power) or path loss in multiple cells is within a predetermined range (for example, within xdBm (in the case of interference power) ) Or within ydB (in the case of path loss)), it is possible to determine UE 200B and UE 200C as specific UEs and limit transmission power.
- a predetermined range for example, within xdBm (in the case of interference power)
- ydB in the case of path loss
- eNB100A power control part 140
- the eNB 100A limits the transmission power by setting a lower predetermined threshold as the interference level (interference power) is higher. Further, the eNB 100A (power control unit 140) limits the transmission power by setting a lower predetermined threshold as the path loss is smaller. For this reason, even when there is a possibility that interference with other cells or the like may increase, the interference can be reliably suppressed.
- the eNB 100A (power control unit 140) can calculate the value of the limited transmission power, and can set the number of RBs equal to or less than a predetermined threshold according to the calculated transmission power. For this reason, reliable transmission power control can be realized without exceeding the desired transmission power.
- eNB100A power control part 140 suppresses transmission of a TPC command so that PHR with respect to the maximum transmission power of the uplink recognized by the specific UE does not become the lower limit value or less. Moreover, eNB100A (power control part 140) suppresses transmission of a TPC command, when transmission power exceeds an upper limit. For this reason, reliable transmission power control can be realized without exceeding the desired transmission power.
- eNB100A power control part 140 suppresses transmission of a substantial TPC command by extending the transmission interval of a TPC command. Because of this The transmission power can be limited without greatly changing the transmission power control mechanism by the TPC command. This is particularly effective when positive TPC commands are continuously transmitted in a short period of time.
- the eNB 100A (power control unit 140) can use a predetermined threshold defined in advance or a predetermined threshold acquired from the outside. For this reason, it is possible to suppress the processing load associated with the limitation of transmission power and to realize uniform limitation of transmission power as the entire radio access network 20.
- the eNB 100A (power control unit 140) can limit the transmission power based on the fact that the target UE is identified as a specific UE by the device identification unit 130. For this reason, even if it does not compare the interference level or path loss etc. in several cells, it can identify that it is specific UE quickly and reliably.
- the radio resource block area allocated to a specific UE can be separated from the radio resource block area allocated to another user apparatus (normal UE). For this reason, it is possible to minimize the influence on interference and radio resource block allocation for a normal UE.
- UE 200B and UE 200C are mounted on a drone, but UE 200B and UE 200C may not necessarily be mounted on a flying object such as a drone. That is, the present invention can also be applied to a normal user device such as a smartphone.
- a normal user device such as a smartphone.
- the above-described transmission power control may be executed.
- the user device is located on a higher floor of a building where an unspecified user may communicate.
- MTC-UE user device connected to a weather sensor or a monitoring camera installed on the roof of a building.
- each functional block may be realized by one device physically and / or logically coupled, and two or more devices physically and / or logically separated may be directly and / or indirectly. (For example, wired and / or wireless) and may be realized by the plurality of devices.
- FIG. 14 is a diagram illustrating an example of a hardware configuration of the apparatus.
- the apparatus may be configured as a computer apparatus including a processor 1001, a memory 1002, a storage 1003, a communication apparatus 1004, an input apparatus 1005, an output apparatus 1006, a bus 1007, and the like.
- Each functional block (see FIGS. 2 and 3) of the device is realized by any hardware element of the computer device or a combination of the hardware elements.
- the processor 1001 controls the entire computer by operating an operating system, for example.
- the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
- CPU central processing unit
- the memory 1002 is a computer-readable recording medium and includes, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. May be.
- the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
- the memory 1002 can store a program (program code) that can execute the method according to the above-described embodiment, a software module, and the like.
- the storage 1003 is a computer-readable recording medium such as an optical disc such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disc, a magneto-optical disc (eg a compact disc, a digital versatile disc, a Blu-ray). (Registered trademark) disk, smart card, flash memory (for example, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
- the storage 1003 may be referred to as an auxiliary storage device.
- the recording medium described above may be, for example, a database including a memory 1002 and / or a storage 1003, a server, or other suitable medium.
- the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
- the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
- the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, or the like) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
- each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
- the bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
- notification of information includes physical layer signaling (eg, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (eg, RRC signaling, MAC (Medium Access Control) signaling, broadcast information (MIB ( Master (Information Block), SIB (System Information Block)), other signals, or combinations thereof, and RRC signaling may also be referred to as RRC messages, eg, RRC Connection Connection message, RRC It may be a Connection ⁇ ⁇ Reconfiguration message.
- RRC messages eg, RRC Connection Connection message, RRC It may be a Connection ⁇ ⁇ Reconfiguration message.
- input / output information may be stored in a specific location (for example, a memory) or may be managed by a management table.
- the input / output information can be overwritten, updated, or appended.
- the output information may be deleted.
- the input information may be transmitted to other devices.
- the specific operation that is performed by the eNB 100A may be performed by another network node (device). Further, the function of the eNB 100A may be provided by a combination of a plurality of other network nodes.
- a channel and / or symbol may be a signal (signal) if there is a corresponding description.
- the signal may be a message.
- system and “network” may be used interchangeably.
- the parameter or the like may be represented by an absolute value, may be represented by a relative value from a predetermined value, or may be represented by other corresponding information.
- the radio resource may be indicated by an index.
- ENB100A base station
- base station can accommodate one or a plurality of (for example, three) cells (also referred to as sectors).
- a base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, indoor small base station RRH: Remote Radio Head) can also provide communication services.
- RRH Remote Radio Head
- cell refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication services in this coverage.
- base station eNB
- cell ector
- a base station may also be referred to in terms such as a fixed station, NodeB, eNodeB (eNB), access point, femtocell, small cell, and the like.
- UE 200A-200C is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, It may also be referred to as a wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other appropriate terminology.
- the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
- any reference to elements using designations such as “first”, “second”, etc. as used herein does not generally limit the amount or order of those elements. These designations can be used herein as a convenient way to distinguish between two or more elements. Thus, a reference to the first and second elements does not mean that only two elements can be employed there, or that in some way the first element must precede the second element.
- the radio base station described above even when a user environment such as a user device mounted on a drone has a good outlook and a communication environment similar to that of a plurality of cells, interference by the user device can be reduced, which is useful. .
- Wireless communication system 20 Wireless access network 100A, 100B eNB 110 Radio signal transmission / reception unit 120 Reception status acquisition unit 130 Device identification unit 140 Power control unit 200A to 200C UE 210 Radio signal transmission / reception unit 220 Control signal reception unit 230 Transmission power setting unit C1, C2 Cell 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
無線基地局は、ユーザ装置が接続している自セルを含む複数セルにおける干渉レベル、または複数セルにおける当該ユーザ装置での受信通信品質の少なくとも何れかを取得する受信状態取得部(120)と、受信状態取得部(120)によって取得された複数セルにおける干渉レベルまたは受信通信品質が所定範囲内である場合、送信電力を制限する電力制御部(140)とを備える。
Description
本発明は、ユーザ装置の送信電力を制御する無線基地局に関する。
3rd Generation Partnership Project(3GPP)は、Long Term Evolution(LTE)の更なる高速化を目的としてLTE-Advanced(以下、LTE-Advancedを含めてLTEという)を仕様化している。また、3GPPでは、さらに、5G(5th generation mobile communication system)などと呼ばれるLTEの後継システムの仕様が検討されている。
LTEでは、無線基地局(eNB)とユーザ装置(UE)との間におけるパスロスに基づいて、上りリンクの送信電力を制御することが規定されている。具体的には、下りリンクのパスロスに基づいて、物理上りリンク共有チャネル、具体的には、PUSCH(Physical Uplink Shared Channel)の送信電力を制御することが規定されている(例えば、非特許文献1参照)。
3GPP TS 36.213 V14.1.0 Subclause 5.1.1 Physical uplink shared channel, 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physicallayer procedures (Release 14)、3GPP、2016年12月
昨今、ドローンに搭載されたUEなど、地上ではなく、高層ビル内などよりもさらに全方向において見通しがよい上空において通信を実行するUE(以下、特定UEという)が存在する。
このような特定UEは、見通しが良好なため、下りリンクのパスロスが小さくなる。また、特定UEは、当該パスロスが小さい複数のセルを検出することが可能な位置での通信を実行する可能性が高い。つまり、特定UEは見通しが良好なため、特定UEが在圏しない非在圏セルが当該特定UEから受信する信号レベルが非常に高くなる場合がある。
現状のLTEの仕様では、特定UEのような上空での通信は想定されていない。このため、当該パスロスが小さい場合、当該UEはeNBの近くに位置するとの前提に基づいて、スループット向上のために高い目標受信品質(具体的には、Target SIR)が設定される。当該UEは、設定された高い目標受信品質を満たすように、PUSCHの送信電力を高くする制御が実行されることが一般的である。
しかしながら、このような制御が特定UEにおいて実行されると、特定UEが接続している自セルや、自セルの近隣に形成される近隣セルに対して干渉を与える可能性がある。つまり、上空で通信を実行するため、全方向において見通しが良好な特定UEは、地上などにおいて通信を実行する通常のUEと比較して、自セル及び近隣セルに対して干渉を与える可能性が高い。
特に、複数の特定UEが異なる近隣セルに接続している場合、それぞれの特定UEは、目標受信品質を満たすまで送信電力を上げ続けるため、お互いに大きな干渉を与える恐れがある。また、このような状態は、当該セルに接続している他のUEに対しても干渉を与える。
そこで、本発明は、このような状況に鑑みてなされたものであり、ドローンに搭載されたユーザ装置など、見通しが良好なために複数セルと同様の通信環境となる場合でも、当該ユーザ装置による干渉を低減し得る無線基地局の提供を目的とする。
本発明の一態様に係る無線基地局は、ユーザ装置が送信する物理上りリンクチャネルの送信電力を制御する。前記無線基地局は、前記ユーザ装置が接続している自セルの近隣に形成される複数セルにおける干渉レベル、または前記複数セルにおける前記ユーザ装置での受信通信品質の少なくとも何れかを取得する受信状態取得部と、前記受信状態取得部によって取得された前記複数セルにおける前記干渉レベルまたは前記受信通信品質が所定範囲内である場合、前記送信電力を制限する電力制御部とを備える。
以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。
(1)無線通信システムの全体概略構成
図1は、本実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、Long Term Evolution(LTE)に従った無線通信システムである。
図1は、本実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、Long Term Evolution(LTE)に従った無線通信システムである。
無線通信システム10は、無線アクセスネットワーク20、無線基地局100A, 100B(以下、eNB100A, 100B)及びユーザ装置200A~200C(以下、UE200A~200C)を含む。
無線アクセスネットワーク20は、3GPPにおいて規定されるEvolved Universal Terrestrial Radio Access Network(E-UTRAN)である。なお、無線通信システム10は、必ずしもLTE(E-UTRAN)に限定されない。例えば、無線アクセスネットワーク20は、5Gとして規定される無線アクセスネットワークであってもよい。
eNB100A,100B及びUE200A~200Cは、LTEの仕様に従った無線通信を実行する。eNB100AはセルC1を形成し、eNB100BはセルC2を形成する。
eNB100A及びeNB100Bは、UE200A~200Cが送信する物理上りリンクチャネルの送信電力を制御する。具体的には、eNB100A及びeNB100Bは、物理上りリンク共有チャネル(PUSCH)の送信電力を制御する。
UE200Aは、通常のUEであり、地上などにおいてeNB100A及びeNB100Bと無線通信を実行する。UE200B及びUE200Cは、ドローンなどの小型の無人飛行物体に搭載され、地上に限らず、セルC1及びセルC2の上空(例えば、高度30m以上)においてeNB100A及びeNB100Bと無線通信を実行する。本実施形態において、UE200B及びUE200Cは、特定ユーザ装置(特定UE)を構成する。
(2)無線通信システムの機能ブロック構成
次に、無線通信システム10の機能ブロック構成について説明する。具体的には、eNB100A及びUE200Bの機能ブロック構成について説明する。
次に、無線通信システム10の機能ブロック構成について説明する。具体的には、eNB100A及びUE200Bの機能ブロック構成について説明する。
(2.1)eNB100A
図2は、eNB100Aの機能ブロック構成図である。図2に示すように、eNB100Aは、無線信号送受信部110、受信状態取得部120、装置識別部130及び電力制御部140を備える。なお、eNB100BもeNB100Aと同様の構成を有する。
図2は、eNB100Aの機能ブロック構成図である。図2に示すように、eNB100Aは、無線信号送受信部110、受信状態取得部120、装置識別部130及び電力制御部140を備える。なお、eNB100BもeNB100Aと同様の構成を有する。
無線信号送受信部110は、UE200B(他のUEも同様、以下同)と無線信号を送受信する。具体的には、無線信号送受信部110は、LTEの規定に従って、各種の物理チャネル(制御チャネル及び共有チャネル)を送受信する。
受信状態取得部120は、UE200Bの受信状態を取得する。具体的には、受信状態取得部120は、UE200Bが接続している自セル(例えば、セルC1)を含む複数セル(セルC1, C2)における干渉レベルを取得できる。
より具体的には、受信状態取得部120は、UE200Bが接続している自セル(つまり、セルC1)、及び当該自セルの近隣に形成されている近隣セル(セルC2)における干渉レベルを取得する。なお、受信状態取得部120は、干渉レベルとして、干渉電力自体を取得してもよいし、UE200Bに設定したSIR(Signal to Interference Ratio)UE200Bからの受信信号の信号レベルなどの比を用いて干渉電力を取得してもよい。
また、受信状態取得部120は、当該複数セルにおけるUE200Bでの受信通信品質を取得できる。具体的には、受信状態取得部120は、UE200Bが接続している自セル及び近隣セルにおける受信通信品質として、下りリンクのパスロスを取得する。なお、受信状態取得部120は、パスロスと同様の判断指標となり得るRSRP(Reference Signal Received Power)などを取得してもよい。
装置識別部130は、UE200Bの種別を識別する。具体的には、装置識別部130は、eNB100Aと無線通信を実行するユーザ装置(UE)が、複数セルの上空において通信を実行し得る特定ユーザ装置(特定UE)であるか否かを識別する。
より具体的には、装置識別部130は、(i)UEのIMEISV(International Mobile Equipment Identity Software Version)または契約種別情報を用いた識別、(ii)接続先APN(Access Point Name)の分離による識別、及び(iii)UEからの測定報告(Measurement Report)に基づく識別を実行できる。なお、具体的な識別手順については、後述する。
電力制御部140は、UE200Bが送信する上りリンクの送信電力を制御する。特に、本実施形態では、電力制御部140は、UE200Bが送信する物理上りリンク共有チャネル(PUSCH)の送信電力を制御する。
具体的には、電力制御部140は、受信状態取得部120によって取得された複数セルにおける干渉レベルまたは受信通信品質が所定範囲内である場合(つまり、特定UEである可能性が高い場合)、送信電力を制限する。
つまり、電力制御部140は、複数セル(具体的には、近隣セル)の干渉レベルが所定範囲(例えば、xdBmの範囲)内である場合、PUSCHの送信電力を所定値以下に制限する。例えば、セルC2の干渉レベルが-85dBmであり、所定範囲が-90dBmに設定されている場合、電力制御部140は、PUSCHの送信電力を所定値以下に制限する
電力制御部140は、受信通信品質(パスロス)についても、同様に所定範囲(例えば、ydBの範囲)内である場合、PUSCHの送信電力を所定値以下に制限する。
電力制御部140は、受信通信品質(パスロス)についても、同様に所定範囲(例えば、ydBの範囲)内である場合、PUSCHの送信電力を所定値以下に制限する。
電力制御部140は、次のような方法によって、PUSCHの送信電力を所定値以下に制限できる。
具体的には、電力制御部140は、UE200Bに対して設定される目標受信品質(Target SIR)を所定閾値以下とすることによって当該送信電力を制限する。また、電力制御部140は、UE200Bに対して割り当てられる無線リソースブロック数(RB数)を所定閾値以下とすることによって当該送信電力を制限する。
或いは、電力制御部140は、UE200Bに対して送信電力の上昇を指示する送信電力制御コマンド(TPCコマンド)の送信を抑止することによって当該送信電力を制限する。
また、電力制御部140は、上述した干渉レベル(干渉電力)が高い程、低い所定閾値を設定することによって、当該送信電力を制限する。同様に、電力制御部140は、上述した受信通信品質が良い程、具体的にはパスロスが小さい程、低い所定閾値を設定することによって、当該送信電力を制限する。これにより、干渉レベルが高い場合またはパスロスが小さい場合、PUSCHの送信電力は、より低く抑えられる。
電力制御部140は、受信通信品質(パスロス)に基づいて、制限後の送信電力の値を計算し、計算した送信電力に応じた所定閾値以下のRB数を設定できる。具体的には、電力制御部140は、PUSCHの送信電力の計算式を用いて計算した送信電力に応じたRB数を設定する。なお、具体的なRB数の決定方法については、後述する。
また、電力制御部140は、上述した「所定閾値」として、予め規定された固定値である所定閾値、または無線アクセスネットワーク20を経由して外部から取得した所定閾値を用いることができる。
電力制御部140は、UE200Bが認識している上りリンクの最大送信電力に対する余剰電力、具体的には、PHR(Power Head Room)が下限値以下とならないように、送信電力の上昇を指示するTPCコマンドの送信を抑止する。また、電力制御部140は、PUSCHの送信電力が上限値を超える場合、送信電力の上昇を指示するTPCコマンドの送信を抑止する。
さらに、電力制御部140は、TPCコマンドの送信間隔を延伸することによって、実質的なTPCコマンドの送信を抑止する。具体的には、電力制御部140は、TPCコマンドのProhibitTimerを用いて、Prohibit Timerが満了するまでTPCコマンドの送信を抑止する。なお、TPCコマンドのより具体的な送信の抑止方法については、後述する。
また、電力制御部140は、装置識別部130によってUE200Bが特定UEと識別された場合、PUSCHの送信電力を制限することができる。具体的には、電力制御部140は、UE200Bが特定UEと識別された場合、上述した何れかの方法によって、PUSCHの送信電力を制限する。
さらに、電力制御部140は、上述したように、複数セルにおける干渉レベルまたは受信通信品質が所定範囲内である場合、UE200B(特定UE)に対して割り当てられる無線リソースブロックの領域を、他のユーザ装置、具体的には、通常のUEであるUE200Aに対して割り当てられる無線リソースブロックの領域から分離することができる。
具体的には、電力制御部140は、UE200A~200Cに割り当て可能な無線リソースブロック(周波数、時間など)のうち、特定UEのみが割り当てられる無線リソースブロックを確保する。なお、具体的な無線リソースブロックの分離方法については、後述する。
(2.2)UE200B
図3は、UE200Bの機能ブロック構成図である。図3に示すように、UE200Bは、無線信号送受信部210、制御信号受信部220及び送信電力設定部230を備える。なお、UE200CもUE200Bと同様の構成を有する。また、UE200Aもドローンに搭載されるか否かの相違はあるものの、UE200Bと概ね同様の構成を有する。
図3は、UE200Bの機能ブロック構成図である。図3に示すように、UE200Bは、無線信号送受信部210、制御信号受信部220及び送信電力設定部230を備える。なお、UE200CもUE200Bと同様の構成を有する。また、UE200Aもドローンに搭載されるか否かの相違はあるものの、UE200Bと概ね同様の構成を有する。
無線信号送受信部210は、eNB100A及びeNB100Bと無線信号を送受信する。具体的には、無線信号送受信部210は、LTEの規定に従って、各種の物理チャネル(制御チャネル及び共有チャネル)を送受信する。
制御信号受信部220は、eNB100A(またはeNB100B、以下同)から送信される制御信号を受信する。特に、本実施形態では、制御信号受信部220は、UE200Bの送信電力制御に関する制御信号を受信する。
送信電力設定部230は、制御信号受信部220が受信した送信電力制御に関する制御信号に基づいて、上りリンクの送信電力を設定する。具体的には、送信電力設定部230は、制御信号受信部220が受信した制御信号に基づいて、各種の物理上りリンクチャネル(PUSCH,PUCCHなど)を設定するとともに、当該チャネルの送信電力を設定する。
(3)無線通信システムの動作
次に、無線通信システム10の動作に説明する。具体的には、ドローンに搭載されたUE200B及びUE200Cが、セルC1及びセルC2を介して通信を実行する場合の動作について説明する。より具体的には、UE200B及びUE200Cに対する上りリンク(PUSCH)の送信電力制御に関する動作について説明する。
次に、無線通信システム10の動作に説明する。具体的には、ドローンに搭載されたUE200B及びUE200Cが、セルC1及びセルC2を介して通信を実行する場合の動作について説明する。より具体的には、UE200B及びUE200Cに対する上りリンク(PUSCH)の送信電力制御に関する動作について説明する。
(3.1)上空通信による干渉
まず、UE200B及びUE200Cのように、セルC1及びセルC2の上空において通信を実行する場合における干渉について説明する。
まず、UE200B及びUE200Cのように、セルC1及びセルC2の上空において通信を実行する場合における干渉について説明する。
図4A、4B及び4Cは、上空通信による干渉の説明図である。図4Aに示すように、UE200Bは、上空を飛行するため、接続先のeNB100A(実線矢印)との見通しが良好であるが、同時に隣接するeNB100B(点線矢印)の見通しも良好となる。
このため、UE200Bでは、eNB100Aからの下りリンクのパスロス、及びeNB100Bからの下りリンクのパスロスとも小さくなる。上述したように、パスロスが小さい場合、現状のLTEの仕様では、スループット向上のために高いTarget SIRが設定される。
この結果、UE200Bは、eNB100B(セルC2:図1参照)、さらには、接続先のセルC1内に位置する他のUEに対して、高い干渉源となる。
一方、UE200Aのように、地上で通信を実行することが一般的な通常のUEでは、接続先のeNB100Aからの下りリンクのパスロスが小さい場合には、近隣セル、つまり、eNB100Bとは距離が離れていたり、遮蔽物が存在したりするため、eNB100Bからの下りリンクのパスロスは、大きくなる。
さらに、図4B及び4Cに示すように、複数の特定UE(UE200B及びUE200C)がそれぞれ異なる近隣セルに接続している場合、それぞれの特定UEは、Target SIRを満たすまで送信電力を上げ続けるため、お互いに大きな干渉を与える可能性がある。図4B及び4Cでは、UE200BがeNB100Aに接続(実線矢印)し、UE200CがeNB100Bに接続(実線矢印)している状態を示している。
また、このような状態は、当該セルに接続している他のUE(UE200A)に対しても干渉を与える。
(3.2)送信電力の制限
次に、eNB100A(eNB100B、以下同)によるPUSCHの送信電力の制限動作について説明する。具体的には、(i)目標受信品質(Target SIR)による制限、(ii)無線リソースブロック数による制限、(iii)送信電力制御コマンド(TPCコマンド)の送信抑止による制限、及び(iv)無線リソースブロックの割り当て領域の分離による制限について説明する。
次に、eNB100A(eNB100B、以下同)によるPUSCHの送信電力の制限動作について説明する。具体的には、(i)目標受信品質(Target SIR)による制限、(ii)無線リソースブロック数による制限、(iii)送信電力制御コマンド(TPCコマンド)の送信抑止による制限、及び(iv)無線リソースブロックの割り当て領域の分離による制限について説明する。
(3.2.1)目標受信品質の制限
この場合、eNB100Aは、目標受信品質(Target SIR)を制限、つまり、所定閾値以下に設定して無線リソースのスケジューリングを実行する。
この場合、eNB100Aは、目標受信品質(Target SIR)を制限、つまり、所定閾値以下に設定して無線リソースのスケジューリングを実行する。
具体的には、eNB100Aは、UE200B(UE200Cも同様、以下同)に対してTarget SIRを設定する。一般的には、LTEの仕様では、UE200Bでの下りリンクのパスロスに応じてTarget SIRが変更される。
本実施形態では、eNB100Aは、自セルにおける干渉レベル(干渉電力)を測定し、近隣セル間で当該干渉レベルの情報を交換する。なお、eNB100Aは、近隣セルの干渉レベルに応じてTarget SIRを変化させてもよい。
eNB100Aは、近隣セルの干渉レベルが低い場合、高いTarget SIRを設定する。一方、干渉レベルが高い場合、eNB100Aは、低いTarget SIRを設定する。
なお、UE200Bが地上で通信を実行する場合も考慮し、パスロス(受信通信品質)に応じて、Target SIRを変化させてもよい。つまり、UE200Bが地上に位置する場合、パスロスが大きくなるため、Target SIRを大きくする。すなわち、このような場合、PUSCHの送信電力の制限を設けなくてもよい)。
また、eNB100Aは、パスロスとTarget SIRとを対応付けてもよい。例えば、パスロス(dB)≦X1であればAdB、X1<パスロス≦X2であればBdBなどである。或いは、eNB100Aは、Target SIRを(A*パスロス+B、A,Bは変数)と定義し、A及びBを状況などに応じて設定するようにしてもよい。
ここで、図5A及び5Bは、パスロス(横軸)と、Target SIR・割り当て無線リソースブロック数(割当RB数)・PUSCH送信電力(縦軸)との関係を示す図である。
図5A及び5Bに示すように、パスロスが小さい場合には、低いTarget SIRが設定され、パスロスが大きくなると、高いTarget SIRが設定される。パスロスが小さい領域は、上空通信(相当)に適用され、パスロスが大きい領域は、地上通信(相当)に適用されるイメージである。
なお、図5A及び5Bに示すように、パスロスとTarget SIRとの関係は、段階的(図5A)に変化してもよいし、連続的(図5B)に変化してもよい。
(3.2.2)無線リソースブロック数の制限
この場合、eNB100Aは、UE200Bに割り当てられる最大割り当て無線リソースブロック数(RB数)を制限、つまり、所定閾値以下に設定して無線リソースのスケジューリングを実行する。
この場合、eNB100Aは、UE200Bに割り当てられる最大割り当て無線リソースブロック数(RB数)を制限、つまり、所定閾値以下に設定して無線リソースのスケジューリングを実行する。
具体的には、eNB100Aは、UE200Bに対する無線リソースのスケジューリングを実行する際、最大割り当てRB数以下の無線リソースブロックを割り当てる。PUSCHについても、割り当てRB数を増加させると、送信電力が高くなるが、本実施形態では、サブフレーム単位で割り当てられるRB数に上限値を設けることによって、PUSCHの送信電力を制限する。
以下、上述した目標受信品質の制限(3.2.1参照)と同様の動作については、説明を省力する。
eNB100Aは、近隣セルの干渉レベルが低い場合、高い最大割り当てRB数を設定する。一方、干渉レベルが高い場合、eNB100Aは、低い最大割り当てRB数を設定する。なお、eNB100Aは、近隣セルの干渉レベルに応じて最大割り当てRB数を変化させてもよい。
ここで、図6A及び6Bは、UE200Bに対する無線リソースブロックの割り当て例の説明図である。図6A及び6Bに示すように、eNB100Aは、UE200Bに対して、ULGrantを用いてサブフレーム当たり10RB(通常は100RB)を割り当てることを通知する。UE200Bは、通知された10RBを用いてPUSCHを送信する。使用する無線リソースブロックが少ないため、結果的に送信電力は小さくなる。
なお、UE200Bが地上で通信を実行する場合も考慮し、パスロス(受信通信品質)に応じて、最大割り当てRB数を変化させてもよい。つまり、UE200Bが地上に位置する場合、パスロスが大きくなるため、最大割り当てRB数を大きくする。すなわち、このような場合、PUSCHの送信電力の制限を設けなくてもよい)。
また、eNB100Aは、パスロスと最大割り当てRB数とを対応付けてもよい。例えば、パスロス(dB)≦X1であればA(RB)、X1<パスロス≦X2であればB(RB)などである。或いは、eNB100Aは、最大割り当てRB数を(A*パスロス+B、A,Bは変数)と定義し、A及びBを状況などに応じて設定するようにしてもよい。
なお、パスロスと、割り当て無線リソースブロック数との関係は、図5A及び5Bに示したとおりである。
さらに、eNB100Aは、所定の送信電力を入力値とし、最大割り当てRB数を決定してもよい。具体的には、eNB100Aは、以下の数式を用いて、パスロスに基づいて、制限後の送信電力の値を計算し、計算した送信電力に応じた最大割り当てRB数を決定する。なお、以下の数式は、3GPP TS36.213 5.1.1章において規定されている。
eNB100Aは、割り当てRB数(MPUSCH)、送信電力オフセット(PO_PUSCH)、パスロスに応じた送信電力係数(α)、パスロス(PL)、及びTPCコマンドの累積値(f(i))を認識しているため、PUSCHの送信電力(PPUSCH)を推定(計算)できる。よって、eNB100Aは、計算したPUSCHの送信電力となるように、割り当てRB数(MPUSCH)を決定できる。
(3.2.3)送信電力制御コマンドの送信抑止
この場合、eNB100Aは、送信電力制御コマンド(TPCコマンド)の送信を抑止するが、具体的には、次の3つの制御を実行する。すなわち、(i)上りリンクの最大送信電力に対する余剰電力(PHR)を基準として、増加指示(プラス)のTPCコマンドの送信を抑止、(ii)上りリンクの送信電力を基準として、増加指示(プラス)のTPCコマンドの送信を抑止、及び(iii)Prohibit Timerを用いたTPCコマンドの送信間隔の延伸である。以下、さらに具体的に説明する。
この場合、eNB100Aは、送信電力制御コマンド(TPCコマンド)の送信を抑止するが、具体的には、次の3つの制御を実行する。すなわち、(i)上りリンクの最大送信電力に対する余剰電力(PHR)を基準として、増加指示(プラス)のTPCコマンドの送信を抑止、(ii)上りリンクの送信電力を基準として、増加指示(プラス)のTPCコマンドの送信を抑止、及び(iii)Prohibit Timerを用いたTPCコマンドの送信間隔の延伸である。以下、さらに具体的に説明する。
(3.2.3.1)PHR基準
eNB100Aは、PHR(Power Head Room)が下限値以下とならないように、TPCコマンドの送信を抑止する。
eNB100Aは、PHR(Power Head Room)が下限値以下とならないように、TPCコマンドの送信を抑止する。
図7は、最大送信電力とPHRとの関係を示す。図7に示すように、PHRは、上りリンクの最大送信電力と、UEの現在の上りリンク(具体的にはPUSCH)の送信電力との差分である。PHRが小さければ、高い送信電力で送信していることを意味する。
eNB100Aは、PHRが所定の下限値未満となりそうな場合、プラスのTPCコマンドの送信を抑止する。つまり、マイナス(減少指示)のTPCコマンドであれば、送信してもよい。
以下、上述した目標受信品質の制限(3.2.1参照)と同様の動作については、説明を省力する。
eNB100Aは、近隣セルの干渉レベルが低い場合、プラスのTPCコマンドの送信を抑止するPHRの下限値を小さく設定する。一方、干渉レベルが高い場合、eNB100Aは、PHRの下限値を大きく設定する。なお、eNB100Aは、近隣セルの干渉レベルに応じてPHRを変化させてもよい。
なお、UE200Bが地上で通信を実行する場合も考慮し、パスロス(受信通信品質)に応じて、PHRの下限値を変化させてもよい。つまり、UE200Bが地上に位置する場合、パスロスが大きくなるため、PHRの下限値を小さくする。すなわち、このような場合、PUSCHの送信電力の制限を設けなくてもよい)。
具体的には、eNB100Aは、以下の数式を用いてPHRの値(PH)を決定する。なお、以下の数式は、3GPP TS36.213 5.1.2章において規定されている。
PCMAXは、UEの最大送信電力であり、{}で括られた部分は、UEの現在の送信電力である。
また、eNB100Aは、パスロスとPHRの下限値とを対応付けてもよい。例えば、パスロス(dB)≦X1であればAdB、X1<パスロス≦X2であればBdBなどである。或いは、eNB100Aは、PHRを(A*パスロス+B、A,Bは変数)と定義し、A及びBを状況などに応じて設定するようにしてもよい。
ここで、図8A及び8Bは、パスロス(横軸)と、PHR・Prohibit Timer値(縦軸)との関係を示す図である。
図8A及び8Bに示すように、パスロスが小さい場合には、大きいPHRの下限値が設定され、パスロスが大きくなると、小さいPHRの下限値が設定される。パスロスが小さい領域は、上空通信(相当)に適用され、パスロスが大きい領域は、地上通信(相当)に適用されるイメージである。
なお、図8A及び8Bに示すように、パスロスとPHRの下限値との関係は、段階的(図8A)に変化してもよいし、連続的(図8B)に変化してもよい。
(3.2.3.2)上りリンクの送信電力基準
eNB100Aは、上りリンク(PUSCH)の送信電力が上限値を超える場合、TPCコマンドの送信を抑止する。
eNB100Aは、上りリンク(PUSCH)の送信電力が上限値を超える場合、TPCコマンドの送信を抑止する。
TPCコマンドによる送信電力制御では、UE200Bの所要目標電力と、現状の受信電力との差分を無くすように、プラスまたはマイナスのコマンドが送信される。例えば、所要目標電力が10dBmであり、現状の受信品質(受信電力)が7dBmである場合、+3dB分のTPCコマンドが送信される。これにより、UE200Bの送信電力が増加する。
本実施形態では、eNB100Aは、UE200BによるPUSCHの送信電力が上限値を超える場合、受信品質が所要目標電力に達していなくてもプラスのTPCコマンドの送信を中止する。
以下、上述した目標受信品質の制限(3.2.1参照)と同様の動作については、説明を省力する。
eNB100Aは、近隣セルの干渉レベルが低い場合、高い上限値を設定する。一方、干渉レベルが高い場合、eNB100Aは、低い上限値を設定する。なお、eNB100Aは、近隣セルの干渉レベルに応じて上限値を変化させてもよい。
なお、UE200Bが地上で通信を実行する場合も考慮し、パスロス(受信通信品質)に応じて、上限値を変化させてもよい。つまり、UE200Bが地上に位置する場合、パスロスが大きくなるため、上限値を大きくする。すなわち、このような場合、PUSCHの送信電力の制限を設けなくてもよい)。
また、eNB100Aは、パスロスと送信電力の上限値とを対応付けてもよい。例えば、パスロス(dB)≦X1であればAdBm、X1<パスロス≦X2であればBdBmなどである。或いは、eNB100Aは、上限値を(A*パスロス+B、A,Bは変数)と定義し、A及びBを状況などに応じて設定するようにしてもよい。
なお、パスロスと、送信電力(上限値)との関係は、図5A及び5Bに示したとおりである。
(3.2.3.3)Prohibit Timerを用いたTPCコマンドの送信間隔の延伸
eNB100Aは、TPCコマンドの送信を禁止する期間を計測するProhibit Timerを用いて、TPCコマンドの送信間隔を延伸する。
eNB100Aは、TPCコマンドの送信を禁止する期間を計測するProhibit Timerを用いて、TPCコマンドの送信間隔を延伸する。
eNB100Aは、UE200Bに対して送信するTPCコマンドの送信タイミングを認識している。eNB100Aは、TPCコマンドの送信に合わせてProhibit Timerを起動し、直近のTPCコマンドの送信から所定の時間が経過している場合、つまり、Prohibit Timerが満了している場合、TPCコマンドの送信を許容する。
一方、Prohibit Timerが満了していない場合には、eNB100Aは、プラスのTPCコマンド送信が必要な場合でも、当該TPCコマンドの送信を許容しない。特に、短期間にプラスのTPCコマンドが連続的に送信されると、PUSCHの送信が急激に増加するが、本実施形態では、このような急激な送信電力の増加を防止する。
以下、上述した目標受信品質の制限(3.2.1参照)と同様の動作については、説明を省力する。
eNB100Aは、近隣セルの干渉レベルが低い場合、短いProhibit Timerを設定する。一方、干渉レベルが高い場合、eNB100Aは、長いProhibit Timerを設定する。なお、eNB100Aは、近隣セルの干渉レベルに応じてProhibit Timerの設定時間(Prohibit Timer値)を変化させてもよい。
なお、UE200Bが地上で通信を実行する場合も考慮し、パスロス(受信通信品質)に応じて、Prohibit Timerの設定時間を変化させてもよい。つまり、UE200Bが地上に位置する場合、パスロスが大きくなるため、Prohibit Timer値を短くする。すなわち、このような場合、PUSCHの送信電力の制限を設けなくてもよい)。
また、eNB100Aは、パスロスとProhibit Timer値とを対応付けてもよい。例えば、パスロス(dB)≦X1であればAms、X1<パスロス≦X2であればBmsなどである。或いは、eNB100Aは、Prohibit Timer値を(A*パスロス+B、A,Bは変数)と定義し、A及びBを状況などに応じて設定するようにしてもよい。
なお、パスロスと、Prohibit Timer値との関係は、図8A及び8Bに示したとおりである。
(3.2.4)無線リソースブロックの割り当て領域の分離
eNB100Aは、UE200B、つまり、特定UEに対して割り当てられる無線リソースブロックの領域を、他のユーザ装置、つまり、通常のUE(UE200A)に対して割り当てられる無線リソースブロックの領域から分離し、無線リソースのスケジューリングを実行する。
eNB100Aは、UE200B、つまり、特定UEに対して割り当てられる無線リソースブロックの領域を、他のユーザ装置、つまり、通常のUE(UE200A)に対して割り当てられる無線リソースブロックの領域から分離し、無線リソースのスケジューリングを実行する。
具体的には、eNB100Aは、通常のUEに割り当てる無線リソースブロック領域(RB領域)と、特定UEに割り当てるRB領域とを予め分離する。
図9は、無線リソースブロック領域の分離例を示す。図9に示すように、RB領域全体(例えば、100RB)は、通常のUEに割り当てられるRB領域A1と、特定UEに割り当てるRB領域A2とに分離される。
RB領域A1とRB領域A2との分離位置は、固定でもよいし、可変としてもよい。例えば、eNB100Aに接続している(待ち受けしている)UE数に対する特定UE数の比率に応じてRB領域A2を変化させてもよい。具体的には、eNB100Aは、以下の式を用いて、RB領域A2のサイズを決定してもよい。なお、αは、UE比率係数であり、任意の値を設定できる。
RB領域A2=(帯域全体のRB数)*α*(特定UE数/(特定UE数+通常UE数))
また、eNB100Aは、eNB100Aの起動時には、RB領域を分離せずに、特定UEを検出した場合に、RB領域を分離してもよい。さらに、eNB100Aは、特定UEの接続が解放された場合には、RB領域を分離しない状態に復帰させてもよい。
また、eNB100Aは、eNB100Aの起動時には、RB領域を分離せずに、特定UEを検出した場合に、RB領域を分離してもよい。さらに、eNB100Aは、特定UEの接続が解放された場合には、RB領域を分離しない状態に復帰させてもよい。
このようにRB領域が分離されることにより、eNB100Aは、通常のUEには、RB領域A1のRBを割り当て、特定UEには、RB領域A2のRBを割り当てる。
(3.3)送信電力制御フロー
図10は、eNB100Aによる上りリンク(PUSCH)の送信電力制御フローを示す。図10に示すように、eNB100Aは、各セル(自セル及び近隣セル)における干渉レベル(干渉電力)、または当該複数セルにおけるUE200Bでの受信通信品質(パスロス)を取得する(S10)。
図10は、eNB100Aによる上りリンク(PUSCH)の送信電力制御フローを示す。図10に示すように、eNB100Aは、各セル(自セル及び近隣セル)における干渉レベル(干渉電力)、または当該複数セルにおけるUE200Bでの受信通信品質(パスロス)を取得する(S10)。
eNB100Aは、当該複数セルにおける干渉レベルまたは受信通信品質が所定範囲内であるか否かを判定する(S20)。具体的には、上述したように、eNB100Aは、当該複数セルの干渉レベルが所定範囲(例えば、xdBmの範囲)内であるか、または、当該複数セルのパスロスが所定範囲(例えば、ydBの範囲)内であるかを判定する。
当該複数セルの干渉レベルまたはパスロスが所定範囲である場合、eNB100Aは、PUSCHの送信電力の制限値を計算する(S30)。具体的な送信電力の制限値は、上述した方法の何れかによって決定される。或いは、送信電力の値及び制限値(具体的には、各種の所定閾値、上限値、下限値)は、無線アクセスネットワーク20を経由して外部から取得した値でもよい。
eNB100Aは、決定した送信電力をUE200Bに指示する(S40)。具体的には、PUSCHの送信電力を決定するパラメータは、報知情報によって通知される。また、TPCコマンドの場合には、上述したように、UL Grantが用いられる。
(3.4)特定UEの識別
次に、特定UEの識別方法について説明する。具体的には、eNB100Aは、上述したように、(i)UEのIMEISV(International Mobile Equipment Identity Software Version)または契約種別情報を用いた識別、(ii)接続先APN(Access Point Name)の分離による識別、及び(iii)UEからの測定報告(Measurement Report)に基づく識別を実行できる。
次に、特定UEの識別方法について説明する。具体的には、eNB100Aは、上述したように、(i)UEのIMEISV(International Mobile Equipment Identity Software Version)または契約種別情報を用いた識別、(ii)接続先APN(Access Point Name)の分離による識別、及び(iii)UEからの測定報告(Measurement Report)に基づく識別を実行できる。
(3.4.1)動作例1
図11は、特定UEの識別動作フロー(動作例1)を示す。図11に示すように、eNB100Aは、IMEISVまたは契約種別情報を取得する(S110)。IMEISVまたは契約種別情報により、UEの種別(ドローンに搭載されているUEか否かなど)を識別できる。
図11は、特定UEの識別動作フロー(動作例1)を示す。図11に示すように、eNB100Aは、IMEISVまたは契約種別情報を取得する(S110)。IMEISVまたは契約種別情報により、UEの種別(ドローンに搭載されているUEか否かなど)を識別できる。
eNB100Aは、取得したIMEISVまたは契約種別情報に基づいて、送信電力の制御対象のUEが特定UEか否かを判定する(S120)。
送信電力の制御対象のUEが特定UEであると判定した場合、eNB100Aは、特定UEとして、PUSCHの送信電力を制御する(S130)。
(3.4.2)動作例2
図12は、特定UEの識別動作フロー(動作例2)を示す。以下、動作例1と異なる部分について主に説明する。
図12は、特定UEの識別動作フロー(動作例2)を示す。以下、動作例1と異なる部分について主に説明する。
図12に示すように、eNB100Aは、UEの接続先のネットワーク、具体的には、APN(Access Point Name)をUEの種別に応じて分離する(S210)。つまり、特定UEは、特定UEと対応付けられたAPNに分離される。これにより、UEの種別(ドローンに搭載されているUEか否かなど)を識別できる。
S220及びS230の処理は、S120及びS130と同様である。
(3.4.3)動作例3
図13は、特定UEの識別動作フロー(動作例3)を示す。以下、動作例1と異なる部分について主に説明する。
図13は、特定UEの識別動作フロー(動作例3)を示す。以下、動作例1と異なる部分について主に説明する。
図13に示すように、eNB100Aは、UE200B(及び他のUE)から送信された測定報告(Measurement Report)を取得する(S310)。
eNB100Aは、取得した測定報告に、所定数(N個)以上のセルについての測定結果が含まれているか否かを判定する(S320)。また、eNB100Aは、取得した測定報告に基づいて、近隣セルのRSRP(Reference Signal Received Power)と、自セルのRSRPとの差が所定値以下か否かを判定する(S330)。
所定数(N個)以上のセルについての測定結果が含まれている場合、或いは近隣セルのRSRPと、自セルのRSRPとの差が所定値以下の場合、eNB100Aは、特定UEとして、PUSCHの送信電力を制御する(S340)。
(4)作用・効果
上述した実施形態によれば、以下の作用効果が得られる。具体的には、eNB100A(eNB100B、以下同)は、受信状態取得部120によって取得された複数セル(セルC1, C2)における干渉レベルまたはパスロス(受信通信品質)が所定範囲内である場合、PUSCHの送信電力(以下、単に送信電力)を制限する。
上述した実施形態によれば、以下の作用効果が得られる。具体的には、eNB100A(eNB100B、以下同)は、受信状態取得部120によって取得された複数セル(セルC1, C2)における干渉レベルまたはパスロス(受信通信品質)が所定範囲内である場合、PUSCHの送信電力(以下、単に送信電力)を制限する。
このため、UE200B及びUE200Cなど、上空で通信を実行するために、複数セルと見通しが良好になり、複数セルにおける干渉レベル(干渉電力)またはパスロスが所定範囲(例えば、xdBm以内(干渉電力の場合)、またはydB以内(パスロスの場合))内となる可能性が高い場合に、UE200B及びUE200Cを特定UEと判定し、送信電力を制限できる。
これにより、ドローンに搭載されたUE200B及びUE200Cなど、見通しが良好なために複数セルと同様の通信環境となる場合でも、当該ユーザ装置による干渉を低減し得る。
本実施形態では、eNB100A(電力制御部140)は、特定UEに対して設定されるTarget SIRまたは特定UEに対して割り当てられる無線リソースブロック数を所定閾値以下とすること、或いは特定UEに対してTPCコマンドの送信を抑止することによって送信電力を制限する。このため、送信電力を直接制御するのではなく、送信電力が変化するパラメータの中から、適切なパラメータを用いて送信電力を制御できる。これにより、送信電力の制御の柔軟かつ容易な実現に貢献し得る。
本実施形態では、eNB100A(電力制御部140)は、干渉レベル(干渉電力)が高い程、低い所定閾値を設定することによって、送信電力を制限する。また、eNB100A(電力制御部140)は、パスロスが小さい程、低い所定閾値を設定することによって、送信電力を制限する。このため、他のセルなどへの干渉が高くなる恐れがある場合でも、確実に干渉を抑制できる。
本実施形態では、eNB100A(電力制御部140)は、制限後の送信電力の値を計算し、計算した送信電力に応じた所定閾値以下のRB数を設定できる。このため、所望の送信電力を超えることない確実な送信電力の制御を実現し得る。
本実施形態では、eNB100A(電力制御部140)は、特定UEが認識している上りリンクの最大送信電力に対するPHRが下限値以下とならないように、TPCコマンドの送信を抑止する。
また、eNB100A(電力制御部140)は、送信電力が上限値を超える場合、TPCコマンドの送信を抑止する。このため、所望の送信電力を超えることない確実な送信電力の制御を実現し得る。
また、eNB100A(電力制御部140)は、送信電力が上限値を超える場合、TPCコマンドの送信を抑止する。このため、所望の送信電力を超えることない確実な送信電力の制御を実現し得る。
また、本実施形態では、eNB100A(電力制御部140)は、TPCコマンドの送信間隔を延伸することによって、実質的なTPCコマンドの送信を抑止する。このため、既存の
TPCコマンドによる送信電力の制御メカニズムを大きく変更することなく、送信電力を制限できる。また、特に、短期間にプラスのTPCコマンドが連続的に送信される場合に効果的である。
TPCコマンドによる送信電力の制御メカニズムを大きく変更することなく、送信電力を制限できる。また、特に、短期間にプラスのTPCコマンドが連続的に送信される場合に効果的である。
本実施形態では、eNB100A(電力制御部140)は、予め規定された所定閾値、または外部から取得した所定閾値を用いることができる。このため、送信電力の制限に伴う処理負荷を抑制するとともに、無線アクセスネットワーク20全体としての統一した送信電力の制限を実現し得る。
本実施形態では、eNB100A(電力制御部140)は、装置識別部130によって対象のUEが特定UEと識別されたことに基づいて、送信電力を制限することが可能である。このため、複数セルにおける干渉レベルまたはパスロスなどを比較しなくても、迅速かつ確実に特定UEであることを識別できる。
本実施形態では、特定UEに対して割り当てられる無線リソースブロックの領域を、他のユーザ装置(通常のUE)に対して割り当てられる無線リソースブロックの領域から分離することができる。このため、通常のUEに対して、干渉や無線リソースブロックの割り当て上の影響を最小化し得る。
(5)その他の実施形態
以上、実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
以上、実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
例えば、上述した実施形態では、UE200B及びUE200Cは、ドローンに搭載されていたが、UE200B及びUE200Cは、必ずしもドローンのような飛行物体に搭載されていなくても構わない。つまり、本発明は、スマートフォンのような通常のユーザ装置にも適用し得る。例えば、当該ユーザ装置が、複数セルと見通しが良好になり、複数セルからの下りリンクにおけるパスロスが小さくなる場所に位置する場合には、上述した送信電力の制御を実行してもよい。例えば、不特定のユーザが通信を実行する可能性があるビルの高層階にユーザ装置が位置する場合である。また、ビルの屋上などに設置された気象センサや監視カメラなどと接続されたユーザ装置(MTC-UE)も同様である。
また、上述した実施形態の説明に用いたブロック図(図2,3)は、機能ブロック図を示している。これらの機能ブロック(構成部)は、ハードウェア及び/またはソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/または論理的に結合した1つの装置により実現されてもよいし、物理的及び/または論理的に分離した2つ以上の装置を直接的及び/または間接的に(例えば、有線及び/または無線)で接続し、これら複数の装置により実現されてもよい。
さらに、上述したeNB100A, 100B、UE200A~200C(当該装置)は、本発明の送信電力制御の処理を行うコンピュータとして機能してもよい。図14は、当該装置のハードウェア構成の一例を示す図である。図14に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。
当該装置の各機能ブロック(図2,3参照)は、当該コンピュータ装置の何れかのハードウェア要素、または当該ハードウェア要素の組み合わせによって実現される。
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)で構成されてもよい。
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、上述した実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及び/またはストレージ1003を含むデータベース、サーバその他の適切な媒体であってもよい。
通信装置1004は、有線及び/または無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
また、情報の通知は、上述した実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRCシグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号またはこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC Connection Setupメッセージ、RRC Connection Reconfigurationメッセージなどであってもよい。
さらに、入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報は、上書き、更新、または追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。
上述した実施形態におけるシーケンス及びフローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。
また、上述した実施形態において、eNB100A(eNB100B、以下同)によって行われるとした特定動作は、他のネットワークノード(装置)によって行われることもある。また、複数の他のネットワークノードの組み合わせによってeNB100Aの機能が提供されても構わない。
なお、本明細書で説明した用語及び/または本明細書の理解に必要な用語については、同一のまたは類似する意味を有する用語と置き換えてもよい。例えば、該当する記載がある場合、チャネル及び/またはシンボルは信号(シグナル)であってもよい。また、信号はメッセージであってもよい。また、「システム」及び「ネットワーク」という用語は、互換的に使用されてもよい。
さらに、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースはインデックスで指示されるものであってもよい。
eNB100A(基地局)は、1つまたは複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局RRH:Remote Radio Head)によって通信サービスを提供することもできる。
「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び/または基地局サブシステムのカバレッジエリアの一部または全体を指す。
さらに、「基地局」「eNB」、「セル」、及び「セクタ」という用語は、本明細書では互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
さらに、「基地局」「eNB」、「セル」、及び「セクタ」という用語は、本明細書では互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
UE200A~200Cは、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。
本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
また、「含む(including)」、「含んでいる(comprising)」、及びそれらの変形の用語は、「備える」と同様に、包括的であることが意図される。さらに、本明細書或いは特許請求の範囲において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。
本明細書で使用した「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書で使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
本明細書の全体において、例えば、英語でのa, an, 及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含むものとする。
上記のように、本発明の実施形態を記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
上述した無線基地局によれば、ドローンに搭載されたユーザ装置など、見通しが良好なために複数セルと同様の通信環境となる場合でも、当該ユーザ装置による干渉を低減し得るため、有用である。
10 無線通信システム
20 無線アクセスネットワーク
100A, 100B eNB
110 無線信号送受信部
120 受信状態取得部
130 装置識別部
140 電力制御部
200A~200C UE
210 無線信号送受信部
220 制御信号受信部
230 送信電力設定部
C1, C2 セル
1001 プロセッサ
1002 メモリ
1003 ストレージ
1004 通信装置
1005 入力装置
1006 出力装置
1007 バス
20 無線アクセスネットワーク
100A, 100B eNB
110 無線信号送受信部
120 受信状態取得部
130 装置識別部
140 電力制御部
200A~200C UE
210 無線信号送受信部
220 制御信号受信部
230 送信電力設定部
C1, C2 セル
1001 プロセッサ
1002 メモリ
1003 ストレージ
1004 通信装置
1005 入力装置
1006 出力装置
1007 バス
Claims (9)
- ユーザ装置が送信する物理上りリンクチャネルの送信電力を制御する無線基地局であって、
前記ユーザ装置が接続している自セルの近隣に形成される複数セルにおける干渉レベル、または前記複数セルにおける前記ユーザ装置での受信通信品質の少なくとも何れかを取得する受信状態取得部と、
前記受信状態取得部によって取得された前記複数セルにおける前記干渉レベルまたは前記受信通信品質が所定範囲内である場合、前記送信電力を制限する電力制御部と
を備える無線基地局。 - 前記電力制御部は、前記ユーザ装置に対して設定される目標受信品質または前記ユーザ装置に対して割り当てられる無線リソースブロック数を所定閾値以下とすること、或いは前記ユーザ装置に対して送信電力の上昇を指示する送信電力制御コマンドの送信を抑止することによって前記送信電力を制限する請求項1に記載の無線基地局。
- 前記電力制御部は、前記干渉レベルが高い程、低い前記所定閾値を設定することによって、前記送信電力を制限する請求項2に記載の無線基地局。
- 前記電力制御部は、前記受信通信品質が良い程、低い前記所定閾値を設定することによって、前記送信電力を制限する請求項2に記載の無線基地局。
- 前記電力制御部は、前記受信通信品質に基づいて、制限後の前記送信電力の値を計算し、計算した前記送信電力に応じた前記所定閾値以下の前記無線リソースブロック数を設定する請求項2に記載の無線基地局。
- 前記電力制御部は、最大送信電力に対する余剰電力が下限値以下とならないように、或いは前記送信電力が上限値を超える場合、前記送信電力制御コマンドの送信を抑止する請求項2に記載の無線基地局。
- 前記電力制御部は、前記送信電力制御コマンドの送信間隔を延伸することによって、前記送信電力制御コマンドの送信を抑止する請求項2に記載の無線基地局。
- 前記電力制御部は、予め規定された前記所定閾値、または外部から取得した前記所定閾値を用いる請求項2乃至6の何れか一項に記載の無線基地局。
- 前記電力制御部は、前記複数セルにおける前記干渉レベルまたは前記受信通信品質が前記所定範囲内である場合、前記ユーザ装置に対して割り当てられる無線リソースブロックの領域を、他のユーザ装置に対して割り当てられる無線リソースブロックの領域から分離する請求項1に記載の無線基地局。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-041032 | 2017-03-03 | ||
JP2017041032 | 2017-03-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018159794A1 true WO2018159794A1 (ja) | 2018-09-07 |
Family
ID=63370046
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/007925 WO2018159794A1 (ja) | 2017-03-03 | 2018-03-02 | 無線基地局 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018159794A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020241253A1 (ja) * | 2019-05-27 | 2020-12-03 | ソニー株式会社 | 通信装置 |
WO2022185857A1 (ja) * | 2021-03-02 | 2022-09-09 | ソフトバンク株式会社 | 基地局及び無線通信システム |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001036464A (ja) * | 1999-07-19 | 2001-02-09 | Yrp Mobile Telecommunications Key Tech Res Lab Co Ltd | Cdma電力制御方法 |
JP2001223637A (ja) * | 2000-02-07 | 2001-08-17 | Matsushita Electric Ind Co Ltd | 無線通信装置及び送信電力制御方法 |
JP2006086716A (ja) * | 2004-09-15 | 2006-03-30 | Nec Corp | 携帯通信端末装置及び送信電力制御方法 |
JP2010166604A (ja) * | 2010-03-23 | 2010-07-29 | Fujitsu Ltd | 無線通信システム及びその干渉制御方法並びに基地局 |
JP2012169939A (ja) * | 2011-02-15 | 2012-09-06 | Ntt Docomo Inc | 移動局、無線通信システム及び方法 |
JP2013038585A (ja) * | 2011-08-08 | 2013-02-21 | Sony Corp | 無線基地局、送信電力制御方法及びコンピュータプログラム |
-
2018
- 2018-03-02 WO PCT/JP2018/007925 patent/WO2018159794A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001036464A (ja) * | 1999-07-19 | 2001-02-09 | Yrp Mobile Telecommunications Key Tech Res Lab Co Ltd | Cdma電力制御方法 |
JP2001223637A (ja) * | 2000-02-07 | 2001-08-17 | Matsushita Electric Ind Co Ltd | 無線通信装置及び送信電力制御方法 |
JP2006086716A (ja) * | 2004-09-15 | 2006-03-30 | Nec Corp | 携帯通信端末装置及び送信電力制御方法 |
JP2010166604A (ja) * | 2010-03-23 | 2010-07-29 | Fujitsu Ltd | 無線通信システム及びその干渉制御方法並びに基地局 |
JP2012169939A (ja) * | 2011-02-15 | 2012-09-06 | Ntt Docomo Inc | 移動局、無線通信システム及び方法 |
JP2013038585A (ja) * | 2011-08-08 | 2013-02-21 | Sony Corp | 無線基地局、送信電力制御方法及びコンピュータプログラム |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020241253A1 (ja) * | 2019-05-27 | 2020-12-03 | ソニー株式会社 | 通信装置 |
US11849404B2 (en) | 2019-05-27 | 2023-12-19 | Sony Group Corporation | Communication device |
US12207202B2 (en) | 2019-05-27 | 2025-01-21 | Sony Group Corporation | Communication device |
WO2022185857A1 (ja) * | 2021-03-02 | 2022-09-09 | ソフトバンク株式会社 | 基地局及び無線通信システム |
JP2022133975A (ja) * | 2021-03-02 | 2022-09-14 | ソフトバンク株式会社 | 基地局及び無線通信システム |
JP7346474B2 (ja) | 2021-03-02 | 2023-09-19 | ソフトバンク株式会社 | 無線通信システム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019001573A1 (zh) | 选择参数配置的方法、设备以及系统 | |
KR20200072475A (ko) | 비행하는 사용자 장비들을 핸들링하는 무선 네트워크 | |
CN110235462B (zh) | 用户装置及测量报告发送方法 | |
WO2015026943A1 (en) | User equipment and method for enhanced uplink power control | |
JP7197652B2 (ja) | 無線通信システム及びユーザ装置 | |
WO2018203402A1 (ja) | ユーザ装置及び基地局 | |
JP7138164B2 (ja) | ユーザ装置及び測定報告送信方法 | |
WO2019065634A1 (ja) | ユーザ装置及び干渉制御方法 | |
WO2020170452A1 (ja) | 端末及び無線通信方法 | |
US20190124604A1 (en) | User equipment, base station, and communication method | |
US11115987B2 (en) | Method and apparatus for controlling network devices providing network services for a plurality of over-the-air areas | |
WO2018159794A1 (ja) | 無線基地局 | |
JP2018148542A (ja) | 無線基地局及び無線通信方法 | |
JP7269186B2 (ja) | ユーザ装置及び無線通信方法 | |
US20190281533A1 (en) | Wireless terminal device and communications method | |
JP7221941B2 (ja) | 飛行体管理装置 | |
WO2018159793A1 (ja) | ユーザ装置及び送信電力制御方法 | |
WO2018159798A1 (ja) | 無線基地局及び無線通信方法 | |
CN102769852B (zh) | 一种家庭基站的干扰控制方法、装置及系统 | |
CN113748744A (zh) | 用户装置和无线基站 | |
WO2019194005A1 (ja) | 飛行体管理装置 | |
WO2019087369A1 (ja) | ユーザ装置、及び送信電力制御方法 | |
JP7105257B2 (ja) | ユーザ装置及び無線通信方法 | |
KR101687501B1 (ko) | 무선 기지국 장치 및 통신 방법 | |
JP7339242B2 (ja) | 飛行体管理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18761237 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18761237 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |