WO2018159663A1 - Light-emitting material, organic light-emitting element and compound - Google Patents
Light-emitting material, organic light-emitting element and compound Download PDFInfo
- Publication number
- WO2018159663A1 WO2018159663A1 PCT/JP2018/007464 JP2018007464W WO2018159663A1 WO 2018159663 A1 WO2018159663 A1 WO 2018159663A1 JP 2018007464 W JP2018007464 W JP 2018007464W WO 2018159663 A1 WO2018159663 A1 WO 2018159663A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- compound
- general formula
- material according
- luminescent material
- Prior art date
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 145
- 239000000463 material Substances 0.000 title claims abstract description 143
- 230000003111 delayed effect Effects 0.000 claims description 48
- 125000001424 substituent group Chemical group 0.000 claims description 40
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 38
- 238000005401 electroluminescence Methods 0.000 claims description 29
- TXCDCPKCNAJMEE-UHFFFAOYSA-N dibenzofuran Chemical group C1=CC=C2C3=CC=CC=C3OC2=C1 TXCDCPKCNAJMEE-UHFFFAOYSA-N 0.000 claims description 17
- -1 dibenzofuran-4,6-diyl group Chemical group 0.000 claims description 15
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 15
- 125000003118 aryl group Chemical group 0.000 claims description 14
- 125000004122 cyclic group Chemical group 0.000 claims description 10
- IYYZUPMFVPLQIF-ALWQSETLSA-N dibenzothiophene Chemical group C1=CC=CC=2[34S]C3=C(C=21)C=CC=C3 IYYZUPMFVPLQIF-ALWQSETLSA-N 0.000 claims description 9
- 125000006575 electron-withdrawing group Chemical group 0.000 claims description 9
- HJCUTNIGJHJGCF-UHFFFAOYSA-N 9,10-dihydroacridine Chemical group C1=CC=C2CC3=CC=CC=C3NC2=C1 HJCUTNIGJHJGCF-UHFFFAOYSA-N 0.000 claims description 8
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 3
- 125000004306 triazinyl group Chemical group 0.000 claims description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 2
- 150000004826 dibenzofurans Chemical class 0.000 claims 1
- IYYZUPMFVPLQIF-UHFFFAOYSA-N dibenzothiophene sulfoxide Natural products C1=CC=C2C3=CC=CC=C3SC2=C1 IYYZUPMFVPLQIF-UHFFFAOYSA-N 0.000 claims 1
- 239000010410 layer Substances 0.000 description 147
- 125000004432 carbon atom Chemical group C* 0.000 description 51
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 45
- 230000000903 blocking effect Effects 0.000 description 40
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 30
- 238000006243 chemical reaction Methods 0.000 description 28
- 239000000203 mixture Substances 0.000 description 27
- 239000000243 solution Substances 0.000 description 24
- 238000002347 injection Methods 0.000 description 22
- 239000007924 injection Substances 0.000 description 22
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 18
- 230000005525 hole transport Effects 0.000 description 18
- 229910052938 sodium sulfate Inorganic materials 0.000 description 18
- 235000011152 sodium sulphate Nutrition 0.000 description 18
- 239000010408 film Substances 0.000 description 17
- 239000012044 organic layer Substances 0.000 description 17
- 238000003786 synthesis reaction Methods 0.000 description 17
- MFRIHAYPQRLWNB-UHFFFAOYSA-N sodium tert-butoxide Chemical compound [Na+].CC(C)(C)[O-] MFRIHAYPQRLWNB-UHFFFAOYSA-N 0.000 description 16
- 238000012546 transfer Methods 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 15
- 230000015572 biosynthetic process Effects 0.000 description 15
- 229940125904 compound 1 Drugs 0.000 description 15
- 230000006870 function Effects 0.000 description 15
- 239000000758 substrate Substances 0.000 description 15
- 125000000217 alkyl group Chemical group 0.000 description 14
- 229920000642 polymer Polymers 0.000 description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 13
- 238000004440 column chromatography Methods 0.000 description 12
- 239000000741 silica gel Substances 0.000 description 12
- 229910002027 silica gel Inorganic materials 0.000 description 12
- 238000001914 filtration Methods 0.000 description 11
- 238000004809 thin layer chromatography Methods 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 239000002994 raw material Substances 0.000 description 10
- 125000003545 alkoxy group Chemical group 0.000 description 9
- 125000001072 heteroaryl group Chemical group 0.000 description 9
- 238000001296 phosphorescence spectrum Methods 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 229910001873 dinitrogen Inorganic materials 0.000 description 8
- 239000011777 magnesium Substances 0.000 description 8
- 229910052749 magnesium Inorganic materials 0.000 description 8
- 238000006862 quantum yield reaction Methods 0.000 description 8
- 150000003613 toluenes Chemical class 0.000 description 8
- 238000007740 vapor deposition Methods 0.000 description 8
- JSEQNGYLWKBMJI-UHFFFAOYSA-N 9,9-dimethyl-10h-acridine Chemical compound C1=CC=C2C(C)(C)C3=CC=CC=C3NC2=C1 JSEQNGYLWKBMJI-UHFFFAOYSA-N 0.000 description 7
- 239000007983 Tris buffer Substances 0.000 description 7
- WMKGGPCROCCUDY-PHEQNACWSA-N dibenzylideneacetone Chemical compound C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1 WMKGGPCROCCUDY-PHEQNACWSA-N 0.000 description 7
- 239000007772 electrode material Substances 0.000 description 7
- 230000001747 exhibiting effect Effects 0.000 description 7
- 125000005843 halogen group Chemical group 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 150000001555 benzenes Chemical class 0.000 description 6
- 230000005284 excitation Effects 0.000 description 6
- 238000002189 fluorescence spectrum Methods 0.000 description 6
- 125000005647 linker group Chemical group 0.000 description 6
- 238000004020 luminiscence type Methods 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 239000010409 thin film Substances 0.000 description 6
- 230000005587 bubbling Effects 0.000 description 5
- 230000000630 rising effect Effects 0.000 description 5
- BWHDROKFUHTORW-UHFFFAOYSA-N tri-tert-butylphosphine Substances CC(C)(C)P(C(C)(C)C)C(C)(C)C BWHDROKFUHTORW-UHFFFAOYSA-N 0.000 description 5
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 125000001309 chloro group Chemical group Cl* 0.000 description 4
- 238000000295 emission spectrum Methods 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 125000001153 fluoro group Chemical group F* 0.000 description 4
- 150000002894 organic compounds Chemical class 0.000 description 4
- 230000000379 polymerizing effect Effects 0.000 description 4
- 238000005215 recombination Methods 0.000 description 4
- 230000006798 recombination Effects 0.000 description 4
- 0 CC(C)(c1c(*2)cccc1)c1c2cccc1 Chemical compound CC(C)(c1c(*2)cccc1)c1c2cccc1 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000000862 absorption spectrum Methods 0.000 description 3
- FZEYVTFCMJSGMP-UHFFFAOYSA-N acridone Chemical group C1=CC=C2C(=O)C3=CC=CC=C3NC2=C1 FZEYVTFCMJSGMP-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 229940125782 compound 2 Drugs 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 125000004093 cyano group Chemical group *C#N 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000005281 excited state Effects 0.000 description 3
- 238000004770 highest occupied molecular orbital Methods 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 3
- 150000004866 oxadiazoles Chemical class 0.000 description 3
- 125000004430 oxygen atom Chemical group O* 0.000 description 3
- 238000005424 photoluminescence Methods 0.000 description 3
- 229910000027 potassium carbonate Inorganic materials 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 125000004665 trialkylsilyl group Chemical group 0.000 description 3
- VJWDDRPEDLXFLY-UHFFFAOYSA-N (4-bromo-2-methoxyphenyl)boronic acid Chemical compound COC1=CC(Br)=CC=C1B(O)O VJWDDRPEDLXFLY-UHFFFAOYSA-N 0.000 description 2
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical group C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- 125000000304 alkynyl group Chemical group 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 125000003277 amino group Chemical class 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- QARVLSVVCXYDNA-UHFFFAOYSA-N bromobenzene Chemical compound BrC1=CC=CC=C1 QARVLSVVCXYDNA-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000010549 co-Evaporation Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 125000004663 dialkyl amino group Chemical group 0.000 description 2
- 125000004986 diarylamino group Chemical group 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 2
- 235000019341 magnesium sulphate Nutrition 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- VAMXMNNIEUEQDV-UHFFFAOYSA-N methyl anthranilate Chemical compound COC(=O)C1=CC=CC=C1N VAMXMNNIEUEQDV-UHFFFAOYSA-N 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- AOJFQRQNPXYVLM-UHFFFAOYSA-N pyridin-1-ium;chloride Chemical compound [Cl-].C1=CC=[NH+]C=C1 AOJFQRQNPXYVLM-UHFFFAOYSA-N 0.000 description 2
- 125000001567 quinoxalinyl group Chemical class N1=C(C=NC2=CC=CC=C12)* 0.000 description 2
- 150000005839 radical cations Chemical class 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 125000004434 sulfur atom Chemical group 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- CYPYTURSJDMMMP-WVCUSYJESA-N (1e,4e)-1,5-diphenylpenta-1,4-dien-3-one;palladium Chemical compound [Pd].[Pd].C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1 CYPYTURSJDMMMP-WVCUSYJESA-N 0.000 description 1
- RJAVAGGIKIMCKQ-UHFFFAOYSA-N 1-(3-bromophenyl)-9h-carbazole Chemical compound BrC1=CC=CC(C=2C3=C(C4=CC=CC=C4N3)C=CC=2)=C1 RJAVAGGIKIMCKQ-UHFFFAOYSA-N 0.000 description 1
- VERMWGQSKPXSPZ-BUHFOSPRSA-N 1-[(e)-2-phenylethenyl]anthracene Chemical class C=1C=CC2=CC3=CC=CC=C3C=C2C=1\C=C\C1=CC=CC=C1 VERMWGQSKPXSPZ-BUHFOSPRSA-N 0.000 description 1
- WUYYVOWEBMOELQ-UHFFFAOYSA-N 1-bromodibenzofuran Chemical compound O1C2=CC=CC=C2C2=C1C=CC=C2Br WUYYVOWEBMOELQ-UHFFFAOYSA-N 0.000 description 1
- MVWPVABZQQJTPL-UHFFFAOYSA-N 2,3-diphenylcyclohexa-2,5-diene-1,4-dione Chemical class O=C1C=CC(=O)C(C=2C=CC=CC=2)=C1C1=CC=CC=C1 MVWPVABZQQJTPL-UHFFFAOYSA-N 0.000 description 1
- UFCZRCPQBWIXTR-UHFFFAOYSA-N 2,8-dibromodibenzofuran Chemical compound C1=C(Br)C=C2C3=CC(Br)=CC=C3OC2=C1 UFCZRCPQBWIXTR-UHFFFAOYSA-N 0.000 description 1
- DJZCURCMRFSQBP-UHFFFAOYSA-N 2-bromo-4,6-diphenyl-1H-triazine Chemical compound BrN1NC(=CC(=N1)C1=CC=CC=C1)C1=CC=CC=C1 DJZCURCMRFSQBP-UHFFFAOYSA-N 0.000 description 1
- CRJISNQTZDMKQD-UHFFFAOYSA-N 2-bromodibenzofuran Chemical compound C1=CC=C2C3=CC(Br)=CC=C3OC2=C1 CRJISNQTZDMKQD-UHFFFAOYSA-N 0.000 description 1
- AZFABGHLDGJASW-UHFFFAOYSA-N 3-bromodibenzofuran Chemical compound C1=CC=C2C3=CC=C(Br)C=C3OC2=C1 AZFABGHLDGJASW-UHFFFAOYSA-N 0.000 description 1
- WDBQJSCPCGTAFG-QHCPKHFHSA-N 4,4-difluoro-N-[(1S)-3-[4-(3-methyl-5-propan-2-yl-1,2,4-triazol-4-yl)piperidin-1-yl]-1-pyridin-3-ylpropyl]cyclohexane-1-carboxamide Chemical compound FC1(CCC(CC1)C(=O)N[C@@H](CCN1CCC(CC1)N1C(=NN=C1C)C(C)C)C=1C=NC=CC=1)F WDBQJSCPCGTAFG-QHCPKHFHSA-N 0.000 description 1
- BWGRDBSNKQABCB-UHFFFAOYSA-N 4,4-difluoro-N-[3-[3-(3-methyl-5-propan-2-yl-1,2,4-triazol-4-yl)-8-azabicyclo[3.2.1]octan-8-yl]-1-thiophen-2-ylpropyl]cyclohexane-1-carboxamide Chemical compound CC(C)C1=NN=C(C)N1C1CC2CCC(C1)N2CCC(NC(=O)C1CCC(F)(F)CC1)C1=CC=CS1 BWGRDBSNKQABCB-UHFFFAOYSA-N 0.000 description 1
- XSJLDNSNUICSQC-UHFFFAOYSA-N 4,6-dibromodibenzofuran Chemical compound O1C2=C(Br)C=CC=C2C2=C1C(Br)=CC=C2 XSJLDNSNUICSQC-UHFFFAOYSA-N 0.000 description 1
- XRMZKCQCINEBEI-UHFFFAOYSA-N 4-bromo-2-fluoro-1-iodobenzene Chemical compound FC1=CC(Br)=CC=C1I XRMZKCQCINEBEI-UHFFFAOYSA-N 0.000 description 1
- DYTYBRPMNQQFFL-UHFFFAOYSA-N 4-bromodibenzofuran Chemical compound O1C2=CC=CC=C2C2=C1C(Br)=CC=C2 DYTYBRPMNQQFFL-UHFFFAOYSA-N 0.000 description 1
- ZYASLTYCYTYKFC-UHFFFAOYSA-N 9-methylidenefluorene Chemical class C1=CC=C2C(=C)C3=CC=CC=C3C2=C1 ZYASLTYCYTYKFC-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- FTJAGWQXWNQBIA-UHFFFAOYSA-N COC(c(cccc1)c1Nc1cc(-[n]2c3ccccc3c3c2cccc3)ccc1)=O Chemical compound COC(c(cccc1)c1Nc1cc(-[n]2c3ccccc3c3c2cccc3)ccc1)=O FTJAGWQXWNQBIA-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910000799 K alloy Inorganic materials 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- NUGPIZCTELGDOS-QHCPKHFHSA-N N-[(1S)-3-[4-(3-methyl-5-propan-2-yl-1,2,4-triazol-4-yl)piperidin-1-yl]-1-pyridin-3-ylpropyl]cyclopentanecarboxamide Chemical compound C(C)(C)C1=NN=C(N1C1CCN(CC1)CC[C@@H](C=1C=NC=CC=1)NC(=O)C1CCCC1)C NUGPIZCTELGDOS-QHCPKHFHSA-N 0.000 description 1
- LFZAGIJXANFPFN-UHFFFAOYSA-N N-[3-[4-(3-methyl-5-propan-2-yl-1,2,4-triazol-4-yl)piperidin-1-yl]-1-thiophen-2-ylpropyl]acetamide Chemical compound C(C)(C)C1=NN=C(N1C1CCN(CC1)CCC(C=1SC=CC=1)NC(C)=O)C LFZAGIJXANFPFN-UHFFFAOYSA-N 0.000 description 1
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N N-phenyl amine Natural products NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 1
- ZCJJIQHVZCFSGZ-UHFFFAOYSA-N O=P(c1ccccc1)(c1ccccc1)c1ccc2[s]c(ccc(P(c3ccccc3)(c3ccccc3)=O)c3)c3c2c1 Chemical compound O=P(c1ccccc1)(c1ccccc1)c1ccc2[s]c(ccc(P(c3ccccc3)(c3ccccc3)=O)c3)c3c2c1 ZCJJIQHVZCFSGZ-UHFFFAOYSA-N 0.000 description 1
- OYLYXPGHLWJFFU-UHFFFAOYSA-N OC(c1ccccc1Nc1cccc(-[n]2c3ccccc3c3c2cccc3)c1)=O Chemical compound OC(c1ccccc1Nc1cccc(-[n]2c3ccccc3c3c2cccc3)c1)=O OYLYXPGHLWJFFU-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 1
- 125000004390 alkyl sulfonyl group Chemical group 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 150000008425 anthrones Chemical class 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 125000000732 arylene group Chemical group 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000003287 bathing Methods 0.000 description 1
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 1
- 229910000024 caesium carbonate Inorganic materials 0.000 description 1
- 150000001716 carbazoles Chemical class 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 229940126214 compound 3 Drugs 0.000 description 1
- 229940125898 compound 5 Drugs 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000008376 fluorenones Chemical class 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 125000001188 haloalkyl group Chemical group 0.000 description 1
- 229940083761 high-ceiling diuretics pyrazolone derivative Drugs 0.000 description 1
- 150000007857 hydrazones Chemical class 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- VVVPGLRKXQSQSZ-UHFFFAOYSA-N indolo[3,2-c]carbazole Chemical class C1=CC=CC2=NC3=C4C5=CC=CC=C5N=C4C=CC3=C21 VVVPGLRKXQSQSZ-UHFFFAOYSA-N 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229940079865 intestinal antiinfectives imidazole derivative Drugs 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229940102398 methyl anthranilate Drugs 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical compound C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical group C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 1
- 150000007978 oxazole derivatives Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- 150000004986 phenylenediamines Chemical class 0.000 description 1
- 238000000085 photoelectron yield spectroscopy Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920000137 polyphosphoric acid Polymers 0.000 description 1
- BITYAPCSNKJESK-UHFFFAOYSA-N potassiosodium Chemical compound [Na].[K] BITYAPCSNKJESK-UHFFFAOYSA-N 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- JEXVQSWXXUJEMA-UHFFFAOYSA-N pyrazol-3-one Chemical class O=C1C=CN=N1 JEXVQSWXXUJEMA-UHFFFAOYSA-N 0.000 description 1
- 150000003219 pyrazolines Chemical class 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 150000005838 radical anions Chemical class 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 125000005353 silylalkyl group Chemical group 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical class C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229940042055 systemic antimycotics triazole derivative Drugs 0.000 description 1
- 150000004867 thiadiazoles Chemical class 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- IBBLKSWSCDAPIF-UHFFFAOYSA-N thiopyran Chemical compound S1C=CC=C=C1 IBBLKSWSCDAPIF-UHFFFAOYSA-N 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/04—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/14—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
Definitions
- the present invention relates to a light emitting material and an organic light emitting device using the light emitting material.
- the present invention also relates to compounds used for these light emitting materials and organic light emitting devices.
- Thermally activated delayed fluorescent material is the transition from excited triplet state to excited singlet state due to the absorption of thermal energy when transitioning to excited triplet state. It is a compound that emits fluorescence when returning to the back.
- the fluorescence due to such a route is called delayed fluorescence because it is observed later than the fluorescence from the excited singlet state (normal fluorescence) directly generated without passing through the reverse intersystem crossing.
- delayed fluorescence because it is observed later than the fluorescence from the excited singlet state (normal fluorescence) directly generated without passing through the reverse intersystem crossing.
- the generation probability of an excited singlet state and an excited triplet state is 25%: 75%, there is a limit to the improvement of the light emission efficiency only with the fluorescence generated directly from the excited singlet state. is there.
- the excited triplet state energy generated with a probability of 75% can also be effectively used for fluorescence emission, so that higher luminous efficiency can be expected.
- a conventional typical thermally activated delayed fluorescent material includes a structure (DA structure) in which a donor site (D) exhibiting electron donor properties and an acceptor site (A) exhibiting electron acceptor properties are bonded.
- DA structure a structure in which a donor site (D) exhibiting electron donor properties and an acceptor site (A) exhibiting electron acceptor properties are bonded.
- Known for example, Non-Patent Documents 1 to 4.
- groups have been known as groups exhibiting electron donor properties and electron acceptor properties, and new groups have been developed. Then, by selecting a donor site (D) from a group exhibiting electron donor properties, selecting an acceptor site (A) from a group exhibiting electron acceptor properties, and designing a molecule that combines them, Various attempts have been made to develop compounds having good luminescent properties.
- a light emitting material comprising a compound that satisfies any of the following conditions (A) to (C).
- B A compound having a structure in which a donor group having a Hammett ⁇ p value of ⁇ 0.5 or more and less than 0 and an acceptor group having a Hammett ⁇ p value of more than 0 and 0.5 or less are linked.
- C A compound having a structure in which two different donor groups are bonded to each other.
- [3] luminescent material according to the minimum difference Delta] E ST excited singlet energy level E S1 and the lowest excited triplet energy level E T1 compound is less than 0.4 eV, [1] or [2].
- R 1 to R 8 each independently represents a hydrogen atom or a substituent
- R 9 represents a substituent.
- R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 4 and R 9 , R 5 and R 9 are respectively They may be bonded to each other to form a cyclic structure.
- Z represents an electron withdrawing group.
- the general formula (1) satisfies the above (A) or (B).
- the light emitting material according to [6], wherein Z in the general formula (1) is> C ⁇ O.
- R 11 and R 12 , R 12 and R 13 , R 13 and R 14 , R 15 and R 16 , R 16 and R 17 , R 17 and R 18 , R 18 and R 19 , R 19 and R 20 , R 20 And R 11 may be bonded to each other to form a cyclic structure.
- n represents an integer of 1 to 4.
- the general formula (2) satisfies the above (C).
- [21] The luminescent material according to [20], wherein n is 2.
- D represents an optionally substituted dibenzofuran-4,6-diyl group or an optionally substituted dibenzothiophene-4,6-diyl group.
- a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
- the isotope species of the hydrogen atom present in the molecule of the compound used in the present invention is not particularly limited. For example, all the hydrogen atoms in the molecule may be 1 H, or a part or all of the hydrogen atoms are 2 H. (Deuterium D) may be used.
- the luminescent material of the present invention is characterized by comprising a compound that satisfies any of the following conditions (A) to (C).
- B A compound having a structure in which a donor group having a Hammett ⁇ p value of ⁇ 0.5 or more and less than 0 and an acceptor group having a Hammett ⁇ p value of more than 0 and 0.5 or less are linked.
- C A compound having a structure in which two different donor groups are bonded to each other.
- the “acceptor group” means a group whose Hammett ⁇ p + value is positive (greater than 0). Further, in the present application, the “donor group” means a group having a Hammett ⁇ p + value that is negative (less than 0).
- the “Hammett ⁇ p + value” in the present invention is L. P. Proposed by Hammett, it quantifies the effect of substituents on the reaction rate or equilibrium of para-substituted benzene derivatives. Specifically, the following formula is established between the substituent in the para-substituted benzene derivative and the reaction rate constant or equilibrium constant: This is a constant ( ⁇ p ) peculiar to the substituent in.
- k is a rate constant of a benzene derivative having no substituent
- k 0 is a rate constant of a benzene derivative substituted with a substituent
- K is an equilibrium constant of a benzene derivative having no substituent
- K 0 is a substituent.
- the equilibrium constant of the benzene derivative substituted with ⁇ , ⁇ represents the reaction constant determined by the type and conditions of the reaction.
- the compound satisfying the above (A) has a structure in which two different acceptor groups are bonded to each other.
- the two acceptor groups present in the compound satisfying (A) preferably have different acceptor strengths. That is, it is preferable to have a structure in which a relatively strong acceptor group and a relatively weak acceptor group are linked.
- a relatively strong acceptor group for example, an optionally substituted triazine ring group can be exemplified.
- examples of the relatively weak acceptor group include an optionally substituted acridone ring group.
- the relatively strong acceptor group present in the compound satisfying the above (A) and the relatively weak acceptor group preferably have a ⁇ p value difference of 0.1 or more, and preferably 0.2 or more.
- a range of 0.3 or more, a range of 0.5 or more, or a range of 0.7 or more may be selected.
- a range of 1.5 or less and a range of 1.0 or less may be selected. May be.
- ⁇ p of the relatively weak acceptor group may be selected, for example, from a range of more than 0 to 0.5 or less, may be selected from a range of more than 0 to 0.3 or less, or more than 0 to 0.15 or less You may select from the range.
- Each of the two acceptor groups constituting the compound satisfying (A) may contain one or more small substituents.
- the small substituent that may be contained in each acceptor group may not necessarily be a group that exhibits acceptor properties.
- the acceptor group may contain a small donor group.
- a donor group examples include an alkyl group, an alkoxy group, and an aryl group.
- the alkyl group that can be a small substituent may be linear, branched, or cyclic, but is preferably linear or branched. Further, the number of carbon atoms of the alkyl group may be selected, for example, within the range of 1 to 10, selected from the range of 1 to 6, selected from the range of 1 to 4, or 1 to You may select from the range of 3.
- the alkoxy group that can be a small substituent may be linear, branched, or cyclic, but is preferably linear or branched.
- the number of carbon atoms of the alkoxy group may be selected, for example, from the range of 1 to 10, may be selected from the range of 1 to 6, may be selected from the range of 1 to 4, You may select from the range of 3.
- the aryl group that can be a small substituent may be a single ring or a condensed ring, and the number of carbon atoms may be selected from the range of, for example, 6 to 40, or selected from the range of 6 to 14. It may also be selected from the range of 6-10. It is also preferable that the compound satisfying (A) does not contain any donor group in the molecule.
- the compound satisfying the above (B) has a structure in which a donor group having a Hammett ⁇ p value of ⁇ 0.5 or more and less than 0 and an acceptor group having a Hammett ⁇ p value of more than 0 and 0.5 or less are linked.
- a donor group include a carbazolyl group, and an N-carbazolyl group can be preferably exemplified.
- an acridone ring group can be mentioned as such an acceptor group.
- the ⁇ p value of the donor group may be selected from a range of ⁇ 0.1 or less, may be selected from a range of ⁇ 0.2 or less, and may be selected from a range of ⁇ 0.4 or more.
- the ⁇ p value of the acceptor group may be selected, for example, from a range of 0.1 or more, may be selected from a range of 0.2 or more, or may be selected from a range of 0.4 or less, You may select from the range below 0.3.
- the donor group having a Hammett's ⁇ p value of ⁇ 0.5 or more and less than 0 may contain a small acceptor group as long as the entire donor group exhibits a ⁇ p value of ⁇ 0.5 or more and less than 0. . Examples of such an acceptor group include a halogen atom (for example, a fluorine atom).
- the acceptor group having a Hammett ⁇ p value of more than 0 and 0.5 or less may contain a small donor group as long as the entire acceptor group exhibits a ⁇ p value of more than 0 and less than 0.5. .
- a donor group the corresponding description in (A) above can be referred to.
- the compound satisfying the above (C) has a structure in which two different donor groups are bonded to each other.
- the two donor groups present in the compound satisfying (C) preferably have different donor properties. That is, it is preferable to have a structure in which a relatively strong donor group and a relatively weak donor group are linked.
- a relatively strong donor group for example, an optionally substituted triazine ring group can be exemplified.
- the relatively weak donor group include a dibenzofuran ring group which may be substituted and a dibenzothiophene ring group which may be substituted.
- the relatively strong donor group present in the compound satisfying the above (C) and the relatively weak donor group preferably have a ⁇ p value difference of 0.1 or more, and preferably 0.2 or more.
- a range of 0.3 or more, a range of 0.5 or more, or a range of 0.7 or more may be selected.
- a range of 1.5 or less or 1.0 or less may be selected. May be.
- ⁇ p of the relatively weak donor group may be selected from a range of ⁇ 0.5 or more and less than 0, may be selected from a range of ⁇ 0.3 or more and less than 0, or ⁇ 0.15 You may select from the range below 0.
- Each of the two donor groups constituting the compound satisfying (C) may each contain one or more small substituents.
- the small substituent that may be contained in each donor group may not necessarily be a group that exhibits donor properties.
- a small acceptor group may be included in the donor group.
- an acceptor group include a halogen atom (for example, a fluorine atom). It is also preferred that the compound satisfying (C) does not contain any acceptor group in the molecule.
- the light-emitting material of the present invention satisfies any of the conditions (A) to (C), and the difference between the lowest excited singlet energy level E S1 and the lowest excited triplet energy level E T1 of the compound ( ⁇ E ST ). Is particularly preferably small.
- Delta] E ST may be selected within the range of, for example, 0.6eV or less, preferably less 0.4 eV, more preferably less 0.3 eV, and more preferably less 0.2 eV. If particular structures of compounds, approximate values of Delta] E ST is can be determined by calculation. For example, it can be calculated using a calculation method by Gaussian et al.
- ⁇ E ST here is obtained by calculating the difference between the lowest excited singlet energy level (E S1 ) and the lowest excited triplet energy level (E T1 ) from the emission ends of the fluorescence and phosphorescence spectra. . Specifically, by implementing the following method can be determined easily Delta] E ST.
- E S1 Lowest excited singlet energy level
- a toluene solution (concentration: 1 ⁇ 10 ⁇ 5 M) containing a measurement target compound or a PMMA film (compound concentration: 0.1 mol%, thickness 100 nm) containing a measurement target compound formed on a silicon substrate is used as a measurement sample. Prepared and measured the fluorescence spectrum of this sample at room temperature (300K).
- E S1 [eV] 1239.85 / ⁇ edge (2)
- E T1 Lowest excited triplet energy level
- a tangent line was drawn with respect to the rising edge of the phosphorescence spectrum on the short wavelength side, and a wavelength value ⁇ edge [nm] at the intersection of the tangent line and the horizontal axis was obtained.
- a value obtained by converting this wavelength value into an energy value by the following conversion formula was defined as ET1 .
- Conversion formula: E T1 [eV] 1239.85 / ⁇ edge
- the tangent to the short wavelength rising edge of the phosphorescence spectrum was drawn as follows. When moving on the spectrum curve from the short wavelength side of the phosphorescence spectrum to the maximum value on the shortest wavelength side of the maximum value of the spectrum, the tangent at each point on the curve toward the long wavelength side was considered.
- the slope of this tangent line increases as the curve rises (that is, as the vertical axis increases).
- the tangent drawn at the point where the value of the slope takes the maximum value was taken as the tangent to the rising edge of the phosphorescence spectrum on the short wavelength side.
- the maximum point having a peak intensity of 10% or less of the maximum peak intensity of the spectrum is not included in the maximum value on the shortest wavelength side described above, and the slope value closest to the maximum value on the shortest wavelength side is the maximum value.
- the tangent drawn at the point taken was taken as the tangent to the rising edge of the phosphorescence spectrum on the short wavelength side.
- a sample is a toluene solution, it measures with a phosphorescence measuring apparatus at 77 [K].
- a molecule having a smaller Delta] E ST design Is possible. Since such a compound can be a molecule having a larger band gap than the conventional thermally activated delayed fluorescent material, various blue light emitting materials can be developed according to the present invention.
- the conventional thermally activated delayed fluorescent material has a structure in which a donor group and an acceptor group are bonded, and a group that stabilizes a radical cation is selected as an electron donor group, and a radical is selected as an acceptor group. A group that stabilizes the anion is selected.
- the lifetime of the delayed fluorescent component is relatively long, on the order of microseconds to milliseconds. This means that the lifetime as a T 1 exciton is long.
- the exciton energy of the luminescent molecule moves to the oxygen molecule by the Dexter mechanism, and the excitons on the luminescent molecule disappear. For this reason, T 1 excitons capable of intersystem crossing to S 1 are decreased, and the emission quantum yield of the TADF molecule is decreased in the presence of oxygen.
- the ability to stabilize one of the radical anion or the radical cation is deficient.
- the path from 1 to the ground state through the reverse intersystem crossing is promoted, and the lifetime of the T 1 exciton is shortened so that it is less susceptible to the quenching by oxygen.
- Z represents an electron withdrawing group.
- electron withdrawing group means a group having a stronger property of attracting electrons than a methylene group.
- As an electron-withdrawing group that can be preferably used as Z,>C ⁇ O,> C ⁇ C (CN) 2 ,> BR 10 ,> SO 2 ,> C (CF 3 ) 2 ,> P ( O) R 11 and S can be mentioned, but the electron-withdrawing group that can be employed in the present invention is not limited to these examples.
- R 10 and R 11 represent a substituent.
- R 10 and R 11 can take are a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, and more preferably those having 1 to 10 carbon atoms.
- An unsubstituted aryl group Since the structural portion excluding R 9 in the general formula (1) has an electron-withdrawing group corresponding to Z together with a nitrogen atom connecting two benzene rings, it has both a donor property and an acceptor property. It has a characteristic structural part.
- R 1 to R 8 each independently represents a hydrogen atom or a substituent.
- R 9 represents a substituent.
- substituents that R 1 to R 9 can take include, for example, a hydroxy group, a halogen atom, a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkylthio group having 1 to 20 carbon atoms, An alkyl-substituted amino group having 1 to 20 carbon atoms, an aryl-substituted amino group having 12 to 40 carbon atoms, an acyl group having 2 to 20 carbon atoms, an aryl group having 6 to 40 carbon atoms, a heteroaryl group having 3 to 40 carbon atoms, Substituted or unsubstituted carbazolyl group having 12 to 40 carbon atoms, alkenyl group having 2 to 10 carbon atoms, alkynyl group having 2 to 10 carbon atoms
- substituents are a halogen atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, carbon A substituted or unsubstituted heteroaryl group having 3 to 40 carbon atoms, a substituted or unsubstituted dialkylamino group having 1 to 10 carbon atoms, a substituted or unsubstituted diarylamino group having 12 to 40 carbon atoms, and 12 to 40 carbon atoms A substituted or unsubstituted carbazolyl group; More preferred substituents are a fluorine atom, a chlorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms
- R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 4 and R 9 , R 5 and R 9 are respectively They may be bonded to each other to form a cyclic structure.
- At least one of R 1 to R 9 is a donor group or an acceptor group.
- the condition (A) or (B) is selected.
- a donor group as R 1 of the compound represented by the general formula (1).
- a substituted or unsubstituted heteroaryl group or a substituted or unsubstituted aryl group can be preferably employed, and a substituted or unsubstituted heteroaryl group can be more preferably employed.
- the substituted or unsubstituted heteroaryl group include a substituted or unsubstituted carbazolyl group.
- R 9 is preferably a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group, and more preferably a substituted or unsubstituted aryl group.
- an acceptor group as R 9 of the compound represented by the general formula (1).
- the acceptor group include a substituted or unsubstituted triazinyl group. Of these, a diaryltriazinyl group can be preferably employed.
- the basic skeleton of the general formula (1) exhibits characteristics useful as a light emitting material both when it is substituted with a donor group and when it is substituted with an acceptor group.
- the method for synthesizing the compound represented by the general formula (1) is not particularly limited.
- it can be synthesized by R 9 in the general formula (1) reacting a compound represented by the compound R 9-X is a hydrogen atom.
- X is a halogen atom, preferably a chlorine atom, a bromine atom or an iodine atom.
- the compound represented by the general formula (1) can also be synthesized by combining other known synthesis reactions.
- Compound represented by formula (2) The compound having the structure represented by the general formula (2) preferably used for the light emitting material of the present invention will be described.
- D represents the dibenzofuran ring group which may be substituted, or the dibenzothiophene ring group which may be substituted.
- R 11 to R 20 each independently represents a hydrogen atom or a substituent.
- R 11 and R 12 , R 12 and R 13 , R 13 and R 14 , R 15 and R 16 , R 16 and R 17 , R 17 and R 18 , R 18 and R 19 , R 19 and R 20 , R 20 And R 11 may be bonded to each other to form a cyclic structure.
- n represents an integer of 1 to 4.
- the dibenzofuran ring or dibenzothiophene ring constituting D may be substituted with a donor group, may be substituted with an acceptor group, or may be unsubstituted.
- the substitution mode of the dibenzofuran ring or dibenzothiophene ring is not limited as long as D can be a donor group as a whole.
- the substituent which R 11 to R 20 can take may be a donor group or an acceptor group. As long as the structural part excluding D exhibits donor properties as a whole, the type of these substituents is not limited.
- R 19 and R 20 in the general formula (2) may be the same or different, but are preferably the same.
- R 19 and R 20 are preferably an alkyl group, for example, preferably an alkyl group having 1 to 6 carbon atoms, and more preferably an alkyl group having 1 to 3 carbon atoms.
- N in the general formula (2) is an integer of 1 to 4, and is preferably 1 or 2.
- D in the general formula (2) may be bonded at any position of the dibenzofuran ring or the dibenzothiophene ring.
- n When n is 2, it is preferably bonded to any one of the 1 to 4 positions of the dibenzofuran ring or the dibenzothiophene ring and any one of the 6 to 9 positions.
- a mode of bonding at the 2-position and the 8-position, a mode of bonding at the 3-position and the 7-position, and a mode of bonding at the 4-position and the 6-position can be exemplified. Among them, it is particularly preferable to bond at the 4-position and the 6-position (see Compound 9).
- a method for synthesizing the compound represented by the general formula (2) is not particularly limited. For example, it can be synthesized by reacting a compound represented by DX with a compound in which D in the general formula (2) is a hydrogen atom.
- X is a halogen atom, preferably a chlorine atom, a bromine atom or an iodine atom.
- the compound represented by the general formula (1) can also be synthesized by combining other known synthesis reactions.
- the compound represented by the general formula (1) or the general formula (2) can emit delayed fluorescence. Therefore, the present invention includes an invention of a delayed phosphor having a structure represented by the general formula (1) or the general formula (2).
- the molecular weight of the compound represented by the general formula (1) or the general formula (2) is used by, for example, forming an organic layer containing the compound represented by the general formula (1) or the general formula (2) by vapor deposition. When it is intended to do, it is preferably 1500 or less, more preferably 1200 or less, even more preferably 1000 or less, and even more preferably 800 or less.
- the lower limit of the molecular weight is the smallest molecular weight that the general formula (1) or the general formula (2) can take.
- the compound represented by the general formula (1) or the general formula (2) may be formed by a coating method regardless of the molecular weight. If a coating method is used, a film can be formed even with a compound having a relatively large molecular weight.
- the compound that emits delayed fluorescence and is capable of intramolecular proton transfer may be a polymer obtained by polymerizing a polymerizable monomer that emits delayed fluorescence and is capable of intramolecular proton transfer.
- a polymer obtained by preliminarily allowing a polymerizable group to exist in the structure represented by the general formula (1) or (2) and polymerizing the polymerizable group is used for the organic light emitting device. It can be considered to be used as a material.
- a monomer containing a polymerizable functional group in any of R 1 to R 9 in the general formula (1), R 11 to R 20 in the general formula (2), or D is prepared.
- a polymer having a repeating unit is obtained by polymerizing the polymer alone or with other monomers, and the polymer is used as a material for the organic light-emitting device.
- Examples of a polymer having a repeating unit containing a structure represented by the general formula (1) or (2) include a polymer containing a structure represented by the following general formula (11) or (12) Can do.
- Q represents a group including a structure represented by General Formula (1) or General Formula (2)
- L 1 and L 2 represent a linking group.
- the linking group preferably has 0 to 20 carbon atoms, more preferably 1 to 15 carbon atoms, and still more preferably 2 to 10 carbon atoms. And preferably has a structure represented by - linking group -X 11 -L 11.
- X 11 represents an oxygen atom or a sulfur atom, and is preferably an oxygen atom.
- L 11 represents a linking group, and is preferably a substituted or unsubstituted alkylene group, or a substituted or unsubstituted arylene group, and is a substituted or unsubstituted alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted group A phenylene group is more preferable.
- R 101 , R 102 , R 103 and R 104 each independently represent a substituent.
- it is a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 6 carbon atoms, or a halogen atom, more preferably an unsubstituted alkyl group having 1 to 3 carbon atoms.
- An unsubstituted alkoxy group having 1 to 3 carbon atoms, a fluorine atom, and a chlorine atom and more preferably an unsubstituted alkyl group having 1 to 3 carbon atoms and an unsubstituted alkoxy group having 1 to 3 carbon atoms.
- the linking group represented by L 1 and L 2 is any one of R 1 to R 9 having the structure of the general formula (1) constituting Q, R 11 to R 20 having the structure of the general formula (2), and D Can be bound to either. Two or more linking groups may be linked to one Q to form a crosslinked structure or a network structure.
- the polymer having a repeating unit containing the formulas (13) to (16) is any one of R 1 to R 9 having the structure of the general formula (1), or R 11 to R 20 having the structure of the general formula (2). It can be synthesized by introducing a hydroxy group into any of D and D, reacting the following compound as a linker to introduce a polymerizable group, and polymerizing the polymerizable group.
- the polymer containing the structure represented by the general formula (1) or the general formula (2) in the molecule is a polymer composed only of repeating units having the structure represented by the general formula (1) or the general formula (2). It may be a polymer containing a repeating unit having other structure.
- the repeating unit having a structure represented by the general formula (1) or the general formula (2) contained in the polymer may be a single type or two or more types.
- Examples of the repeating unit not having the structure represented by the general formula (1) or the general formula (2) include those derived from monomers used in ordinary copolymerization. Examples thereof include a repeating unit derived from a monomer having an ethylenically unsaturated bond such as ethylene and styrene.
- Organic light emitting device In the organic light emitting device of the present invention, a compound that emits delayed fluorescence and is capable of intramolecular proton transfer is used.
- a compound that emits delayed fluorescence and is capable of intramolecular proton transfer exhibits a sufficiently high quantum yield for practical use, and can be effectively used as a light-emitting material of an organic light-emitting device.
- a compound that emits delayed fluorescence and is capable of intramolecular proton transfer can also be used as a host or assist dopant in an organic light-emitting device.
- an organic light-emitting device using a compound that emits delayed fluorescence and is capable of intramolecular proton transfer as a light-emitting material has a feature of high luminous efficiency because this compound functions as a delayed fluorescent material.
- the principle will be described below by taking an organic electroluminescence element as an example.
- the organic electroluminescence element carriers are injected into the light emitting material from both positive and negative electrodes to generate an excited light emitting material and emit light.
- 25% of the generated excitons are excited to the excited singlet state, and the remaining 75% are excited to the excited triplet state. Therefore, the use efficiency of energy is higher when phosphorescence, which is light emission from an excited triplet state, is used.
- the excited triplet state has a long lifetime, energy saturation occurs due to saturation of the excited state and interaction with excitons in the excited triplet state, and in general, the quantum yield of phosphorescence is often not high.
- delayed fluorescent materials after energy transition to an excited triplet state due to intersystem crossing, etc., are then crossed back to an excited singlet state due to triplet-triplet annihilation or absorption of thermal energy, and emit fluorescence.
- a thermally activated delayed fluorescent material by absorption of thermal energy is particularly useful.
- excitons in the excited singlet state emit fluorescence as usual.
- excitons in the excited triplet state absorb the heat of the outside air and the heat generated by the device, and cross the terms into the excited singlet to emit fluorescence.
- the light is emitted from the excited singlet, the light is emitted at the same wavelength as the fluorescence, but the light lifetime (luminescence lifetime) generated by the reverse intersystem crossing from the excited triplet state to the excited singlet state is normal. Since the fluorescence becomes longer than the fluorescence and phosphorescence, it is observed as fluorescence delayed from these. This can be defined as delayed fluorescence. If such a heat-activated exciton transfer mechanism is used, the ratio of the compound in an excited singlet state, which normally generated only 25%, is increased to 25% or more by absorbing thermal energy after carrier injection. It can be raised.
- the heat of the device will sufficiently cause intersystem crossing from the excited triplet state to the excited singlet state and emit delayed fluorescence. Efficiency can be improved dramatically.
- organic photoluminescence element has a structure in which at least a light emitting layer is formed on a substrate.
- organic electroluminescence element has a structure in which at least an anode, a cathode, and an organic layer are formed between the anode and the cathode.
- the organic layer includes at least a light emitting layer, and may consist of only the light emitting layer, or may have one or more organic layers in addition to the light emitting layer.
- Examples of such other organic layers include a hole transport layer, a hole injection layer, an electron blocking layer, a hole blocking layer, an electron injection layer, an electron transport layer, and an exciton blocking layer.
- the hole transport layer may be a hole injection / transport layer having a hole injection function
- the electron transport layer may be an electron injection / transport layer having an electron injection function.
- FIG. 1 A specific example of the structure of an organic electroluminescence element is shown in FIG. In FIG. 1, 1 is a substrate, 2 is an anode, 3 is a hole injection layer, 4 is a hole transport layer, 5 is a light emitting layer, 6 is an electron transport layer, and 7 is a cathode. Below, each member and each layer of an organic electroluminescent element are demonstrated. In addition, description of a board
- the organic electroluminescence device of the present invention is preferably supported on a substrate.
- the substrate is not particularly limited and may be any substrate conventionally used for organic electroluminescence elements.
- a substrate made of glass, transparent plastic, quartz, silicon, or the like can be used.
- an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used.
- electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
- conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
- an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
- a thin film may be formed by vapor deposition or sputtering of these electrode materials, and a pattern of a desired shape may be formed by photolithography, or when pattern accuracy is not so high (about 100 ⁇ m or more) ), A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
- wet film-forming methods such as a printing system and a coating system, can also be used.
- the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
- the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
- cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
- electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
- a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
- the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
- the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
- the emission luminance is advantageously improved.
- a transparent or semi-transparent cathode can be produced. By applying this, an element in which both the anode and the cathode are transparent is used. Can be produced.
- the light emitting layer is a layer that emits light after excitons are generated by recombination of holes and electrons injected from each of the anode and the cathode, and the light emitting material may be used alone for the light emitting layer.
- the light emitting material Preferably including a luminescent material and a host material.
- the luminescent material one or more selected from a group of compounds that emit delayed fluorescence and are capable of intramolecular proton transfer can be used.
- a host material in addition to the light emitting material in the light emitting layer.
- the host material an organic compound in which at least one of excited singlet energy and excited triplet energy has a value higher than that of the light-emitting material can be used.
- singlet excitons and triplet excitons generated in the light emitting material can be confined in the molecule of the light emitting material, and the light emission efficiency can be sufficiently extracted.
- high luminous efficiency can be obtained, so that host materials that can achieve high luminous efficiency are particularly limited. And can be used in the present invention.
- light emission is generated from a light-emitting material (compound that emits delayed fluorescence and is capable of intramolecular proton transfer) contained in the light-emitting layer.
- This emission includes both fluorescence and delayed fluorescence.
- light emission from the host material may be partly or partly emitted.
- the amount of a compound that is a light emitting material, that is, a compound that emits delayed fluorescence and capable of intramolecular proton transfer is preferably 0.1% by weight or more.
- the host material in the light-emitting layer is preferably an organic compound that has a hole transporting ability and an electron transporting ability, prevents the emission of longer wavelengths, and has a high glass transition temperature.
- the injection layer is a layer provided between the electrode and the organic layer for lowering the driving voltage and improving the luminance of light emission.
- the injection layer can be provided as necessary.
- the blocking layer is a layer that can prevent diffusion of charges (electrons or holes) and / or excitons existing in the light emitting layer to the outside of the light emitting layer.
- the electron blocking layer can be disposed between the light emitting layer and the hole transport layer and blocks electrons from passing through the light emitting layer toward the hole transport layer.
- a hole blocking layer can be disposed between the light emitting layer and the electron transporting layer to prevent holes from passing through the light emitting layer toward the electron transporting layer.
- the blocking layer can also be used to block excitons from diffusing outside the light emitting layer. That is, each of the electron blocking layer and the hole blocking layer can also function as an exciton blocking layer.
- the term “electron blocking layer” or “exciton blocking layer” as used herein is used in the sense of including a layer having the functions of an electron blocking layer and an exciton blocking layer in one layer.
- the hole blocking layer has a function of an electron transport layer in a broad sense.
- the hole blocking layer has a role of blocking holes from reaching the electron transport layer while transporting electrons, thereby improving the recombination probability of electrons and holes in the light emitting layer.
- the material for the hole blocking layer the material for the electron transport layer described later can be used as necessary.
- the electron blocking layer has a function of transporting holes in a broad sense.
- the electron blocking layer has a role to block electrons from reaching the hole transport layer while transporting holes, thereby improving the probability of recombination of electrons and holes in the light emitting layer. .
- the exciton blocking layer is a layer for preventing excitons generated by recombination of holes and electrons in the light emitting layer from diffusing into the charge transport layer. It becomes possible to efficiently confine in the light emitting layer, and the light emission efficiency of the device can be improved.
- the exciton blocking layer can be inserted on either the anode side or the cathode side adjacent to the light emitting layer, or both can be inserted simultaneously.
- the layer when the exciton blocking layer is provided on the anode side, the layer can be inserted adjacent to the light emitting layer between the hole transport layer and the light emitting layer, and when inserted on the cathode side, the light emitting layer and the cathode Between the luminescent layer and the light-emitting layer.
- a hole injection layer, an electron blocking layer, or the like can be provided between the anode and the exciton blocking layer adjacent to the anode side of the light emitting layer, and the excitation adjacent to the cathode and the cathode side of the light emitting layer can be provided.
- an electron injection layer, an electron transport layer, a hole blocking layer, and the like can be provided.
- the blocking layer is disposed, at least one of the excited singlet energy and the excited triplet energy of the material used as the blocking layer is preferably higher than the excited singlet energy and the excited triplet energy of the light emitting material.
- the hole transport layer is made of a hole transport material having a function of transporting holes, and the hole transport layer can be provided as a single layer or a plurality of layers.
- the hole transport material has any one of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
- hole transport materials that can be used include, for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, carbazole derivatives, indolocarbazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, Examples include amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
- An aromatic tertiary amine compound and an styrylamine compound are preferably used, and an aromatic tertiary amine compound is more preferably used.
- the electron transport layer is made of a material having a function of transporting electrons, and the electron transport layer can be provided as a single layer or a plurality of layers.
- the electron transport material (which may also serve as a hole blocking material) may have a function of transmitting electrons injected from the cathode to the light emitting layer.
- Examples of the electron transport layer that can be used include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide oxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like.
- a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
- a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
- a compound that emits delayed fluorescence and capable of intramolecular proton transfer may be used for a light emitting layer, but also for a layer other than the light emitting layer.
- the compound that emits delayed fluorescence contained in each layer and is capable of intramolecular proton transfer may be the same or different depending on whether it is used for the light-emitting layer or a layer other than the light-emitting layer.
- the above injection layer, blocking layer, hole blocking layer, electron blocking layer, exciton blocking layer, hole transport layer, electron transport layer, etc. can emit delayed fluorescence and allow intramolecular proton transfer May be used.
- the method for forming these layers is not particularly limited, and the layer may be formed by either a dry process or a wet process.
- preferable materials that can be used for the organic electroluminescence element are shown below.
- the material that can be used in the present invention is not limited to the following exemplary compounds. Moreover, even if it is a compound illustrated as a material which has a specific function, it can also be diverted as a material which has another function.
- the organic electroluminescent device produced by the above-described method emits light by applying an electric field between the anode and the cathode of the obtained device. At this time, if the light is emitted by excited singlet energy, light having a wavelength corresponding to the energy level is confirmed as fluorescence emission and delayed fluorescence emission. In addition, in the case of light emission by excited triplet energy, a wavelength corresponding to the energy level is confirmed as phosphorescence. Since normal fluorescence has a shorter fluorescence lifetime than delayed fluorescence, the emission lifetime can be distinguished from fluorescence and delayed fluorescence.
- phosphorescence is hardly observable at room temperature in ordinary organic compounds such as the compounds of the present invention because the excited triplet energy is unstable and converted to heat, etc., and has a short lifetime and immediately deactivates.
- the excited triplet energy of a normal organic compound it can be measured by observing light emission under extremely low temperature conditions.
- the organic electroluminescence element of the present invention can be applied to any of a single element, an element having a structure arranged in an array, and a structure in which an anode and a cathode are arranged in an XY matrix.
- an organic light-emitting device having greatly improved light emission efficiency can be obtained by including in the light-emitting layer a compound that emits delayed fluorescence and allows intramolecular proton transfer.
- the organic light emitting device such as the organic electroluminescence device of the present invention can be further applied to various uses. For example, it is possible to produce an organic electroluminescence display device using the organic electroluminescence element of the present invention.
- organic electroluminescence device of the present invention can be applied to organic electroluminescence illumination and backlights that are in great demand.
- the organic light emitting device of the present invention may be an organic light emitting transistor.
- An organic light emitting transistor has a structure in which, for example, a gate electrode is stacked on an active layer that also serves as a light emitting layer via a gate insulating layer, and a source electrode and a drain electrode are connected to the active layer.
- 2-Bromo-4,6-diphenyltriazine (1.56 g, 5.0 mmol), 9-acridone (1.17 g, 6.0 mmol), tetrafluoroboric acid-tri-t-butylphosphine (0.085 g, 0.8 mmol).
- 30 mmol sodium-t-butoxide (0.575 g, 6.0 mmol), tris (dibenzylideneacetone) -dipalladium (0.090 g, 0.10 mmol), dehydrated toluene (60 mL) in a three-necked flask under a nitrogen atmosphere. And stirred at 120 ° C. overnight.
- 9,9-dimethylacridan (0.42 g, 2 mmol), 1-bromodibenzofuran (0.24 g, 1 mmol), tetrafluoroborate-tri-t-butylphosphine (35 mg, 0.12 mmol), sodium-t- Butoxide (0.23 g, 2.4 mmol) and tris (dibenzylideneacetone) dibaradium (0) (37 mg, 0.04 mmol) were placed in a three-necked flask, dehydrated toluene (40 mL) was added, and the mixture was stirred and refluxed overnight. After confirming that all the raw materials were consumed by thin layer chromatography (TLC), the reaction was stopped and allowed to cool.
- TLC thin layer chromatography
- 9,9-dimethylacridan (0.71 g, 3.4 mmol), 2-bromodibenzofuran (1.0 g, 4 mmol), tetrafluoroboric acid-tri-t-butylphosphine (70 mg, 0.24 mmol), sodium- t-Butoxide (0.46 g, 4.8 mmol) and tris (dibenzylideneacetone) dibaladium (0) (73 mg, 0.08 mmol) were placed in a three-necked flask, dehydrated toluene (40 mL) was added, and the mixture was stirred and refluxed overnight. After confirming that all the raw materials were consumed by TLC, the reaction was stopped and allowed to cool.
- 9,9-dimethylacridan (0.84 g, 4 mmol), 3-bromodibenzofuran (1.2 g, 5 mmol), tetrafluoroborate-tri-t-butylphosphine (70 mg, 0.24 mmol), sodium-t- Butoxide (0.46 g, 4.8 mmol) and tris (dibenzylideneacetone) dibaradium (0) (73 mg, 0.08 mmol) were placed in a three-necked flask, dehydrated toluene (40 mL) was added, and the mixture was stirred and refluxed overnight. After confirming that all the raw materials were consumed by TLC, the reaction was stopped and allowed to cool.
- 9,9-dimethylacridan 2.1 g, 10 mmol
- 4-bromodibenzofuran 2.2 g, 9 mmol
- tetrafluoroboric acid-tri-t-butylphosphine 0.16 g, 0.54 mmol
- sodium t-Butoxide 1.0 g, 11 mmol
- tris (dibenzylideneacetone) dibaradium (0) 0.17 g, 0.54 mmol
- 9,9-dimethylacridan (1.5 g, 7 mmol), 2,8-dibromodibenzofuran (0.98 g, 3 mmol), tetrafluoroboric acid-tri-t-butylphosphine (70 mg, 0.24 mmol), sodium t-Butoxide (0.46 g, 4.8 mmol) and tris (dibenzylideneacetone) dibaladium (0) (73 mg, 0.08 mmol) were placed in a three-necked flask, dehydrated toluene (40 mL) was added, and the mixture was stirred and refluxed overnight. After confirming that all the raw materials were consumed by TLC, the reaction was stopped and allowed to cool.
- 9,9-dimethylacridan (1.1 g, 5 mmol), intermediate 6 (0.65 g, 2 mmol), tetrafluoroboric acid-tri-t-butylphosphine (87 mg, 0.3 mmol), sodium-t-butoxide (0.58 g, 6 mmol) and tris (dibenzylideneacetone) dibaladium (0) (92 mg, 0.1 mmol) were placed in a three-necked flask, dehydrated toluene (40 mL) was added, and the mixture was stirred and refluxed overnight. After confirming that all the raw materials were consumed by TLC, the reaction was stopped and allowed to cool.
- reaction solution was washed with water, and the organic layer was taken out and dried using sodium sulfate. After removing sodium sulfate by filtration under reduced pressure, toluene was removed using an evaporator. The residue was purified using column chromatography (silica gel, chloroform) and washed with ethanol to obtain Compound 8 as a pale yellow powder in a yield of 0.63 g and a yield of 55%.
- 9,9-dimethylacridan (1.1 g, 5 mmol), 4,6-dibromodibenzofuran (0.65 g, 2 mmol), tetrafluoroborate-tri-t-butylphosphine (87 mg, 0.3 mmol), sodium t-Butoxide (0.58 g, 6 mmol) and tris (dibenzylideneacetone) dibaladium (0) (92 mg, 0.1 mmol) were placed in a three-necked flask, dehydrated toluene (40 mL) was added, and the mixture was stirred and refluxed overnight. After confirming that all the raw materials were consumed by TLC, the reaction was stopped and allowed to cool.
- Example 1 Preparation and Evaluation of Solution Compound 1 and Compound 2 were dissolved in toluene to prepare 1.0 ⁇ 10 ⁇ 5 mol / L toluene solutions, respectively.
- UV-visible absorption, fluorescence, and phosphorescence spectra of a toluene solution of Compound 1 were measured.
- the fluorescence maximum wavelength was 425 nm, and the phosphorescence maximum wavelength was 443 nm.
- S1 estimated from the emission end of the fluorescence and phosphorescence spectra 2.92 eV, T1 is 2.80 eV, the value of Delta] E ST was 0.12 eV.
- the light emission quantum yield (PLQY) was measured about each when the bubbling of nitrogen gas was not performed and when it performed.
- the fluorescence intensity decay curve was measured to determine the lifetime ⁇ p of the immediate fluorescence component and the lifetime ⁇ d of the delayed fluorescence component. The measurement results are shown in Table 1. Since the emission quantum yield and the lifetime are improved by bubbling nitrogen gas, it was confirmed that the delayed component is delayed fluorescence via the T 1 excited state.
- Example 2 Production and Evaluation of Thin Film
- a thin film made of only Compound 1 was formed on a Si substrate by a vacuum deposition method. Separately, compound 1 and dibenzothiophene-2,8-bis-diphenylphosphine oxide (PPT: HOMO energy level ⁇ 6.6 eV, LUMO energy level ⁇ 2.9 eV) on a Si substrate.
- PPT dibenzothiophene-2,8-bis-diphenylphosphine oxide
- a co-evaporation film containing 5% by weight of Compound 1 was produced.
- the thin film consisting only of Compound 1 was subjected to photoelectron yield spectroscopy measurement and UV-visible absorption spectrum measurement using AC-3 manufactured by Riken Keiki Co., Ltd.
- the HOMO energy level of Compound 1 estimated from the photoelectron yield spectroscopic measurement result and the absorption edge wavelength of the UV-visible absorption spectrum was ⁇ 6.1 eV, and the LUMO energy level was ⁇ 3.0 eV.
- the emission spectrum was measured for each of the thin film consisting only of Compound 1 and the co-deposited film, the same fluorescence spectrum was obtained for each film, and the maximum emission wavelength was 485 nm.
- the light emission quantum yield (PLQY) of the co-deposited film was measured and found to be 17% under the atmosphere and 21% under the argon stream. Further, FIG.
- the compounds 3, 4, 8, and 9 were co-evaporated with the host materials shown in Table 3 to prepare a co-evaporated film having a concentration of 6% by weight.
- Table 3 shows the results of measuring the light emission quantum yield (PLQY) of each co-deposited film under the atmosphere and argon.
- FIG. 3 shows the results of measuring the emission intensity decay curves of the vapor deposition film of compound 9 at temperatures of 30K, 100K, 200K, and 300K with a streak camera. Since the fluorescence delay component increased with the temperature rise, it was confirmed that Compound 9 is a thermally activated delayed fluorescence material.
- Example 3 Production and Evaluation of Organic Electroluminescence Element
- a glass substrate manufactured by Atsugi Micro Co., Ltd.
- an ITO transparent electrode was patterned with a film thickness of 100 nm was cut into a size of 25 nm in length and 25 nm in width and washed.
- the following layers were formed on this substrate at 3 to 7 ⁇ 10 ⁇ 4 Pa using a vacuum vapor deposition machine (manufactured by ALS Technology).
- ⁇ -NPD was formed on ITO to a thickness of 35 nm, and mCP was formed thereon to a thickness of 10 nm.
- Compound 1 and PPT were co-evaporated from different vapor deposition sources to form a 20 nm thick layer as a light emitting layer. At this time, the concentration of Compound 1 was 5% by weight.
- PPT is formed to a thickness of 40 nm, lithium fluoride (LiF) is further vacuum-deposited to 0.8 nm, and then aluminum (Al) is evaporated to a thickness of 80 nm to form a cathode. A luminescence element was obtained. When the emission spectrum of the produced organic electroluminescence device was measured, it almost coincided with the emission spectrum of the co-deposited film of Example 2.
- the driving voltage of 10 mA / cm 2 was 12 V
- the luminous flux was 2.98 ⁇ 10 ⁇ 3 cd / cm 2. Met.
- the external quantum efficiency at 0.15 mA / cm 2 was 2.2%.
- an OLED integrating sphere (PMA-12 manufactured by Hamamatsu Photonics) and a luminance light distribution measuring device (A10119 manufactured by Hamamatsu Photonics) were used.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Electroluminescent Light Sources (AREA)
- Plural Heterocyclic Compounds (AREA)
Abstract
Provided are: (A) a compound having a structure in which at least 2 types of acceptor groups are linked; (B) a compound having a structure in which a weak donor group and a weak acceptor group are linked; and (C) a compound having a structure in which 2 or more donor groups are linked. The compounds are useful as light-emitting materials.
Description
本発明は、発光材料とその発光材料を用いた有機発光素子に関する。また本発明は、これらの発光材料や有機発光素子に用いられる化合物にも関する。
The present invention relates to a light emitting material and an organic light emitting device using the light emitting material. The present invention also relates to compounds used for these light emitting materials and organic light emitting devices.
有機エレクトロルミネッセンス素子(有機EL素子)などの有機発光素子の発光効率を高める研究が盛んに行われている。特に、有機エレクトロルミネッセンス素子を構成する電子輸送材料、正孔輸送材料、発光材料などを新たに開発して組み合わせることにより、発光効率を高める工夫が種々なされてきている。その中には、熱活性化型の遅延蛍光材料を利用した有機エレクトロルミネッセンス素子に関する研究も見受けられる。
熱活性化型遅延蛍光材料とは、励起三重項状態に遷移したとき、熱エネルギーの吸収により励起三重項状態から励起一重項状態への逆項間交差を生じ、その励起一重項状態から基底状態へ戻る際に蛍光を放射する化合物である。こうした経路による蛍光は、逆項間交差を介さずに直接生じた励起一重項状態からの蛍光(通常の蛍光)よりも遅れて観測されるため、遅延蛍光と称されている。例えば、化合物の電流励起では、励起一重項状態と励起三重項状態の発生確率が25%:75%であるため、直接生じた励起一重項状態からの蛍光のみでは、発光効率の向上に限界がある。一方、熱活性型遅延蛍光材料では、75%の確率で発生する励起三重項状態のエネルギーも蛍光発光に有効利用できるため、より高い発光効率が望めることになる。
従来の典型的な熱活性化型遅延蛍光材料として、電子ドナー性を示すドナー部位(D)と電子アクセプター性を示すアクセプター部位(A)が結合した構造(D-A型構造)を含むものが知られている(例えば、非特許文献1~4)。電子ドナー性を示す基や、電子アクセプター性を示す基として、これまで多種多様な基が知られており、新たな基の開発もなされている。そして、電子ドナー性を示す基の中からドナー部位(D)を選択し、電子アクセプター性を示す基の中からアクセプター部位(A)を選択して、これらを結合した分子を設計することにより、良好な発光特性を有する化合物を開発する試みが種々行われている。 Researches for increasing the light emission efficiency of organic light emitting devices such as organic electroluminescence devices (organic EL devices) are being actively conducted. In particular, various efforts have been made to increase the light emission efficiency by newly developing and combining electron transport materials, hole transport materials, light emitting materials, and the like constituting the organic electroluminescence element. Among them, research on organic electroluminescence devices using thermally activated delayed fluorescent materials can also be found.
Thermally activated delayed fluorescent material is the transition from excited triplet state to excited singlet state due to the absorption of thermal energy when transitioning to excited triplet state. It is a compound that emits fluorescence when returning to the back. The fluorescence due to such a route is called delayed fluorescence because it is observed later than the fluorescence from the excited singlet state (normal fluorescence) directly generated without passing through the reverse intersystem crossing. For example, in the current excitation of a compound, since the generation probability of an excited singlet state and an excited triplet state is 25%: 75%, there is a limit to the improvement of the light emission efficiency only with the fluorescence generated directly from the excited singlet state. is there. On the other hand, in the thermally activated delayed fluorescent material, the excited triplet state energy generated with a probability of 75% can also be effectively used for fluorescence emission, so that higher luminous efficiency can be expected.
A conventional typical thermally activated delayed fluorescent material includes a structure (DA structure) in which a donor site (D) exhibiting electron donor properties and an acceptor site (A) exhibiting electron acceptor properties are bonded. Known (for example,Non-Patent Documents 1 to 4). A wide variety of groups have been known as groups exhibiting electron donor properties and electron acceptor properties, and new groups have been developed. Then, by selecting a donor site (D) from a group exhibiting electron donor properties, selecting an acceptor site (A) from a group exhibiting electron acceptor properties, and designing a molecule that combines them, Various attempts have been made to develop compounds having good luminescent properties.
熱活性化型遅延蛍光材料とは、励起三重項状態に遷移したとき、熱エネルギーの吸収により励起三重項状態から励起一重項状態への逆項間交差を生じ、その励起一重項状態から基底状態へ戻る際に蛍光を放射する化合物である。こうした経路による蛍光は、逆項間交差を介さずに直接生じた励起一重項状態からの蛍光(通常の蛍光)よりも遅れて観測されるため、遅延蛍光と称されている。例えば、化合物の電流励起では、励起一重項状態と励起三重項状態の発生確率が25%:75%であるため、直接生じた励起一重項状態からの蛍光のみでは、発光効率の向上に限界がある。一方、熱活性型遅延蛍光材料では、75%の確率で発生する励起三重項状態のエネルギーも蛍光発光に有効利用できるため、より高い発光効率が望めることになる。
従来の典型的な熱活性化型遅延蛍光材料として、電子ドナー性を示すドナー部位(D)と電子アクセプター性を示すアクセプター部位(A)が結合した構造(D-A型構造)を含むものが知られている(例えば、非特許文献1~4)。電子ドナー性を示す基や、電子アクセプター性を示す基として、これまで多種多様な基が知られており、新たな基の開発もなされている。そして、電子ドナー性を示す基の中からドナー部位(D)を選択し、電子アクセプター性を示す基の中からアクセプター部位(A)を選択して、これらを結合した分子を設計することにより、良好な発光特性を有する化合物を開発する試みが種々行われている。 Researches for increasing the light emission efficiency of organic light emitting devices such as organic electroluminescence devices (organic EL devices) are being actively conducted. In particular, various efforts have been made to increase the light emission efficiency by newly developing and combining electron transport materials, hole transport materials, light emitting materials, and the like constituting the organic electroluminescence element. Among them, research on organic electroluminescence devices using thermally activated delayed fluorescent materials can also be found.
Thermally activated delayed fluorescent material is the transition from excited triplet state to excited singlet state due to the absorption of thermal energy when transitioning to excited triplet state. It is a compound that emits fluorescence when returning to the back. The fluorescence due to such a route is called delayed fluorescence because it is observed later than the fluorescence from the excited singlet state (normal fluorescence) directly generated without passing through the reverse intersystem crossing. For example, in the current excitation of a compound, since the generation probability of an excited singlet state and an excited triplet state is 25%: 75%, there is a limit to the improvement of the light emission efficiency only with the fluorescence generated directly from the excited singlet state. is there. On the other hand, in the thermally activated delayed fluorescent material, the excited triplet state energy generated with a probability of 75% can also be effectively used for fluorescence emission, so that higher luminous efficiency can be expected.
A conventional typical thermally activated delayed fluorescent material includes a structure (DA structure) in which a donor site (D) exhibiting electron donor properties and an acceptor site (A) exhibiting electron acceptor properties are bonded. Known (for example,
しかしながら、このような従来の方法による発光材料の開発は、それぞれの基を電子ドナー性を示す基か、電子アクセプター性を示す基のいずれかに分類をしたうえで、分子設計を行うものであるため、開発可能な発光材料が限られてしまうという問題がある。特に、比較的強い電子ドナー性を示す基か、比較的強い電子アクセプター性を示す基の少なくともいずれかを用いないと、実用性のある熱活性化型遅延蛍光材料を提供することは難しいと考えられているため、分子設計の幅は大幅に制約を受けている。そこで本発明者らは、従来法とは異なる新しい観点から発光材料の分子設計を行うことを考えて、鋭意検討を行った。
However, the development of a light emitting material by such a conventional method involves classifying each group as either a group exhibiting an electron donor property or a group exhibiting an electron acceptor property, and then designing a molecule. Therefore, there is a problem that light emitting materials that can be developed are limited. In particular, it is considered difficult to provide a practical heat-activated delayed fluorescent material without using at least one of a group showing a relatively strong electron donor property or a group showing a relatively strong electron acceptor property. Therefore, the range of molecular design is greatly restricted. Therefore, the present inventors have conducted intensive studies in consideration of designing a molecule of a luminescent material from a new viewpoint different from the conventional method.
上記の目的を達成するために鋭意検討を進めた結果、本発明者らは、以下に記載する新たな発明を完成するに至った。
[1] 下記(A)~(C)のいずれかの条件を満たす化合物からなる発光材料。
(A)互いに異なる2つのアクセプター性基が結合した構造を有する化合物。
(B)ハメットのσp値が-0.5以上0未満であるドナー性基と、ハメットのσp値が0超0.5以下であるアクセプター性基が連結した構造を有する化合物。
(C)互いに異なる2つのドナー性基が結合した構造を有する化合物。
[2] 遅延蛍光材料である、[1]に記載の発光材料。
[3] 前記化合物の最低励起一重項エネルギー準位ES1と最低励起三重項エネルギー準位ET1の差ΔESTが0.4eV以下である、[1]または[2]に記載の発光材料。
[4] 前記化合物が前記(A)の条件を満たす、[1]~[3]のいずれか1項に記載の発光材料。
[5] 前記化合物が前記(B)の条件を満たす、[1]~[3]のいずれか1項に記載の発光材料。
[6] 前記化合物が下記一般式(1)で表される、[1]~[3]のいずれか1項に記載の発光材料。
[一般式(1)において、R1~R8は各々独立に水素原子または置換基を表し、R9は置換基を表す。R1とR2、R2とR3、R3とR4、R5とR6、R6とR7、R7とR8、R4とR9、R5とR9は、それぞれ互いに結合して環状構造を形成していてもよい。Zは電子吸引性基を表す。ただし、一般式(1)は前記(A)または(B)を満たす。]
[7] 前記一般式(1)におけるZが、>C=O、>C=C(CN)2、>B-R10、>SO2、>C(CF3)2、>P(=O)R11またはSであり、R10およびR11は各々独立に置換基を表し、前記(A)または(B)を満たす、[6]に記載の発光材料。
[8] 前記一般式(1)におけるZが>C=Oである、[6]に記載の発光材料。
[9] 前記一般式(1)におけるR9がアクセプター性基であって、前記(A)を満たす、[6]~[8]のいずれか1項に記載の発光材料。
[10] 前記一般式(1)におけるR9が、置換もしくは無置換のトリアジニル基である、[9]に記載の発光材料。
[11] 前記一般式(1)におけるR9が、置換もしくは無置換のジアリールトリアジニル基である、[10]に記載の発光材料。
[12] 前記一般式(1)におけるR1がドナー性基であって、前記(B)を満たす、[6]~[8]のいずれか1項に記載の発光材料。
[13] 前記一般式(1)におけるR1が、置換もしくは無置換のカルバゾリル基である、[12]に記載の発光材料。
[14] 前記一般式(1)におけるR9が、置換もしくは無置換のアリール基である、[12]または[13]に記載の発光材料。
[15] 前記化合物が前記(C)の条件を満たす、[1]~[3]のいずれか1項に記載の発光材料。
[16] 前記化合物が、置換されていてもよいアクリダン環と、置換されていてもよいジベンゾフラン環が結合した構造を含む、[15]に記載の発光材料。
[17] 前記化合物が、置換されていてもよいジベンゾフラン環に、置換されていてもよいアクリダン環が2つ結合した構造を含む、[15]に記載の発光材料。
[18] 前記アクリダン環を構成する窒素原子で前記ジベンゾフラン環に結合している、[16]または[17]に記載の発光材料。
[19] 前記アクリダン環が前記ジベンゾフラン環の4位に結合している、[16]~[18]のいずれか1項に記載の発光材料。
[20] 前記化合物が、下記一般式(2)で表される構造を有する、[15]~[19]のいずれか1項に記載の発光材料。
[一般式(2)において、Dは置換されていてもよいジベンゾフラン環基または置換されていてもよいジベンゾチオフェン環基を表す。R11~R20は各々独立に水素原子または置換基を表す。R11とR12、R12とR13、R13とR14、R15とR16、R16とR17、R17とR18、R18とR19、R19とR20、R20とR11は、それぞれ互いに結合して環状構造を形成していてもよい。nは1~4のいずれかの整数を表す。ただし、一般式(2)は前記(C)を満たす。]
[21] nが2である、[20]に記載の発光材料。
[22] Dが、置換されていてもよいジベンゾフラン-4,6-ジイル基または置換されていてもよいジベンゾチオフェン-4,6-ジイル基を表す、[21]に記載の発光材料。
[23] nが1である、[20]に記載の発光材料。
[24] [1]~[23]のいずれか1項に記載の発光材料を含む有機発光素子。
[25] 有機エレクトロルミネッセンス素子である、[24]に記載の有機発光素子。
[26] 下記(A)~(C)のいずれかの条件を満たす化合物の遅延蛍光材料としての使用。
(A)互いに異なる2つのアクセプター性基が結合した構造を有する化合物。
(B)ハメットのσp値が-0.5以上0未満であるドナー性基と、ハメットのσp値が0超0.5以下であるアクセプター性基が連結した構造を有する化合物。
(C)互いに異なる2つのドナー性基が結合した構造を有する化合物。
[27] 上記一般式(1)で表される化合物。
[28] 上記一般式(2)で表される化合物。ただし、一般式(2)のnが2であるとき、R11~R18が水素原子で、R19とR20がメチル基で、Dが無置換ジベンゾフラン-2,8-ジイル基であることはない。 As a result of diligent studies to achieve the above object, the present inventors have completed a new invention described below.
[1] A light emitting material comprising a compound that satisfies any of the following conditions (A) to (C).
(A) A compound having a structure in which two different acceptor groups are bonded to each other.
(B) A compound having a structure in which a donor group having a Hammett σp value of −0.5 or more and less than 0 and an acceptor group having a Hammett σp value of more than 0 and 0.5 or less are linked.
(C) A compound having a structure in which two different donor groups are bonded to each other.
[2] The light emitting material according to [1], which is a delayed fluorescent material.
[3] luminescent material according to the minimum difference Delta] E ST excited singlet energy level E S1 and the lowest excited triplet energy level E T1 compound is less than 0.4 eV, [1] or [2].
[4] The light-emitting material according to any one of [1] to [3], wherein the compound satisfies the condition (A).
[5] The light emitting material according to any one of [1] to [3], wherein the compound satisfies the condition (B).
[6] The light emitting material according to any one of [1] to [3], wherein the compound is represented by the following general formula (1).
[In the general formula (1), R 1 to R 8 each independently represents a hydrogen atom or a substituent, and R 9 represents a substituent. R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 4 and R 9 , R 5 and R 9 are respectively They may be bonded to each other to form a cyclic structure. Z represents an electron withdrawing group. However, the general formula (1) satisfies the above (A) or (B). ]
[7] Z in the general formula (1) is> C = O,> C = C (CN) 2 ,> BR 10 ,> SO 2 ,> C (CF 3 ) 2 ,> P (= O ) The luminescent material according to [6], wherein R is 11 or S, and R 10 and R 11 each independently represent a substituent and satisfy the above (A) or (B).
[8] The light emitting material according to [6], wherein Z in the general formula (1) is> C═O.
[9] The light emitting material according to any one of [6] to [8], wherein R 9 in the general formula (1) is an acceptor group and satisfies the above (A).
[10] The light emitting material according to [9], wherein R 9 in the general formula (1) is a substituted or unsubstituted triazinyl group.
[11] The light emitting material according to [10], wherein R 9 in the general formula (1) is a substituted or unsubstituted diaryltriazinyl group.
[12] The light-emitting material according to any one of [6] to [8], wherein R 1 in the general formula (1) is a donor group and satisfies the (B).
[13] The light emitting material according to [12], wherein R 1 in the general formula (1) is a substituted or unsubstituted carbazolyl group.
[14] The light emitting material according to [12] or [13], wherein R 9 in the general formula (1) is a substituted or unsubstituted aryl group.
[15] The light-emitting material according to any one of [1] to [3], wherein the compound satisfies the condition (C).
[16] The light-emitting material according to [15], wherein the compound includes a structure in which an optionally substituted acridan ring and an optionally substituted dibenzofuran ring are bonded.
[17] The light-emitting material according to [15], wherein the compound includes a structure in which two optionally substituted acridan rings are bonded to an optionally substituted dibenzofuran ring.
[18] The light-emitting material according to [16] or [17], wherein the nitrogen atom constituting the acridan ring is bonded to the dibenzofuran ring.
[19] The light-emitting material according to any one of [16] to [18], wherein the acridan ring is bonded to the 4-position of the dibenzofuran ring.
[20] The light emitting material according to any one of [15] to [19], wherein the compound has a structure represented by the following general formula (2).
[In General Formula (2), D represents a dibenzofuran ring group which may be substituted or a dibenzothiophene ring group which may be substituted. R 11 to R 20 each independently represents a hydrogen atom or a substituent. R 11 and R 12 , R 12 and R 13 , R 13 and R 14 , R 15 and R 16 , R 16 and R 17 , R 17 and R 18 , R 18 and R 19 , R 19 and R 20 , R 20 And R 11 may be bonded to each other to form a cyclic structure. n represents an integer of 1 to 4. However, the general formula (2) satisfies the above (C). ]
[21] The luminescent material according to [20], wherein n is 2.
[22] The light-emitting material according to [21], wherein D represents an optionally substituted dibenzofuran-4,6-diyl group or an optionally substituted dibenzothiophene-4,6-diyl group.
[23] The luminescent material according to [20], wherein n is 1.
[24] An organic light-emitting device comprising the light-emitting material according to any one of [1] to [23].
[25] The organic light-emitting device according to [24], which is an organic electroluminescence device.
[26] Use of a compound satisfying any one of the following (A) to (C) as a delayed fluorescent material.
(A) A compound having a structure in which two different acceptor groups are bonded to each other.
(B) A compound having a structure in which a donor group having a Hammett σp value of −0.5 or more and less than 0 and an acceptor group having a Hammett σp value of more than 0 and 0.5 or less are linked.
(C) A compound having a structure in which two different donor groups are bonded to each other.
[27] A compound represented by the general formula (1).
[28] A compound represented by the general formula (2). However, when n in the general formula (2) is 2, R 11 to R 18 are hydrogen atoms, R 19 and R 20 are methyl groups, and D is an unsubstituted dibenzofuran-2,8-diyl group. There is no.
[1] 下記(A)~(C)のいずれかの条件を満たす化合物からなる発光材料。
(A)互いに異なる2つのアクセプター性基が結合した構造を有する化合物。
(B)ハメットのσp値が-0.5以上0未満であるドナー性基と、ハメットのσp値が0超0.5以下であるアクセプター性基が連結した構造を有する化合物。
(C)互いに異なる2つのドナー性基が結合した構造を有する化合物。
[2] 遅延蛍光材料である、[1]に記載の発光材料。
[3] 前記化合物の最低励起一重項エネルギー準位ES1と最低励起三重項エネルギー準位ET1の差ΔESTが0.4eV以下である、[1]または[2]に記載の発光材料。
[4] 前記化合物が前記(A)の条件を満たす、[1]~[3]のいずれか1項に記載の発光材料。
[5] 前記化合物が前記(B)の条件を満たす、[1]~[3]のいずれか1項に記載の発光材料。
[6] 前記化合物が下記一般式(1)で表される、[1]~[3]のいずれか1項に記載の発光材料。
[7] 前記一般式(1)におけるZが、>C=O、>C=C(CN)2、>B-R10、>SO2、>C(CF3)2、>P(=O)R11またはSであり、R10およびR11は各々独立に置換基を表し、前記(A)または(B)を満たす、[6]に記載の発光材料。
[8] 前記一般式(1)におけるZが>C=Oである、[6]に記載の発光材料。
[9] 前記一般式(1)におけるR9がアクセプター性基であって、前記(A)を満たす、[6]~[8]のいずれか1項に記載の発光材料。
[10] 前記一般式(1)におけるR9が、置換もしくは無置換のトリアジニル基である、[9]に記載の発光材料。
[11] 前記一般式(1)におけるR9が、置換もしくは無置換のジアリールトリアジニル基である、[10]に記載の発光材料。
[12] 前記一般式(1)におけるR1がドナー性基であって、前記(B)を満たす、[6]~[8]のいずれか1項に記載の発光材料。
[13] 前記一般式(1)におけるR1が、置換もしくは無置換のカルバゾリル基である、[12]に記載の発光材料。
[14] 前記一般式(1)におけるR9が、置換もしくは無置換のアリール基である、[12]または[13]に記載の発光材料。
[15] 前記化合物が前記(C)の条件を満たす、[1]~[3]のいずれか1項に記載の発光材料。
[16] 前記化合物が、置換されていてもよいアクリダン環と、置換されていてもよいジベンゾフラン環が結合した構造を含む、[15]に記載の発光材料。
[17] 前記化合物が、置換されていてもよいジベンゾフラン環に、置換されていてもよいアクリダン環が2つ結合した構造を含む、[15]に記載の発光材料。
[18] 前記アクリダン環を構成する窒素原子で前記ジベンゾフラン環に結合している、[16]または[17]に記載の発光材料。
[19] 前記アクリダン環が前記ジベンゾフラン環の4位に結合している、[16]~[18]のいずれか1項に記載の発光材料。
[20] 前記化合物が、下記一般式(2)で表される構造を有する、[15]~[19]のいずれか1項に記載の発光材料。
[21] nが2である、[20]に記載の発光材料。
[22] Dが、置換されていてもよいジベンゾフラン-4,6-ジイル基または置換されていてもよいジベンゾチオフェン-4,6-ジイル基を表す、[21]に記載の発光材料。
[23] nが1である、[20]に記載の発光材料。
[24] [1]~[23]のいずれか1項に記載の発光材料を含む有機発光素子。
[25] 有機エレクトロルミネッセンス素子である、[24]に記載の有機発光素子。
[26] 下記(A)~(C)のいずれかの条件を満たす化合物の遅延蛍光材料としての使用。
(A)互いに異なる2つのアクセプター性基が結合した構造を有する化合物。
(B)ハメットのσp値が-0.5以上0未満であるドナー性基と、ハメットのσp値が0超0.5以下であるアクセプター性基が連結した構造を有する化合物。
(C)互いに異なる2つのドナー性基が結合した構造を有する化合物。
[27] 上記一般式(1)で表される化合物。
[28] 上記一般式(2)で表される化合物。ただし、一般式(2)のnが2であるとき、R11~R18が水素原子で、R19とR20がメチル基で、Dが無置換ジベンゾフラン-2,8-ジイル基であることはない。 As a result of diligent studies to achieve the above object, the present inventors have completed a new invention described below.
[1] A light emitting material comprising a compound that satisfies any of the following conditions (A) to (C).
(A) A compound having a structure in which two different acceptor groups are bonded to each other.
(B) A compound having a structure in which a donor group having a Hammett σp value of −0.5 or more and less than 0 and an acceptor group having a Hammett σp value of more than 0 and 0.5 or less are linked.
(C) A compound having a structure in which two different donor groups are bonded to each other.
[2] The light emitting material according to [1], which is a delayed fluorescent material.
[3] luminescent material according to the minimum difference Delta] E ST excited singlet energy level E S1 and the lowest excited triplet energy level E T1 compound is less than 0.4 eV, [1] or [2].
[4] The light-emitting material according to any one of [1] to [3], wherein the compound satisfies the condition (A).
[5] The light emitting material according to any one of [1] to [3], wherein the compound satisfies the condition (B).
[6] The light emitting material according to any one of [1] to [3], wherein the compound is represented by the following general formula (1).
[7] Z in the general formula (1) is> C = O,> C = C (CN) 2 ,> BR 10 ,> SO 2 ,> C (CF 3 ) 2 ,> P (= O ) The luminescent material according to [6], wherein R is 11 or S, and R 10 and R 11 each independently represent a substituent and satisfy the above (A) or (B).
[8] The light emitting material according to [6], wherein Z in the general formula (1) is> C═O.
[9] The light emitting material according to any one of [6] to [8], wherein R 9 in the general formula (1) is an acceptor group and satisfies the above (A).
[10] The light emitting material according to [9], wherein R 9 in the general formula (1) is a substituted or unsubstituted triazinyl group.
[11] The light emitting material according to [10], wherein R 9 in the general formula (1) is a substituted or unsubstituted diaryltriazinyl group.
[12] The light-emitting material according to any one of [6] to [8], wherein R 1 in the general formula (1) is a donor group and satisfies the (B).
[13] The light emitting material according to [12], wherein R 1 in the general formula (1) is a substituted or unsubstituted carbazolyl group.
[14] The light emitting material according to [12] or [13], wherein R 9 in the general formula (1) is a substituted or unsubstituted aryl group.
[15] The light-emitting material according to any one of [1] to [3], wherein the compound satisfies the condition (C).
[16] The light-emitting material according to [15], wherein the compound includes a structure in which an optionally substituted acridan ring and an optionally substituted dibenzofuran ring are bonded.
[17] The light-emitting material according to [15], wherein the compound includes a structure in which two optionally substituted acridan rings are bonded to an optionally substituted dibenzofuran ring.
[18] The light-emitting material according to [16] or [17], wherein the nitrogen atom constituting the acridan ring is bonded to the dibenzofuran ring.
[19] The light-emitting material according to any one of [16] to [18], wherein the acridan ring is bonded to the 4-position of the dibenzofuran ring.
[20] The light emitting material according to any one of [15] to [19], wherein the compound has a structure represented by the following general formula (2).
[21] The luminescent material according to [20], wherein n is 2.
[22] The light-emitting material according to [21], wherein D represents an optionally substituted dibenzofuran-4,6-diyl group or an optionally substituted dibenzothiophene-4,6-diyl group.
[23] The luminescent material according to [20], wherein n is 1.
[24] An organic light-emitting device comprising the light-emitting material according to any one of [1] to [23].
[25] The organic light-emitting device according to [24], which is an organic electroluminescence device.
[26] Use of a compound satisfying any one of the following (A) to (C) as a delayed fluorescent material.
(A) A compound having a structure in which two different acceptor groups are bonded to each other.
(B) A compound having a structure in which a donor group having a Hammett σp value of −0.5 or more and less than 0 and an acceptor group having a Hammett σp value of more than 0 and 0.5 or less are linked.
(C) A compound having a structure in which two different donor groups are bonded to each other.
[27] A compound represented by the general formula (1).
[28] A compound represented by the general formula (2). However, when n in the general formula (2) is 2, R 11 to R 18 are hydrogen atoms, R 19 and R 20 are methyl groups, and D is an unsubstituted dibenzofuran-2,8-diyl group. There is no.
以下において、本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づいてなされることがあるが、本発明はそのような実施態様や具体例に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。また、本発明に用いられる化合物の分子内に存在する水素原子の同位体種は特に限定されず、例えば分子内の水素原子がすべて1Hであってもよいし、一部または全部が2H(デューテリウムD)であってもよい。
Hereinafter, the contents of the present invention will be described in detail. The description of the constituent elements described below may be made based on typical embodiments and specific examples of the present invention, but the present invention is not limited to such embodiments and specific examples. In the present specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value. In addition, the isotope species of the hydrogen atom present in the molecule of the compound used in the present invention is not particularly limited. For example, all the hydrogen atoms in the molecule may be 1 H, or a part or all of the hydrogen atoms are 2 H. (Deuterium D) may be used.
[本発明の発光材料]
本発明の発光材料は、下記の(A)~(C)のいずれかの条件を満たす化合物からなることを特徴とする。
(A)互いに異なる2つのアクセプター性基が結合した構造を有する化合物。
(B)ハメットのσp値が-0.5以上0未満であるドナー性基と、ハメットのσp値が0超0.5以下であるアクセプター性基が連結した構造を有する化合物。
(C)互いに異なる2つのドナー性基が結合した構造を有する化合物。 [Luminescent Material of the Present Invention]
The luminescent material of the present invention is characterized by comprising a compound that satisfies any of the following conditions (A) to (C).
(A) A compound having a structure in which two different acceptor groups are bonded to each other.
(B) A compound having a structure in which a donor group having a Hammett σp value of −0.5 or more and less than 0 and an acceptor group having a Hammett σp value of more than 0 and 0.5 or less are linked.
(C) A compound having a structure in which two different donor groups are bonded to each other.
本発明の発光材料は、下記の(A)~(C)のいずれかの条件を満たす化合物からなることを特徴とする。
(A)互いに異なる2つのアクセプター性基が結合した構造を有する化合物。
(B)ハメットのσp値が-0.5以上0未満であるドナー性基と、ハメットのσp値が0超0.5以下であるアクセプター性基が連結した構造を有する化合物。
(C)互いに異なる2つのドナー性基が結合した構造を有する化合物。 [Luminescent Material of the Present Invention]
The luminescent material of the present invention is characterized by comprising a compound that satisfies any of the following conditions (A) to (C).
(A) A compound having a structure in which two different acceptor groups are bonded to each other.
(B) A compound having a structure in which a donor group having a Hammett σp value of −0.5 or more and less than 0 and an acceptor group having a Hammett σp value of more than 0 and 0.5 or less are linked.
(C) A compound having a structure in which two different donor groups are bonded to each other.
本願において「アクセプター性基」とは、ハメットのσp
+値が正である(0超である)基を意味する。また、本願において「ドナー性基」とは、ハメットのσp
+値が負である(0未満である)基を意味する。
本発明における「ハメットのσp +値」は、L.P.ハメットにより提唱されたものであり、パラ置換ベンゼン誘導体の反応速度または平衡に及ぼす置換基の影響を定量化したものである。具体的には、パラ置換ベンゼン誘導体における置換基と反応速度定数または平衡定数の間に成立する下記式:
における置換基に特有な定数(σp)である。上式において、kは置換基を持たないベンゼン誘導体の速度定数、k0は置換基で置換されたベンゼン誘導体の速度定数、Kは置換基を持たないベンゼン誘導体の平衡定数、K0は置換基で置換されたベンゼン誘導体の平衡定数、ρは反応の種類と条件によって決まる反応定数を表す。ハメットのσp値に関する説明と各置換基の数値については、J.A.Dean編”Lange's Handbook of Chemistry 第13版“、1985年、3-132~3-137頁、McGrow-Hill を参照することができる。
In the present application, the “acceptor group” means a group whose Hammett σ p + value is positive (greater than 0). Further, in the present application, the “donor group” means a group having a Hammett σ p + value that is negative (less than 0).
The “Hammett σ p + value” in the present invention is L. P. Proposed by Hammett, it quantifies the effect of substituents on the reaction rate or equilibrium of para-substituted benzene derivatives. Specifically, the following formula is established between the substituent in the para-substituted benzene derivative and the reaction rate constant or equilibrium constant:
This is a constant (σ p ) peculiar to the substituent in. In the above formula, k is a rate constant of a benzene derivative having no substituent, k 0 is a rate constant of a benzene derivative substituted with a substituent, K is an equilibrium constant of a benzene derivative having no substituent, and K 0 is a substituent. The equilibrium constant of the benzene derivative substituted with ρ, ρ represents the reaction constant determined by the type and conditions of the reaction. For a description of Hammett's σ p value and the numerical value of each substituent, refer to JADean edited by “Lange's Handbook of Chemistry 13th edition”, 1985, pages 3-132 to 3-137, McGrow-Hill.
本発明における「ハメットのσp +値」は、L.P.ハメットにより提唱されたものであり、パラ置換ベンゼン誘導体の反応速度または平衡に及ぼす置換基の影響を定量化したものである。具体的には、パラ置換ベンゼン誘導体における置換基と反応速度定数または平衡定数の間に成立する下記式:
The “Hammett σ p + value” in the present invention is L. P. Proposed by Hammett, it quantifies the effect of substituents on the reaction rate or equilibrium of para-substituted benzene derivatives. Specifically, the following formula is established between the substituent in the para-substituted benzene derivative and the reaction rate constant or equilibrium constant:
上記の(A)を満たす化合物は、互いに異なる2つのアクセプター性基が結合した構造を有する。(A)を満たす化合物に存在する2つのアクセプター性基は、互いにアクセプター性の強さが異なるものであることが好ましい。すなわち、相対的に強いアクセプター性基と相対的に弱いアクセプター性基が連結した構造を有するものであることが好ましい。相対的に強いアクセプター性基として、例えば置換されていてもよいトリアジン環基を挙げることができる。また、相対的に弱いアクセプター性基として例えば置換されていてもよいアクリドン環基を挙げることができる。上記の(A)を満たす化合物に存在する相対的に強いアクセプター性基と相対的に弱いアクセプター性基は、σp値の差が0.1以上であるものが好ましく、0.2以上であるものがより好ましく、例えば0.3以上の範囲、0.5以上の範囲、0.7以上の範囲から選択してもよく、また、例えば1.5以下の範囲、1.0以下の範囲から選択してもよい。相対的に弱いアクセプター性基のσpは、例えば0超0.5以下の範囲から選択してもよいし、0超0.3以下の範囲から選択してもよいし、0超0.15以下の範囲から選択してもよい。
(A)を満たす化合物を構成する2つの各アクセプター性基には、それぞれ1つ以上の小さな置換基が含まれていてもよい。各アクセプター性基に含まれていてもよい小さな置換基は、必ずしもアクセプター性を示す基でなくてもよい。すなわち、各アクセプター性基が全体としてアクセプター性を示す限り、そのアクセプター性基の中に小さなドナー性基が含まれていても構わない。そのようなドナー性基として、例えばアルキル基、アルコキシ基、アリール基などを挙げることができる。小さな置換基となりうるアルキル基は、直鎖状、分枝状、環状のいずれでもよいが、直鎖状または分枝状であることが好ましい。また、アルキル基の炭素数は例えば1~10の範囲内から選択してもよく、1~6の範囲内から選択してもよく、1~4の範囲内から選択してもよく、1~3の範囲内から選択してもよい。小さな置換基となりうるアルコキシ基は、直鎖状、分枝状、環状のいずれでもよいが、直鎖状または分枝状であることが好ましい。また、アルコキシ基の炭素数は例えば1~10の範囲内から選択してもよく、1~6の範囲内から選択してもよく、1~4の範囲内から選択してもよく、1~3の範囲内から選択してもよい。小さな置換基となりうるアリール基は、単環であっても縮合環であってもよく、炭素数は例えば6~40の範囲内から選択してもよく、6~14の範囲内から選択してもよく、6~10の範囲内から選択してもよい。(A)を満たす化合物は、分子内にドナー性基をまったく含まないものであることも好ましい。 The compound satisfying the above (A) has a structure in which two different acceptor groups are bonded to each other. The two acceptor groups present in the compound satisfying (A) preferably have different acceptor strengths. That is, it is preferable to have a structure in which a relatively strong acceptor group and a relatively weak acceptor group are linked. As a relatively strong acceptor group, for example, an optionally substituted triazine ring group can be exemplified. In addition, examples of the relatively weak acceptor group include an optionally substituted acridone ring group. The relatively strong acceptor group present in the compound satisfying the above (A) and the relatively weak acceptor group preferably have a σp value difference of 0.1 or more, and preferably 0.2 or more. More preferably, for example, a range of 0.3 or more, a range of 0.5 or more, or a range of 0.7 or more may be selected. For example, a range of 1.5 or less and a range of 1.0 or less may be selected. May be. Σp of the relatively weak acceptor group may be selected, for example, from a range of more than 0 to 0.5 or less, may be selected from a range of more than 0 to 0.3 or less, or more than 0 to 0.15 or less You may select from the range.
Each of the two acceptor groups constituting the compound satisfying (A) may contain one or more small substituents. The small substituent that may be contained in each acceptor group may not necessarily be a group that exhibits acceptor properties. That is, as long as each acceptor group exhibits acceptor properties as a whole, the acceptor group may contain a small donor group. Examples of such a donor group include an alkyl group, an alkoxy group, and an aryl group. The alkyl group that can be a small substituent may be linear, branched, or cyclic, but is preferably linear or branched. Further, the number of carbon atoms of the alkyl group may be selected, for example, within the range of 1 to 10, selected from the range of 1 to 6, selected from the range of 1 to 4, or 1 to You may select from the range of 3. The alkoxy group that can be a small substituent may be linear, branched, or cyclic, but is preferably linear or branched. Further, the number of carbon atoms of the alkoxy group may be selected, for example, from the range of 1 to 10, may be selected from the range of 1 to 6, may be selected from the range of 1 to 4, You may select from the range of 3. The aryl group that can be a small substituent may be a single ring or a condensed ring, and the number of carbon atoms may be selected from the range of, for example, 6 to 40, or selected from the range of 6 to 14. It may also be selected from the range of 6-10. It is also preferable that the compound satisfying (A) does not contain any donor group in the molecule.
(A)を満たす化合物を構成する2つの各アクセプター性基には、それぞれ1つ以上の小さな置換基が含まれていてもよい。各アクセプター性基に含まれていてもよい小さな置換基は、必ずしもアクセプター性を示す基でなくてもよい。すなわち、各アクセプター性基が全体としてアクセプター性を示す限り、そのアクセプター性基の中に小さなドナー性基が含まれていても構わない。そのようなドナー性基として、例えばアルキル基、アルコキシ基、アリール基などを挙げることができる。小さな置換基となりうるアルキル基は、直鎖状、分枝状、環状のいずれでもよいが、直鎖状または分枝状であることが好ましい。また、アルキル基の炭素数は例えば1~10の範囲内から選択してもよく、1~6の範囲内から選択してもよく、1~4の範囲内から選択してもよく、1~3の範囲内から選択してもよい。小さな置換基となりうるアルコキシ基は、直鎖状、分枝状、環状のいずれでもよいが、直鎖状または分枝状であることが好ましい。また、アルコキシ基の炭素数は例えば1~10の範囲内から選択してもよく、1~6の範囲内から選択してもよく、1~4の範囲内から選択してもよく、1~3の範囲内から選択してもよい。小さな置換基となりうるアリール基は、単環であっても縮合環であってもよく、炭素数は例えば6~40の範囲内から選択してもよく、6~14の範囲内から選択してもよく、6~10の範囲内から選択してもよい。(A)を満たす化合物は、分子内にドナー性基をまったく含まないものであることも好ましい。 The compound satisfying the above (A) has a structure in which two different acceptor groups are bonded to each other. The two acceptor groups present in the compound satisfying (A) preferably have different acceptor strengths. That is, it is preferable to have a structure in which a relatively strong acceptor group and a relatively weak acceptor group are linked. As a relatively strong acceptor group, for example, an optionally substituted triazine ring group can be exemplified. In addition, examples of the relatively weak acceptor group include an optionally substituted acridone ring group. The relatively strong acceptor group present in the compound satisfying the above (A) and the relatively weak acceptor group preferably have a σp value difference of 0.1 or more, and preferably 0.2 or more. More preferably, for example, a range of 0.3 or more, a range of 0.5 or more, or a range of 0.7 or more may be selected. For example, a range of 1.5 or less and a range of 1.0 or less may be selected. May be. Σp of the relatively weak acceptor group may be selected, for example, from a range of more than 0 to 0.5 or less, may be selected from a range of more than 0 to 0.3 or less, or more than 0 to 0.15 or less You may select from the range.
Each of the two acceptor groups constituting the compound satisfying (A) may contain one or more small substituents. The small substituent that may be contained in each acceptor group may not necessarily be a group that exhibits acceptor properties. That is, as long as each acceptor group exhibits acceptor properties as a whole, the acceptor group may contain a small donor group. Examples of such a donor group include an alkyl group, an alkoxy group, and an aryl group. The alkyl group that can be a small substituent may be linear, branched, or cyclic, but is preferably linear or branched. Further, the number of carbon atoms of the alkyl group may be selected, for example, within the range of 1 to 10, selected from the range of 1 to 6, selected from the range of 1 to 4, or 1 to You may select from the range of 3. The alkoxy group that can be a small substituent may be linear, branched, or cyclic, but is preferably linear or branched. Further, the number of carbon atoms of the alkoxy group may be selected, for example, from the range of 1 to 10, may be selected from the range of 1 to 6, may be selected from the range of 1 to 4, You may select from the range of 3. The aryl group that can be a small substituent may be a single ring or a condensed ring, and the number of carbon atoms may be selected from the range of, for example, 6 to 40, or selected from the range of 6 to 14. It may also be selected from the range of 6-10. It is also preferable that the compound satisfying (A) does not contain any donor group in the molecule.
上記の(B)を満たす化合物は、ハメットのσp値が-0.5以上0未満であるドナー性基と、ハメットのσp値が0超0.5以下であるアクセプター性基が連結した構造を有する。そのようなドナー性基として、例えばカルバゾリル基を挙げることができ、N-カルバゾリル基を好ましく例示することができる。また、そのようなアクセプター性基として、アクリドン環基を挙げることができる。ドナー性基のσp値は、例えば-0.1以下の範囲から選択してもよく、-0.2以下の範囲から選択してもよく、また、-0.4以上の範囲から選択してもよく、-0.3以上の範囲から選択してもよい。アクセプター性基のσp値は、例えば0.1以上の範囲から選択してもよく、0.2以上の範囲から選択してもよく、また、0.4以下の範囲から選択してもよく、0.3以下の範囲から選択してもよい。
ハメットのσp値が-0.5以上0未満であるドナー性基には、ドナー性基全体が-0.5以上0未満のσp値を示す限り、小さなアクセプター性基が含まれていてもよい。そのようなアクセプター性基として、例えばハロゲン原子(例えばフッ素原子)を挙げることができる。また、ハメットのσp値が0超0.5以下であるアクセプター性基には、アクセプター性基全体が0超0.5未満のσp値を示す限り、小さなドナー性基が含まれていてもよい。そのようなドナー性基の具体例については、上記の(A)の対応する記載を参照することができる。 The compound satisfying the above (B) has a structure in which a donor group having a Hammett σp value of −0.5 or more and less than 0 and an acceptor group having a Hammett σp value of more than 0 and 0.5 or less are linked. Have. Examples of such a donor group include a carbazolyl group, and an N-carbazolyl group can be preferably exemplified. Moreover, an acridone ring group can be mentioned as such an acceptor group. For example, the σp value of the donor group may be selected from a range of −0.1 or less, may be selected from a range of −0.2 or less, and may be selected from a range of −0.4 or more. It may also be selected from a range of −0.3 or more. The σp value of the acceptor group may be selected, for example, from a range of 0.1 or more, may be selected from a range of 0.2 or more, or may be selected from a range of 0.4 or less, You may select from the range below 0.3.
The donor group having a Hammett's σp value of −0.5 or more and less than 0 may contain a small acceptor group as long as the entire donor group exhibits a σp value of −0.5 or more and less than 0. . Examples of such an acceptor group include a halogen atom (for example, a fluorine atom). The acceptor group having a Hammett σp value of more than 0 and 0.5 or less may contain a small donor group as long as the entire acceptor group exhibits a σp value of more than 0 and less than 0.5. . For specific examples of such a donor group, the corresponding description in (A) above can be referred to.
ハメットのσp値が-0.5以上0未満であるドナー性基には、ドナー性基全体が-0.5以上0未満のσp値を示す限り、小さなアクセプター性基が含まれていてもよい。そのようなアクセプター性基として、例えばハロゲン原子(例えばフッ素原子)を挙げることができる。また、ハメットのσp値が0超0.5以下であるアクセプター性基には、アクセプター性基全体が0超0.5未満のσp値を示す限り、小さなドナー性基が含まれていてもよい。そのようなドナー性基の具体例については、上記の(A)の対応する記載を参照することができる。 The compound satisfying the above (B) has a structure in which a donor group having a Hammett σp value of −0.5 or more and less than 0 and an acceptor group having a Hammett σp value of more than 0 and 0.5 or less are linked. Have. Examples of such a donor group include a carbazolyl group, and an N-carbazolyl group can be preferably exemplified. Moreover, an acridone ring group can be mentioned as such an acceptor group. For example, the σp value of the donor group may be selected from a range of −0.1 or less, may be selected from a range of −0.2 or less, and may be selected from a range of −0.4 or more. It may also be selected from a range of −0.3 or more. The σp value of the acceptor group may be selected, for example, from a range of 0.1 or more, may be selected from a range of 0.2 or more, or may be selected from a range of 0.4 or less, You may select from the range below 0.3.
The donor group having a Hammett's σp value of −0.5 or more and less than 0 may contain a small acceptor group as long as the entire donor group exhibits a σp value of −0.5 or more and less than 0. . Examples of such an acceptor group include a halogen atom (for example, a fluorine atom). The acceptor group having a Hammett σp value of more than 0 and 0.5 or less may contain a small donor group as long as the entire acceptor group exhibits a σp value of more than 0 and less than 0.5. . For specific examples of such a donor group, the corresponding description in (A) above can be referred to.
上記の(C)を満たす化合物は、互いに異なる2つのドナー性基が結合した構造を有する。(C)を満たす化合物に存在する2つのドナー性基は、互いにドナー性の強さが異なるものであることが好ましい。すなわち、相対的に強いドナー性基と相対的に弱いドナー性基が連結した構造を有するものであることが好ましい。相対的に強いドナー性基として、例えば置換されていてもよいトリアジン環基を挙げることができる。また、相対的に弱いドナー性基として例えば置換されていてもよいジベンゾフラン環基や置換されていてもよいジベンゾチオフェン環基を挙げることができる。上記の(C)を満たす化合物に存在する相対的に強いドナー性基と相対的に弱いドナー性基は、σp値の差が0.1以上であるものが好ましく、0.2以上であるものがより好ましく、例えば0.3以上の範囲、0.5以上の範囲、0.7以上の範囲から選択してもよく、また、例えば1.5以下の範囲、1.0以下の範囲から選択してもよい。相対的に弱いドナー性基のσpは、例えばー0.5以上0未満の範囲から選択してもよいし、ー0.3以上0未満の範囲から選択してもよいし、ー0.15以上0未満の範囲から選択してもよい。
(C)を満たす化合物を構成する2つの各ドナー性基には、それぞれ1つ以上の小さな置換基が含まれていてもよい。各ドナー性基に含まれていてもよい小さな置換基は、必ずしもドナー性を示す基でなくてもよい。すなわち、各ドナー性基が全体としてドナー性を示す限り、そのドナー性基の中に小さなアクセプター性基が含まれていても構わない。そのようなアクセプター性基として、例えばハロゲン原子(例えばフッ素原子)を挙げることができる。(C)を満たす化合物は、分子内にアクセプター性基をまったく含まないものであることも好ましい。 The compound satisfying the above (C) has a structure in which two different donor groups are bonded to each other. The two donor groups present in the compound satisfying (C) preferably have different donor properties. That is, it is preferable to have a structure in which a relatively strong donor group and a relatively weak donor group are linked. As a relatively strong donor group, for example, an optionally substituted triazine ring group can be exemplified. Examples of the relatively weak donor group include a dibenzofuran ring group which may be substituted and a dibenzothiophene ring group which may be substituted. The relatively strong donor group present in the compound satisfying the above (C) and the relatively weak donor group preferably have a σp value difference of 0.1 or more, and preferably 0.2 or more. More preferably, for example, a range of 0.3 or more, a range of 0.5 or more, or a range of 0.7 or more may be selected. For example, a range of 1.5 or less or 1.0 or less may be selected. May be. Σp of the relatively weak donor group may be selected from a range of −0.5 or more and less than 0, may be selected from a range of −0.3 or more and less than 0, or −0.15 You may select from the range below 0.
Each of the two donor groups constituting the compound satisfying (C) may each contain one or more small substituents. The small substituent that may be contained in each donor group may not necessarily be a group that exhibits donor properties. That is, as long as each donor group exhibits donor properties as a whole, a small acceptor group may be included in the donor group. Examples of such an acceptor group include a halogen atom (for example, a fluorine atom). It is also preferred that the compound satisfying (C) does not contain any acceptor group in the molecule.
(C)を満たす化合物を構成する2つの各ドナー性基には、それぞれ1つ以上の小さな置換基が含まれていてもよい。各ドナー性基に含まれていてもよい小さな置換基は、必ずしもドナー性を示す基でなくてもよい。すなわち、各ドナー性基が全体としてドナー性を示す限り、そのドナー性基の中に小さなアクセプター性基が含まれていても構わない。そのようなアクセプター性基として、例えばハロゲン原子(例えばフッ素原子)を挙げることができる。(C)を満たす化合物は、分子内にアクセプター性基をまったく含まないものであることも好ましい。 The compound satisfying the above (C) has a structure in which two different donor groups are bonded to each other. The two donor groups present in the compound satisfying (C) preferably have different donor properties. That is, it is preferable to have a structure in which a relatively strong donor group and a relatively weak donor group are linked. As a relatively strong donor group, for example, an optionally substituted triazine ring group can be exemplified. Examples of the relatively weak donor group include a dibenzofuran ring group which may be substituted and a dibenzothiophene ring group which may be substituted. The relatively strong donor group present in the compound satisfying the above (C) and the relatively weak donor group preferably have a σp value difference of 0.1 or more, and preferably 0.2 or more. More preferably, for example, a range of 0.3 or more, a range of 0.5 or more, or a range of 0.7 or more may be selected. For example, a range of 1.5 or less or 1.0 or less may be selected. May be. Σp of the relatively weak donor group may be selected from a range of −0.5 or more and less than 0, may be selected from a range of −0.3 or more and less than 0, or −0.15 You may select from the range below 0.
Each of the two donor groups constituting the compound satisfying (C) may each contain one or more small substituents. The small substituent that may be contained in each donor group may not necessarily be a group that exhibits donor properties. That is, as long as each donor group exhibits donor properties as a whole, a small acceptor group may be included in the donor group. Examples of such an acceptor group include a halogen atom (for example, a fluorine atom). It is also preferred that the compound satisfying (C) does not contain any acceptor group in the molecule.
本発明の発光材料は、(A)~(C)のいずれかの条件を満たすとともに、化合物の最低励起一重項エネルギー準位ES1と最低励起三重項エネルギー準位ET1の差(ΔEST)が小さいものであることが特に好ましい。ΔESTは例えば0.6eV以下の範囲内で選択してもよく、0.4eV以下であることが好ましく、0.3eV以下であることがより好ましく、0.2eV以下であることがさらに好ましい。化合物の構造を特定すれば、ΔESTのおおよその値は計算によって求めることが可能である。例えば、Gaussian等による計算法を用いて計算することができる。このため、(A)~(C)のいずれかの条件を満たす化合物の構造を設計し、その構造について計算を行うことにより、小さなΔESTを有する化合物の構造を絞りこむことが可能である。このため、本発明が提供するコンセプトに基づけば、望ましい化合物を具体的に見いだすことができる。
The light-emitting material of the present invention satisfies any of the conditions (A) to (C), and the difference between the lowest excited singlet energy level E S1 and the lowest excited triplet energy level E T1 of the compound (ΔE ST ). Is particularly preferably small. Delta] E ST may be selected within the range of, for example, 0.6eV or less, preferably less 0.4 eV, more preferably less 0.3 eV, and more preferably less 0.2 eV. If particular structures of compounds, approximate values of Delta] E ST is can be determined by calculation. For example, it can be calculated using a calculation method by Gaussian et al. Therefore, it is possible to refine the structure of a compound having a (A) ~ designing the structure of any of satisfying compound of component (C), by performing the calculation for the structure, a small Delta] E ST. Therefore, a desirable compound can be specifically found based on the concept provided by the present invention.
ここでいうΔESTは、蛍光及び燐光スペクトルの発光端から最低励起一重項エネルギー準位(ES1)と最低励起三重項エネルギー準位(ET1)を求め、その差を計算することにより求められる。具体的には、下記の方法を実施することにより、容易にΔESTを決定することができる。
(1)最低励起一重項エネルギー準位(ES1)
測定対象化合物を含むトルエン溶液(濃度:1×10-5M)、またはシリコン基板上に形成した測定対象化合物を含むPMMA膜(化合物の濃度:0.1mol%、厚さ100nm)を測定試料として用意し、常温(300K)でこの試料の蛍光スペクトルを測定した。具体的には、励起光入射直後から入射後100ナノ秒までの発光を積算することで、縦軸を発光強度、横軸を波長の蛍光スペクトルを得た。この発光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値 λedge[nm]を求めた。この波長値を次に示す換算式でエネルギー値に換算した値をES1とした。
換算式:ES1[eV]=1239.85/λedge
(2)最低励起三重項エネルギー準位(ET1)
最低励起一重項エネルギー準位(ES1)と同じ試料を5[K]に冷却し、励起光(337nm)を燐光測定用試料に照射し、ストリークカメラを用いて、燐光強度を測定した。励起光入射後1ミリ秒から入射後10ミリ秒の発光を積算することで、縦軸を発光強度、横軸を波長の燐光スペクトルを得た。この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]を求めた。この波長値を次に示す換算式でエネルギー値に換算した値をET1とした。
換算式:ET1[eV]=1239.85/λedge
燐光スペクトルの短波長側の立ち上がりに対する接線は以下のように引いた。燐光スペクトルの短波長側から、スペクトルの極大値のうち、最も短波長側の極大値までスペクトル曲線上を移動する際に、長波長側に向けて曲線上の各点における接線を考えた。この接線は、曲線が立ち上がるにつれ(つまり縦軸が増加するにつれ)、傾きが増加する。この傾きの値が極大値をとる点において引いた接線を、当該燐光スペクトルの短波長側の立ち上がりに対する接線とした。
スペクトルの最大ピーク強度の10%以下のピーク強度をもつ極大点は、上述の最も短波長側の極大値には含めず、最も短波長側の極大値に最も近い、傾きの値が極大値をとる点において引いた接線を当該燐光スペクトルの短波長側の立ち上がりに対する接線とした。
なお、試料がトルエン溶液のときは、77[K]で燐光測定装置により測定する。 ΔE ST here is obtained by calculating the difference between the lowest excited singlet energy level (E S1 ) and the lowest excited triplet energy level (E T1 ) from the emission ends of the fluorescence and phosphorescence spectra. . Specifically, by implementing the following method can be determined easily Delta] E ST.
(1) Lowest excited singlet energy level (E S1 )
A toluene solution (concentration: 1 × 10 −5 M) containing a measurement target compound or a PMMA film (compound concentration: 0.1 mol%,thickness 100 nm) containing a measurement target compound formed on a silicon substrate is used as a measurement sample. Prepared and measured the fluorescence spectrum of this sample at room temperature (300K). Specifically, by integrating the luminescence from immediately after the excitation light was incident to 100 nanoseconds after the incident, a fluorescence spectrum having the emission intensity on the vertical axis and the wavelength on the horizontal axis was obtained. A tangent line was drawn to the rising edge of the emission spectrum on the short wavelength side, and the wavelength value λ edge [nm] at the intersection of the tangent line and the horizontal axis was obtained. A value obtained by converting this wavelength value into an energy value by the following conversion formula was defined as ES1 .
Conversion formula: E S1 [eV] = 1239.85 / λedge
(2) Lowest excited triplet energy level (E T1 )
The same sample as the lowest excitation singlet energy level (E S1 ) was cooled to 5 [K], the excitation light (337 nm) was irradiated onto the phosphorescence measurement sample, and the phosphorescence intensity was measured using a streak camera. By integrating the luminescence from 1 millisecond after the excitation light incidence to 10 milliseconds after the incidence, a phosphorescence spectrum having the luminescence intensity on the vertical axis and the wavelength on the horizontal axis was obtained. A tangent line was drawn with respect to the rising edge of the phosphorescence spectrum on the short wavelength side, and a wavelength value λ edge [nm] at the intersection of the tangent line and the horizontal axis was obtained. A value obtained by converting this wavelength value into an energy value by the following conversion formula was defined as ET1 .
Conversion formula: E T1 [eV] = 1239.85 / λedge
The tangent to the short wavelength rising edge of the phosphorescence spectrum was drawn as follows. When moving on the spectrum curve from the short wavelength side of the phosphorescence spectrum to the maximum value on the shortest wavelength side of the maximum value of the spectrum, the tangent at each point on the curve toward the long wavelength side was considered. The slope of this tangent line increases as the curve rises (that is, as the vertical axis increases). The tangent drawn at the point where the value of the slope takes the maximum value was taken as the tangent to the rising edge of the phosphorescence spectrum on the short wavelength side.
The maximum point having a peak intensity of 10% or less of the maximum peak intensity of the spectrum is not included in the maximum value on the shortest wavelength side described above, and the slope value closest to the maximum value on the shortest wavelength side is the maximum value. The tangent drawn at the point taken was taken as the tangent to the rising edge of the phosphorescence spectrum on the short wavelength side.
In addition, when a sample is a toluene solution, it measures with a phosphorescence measuring apparatus at 77 [K].
(1)最低励起一重項エネルギー準位(ES1)
測定対象化合物を含むトルエン溶液(濃度:1×10-5M)、またはシリコン基板上に形成した測定対象化合物を含むPMMA膜(化合物の濃度:0.1mol%、厚さ100nm)を測定試料として用意し、常温(300K)でこの試料の蛍光スペクトルを測定した。具体的には、励起光入射直後から入射後100ナノ秒までの発光を積算することで、縦軸を発光強度、横軸を波長の蛍光スペクトルを得た。この発光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値 λedge[nm]を求めた。この波長値を次に示す換算式でエネルギー値に換算した値をES1とした。
換算式:ES1[eV]=1239.85/λedge
(2)最低励起三重項エネルギー準位(ET1)
最低励起一重項エネルギー準位(ES1)と同じ試料を5[K]に冷却し、励起光(337nm)を燐光測定用試料に照射し、ストリークカメラを用いて、燐光強度を測定した。励起光入射後1ミリ秒から入射後10ミリ秒の発光を積算することで、縦軸を発光強度、横軸を波長の燐光スペクトルを得た。この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]を求めた。この波長値を次に示す換算式でエネルギー値に換算した値をET1とした。
換算式:ET1[eV]=1239.85/λedge
燐光スペクトルの短波長側の立ち上がりに対する接線は以下のように引いた。燐光スペクトルの短波長側から、スペクトルの極大値のうち、最も短波長側の極大値までスペクトル曲線上を移動する際に、長波長側に向けて曲線上の各点における接線を考えた。この接線は、曲線が立ち上がるにつれ(つまり縦軸が増加するにつれ)、傾きが増加する。この傾きの値が極大値をとる点において引いた接線を、当該燐光スペクトルの短波長側の立ち上がりに対する接線とした。
スペクトルの最大ピーク強度の10%以下のピーク強度をもつ極大点は、上述の最も短波長側の極大値には含めず、最も短波長側の極大値に最も近い、傾きの値が極大値をとる点において引いた接線を当該燐光スペクトルの短波長側の立ち上がりに対する接線とした。
なお、試料がトルエン溶液のときは、77[K]で燐光測定装置により測定する。 ΔE ST here is obtained by calculating the difference between the lowest excited singlet energy level (E S1 ) and the lowest excited triplet energy level (E T1 ) from the emission ends of the fluorescence and phosphorescence spectra. . Specifically, by implementing the following method can be determined easily Delta] E ST.
(1) Lowest excited singlet energy level (E S1 )
A toluene solution (concentration: 1 × 10 −5 M) containing a measurement target compound or a PMMA film (compound concentration: 0.1 mol%,
Conversion formula: E S1 [eV] = 1239.85 / λedge
(2) Lowest excited triplet energy level (E T1 )
The same sample as the lowest excitation singlet energy level (E S1 ) was cooled to 5 [K], the excitation light (337 nm) was irradiated onto the phosphorescence measurement sample, and the phosphorescence intensity was measured using a streak camera. By integrating the luminescence from 1 millisecond after the excitation light incidence to 10 milliseconds after the incidence, a phosphorescence spectrum having the luminescence intensity on the vertical axis and the wavelength on the horizontal axis was obtained. A tangent line was drawn with respect to the rising edge of the phosphorescence spectrum on the short wavelength side, and a wavelength value λ edge [nm] at the intersection of the tangent line and the horizontal axis was obtained. A value obtained by converting this wavelength value into an energy value by the following conversion formula was defined as ET1 .
Conversion formula: E T1 [eV] = 1239.85 / λedge
The tangent to the short wavelength rising edge of the phosphorescence spectrum was drawn as follows. When moving on the spectrum curve from the short wavelength side of the phosphorescence spectrum to the maximum value on the shortest wavelength side of the maximum value of the spectrum, the tangent at each point on the curve toward the long wavelength side was considered. The slope of this tangent line increases as the curve rises (that is, as the vertical axis increases). The tangent drawn at the point where the value of the slope takes the maximum value was taken as the tangent to the rising edge of the phosphorescence spectrum on the short wavelength side.
The maximum point having a peak intensity of 10% or less of the maximum peak intensity of the spectrum is not included in the maximum value on the shortest wavelength side described above, and the slope value closest to the maximum value on the shortest wavelength side is the maximum value. The tangent drawn at the point taken was taken as the tangent to the rising edge of the phosphorescence spectrum on the short wavelength side.
In addition, when a sample is a toluene solution, it measures with a phosphorescence measuring apparatus at 77 [K].
本発明によれば、例えば互いに異なる2つのアクセプター性基が結合した構造や互いに異なる2つのドナー性基が結合した構造を有する化合物において、HOMOとLUMOを分離させ、小さなΔESTを有する分子を設計することが可能である。このような化合物は、従来の熱活性型遅延蛍光材料に比べてよりバンドギャップの大きな分子になり得るため、本発明によれば多様な青色発光材料の開発が可能になる。また、従来の熱活性型遅延蛍光材料は、ドナー性基とアクセプター性基が結合した構造を有しており、電子ドナー性基としてラジカルカチオンを安定化する基を選択し、アクセプター性基としてラジカルアニオンを安定化する基を選択する。このようなドナー・アクセプター結合型熱活性型遅延蛍光材料は安定な電荷分離状態を生成するため、遅延蛍光成分の寿命がマイクロ秒からミリ秒オーダーと比較的長寿命である。このことは、T1励起子としての寿命が長いことを意味する。T1励起状態である発光分子が酸素分子に接触すると、発光分子の励起子エネルギーがDexter機構によって酸素分子に移動し、発光分子上の励起子が消滅する。このためS1へ項間交差可能なT1励起子が減少してしまうため、TADF分子の発光量子収率は酸素存在下では低下してしまう。特に(A)または(C)の条件を満たす本発明の発光材料によれば、ラジカルアニオンもしくはラジカルカチオンの一方を安定化する能力が欠乏するため、不安定な電荷分離状態を解消するためにT1から逆項間交差を経て基底状態に戻る経路が促進され、T1励起子の短寿命化によって酸素による消光の影響を受けにくくなる。
According to the present invention, in a compound having a structure, for example two donor group structurally different and each other to two different acceptor group bonded to each other bound, to separate the HOMO and LUMO, a molecule having a smaller Delta] E ST design Is possible. Since such a compound can be a molecule having a larger band gap than the conventional thermally activated delayed fluorescent material, various blue light emitting materials can be developed according to the present invention. Further, the conventional thermally activated delayed fluorescent material has a structure in which a donor group and an acceptor group are bonded, and a group that stabilizes a radical cation is selected as an electron donor group, and a radical is selected as an acceptor group. A group that stabilizes the anion is selected. Since such a donor-acceptor-coupled thermally activated delayed fluorescent material generates a stable charge separation state, the lifetime of the delayed fluorescent component is relatively long, on the order of microseconds to milliseconds. This means that the lifetime as a T 1 exciton is long. When the luminescent molecule in the T 1 excited state comes into contact with the oxygen molecule, the exciton energy of the luminescent molecule moves to the oxygen molecule by the Dexter mechanism, and the excitons on the luminescent molecule disappear. For this reason, T 1 excitons capable of intersystem crossing to S 1 are decreased, and the emission quantum yield of the TADF molecule is decreased in the presence of oxygen. In particular, according to the luminescent material of the present invention that satisfies the condition (A) or (C), the ability to stabilize one of the radical anion or the radical cation is deficient. The path from 1 to the ground state through the reverse intersystem crossing is promoted, and the lifetime of the T 1 exciton is shortened so that it is less susceptible to the quenching by oxygen.
[一般式(1)で表される化合物]
本発明の発光材料に好ましく用いられる一般式(1)で表される構造を有する化合物について説明する。
一般式(1)において、Zは電子吸引性基を表す。ここでいう電子吸引性基とは、メチレン基よりも電子を吸引する性質が強い基を意味する。Zとして好ましく採用することができる電子吸引性基として、>C=O、>C=C(CN)2、>B-R10、>SO2、>C(CF3)2、>P(=O)R11、Sを挙げることができるが、本発明で採用することができる電子吸引性基はこれらの例に限定されるものではない。ここで、R10およびR11は置換基を表す。R10およびR11がとりうる好ましい置換基は、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基であり、より好ましくは、炭素数1~10の置換もしくは無置換のアルキル基、炭素数6~18の置換もしくは無置換のアリール基、炭素数5~18の置換もしくは無置換のヘテロアリール基であり、さらに好ましくは炭素数6~18の置換もしくは無置換のアリール基である。
一般式(1)のR9を除く構造部分は、2つのベンゼン環を連結する窒素原子とともに、Zに相当する電子吸引性基を有しているため、ドナー性とアクセプター性の両方の性質を有する特徴的な構造部分となっている。 [Compound represented by general formula (1)]
The compound having the structure represented by the general formula (1) preferably used for the light emitting material of the present invention will be described.
In the general formula (1), Z represents an electron withdrawing group. The term “electron withdrawing group” as used herein means a group having a stronger property of attracting electrons than a methylene group. As an electron-withdrawing group that can be preferably used as Z,>C═O,> C═C (CN) 2 ,> BR 10 ,> SO 2 ,> C (CF 3 ) 2 ,> P (= O) R 11 and S can be mentioned, but the electron-withdrawing group that can be employed in the present invention is not limited to these examples. Here, R 10 and R 11 represent a substituent. The preferred substituents that R 10 and R 11 can take are a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, and more preferably those having 1 to 10 carbon atoms. A substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group having 6 to 18 carbon atoms, a substituted or unsubstituted heteroaryl group having 5 to 18 carbon atoms, and more preferably a substituted or unsubstituted aryl group having 6 to 18 carbon atoms. An unsubstituted aryl group.
Since the structural portion excluding R 9 in the general formula (1) has an electron-withdrawing group corresponding to Z together with a nitrogen atom connecting two benzene rings, it has both a donor property and an acceptor property. It has a characteristic structural part.
本発明の発光材料に好ましく用いられる一般式(1)で表される構造を有する化合物について説明する。
一般式(1)において、Zは電子吸引性基を表す。ここでいう電子吸引性基とは、メチレン基よりも電子を吸引する性質が強い基を意味する。Zとして好ましく採用することができる電子吸引性基として、>C=O、>C=C(CN)2、>B-R10、>SO2、>C(CF3)2、>P(=O)R11、Sを挙げることができるが、本発明で採用することができる電子吸引性基はこれらの例に限定されるものではない。ここで、R10およびR11は置換基を表す。R10およびR11がとりうる好ましい置換基は、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基であり、より好ましくは、炭素数1~10の置換もしくは無置換のアルキル基、炭素数6~18の置換もしくは無置換のアリール基、炭素数5~18の置換もしくは無置換のヘテロアリール基であり、さらに好ましくは炭素数6~18の置換もしくは無置換のアリール基である。
一般式(1)のR9を除く構造部分は、2つのベンゼン環を連結する窒素原子とともに、Zに相当する電子吸引性基を有しているため、ドナー性とアクセプター性の両方の性質を有する特徴的な構造部分となっている。 [Compound represented by general formula (1)]
The compound having the structure represented by the general formula (1) preferably used for the light emitting material of the present invention will be described.
In the general formula (1), Z represents an electron withdrawing group. The term “electron withdrawing group” as used herein means a group having a stronger property of attracting electrons than a methylene group. As an electron-withdrawing group that can be preferably used as Z,>C═O,> C═C (CN) 2 ,> BR 10 ,> SO 2 ,> C (CF 3 ) 2 ,> P (= O) R 11 and S can be mentioned, but the electron-withdrawing group that can be employed in the present invention is not limited to these examples. Here, R 10 and R 11 represent a substituent. The preferred substituents that R 10 and R 11 can take are a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, and more preferably those having 1 to 10 carbon atoms. A substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group having 6 to 18 carbon atoms, a substituted or unsubstituted heteroaryl group having 5 to 18 carbon atoms, and more preferably a substituted or unsubstituted aryl group having 6 to 18 carbon atoms. An unsubstituted aryl group.
Since the structural portion excluding R 9 in the general formula (1) has an electron-withdrawing group corresponding to Z together with a nitrogen atom connecting two benzene rings, it has both a donor property and an acceptor property. It has a characteristic structural part.
一般式(1)において、R1~R8は各々独立に水素原子または置換基を表す。また、R9は置換基を表す。R1~R9がとりうる置換基としては、例えばヒドロキシ基、ハロゲン原子、シアノ基、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数1~20のアルキルチオ基、炭素数1~20のアルキル置換アミノ基、炭素数12~40のアリール置換アミノ基、炭素数2~20のアシル基、炭素数6~40のアリール基、炭素数3~40のヘテロアリール基、炭素数12~40の置換もしくは無置換のカルバゾリル基、炭素数2~10のアルケニル基、炭素数2~10のアルキニル基、炭素数2~10のアルコキシカルボニル基、炭素数1~10のアルキルスルホニル基、炭素数1~10のハロアルキル基、アミド基、炭素数2~10のアルキルアミド基、炭素数3~20のトリアルキルシリル基、炭素数4~20のトリアルキルシリルアルキル基、炭素数5~20のトリアルキルシリルアルケニル基、炭素数5~20のトリアルキルシリルアルキニル基およびニトロ基等が挙げられる。これらの具体例のうち、さらに置換基により置換可能なものは置換されていてもよい。より好ましい置換基は、ハロゲン原子、シアノ基、炭素数1~20の置換もしくは無置換のアルキル基、炭素数1~20のアルコキシ基、炭素数6~40の置換もしくは無置換のアリール基、炭素数3~40の置換もしくは無置換のヘテロアリール基、炭素数1~10の置換もしくは無置換のジアルキルアミノ基、炭素数12~40の置換もしくは無置換のジアリールアミノ基、炭素数12~40の置換もしくは無置換のカルバゾリル基である。さらに好ましい置換基は、フッ素原子、塩素原子、シアノ基、炭素数1~10の置換もしくは無置換のアルキル基、炭素数1~10の置換もしくは無置換のアルコキシ基、炭素数1~10の置換もしくは無置換のジアルキルアミノ基、炭素数12~40の置換もしくは無置換のジアリールアミノ基、炭素数6~15の置換もしくは無置換のアリール基、炭素数3~12の置換もしくは無置換のヘテロアリール基である。R1とR2、R2とR3、R3とR4、R5とR6、R6とR7、R7とR8、R4とR9、R5とR9は、それぞれ互いに結合して環状構造を形成していてもよい。
In the general formula (1), R 1 to R 8 each independently represents a hydrogen atom or a substituent. R 9 represents a substituent. Examples of the substituent that R 1 to R 9 can take include, for example, a hydroxy group, a halogen atom, a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkylthio group having 1 to 20 carbon atoms, An alkyl-substituted amino group having 1 to 20 carbon atoms, an aryl-substituted amino group having 12 to 40 carbon atoms, an acyl group having 2 to 20 carbon atoms, an aryl group having 6 to 40 carbon atoms, a heteroaryl group having 3 to 40 carbon atoms, Substituted or unsubstituted carbazolyl group having 12 to 40 carbon atoms, alkenyl group having 2 to 10 carbon atoms, alkynyl group having 2 to 10 carbon atoms, alkoxycarbonyl group having 2 to 10 carbon atoms, alkylsulfonyl having 1 to 10 carbon atoms Group, haloalkyl group having 1 to 10 carbon atoms, amide group, alkylamide group having 2 to 10 carbon atoms, trialkylsilyl group having 3 to 20 carbon atoms, tria having 4 to 20 carbon atoms Kill silylalkyl group, trialkylsilyl alkenyl group having 5 to 20 carbon atoms, and the like trialkylsilyl alkynyl group and a nitro group having 5 to 20 carbon atoms. Among these specific examples, those that can be substituted with a substituent may be further substituted. More preferred substituents are a halogen atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, carbon A substituted or unsubstituted heteroaryl group having 3 to 40 carbon atoms, a substituted or unsubstituted dialkylamino group having 1 to 10 carbon atoms, a substituted or unsubstituted diarylamino group having 12 to 40 carbon atoms, and 12 to 40 carbon atoms A substituted or unsubstituted carbazolyl group; More preferred substituents are a fluorine atom, a chlorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, and a substituted group having 1 to 10 carbon atoms. Or an unsubstituted dialkylamino group, a substituted or unsubstituted diarylamino group having 12 to 40 carbon atoms, a substituted or unsubstituted aryl group having 6 to 15 carbon atoms, and a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms It is a group. R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 4 and R 9 , R 5 and R 9 are respectively They may be bonded to each other to form a cyclic structure.
R1~R9のうちの少なくとも1つは、ドナー性基かアクセプター性基である。条件(A)または(B)を満たすように選択される。
At least one of R 1 to R 9 is a donor group or an acceptor group. The condition (A) or (B) is selected.
本発明の好ましい実施態様では、一般式(1)で表される化合物のR1としてドナー性基を選択することが望ましい。ドナー性基としては、置換もしくは無置換のヘテロアリール基、置換もしくは無置換のアリール基を好ましく採用することができ、置換もしくは無置換のヘテロアリール基をより好ましく採用することができる。置換もしくは無置換のヘテロアリール基の例として、置換もしくは無置換のカルバゾリル基を挙げることができる。R1がドナー性基であるとき、R9は、置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基であることが好ましく、置換もしくは無置換のアリール基であることがより好ましい。
In a preferred embodiment of the present invention, it is desirable to select a donor group as R 1 of the compound represented by the general formula (1). As the donor group, a substituted or unsubstituted heteroaryl group or a substituted or unsubstituted aryl group can be preferably employed, and a substituted or unsubstituted heteroaryl group can be more preferably employed. Examples of the substituted or unsubstituted heteroaryl group include a substituted or unsubstituted carbazolyl group. When R 1 is a donor group, R 9 is preferably a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group, and more preferably a substituted or unsubstituted aryl group. .
本発明の別の好ましい実施態様では、一般式(1)で表される化合物のR9としてアクセプター性基を選択することも好ましい。アクセプター性基としては、置換もしくは無置換のトリアジニル基を挙げることができる。なかでも、ジアリールトリアジニル基を好ましく採用することができる。
このように一般式(1)の基本骨格は、ドナー性基で置換された場合も、アクセプター性基で置換された場合も、発光材料として有用な特性を示す。 In another preferred embodiment of the present invention, it is also preferable to select an acceptor group as R 9 of the compound represented by the general formula (1). Examples of the acceptor group include a substituted or unsubstituted triazinyl group. Of these, a diaryltriazinyl group can be preferably employed.
As described above, the basic skeleton of the general formula (1) exhibits characteristics useful as a light emitting material both when it is substituted with a donor group and when it is substituted with an acceptor group.
このように一般式(1)の基本骨格は、ドナー性基で置換された場合も、アクセプター性基で置換された場合も、発光材料として有用な特性を示す。 In another preferred embodiment of the present invention, it is also preferable to select an acceptor group as R 9 of the compound represented by the general formula (1). Examples of the acceptor group include a substituted or unsubstituted triazinyl group. Of these, a diaryltriazinyl group can be preferably employed.
As described above, the basic skeleton of the general formula (1) exhibits characteristics useful as a light emitting material both when it is substituted with a donor group and when it is substituted with an acceptor group.
[一般式(1)で表される化合物の合成方法]
一般式(1)で表される化合物の合成法は特に制限されない。例えば、一般式(1)のR9が水素原子である化合物とR9ーXで表される化合物を反応させることにより合成することが可能である。ここでXはハロゲン原子であり、好ましくは塩素原子、臭素原子、ヨウ素原子である。また、一般式(1)で表される化合物は、その他の公知の合成反応を組み合わせることによっても合成することができる。 [Synthesis Method of Compound Represented by General Formula (1)]
The method for synthesizing the compound represented by the general formula (1) is not particularly limited. For example, it can be synthesized by R 9 in the general formula (1) reacting a compound represented by the compound R 9-X is a hydrogen atom. Here, X is a halogen atom, preferably a chlorine atom, a bromine atom or an iodine atom. The compound represented by the general formula (1) can also be synthesized by combining other known synthesis reactions.
一般式(1)で表される化合物の合成法は特に制限されない。例えば、一般式(1)のR9が水素原子である化合物とR9ーXで表される化合物を反応させることにより合成することが可能である。ここでXはハロゲン原子であり、好ましくは塩素原子、臭素原子、ヨウ素原子である。また、一般式(1)で表される化合物は、その他の公知の合成反応を組み合わせることによっても合成することができる。 [Synthesis Method of Compound Represented by General Formula (1)]
The method for synthesizing the compound represented by the general formula (1) is not particularly limited. For example, it can be synthesized by R 9 in the general formula (1) reacting a compound represented by the compound R 9-X is a hydrogen atom. Here, X is a halogen atom, preferably a chlorine atom, a bromine atom or an iodine atom. The compound represented by the general formula (1) can also be synthesized by combining other known synthesis reactions.
[一般式(2)で表される化合物]
本発明の発光材料に好ましく用いられる一般式(2)で表される構造を有する化合物について説明する。
一般式(2)において、Dは置換されていてもよいジベンゾフラン環基または置換されていてもよいジベンゾチオフェン環基を表す。R11~R20は各々独立に水素原子または置換基を表す。R11とR12、R12とR13、R13とR14、R15とR16、R16とR17、R17とR18、R18とR19、R19とR20、R20とR11は、それぞれ互いに結合して環状構造を形成していてもよい。nは1~4のいずれかの整数を表す。ただし、一般式(2)は(C)の条件を満たす。
Dを構成するジベンゾフラン環またはジベンゾチオフェン環は、ドナー性基で置換されていてもよいし、アクセプター性基で置換されていてもよいし、無置換であってもよい。いずれの場合であっても、Dが全体としてドナー性基となりうる限り、ジベンゾフラン環またはジベンゾチオフェン環の置換態様は制限されない。R11~R20がとりうる置換基も、ドナー性基であってもアクセプター性基であってもよい。Dを除く構造部分が全体としてドナー性を示す限り、これらの置換基の種類は問わない。一般式(2)内で採用しうる置換基と好ましい範囲については、一般式(1)のR1~R8がとりうる置換基の説明を参照することができる。
一般式(2)におけるR19とR20は同一であっても異なっていてもよいが、同一であることが好ましい。R19とR20は、アルキル基であることが好ましく、例えば炭素数1~6のアルキル基であることが好ましく、炭素数1~3のアルキル基であることがより好ましい。
一般式(2)におけるnが、1~4のいずれかの整数であるが、1または2であることが好ましい。
一般式(2)におけるDは、ジベンゾフラン環またはジベンゾチオフェン環のいずれの位置で結合するものであってもよい。nが2であるときは、ジベンゾフラン環またはジベンゾチオフェン環の1~4位のいずれか1つと、6~9位のいずれか1つで結合することが好ましい。例えば、2位と8位で結合する態様や、3位と7位で結合する態様や、4位と6位で結合する態様を挙げることができる。なかでも、4位と6位で結合することが特に好ましい(化合物9参照)。 [Compound represented by formula (2)]
The compound having the structure represented by the general formula (2) preferably used for the light emitting material of the present invention will be described.
In General formula (2), D represents the dibenzofuran ring group which may be substituted, or the dibenzothiophene ring group which may be substituted. R 11 to R 20 each independently represents a hydrogen atom or a substituent. R 11 and R 12 , R 12 and R 13 , R 13 and R 14 , R 15 and R 16 , R 16 and R 17 , R 17 and R 18 , R 18 and R 19 , R 19 and R 20 , R 20 And R 11 may be bonded to each other to form a cyclic structure. n represents an integer of 1 to 4. However, general formula (2) satisfies the condition of (C).
The dibenzofuran ring or dibenzothiophene ring constituting D may be substituted with a donor group, may be substituted with an acceptor group, or may be unsubstituted. In any case, the substitution mode of the dibenzofuran ring or dibenzothiophene ring is not limited as long as D can be a donor group as a whole. The substituent which R 11 to R 20 can take may be a donor group or an acceptor group. As long as the structural part excluding D exhibits donor properties as a whole, the type of these substituents is not limited. For the substituents that can be employed in the general formula (2) and preferred ranges, the description of the substituents that can be taken by R 1 to R 8 in the general formula (1) can be referred to.
R 19 and R 20 in the general formula (2) may be the same or different, but are preferably the same. R 19 and R 20 are preferably an alkyl group, for example, preferably an alkyl group having 1 to 6 carbon atoms, and more preferably an alkyl group having 1 to 3 carbon atoms.
N in the general formula (2) is an integer of 1 to 4, and is preferably 1 or 2.
D in the general formula (2) may be bonded at any position of the dibenzofuran ring or the dibenzothiophene ring. When n is 2, it is preferably bonded to any one of the 1 to 4 positions of the dibenzofuran ring or the dibenzothiophene ring and any one of the 6 to 9 positions. For example, a mode of bonding at the 2-position and the 8-position, a mode of bonding at the 3-position and the 7-position, and a mode of bonding at the 4-position and the 6-position can be exemplified. Among them, it is particularly preferable to bond at the 4-position and the 6-position (see Compound 9).
本発明の発光材料に好ましく用いられる一般式(2)で表される構造を有する化合物について説明する。
一般式(2)において、Dは置換されていてもよいジベンゾフラン環基または置換されていてもよいジベンゾチオフェン環基を表す。R11~R20は各々独立に水素原子または置換基を表す。R11とR12、R12とR13、R13とR14、R15とR16、R16とR17、R17とR18、R18とR19、R19とR20、R20とR11は、それぞれ互いに結合して環状構造を形成していてもよい。nは1~4のいずれかの整数を表す。ただし、一般式(2)は(C)の条件を満たす。
Dを構成するジベンゾフラン環またはジベンゾチオフェン環は、ドナー性基で置換されていてもよいし、アクセプター性基で置換されていてもよいし、無置換であってもよい。いずれの場合であっても、Dが全体としてドナー性基となりうる限り、ジベンゾフラン環またはジベンゾチオフェン環の置換態様は制限されない。R11~R20がとりうる置換基も、ドナー性基であってもアクセプター性基であってもよい。Dを除く構造部分が全体としてドナー性を示す限り、これらの置換基の種類は問わない。一般式(2)内で採用しうる置換基と好ましい範囲については、一般式(1)のR1~R8がとりうる置換基の説明を参照することができる。
一般式(2)におけるR19とR20は同一であっても異なっていてもよいが、同一であることが好ましい。R19とR20は、アルキル基であることが好ましく、例えば炭素数1~6のアルキル基であることが好ましく、炭素数1~3のアルキル基であることがより好ましい。
一般式(2)におけるnが、1~4のいずれかの整数であるが、1または2であることが好ましい。
一般式(2)におけるDは、ジベンゾフラン環またはジベンゾチオフェン環のいずれの位置で結合するものであってもよい。nが2であるときは、ジベンゾフラン環またはジベンゾチオフェン環の1~4位のいずれか1つと、6~9位のいずれか1つで結合することが好ましい。例えば、2位と8位で結合する態様や、3位と7位で結合する態様や、4位と6位で結合する態様を挙げることができる。なかでも、4位と6位で結合することが特に好ましい(化合物9参照)。 [Compound represented by formula (2)]
The compound having the structure represented by the general formula (2) preferably used for the light emitting material of the present invention will be described.
In General formula (2), D represents the dibenzofuran ring group which may be substituted, or the dibenzothiophene ring group which may be substituted. R 11 to R 20 each independently represents a hydrogen atom or a substituent. R 11 and R 12 , R 12 and R 13 , R 13 and R 14 , R 15 and R 16 , R 16 and R 17 , R 17 and R 18 , R 18 and R 19 , R 19 and R 20 , R 20 And R 11 may be bonded to each other to form a cyclic structure. n represents an integer of 1 to 4. However, general formula (2) satisfies the condition of (C).
The dibenzofuran ring or dibenzothiophene ring constituting D may be substituted with a donor group, may be substituted with an acceptor group, or may be unsubstituted. In any case, the substitution mode of the dibenzofuran ring or dibenzothiophene ring is not limited as long as D can be a donor group as a whole. The substituent which R 11 to R 20 can take may be a donor group or an acceptor group. As long as the structural part excluding D exhibits donor properties as a whole, the type of these substituents is not limited. For the substituents that can be employed in the general formula (2) and preferred ranges, the description of the substituents that can be taken by R 1 to R 8 in the general formula (1) can be referred to.
R 19 and R 20 in the general formula (2) may be the same or different, but are preferably the same. R 19 and R 20 are preferably an alkyl group, for example, preferably an alkyl group having 1 to 6 carbon atoms, and more preferably an alkyl group having 1 to 3 carbon atoms.
N in the general formula (2) is an integer of 1 to 4, and is preferably 1 or 2.
D in the general formula (2) may be bonded at any position of the dibenzofuran ring or the dibenzothiophene ring. When n is 2, it is preferably bonded to any one of the 1 to 4 positions of the dibenzofuran ring or the dibenzothiophene ring and any one of the 6 to 9 positions. For example, a mode of bonding at the 2-position and the 8-position, a mode of bonding at the 3-position and the 7-position, and a mode of bonding at the 4-position and the 6-position can be exemplified. Among them, it is particularly preferable to bond at the 4-position and the 6-position (see Compound 9).
[一般式(2)で表される化合物の合成方法]
一般式(2)で表される化合物の合成法は特に制限されない。例えば、一般式(2)のDが水素原子である化合物とDーXで表される化合物を反応させることにより合成することが可能である。ここでXはハロゲン原子であり、好ましくは塩素原子、臭素原子、ヨウ素原子である。また、一般式(1)で表される化合物は、その他の公知の合成反応を組み合わせることによっても合成することができる。 [Synthesis Method of Compound Represented by General Formula (2)]
A method for synthesizing the compound represented by the general formula (2) is not particularly limited. For example, it can be synthesized by reacting a compound represented by DX with a compound in which D in the general formula (2) is a hydrogen atom. Here, X is a halogen atom, preferably a chlorine atom, a bromine atom or an iodine atom. The compound represented by the general formula (1) can also be synthesized by combining other known synthesis reactions.
一般式(2)で表される化合物の合成法は特に制限されない。例えば、一般式(2)のDが水素原子である化合物とDーXで表される化合物を反応させることにより合成することが可能である。ここでXはハロゲン原子であり、好ましくは塩素原子、臭素原子、ヨウ素原子である。また、一般式(1)で表される化合物は、その他の公知の合成反応を組み合わせることによっても合成することができる。 [Synthesis Method of Compound Represented by General Formula (2)]
A method for synthesizing the compound represented by the general formula (2) is not particularly limited. For example, it can be synthesized by reacting a compound represented by DX with a compound in which D in the general formula (2) is a hydrogen atom. Here, X is a halogen atom, preferably a chlorine atom, a bromine atom or an iodine atom. The compound represented by the general formula (1) can also be synthesized by combining other known synthesis reactions.
[化合物の具体例とバリエーション]
以下において、一般式(1)または一般式(2)で表される化合物の具体例を挙げる。ただし、本発明で用いることができる化合物は、これらの例示化合物によって限定的に解釈されることはない。 [Specific examples and variations of compounds]
Below, the specific example of a compound represented by General formula (1) or General formula (2) is given. However, the compounds that can be used in the present invention are not limitedly interpreted by these exemplified compounds.
以下において、一般式(1)または一般式(2)で表される化合物の具体例を挙げる。ただし、本発明で用いることができる化合物は、これらの例示化合物によって限定的に解釈されることはない。 [Specific examples and variations of compounds]
Below, the specific example of a compound represented by General formula (1) or General formula (2) is given. However, the compounds that can be used in the present invention are not limitedly interpreted by these exemplified compounds.
一般式(1)または一般式(2)で表される化合物は、遅延蛍光を放射しうる。したがって、本発明には、一般式(1)または一般式(2)で表される構造を有する遅延蛍光体の発明も含まれる。
The compound represented by the general formula (1) or the general formula (2) can emit delayed fluorescence. Therefore, the present invention includes an invention of a delayed phosphor having a structure represented by the general formula (1) or the general formula (2).
一般式(1)または一般式(2)で表される化合物の分子量は、例えば一般式(1)または一般式(2)で表される化合物を含む有機層を蒸着法により製膜して利用することを意図する場合には、1500以下であることが好ましく、1200以下であることがより好ましく、1000以下であることがさらに好ましく、800以下であることがさらにより好ましい。分子量の下限値は、一般式(1)または一般式(2)がとりうる最も小さい分子量である。
一般式(1)または一般式(2)で表される化合物は、分子量にかかわらず塗布法で成膜してもよい。塗布法を用いれば、分子量が比較的大きな化合物であっても成膜することが可能である。 The molecular weight of the compound represented by the general formula (1) or the general formula (2) is used by, for example, forming an organic layer containing the compound represented by the general formula (1) or the general formula (2) by vapor deposition. When it is intended to do, it is preferably 1500 or less, more preferably 1200 or less, even more preferably 1000 or less, and even more preferably 800 or less. The lower limit of the molecular weight is the smallest molecular weight that the general formula (1) or the general formula (2) can take.
The compound represented by the general formula (1) or the general formula (2) may be formed by a coating method regardless of the molecular weight. If a coating method is used, a film can be formed even with a compound having a relatively large molecular weight.
一般式(1)または一般式(2)で表される化合物は、分子量にかかわらず塗布法で成膜してもよい。塗布法を用いれば、分子量が比較的大きな化合物であっても成膜することが可能である。 The molecular weight of the compound represented by the general formula (1) or the general formula (2) is used by, for example, forming an organic layer containing the compound represented by the general formula (1) or the general formula (2) by vapor deposition. When it is intended to do, it is preferably 1500 or less, more preferably 1200 or less, even more preferably 1000 or less, and even more preferably 800 or less. The lower limit of the molecular weight is the smallest molecular weight that the general formula (1) or the general formula (2) can take.
The compound represented by the general formula (1) or the general formula (2) may be formed by a coating method regardless of the molecular weight. If a coating method is used, a film can be formed even with a compound having a relatively large molecular weight.
また、遅延蛍光を放射し、分子内プロトン移動が可能な化合物は、遅延蛍光を放射し、分子内プロトン移動が可能な重合性モノマーを重合させた重合体であってもよい。
例えば、一般式(1)または一般式(2)で表される構造中にあらかじめ重合性基を存在させておいて、その重合性基を重合させることによって得られる重合体を、有機発光素子の材料として用いることが考えられる。具体的には、一般式(1)のR1~R9のいずれか、一般式(2)のR11~R20またはDのいずれかに重合性官能基を含むモノマーを用意して、これを単独で重合させるか、他のモノマーとともに共重合させることにより、繰り返し単位を有する重合体を得て、その重合体を有機発光素子の材料として用いることが考えられる。あるいは、一般式(1)で表される構造を有する化合物どうしをカップリングさせたり、一般式(2)で表される構造を有する化合物どうしをカップリングさせたりすることにより、二量体や三量体を得て、それらを有機発光素子の材料として用いることも考えられる。 Further, the compound that emits delayed fluorescence and is capable of intramolecular proton transfer may be a polymer obtained by polymerizing a polymerizable monomer that emits delayed fluorescence and is capable of intramolecular proton transfer.
For example, a polymer obtained by preliminarily allowing a polymerizable group to exist in the structure represented by the general formula (1) or (2) and polymerizing the polymerizable group is used for the organic light emitting device. It can be considered to be used as a material. Specifically, a monomer containing a polymerizable functional group in any of R 1 to R 9 in the general formula (1), R 11 to R 20 in the general formula (2), or D is prepared. It is conceivable that a polymer having a repeating unit is obtained by polymerizing the polymer alone or with other monomers, and the polymer is used as a material for the organic light-emitting device. Alternatively, by diluting the compounds having the structure represented by the general formula (1) or by coupling the compounds having the structure represented by the general formula (2), It is also conceivable to obtain a monomer and use them as a material for the organic light emitting device.
例えば、一般式(1)または一般式(2)で表される構造中にあらかじめ重合性基を存在させておいて、その重合性基を重合させることによって得られる重合体を、有機発光素子の材料として用いることが考えられる。具体的には、一般式(1)のR1~R9のいずれか、一般式(2)のR11~R20またはDのいずれかに重合性官能基を含むモノマーを用意して、これを単独で重合させるか、他のモノマーとともに共重合させることにより、繰り返し単位を有する重合体を得て、その重合体を有機発光素子の材料として用いることが考えられる。あるいは、一般式(1)で表される構造を有する化合物どうしをカップリングさせたり、一般式(2)で表される構造を有する化合物どうしをカップリングさせたりすることにより、二量体や三量体を得て、それらを有機発光素子の材料として用いることも考えられる。 Further, the compound that emits delayed fluorescence and is capable of intramolecular proton transfer may be a polymer obtained by polymerizing a polymerizable monomer that emits delayed fluorescence and is capable of intramolecular proton transfer.
For example, a polymer obtained by preliminarily allowing a polymerizable group to exist in the structure represented by the general formula (1) or (2) and polymerizing the polymerizable group is used for the organic light emitting device. It can be considered to be used as a material. Specifically, a monomer containing a polymerizable functional group in any of R 1 to R 9 in the general formula (1), R 11 to R 20 in the general formula (2), or D is prepared. It is conceivable that a polymer having a repeating unit is obtained by polymerizing the polymer alone or with other monomers, and the polymer is used as a material for the organic light-emitting device. Alternatively, by diluting the compounds having the structure represented by the general formula (1) or by coupling the compounds having the structure represented by the general formula (2), It is also conceivable to obtain a monomer and use them as a material for the organic light emitting device.
一般式(1)または一般式(2)で表される構造を含む繰り返し単位を有する重合体の例として、下記一般式(11)または(12)で表される構造を含む重合体を挙げることができる。
Examples of a polymer having a repeating unit containing a structure represented by the general formula (1) or (2) include a polymer containing a structure represented by the following general formula (11) or (12) Can do.
一般式(11)または(12)において、Qは一般式(1)または一般式(2)で表される構造を含む基を表し、L1およびL2は連結基を表す。連結基の炭素数は、好ましくは0~20であり、より好ましくは1~15であり、さらに好ましくは2~10である。連結基は-X11-L11-で表される構造を有するものであることが好ましい。ここで、X11は酸素原子または硫黄原子を表し、酸素原子であることが好ましい。L11は連結基を表し、置換もしくは無置換のアルキレン基、または置換もしくは無置換のアリーレン基であることが好ましく、炭素数1~10の置換もしくは無置換のアルキレン基、または置換もしくは無置換のフェニレン基であることがより好ましい。
一般式(11)または(12)において、R101、R102、R103およびR104は、各々独立に置換基を表す。好ましくは、炭素数1~6の置換もしくは無置換のアルキル基、炭素数1~6の置換もしくは無置換のアルコキシ基、ハロゲン原子であり、より好ましくは炭素数1~3の無置換のアルキル基、炭素数1~3の無置換のアルコキシ基、フッ素原子、塩素原子であり、さらに好ましくは炭素数1~3の無置換のアルキル基、炭素数1~3の無置換のアルコキシ基である。
L1およびL2で表される連結基は、Qを構成する一般式(1)の構造のR1~R9のいずれか、一般式(2)の構造のR11~R20、Dのいずれかに結合することができる。1つのQに対して連結基が2つ以上連結して架橋構造や網目構造を形成していてもよい。 In General Formula (11) or (12), Q represents a group including a structure represented by General Formula (1) or General Formula (2), and L 1 and L 2 represent a linking group. The linking group preferably has 0 to 20 carbon atoms, more preferably 1 to 15 carbon atoms, and still more preferably 2 to 10 carbon atoms. And preferably has a structure represented by - linking group -X 11 -L 11. Here, X 11 represents an oxygen atom or a sulfur atom, and is preferably an oxygen atom. L 11 represents a linking group, and is preferably a substituted or unsubstituted alkylene group, or a substituted or unsubstituted arylene group, and is a substituted or unsubstituted alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted group A phenylene group is more preferable.
In General Formula (11) or (12), R 101 , R 102 , R 103 and R 104 each independently represent a substituent. Preferably, it is a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 6 carbon atoms, or a halogen atom, more preferably an unsubstituted alkyl group having 1 to 3 carbon atoms. An unsubstituted alkoxy group having 1 to 3 carbon atoms, a fluorine atom, and a chlorine atom, and more preferably an unsubstituted alkyl group having 1 to 3 carbon atoms and an unsubstituted alkoxy group having 1 to 3 carbon atoms.
The linking group represented by L 1 and L 2 is any one of R 1 to R 9 having the structure of the general formula (1) constituting Q, R 11 to R 20 having the structure of the general formula (2), and D Can be bound to either. Two or more linking groups may be linked to one Q to form a crosslinked structure or a network structure.
一般式(11)または(12)において、R101、R102、R103およびR104は、各々独立に置換基を表す。好ましくは、炭素数1~6の置換もしくは無置換のアルキル基、炭素数1~6の置換もしくは無置換のアルコキシ基、ハロゲン原子であり、より好ましくは炭素数1~3の無置換のアルキル基、炭素数1~3の無置換のアルコキシ基、フッ素原子、塩素原子であり、さらに好ましくは炭素数1~3の無置換のアルキル基、炭素数1~3の無置換のアルコキシ基である。
L1およびL2で表される連結基は、Qを構成する一般式(1)の構造のR1~R9のいずれか、一般式(2)の構造のR11~R20、Dのいずれかに結合することができる。1つのQに対して連結基が2つ以上連結して架橋構造や網目構造を形成していてもよい。 In General Formula (11) or (12), Q represents a group including a structure represented by General Formula (1) or General Formula (2), and L 1 and L 2 represent a linking group. The linking group preferably has 0 to 20 carbon atoms, more preferably 1 to 15 carbon atoms, and still more preferably 2 to 10 carbon atoms. And preferably has a structure represented by - linking group -X 11 -L 11. Here, X 11 represents an oxygen atom or a sulfur atom, and is preferably an oxygen atom. L 11 represents a linking group, and is preferably a substituted or unsubstituted alkylene group, or a substituted or unsubstituted arylene group, and is a substituted or unsubstituted alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted group A phenylene group is more preferable.
In General Formula (11) or (12), R 101 , R 102 , R 103 and R 104 each independently represent a substituent. Preferably, it is a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 6 carbon atoms, or a halogen atom, more preferably an unsubstituted alkyl group having 1 to 3 carbon atoms. An unsubstituted alkoxy group having 1 to 3 carbon atoms, a fluorine atom, and a chlorine atom, and more preferably an unsubstituted alkyl group having 1 to 3 carbon atoms and an unsubstituted alkoxy group having 1 to 3 carbon atoms.
The linking group represented by L 1 and L 2 is any one of R 1 to R 9 having the structure of the general formula (1) constituting Q, R 11 to R 20 having the structure of the general formula (2), and D Can be bound to either. Two or more linking groups may be linked to one Q to form a crosslinked structure or a network structure.
繰り返し単位の具体的な構造例として、下記式(13)~(16)で表される構造を挙げることができる。
Specific examples of the structure of the repeating unit include structures represented by the following formulas (13) to (16).
これらの式(13)~(16)を含む繰り返し単位を有する重合体は、一般式(1)の構造のR1~R9のいずれか、一般式(2)の構造のR11~R20、Dのいずれかにヒドロキシ基を導入しておき、それをリンカーとして下記化合物を反応させて重合性基を導入し、その重合性基を重合させることにより合成することができる。
The polymer having a repeating unit containing the formulas (13) to (16) is any one of R 1 to R 9 having the structure of the general formula (1), or R 11 to R 20 having the structure of the general formula (2). It can be synthesized by introducing a hydroxy group into any of D and D, reacting the following compound as a linker to introduce a polymerizable group, and polymerizing the polymerizable group.
分子内に一般式(1)または一般式(2)で表される構造を含む重合体は、一般式(1)または一般式(2)で表される構造を有する繰り返し単位のみからなる重合体であってもよいし、それ以外の構造を有する繰り返し単位を含む重合体であってもよい。また、重合体の中に含まれる一般式(1)または一般式(2)で表される構造を有する繰り返し単位は、単一種であってもよいし、2種以上であってもよい。一般式(1)または一般式(2)で表される構造を有さない繰り返し単位としては、通常の共重合に用いられるモノマーから誘導されるものを挙げることができる。例えば、エチレン、スチレンなどのエチレン性不飽和結合を有するモノマーから誘導される繰り返し単位を挙げることができる。
The polymer containing the structure represented by the general formula (1) or the general formula (2) in the molecule is a polymer composed only of repeating units having the structure represented by the general formula (1) or the general formula (2). It may be a polymer containing a repeating unit having other structure. In addition, the repeating unit having a structure represented by the general formula (1) or the general formula (2) contained in the polymer may be a single type or two or more types. Examples of the repeating unit not having the structure represented by the general formula (1) or the general formula (2) include those derived from monomers used in ordinary copolymerization. Examples thereof include a repeating unit derived from a monomer having an ethylenically unsaturated bond such as ethylene and styrene.
[有機発光素子]
本発明の有機発光素子では、遅延蛍光を放射し、分子内プロトン移動が可能な化合物を使用する。遅延蛍光を放射し、分子内プロトン移動が可能な化合物は、実用上十分な高い量子収率を示し、有機発光素子の発光材料として効果的に用いることができる。また、遅延蛍光を放射し、分子内プロトン移動が可能な化合物は、有機発光素子のホストまたはアシストドーパントとして用いることもできる。例えば、遅延蛍光を放射し、分子内プロトン移動が可能な化合物を発光材料として用いた有機発光素子は、この化合物が遅延蛍光材料として機能することにより、発光効率が高いという特徴を有する。その原理を、有機エレクトロルミネッセンス素子を例にとって説明すると以下のようになる。 [Organic light emitting device]
In the organic light emitting device of the present invention, a compound that emits delayed fluorescence and is capable of intramolecular proton transfer is used. A compound that emits delayed fluorescence and is capable of intramolecular proton transfer exhibits a sufficiently high quantum yield for practical use, and can be effectively used as a light-emitting material of an organic light-emitting device. Further, a compound that emits delayed fluorescence and is capable of intramolecular proton transfer can also be used as a host or assist dopant in an organic light-emitting device. For example, an organic light-emitting device using a compound that emits delayed fluorescence and is capable of intramolecular proton transfer as a light-emitting material has a feature of high luminous efficiency because this compound functions as a delayed fluorescent material. The principle will be described below by taking an organic electroluminescence element as an example.
本発明の有機発光素子では、遅延蛍光を放射し、分子内プロトン移動が可能な化合物を使用する。遅延蛍光を放射し、分子内プロトン移動が可能な化合物は、実用上十分な高い量子収率を示し、有機発光素子の発光材料として効果的に用いることができる。また、遅延蛍光を放射し、分子内プロトン移動が可能な化合物は、有機発光素子のホストまたはアシストドーパントとして用いることもできる。例えば、遅延蛍光を放射し、分子内プロトン移動が可能な化合物を発光材料として用いた有機発光素子は、この化合物が遅延蛍光材料として機能することにより、発光効率が高いという特徴を有する。その原理を、有機エレクトロルミネッセンス素子を例にとって説明すると以下のようになる。 [Organic light emitting device]
In the organic light emitting device of the present invention, a compound that emits delayed fluorescence and is capable of intramolecular proton transfer is used. A compound that emits delayed fluorescence and is capable of intramolecular proton transfer exhibits a sufficiently high quantum yield for practical use, and can be effectively used as a light-emitting material of an organic light-emitting device. Further, a compound that emits delayed fluorescence and is capable of intramolecular proton transfer can also be used as a host or assist dopant in an organic light-emitting device. For example, an organic light-emitting device using a compound that emits delayed fluorescence and is capable of intramolecular proton transfer as a light-emitting material has a feature of high luminous efficiency because this compound functions as a delayed fluorescent material. The principle will be described below by taking an organic electroluminescence element as an example.
有機エレクトロルミネッセンス素子においては、正負の両電極より発光材料にキャリアを注入し、励起状態の発光材料を生成し、発光させる。通常、キャリア注入型の有機エレクトロルミネッセンス素子の場合、生成した励起子のうち、励起一重項状態に励起されるのは25%であり、残り75%は励起三重項状態に励起される。従って、励起三重項状態からの発光であるリン光を利用するほうが、エネルギーの利用効率が高い。しかしながら、励起三重項状態は寿命が長いため、励起状態の飽和や励起三重項状態の励起子との相互作用によるエネルギーの失活が起こり、一般にリン光の量子収率が高くないことが多い。一方、遅延蛍光材料は、項間交差等により励起三重項状態へとエネルギーが遷移した後、三重項-三重項消滅あるいは熱エネルギーの吸収により、励起一重項状態に逆項間交差され蛍光を放射する。有機エレクトロルミネッセンス素子においては、なかでも熱エネルギーの吸収による熱活性化型の遅延蛍光材料が特に有用であると考えられる。有機エレクトロルミネッセンス素子に遅延蛍光材料を利用した場合、励起一重項状態の励起子は通常通り蛍光を放射する。一方、励起三重項状態の励起子は、外気の熱やデバイスが発する熱を吸収して励起一重項へ項間交差され蛍光を放射する。このとき、励起一重項からの発光であるため蛍光と同波長での発光でありながら、励起三重項状態から励起一重項状態への逆項間交差により、生じる光の寿命(発光寿命)は通常の蛍光やりん光よりも長くなるため、これらよりも遅延した蛍光として観察される。これを遅延蛍光として定義できる。このような熱活性化型の励起子移動機構を用いれば、キャリア注入後に熱エネルギーの吸収を経ることにより、通常は25%しか生成しなかった励起一重項状態の化合物の比率を25%以上に引き上げることが可能となる。100℃未満の低い温度でも強い蛍光および遅延蛍光を発する化合物を用いれば、デバイスの熱で充分に励起三重項状態から励起一重項状態への項間交差が生じて遅延蛍光を放射するため、発光効率を飛躍的に向上させることができる。
In the organic electroluminescence element, carriers are injected into the light emitting material from both positive and negative electrodes to generate an excited light emitting material and emit light. In general, in the case of a carrier injection type organic electroluminescence element, 25% of the generated excitons are excited to the excited singlet state, and the remaining 75% are excited to the excited triplet state. Therefore, the use efficiency of energy is higher when phosphorescence, which is light emission from an excited triplet state, is used. However, since the excited triplet state has a long lifetime, energy saturation occurs due to saturation of the excited state and interaction with excitons in the excited triplet state, and in general, the quantum yield of phosphorescence is often not high. On the other hand, delayed fluorescent materials, after energy transition to an excited triplet state due to intersystem crossing, etc., are then crossed back to an excited singlet state due to triplet-triplet annihilation or absorption of thermal energy, and emit fluorescence. To do. In the organic electroluminescence device, it is considered that a thermally activated delayed fluorescent material by absorption of thermal energy is particularly useful. When a delayed fluorescent material is used for the organic electroluminescence element, excitons in the excited singlet state emit fluorescence as usual. On the other hand, excitons in the excited triplet state absorb the heat of the outside air and the heat generated by the device, and cross the terms into the excited singlet to emit fluorescence. At this time, since the light is emitted from the excited singlet, the light is emitted at the same wavelength as the fluorescence, but the light lifetime (luminescence lifetime) generated by the reverse intersystem crossing from the excited triplet state to the excited singlet state is normal. Since the fluorescence becomes longer than the fluorescence and phosphorescence, it is observed as fluorescence delayed from these. This can be defined as delayed fluorescence. If such a heat-activated exciton transfer mechanism is used, the ratio of the compound in an excited singlet state, which normally generated only 25%, is increased to 25% or more by absorbing thermal energy after carrier injection. It can be raised. If a compound that emits strong fluorescence and delayed fluorescence even at a low temperature of less than 100 ° C is used, the heat of the device will sufficiently cause intersystem crossing from the excited triplet state to the excited singlet state and emit delayed fluorescence. Efficiency can be improved dramatically.
遅延蛍光を放射し、分子内プロトン移動が可能な化合物を発光層の発光材料として用いることにより、有機フォトルミネッセンス素子(有機PL素子)や有機エレクトロルミネッセンス素子(有機EL素子)などの優れた有機発光素子を提供することができる。有機フォトルミネッセンス素子は、基板上に少なくとも発光層を形成した構造を有する。有機エレクトロルミネッセンス素子は、少なくとも陽極、陰極、および陽極と陰極の間に有機層を形成した構造を有する。有機層は、少なくとも発光層を含むものであり、発光層のみからなるものであってもよいし、発光層の他に1層以上の有機層を有するものであってもよい。そのような他の有機層として、正孔輸送層、正孔注入層、電子阻止層、正孔阻止層、電子注入層、電子輸送層、励起子阻止層などを挙げることができる。正孔輸送層は正孔注入機能を有した正孔注入輸送層でもよく、電子輸送層は電子注入機能を有した電子注入輸送層でもよい。具体的な有機エレクトロルミネッセンス素子の構造例を図1に示す。図1において、1は基板、2は陽極、3は正孔注入層、4は正孔輸送層、5は発光層、6は電子輸送層、7は陰極を表わす。
以下において、有機エレクトロルミネッセンス素子の各部材および各層について説明する。なお、基板と発光層の説明は有機フォトルミネッセンス素子の基板と発光層にも該当する。 By using a compound that emits delayed fluorescence and allows intramolecular proton transfer as the light emitting material of the light emitting layer, excellent organic light emission such as organic photoluminescence device (organic PL device) and organic electroluminescence device (organic EL device) An element can be provided. The organic photoluminescence element has a structure in which at least a light emitting layer is formed on a substrate. The organic electroluminescence element has a structure in which at least an anode, a cathode, and an organic layer are formed between the anode and the cathode. The organic layer includes at least a light emitting layer, and may consist of only the light emitting layer, or may have one or more organic layers in addition to the light emitting layer. Examples of such other organic layers include a hole transport layer, a hole injection layer, an electron blocking layer, a hole blocking layer, an electron injection layer, an electron transport layer, and an exciton blocking layer. The hole transport layer may be a hole injection / transport layer having a hole injection function, and the electron transport layer may be an electron injection / transport layer having an electron injection function. A specific example of the structure of an organic electroluminescence element is shown in FIG. In FIG. 1, 1 is a substrate, 2 is an anode, 3 is a hole injection layer, 4 is a hole transport layer, 5 is a light emitting layer, 6 is an electron transport layer, and 7 is a cathode.
Below, each member and each layer of an organic electroluminescent element are demonstrated. In addition, description of a board | substrate and a light emitting layer corresponds also to the board | substrate and light emitting layer of an organic photo-luminescence element.
以下において、有機エレクトロルミネッセンス素子の各部材および各層について説明する。なお、基板と発光層の説明は有機フォトルミネッセンス素子の基板と発光層にも該当する。 By using a compound that emits delayed fluorescence and allows intramolecular proton transfer as the light emitting material of the light emitting layer, excellent organic light emission such as organic photoluminescence device (organic PL device) and organic electroluminescence device (organic EL device) An element can be provided. The organic photoluminescence element has a structure in which at least a light emitting layer is formed on a substrate. The organic electroluminescence element has a structure in which at least an anode, a cathode, and an organic layer are formed between the anode and the cathode. The organic layer includes at least a light emitting layer, and may consist of only the light emitting layer, or may have one or more organic layers in addition to the light emitting layer. Examples of such other organic layers include a hole transport layer, a hole injection layer, an electron blocking layer, a hole blocking layer, an electron injection layer, an electron transport layer, and an exciton blocking layer. The hole transport layer may be a hole injection / transport layer having a hole injection function, and the electron transport layer may be an electron injection / transport layer having an electron injection function. A specific example of the structure of an organic electroluminescence element is shown in FIG. In FIG. 1, 1 is a substrate, 2 is an anode, 3 is a hole injection layer, 4 is a hole transport layer, 5 is a light emitting layer, 6 is an electron transport layer, and 7 is a cathode.
Below, each member and each layer of an organic electroluminescent element are demonstrated. In addition, description of a board | substrate and a light emitting layer corresponds also to the board | substrate and light emitting layer of an organic photo-luminescence element.
(基板)
本発明の有機エレクトロルミネッセンス素子は、基板に支持されていることが好ましい。この基板については、特に制限はなく、従来から有機エレクトロルミネッセンス素子に慣用されているものであればよく、例えば、ガラス、透明プラスチック、石英、シリコンなどからなるものを用いることができる。 (substrate)
The organic electroluminescence device of the present invention is preferably supported on a substrate. The substrate is not particularly limited and may be any substrate conventionally used for organic electroluminescence elements. For example, a substrate made of glass, transparent plastic, quartz, silicon, or the like can be used.
本発明の有機エレクトロルミネッセンス素子は、基板に支持されていることが好ましい。この基板については、特に制限はなく、従来から有機エレクトロルミネッセンス素子に慣用されているものであればよく、例えば、ガラス、透明プラスチック、石英、シリコンなどからなるものを用いることができる。 (substrate)
The organic electroluminescence device of the present invention is preferably supported on a substrate. The substrate is not particularly limited and may be any substrate conventionally used for organic electroluminescence elements. For example, a substrate made of glass, transparent plastic, quartz, silicon, or the like can be used.
(陽極)
有機エレクトロルミネッセンス素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物およびこれらの混合物を電極材料とするものが好ましく用いられる。このような電極材料の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In2O3-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極材料を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極材料の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な材料を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。さらに膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。 (anode)
As the anode in the organic electroluminescence element, an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used. Specific examples of such electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO. Alternatively, an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used. For the anode, a thin film may be formed by vapor deposition or sputtering of these electrode materials, and a pattern of a desired shape may be formed by photolithography, or when pattern accuracy is not so high (about 100 μm or more) ), A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material. Or when using the material which can be apply | coated like an organic electroconductivity compound, wet film-forming methods, such as a printing system and a coating system, can also be used. When light emission is extracted from the anode, it is desirable that the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred Ω / □ or less. Further, although the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
有機エレクトロルミネッセンス素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物およびこれらの混合物を電極材料とするものが好ましく用いられる。このような電極材料の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In2O3-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極材料を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極材料の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な材料を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。さらに膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。 (anode)
As the anode in the organic electroluminescence element, an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used. Specific examples of such electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO. Alternatively, an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used. For the anode, a thin film may be formed by vapor deposition or sputtering of these electrode materials, and a pattern of a desired shape may be formed by photolithography, or when pattern accuracy is not so high (about 100 μm or more) ), A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material. Or when using the material which can be apply | coated like an organic electroconductivity compound, wet film-forming methods, such as a printing system and a coating system, can also be used. When light emission is extracted from the anode, it is desirable that the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred Ω / □ or less. Further, although the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
(陰極)
一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物およびこれらの混合物を電極材料とするものが用いられる。このような電極材料の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性および酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極材料を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機エレクトロルミネッセンス素子の陽極または陰極のいずれか一方が、透明または半透明であれば発光輝度が向上し好都合である。
また、陽極の説明で挙げた導電性透明材料を陰極に用いることで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。 (cathode)
On the other hand, as the cathode, a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like. Among these, from the point of durability against electron injection and oxidation, a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this, for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred. The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The sheet resistance as the cathode is preferably several hundred Ω / □ or less, and the film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 to 200 nm. In order to transmit the emitted light, if either one of the anode or the cathode of the organic electroluminescence element is transparent or translucent, the emission luminance is advantageously improved.
In addition, by using the conductive transparent material mentioned in the description of the anode as a cathode, a transparent or semi-transparent cathode can be produced. By applying this, an element in which both the anode and the cathode are transparent is used. Can be produced.
一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物およびこれらの混合物を電極材料とするものが用いられる。このような電極材料の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性および酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極材料を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機エレクトロルミネッセンス素子の陽極または陰極のいずれか一方が、透明または半透明であれば発光輝度が向上し好都合である。
また、陽極の説明で挙げた導電性透明材料を陰極に用いることで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。 (cathode)
On the other hand, as the cathode, a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like. Among these, from the point of durability against electron injection and oxidation, a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this, for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred. The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The sheet resistance as the cathode is preferably several hundred Ω / □ or less, and the film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 to 200 nm. In order to transmit the emitted light, if either one of the anode or the cathode of the organic electroluminescence element is transparent or translucent, the emission luminance is advantageously improved.
In addition, by using the conductive transparent material mentioned in the description of the anode as a cathode, a transparent or semi-transparent cathode can be produced. By applying this, an element in which both the anode and the cathode are transparent is used. Can be produced.
(発光層)
発光層は、陽極および陰極のそれぞれから注入された正孔および電子が再結合することにより励起子が生成した後、発光する層であり、発光材料を単独で発光層に使用しても良いが、好ましくは発光材料とホスト材料を含む。発光材料としては、遅延蛍光を放射し、分子内プロトン移動が可能な化合物群から選ばれる1種または2種以上を用いることができる。本発明の有機エレクトロルミネッセンス素子および有機フォトルミネッセンス素子が高い発光効率を発現するためには、発光材料に生成した一重項励起子および三重項励起子を、発光材料中に閉じ込めることが重要である。従って、発光層中に発光材料に加えてホスト材料を用いることが好ましい。ホスト材料としては、励起一重項エネルギー、励起三重項エネルギーの少なくとも何れか一方が発光材料よりも高い値を有する有機化合物を用いることができる。その結果、発光材料に生成した一重項励起子および三重項励起子を、発光材料の分子中に閉じ込めることが可能となり、その発光効率を十分に引き出すことが可能となる。もっとも、一重項励起子および三重項励起子を十分に閉じ込めることができなくても、高い発光効率を得ることが可能な場合もあるため、高い発光効率を実現しうるホスト材料であれば特に制約なく本発明に用いることができる。本発明の有機発光素子または有機エレクトロルミネッセンス素子において、発光は発光層に含まれる発光材料(遅延蛍光を放射し、分子内プロトン移動が可能な化合物)から生じる。この発光は蛍光発光および遅延蛍光発光の両方を含む。但し、発光の一部或いは部分的にホスト材料からの発光があってもかまわない。
ホスト材料を用いる場合、発光材料である化合物、すなわち遅延蛍光を放射し、分子内プロトン移動が可能な化合物が発光層中に含有される量は0.1重量%以上であることが好ましく、1重量%以上であることがより好ましく、また、50重量%以下であることが好ましく、20重量%以下であることがより好ましく、10重量%以下であることがさらに好ましい。
発光層におけるホスト材料としては、正孔輸送能、電子輸送能を有し、かつ発光の長波長化を防ぎ、なおかつ高いガラス転移温度を有する有機化合物であることが好ましい。 (Light emitting layer)
The light emitting layer is a layer that emits light after excitons are generated by recombination of holes and electrons injected from each of the anode and the cathode, and the light emitting material may be used alone for the light emitting layer. , Preferably including a luminescent material and a host material. As the luminescent material, one or more selected from a group of compounds that emit delayed fluorescence and are capable of intramolecular proton transfer can be used. In order for the organic electroluminescent device and the organic photoluminescent device of the present invention to exhibit high luminous efficiency, it is important to confine singlet excitons and triplet excitons generated in the light emitting material in the light emitting material. Therefore, it is preferable to use a host material in addition to the light emitting material in the light emitting layer. As the host material, an organic compound in which at least one of excited singlet energy and excited triplet energy has a value higher than that of the light-emitting material can be used. As a result, singlet excitons and triplet excitons generated in the light emitting material can be confined in the molecule of the light emitting material, and the light emission efficiency can be sufficiently extracted. However, even if singlet excitons and triplet excitons cannot be sufficiently confined, there are cases where high luminous efficiency can be obtained, so that host materials that can achieve high luminous efficiency are particularly limited. And can be used in the present invention. In the organic light-emitting device or organic electroluminescence device of the present invention, light emission is generated from a light-emitting material (compound that emits delayed fluorescence and is capable of intramolecular proton transfer) contained in the light-emitting layer. This emission includes both fluorescence and delayed fluorescence. However, light emission from the host material may be partly or partly emitted.
When a host material is used, the amount of a compound that is a light emitting material, that is, a compound that emits delayed fluorescence and capable of intramolecular proton transfer is preferably 0.1% by weight or more. It is more preferably at least wt%, more preferably at most 50 wt%, more preferably at most 20 wt%, and even more preferably at most 10 wt%.
The host material in the light-emitting layer is preferably an organic compound that has a hole transporting ability and an electron transporting ability, prevents the emission of longer wavelengths, and has a high glass transition temperature.
発光層は、陽極および陰極のそれぞれから注入された正孔および電子が再結合することにより励起子が生成した後、発光する層であり、発光材料を単独で発光層に使用しても良いが、好ましくは発光材料とホスト材料を含む。発光材料としては、遅延蛍光を放射し、分子内プロトン移動が可能な化合物群から選ばれる1種または2種以上を用いることができる。本発明の有機エレクトロルミネッセンス素子および有機フォトルミネッセンス素子が高い発光効率を発現するためには、発光材料に生成した一重項励起子および三重項励起子を、発光材料中に閉じ込めることが重要である。従って、発光層中に発光材料に加えてホスト材料を用いることが好ましい。ホスト材料としては、励起一重項エネルギー、励起三重項エネルギーの少なくとも何れか一方が発光材料よりも高い値を有する有機化合物を用いることができる。その結果、発光材料に生成した一重項励起子および三重項励起子を、発光材料の分子中に閉じ込めることが可能となり、その発光効率を十分に引き出すことが可能となる。もっとも、一重項励起子および三重項励起子を十分に閉じ込めることができなくても、高い発光効率を得ることが可能な場合もあるため、高い発光効率を実現しうるホスト材料であれば特に制約なく本発明に用いることができる。本発明の有機発光素子または有機エレクトロルミネッセンス素子において、発光は発光層に含まれる発光材料(遅延蛍光を放射し、分子内プロトン移動が可能な化合物)から生じる。この発光は蛍光発光および遅延蛍光発光の両方を含む。但し、発光の一部或いは部分的にホスト材料からの発光があってもかまわない。
ホスト材料を用いる場合、発光材料である化合物、すなわち遅延蛍光を放射し、分子内プロトン移動が可能な化合物が発光層中に含有される量は0.1重量%以上であることが好ましく、1重量%以上であることがより好ましく、また、50重量%以下であることが好ましく、20重量%以下であることがより好ましく、10重量%以下であることがさらに好ましい。
発光層におけるホスト材料としては、正孔輸送能、電子輸送能を有し、かつ発光の長波長化を防ぎ、なおかつ高いガラス転移温度を有する有機化合物であることが好ましい。 (Light emitting layer)
The light emitting layer is a layer that emits light after excitons are generated by recombination of holes and electrons injected from each of the anode and the cathode, and the light emitting material may be used alone for the light emitting layer. , Preferably including a luminescent material and a host material. As the luminescent material, one or more selected from a group of compounds that emit delayed fluorescence and are capable of intramolecular proton transfer can be used. In order for the organic electroluminescent device and the organic photoluminescent device of the present invention to exhibit high luminous efficiency, it is important to confine singlet excitons and triplet excitons generated in the light emitting material in the light emitting material. Therefore, it is preferable to use a host material in addition to the light emitting material in the light emitting layer. As the host material, an organic compound in which at least one of excited singlet energy and excited triplet energy has a value higher than that of the light-emitting material can be used. As a result, singlet excitons and triplet excitons generated in the light emitting material can be confined in the molecule of the light emitting material, and the light emission efficiency can be sufficiently extracted. However, even if singlet excitons and triplet excitons cannot be sufficiently confined, there are cases where high luminous efficiency can be obtained, so that host materials that can achieve high luminous efficiency are particularly limited. And can be used in the present invention. In the organic light-emitting device or organic electroluminescence device of the present invention, light emission is generated from a light-emitting material (compound that emits delayed fluorescence and is capable of intramolecular proton transfer) contained in the light-emitting layer. This emission includes both fluorescence and delayed fluorescence. However, light emission from the host material may be partly or partly emitted.
When a host material is used, the amount of a compound that is a light emitting material, that is, a compound that emits delayed fluorescence and capable of intramolecular proton transfer is preferably 0.1% by weight or more. It is more preferably at least wt%, more preferably at most 50 wt%, more preferably at most 20 wt%, and even more preferably at most 10 wt%.
The host material in the light-emitting layer is preferably an organic compound that has a hole transporting ability and an electron transporting ability, prevents the emission of longer wavelengths, and has a high glass transition temperature.
(注入層)
注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、正孔注入層と電子注入層があり、陽極と発光層または正孔輸送層の間、および陰極と発光層または電子輸送層との間に存在させてもよい。注入層は必要に応じて設けることができる。 (Injection layer)
The injection layer is a layer provided between the electrode and the organic layer for lowering the driving voltage and improving the luminance of light emission. There are a hole injection layer and an electron injection layer, and between the anode and the light emitting layer or the hole transport layer. Further, it may be present between the cathode and the light emitting layer or the electron transport layer. The injection layer can be provided as necessary.
注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、正孔注入層と電子注入層があり、陽極と発光層または正孔輸送層の間、および陰極と発光層または電子輸送層との間に存在させてもよい。注入層は必要に応じて設けることができる。 (Injection layer)
The injection layer is a layer provided between the electrode and the organic layer for lowering the driving voltage and improving the luminance of light emission. There are a hole injection layer and an electron injection layer, and between the anode and the light emitting layer or the hole transport layer. Further, it may be present between the cathode and the light emitting layer or the electron transport layer. The injection layer can be provided as necessary.
(阻止層)
阻止層は、発光層中に存在する電荷(電子もしくは正孔)および/または励起子の発光層外への拡散を阻止することができる層である。電子阻止層は、発光層および正孔輸送層の間に配置されることができ、電子が正孔輸送層の方に向かって発光層を通過することを阻止する。同様に、正孔阻止層は発光層および電子輸送層の間に配置されることができ、正孔が電子輸送層の方に向かって発光層を通過することを阻止する。阻止層はまた、励起子が発光層の外側に拡散することを阻止するために用いることができる。すなわち電子阻止層、正孔阻止層はそれぞれ励起子阻止層としての機能も兼ね備えることができる。本明細書でいう電子阻止層または励起子阻止層は、一つの層で電子阻止層および励起子阻止層の機能を有する層を含む意味で使用される。 (Blocking layer)
The blocking layer is a layer that can prevent diffusion of charges (electrons or holes) and / or excitons existing in the light emitting layer to the outside of the light emitting layer. The electron blocking layer can be disposed between the light emitting layer and the hole transport layer and blocks electrons from passing through the light emitting layer toward the hole transport layer. Similarly, a hole blocking layer can be disposed between the light emitting layer and the electron transporting layer to prevent holes from passing through the light emitting layer toward the electron transporting layer. The blocking layer can also be used to block excitons from diffusing outside the light emitting layer. That is, each of the electron blocking layer and the hole blocking layer can also function as an exciton blocking layer. The term “electron blocking layer” or “exciton blocking layer” as used herein is used in the sense of including a layer having the functions of an electron blocking layer and an exciton blocking layer in one layer.
阻止層は、発光層中に存在する電荷(電子もしくは正孔)および/または励起子の発光層外への拡散を阻止することができる層である。電子阻止層は、発光層および正孔輸送層の間に配置されることができ、電子が正孔輸送層の方に向かって発光層を通過することを阻止する。同様に、正孔阻止層は発光層および電子輸送層の間に配置されることができ、正孔が電子輸送層の方に向かって発光層を通過することを阻止する。阻止層はまた、励起子が発光層の外側に拡散することを阻止するために用いることができる。すなわち電子阻止層、正孔阻止層はそれぞれ励起子阻止層としての機能も兼ね備えることができる。本明細書でいう電子阻止層または励起子阻止層は、一つの層で電子阻止層および励起子阻止層の機能を有する層を含む意味で使用される。 (Blocking layer)
The blocking layer is a layer that can prevent diffusion of charges (electrons or holes) and / or excitons existing in the light emitting layer to the outside of the light emitting layer. The electron blocking layer can be disposed between the light emitting layer and the hole transport layer and blocks electrons from passing through the light emitting layer toward the hole transport layer. Similarly, a hole blocking layer can be disposed between the light emitting layer and the electron transporting layer to prevent holes from passing through the light emitting layer toward the electron transporting layer. The blocking layer can also be used to block excitons from diffusing outside the light emitting layer. That is, each of the electron blocking layer and the hole blocking layer can also function as an exciton blocking layer. The term “electron blocking layer” or “exciton blocking layer” as used herein is used in the sense of including a layer having the functions of an electron blocking layer and an exciton blocking layer in one layer.
(正孔阻止層)
正孔阻止層とは広い意味では電子輸送層の機能を有する。正孔阻止層は電子を輸送しつつ、正孔が電子輸送層へ到達することを阻止する役割があり、これにより発光層中での電子と正孔の再結合確率を向上させることができる。正孔阻止層の材料としては、後述する電子輸送層の材料を必要に応じて用いることができる。 (Hole blocking layer)
The hole blocking layer has a function of an electron transport layer in a broad sense. The hole blocking layer has a role of blocking holes from reaching the electron transport layer while transporting electrons, thereby improving the recombination probability of electrons and holes in the light emitting layer. As the material for the hole blocking layer, the material for the electron transport layer described later can be used as necessary.
正孔阻止層とは広い意味では電子輸送層の機能を有する。正孔阻止層は電子を輸送しつつ、正孔が電子輸送層へ到達することを阻止する役割があり、これにより発光層中での電子と正孔の再結合確率を向上させることができる。正孔阻止層の材料としては、後述する電子輸送層の材料を必要に応じて用いることができる。 (Hole blocking layer)
The hole blocking layer has a function of an electron transport layer in a broad sense. The hole blocking layer has a role of blocking holes from reaching the electron transport layer while transporting electrons, thereby improving the recombination probability of electrons and holes in the light emitting layer. As the material for the hole blocking layer, the material for the electron transport layer described later can be used as necessary.
(電子阻止層)
電子阻止層とは、広い意味では正孔を輸送する機能を有する。電子阻止層は正孔を輸送しつつ、電子が正孔輸送層へ到達することを阻止する役割があり、これにより発光層中での電子と正孔が再結合する確率を向上させることができる。 (Electron blocking layer)
The electron blocking layer has a function of transporting holes in a broad sense. The electron blocking layer has a role to block electrons from reaching the hole transport layer while transporting holes, thereby improving the probability of recombination of electrons and holes in the light emitting layer. .
電子阻止層とは、広い意味では正孔を輸送する機能を有する。電子阻止層は正孔を輸送しつつ、電子が正孔輸送層へ到達することを阻止する役割があり、これにより発光層中での電子と正孔が再結合する確率を向上させることができる。 (Electron blocking layer)
The electron blocking layer has a function of transporting holes in a broad sense. The electron blocking layer has a role to block electrons from reaching the hole transport layer while transporting holes, thereby improving the probability of recombination of electrons and holes in the light emitting layer. .
(励起子阻止層)
励起子阻止層とは、発光層内で正孔と電子が再結合することにより生じた励起子が電荷輸送層に拡散することを阻止するための層であり、本層の挿入により励起子を効率的に発光層内に閉じ込めることが可能となり、素子の発光効率を向上させることができる。励起子阻止層は発光層に隣接して陽極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。すなわち、励起子阻止層を陽極側に有する場合、正孔輸送層と発光層の間に、発光層に隣接して該層を挿入することができ、陰極側に挿入する場合、発光層と陰極との間に、発光層に隣接して該層を挿入することができる。また、陽極と、発光層の陽極側に隣接する励起子阻止層との間には、正孔注入層や電子阻止層などを有することができ、陰極と、発光層の陰極側に隣接する励起子阻止層との間には、電子注入層、電子輸送層、正孔阻止層などを有することができる。阻止層を配置する場合、阻止層として用いる材料の励起一重項エネルギーおよび励起三重項エネルギーの少なくともいずれか一方は、発光材料の励起一重項エネルギーおよび励起三重項エネルギーよりも高いことが好ましい。 (Exciton blocking layer)
The exciton blocking layer is a layer for preventing excitons generated by recombination of holes and electrons in the light emitting layer from diffusing into the charge transport layer. It becomes possible to efficiently confine in the light emitting layer, and the light emission efficiency of the device can be improved. The exciton blocking layer can be inserted on either the anode side or the cathode side adjacent to the light emitting layer, or both can be inserted simultaneously. That is, when the exciton blocking layer is provided on the anode side, the layer can be inserted adjacent to the light emitting layer between the hole transport layer and the light emitting layer, and when inserted on the cathode side, the light emitting layer and the cathode Between the luminescent layer and the light-emitting layer. Further, a hole injection layer, an electron blocking layer, or the like can be provided between the anode and the exciton blocking layer adjacent to the anode side of the light emitting layer, and the excitation adjacent to the cathode and the cathode side of the light emitting layer can be provided. Between the child blocking layer, an electron injection layer, an electron transport layer, a hole blocking layer, and the like can be provided. When the blocking layer is disposed, at least one of the excited singlet energy and the excited triplet energy of the material used as the blocking layer is preferably higher than the excited singlet energy and the excited triplet energy of the light emitting material.
励起子阻止層とは、発光層内で正孔と電子が再結合することにより生じた励起子が電荷輸送層に拡散することを阻止するための層であり、本層の挿入により励起子を効率的に発光層内に閉じ込めることが可能となり、素子の発光効率を向上させることができる。励起子阻止層は発光層に隣接して陽極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。すなわち、励起子阻止層を陽極側に有する場合、正孔輸送層と発光層の間に、発光層に隣接して該層を挿入することができ、陰極側に挿入する場合、発光層と陰極との間に、発光層に隣接して該層を挿入することができる。また、陽極と、発光層の陽極側に隣接する励起子阻止層との間には、正孔注入層や電子阻止層などを有することができ、陰極と、発光層の陰極側に隣接する励起子阻止層との間には、電子注入層、電子輸送層、正孔阻止層などを有することができる。阻止層を配置する場合、阻止層として用いる材料の励起一重項エネルギーおよび励起三重項エネルギーの少なくともいずれか一方は、発光材料の励起一重項エネルギーおよび励起三重項エネルギーよりも高いことが好ましい。 (Exciton blocking layer)
The exciton blocking layer is a layer for preventing excitons generated by recombination of holes and electrons in the light emitting layer from diffusing into the charge transport layer. It becomes possible to efficiently confine in the light emitting layer, and the light emission efficiency of the device can be improved. The exciton blocking layer can be inserted on either the anode side or the cathode side adjacent to the light emitting layer, or both can be inserted simultaneously. That is, when the exciton blocking layer is provided on the anode side, the layer can be inserted adjacent to the light emitting layer between the hole transport layer and the light emitting layer, and when inserted on the cathode side, the light emitting layer and the cathode Between the luminescent layer and the light-emitting layer. Further, a hole injection layer, an electron blocking layer, or the like can be provided between the anode and the exciton blocking layer adjacent to the anode side of the light emitting layer, and the excitation adjacent to the cathode and the cathode side of the light emitting layer can be provided. Between the child blocking layer, an electron injection layer, an electron transport layer, a hole blocking layer, and the like can be provided. When the blocking layer is disposed, at least one of the excited singlet energy and the excited triplet energy of the material used as the blocking layer is preferably higher than the excited singlet energy and the excited triplet energy of the light emitting material.
(正孔輸送層)
正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、正孔輸送層は単層または複数層設けることができる。
正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。使用できる公知の正孔輸送材料としては例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体およびピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられるが、ポルフィリン化合物、芳香族第3級アミン化合物およびスチリルアミン化合物を用いることが好ましく、芳香族第3級アミン化合物を用いることがより好ましい。 (Hole transport layer)
The hole transport layer is made of a hole transport material having a function of transporting holes, and the hole transport layer can be provided as a single layer or a plurality of layers.
The hole transport material has any one of hole injection or transport and electron barrier properties, and may be either organic or inorganic. Known hole transport materials that can be used include, for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, carbazole derivatives, indolocarbazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, Examples include amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers. An aromatic tertiary amine compound and an styrylamine compound are preferably used, and an aromatic tertiary amine compound is more preferably used.
正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、正孔輸送層は単層または複数層設けることができる。
正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。使用できる公知の正孔輸送材料としては例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体およびピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられるが、ポルフィリン化合物、芳香族第3級アミン化合物およびスチリルアミン化合物を用いることが好ましく、芳香族第3級アミン化合物を用いることがより好ましい。 (Hole transport layer)
The hole transport layer is made of a hole transport material having a function of transporting holes, and the hole transport layer can be provided as a single layer or a plurality of layers.
The hole transport material has any one of hole injection or transport and electron barrier properties, and may be either organic or inorganic. Known hole transport materials that can be used include, for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, carbazole derivatives, indolocarbazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, Examples include amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers. An aromatic tertiary amine compound and an styrylamine compound are preferably used, and an aromatic tertiary amine compound is more preferably used.
(電子輸送層)
電子輸送層とは電子を輸送する機能を有する材料からなり、電子輸送層は単層または複数層設けることができる。
電子輸送材料(正孔阻止材料を兼ねる場合もある)としては、陰極より注入された電子を発光層に伝達する機能を有していればよい。使用できる電子輸送層としては例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタンおよびアントロン誘導体、オキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。 (Electron transport layer)
The electron transport layer is made of a material having a function of transporting electrons, and the electron transport layer can be provided as a single layer or a plurality of layers.
The electron transport material (which may also serve as a hole blocking material) may have a function of transmitting electrons injected from the cathode to the light emitting layer. Examples of the electron transport layer that can be used include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide oxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like. Furthermore, in the above oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
電子輸送層とは電子を輸送する機能を有する材料からなり、電子輸送層は単層または複数層設けることができる。
電子輸送材料(正孔阻止材料を兼ねる場合もある)としては、陰極より注入された電子を発光層に伝達する機能を有していればよい。使用できる電子輸送層としては例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタンおよびアントロン誘導体、オキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。 (Electron transport layer)
The electron transport layer is made of a material having a function of transporting electrons, and the electron transport layer can be provided as a single layer or a plurality of layers.
The electron transport material (which may also serve as a hole blocking material) may have a function of transmitting electrons injected from the cathode to the light emitting layer. Examples of the electron transport layer that can be used include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide oxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like. Furthermore, in the above oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
有機エレクトロルミネッセンス素子を作製する際には、上記の遅延蛍光を放射し、分子内プロトン移動が可能な化合物を発光層に用いるだけでなく、発光層以外の層にも用いてもよい。その際、各層に含まれる遅延蛍光を放射し、分子内プロトン移動が可能な化合物は、発光層に用いるものと、発光層以外の層に用いるものとで、同一であっても異なっていてもよい。例えば、上記の注入層、阻止層、正孔阻止層、電子阻止層、励起子阻止層、正孔輸送層、電子輸送層などにも、遅延蛍光を放射し、分子内プロトン移動が可能な化合物を用いてもよい。これらの層の製膜方法は特に限定されず、ドライプロセス、ウェットプロセスのどちらで作製してもよい。
When producing an organic electroluminescence device, not only a compound that emits delayed fluorescence and capable of intramolecular proton transfer may be used for a light emitting layer, but also for a layer other than the light emitting layer. At that time, the compound that emits delayed fluorescence contained in each layer and is capable of intramolecular proton transfer may be the same or different depending on whether it is used for the light-emitting layer or a layer other than the light-emitting layer. Good. For example, the above injection layer, blocking layer, hole blocking layer, electron blocking layer, exciton blocking layer, hole transport layer, electron transport layer, etc. can emit delayed fluorescence and allow intramolecular proton transfer May be used. The method for forming these layers is not particularly limited, and the layer may be formed by either a dry process or a wet process.
以下に、有機エレクトロルミネッセンス素子に用いることができる好ましい材料を具体的に例示する。ただし、本発明において用いることができる材料は、以下の例示化合物によって限定的に解釈されることはない。また、特定の機能を有する材料として例示した化合物であっても、その他の機能を有する材料として転用することも可能である。
Specific examples of preferable materials that can be used for the organic electroluminescence element are shown below. However, the material that can be used in the present invention is not limited to the following exemplary compounds. Moreover, even if it is a compound illustrated as a material which has a specific function, it can also be diverted as a material which has another function.
まず、発光層のホスト材料としても用いることができる好ましい化合物を挙げる。
First, preferred compounds that can also be used as a host material for the light emitting layer are listed.
次に、正孔注入材料として用いることができる好ましい化合物例を挙げる。
Next, preferred examples of compounds that can be used as the hole injection material are given.
次に、正孔輸送材料として用いることができる好ましい化合物例を挙げる。
Next, preferred examples of compounds that can be used as a hole transport material are given.
次に、電子阻止材料として用いることができる好ましい化合物例を挙げる。
Next, preferred examples of compounds that can be used as an electron blocking material are given.
次に、正孔阻止材料として用いることができる好ましい化合物例を挙げる。
Next, preferred examples of compounds that can be used as hole blocking materials are given.
次に、電子輸送材料として用いることができる好ましい化合物例を挙げる。
Next, preferred compound examples that can be used as an electron transporting material are listed.
次に、電子注入材料として用いることができる好ましい化合物例を挙げる。
Next, preferred examples of compounds that can be used as an electron injection material will be given.
さらに添加可能な材料として好ましい化合物例を挙げる。例えば、安定化材料として添加すること等が考えられる。
Further preferred compound examples are given as materials that can be added. For example, adding as a stabilizing material can be considered.
上述の方法により作製された有機エレクトロルミネッセンス素子は、得られた素子の陽極と陰極の間に電界を印加することにより発光する。このとき、励起一重項エネルギーによる発光であれば、そのエネルギーレベルに応じた波長の光が、蛍光発光および遅延蛍光発光として確認される。また、励起三重項エネルギーによる発光であれば、そのエネルギーレベルに応じた波長が、りん光として確認される。通常の蛍光は、遅延蛍光発光よりも蛍光寿命が短いため、発光寿命は蛍光と遅延蛍光で区別できる。
一方、りん光については、本発明の化合物のような通常の有機化合物では、励起三重項エネルギーは不安定で熱等に変換され、寿命が短く直ちに失活するため、室温では殆ど観測できない。通常の有機化合物の励起三重項エネルギーを測定するためには、極低温の条件での発光を観測することにより測定可能である。 The organic electroluminescent device produced by the above-described method emits light by applying an electric field between the anode and the cathode of the obtained device. At this time, if the light is emitted by excited singlet energy, light having a wavelength corresponding to the energy level is confirmed as fluorescence emission and delayed fluorescence emission. In addition, in the case of light emission by excited triplet energy, a wavelength corresponding to the energy level is confirmed as phosphorescence. Since normal fluorescence has a shorter fluorescence lifetime than delayed fluorescence, the emission lifetime can be distinguished from fluorescence and delayed fluorescence.
On the other hand, phosphorescence is hardly observable at room temperature in ordinary organic compounds such as the compounds of the present invention because the excited triplet energy is unstable and converted to heat, etc., and has a short lifetime and immediately deactivates. In order to measure the excited triplet energy of a normal organic compound, it can be measured by observing light emission under extremely low temperature conditions.
一方、りん光については、本発明の化合物のような通常の有機化合物では、励起三重項エネルギーは不安定で熱等に変換され、寿命が短く直ちに失活するため、室温では殆ど観測できない。通常の有機化合物の励起三重項エネルギーを測定するためには、極低温の条件での発光を観測することにより測定可能である。 The organic electroluminescent device produced by the above-described method emits light by applying an electric field between the anode and the cathode of the obtained device. At this time, if the light is emitted by excited singlet energy, light having a wavelength corresponding to the energy level is confirmed as fluorescence emission and delayed fluorescence emission. In addition, in the case of light emission by excited triplet energy, a wavelength corresponding to the energy level is confirmed as phosphorescence. Since normal fluorescence has a shorter fluorescence lifetime than delayed fluorescence, the emission lifetime can be distinguished from fluorescence and delayed fluorescence.
On the other hand, phosphorescence is hardly observable at room temperature in ordinary organic compounds such as the compounds of the present invention because the excited triplet energy is unstable and converted to heat, etc., and has a short lifetime and immediately deactivates. In order to measure the excited triplet energy of a normal organic compound, it can be measured by observing light emission under extremely low temperature conditions.
本発明の有機エレクトロルミネッセンス素子は、単一の素子、アレイ状に配置された構造からなる素子、陽極と陰極がX-Yマトリックス状に配置された構造のいずれにおいても適用することができる。本発明によれば、遅延蛍光を放射し、分子内プロトン移動が可能な化合物を発光層に含有させることにより、発光効率が大きく改善された有機発光素子が得られる。本発明の有機エレクトロルミネッセンス素子などの有機発光素子は、さらに様々な用途へ応用することが可能である。例えば、本発明の有機エレクトロルミネッセンス素子を用いて、有機エレクトロルミネッセンス表示装置を製造することが可能であり、詳細については、時任静士、安達千波矢、村田英幸共著「有機ELディスプレイ」(オーム社)を参照することができる。また、特に本発明の有機エレクトロルミネッセンス素子は、需要が大きい有機エレクトロルミネッセンス照明やバックライトに応用することもできる。
The organic electroluminescence element of the present invention can be applied to any of a single element, an element having a structure arranged in an array, and a structure in which an anode and a cathode are arranged in an XY matrix. According to the present invention, an organic light-emitting device having greatly improved light emission efficiency can be obtained by including in the light-emitting layer a compound that emits delayed fluorescence and allows intramolecular proton transfer. The organic light emitting device such as the organic electroluminescence device of the present invention can be further applied to various uses. For example, it is possible to produce an organic electroluminescence display device using the organic electroluminescence element of the present invention. For details, see “Organic EL Display” (Ohm Co., Ltd.) written by Shizushi Tokito, Chiba Adachi and Hideyuki Murata. ) Can be referred to. In particular, the organic electroluminescence device of the present invention can be applied to organic electroluminescence illumination and backlights that are in great demand.
また、本発明の有機発光素子は、有機発光トランジスタであってもよい。有機発光トランジスタは、例えば発光層を兼ねる活性層に、ゲート絶縁層を介してゲート電極が積層されるとともに、該活性層にソース電極およびドレイン電極が接続された構造を有する。こうした有機発光トランジスタの活性層に、遅延蛍光を放射し、分子内プロトン移動が可能な化合物を用いることにより、キャリア移動度および発光特性のいずれにも優れた有機発光トランジスタを実現することができる。
The organic light emitting device of the present invention may be an organic light emitting transistor. An organic light emitting transistor has a structure in which, for example, a gate electrode is stacked on an active layer that also serves as a light emitting layer via a gate insulating layer, and a source electrode and a drain electrode are connected to the active layer. By using a compound capable of emitting delayed fluorescence and capable of intramolecular proton transfer in the active layer of such an organic light-emitting transistor, an organic light-emitting transistor excellent in both carrier mobility and light emission characteristics can be realized.
以下に合成例および実施例を挙げて本発明の特徴をさらに具体的に説明する。以下に示す材料、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
Hereinafter, the features of the present invention will be described more specifically with reference to synthesis examples and examples. The following materials, processing details, processing procedures, and the like can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below.
2-ブロモ-4,6-ジフェニルトリアジン(1.56g,5.0mmol)、9-アクリドン(1.17g,6.0mmol)、テトラフルオロホウ酸-トリt-ブチルホスフィン(0.085g,0.30mmol)、ナトリウム-t-ブトキシド(0.575g,6.0mmol)、トリス(ジベンジリデンアセトン)-ジパラジウム(0.090g,0.10mmol)、脱水トルエン(60mL)を窒素雰囲気下の三口フラスコに入れ、120℃で一晩撹拌した。反応溶液を室温に戻し、純水で洗浄し分液した。分液後の有機層を硫酸マグネシウムで乾燥した後、エタノールで再沈殿を行い、白色固体として化合物1を収量1.18g、収率56%で得た。
1HNMR(500MHz,CDCl3):δ8.71(td,J=2.0,8.5Hz,4H,e),8.61(dd,J=1.5,8.0Hz,2H,a),7.67(tt,J=2.0,7.5Hz,2H,c),7.58(tt,J=1.5,4.5Hz,4H,f),7.56(dd,J=2.0,7.0Hz,2H,g),7.36(dt,J=1.0,7.5Hz,2H,b),7.07(d,J=4.5Hz,2H,d)
MS(ASAP)m/z427.14[MH+]. 2-Bromo-4,6-diphenyltriazine (1.56 g, 5.0 mmol), 9-acridone (1.17 g, 6.0 mmol), tetrafluoroboric acid-tri-t-butylphosphine (0.085 g, 0.8 mmol). 30 mmol), sodium-t-butoxide (0.575 g, 6.0 mmol), tris (dibenzylideneacetone) -dipalladium (0.090 g, 0.10 mmol), dehydrated toluene (60 mL) in a three-necked flask under a nitrogen atmosphere. And stirred at 120 ° C. overnight. The reaction solution was returned to room temperature, washed with pure water and separated. The separated organic layer was dried over magnesium sulfate and then reprecipitated with ethanol to obtain 1.18 g ofCompound 1 as a white solid in a yield of 56%.
1 HNMR (500 MHz, CDCl 3): δ 8.71 (td, J = 2.0, 8.5 Hz, 4H, e), 8.61 (dd, J = 1.5, 8.0 Hz, 2H, a), 7.67 (tt, J = 2.0, 7.5 Hz, 2H, c), 7.58 (tt, J = 1.5, 4.5 Hz, 4H, f), 7.56 (dd, J = 2.0, 7.0 Hz, 2H, g), 7.36 (dt, J = 1.0, 7.5 Hz, 2H, b), 7.07 (d, J = 4.5 Hz, 2H, d)
MS (ASAP) m / z 427.14 [MH <+ >].
1HNMR(500MHz,CDCl3):δ8.71(td,J=2.0,8.5Hz,4H,e),8.61(dd,J=1.5,8.0Hz,2H,a),7.67(tt,J=2.0,7.5Hz,2H,c),7.58(tt,J=1.5,4.5Hz,4H,f),7.56(dd,J=2.0,7.0Hz,2H,g),7.36(dt,J=1.0,7.5Hz,2H,b),7.07(d,J=4.5Hz,2H,d)
MS(ASAP)m/z427.14[MH+]. 2-Bromo-4,6-diphenyltriazine (1.56 g, 5.0 mmol), 9-acridone (1.17 g, 6.0 mmol), tetrafluoroboric acid-tri-t-butylphosphine (0.085 g, 0.8 mmol). 30 mmol), sodium-t-butoxide (0.575 g, 6.0 mmol), tris (dibenzylideneacetone) -dipalladium (0.090 g, 0.10 mmol), dehydrated toluene (60 mL) in a three-necked flask under a nitrogen atmosphere. And stirred at 120 ° C. overnight. The reaction solution was returned to room temperature, washed with pure water and separated. The separated organic layer was dried over magnesium sulfate and then reprecipitated with ethanol to obtain 1.18 g of
1 HNMR (500 MHz, CDCl 3): δ 8.71 (td, J = 2.0, 8.5 Hz, 4H, e), 8.61 (dd, J = 1.5, 8.0 Hz, 2H, a), 7.67 (tt, J = 2.0, 7.5 Hz, 2H, c), 7.58 (tt, J = 1.5, 4.5 Hz, 4H, f), 7.56 (dd, J = 2.0, 7.0 Hz, 2H, g), 7.36 (dt, J = 1.0, 7.5 Hz, 2H, b), 7.07 (d, J = 4.5 Hz, 2H, d)
MS (ASAP) m / z 427.14 [MH <+ >].
3-ブロモフェニルカルバゾール(1.61g,5mmol)、炭酸カリウム(1.38g,10mmol)、粉末銅(0.0636g,1mmol)、アントラニル酸メチル(30.2g,500mmol)を二口フラスコに入れ、140℃で72時間撹拌した。反応溶液を室温に戻し純粋で洗浄し分液したのち、有機層を硫酸マグネシウムで乾燥した後減圧蒸留し、残留した固体をカラムクロマトグラフィー(シリカゲル、ジクロロメタン:ヘキサン=1:2)で精製し、淡黄色の固体として中間体1を収量1.30g、収率67%で得た。
1HNMR(500MHz,CDCl3):δ9.65(s,1H),8.13(d,J=7.5Hz,2H),7.97(d,J=7.5Hz,1H),7.53(t,J=7.5Hz,1H),7.43(m,6H),7.29(m,5H),6.76(t,J=7.5Hz,1H),3.90(s,3H)
MS(ASAP)m/z392.15[M+]. 3-Bromophenylcarbazole (1.61 g, 5 mmol), potassium carbonate (1.38 g, 10 mmol), powdered copper (0.0636 g, 1 mmol), methyl anthranilate (30.2 g, 500 mmol) were placed in a two-necked flask, The mixture was stirred at 140 ° C. for 72 hours. After returning the reaction solution to room temperature and washing with pure water, the organic layer was dried over magnesium sulfate and distilled under reduced pressure. The remaining solid was purified by column chromatography (silica gel, dichloromethane: hexane = 1: 2),Intermediate 1 was obtained in a yield of 1.30 g and a yield of 67% as a pale yellow solid.
1 HNMR (500 MHz, CDCl 3 ): δ 9.65 (s, 1H), 8.13 (d, J = 7.5 Hz, 2H), 7.97 (d, J = 7.5 Hz, 1H), 7. 53 (t, J = 7.5 Hz, 1H), 7.43 (m, 6H), 7.29 (m, 5H), 6.76 (t, J = 7.5 Hz, 1H), 3.90 ( s, 3H)
MS (ASAP) m / z 392.15 [M <+ >].
1HNMR(500MHz,CDCl3):δ9.65(s,1H),8.13(d,J=7.5Hz,2H),7.97(d,J=7.5Hz,1H),7.53(t,J=7.5Hz,1H),7.43(m,6H),7.29(m,5H),6.76(t,J=7.5Hz,1H),3.90(s,3H)
MS(ASAP)m/z392.15[M+]. 3-Bromophenylcarbazole (1.61 g, 5 mmol), potassium carbonate (1.38 g, 10 mmol), powdered copper (0.0636 g, 1 mmol), methyl anthranilate (30.2 g, 500 mmol) were placed in a two-necked flask, The mixture was stirred at 140 ° C. for 72 hours. After returning the reaction solution to room temperature and washing with pure water, the organic layer was dried over magnesium sulfate and distilled under reduced pressure. The remaining solid was purified by column chromatography (silica gel, dichloromethane: hexane = 1: 2),
1 HNMR (500 MHz, CDCl 3 ): δ 9.65 (s, 1H), 8.13 (d, J = 7.5 Hz, 2H), 7.97 (d, J = 7.5 Hz, 1H), 7. 53 (t, J = 7.5 Hz, 1H), 7.43 (m, 6H), 7.29 (m, 5H), 6.76 (t, J = 7.5 Hz, 1H), 3.90 ( s, 3H)
MS (ASAP) m / z 392.15 [M <+ >].
中間体1(1.30g,3.32mmol)を50mLのTHFに溶解させ、エタノールを20mL、水酸化ナトリウム水溶液(0.5M)を50mL加えたものを20時間室温で撹拌した。反応溶液からエバポレーターを用いて溶媒を除去し、残留物に200mLの純水を加え、90℃に加熱し溶解させた。この溶液に塩酸をpHが1になるまで加え、白色沈殿をろ取して中間体2を収量1.21g、収率97%で得た。
1HNMR(500MHz,CDCl3):δ9.50(s,1H),8.15(d,J=7.5Hz,2H),8.04(d,J=8.0Hz,1H),7.57(t,J=8.0Hz,1H),7.47(m,3H),7.43(dt,J=1.5,7.0Hz,2H),7.39(dd,J=1.0,4.0Hz,2H),7.35(m,1H),7.30(m,3H),6.80(m,1H)
MS(ASAP)m/z378.12[M+]. Intermediate 1 (1.30 g, 3.32 mmol) was dissolved in 50 mL of THF, and 20 mL of ethanol and 50 mL of aqueous sodium hydroxide solution (0.5 M) were added and stirred at room temperature for 20 hours. The solvent was removed from the reaction solution using an evaporator, 200 mL of pure water was added to the residue, and the mixture was heated to 90 ° C. and dissolved. Hydrochloric acid was added to this solution until the pH reached 1, and the white precipitate was collected by filtration to obtainIntermediate 2 in a yield of 1.21 g and a yield of 97%.
1 HNMR (500 MHz, CDCl 3 ): δ 9.50 (s, 1H), 8.15 (d, J = 7.5 Hz, 2H), 8.04 (d, J = 8.0 Hz, 1H), 7. 57 (t, J = 8.0 Hz, 1H), 7.47 (m, 3H), 7.43 (dt, J = 1.5, 7.0 Hz, 2H), 7.39 (dd, J = 1) 0.0, 4.0 Hz, 2H), 7.35 (m, 1H), 7.30 (m, 3H), 6.80 (m, 1H)
MS (ASAP) m / z 378.12 [M <+ >].
1HNMR(500MHz,CDCl3):δ9.50(s,1H),8.15(d,J=7.5Hz,2H),8.04(d,J=8.0Hz,1H),7.57(t,J=8.0Hz,1H),7.47(m,3H),7.43(dt,J=1.5,7.0Hz,2H),7.39(dd,J=1.0,4.0Hz,2H),7.35(m,1H),7.30(m,3H),6.80(m,1H)
MS(ASAP)m/z378.12[M+]. Intermediate 1 (1.30 g, 3.32 mmol) was dissolved in 50 mL of THF, and 20 mL of ethanol and 50 mL of aqueous sodium hydroxide solution (0.5 M) were added and stirred at room temperature for 20 hours. The solvent was removed from the reaction solution using an evaporator, 200 mL of pure water was added to the residue, and the mixture was heated to 90 ° C. and dissolved. Hydrochloric acid was added to this solution until the pH reached 1, and the white precipitate was collected by filtration to obtain
1 HNMR (500 MHz, CDCl 3 ): δ 9.50 (s, 1H), 8.15 (d, J = 7.5 Hz, 2H), 8.04 (d, J = 8.0 Hz, 1H), 7. 57 (t, J = 8.0 Hz, 1H), 7.47 (m, 3H), 7.43 (dt, J = 1.5, 7.0 Hz, 2H), 7.39 (dd, J = 1) 0.0, 4.0 Hz, 2H), 7.35 (m, 1H), 7.30 (m, 3H), 6.80 (m, 1H)
MS (ASAP) m / z 378.12 [M <+ >].
中間体2(1.21g,3.22mmol)、ポリりん酸(3.10g,32.0mmol)を入れた二口フラスコを90℃で一晩撹拌した。反応物を300mLの純水に注ぎ溶解させた後、溶液が塩基性になるまでアンモニア水を加えた。得られた固体をカラムクロマトグラフィー(シリカゲル、ジクロロメタン:ヘキサン=1:2)で精製し、淡緑色の固体として中間体3を収量0.105g、収率9%で得た。
1HNMR(500MHz,CDCl3):δ8.55(dd,J=1.5,7.5Hz,1H),8.31(dd,J=1.5,7.5Hz,1H),8.27(dd,J=1.5,7.5Hz,1H),8.19(dd,J=1.5,7.5Hz,1H),7.94(dd,J=1.5,7.5Hz,1H),7.70(dd,J=1.5,7.5Hz,1H),7.59(m,2H),7.50(dt,J=1.5,7.5Hz,1H),7.35(dt,J=1.5,7.5Hz,1H),7.18(m,3H),6.95(dd,J=1.5,7.5Hz,1H)
MS(ASAP)m/z360.13[M+]. A two-necked flask containing Intermediate 2 (1.21 g, 3.22 mmol) and polyphosphoric acid (3.10 g, 32.0 mmol) was stirred at 90 ° C. overnight. The reaction product was poured and dissolved in 300 mL of pure water, and ammonia water was added until the solution became basic. The obtained solid was purified by column chromatography (silica gel, dichloromethane: hexane = 1: 2) to obtain Intermediate 3 in a yield of 0.105 g and a yield of 9% as a pale green solid.
1 HNMR (500 MHz, CDCl 3 ): δ 8.55 (dd, J = 1.5, 7.5 Hz, 1H), 8.31 (dd, J = 1.5, 7.5 Hz, 1H), 8.27 (Dd, J = 1.5, 7.5 Hz, 1H), 8.19 (dd, J = 1.5, 7.5 Hz, 1H), 7.94 (dd, J = 1.5, 7.5 Hz) , 1H), 7.70 (dd, J = 1.5, 7.5 Hz, 1H), 7.59 (m, 2H), 7.50 (dt, J = 1.5, 7.5 Hz, 1H) 7.35 (dt, J = 1.5, 7.5 Hz, 1H), 7.18 (m, 3H), 6.95 (dd, J = 1.5, 7.5 Hz, 1H)
MS (ASAP) m / z 360.13 [M <+ >].
1HNMR(500MHz,CDCl3):δ8.55(dd,J=1.5,7.5Hz,1H),8.31(dd,J=1.5,7.5Hz,1H),8.27(dd,J=1.5,7.5Hz,1H),8.19(dd,J=1.5,7.5Hz,1H),7.94(dd,J=1.5,7.5Hz,1H),7.70(dd,J=1.5,7.5Hz,1H),7.59(m,2H),7.50(dt,J=1.5,7.5Hz,1H),7.35(dt,J=1.5,7.5Hz,1H),7.18(m,3H),6.95(dd,J=1.5,7.5Hz,1H)
MS(ASAP)m/z360.13[M+]. A two-necked flask containing Intermediate 2 (1.21 g, 3.22 mmol) and polyphosphoric acid (3.10 g, 32.0 mmol) was stirred at 90 ° C. overnight. The reaction product was poured and dissolved in 300 mL of pure water, and ammonia water was added until the solution became basic. The obtained solid was purified by column chromatography (silica gel, dichloromethane: hexane = 1: 2) to obtain Intermediate 3 in a yield of 0.105 g and a yield of 9% as a pale green solid.
1 HNMR (500 MHz, CDCl 3 ): δ 8.55 (dd, J = 1.5, 7.5 Hz, 1H), 8.31 (dd, J = 1.5, 7.5 Hz, 1H), 8.27 (Dd, J = 1.5, 7.5 Hz, 1H), 8.19 (dd, J = 1.5, 7.5 Hz, 1H), 7.94 (dd, J = 1.5, 7.5 Hz) , 1H), 7.70 (dd, J = 1.5, 7.5 Hz, 1H), 7.59 (m, 2H), 7.50 (dt, J = 1.5, 7.5 Hz, 1H) 7.35 (dt, J = 1.5, 7.5 Hz, 1H), 7.18 (m, 3H), 6.95 (dd, J = 1.5, 7.5 Hz, 1H)
MS (ASAP) m / z 360.13 [M <+ >].
中間体3(0.105g,0.290mmol)、炭酸カリウム(80.0mg,0.580mmol)、粉末銅(3.71mg,0.0580mmol)をブロモベンゼンに溶解させ140℃で一晩加熱した。反応溶液を室温に戻し純粋で洗浄し分液したのち、有機層をカラムクロマトグラフィー(シリカゲル、クロロホルム)で精製を試み質量分析でm/z=436.16となる赤褐色固体の化合物2を得た。
MS(ASAP)m/z436.16[M+]. Intermediate 3 (0.105 g, 0.290 mmol), potassium carbonate (80.0 mg, 0.580 mmol) and powdered copper (3.71 mg, 0.0580 mmol) were dissolved in bromobenzene and heated at 140 ° C. overnight. The reaction solution was returned to room temperature, washed pure and separated, and the organic layer was purified by column chromatography (silica gel, chloroform), and a reddish brownsolid compound 2 with m / z = 436.16 was obtained by mass spectrometry. .
MS (ASAP) m / z 436.16 [M <+ >].
MS(ASAP)m/z436.16[M+]. Intermediate 3 (0.105 g, 0.290 mmol), potassium carbonate (80.0 mg, 0.580 mmol) and powdered copper (3.71 mg, 0.0580 mmol) were dissolved in bromobenzene and heated at 140 ° C. overnight. The reaction solution was returned to room temperature, washed pure and separated, and the organic layer was purified by column chromatography (silica gel, chloroform), and a reddish brown
MS (ASAP) m / z 436.16 [M <+ >].
9,9-ジメチルアクリダン(0.42g、2mmol)、1-ブロモジベンゾフラン(0.24g、1mmol)、テトラフルオロホウ酸-トリ-t-ブチルホスフィン(35mg、0.12mmol)、ナトリウム-t-ブトキシド(0.23g、2.4mmol)、トリス(ジベンジリデンアセトン)ジバラジウム(0)(37mg、0.04mmol)を三口フラスコに入れ、脱水トルエン(40mL)を加え終夜撹拌及び還流した。薄層クロマトグラフィー(TLC)にて原料がすべて消費されていることを確認したのち、反応を停止し放冷した。その後反応溶液を水で洗浄し、有機層を取り出し硫酸ナトリウムを用いて乾燥させた。硫酸ナトリウムを減圧濾過にて取り除いたのち、エバポレーターを用いてトルエンを除去した。残留物をカラムクロマトグラフィー(シリカゲル、クロロホルム:ヘキサン=1:6)を用いて精製し、白色粉末の化合物3を収量0.225g、収率60%で得た。
1HNMR(500MHz,DMSO-d6):δ7.96(d,J=8.0Hz,1H,l),7.83(t,J=8.0Hz,1H,j),7.74(d,J=8.0Hz,1H,i),7.59(d,J=7.0Hz,2H,e),7.45(t,J=7.5Hz,1H,g),7.40(d,J=7.5Hz,1H,h),7.11(t,J=7.5Hz,1H,k),7.07(d,J=7.5Hz,1H,f),6.90(t,J=7.5Hz,2H,d),6.84(t,J=7.0Hz,2H,c),6.02(d,J=8.0Hz,2H,b),1.77(d,6H,a)
MS(ASAP)m/z376.15[MH+] 9,9-dimethylacridan (0.42 g, 2 mmol), 1-bromodibenzofuran (0.24 g, 1 mmol), tetrafluoroborate-tri-t-butylphosphine (35 mg, 0.12 mmol), sodium-t- Butoxide (0.23 g, 2.4 mmol) and tris (dibenzylideneacetone) dibaradium (0) (37 mg, 0.04 mmol) were placed in a three-necked flask, dehydrated toluene (40 mL) was added, and the mixture was stirred and refluxed overnight. After confirming that all the raw materials were consumed by thin layer chromatography (TLC), the reaction was stopped and allowed to cool. Thereafter, the reaction solution was washed with water, and the organic layer was taken out and dried using sodium sulfate. After removing sodium sulfate by filtration under reduced pressure, toluene was removed using an evaporator. The residue was purified using column chromatography (silica gel, chloroform: hexane = 1: 6) to obtain 0.23 g of white powder of Compound 3 in a yield of 60%.
1 HNMR (500 MHz, DMSO-d 6 ): δ 7.96 (d, J = 8.0 Hz, 1H, l), 7.83 (t, J = 8.0 Hz, 1H, j), 7.74 (d , J = 8.0 Hz, 1H, i), 7.59 (d, J = 7.0 Hz, 2H, e), 7.45 (t, J = 7.5 Hz, 1H, g), 7.40 ( d, J = 7.5 Hz, 1H, h), 7.11 (t, J = 7.5 Hz, 1H, k), 7.07 (d, J = 7.5 Hz, 1H, f), 6.90. (T, J = 7.5 Hz, 2H, d), 6.84 (t, J = 7.0 Hz, 2H, c), 6.02 (d, J = 8.0 Hz, 2H, b), 1. 77 (d, 6H, a)
MS (ASAP) m / z 376.15 [MH + ]
1HNMR(500MHz,DMSO-d6):δ7.96(d,J=8.0Hz,1H,l),7.83(t,J=8.0Hz,1H,j),7.74(d,J=8.0Hz,1H,i),7.59(d,J=7.0Hz,2H,e),7.45(t,J=7.5Hz,1H,g),7.40(d,J=7.5Hz,1H,h),7.11(t,J=7.5Hz,1H,k),7.07(d,J=7.5Hz,1H,f),6.90(t,J=7.5Hz,2H,d),6.84(t,J=7.0Hz,2H,c),6.02(d,J=8.0Hz,2H,b),1.77(d,6H,a)
MS(ASAP)m/z376.15[MH+] 9,9-dimethylacridan (0.42 g, 2 mmol), 1-bromodibenzofuran (0.24 g, 1 mmol), tetrafluoroborate-tri-t-butylphosphine (35 mg, 0.12 mmol), sodium-t- Butoxide (0.23 g, 2.4 mmol) and tris (dibenzylideneacetone) dibaradium (0) (37 mg, 0.04 mmol) were placed in a three-necked flask, dehydrated toluene (40 mL) was added, and the mixture was stirred and refluxed overnight. After confirming that all the raw materials were consumed by thin layer chromatography (TLC), the reaction was stopped and allowed to cool. Thereafter, the reaction solution was washed with water, and the organic layer was taken out and dried using sodium sulfate. After removing sodium sulfate by filtration under reduced pressure, toluene was removed using an evaporator. The residue was purified using column chromatography (silica gel, chloroform: hexane = 1: 6) to obtain 0.23 g of white powder of Compound 3 in a yield of 60%.
1 HNMR (500 MHz, DMSO-d 6 ): δ 7.96 (d, J = 8.0 Hz, 1H, l), 7.83 (t, J = 8.0 Hz, 1H, j), 7.74 (d , J = 8.0 Hz, 1H, i), 7.59 (d, J = 7.0 Hz, 2H, e), 7.45 (t, J = 7.5 Hz, 1H, g), 7.40 ( d, J = 7.5 Hz, 1H, h), 7.11 (t, J = 7.5 Hz, 1H, k), 7.07 (d, J = 7.5 Hz, 1H, f), 6.90. (T, J = 7.5 Hz, 2H, d), 6.84 (t, J = 7.0 Hz, 2H, c), 6.02 (d, J = 8.0 Hz, 2H, b), 1. 77 (d, 6H, a)
MS (ASAP) m / z 376.15 [MH + ]
9,9-ジメチルアクリダン(0.71g、3.4mmol)、2-ブロモジベンゾフラン(1.0g、4mmol)、テトラフルオロホウ酸-トリ-t-ブチルホスフィン(70mg、0.24mmol)、ナトリウム-t-ブトキシド(0.46g、4.8mmol)、トリス(ジベンジリデンアセトン)ジバラジウム(0)(73mg、0.08mmol)を三口フラスコに入れ、脱水トルエン(40mL)を加え終夜撹拌及び還流した。TLCにて原料がすべて消費されていることを確認したのち、反応を停止し放冷した。その後反応溶液を水で洗浄し、有機層を取り出し硫酸ナトリウムを用いて乾燥させた。硫酸ナトリウムを減圧濾過にて取り除いたのち、エバポレーターを用いてトルエンを除去した。残留物をカラムクロマトグラフィー(シリカゲル、ジクロロメタン:ヘキサン=6:1)を用いて精製し、白色粉末の化合物4を収量1.2g、収率90%で得た。
1HNMR(500MHz,DMSO-d6):δ8.25(ds,J=2.0Hz,1H,l),8.21(d,J=7.5Hz,1H,g),7.80(d,J=8.5Hz,1H,k),7.59(dt,J=1.5,7.0Hz,1H,i),7.52(dd,J=1.5,7.5Hz,2H,e),7.48(dd,J=2.0,8.5Hz,1H,h),7.43(dt,J=0.5,7.5Hz,1H,j),6.96(dt,J=1.5,7.0Hz,2H,d),6.91(dt,J=1.5,7.0Hz,2H,c),6.19(dd,J=1.0,8.0Hz,2H,b),1.67(s,6H,a)
MS(ASAP)m/z376.32[MH+] 9,9-dimethylacridan (0.71 g, 3.4 mmol), 2-bromodibenzofuran (1.0 g, 4 mmol), tetrafluoroboric acid-tri-t-butylphosphine (70 mg, 0.24 mmol), sodium- t-Butoxide (0.46 g, 4.8 mmol) and tris (dibenzylideneacetone) dibaladium (0) (73 mg, 0.08 mmol) were placed in a three-necked flask, dehydrated toluene (40 mL) was added, and the mixture was stirred and refluxed overnight. After confirming that all the raw materials were consumed by TLC, the reaction was stopped and allowed to cool. Thereafter, the reaction solution was washed with water, and the organic layer was taken out and dried using sodium sulfate. After removing sodium sulfate by filtration under reduced pressure, toluene was removed using an evaporator. The residue was purified by column chromatography (silica gel, dichloromethane: hexane = 6: 1) to obtain white powder ofCompound 4 in a yield of 1.2 g and a yield of 90%.
1 HNMR (500 MHz, DMSO-d 6 ): δ 8.25 (ds, J = 2.0 Hz, 1H, l), 8.21 (d, J = 7.5 Hz, 1H, g), 7.80 (d , J = 8.5 Hz, 1H, k), 7.59 (dt, J = 1.5, 7.0 Hz, 1H, i), 7.52 (dd, J = 1.5, 7.5 Hz, 2H) E), 7.48 (dd, J = 2.0, 8.5 Hz, 1H, h), 7.43 (dt, J = 0.5, 7.5 Hz, 1H, j), 6.96 ( dt, J = 1.5, 7.0 Hz, 2H, d), 6.91 (dt, J = 1.5, 7.0 Hz, 2H, c), 6.19 (dd, J = 1.0, 8.0 Hz, 2H, b), 1.67 (s, 6H, a)
MS (ASAP) m / z 376.32 [MH + ]
1HNMR(500MHz,DMSO-d6):δ8.25(ds,J=2.0Hz,1H,l),8.21(d,J=7.5Hz,1H,g),7.80(d,J=8.5Hz,1H,k),7.59(dt,J=1.5,7.0Hz,1H,i),7.52(dd,J=1.5,7.5Hz,2H,e),7.48(dd,J=2.0,8.5Hz,1H,h),7.43(dt,J=0.5,7.5Hz,1H,j),6.96(dt,J=1.5,7.0Hz,2H,d),6.91(dt,J=1.5,7.0Hz,2H,c),6.19(dd,J=1.0,8.0Hz,2H,b),1.67(s,6H,a)
MS(ASAP)m/z376.32[MH+] 9,9-dimethylacridan (0.71 g, 3.4 mmol), 2-bromodibenzofuran (1.0 g, 4 mmol), tetrafluoroboric acid-tri-t-butylphosphine (70 mg, 0.24 mmol), sodium- t-Butoxide (0.46 g, 4.8 mmol) and tris (dibenzylideneacetone) dibaladium (0) (73 mg, 0.08 mmol) were placed in a three-necked flask, dehydrated toluene (40 mL) was added, and the mixture was stirred and refluxed overnight. After confirming that all the raw materials were consumed by TLC, the reaction was stopped and allowed to cool. Thereafter, the reaction solution was washed with water, and the organic layer was taken out and dried using sodium sulfate. After removing sodium sulfate by filtration under reduced pressure, toluene was removed using an evaporator. The residue was purified by column chromatography (silica gel, dichloromethane: hexane = 6: 1) to obtain white powder of
1 HNMR (500 MHz, DMSO-d 6 ): δ 8.25 (ds, J = 2.0 Hz, 1H, l), 8.21 (d, J = 7.5 Hz, 1H, g), 7.80 (d , J = 8.5 Hz, 1H, k), 7.59 (dt, J = 1.5, 7.0 Hz, 1H, i), 7.52 (dd, J = 1.5, 7.5 Hz, 2H) E), 7.48 (dd, J = 2.0, 8.5 Hz, 1H, h), 7.43 (dt, J = 0.5, 7.5 Hz, 1H, j), 6.96 ( dt, J = 1.5, 7.0 Hz, 2H, d), 6.91 (dt, J = 1.5, 7.0 Hz, 2H, c), 6.19 (dd, J = 1.0, 8.0 Hz, 2H, b), 1.67 (s, 6H, a)
MS (ASAP) m / z 376.32 [MH + ]
9,9-ジメチルアクリダン(0.84g、4mmol)、3-ブロモジベンゾフラン(1.2g、5mmol)、テトラフルオロホウ酸-トリ-t-ブチルホスフィン(70mg、0.24mmol)、ナトリウム-t-ブトキシド(0.46g、4.8mmol)、トリス(ジベンジリデンアセトン)ジバラジウム(0)(73mg、0.08mmol)を三口フラスコに入れ、脱水トルエン(40mL)を加え終夜撹拌及び還流した。TLCにて原料がすべて消費されていることを確認したのち、反応を停止し放冷した。その後反応溶液を水で洗浄し、有機層を取り出し硫酸ナトリウムを用いて乾燥させた。硫酸ナトリウムを減圧濾過にて取り除いたのち、エバポレーターを用いてトルエンを除去した。残留物をカラムクロマトグラフィー(シリカゲル、クロロホルム:ヘキサン=4:1)を用いて精製し、白色粉末として化合物5を収量1.1g、収率63%で得た。
1HNMR(500MHz,CDCl3):δ8.12(d,J=8.0Hz,1H,g),7.97(dd,J=1.0,7.0Hz,1H,f),7.56(dd,J=0.5,8.0Hz,1H,korh),7.51(ds,J=1.5Hz,1H,l),7.45(dt,J=1.5,8.0Hz,1H,iorj),7.41(dd,J=2.0,7.0Hz,2H,bore),7.35(dt,J=1.0,7.5Hz,1H,iorj),7.25(dd,J=2.0,8.0Hz,2H,korh),6.87(m,4H,c,d),6.24(dd,J=2.0,7.5Hz,2H,bore),1.66(s,6H,a)
MS(ASAP)m/z376.11[MH+] 9,9-dimethylacridan (0.84 g, 4 mmol), 3-bromodibenzofuran (1.2 g, 5 mmol), tetrafluoroborate-tri-t-butylphosphine (70 mg, 0.24 mmol), sodium-t- Butoxide (0.46 g, 4.8 mmol) and tris (dibenzylideneacetone) dibaradium (0) (73 mg, 0.08 mmol) were placed in a three-necked flask, dehydrated toluene (40 mL) was added, and the mixture was stirred and refluxed overnight. After confirming that all the raw materials were consumed by TLC, the reaction was stopped and allowed to cool. Thereafter, the reaction solution was washed with water, and the organic layer was taken out and dried using sodium sulfate. After removing sodium sulfate by filtration under reduced pressure, toluene was removed using an evaporator. The residue was purified using column chromatography (silica gel, chloroform: hexane = 4: 1) to obtain 1.1 g of Compound 5 as a white powder in a yield of 63%.
1 HNMR (500 MHz, CDCl 3 ): δ 8.12 (d, J = 8.0 Hz, 1H, g), 7.97 (dd, J = 1.0, 7.0 Hz, 1H, f), 7.56 (Dd, J = 0.5, 8.0 Hz, 1H, korh), 7.51 (ds, J = 1.5 Hz, 1H, l), 7.45 (dt, J = 1.5, 8.0 Hz) , 1H, iorj), 7.41 (dd, J = 2.0, 7.0 Hz, 2H, bore), 7.35 (dt, J = 1.0, 7.5 Hz, 1H, iorj), 7. 25 (dd, J = 2.0, 8.0 Hz, 2H, korh), 6.87 (m, 4H, c, d), 6.24 (dd, J = 2.0, 7.5 Hz, 2H, bore), 1.66 (s, 6H, a)
MS (ASAP) m / z 376.11 [MH + ]
1HNMR(500MHz,CDCl3):δ8.12(d,J=8.0Hz,1H,g),7.97(dd,J=1.0,7.0Hz,1H,f),7.56(dd,J=0.5,8.0Hz,1H,korh),7.51(ds,J=1.5Hz,1H,l),7.45(dt,J=1.5,8.0Hz,1H,iorj),7.41(dd,J=2.0,7.0Hz,2H,bore),7.35(dt,J=1.0,7.5Hz,1H,iorj),7.25(dd,J=2.0,8.0Hz,2H,korh),6.87(m,4H,c,d),6.24(dd,J=2.0,7.5Hz,2H,bore),1.66(s,6H,a)
MS(ASAP)m/z376.11[MH+] 9,9-dimethylacridan (0.84 g, 4 mmol), 3-bromodibenzofuran (1.2 g, 5 mmol), tetrafluoroborate-tri-t-butylphosphine (70 mg, 0.24 mmol), sodium-t- Butoxide (0.46 g, 4.8 mmol) and tris (dibenzylideneacetone) dibaradium (0) (73 mg, 0.08 mmol) were placed in a three-necked flask, dehydrated toluene (40 mL) was added, and the mixture was stirred and refluxed overnight. After confirming that all the raw materials were consumed by TLC, the reaction was stopped and allowed to cool. Thereafter, the reaction solution was washed with water, and the organic layer was taken out and dried using sodium sulfate. After removing sodium sulfate by filtration under reduced pressure, toluene was removed using an evaporator. The residue was purified using column chromatography (silica gel, chloroform: hexane = 4: 1) to obtain 1.1 g of Compound 5 as a white powder in a yield of 63%.
1 HNMR (500 MHz, CDCl 3 ): δ 8.12 (d, J = 8.0 Hz, 1H, g), 7.97 (dd, J = 1.0, 7.0 Hz, 1H, f), 7.56 (Dd, J = 0.5, 8.0 Hz, 1H, korh), 7.51 (ds, J = 1.5 Hz, 1H, l), 7.45 (dt, J = 1.5, 8.0 Hz) , 1H, iorj), 7.41 (dd, J = 2.0, 7.0 Hz, 2H, bore), 7.35 (dt, J = 1.0, 7.5 Hz, 1H, iorj), 7. 25 (dd, J = 2.0, 8.0 Hz, 2H, korh), 6.87 (m, 4H, c, d), 6.24 (dd, J = 2.0, 7.5 Hz, 2H, bore), 1.66 (s, 6H, a)
MS (ASAP) m / z 376.11 [MH + ]
9,9-ジメチルアクリダン(2.1g、10mmol)、4-ブロモジベンゾフラン(2.2g、9mmol)、テトラフルオロホウ酸-トリ-t-ブチルホスフィン(0.16g、0.54mmol)、ナトリウム-t-ブトキシド(1.0g、11mmol)、トリス(ジベンジリデンアセトン)ジバラジウム(0)(0.17g、0.54mmol)を三口フラスコに入れ、脱水トルエン(90mL)を加え終夜撹拌及び還流した。TLCにて原料がすべて消費されていることを確認したのち、反応を停止し放冷した。その後反応溶液を水で洗浄し、有機層を取り出し硫酸ナトリウムを用いて乾燥させた。硫酸ナトリウムを減圧濾過にて取り除いたのち、エバポレーターを用いてトルエンを除去した。残留物をカラムクロマトグラフィー(シリカゲル、ジクロロメタン:ヘキサン=1:4)を用いて精製し、白色粉末の化合物6を収量2.6g、収率75%で得た。
1HNMR(500MHz,CDCl3):δ8.15(dd,J=1.5,8.0Hz,1H,h),8.06(dd,J=0.5,7.5Hz,1H,f),7.60(t,J=8.0Hz,1H,g),7.55(dd,J=2.5,7.0Hz,2H,bore),7.53(dd,J=1.5,8.0Hz,1H,iorl),7.47(m,2H),7.41(m,1H,jork),6.98(m,4H,c,d),6.32(dd,J=2.0,7.5Hz,2H,bore),1.83(s,6H,a)
MS(ASAP)m/z376.10[MH+] 9,9-dimethylacridan (2.1 g, 10 mmol), 4-bromodibenzofuran (2.2 g, 9 mmol), tetrafluoroboric acid-tri-t-butylphosphine (0.16 g, 0.54 mmol), sodium t-Butoxide (1.0 g, 11 mmol) and tris (dibenzylideneacetone) dibaradium (0) (0.17 g, 0.54 mmol) were placed in a three-necked flask, dehydrated toluene (90 mL) was added, and the mixture was stirred and refluxed overnight. After confirming that all the raw materials were consumed by TLC, the reaction was stopped and allowed to cool. Thereafter, the reaction solution was washed with water, and the organic layer was taken out and dried using sodium sulfate. After removing sodium sulfate by filtration under reduced pressure, toluene was removed using an evaporator. The residue was purified using column chromatography (silica gel, dichloromethane: hexane = 1: 4) to obtain 2.6 g of awhite powder compound 6 in a yield of 75%.
1 HNMR (500 MHz, CDCl 3 ): δ 8.15 (dd, J = 1.5, 8.0 Hz, 1H, h), 8.06 (dd, J = 0.5, 7.5 Hz, 1H, f) 7.60 (t, J = 8.0 Hz, 1H, g), 7.55 (dd, J = 2.5, 7.0 Hz, 2H, bore), 7.53 (dd, J = 1.5 , 8.0 Hz, 1H, iorl), 7.47 (m, 2H), 7.41 (m, 1H, jork), 6.98 (m, 4H, c, d), 6.32 (dd, J = 2.0, 7.5 Hz, 2H, bore), 1.83 (s, 6H, a)
MS (ASAP) m / z 376.10 [MH + ]
1HNMR(500MHz,CDCl3):δ8.15(dd,J=1.5,8.0Hz,1H,h),8.06(dd,J=0.5,7.5Hz,1H,f),7.60(t,J=8.0Hz,1H,g),7.55(dd,J=2.5,7.0Hz,2H,bore),7.53(dd,J=1.5,8.0Hz,1H,iorl),7.47(m,2H),7.41(m,1H,jork),6.98(m,4H,c,d),6.32(dd,J=2.0,7.5Hz,2H,bore),1.83(s,6H,a)
MS(ASAP)m/z376.10[MH+] 9,9-dimethylacridan (2.1 g, 10 mmol), 4-bromodibenzofuran (2.2 g, 9 mmol), tetrafluoroboric acid-tri-t-butylphosphine (0.16 g, 0.54 mmol), sodium t-Butoxide (1.0 g, 11 mmol) and tris (dibenzylideneacetone) dibaradium (0) (0.17 g, 0.54 mmol) were placed in a three-necked flask, dehydrated toluene (90 mL) was added, and the mixture was stirred and refluxed overnight. After confirming that all the raw materials were consumed by TLC, the reaction was stopped and allowed to cool. Thereafter, the reaction solution was washed with water, and the organic layer was taken out and dried using sodium sulfate. After removing sodium sulfate by filtration under reduced pressure, toluene was removed using an evaporator. The residue was purified using column chromatography (silica gel, dichloromethane: hexane = 1: 4) to obtain 2.6 g of a
1 HNMR (500 MHz, CDCl 3 ): δ 8.15 (dd, J = 1.5, 8.0 Hz, 1H, h), 8.06 (dd, J = 0.5, 7.5 Hz, 1H, f) 7.60 (t, J = 8.0 Hz, 1H, g), 7.55 (dd, J = 2.5, 7.0 Hz, 2H, bore), 7.53 (dd, J = 1.5 , 8.0 Hz, 1H, iorl), 7.47 (m, 2H), 7.41 (m, 1H, jork), 6.98 (m, 4H, c, d), 6.32 (dd, J = 2.0, 7.5 Hz, 2H, bore), 1.83 (s, 6H, a)
MS (ASAP) m / z 376.10 [MH + ]
9,9-ジメチルアクリダン(1.5g、7mmol)、2,8-ジブロモジベンゾフラン(0.98g、3mmol)、テトラフルオロホウ酸-トリ-t-ブチルホスフィン(70mg、0.24mmol)、ナトリウム-t-ブトキシド(0.46g、4.8mmol)、トリス(ジベンジリデンアセトン)ジバラジウム(0)(73mg、0.08mmol)を三口フラスコに入れ、脱水トルエン(40mL)を加え終夜撹拌及び還流した。TLCにて原料がすべて消費されていることを確認したのち、反応を停止し放冷した。その後反応溶液を水で洗浄し、有機層を取り出し硫酸ナトリウムを用いて乾燥させた。硫酸ナトリウムを減圧濾過にて取り除いたのち、エバポレーターを用いてトルエンを除去した。残留物をカラムクロマトグラフィー(シリカゲル、ジクロロメタン:ヘキサン=1:4)を用いて精製し、白色粉末の化合物7を収量1.5g、収率86%で得た。
1HNMR(500MHz,DMSO-d6):δ8.31(ds,J=2.0Hz,2H,h),8.09(d,J=8.5Hz,2H,a),7.56(dd,J=2.0,8.5Hz,2H,b),7.49(dd,J=1.5,7.5Hz,4H,corf),6.96(dt,J=1.5,7.5Hz,4H,dore),6.90(dt,J=1.5,7.5Hz,4H,dore),6.21(dd,J=1.5,8.0Hz,4H,corf),1.64(s,12H,g)
MS(ASAP)m/z583.54[MH+] 9,9-dimethylacridan (1.5 g, 7 mmol), 2,8-dibromodibenzofuran (0.98 g, 3 mmol), tetrafluoroboric acid-tri-t-butylphosphine (70 mg, 0.24 mmol), sodium t-Butoxide (0.46 g, 4.8 mmol) and tris (dibenzylideneacetone) dibaladium (0) (73 mg, 0.08 mmol) were placed in a three-necked flask, dehydrated toluene (40 mL) was added, and the mixture was stirred and refluxed overnight. After confirming that all the raw materials were consumed by TLC, the reaction was stopped and allowed to cool. Thereafter, the reaction solution was washed with water, and the organic layer was taken out and dried using sodium sulfate. After removing sodium sulfate by filtration under reduced pressure, toluene was removed using an evaporator. The residue was purified using column chromatography (silica gel, dichloromethane: hexane = 1: 4) to obtainCompound 7 as a white powder in a yield of 1.5 g and a yield of 86%.
1 HNMR (500 MHz, DMSO-d 6 ): δ 8.31 (ds, J = 2.0 Hz, 2H, h), 8.09 (d, J = 8.5 Hz, 2H, a), 7.56 (dd , J = 2.0, 8.5 Hz, 2H, b), 7.49 (dd, J = 1.5, 7.5 Hz, 4H, corf), 6.96 (dt, J = 1.5, 7) .5 Hz, 4H, dore), 6.90 (dt, J = 1.5, 7.5 Hz, 4H, dore), 6.21 (dd, J = 1.5, 8.0 Hz, 4H, corf), 1.64 (s, 12H, g)
MS (ASAP) m / z 583.54 [MH + ]
1HNMR(500MHz,DMSO-d6):δ8.31(ds,J=2.0Hz,2H,h),8.09(d,J=8.5Hz,2H,a),7.56(dd,J=2.0,8.5Hz,2H,b),7.49(dd,J=1.5,7.5Hz,4H,corf),6.96(dt,J=1.5,7.5Hz,4H,dore),6.90(dt,J=1.5,7.5Hz,4H,dore),6.21(dd,J=1.5,8.0Hz,4H,corf),1.64(s,12H,g)
MS(ASAP)m/z583.54[MH+] 9,9-dimethylacridan (1.5 g, 7 mmol), 2,8-dibromodibenzofuran (0.98 g, 3 mmol), tetrafluoroboric acid-tri-t-butylphosphine (70 mg, 0.24 mmol), sodium t-Butoxide (0.46 g, 4.8 mmol) and tris (dibenzylideneacetone) dibaladium (0) (73 mg, 0.08 mmol) were placed in a three-necked flask, dehydrated toluene (40 mL) was added, and the mixture was stirred and refluxed overnight. After confirming that all the raw materials were consumed by TLC, the reaction was stopped and allowed to cool. Thereafter, the reaction solution was washed with water, and the organic layer was taken out and dried using sodium sulfate. After removing sodium sulfate by filtration under reduced pressure, toluene was removed using an evaporator. The residue was purified using column chromatography (silica gel, dichloromethane: hexane = 1: 4) to obtain
1 HNMR (500 MHz, DMSO-d 6 ): δ 8.31 (ds, J = 2.0 Hz, 2H, h), 8.09 (d, J = 8.5 Hz, 2H, a), 7.56 (dd , J = 2.0, 8.5 Hz, 2H, b), 7.49 (dd, J = 1.5, 7.5 Hz, 4H, corf), 6.96 (dt, J = 1.5, 7) .5 Hz, 4H, dore), 6.90 (dt, J = 1.5, 7.5 Hz, 4H, dore), 6.21 (dd, J = 1.5, 8.0 Hz, 4H, corf), 1.64 (s, 12H, g)
MS (ASAP) m / z 583.54 [MH + ]
2-メトキシ-4-ブロモフェニルボロン酸(2.3g、10mmol)、2-フルオロ-4-ブロモヨードベンゼン(15g、50mmol)、炭酸セシウム(9.8g、30mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)(0.23g、0.2mmol)を三口フラスコに入れ、アルゴン置換を行った後脱気したトルエン(15mL)、エタノール(5mL)、水(5mL)を加え14時間100℃で撹拌した。TLCにて原料がすべて消費されていることを確認したのち、反応を停止し放冷した。水を加え分液し、有機層を取り出し硫酸ナトリウムを用いて乾燥させた。硫酸ナトリウムを減圧濾過にて取り除いたのち、エバポレーターを用いて溶媒を除去した。残留物をカラムクロマトグラフィー(シリカゲル、クロロホルム:ヘキサン=1:9)を用いて精製し、淡黄色油状の中間体4を収量2.7g,収率74%で得た。
1HNMR(500MHz,DMSO-d6):δ7.60(dd,J=2.0,9.5Hz,1H,a),7.47(dd,J=2.0,8.5Hz,1H,b),7.33(ds,J=1.5Hz,1H,e),7.31(t,J=8.0Hz,1H,c),7.24(dd,J=2.0,8.0Hz,1H,f),7.19(d,J=8.0Hz,1H,g),3.78(s,3H,d)
MS(ASAP)m/z359.94[M+] 2-methoxy-4-bromophenylboronic acid (2.3 g, 10 mmol), 2-fluoro-4-bromoiodobenzene (15 g, 50 mmol), cesium carbonate (9.8 g, 30 mmol), tetrakis (triphenylphosphine) palladium (0) (0.23 g, 0.2 mmol) was placed in a three-necked flask, purged with argon and then degassed toluene (15 mL), ethanol (5 mL), water (5 mL) were added, and the mixture was stirred at 100 ° C. for 14 hours. . After confirming that all the raw materials were consumed by TLC, the reaction was stopped and allowed to cool. Water was added for liquid separation, and the organic layer was taken out and dried using sodium sulfate. After removing sodium sulfate by filtration under reduced pressure, the solvent was removed using an evaporator. The residue was purified by column chromatography (silica gel, chloroform: hexane = 1: 9) to obtain a light yellow oily intermediate 4 in a yield of 2.7 g and a yield of 74%.
1 HNMR (500 MHz, DMSO-d 6 ): δ 7.60 (dd, J = 2.0, 9.5 Hz, 1H, a), 7.47 (dd, J = 2.0, 8.5 Hz, 1H, b), 7.33 (ds, J = 1.5 Hz, 1H, e), 7.31 (t, J = 8.0 Hz, 1H, c), 7.24 (dd, J = 2.0, 8 .0Hz, 1H, f), 7.19 (d, J = 8.0 Hz, 1H, g), 3.78 (s, 3H, d)
MS (ASAP) m / z 359.94 [M + ]
1HNMR(500MHz,DMSO-d6):δ7.60(dd,J=2.0,9.5Hz,1H,a),7.47(dd,J=2.0,8.5Hz,1H,b),7.33(ds,J=1.5Hz,1H,e),7.31(t,J=8.0Hz,1H,c),7.24(dd,J=2.0,8.0Hz,1H,f),7.19(d,J=8.0Hz,1H,g),3.78(s,3H,d)
MS(ASAP)m/z359.94[M+] 2-methoxy-4-bromophenylboronic acid (2.3 g, 10 mmol), 2-fluoro-4-bromoiodobenzene (15 g, 50 mmol), cesium carbonate (9.8 g, 30 mmol), tetrakis (triphenylphosphine) palladium (0) (0.23 g, 0.2 mmol) was placed in a three-necked flask, purged with argon and then degassed toluene (15 mL), ethanol (5 mL), water (5 mL) were added, and the mixture was stirred at 100 ° C. for 14 hours. . After confirming that all the raw materials were consumed by TLC, the reaction was stopped and allowed to cool. Water was added for liquid separation, and the organic layer was taken out and dried using sodium sulfate. After removing sodium sulfate by filtration under reduced pressure, the solvent was removed using an evaporator. The residue was purified by column chromatography (silica gel, chloroform: hexane = 1: 9) to obtain a light yellow oily intermediate 4 in a yield of 2.7 g and a yield of 74%.
1 HNMR (500 MHz, DMSO-d 6 ): δ 7.60 (dd, J = 2.0, 9.5 Hz, 1H, a), 7.47 (dd, J = 2.0, 8.5 Hz, 1H, b), 7.33 (ds, J = 1.5 Hz, 1H, e), 7.31 (t, J = 8.0 Hz, 1H, c), 7.24 (dd, J = 2.0, 8 .0Hz, 1H, f), 7.19 (d, J = 8.0 Hz, 1H, g), 3.78 (s, 3H, d)
MS (ASAP) m / z 359.94 [M + ]
中間体4(2.3g、6.3mmol)、ピリジン塩酸塩(12g、0.1mol)を三口フラスコに加え、180℃に昇温し窒素ガスを流しながら終夜撹拌した。TLCにて原料がすべて消費されていることを確認して室温程度まで放冷し、100mLの水を加え氷浴しながら30分間撹拌した。その後クロロホルムで生成物を抽出し、溶液を硫酸ナトリウムで乾燥した。硫酸ナトリウムを減圧濾過にて取り除いたのち、クロロホルムをエバポレーターで除去した。残留物をカラムクロマトグラフィー(シリカゲル、クロロホルム:ヘキサン=4:1)を用いて精製し、白色粉末の中間体5を収量2.04g、収率94%で得た。
1HNMR(500MHz,DMSO-d6):δ10.25(br,1H,d),7.59(dd,J=2.0,10Hz,1H,a),7.46(dd,J=2.0,8.5Hz,1H,b),7.33(t,J=8.0Hz,1H,c),7.13(d,J=8.0Hz,1H,g),7.10(ds,J=2.0Hz,1H,e),7.05(dd,J=1.5,8.0Hz,1H,f)
MS(ASAP)m/z345.90[M+] Intermediate 4 (2.3 g, 6.3 mmol) and pyridine hydrochloride (12 g, 0.1 mol) were added to a three-necked flask, and the mixture was heated to 180 ° C. and stirred overnight while flowing nitrogen gas. After confirming that all the raw materials were consumed by TLC, the mixture was allowed to cool to about room temperature, 100 mL of water was added, and the mixture was stirred for 30 minutes while ice bathing. The product was then extracted with chloroform and the solution was dried over sodium sulfate. After removing sodium sulfate by filtration under reduced pressure, chloroform was removed by an evaporator. The residue was purified using column chromatography (silica gel, chloroform: hexane = 4: 1) to obtain 2.04 g of a white powder intermediate 5 in 94% yield.
1 HNMR (500 MHz, DMSO-d 6 ): δ 10.25 (br, 1H, d), 7.59 (dd, J = 2.0, 10 Hz, 1H, a), 7.46 (dd, J = 2) 0.0, 8.5 Hz, 1 H, b), 7.33 (t, J = 8.0 Hz, 1 H, c), 7.13 (d, J = 8.0 Hz, 1 H, g), 7.10 ( ds, J = 2.0 Hz, 1H, e), 7.05 (dd, J = 1.5, 8.0 Hz, 1H, f)
MS (ASAP) m / z 345.90 [M + ]
1HNMR(500MHz,DMSO-d6):δ10.25(br,1H,d),7.59(dd,J=2.0,10Hz,1H,a),7.46(dd,J=2.0,8.5Hz,1H,b),7.33(t,J=8.0Hz,1H,c),7.13(d,J=8.0Hz,1H,g),7.10(ds,J=2.0Hz,1H,e),7.05(dd,J=1.5,8.0Hz,1H,f)
MS(ASAP)m/z345.90[M+] Intermediate 4 (2.3 g, 6.3 mmol) and pyridine hydrochloride (12 g, 0.1 mol) were added to a three-necked flask, and the mixture was heated to 180 ° C. and stirred overnight while flowing nitrogen gas. After confirming that all the raw materials were consumed by TLC, the mixture was allowed to cool to about room temperature, 100 mL of water was added, and the mixture was stirred for 30 minutes while ice bathing. The product was then extracted with chloroform and the solution was dried over sodium sulfate. After removing sodium sulfate by filtration under reduced pressure, chloroform was removed by an evaporator. The residue was purified using column chromatography (silica gel, chloroform: hexane = 4: 1) to obtain 2.04 g of a white powder intermediate 5 in 94% yield.
1 HNMR (500 MHz, DMSO-d 6 ): δ 10.25 (br, 1H, d), 7.59 (dd, J = 2.0, 10 Hz, 1H, a), 7.46 (dd, J = 2) 0.0, 8.5 Hz, 1 H, b), 7.33 (t, J = 8.0 Hz, 1 H, c), 7.13 (d, J = 8.0 Hz, 1 H, g), 7.10 ( ds, J = 2.0 Hz, 1H, e), 7.05 (dd, J = 1.5, 8.0 Hz, 1H, f)
MS (ASAP) m / z 345.90 [M + ]
中間体5(1.73g、5mmol)、炭酸カリウム(1.11g、8mmol)、1-メチル-2-ピロリドン(100mL)を三口フラスコに加え、窒素バブリングを行った後180℃に昇温し24時間撹拌した。TLCにて原料がすべて消費されていることを確認し、室温程度まで放冷した後900mLの水に反応溶液を注いだ。沈殿を減圧濾過にて回収し、水で洗浄した後乾燥させ、白色粉末の中間体6を収量1.56g、収率96%で得た。
1HNMR(500MHz,DMSO-d6):δ8.15(d,J=8.5Hz,2H,c),8.06(ds,J=1.5Hz,2H,a),7.63(dd,J=2.0,8.5Hz,2H,b);MS(ASAP)m/z325.84[M+] Intermediate 5 (1.73 g, 5 mmol), potassium carbonate (1.11 g, 8 mmol) and 1-methyl-2-pyrrolidone (100 mL) were added to a three-necked flask, and after bubbling with nitrogen, the temperature was raised to 180 ° C. Stir for hours. After confirming that all the raw materials were consumed by TLC, the reaction solution was poured into 900 mL of water after being allowed to cool to about room temperature. The precipitate was collected by filtration under reduced pressure, washed with water and dried to obtain 1.56 g of a white powder intermediate 6 in a yield of 96%.
1 HNMR (500 MHz, DMSO-d 6 ): δ 8.15 (d, J = 8.5 Hz, 2H, c), 8.06 (ds, J = 1.5 Hz, 2H, a), 7.63 (dd , J = 2.0, 8.5 Hz, 2H, b); MS (ASAP) m / z 325.84 [M + ]
1HNMR(500MHz,DMSO-d6):δ8.15(d,J=8.5Hz,2H,c),8.06(ds,J=1.5Hz,2H,a),7.63(dd,J=2.0,8.5Hz,2H,b);MS(ASAP)m/z325.84[M+] Intermediate 5 (1.73 g, 5 mmol), potassium carbonate (1.11 g, 8 mmol) and 1-methyl-2-pyrrolidone (100 mL) were added to a three-necked flask, and after bubbling with nitrogen, the temperature was raised to 180 ° C. Stir for hours. After confirming that all the raw materials were consumed by TLC, the reaction solution was poured into 900 mL of water after being allowed to cool to about room temperature. The precipitate was collected by filtration under reduced pressure, washed with water and dried to obtain 1.56 g of a white powder intermediate 6 in a yield of 96%.
1 HNMR (500 MHz, DMSO-d 6 ): δ 8.15 (d, J = 8.5 Hz, 2H, c), 8.06 (ds, J = 1.5 Hz, 2H, a), 7.63 (dd , J = 2.0, 8.5 Hz, 2H, b); MS (ASAP) m / z 325.84 [M + ]
9,9-ジメチルアクリダン(1.1g、5mmol)、中間体6(0.65g、2mmol)、テトラフルオロホウ酸-トリ-t-ブチルホスフィン(87mg、0.3mmol)、ナトリウム-t-ブトキシド(0.58g、6mmol)、トリス(ジベンジリデンアセトン)ジバラジウム(0)(92mg、0.1mmol)を三口フラスコに入れ、脱水トルエン(40mL)を加え終夜撹拌及び還流した。TLCにて原料がすべて消費されていることを確認したのち、反応を停止し放冷した。その後反応溶液を水で洗浄し、有機層を取り出し硫酸ナトリウムを用いて乾燥させた。硫酸ナトリウムを減圧濾過にて取り除いたのち、エバポレーターを用いてトルエンを除去した。残留物をカラムクロマトグラフィー(シリカゲル、クロロホルム)を用いて精製し、エタノールで洗浄し、淡黄色粉末の化合物8を収量0.63g、収率55%で得た。
1HNMR(500MHz,CDCl3):δ8.27(d,2H,h),7.64(ds,J=1.5Hz,2H,a),7.49(dd,J=2.5,8.0Hz,4H,b),7.39(dd,J=1.5,8.0Hz,2H,g),6.99-6.94(m,8H,c,d),6.33(dd,J=2.0,7.0Hz,4H,e),1.74(s,12H,f)
MS(ASAP)m/z583.39[MH+] 9,9-dimethylacridan (1.1 g, 5 mmol), intermediate 6 (0.65 g, 2 mmol), tetrafluoroboric acid-tri-t-butylphosphine (87 mg, 0.3 mmol), sodium-t-butoxide (0.58 g, 6 mmol) and tris (dibenzylideneacetone) dibaladium (0) (92 mg, 0.1 mmol) were placed in a three-necked flask, dehydrated toluene (40 mL) was added, and the mixture was stirred and refluxed overnight. After confirming that all the raw materials were consumed by TLC, the reaction was stopped and allowed to cool. Thereafter, the reaction solution was washed with water, and the organic layer was taken out and dried using sodium sulfate. After removing sodium sulfate by filtration under reduced pressure, toluene was removed using an evaporator. The residue was purified using column chromatography (silica gel, chloroform) and washed with ethanol to obtainCompound 8 as a pale yellow powder in a yield of 0.63 g and a yield of 55%.
1 HNMR (500 MHz, CDCl 3 ): δ 8.27 (d, 2H, h), 7.64 (ds, J = 1.5 Hz, 2H, a), 7.49 (dd, J = 2.5, 8 0.0 Hz, 4H, b), 7.39 (dd, J = 1.5, 8.0 Hz, 2H, g), 699-6.94 (m, 8H, c, d), 6.33 ( dd, J = 2.0, 7.0 Hz, 4H, e), 1.74 (s, 12H, f)
MS (ASAP) m / z 583.39 [MH + ]
1HNMR(500MHz,CDCl3):δ8.27(d,2H,h),7.64(ds,J=1.5Hz,2H,a),7.49(dd,J=2.5,8.0Hz,4H,b),7.39(dd,J=1.5,8.0Hz,2H,g),6.99-6.94(m,8H,c,d),6.33(dd,J=2.0,7.0Hz,4H,e),1.74(s,12H,f)
MS(ASAP)m/z583.39[MH+] 9,9-dimethylacridan (1.1 g, 5 mmol), intermediate 6 (0.65 g, 2 mmol), tetrafluoroboric acid-tri-t-butylphosphine (87 mg, 0.3 mmol), sodium-t-butoxide (0.58 g, 6 mmol) and tris (dibenzylideneacetone) dibaladium (0) (92 mg, 0.1 mmol) were placed in a three-necked flask, dehydrated toluene (40 mL) was added, and the mixture was stirred and refluxed overnight. After confirming that all the raw materials were consumed by TLC, the reaction was stopped and allowed to cool. Thereafter, the reaction solution was washed with water, and the organic layer was taken out and dried using sodium sulfate. After removing sodium sulfate by filtration under reduced pressure, toluene was removed using an evaporator. The residue was purified using column chromatography (silica gel, chloroform) and washed with ethanol to obtain
1 HNMR (500 MHz, CDCl 3 ): δ 8.27 (d, 2H, h), 7.64 (ds, J = 1.5 Hz, 2H, a), 7.49 (dd, J = 2.5, 8 0.0 Hz, 4H, b), 7.39 (dd, J = 1.5, 8.0 Hz, 2H, g), 699-6.94 (m, 8H, c, d), 6.33 ( dd, J = 2.0, 7.0 Hz, 4H, e), 1.74 (s, 12H, f)
MS (ASAP) m / z 583.39 [MH + ]
9,9-ジメチルアクリダン(1.1g、5mmol)、4,6-ジブロモジベンゾフラン(0.65g、2mmol)、テトラフルオロホウ酸-トリ-t-ブチルホスフィン(87mg、0.3mmol)、ナトリウム-t-ブトキシド(0.58g、6mmol)、トリス(ジベンジリデンアセトン)ジバラジウム(0)(92mg、0.1mmol)を三口フラスコに入れ、脱水トルエン(40mL)を加え終夜撹拌及び還流した。TLCにて原料がすべて消費されていることを確認したのち、反応を停止し放冷した。その後反応溶液を水で洗浄し、有機層を取り出し硫酸ナトリウムを用いて乾燥させた。硫酸ナトリウムを減圧濾過にて取り除いたのち、エバポレーターを用いてトルエンを除去した。残留物をカラムクロマトグラフィー(シリカゲル、クロロホルム:ヘキサン=1:3)を用いて精製し、白色粉末の化合物9を収量1.0g、収率88%で得た。
1HNMR(500MHz,DMSO-d6):δ8.47(dd,2H,h),7.70(t,J=8.0Hz,2H,g),7.57(dd,J=1.5,8.0Hz,2H,f),7.33(m,4H,aord),6.80(m,8H,b,c),6.10(m,4H,aord),1.42(s,12H,e)
MS(ASAP)m/z583.26[MH+] 9,9-dimethylacridan (1.1 g, 5 mmol), 4,6-dibromodibenzofuran (0.65 g, 2 mmol), tetrafluoroborate-tri-t-butylphosphine (87 mg, 0.3 mmol), sodium t-Butoxide (0.58 g, 6 mmol) and tris (dibenzylideneacetone) dibaladium (0) (92 mg, 0.1 mmol) were placed in a three-necked flask, dehydrated toluene (40 mL) was added, and the mixture was stirred and refluxed overnight. After confirming that all the raw materials were consumed by TLC, the reaction was stopped and allowed to cool. Thereafter, the reaction solution was washed with water, and the organic layer was taken out and dried using sodium sulfate. After removing sodium sulfate by filtration under reduced pressure, toluene was removed using an evaporator. The residue was purified using column chromatography (silica gel, chloroform: hexane = 1: 3) to obtain white powder of Compound 9 in a yield of 1.0 g and a yield of 88%.
1 HNMR (500 MHz, DMSO-d 6 ): δ 8.47 (dd, 2H, h), 7.70 (t, J = 8.0 Hz, 2H, g), 7.57 (dd, J = 1.5) , 8.0 Hz, 2H, f), 7.33 (m, 4H, aord), 6.80 (m, 8H, b, c), 6.10 (m, 4H, aord), 1.42 (s , 12H, e)
MS (ASAP) m / z 583.26 [MH + ]
1HNMR(500MHz,DMSO-d6):δ8.47(dd,2H,h),7.70(t,J=8.0Hz,2H,g),7.57(dd,J=1.5,8.0Hz,2H,f),7.33(m,4H,aord),6.80(m,8H,b,c),6.10(m,4H,aord),1.42(s,12H,e)
MS(ASAP)m/z583.26[MH+] 9,9-dimethylacridan (1.1 g, 5 mmol), 4,6-dibromodibenzofuran (0.65 g, 2 mmol), tetrafluoroborate-tri-t-butylphosphine (87 mg, 0.3 mmol), sodium t-Butoxide (0.58 g, 6 mmol) and tris (dibenzylideneacetone) dibaladium (0) (92 mg, 0.1 mmol) were placed in a three-necked flask, dehydrated toluene (40 mL) was added, and the mixture was stirred and refluxed overnight. After confirming that all the raw materials were consumed by TLC, the reaction was stopped and allowed to cool. Thereafter, the reaction solution was washed with water, and the organic layer was taken out and dried using sodium sulfate. After removing sodium sulfate by filtration under reduced pressure, toluene was removed using an evaporator. The residue was purified using column chromatography (silica gel, chloroform: hexane = 1: 3) to obtain white powder of Compound 9 in a yield of 1.0 g and a yield of 88%.
1 HNMR (500 MHz, DMSO-d 6 ): δ 8.47 (dd, 2H, h), 7.70 (t, J = 8.0 Hz, 2H, g), 7.57 (dd, J = 1.5) , 8.0 Hz, 2H, f), 7.33 (m, 4H, aord), 6.80 (m, 8H, b, c), 6.10 (m, 4H, aord), 1.42 (s , 12H, e)
MS (ASAP) m / z 583.26 [MH + ]
(実施例1) 溶液の作製と評価
化合物1と化合物2をトルエンに溶解して、それぞれ1.0×10-5mol/Lのトルエン溶液を作製した。
化合物1のトルエン溶液の紫外可視吸収、蛍光、りん光スペクトルを測定した。蛍光極大波長は425nm、燐光極大波長は443nmであった。蛍光及びりん光スペクトルの発光端から見積もったS1は2.92eV、T1は2.80eVであり、ΔESTの値は0.12eVであった。
化合物1と化合物2の各トルエン溶液について、窒素ガスのバブリングを行わなかった場合と行った場合のそれぞれについて発光量子収率(PLQY)を測定した。また、蛍光強度減衰曲線を測定して、即時蛍光成分の寿命τpと遅延蛍光成分の寿命τdを求めた。測定結果を表1に示す。窒素ガスのバブリングを行うことにより発光量子収率も寿命も向上していることから、遅延成分はT1励起状態を経由する遅延蛍光であることが確認された。
Example 1 Preparation and Evaluation of Solution Compound 1 and Compound 2 were dissolved in toluene to prepare 1.0 × 10 −5 mol / L toluene solutions, respectively.
UV-visible absorption, fluorescence, and phosphorescence spectra of a toluene solution ofCompound 1 were measured. The fluorescence maximum wavelength was 425 nm, and the phosphorescence maximum wavelength was 443 nm. S1, estimated from the emission end of the fluorescence and phosphorescence spectra 2.92 eV, T1 is 2.80 eV, the value of Delta] E ST was 0.12 eV.
About each toluene solution of thecompound 1 and the compound 2, the light emission quantum yield (PLQY) was measured about each when the bubbling of nitrogen gas was not performed and when it performed. In addition, the fluorescence intensity decay curve was measured to determine the lifetime τ p of the immediate fluorescence component and the lifetime τ d of the delayed fluorescence component. The measurement results are shown in Table 1. Since the emission quantum yield and the lifetime are improved by bubbling nitrogen gas, it was confirmed that the delayed component is delayed fluorescence via the T 1 excited state.
化合物1と化合物2をトルエンに溶解して、それぞれ1.0×10-5mol/Lのトルエン溶液を作製した。
化合物1のトルエン溶液の紫外可視吸収、蛍光、りん光スペクトルを測定した。蛍光極大波長は425nm、燐光極大波長は443nmであった。蛍光及びりん光スペクトルの発光端から見積もったS1は2.92eV、T1は2.80eVであり、ΔESTの値は0.12eVであった。
化合物1と化合物2の各トルエン溶液について、窒素ガスのバブリングを行わなかった場合と行った場合のそれぞれについて発光量子収率(PLQY)を測定した。また、蛍光強度減衰曲線を測定して、即時蛍光成分の寿命τpと遅延蛍光成分の寿命τdを求めた。測定結果を表1に示す。窒素ガスのバブリングを行うことにより発光量子収率も寿命も向上していることから、遅延成分はT1励起状態を経由する遅延蛍光であることが確認された。
UV-visible absorption, fluorescence, and phosphorescence spectra of a toluene solution of
About each toluene solution of the
化合物3~9についても、1.0×10-5mol/Lのトルエン溶液を作製して、S1、T1、ΔΔESTを測定した。また、窒素ガスのバブリングを行わなかった場合と行った場合のそれぞれについて発光量子収率(PLQY)を測定した。これらの結果をまとめて表2に示す。窒素ガスのバブリングを行ってPLQYの向上したものは、いずれの溶液においても、窒素ガスのバブリングを行うことによって蛍光寿命が長くなった。
For compounds 3-9 also to prepare a toluene solution of 1.0 × 10 -5 mol / L, S1, T1, was determined ΔΔE ST. In addition, the emission quantum yield (PLQY) was measured for each of the cases where nitrogen gas was not bubbled and when nitrogen gas was not bubbled. These results are summarized in Table 2. The PLQY with nitrogen gas bubbling improved the fluorescence lifetime in any solution by bubbling nitrogen gas.
(実施例2) 薄膜の作製と評価
Si基板上に化合物1のみからなる薄膜を真空蒸着法により形成した。また、これとは別に、Si基板上に化合物1とジベンゾチオフェン-2,8-ビス-ジフェニルホスフィンオキシド(PPT:HOMOのエネルギー準位-6.6eV、LUMOのエネルギー準位-2.9eV)を異なる蒸着源から共蒸着することにより、化合物1が5重量%の共蒸着膜を作製した。
化合物1のみからなる薄膜について、理研計器社製AC-3による光電子収量分光測定と紫外可視吸収スペクトル測定を行った。光電子収量分光測定結果と紫外可視吸収スペクトルの吸収端波長より見積もった化合物1のHOMOのエネルギー準位は-6.1eVであり、LUMOのエネルギー準位は-3.0eVであった。
化合物1のみからなる薄膜と共蒸着膜のそれぞれについて発光スペクトルを測定したところ、いずれの膜においても同様の蛍光スペクトルが得られ、極大発光波長は485nmであった。共蒸着膜について発光量子収率(PLQY)を測定したところ、大気下では17%であり、アルゴン気流下では21%であった。また、共蒸着膜について、6K、50K、100K、150K、200K、250K、300Kの各温度における発光強度減衰曲線をストリークカメラで測定した結果を図2に示す。4μsでは、250K、300K、200K、150K、100K、50K、6Kの順に発光強度が大きかった。温度上昇に伴って蛍光遅延成分が増加していることから、化合物1は熱活性型遅延蛍光材料であることが確認された。なお、測定に際してはストリークカメラ(Hamamatsu Photonics社製 C4334)と窒素ガスレーザー(337nm)を用いた。 (Example 2) Production and Evaluation of Thin Film A thin film made ofonly Compound 1 was formed on a Si substrate by a vacuum deposition method. Separately, compound 1 and dibenzothiophene-2,8-bis-diphenylphosphine oxide (PPT: HOMO energy level −6.6 eV, LUMO energy level −2.9 eV) on a Si substrate. By co-evaporation from different deposition sources, a co-evaporation film containing 5% by weight of Compound 1 was produced.
The thin film consisting only ofCompound 1 was subjected to photoelectron yield spectroscopy measurement and UV-visible absorption spectrum measurement using AC-3 manufactured by Riken Keiki Co., Ltd. The HOMO energy level of Compound 1 estimated from the photoelectron yield spectroscopic measurement result and the absorption edge wavelength of the UV-visible absorption spectrum was −6.1 eV, and the LUMO energy level was −3.0 eV.
When the emission spectrum was measured for each of the thin film consisting only ofCompound 1 and the co-deposited film, the same fluorescence spectrum was obtained for each film, and the maximum emission wavelength was 485 nm. The light emission quantum yield (PLQY) of the co-deposited film was measured and found to be 17% under the atmosphere and 21% under the argon stream. Further, FIG. 2 shows the results of measuring the emission intensity decay curves of the co-deposited films at respective temperatures of 6K, 50K, 100K, 150K, 200K, 250K, and 300K with a streak camera. At 4 μs, the emission intensity increased in the order of 250K, 300K, 200K, 150K, 100K, 50K, and 6K. Since the fluorescence delay component increases with the temperature rise, it was confirmed that Compound 1 is a thermally activated delayed fluorescence material. A streak camera (C4334 manufactured by Hamamatsu Photonics) and a nitrogen gas laser (337 nm) were used for the measurement.
Si基板上に化合物1のみからなる薄膜を真空蒸着法により形成した。また、これとは別に、Si基板上に化合物1とジベンゾチオフェン-2,8-ビス-ジフェニルホスフィンオキシド(PPT:HOMOのエネルギー準位-6.6eV、LUMOのエネルギー準位-2.9eV)を異なる蒸着源から共蒸着することにより、化合物1が5重量%の共蒸着膜を作製した。
化合物1のみからなる薄膜について、理研計器社製AC-3による光電子収量分光測定と紫外可視吸収スペクトル測定を行った。光電子収量分光測定結果と紫外可視吸収スペクトルの吸収端波長より見積もった化合物1のHOMOのエネルギー準位は-6.1eVであり、LUMOのエネルギー準位は-3.0eVであった。
化合物1のみからなる薄膜と共蒸着膜のそれぞれについて発光スペクトルを測定したところ、いずれの膜においても同様の蛍光スペクトルが得られ、極大発光波長は485nmであった。共蒸着膜について発光量子収率(PLQY)を測定したところ、大気下では17%であり、アルゴン気流下では21%であった。また、共蒸着膜について、6K、50K、100K、150K、200K、250K、300Kの各温度における発光強度減衰曲線をストリークカメラで測定した結果を図2に示す。4μsでは、250K、300K、200K、150K、100K、50K、6Kの順に発光強度が大きかった。温度上昇に伴って蛍光遅延成分が増加していることから、化合物1は熱活性型遅延蛍光材料であることが確認された。なお、測定に際してはストリークカメラ(Hamamatsu Photonics社製 C4334)と窒素ガスレーザー(337nm)を用いた。 (Example 2) Production and Evaluation of Thin Film A thin film made of
The thin film consisting only of
When the emission spectrum was measured for each of the thin film consisting only of
化合物3、4、8、9を表3に示すホスト材料と共蒸着することにより、濃度6重量%の共蒸着膜を作成した。各共蒸着膜について、大気下とアルゴン下で発光量子収率(PLQY)を測定した結果を表3に示す。また、化合物9の蒸着膜について、30K、100K、200K、300Kの各温度における発光強度減衰曲線をストリークカメラで測定した結果を図3に示す。温度上昇に伴って蛍光遅延成分が増加していることから、化合物9は熱活性型遅延蛍光材料であることが確認された。
The compounds 3, 4, 8, and 9 were co-evaporated with the host materials shown in Table 3 to prepare a co-evaporated film having a concentration of 6% by weight. Table 3 shows the results of measuring the light emission quantum yield (PLQY) of each co-deposited film under the atmosphere and argon. In addition, FIG. 3 shows the results of measuring the emission intensity decay curves of the vapor deposition film of compound 9 at temperatures of 30K, 100K, 200K, and 300K with a streak camera. Since the fluorescence delay component increased with the temperature rise, it was confirmed that Compound 9 is a thermally activated delayed fluorescence material.
(実施例3) 有機エレクトロルミネッセンス素子の作製と評価
ITO透明電極が100nmの膜厚でパターニングされたガラス基板(株式会社厚木ミクロ製)を縦25nm、横25nmの大きさに切断して洗浄した。この基板上に真空蒸着機(ALS Technology社製)を用いて3~7×10-4Paで以下の各層を製膜した。まず、ITO上にα-NPDを35nmの厚さに形成し、その上にmCPを10nmの厚さに形成した。次に、化合物1とPPTを異なる蒸着源から共蒸着し、20nmの厚さの層を形成して発光層とした。この時、化合物1の濃度は5重量%とした。次に、PPTを40nmの厚さに形成し、さらにフッ化リチウム(LiF)を0.8nm真空蒸着し、次いでアルミニウム(Al)を80nmの厚さに蒸着することにより陰極を形成し、有機エレクトロルミネッセンス素子とした。
作製した有機エレクトロルミネッセンス素子について、発光スペクトルを測定したところ、実施例2の共蒸着膜の発光スペクトルとほぼ一致した。次に、作製した有機エレクトロルミネッセンス素子の電流密度-電圧特性および光束-電圧特性を測定したところ、10mA/cm2の駆動電圧は12Vであり、光束は2.98×10-3cd/cm2であった。外部量子効率-電流密度特性を測定したところ、0.15mA/cm2の外部量子効率は2.2%であった。これらの特性の測定には、OLED積分球(Hamamatsu Photonics社製 PMA-12)および輝度配光測定装置(Hamamatsu Photonics社製 A10119)を用いた。 Example 3 Production and Evaluation of Organic Electroluminescence Element A glass substrate (manufactured by Atsugi Micro Co., Ltd.) on which an ITO transparent electrode was patterned with a film thickness of 100 nm was cut into a size of 25 nm in length and 25 nm in width and washed. The following layers were formed on this substrate at 3 to 7 × 10 −4 Pa using a vacuum vapor deposition machine (manufactured by ALS Technology). First, α-NPD was formed on ITO to a thickness of 35 nm, and mCP was formed thereon to a thickness of 10 nm. Next,Compound 1 and PPT were co-evaporated from different vapor deposition sources to form a 20 nm thick layer as a light emitting layer. At this time, the concentration of Compound 1 was 5% by weight. Next, PPT is formed to a thickness of 40 nm, lithium fluoride (LiF) is further vacuum-deposited to 0.8 nm, and then aluminum (Al) is evaporated to a thickness of 80 nm to form a cathode. A luminescence element was obtained.
When the emission spectrum of the produced organic electroluminescence device was measured, it almost coincided with the emission spectrum of the co-deposited film of Example 2. Next, when the current density-voltage characteristic and the luminous flux-voltage characteristic of the produced organic electroluminescence element were measured, the driving voltage of 10 mA / cm 2 was 12 V, and the luminous flux was 2.98 × 10 −3 cd / cm 2. Met. When the external quantum efficiency-current density characteristic was measured, the external quantum efficiency at 0.15 mA / cm 2 was 2.2%. For measurement of these characteristics, an OLED integrating sphere (PMA-12 manufactured by Hamamatsu Photonics) and a luminance light distribution measuring device (A10119 manufactured by Hamamatsu Photonics) were used.
ITO透明電極が100nmの膜厚でパターニングされたガラス基板(株式会社厚木ミクロ製)を縦25nm、横25nmの大きさに切断して洗浄した。この基板上に真空蒸着機(ALS Technology社製)を用いて3~7×10-4Paで以下の各層を製膜した。まず、ITO上にα-NPDを35nmの厚さに形成し、その上にmCPを10nmの厚さに形成した。次に、化合物1とPPTを異なる蒸着源から共蒸着し、20nmの厚さの層を形成して発光層とした。この時、化合物1の濃度は5重量%とした。次に、PPTを40nmの厚さに形成し、さらにフッ化リチウム(LiF)を0.8nm真空蒸着し、次いでアルミニウム(Al)を80nmの厚さに蒸着することにより陰極を形成し、有機エレクトロルミネッセンス素子とした。
作製した有機エレクトロルミネッセンス素子について、発光スペクトルを測定したところ、実施例2の共蒸着膜の発光スペクトルとほぼ一致した。次に、作製した有機エレクトロルミネッセンス素子の電流密度-電圧特性および光束-電圧特性を測定したところ、10mA/cm2の駆動電圧は12Vであり、光束は2.98×10-3cd/cm2であった。外部量子効率-電流密度特性を測定したところ、0.15mA/cm2の外部量子効率は2.2%であった。これらの特性の測定には、OLED積分球(Hamamatsu Photonics社製 PMA-12)および輝度配光測定装置(Hamamatsu Photonics社製 A10119)を用いた。 Example 3 Production and Evaluation of Organic Electroluminescence Element A glass substrate (manufactured by Atsugi Micro Co., Ltd.) on which an ITO transparent electrode was patterned with a film thickness of 100 nm was cut into a size of 25 nm in length and 25 nm in width and washed. The following layers were formed on this substrate at 3 to 7 × 10 −4 Pa using a vacuum vapor deposition machine (manufactured by ALS Technology). First, α-NPD was formed on ITO to a thickness of 35 nm, and mCP was formed thereon to a thickness of 10 nm. Next,
When the emission spectrum of the produced organic electroluminescence device was measured, it almost coincided with the emission spectrum of the co-deposited film of Example 2. Next, when the current density-voltage characteristic and the luminous flux-voltage characteristic of the produced organic electroluminescence element were measured, the driving voltage of 10 mA / cm 2 was 12 V, and the luminous flux was 2.98 × 10 −3 cd / cm 2. Met. When the external quantum efficiency-current density characteristic was measured, the external quantum efficiency at 0.15 mA / cm 2 was 2.2%. For measurement of these characteristics, an OLED integrating sphere (PMA-12 manufactured by Hamamatsu Photonics) and a luminance light distribution measuring device (A10119 manufactured by Hamamatsu Photonics) were used.
1 基板
2 陽極
3 正孔注入層
4 正孔輸送層
5 発光層
6 電子輸送層
7 陰極 DESCRIPTION OFSYMBOLS 1 Substrate 2 Anode 3 Hole injection layer 4 Hole transport layer 5 Light emitting layer 6 Electron transport layer 7 Cathode
2 陽極
3 正孔注入層
4 正孔輸送層
5 発光層
6 電子輸送層
7 陰極 DESCRIPTION OF
Claims (28)
- 下記(A)~(C)のいずれかの条件を満たす化合物からなる発光材料。
(A)互いに異なる2つのアクセプター性基が結合した構造を有する化合物。
(B)ハメットのσp値が-0.5以上0未満であるドナー性基と、ハメットのσp値が0超0.5以下であるアクセプター性基が連結した構造を有する化合物。
(C)互いに異なる2つのドナー性基が結合した構造を有する化合物。 A light emitting material comprising a compound that satisfies any of the following conditions (A) to (C).
(A) A compound having a structure in which two different acceptor groups are bonded to each other.
(B) A compound having a structure in which a donor group having a Hammett σp value of −0.5 or more and less than 0 and an acceptor group having a Hammett σp value of more than 0 and 0.5 or less are linked.
(C) A compound having a structure in which two different donor groups are bonded to each other. - 遅延蛍光材料である、請求項1に記載の発光材料。 The luminescent material according to claim 1, which is a delayed fluorescent material.
- 前記化合物の最低励起一重項エネルギー準位ES1と最低励起三重項エネルギー準位ET1の差ΔESTが0.4eV以下である、請求項1または2に記載の発光材料。 From the difference Delta] E ST excited singlet energy level E S1 and the lowest excited triplet energy level E T1 is less than 0.4 eV, the light emitting material according to claim 1 or 2 of said compound.
- 前記化合物が前記(A)の条件を満たす、請求項1~3のいずれか1項に記載の発光材料。 The luminescent material according to any one of claims 1 to 3, wherein the compound satisfies the condition (A).
- 前記化合物が前記(B)の条件を満たす、請求項1~3のいずれか1項に記載の発光材料。 The luminescent material according to any one of claims 1 to 3, wherein the compound satisfies the condition (B).
- 前記化合物が下記一般式(1)で表される、請求項1~3のいずれか1項に記載の発光材料。
- 前記一般式(1)におけるZが、>C=O、>C=C(CN)2、>B-R10、>SO2、>C(CF3)2、>P(=O)R11またはSであり、R10およびR11は各々独立に置換基を表し、前記(A)または(B)を満たす、請求項6に記載の発光材料。 Z in the general formula (1) is> C = O,> C = C (CN) 2 ,> BR 10 ,> SO 2 ,> C (CF 3 ) 2 ,> P (═O) R 11 Or it is S, R < 10 > and R < 11 > represents a substituent each independently and satisfy | fills said (A) or (B), The luminescent material of Claim 6.
- 前記一般式(1)におけるZが>C=Oである、請求項6に記載の発光材料。 The luminescent material according to claim 6, wherein Z in the general formula (1) is> C = O. *
- 前記一般式(1)におけるR9がアクセプター性基であって、前記(A)を満たす、請求項6~8のいずれか1項に記載の発光材料。 The luminescent material according to any one of claims 6 to 8, wherein R 9 in the general formula (1) is an acceptor group and satisfies the (A).
- 前記一般式(1)におけるR9が、置換もしくは無置換のトリアジニル基である、請求項9に記載の発光材料。 The light emitting material according to claim 9, wherein R 9 in the general formula (1) is a substituted or unsubstituted triazinyl group.
- 前記一般式(1)におけるR9が、置換もしくは無置換のジアリールトリアジニル基である、請求項10に記載の発光材料。 The luminescent material according to claim 10, wherein R 9 in the general formula (1) is a substituted or unsubstituted diaryltriazinyl group.
- 前記一般式(1)におけるR1がドナー性基であって、前記(B)を満たす、請求項6~8のいずれか1項に記載の発光材料。 The luminescent material according to any one of claims 6 to 8, wherein R 1 in the general formula (1) is a donor group and satisfies the (B).
- 前記一般式(1)におけるR1が、置換もしくは無置換のカルバゾリル基である、請求項12に記載の発光材料。 The luminescent material according to claim 12, wherein R 1 in the general formula (1) is a substituted or unsubstituted carbazolyl group.
- 前記一般式(1)におけるR9が、置換もしくは無置換のアリール基である、請求項12または13に記載の発光材料。 The luminescent material according to claim 12 or 13, wherein R 9 in the general formula (1) is a substituted or unsubstituted aryl group.
- 前記化合物が前記(C)の条件を満たす、請求項1~3のいずれか1項に記載の発光材料。 The luminescent material according to any one of claims 1 to 3, wherein the compound satisfies the condition (C).
- 前記化合物が、置換されていてもよいアクリダン環と、置換されていてもよいジベンゾフラン環が結合した構造を含む、請求項15に記載の発光材料。 The light emitting material according to claim 15, wherein the compound includes a structure in which an optionally substituted acridan ring and an optionally substituted dibenzofuran ring are bonded.
- 前記化合物が、置換されていてもよいジベンゾフラン環に、置換されていてもよいアクリダン環が2つ結合した構造を含む、請求項15に記載の発光材料。 The light-emitting material according to claim 15, wherein the compound includes a structure in which two optionally substituted acridan rings are bonded to an optionally substituted dibenzofuran ring.
- 前記アクリダン環を構成する窒素原子で前記ジベンゾフラン環に結合している、請求項16または17に記載の発光材料。 The luminescent material according to claim 16 or 17, which is bonded to the dibenzofuran ring by a nitrogen atom constituting the acridan ring.
- 前記アクリダン環が前記ジベンゾフラン環の4位に結合している、請求項16~18のいずれか1項に記載の発光材料。 The luminescent material according to any one of claims 16 to 18, wherein the acridan ring is bonded to the 4-position of the dibenzofuran ring.
- 前記化合物が、下記一般式(2)で表される構造を有する、請求項15~19のいずれか1項に記載の発光材料。
- nが2である、請求項20に記載の発光材料。 21. The luminescent material according to claim 20, wherein n is 2.
- Dが、置換されていてもよいジベンゾフラン-4,6-ジイル基または置換されていてもよいジベンゾチオフェン-4,6-ジイル基を表す、請求項21に記載の発光材料。 The luminescent material according to claim 21, wherein D represents an optionally substituted dibenzofuran-4,6-diyl group or an optionally substituted dibenzothiophene-4,6-diyl group.
- nが1である、請求項20に記載の発光材料。 21. The luminescent material according to claim 20, wherein n is 1.
- 請求項1~23のいずれか1項に記載の発光材料を含む有機発光素子。 An organic light emitting device comprising the light emitting material according to any one of claims 1 to 23.
- 有機エレクトロルミネッセンス素子である、請求項24に記載の有機発光素子。 The organic light-emitting device according to claim 24, which is an organic electroluminescence device.
- 下記(A)~(C)のいずれかの条件を満たす化合物の遅延蛍光材料としての使用。
(A)互いに異なる2つのアクセプター性基が結合した構造を有する化合物。
(B)ハメットのσp値が-0.5以上0未満であるドナー性基と、ハメットのσp値が0超0.5以下であるアクセプター性基が連結した構造を有する化合物。
(C)互いに異なる2つのドナー性基が結合した構造を有する化合物。 Use of a compound satisfying any one of the following conditions (A) to (C) as a delayed fluorescent material.
(A) A compound having a structure in which two different acceptor groups are bonded to each other.
(B) A compound having a structure in which a donor group having a Hammett σp value of −0.5 or more and less than 0 and an acceptor group having a Hammett σp value of more than 0 and 0.5 or less are linked.
(C) A compound having a structure in which two different donor groups are bonded to each other. - 下記一般式(1)で表される化合物。
(a)互いに異なる2つのアクセプター性基が結合した構造を有する。
(b)ハメットのσp値が-0.5以上0未満であるドナー性基と、ハメットのσp値が0超0.5以下であるアクセプター性基が連結した構造を有する。] A compound represented by the following general formula (1).
(A) It has a structure in which two different acceptor groups are bonded to each other.
(B) A structure in which a donor group having a Hammett σp value of −0.5 or more and less than 0 and an acceptor group having a Hammett σp value of more than 0 and 0.5 or less are linked. ] - 下記一般式(2)で表される化合物。
A compound represented by the following general formula (2).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-037742 | 2017-02-28 | ||
JP2017037742 | 2017-02-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018159663A1 true WO2018159663A1 (en) | 2018-09-07 |
Family
ID=63371069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/007464 WO2018159663A1 (en) | 2017-02-28 | 2018-02-28 | Light-emitting material, organic light-emitting element and compound |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018159663A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021088590A1 (en) * | 2019-11-05 | 2021-05-14 | 陕西莱特光电材料股份有限公司 | Nitrogen-containing compound, electronic element and electronic apparatus |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110120075A (en) * | 2010-04-28 | 2011-11-03 | 에스에프씨 주식회사 | Spiro compound and organic light emitting device comprising the same |
WO2012099219A1 (en) * | 2011-01-20 | 2012-07-26 | 出光興産株式会社 | Organic electroluminescent element |
KR20130142967A (en) * | 2012-06-20 | 2013-12-30 | 에스에프씨 주식회사 | Heterocyclic compounds and organic light-emitting diode including the same |
WO2014017844A1 (en) * | 2012-07-26 | 2014-01-30 | 주식회사 동진쎄미켐 | Organic light-emitting compound comprising acridine derivatives, and organic light-emitting device comprising same |
KR20150088163A (en) * | 2014-01-22 | 2015-07-31 | 주식회사 엠비케이 | New organic electroluminescent compounds and organic electroluminescent device comprising the same |
WO2016017741A1 (en) * | 2014-07-31 | 2016-02-04 | コニカミノルタ株式会社 | Organic electroluminescence element, display device, illumination device, fluorescent light-emitting compound, and light-emitting thin film |
-
2018
- 2018-02-28 WO PCT/JP2018/007464 patent/WO2018159663A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110120075A (en) * | 2010-04-28 | 2011-11-03 | 에스에프씨 주식회사 | Spiro compound and organic light emitting device comprising the same |
WO2012099219A1 (en) * | 2011-01-20 | 2012-07-26 | 出光興産株式会社 | Organic electroluminescent element |
KR20130142967A (en) * | 2012-06-20 | 2013-12-30 | 에스에프씨 주식회사 | Heterocyclic compounds and organic light-emitting diode including the same |
WO2014017844A1 (en) * | 2012-07-26 | 2014-01-30 | 주식회사 동진쎄미켐 | Organic light-emitting compound comprising acridine derivatives, and organic light-emitting device comprising same |
KR20150088163A (en) * | 2014-01-22 | 2015-07-31 | 주식회사 엠비케이 | New organic electroluminescent compounds and organic electroluminescent device comprising the same |
WO2016017741A1 (en) * | 2014-07-31 | 2016-02-04 | コニカミノルタ株式会社 | Organic electroluminescence element, display device, illumination device, fluorescent light-emitting compound, and light-emitting thin film |
Non-Patent Citations (1)
Title |
---|
ZHANG, LEI ET AL.: "Highly Efficient Blue Phosphorescent Organic Light-Emitting Diodes Employing a Host Material with Small Bandgap", ACS APPLIED MATERIALS & INTERFACES, vol. 8, no. 25, 2016, pages 16186 - 16191, XP055538134 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021088590A1 (en) * | 2019-11-05 | 2021-05-14 | 陕西莱特光电材料股份有限公司 | Nitrogen-containing compound, electronic element and electronic apparatus |
US11524970B2 (en) | 2019-11-05 | 2022-12-13 | Shaanxi Lighte Optoelectronics Material Co., Ltd. | Nitrogen-containing compound, electronic element, and electronic device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112585778B (en) | Organic light-emitting element, composition and film | |
JP6277182B2 (en) | COMPOUND, LIGHT EMITTING MATERIAL AND ORGANIC LIGHT EMITTING DEVICE | |
JP5669163B1 (en) | Organic electroluminescence device | |
JP6293417B2 (en) | COMPOUND, LIGHT EMITTING MATERIAL AND ORGANIC LIGHT EMITTING DEVICE | |
WO2018159662A1 (en) | Compound, light emitting material and organic light emitting element | |
KR101999881B1 (en) | Compound, light-emitting material, and organic light-emitting element | |
JP6326050B2 (en) | COMPOUND, LIGHT EMITTING MATERIAL AND ORGANIC LIGHT EMITTING DEVICE | |
KR102168905B1 (en) | Organic light emitting element, and light emitting material and compound used in same | |
JP6318155B2 (en) | COMPOUND, LIGHT EMITTING MATERIAL AND ORGANIC LIGHT EMITTING DEVICE | |
JP6367189B2 (en) | Luminescent materials, organic light emitting devices and compounds | |
JP6600298B2 (en) | Luminescent materials, organic light emitting devices and compounds | |
JP5366106B1 (en) | ORGANIC LIGHT EMITTING ELEMENT AND LIGHT EMITTING MATERIAL AND COMPOUND USED THERE | |
WO2013081088A1 (en) | Organic light emitting device and delayed fluorescent material and compound used therein | |
KR20150009512A (en) | Compound, light emitting material, and organic light emitting element | |
JP2014009224A (en) | Light-emitting material, compound, and organic light-emitting element | |
JP2014009352A (en) | Light-emitting material, compound, and organic light-emitting element | |
JP6647514B2 (en) | Organic light emitting device and light emitting material and compound used therefor | |
WO2018047948A1 (en) | Organic light-emitting element, and light-emitting material and compound for use therein | |
JP7184301B2 (en) | charge transport material | |
JP7267563B2 (en) | Luminescent materials, compounds, delayed phosphors and light-emitting devices | |
WO2016035803A1 (en) | Host material for long-persistent phosphor, organic light-emitting element and compound | |
WO2018159663A1 (en) | Light-emitting material, organic light-emitting element and compound | |
JP2019206511A (en) | Compound, luminescent material, and organic light-emitting element | |
JP2018111751A (en) | Luminescent material, compound and organic light emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18761023 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18761023 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |