+

WO2018159577A1 - Microbe-containing composition for filling, and application of same - Google Patents

Microbe-containing composition for filling, and application of same Download PDF

Info

Publication number
WO2018159577A1
WO2018159577A1 PCT/JP2018/007124 JP2018007124W WO2018159577A1 WO 2018159577 A1 WO2018159577 A1 WO 2018159577A1 JP 2018007124 W JP2018007124 W JP 2018007124W WO 2018159577 A1 WO2018159577 A1 WO 2018159577A1
Authority
WO
WIPO (PCT)
Prior art keywords
urea
composition
mineral
filling
present
Prior art date
Application number
PCT/JP2018/007124
Other languages
French (fr)
Japanese (ja)
Inventor
洋平 濱田
辰彦 星野
丈洋 廣瀬
亘 谷川
暁 井尻
Original Assignee
国立研究開発法人海洋研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人海洋研究開発機構 filed Critical 国立研究開発法人海洋研究開発機構
Publication of WO2018159577A1 publication Critical patent/WO2018159577A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/10Lime cements or magnesium oxide cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B12/00Cements not provided for in groups C04B7/00 - C04B11/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/40Soil-conditioning materials or soil-stabilising materials containing mixtures of inorganic and organic compounds
    • C09K17/42Inorganic compounds mixed with organic active ingredients, e.g. accelerators
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P3/00Preparation of elements or inorganic compounds except carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales

Definitions

  • the present invention relates to a filling composition containing microorganisms and a method of using the composition.
  • a high-viscosity filler has been used as a method for filling cracks and gaps in soil and formations.
  • a highly viscous asphalt material is generally used as a pavement on a road surface in view of its flatness and durability.
  • cement-based or lime-based concrete is mainly used as a material for hardening exposed rocks for protecting high slope slope rocks and reducing coastal erosion.
  • a small crack of about several millimeters at most may be filled.
  • Epoxy-based and urethane-based resins are used for filling such cracks.
  • a filler suitable for organic soil and high water content soil a material having light burnt magnesia or phosphate as a main raw material has been developed.
  • Patent Document 1 is a method using resident urea-decomposing bacteria that already exist in minerals. Further, the method described in Patent Document 2 is a method of using a urea degrading bacteria having a predetermined urea hydrolysis rate, Sporosarcina-Pasuturi (Sporosarcina pasteurii) is used as the microorganism.
  • Sporosarcina-Pasuturi Sporosarcina pasteurii
  • urea decomposing bacteria and many known as microorganisms present in the soil, for example, in addition to Sporosarcina microorganism, Bacillus (Bacillus) microorganisms, scan Polo Lactobacillus (Sporolactobacillus) microorganisms, clostripain di
  • Bacillacae such as microorganisms belonging to the genus Clostridium and those belonging to the genus Desulfotomacrum , are capable of hydrolyzing urea into carbonate ions in the presence of water.
  • a wide variety of fillers have been developed for filling and curing the surface of soil and strata.
  • many of them are highly viscous.
  • Such a highly viscous filler is unsuitable for filling objects having gaps or cracks, particularly microcracks such as faults in the formation. That is, a highly viscous filler has a problem that it is difficult to fill a microcrack, and it is difficult to impregnate when press-fitted, making it difficult to perform a wide range of construction.
  • a low-viscosity filler having high penetrating power such as polypropylene glycol diglycyl ester
  • it has a problem in versatility because it is required to be prepared at the time of use. It is not suitable for curing.
  • Patent Document 1 cannot be used for minerals in which resident urea-decomposing bacteria do not exist, and there is a problem that the application target is limited and versatility is poor.
  • the method described in Patent Document 2 uses Sporosarcina pasturi as a urea-degrading bacterium, and according to a study by the present inventors, Sporosarcina pasturi can proliferate under high pressure. There is a problem that the urea resolution is very low. As a result, the method described in Patent Document 2 cannot be used for high-pressure soil or strata, and there is a problem that versatility is poor.
  • the problem to be solved by the present invention is to provide a composition that can be used for filling a gap such as soil or strata, and a method for using the composition, which have a wider range of applications compared to conventional fillers. It is to provide.
  • the present inventors have found that some urea-decomposing microorganisms can grow under high pressure and can decompose urea. Therefore, the present inventors have succeeded in creating a composition that can be used as a filler using the microorganism. Surprisingly, when the simulated fault was filled with the composition, it was found that, in addition to filling the gap in the simulated fault, the strength of the obtained simulated fault was increased over time. . The present invention has been completed based on such successful examples and knowledge.
  • compositions (1) to (3) are provided.
  • the following methods (4) to (7) are provided.
  • a method for filling a mineral comprising a step of filling a gap in or between minerals by bringing the composition of one embodiment of the present invention into contact with the mineral.
  • a method for increasing the strength of a mineral comprising a step of strengthening the mineral by bringing the composition of one embodiment of the present invention into contact with the mineral.
  • a method for producing a mineral reinforcement comprising a step of obtaining a mineral reinforcement by bringing the composition of one embodiment of the present invention into contact with the mineral.
  • composition of one embodiment of the present invention Since the composition of one embodiment of the present invention has a very low viscosity and high penetrability compared to conventional fillers, it is widely used in microcracks and mineral particle gaps in soil and formations. Can be spread and filled.
  • the composition of one embodiment of the present invention can be expected to increase the filling range due to the growth and diffusion of the urea-decomposing microorganisms themselves.
  • each component contained in the composition of one embodiment of the present invention has an advantage that the environmental load is small, and the pH of the composition after filling is about 8, so that the amount of change on the surroundings is small.
  • the method of one embodiment of the present invention it is possible to reinforce the soil or the formation by filling microcracks or gaps in the soil or the formation.
  • the method according to one embodiment of the present invention is applicable to soils and strata under high pressure, for example, the lower and bottom portions of tall stone walls formed by stacking a large number of rocks and stones, deep underground faults, and trench walls.
  • soils and strata under high pressure
  • disaster prevention purposes such as preventing earthquakes and landslides, stabilization of excavation holes, ground improvement, conservation of island coasts, research on fault mechanisms, etc. Can be expected to be promoted.
  • FIG. 1 a shows the electron microscope image (magnification 50) of the rock after immersion in the filling solution as described in the examples.
  • FIG. 1b shows the electron microscope image (magnification 50) of the rock after immersion in a control solution as described in the examples.
  • FIG. 1c shows an electron microscope image (magnification 1000) of the rock after immersion in the filling solution as described in the examples.
  • a portion surrounded by a square in the figure indicates an observation site in FIG.
  • FIG. 1d shows an electron microscope image (magnification 7500) of the rock after immersion in the filling solution as described in the examples.
  • the arrow in the figure indicates a spherical substance estimated to be a urea-decomposing microorganism.
  • FIG. 1 a shows the electron microscope image (magnification 50) of the rock after immersion in the filling solution as described in the examples.
  • FIG. 1b shows the electron microscope image (magnification 50) of the rock after immersion in a control solution as described in the examples.
  • FIG. 2a is a schematic view of a rotary shear friction tester. A portion surrounded by a square in the figure indicates a sample holder portion.
  • FIG. 2b is a schematic view of a sample holder part of a rotary shear friction tester.
  • FIG. 3a is a diagram showing the measurement result of the friction coefficient in the slide-hold-slide test as described in the examples. CM + bacteria in the figure indicates the results when the filling solution is used, and CM_run1 and run2 indicate the results when the control solution is used.
  • FIG. 3b is a diagram showing the measurement result of the maximum friction coefficient in the slide-hold-slide test as described in the example. CM + bacteria in the figure indicates the results when the filling solution is used, and CM_run1 and run2 indicate the results when the control solution is used.
  • composition of one embodiment of the present invention contains at least a urea-decomposing microorganism capable of growing under high pressure, urea, a calcium salt, and components suitable for the growth of the urea-decomposing microorganism.
  • composition of one embodiment of the present invention decomposes urea into carbonate ions in an aqueous solution system by the action of urea-decomposing microorganisms as follows. (NH 2 ) 2 CO + 2H 2 O ⁇ 2NH 4 ⁇ + CO 3 2 ⁇
  • the resulting calcium carbonate exhibits crystalline polymorphism and solidifies to fill the gaps in or with the object to which the composition of one aspect of the invention is applied.
  • Sporosarcina ureae JCM2577 which is a preferred embodiment of a urea-decomposing microorganism that can grow under high pressure, it is well established in minerals, and further, the formation of calcium carbonate is fast.
  • the resulting calcium carbonate has a high hardness and low solubility of calcite, thereby increasing the strength of the solidified object.
  • composition of one embodiment of the present invention is not particularly limited as long as it can be solidified or increased in strength by the formation of calcium carbonate.
  • the geology such as sand, stone, rock, soil, and stratum Examples include inorganic substances generated by the scientific action. In the present specification, these inorganic substances may be collectively referred to as “minerals”. Mineral may refer to a crystalline inorganic substance for academic purposes, but includes an amorphous inorganic substance in the present specification. Further, the mineral is not limited to a naturally occurring one, but includes an artificially manufactured one.
  • the mineral is not particularly limited as long as it is as described above, but is preferably a mineral under high pressure, that is, a pressure higher than atmospheric pressure, more preferably a mineral under a pressure of 0.5 MPa or more, and a pressure of 1 MPa or more. Minerals underneath are more preferred, and minerals under a pressure of 2 MPa or more are even more preferred. A specific example of the mineral is a mineral under a pressure of about 3 MPa.
  • the mineral under high pressure a part or all of the mineral only needs to be under high pressure.
  • the pressure of cracks or gaps in the mineral or between the minerals may be high.
  • minerals under high pressure are high slope slope rocks, exposed rocks to reduce coastal erosion, and the bottom and bottom of stone walls, deep underground faults, trench walls, deep seabeds, drilling holes, etc. But not limited to these.
  • the urea-decomposing microorganism that can be grown under high pressure is not particularly limited as long as it is a microorganism such as an eubacteria, archaea, or fungus having urea decomposing activity that can be maintained or grown under high pressure.
  • the urea degrading microorganisms for example, as eubacteria Sporosarcina microorganism belonging to the genus Bacillus (Bacillus) a microorganism belonging to the genus, vinegar polo Lactobacillus (Sporolactobacillus) a microorganism belonging to the genus, Clostridium (Clostridium) microorganisms of the genus, Death Le photo Mak Lamb (Desulfotomaculum And Bacilliaceae microorganisms such as genus microorganisms, and the like.
  • Bacillus Bacillus
  • Vinpolo Lactobacillus Sorolactobacillus
  • Clostridium (Clostridium) microorganisms of the genus Clostridium (Clostridium) microorganisms of the genus
  • Death Le photo Mak Lamb Desulfotomaculum And Bacilliaceae microorganisms such as genus microorganism
  • the urea-decomposing microorganism that can grow under high pressure is preferably a urea-decomposing microorganism that can be maintained or proliferated under anaerobic conditions and anaerobic conditions from the viewpoint that the object can be a mineral such as a trench or the seafloor, Sporosarcina microorganisms are more preferable, Sporosarcina urea is more preferable, Sporosarcina urea JCM2577 strain is still more preferable.
  • Urea-decomposing microorganisms that can grow under high pressure can be used alone or in combination of two or more.
  • the amount of the urea-decomposing microorganism that can be grown under high pressure in the composition of one embodiment of the present invention is not particularly limited as long as it can form calcium carbonate finally in the aqueous solution system.
  • Urea-decomposing microorganisms that can be grown under high pressure may be those stored at room temperature or low temperature, or may be those in the state of a culture solution in which the stored microorganisms are pre-cultured in advance. A part or all of the preculture solution can be used.
  • the composition according to one embodiment of the present invention is obtained.
  • the content of can be reduced.
  • Sporosarcinina urea JCM2577 strain when Sporosarcinina urea JCM2577 strain is used, the composition of one embodiment of the present invention can be economically improved and the viscosity in an aqueous solution system can be reduced. The advantage is that it can be applied.
  • Urea is not particularly limited as long as it is normally known as having a formula of (NH 2 ) 2 CO, and is in the form of a salt or the like as long as carbonate ions are generated by the action of urea-decomposing microorganisms. May be.
  • the calcium salt is not particularly limited as long as it can generate calcium ions (Ca 2+ ) in an aqueous solution, and examples thereof include calcium inorganic salts such as calcium chloride, calcium hydroxide, calcium nitrate, calcium sulfate, and calcium phosphate. Calcium chloride is preferred from the viewpoint of economy, dissolution rate, and dissolution solution being nearly neutral.
  • the amount of urea and calcium salt used in the composition of one embodiment of the present invention is such that calcium carbonate is finally formed by the action of urea-decomposing microorganisms that can grow under high pressure in an aqueous solution system, and can grow under high pressure.
  • the amount is not particularly limited as long as it does not inhibit the growth of ureolytic microorganisms. For example, it is 100 to 500 mM, preferably 150 to 250 mM, and more preferably 190 to 220 mM.
  • the molar ratio of urea and calcium salt is not particularly limited, and either the molar amount of either one may be large or both may be the same molar amount.
  • Ingredients suitable for the growth of urea-decomposing microorganisms that can be grown under high pressure are particularly limited as long as they are components that promote the growth of urea-decomposing microorganisms, such as those used for culturing urea-decomposing microorganisms as is generally known.
  • components contained in a medium usually used for culturing the urea-decomposing microorganisms such as peptone, polypepton, bacto peptone, fish peptone, animal meat peptone, fish meat extract, animal meat extract, yeast extract, corn steep liquor
  • Animal and plant-derived components such as soybean powder and soybean meal are preferred.
  • the animal and plant derived components can be used alone or in combination of two or more.
  • Ingredients suitable for the growth of urea-degrading microorganisms that can grow under high pressure include, in addition to animal and plant derived components, commonly known microbial medium components such as carbon sources, nitrogen sources, minerals, vitamins, trace amounts A combination of nutrients and the like may also be used. These components may be natural products or synthetic products.
  • the amount of the component suitable for the growth of the urea-decomposing microorganism that can be grown under high pressure is not particularly limited as long as it is an amount usually used for culturing the microorganism for each component.
  • Specific examples of components suitable for the growth of urea-degrading microorganisms that can grow under high pressure include NB medium (Nutrient Broth), but are not limited thereto.
  • the composition according to one aspect of the present invention includes a urea-decomposing microorganism that can grow under high pressure, urea, a calcium salt, and the like, as long as the formation of calcium carbonate from urea and the growth of a urea-decomposing microorganism that can grow under high pressure are not inhibited.
  • other components may be contained.
  • a pH adjuster generally known in the composition of one embodiment of the present invention or A pH buffer or the like may be added.
  • the amount of other components used can be appropriately set by those skilled in the art depending on the purpose of use of the components.
  • composition of one embodiment of the present invention is not particularly limited with respect to its form, and can take the form of, for example, a solid composition or a liquid composition.
  • the composition of one embodiment of the present invention is a solid composition
  • the composition of one embodiment of the present invention is mixed with water or an aqueous solvent at the time of use to obtain an aqueous solution.
  • the solid composition can be prepared by making each component separately, or by making a part or all of them into a solid state and subjecting them to a processing treatment such as a drying treatment if necessary.
  • the liquid composition is preferably prepared as an aqueous solution in which each component of the composition of one embodiment of the present invention is dissolved in water or an aqueous solvent.
  • the state in which the urea-decomposing microorganism capable of growing under high pressure and a component suitable for the growth of the urea-decomposing microorganism are mixed may cause the urea-decomposing microorganism to grow. That is not preferable. Therefore, the composition of one embodiment of the present invention maintains a urea-decomposing microorganism capable of growing under high pressure and a component suitable for the growth of the urea-decomposing microorganism separately, or a mixture of these components. It is preferable to maintain the temperature at such a level that does not grow and die.
  • the composition of one embodiment of the present invention can be a container-packed composition sealed in a container.
  • a container-packed composition By using a container-packed composition, there is an advantage that the composition can be easily stored, transported, and prepared.
  • the container is not particularly limited as long as each component contained in the composition of one embodiment of the present invention is not altered or inactivated.
  • metal such as aluminum, paper, plastic such as PET or PTP, glass, and the like Examples include single-layer or laminated (laminate) film bags, retort pouches, vacuum packs, aluminum containers, plastic containers, bottles, cans, and other packaging containers.
  • a container using a material that blocks passage is preferable.
  • the container to be used is preferably one that has been previously subjected to a conventionally known sterilization treatment such as autoclave or UV.
  • a conventionally known sterilization treatment such as autoclave or UV.
  • the urea-decomposing microorganisms that can be grown under high pressure and the components suitable for the growth of the urea-decomposing microorganisms may be separately packed in two or more containers, and are inserted during use. You may be in the state packed separately in two or more divisions in one container separated by such a partition.
  • composition of one embodiment of the present invention is not particularly limited in its use method.
  • a solid composition it is prepared as an aqueous solution, or in the case of a liquid composition, each component is good.
  • the components contained in the composition of one embodiment of the present invention are individually packaged, they can be used to contact the mineral simultaneously or sequentially.
  • composition of one embodiment of the present invention When the composition of one embodiment of the present invention is brought into contact with minerals, urea is decomposed into ammonium ions and carbonate ions in a metabolic process of a urea-decomposing microorganism that can grow under high pressure, and these ions in water with time. Concentration increases.
  • the composition of one embodiment of the present invention has an advantage that since the viscosity is low, the penetration into the mineral is high and the environmental load is relatively small.
  • the contact between the composition of one embodiment of the present invention and the mineral is caused by carbonation in a portion where the composition of one embodiment of the present invention is in contact with the surface of the mineral, a portion in the mineral, or a crack or gap between the minerals.
  • the contact conditions such as the amount of use, temperature, and time of the composition of one embodiment of the present invention, the contact means, and the like as long as the contact forms calcium.
  • the temperature is preferably 10 to 40 ° C., more preferably about room temperature, and calcium carbonate is stably formed over time.
  • the composition of one embodiment of the present invention in aqueous solution particularly suitable for the growth of calcium salts and ureolytic microorganisms that can grow under high pressure It is preferable to continue press-fitting.
  • composition of one embodiment of the present invention By bringing the composition of one embodiment of the present invention into contact with a mineral, cracks or gaps in the mineral or between the minerals can be filled, and the mineral can be further strengthened. Therefore, specific embodiments of the composition of one embodiment of the present invention are a filling composition and a reinforcing composition, and more specifically, a mineral filling composition and a mineral reinforcing composition.
  • the composition of one embodiment of the present invention can be used as a cement material because it is mixed and bonded together with minerals such as sand and stone and cured.
  • Another embodiment of the present invention is a method and a manufacturing method using the composition of one embodiment of the present invention.
  • Another specific aspect of the present invention is a method for filling minerals, the method comprising filling a gap in or between minerals by bringing the composition of one aspect of the present invention into contact with the mineral.
  • Another specific aspect of the present invention is a method for strengthening a mineral, comprising the step of strengthening the mineral by bringing the composition of one aspect of the present invention into contact with the mineral.
  • the degree of mineral filling and the degree of mineral strengthening are not particularly limited, and slides using an electron microscope observation or a rotary shear friction tester as described in Examples described later.
  • Another specific embodiment of the present invention is a method for producing a mineral fortified product, which comprises a step of obtaining a mineral fortified product by bringing the composition of one embodiment of the present invention into contact with a mineral.
  • Minerals that are 2% or more Examples include reinforcements.
  • Specific embodiments of the production method of the present invention are as follows, for example. Sporosarcina urea JCM2577 strain 1-10mg (wet cell weight), 100-500mM urea, 100-500mM calcium chloride and NB Medium is immersed in a container containing an aqueous solution, or the aqueous solution is cracked Alternatively, the aqueous solution and the mineral are brought into contact with each other by injecting into a portion having a gap and allowing to stand or press-fit at 10 to 40 ° C., preferably room temperature, for several hours to several tens of hours, preferably 48 hours or more.
  • the atmospheric pressure is atmospheric pressure or higher, preferably 1 MPa or higher, more preferably about 3 MPa
  • the Sporosarcinina urea JCM2577 strain can be grown while suppressing the growth of other microorganisms.
  • the formation of calcium carbonate can be confirmed by visual observation or the like by the deposition of calcium carbonate on the surface of the mineral. For minerals in which calcium carbonate deposition has been observed, by confirming the increase in shear friction coefficient and shear maximum friction coefficient by using the rotary shear friction tester described in the examples described later, the deposition of calcium carbonate can be confirmed.
  • the observed mineral can be obtained by evaluating it as a mineral reinforcement.
  • Example 1 Screening for urea-degrading microorganisms
  • Test organism Sporosarcina ureae JCM2577 strain (RIKEN BRC; Bioresource Center, RIKEN Bioresource Center), Sporosarcina pasteurii ATCC11859 strain Lysinibacillus sphaericus) LCM 2502 strain (RIKEN BRC) and Harobachirusu-halophilus (Halobacillus halophilus) LCM20832 shares (RIKEN BRC) was used.
  • microorganisms other than Halobacillus halophyllus used NB medium (Nutrient Broth; Difco; beef extract 0.3 wt%, peptone 0.5 wt%) containing 200 mM urea and 200 mM calcium chloride. .
  • MB medium containing 200 mM urea and 200 mM calcium chloride (Marine Broth; Difco; peptone 0.5 wt%, yeast extract 0.1 wt%, iron citrate 0.01 wt%, sodium chloride 1.945 wt% , Magnesium chloride 0.88 wt%, Sodium sulfate 0.324 wt%, Calcium chloride 0.18 wt%, Potassium chloride 0.055 wt%, Sodium bicarbonate 0.016 wt%, Potassium bromide 0.008 wt%, Strontium chloride 0.0034 wt% %, Boric acid 0.0022 wt%, sodium silicate 0.0004 wt%, sodium fluoride 0.00024 wt%, ammonium nitrate 0.00016 wt%, sodium hydrogen phosphate 0.0008 wt%).
  • Autoclave-sterilized standard rock (Berea sandstone) was immersed in an autoclave-sterilized non-sealed glass bottle containing a medium containing one platinum loop (about 2 mg) of the test microorganism and allowed to stand at room temperature for 12 days. The rock surface after standing was confirmed visually.
  • test microorganisms growth of microorganisms and formation of precipitates could be confirmed.
  • test microorganisms other than Sporosarcina urea JCM2577 were used, the amount thereof was very small. In contrast, the amount of sporosarcina urea urea JCM2577 microbial growth and precipitate formation was significantly greater.
  • Example 2 Evaluation of rock void filling using a filling solution containing urea-decomposing microorganisms.
  • One filling solution Sporosarcina urea JCM2577 strain is pre-cultured aseptically at 30 ° C. in JCM MD22 agar medium (Nutient Agar No. 2; beef extract 10%, peptone 10%, NaCl 5%, agar 15%) did.
  • One platinum loop (about 2 mg) of the cultured Sporosarcina urea was added to an autoclave-sterilized test tube containing 50 ml of NB medium containing 200 mM urea and 200 mM calcium chloride to prepare a filling solution. Further, among the components contained in the filling solution, a solution prepared by removing Sporosarcina urea was used as a control solution.
  • microcrystals of several ⁇ m to several tens of ⁇ m were confirmed on the rock surface when the filling solution containing urea decomposing microorganisms was used.
  • the diameter of the microcrystals was about 10 ⁇ m, and the maximum was about 30 ⁇ m. This is considered to be a microcrystal of calcium carbonate precipitated by the action of urea decomposing microorganisms.
  • the microcrystal of calcium carbonate covered the rock surface and filled the space
  • the imaging result (magnification 1000) of the electron microscope when the filling solution is used is shown in FIG. 1c, and the further enlarged imaging result (magnification 7500) is shown in FIG. 1d.
  • the formed calcium carbonate crystals mainly had a breccia shape, and some of them had a rose shape or a donut shape.
  • a spherical substance having a size of about 1 ⁇ m was observed in the adjacent portion of the breccia-like calcium carbonate crystal (see the arrow in the figure). This is presumed to be a urea-decomposing microorganism.
  • the pH of the solution was 6.20 to 6.34 before standing, and 8.03 after standing. That is, it was confirmed that the solution after standing increased in pH and became weakly basic.
  • the pH of the solution after standing was significantly lower than the pH (12 to 13) when the cementitious material was eluted when a general cementitious material was used. From this, it was shown that the filling solution containing urea-decomposing microorganisms is useful from the viewpoint of environmental load.
  • Example 3 Simulated fault hardening and friction strength evaluation using a filling solution containing urea-decomposing microorganisms] 1.
  • the filling solution of Example 2 and the control solution were used.
  • FIG. 2b shows an outline of the sample holder portion of the testing machine.
  • the sample holder was previously subjected to a sterilization treatment using ethanol.
  • About 15 g of 125 ⁇ m powder sand as a simulated fault was placed on the sample holder, and this was immersed in 4 ml of the filling solution or 4 ml of the control solution.
  • an axial pressure of 3 MPa was applied from the vertical direction of the sample holder, and a slide-hold-slide test (water-containing gouge friction test) was performed.
  • the average displacement speed during sliding was 5 ⁇ m per second, and the hold time was 2, 5, 10, 20, 50, 100, 200, 500, 1,000, 3,600, 10,800 and 43,200 seconds.
  • the sample holder was sealed so that the gas and liquid in the sample holder were not exchanged with the outside.
  • FIGS. 3a and 3b show the results of measuring the friction strength after each hold time.
  • FIG. 3a shows the friction coefficient at the time of sliding
  • FIG. 3b shows the friction coefficient at the time of sliding
  • CM + bacteria in the figure indicates the result when the filling solution is used
  • CM_run1 and run2 indicate the results when the control solution is used.
  • the solution containing urea-decomposing microorganisms, urea, calcium salts and medium components that can grow under high pressure has the effect of filling the gaps of minerals, and surprisingly has the effect of increasing mineral strength. I found it.
  • Compositions and methods according to one aspect of the present invention include minerals under high pressure, such as microcracks and gaps in soils and strata such as the bottom and bottom of tall stone walls, deep underground faults, and trench walls. Because it can be filled and strengthened, it can be used not only for building materials and stones, but also for cementing undersea drilling and disaster prevention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Materials Engineering (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Soil Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Processing Of Solid Wastes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The purpose of the present invention is to provide: a composition that can be used in filling gaps in earth, subterranean formations, etc., said composition having relatively low viscosity and being economically advantageous to a greater extent than previous filling materials, being unlikely to generate side effects, and furthermore having a broad range of application; and a method for applying the composition. The aforementioned purpose is achieved by: a composition containing urea-decomposing microbes that are capable of growing under high pressure, urea, calcium salt, and components suited to growth of the urea-decomposing microbes; and a mineral-filling method including a step for filling gaps in a mineral by bringing the composition into contact with the mineral.

Description

微生物を含有する充填用組成物及びその利用Filling composition containing microorganisms and use thereof 関連出願の相互参照Cross-reference of related applications
本出願は、2017年2月28日出願の日本特願2017-36727号の優先権を主張し、その全記載は、ここに開示として援用される。 This application claims the priority of Japanese Patent Application No. 2017-36727 filed on Feb. 28, 2017, the entire description of which is incorporated herein by reference.
本発明は、微生物を含有する充填用組成物及び該組成物の利用方法に関する。 The present invention relates to a filling composition containing microorganisms and a method of using the composition.
従来、土壌や地層の亀裂や間隙を充填する手法としては、高粘度の充填材が用いられている。具体的には、路面上の舗装体としては、その平坦性や持続性を期待して、粘性の高いアスファルト材が一般的に用いられている。また、高傾斜法面岩盤の防護や海岸浸食軽減のための露出岩盤を硬化するためのものとしては、主としてセメント系又は石灰系のコンクリートが用いられている。 Conventionally, a high-viscosity filler has been used as a method for filling cracks and gaps in soil and formations. Specifically, a highly viscous asphalt material is generally used as a pavement on a road surface in view of its flatness and durability. In addition, cement-based or lime-based concrete is mainly used as a material for hardening exposed rocks for protecting high slope slope rocks and reducing coastal erosion.
また、近代の鑿井手法に取り入れられるケーシング(鋼管)を設置する際に、岩盤とケーシングとの間に間隙が生じ得る。この際に生じた間隙を充填するものとして、通常セメントが使用されている。 Moreover, when installing the casing (steel pipe) taken in the modern Sakurai technique, a gap may occur between the rock mass and the casing. Cement is usually used to fill the gaps generated at this time.
他方、土壌や露出地層を保護又は採取するために、大きくても数mm程度の矮小な亀裂を充填することがある。このような亀裂を充填するものとしては、エポキシ系及びウレタン系の樹脂が用いられている。さらに、有機質土壌や高含水土壌に適した充填材としては、軽焼マグネシアやリン酸塩を主原料とするものが開発されている。 On the other hand, in order to protect or extract soil and exposed formations, a small crack of about several millimeters at most may be filled. Epoxy-based and urethane-based resins are used for filling such cracks. Furthermore, as a filler suitable for organic soil and high water content soil, a material having light burnt magnesia or phosphate as a main raw material has been developed.
また、上記した充填材に代えて、土壌や地層の間隙において尿素分解菌を尿素及びカルシウムイオンの存在下で増殖させることにより、炭酸カルシウムを発生させて該間隙を充填する方法が知られている(下記特許文献1及び2を参照、該文献の全記載はここに開示として援用される)。 Further, instead of the above-mentioned filler, a method is known in which ureolytic bacteria are grown in the presence of urea and calcium ions in the gap between soil and formation to generate calcium carbonate and fill the gap. (See Patent Documents 1 and 2 below, the entire description of which is incorporated herein by reference).
特許文献1に記載の方法は、鉱物内に既に存在する常在尿素分解菌を用いる方法である。また、特許文献2に記載の方法は、所定の尿素加水分解速度を有する尿素分解菌を用いる方法であり、該微生物としてはスポロサルシナ・パストゥリ(Sporosarcina pasteurii)が用いられている。 The method described in Patent Document 1 is a method using resident urea-decomposing bacteria that already exist in minerals. Further, the method described in Patent Document 2 is a method of using a urea degrading bacteria having a predetermined urea hydrolysis rate, Sporosarcina-Pasuturi (Sporosarcina pasteurii) is used as the microorganism.
また、尿素分解菌としては、土壌中に存在する微生物として数多く知られており、例えば、スポロサルシナ属微生物以外にも、バチルス(Bacillus)属微生物、スポロラクトバチルス(Sporolactobacillus)属微生物、クロストリディウム(Clostridium)属微生物、デスルフォトマクラム(Desulfotomaculum)属微生物といったBacillacae科微生物の微生物が知られており、これらの微生物は水の存在下で尿素を炭酸イオンに加水分解し得る。 As the urea decomposing bacteria, and many known as microorganisms present in the soil, for example, in addition to Sporosarcina microorganism, Bacillus (Bacillus) microorganisms, scan Polo Lactobacillus (Sporolactobacillus) microorganisms, clostripain di Known microorganisms of the family Bacillacae, such as microorganisms belonging to the genus Clostridium and those belonging to the genus Desulfotomacrum , are capable of hydrolyzing urea into carbonate ions in the presence of water.
特許第5922574号公報Japanese Patent No. 5922574 特許第5284646号公報Japanese Patent No. 5284646
上記のように、土壌や地層に対して、その表面を充填及び硬化するための充填材は多岐に渡って開発されている。しかし、その多くが粘性の高いものである。このような粘性の高い充填材は、間隙や亀裂を持つ対象、特に地層中の断層などの微小亀裂を充填するためには不向きである。すなわち、高粘性の充填材は、微小亀裂へ充填させることが困難であり、さらに圧入する際には含浸し難く、広範囲の施工が難しいという問題がある。特に、高圧下環境での施工に至っては、高粘性の充填材を用いることは現実的ではない。 As described above, a wide variety of fillers have been developed for filling and curing the surface of soil and strata. However, many of them are highly viscous. Such a highly viscous filler is unsuitable for filling objects having gaps or cracks, particularly microcracks such as faults in the formation. That is, a highly viscous filler has a problem that it is difficult to fill a microcrack, and it is difficult to impregnate when press-fitted, making it difficult to perform a wide range of construction. In particular, it is not realistic to use a highly viscous filler for construction in a high pressure environment.
また、ポリプロピレングリコールジグリシルエステルのような浸透力の高い比較的低粘性の充填材が知られているものの、用時調製が求められることから汎用性に問題があり、さらに経済性が悪く、広範囲に硬化させるものとしては不向きである。 In addition, although a low-viscosity filler having high penetrating power such as polypropylene glycol diglycyl ester is known, it has a problem in versatility because it is required to be prepared at the time of use. It is not suitable for curing.
さらに、上記した充填材を用いた場合、高アルカリ成分が溶出することや硬化反応中に毒性物質が発生することなど、副作用物質が発生するという問題がある。したがって、上記した充填材を土壌や地層へ使用した際には、環境への悪影響が懸念される。 Furthermore, when the above-mentioned filler is used, there are problems that side-effect substances are generated such as elution of highly alkaline components and generation of toxic substances during the curing reaction. Therefore, when the above-mentioned filler is used for soil or formation, there is a concern about adverse effects on the environment.
一方で、特許文献1及び2に記載の方法によれば、上記した充填材を使用する場合に付随する問題を解決できる可能性がある。すなわち、尿素、カルシウムイオン及び培地成分を含有する溶液は、比較的粘性が低く、経済的に有利であり、さらに副作用物質が生じ難い。 On the other hand, according to the methods described in Patent Documents 1 and 2, there is a possibility that problems associated with the use of the filler described above can be solved. That is, a solution containing urea, calcium ions, and a medium component has a relatively low viscosity, is economically advantageous, and hardly produces a side effect substance.
しかし、特許文献1に記載の方法は、常在尿素分解菌が存在しない鉱物には使用することができず、適用する対象が限定され、汎用性が乏しいという問題がある。 However, the method described in Patent Document 1 cannot be used for minerals in which resident urea-decomposing bacteria do not exist, and there is a problem that the application target is limited and versatility is poor.
また、特許文献2に記載の方法は、尿素分解菌としてスポロサルシナ・パストゥリを用いているところ、本発明者らが調べたところによれば、高圧下においては、スポロサルシナ・パストゥリは増殖することができず尿素分解能が非常に低いという問題がある。これにより、特許文献2に記載の方法は、高圧下の土壌や地層には使用できず、汎用性が乏しいという問題がある。 In addition, the method described in Patent Document 2 uses Sporosarcina pasturi as a urea-degrading bacterium, and according to a study by the present inventors, Sporosarcina pasturi can proliferate under high pressure. There is a problem that the urea resolution is very low. As a result, the method described in Patent Document 2 cannot be used for high-pressure soil or strata, and there is a problem that versatility is poor.
そこで、本発明が解決しようとする課題は、従前の充填材に比べて、適用する対象が広範囲である、土壌や地層などの間隙の充填に使用可能な組成物及び該組成物の利用方法を提供することにある。 Therefore, the problem to be solved by the present invention is to provide a composition that can be used for filling a gap such as soil or strata, and a method for using the composition, which have a wider range of applications compared to conventional fillers. It is to provide.
本発明者らは、上記課題を解決するために鋭意研究を積み重ねた結果、尿素分解微生物の中には高圧下で増殖し、かつ、尿素を分解することができる微生物がいることを見出した。そこで、本発明者らは、該微生物を用いて、充填材として使用し得る組成物を創作することに成功した。また、驚くべきことに、該組成物を用いて模擬断層を充填させたところ、模擬断層中の間隙を充填することに加えて、得られた模擬断層の強度を経時的に高めることを見出した。本発明はこのような成功例や知見に基づいて完成するに至った発明である。 As a result of intensive studies to solve the above problems, the present inventors have found that some urea-decomposing microorganisms can grow under high pressure and can decompose urea. Therefore, the present inventors have succeeded in creating a composition that can be used as a filler using the microorganism. Surprisingly, when the simulated fault was filled with the composition, it was found that, in addition to filling the gap in the simulated fault, the strength of the obtained simulated fault was increased over time. . The present invention has been completed based on such successful examples and knowledge.
したがって、本発明の一態様によれば、下記(1)~(3)の組成物が提供される。
(1)高圧下で増殖可能な尿素分解微生物、尿素、カルシウム塩及び該尿素分解微生物の増殖に適した成分を含有する組成物。
(2)前記組成物は、充填用組成物又は強化用組成物である、(1)に記載の組成物。
(3)前記尿素分解微生物は、スポロサルシナ・ウレア(Sporosarcina ureae) JCM2577株である、(1)~(2)のいずれか1項に記載の組成物。
Therefore, according to one aspect of the present invention, the following compositions (1) to (3) are provided.
(1) A composition containing a urea-decomposing microorganism capable of growing under high pressure, urea, a calcium salt, and components suitable for the growth of the urea-decomposing microorganism.
(2) The composition according to (1), wherein the composition is a filling composition or a reinforcing composition.
(3) The composition according to any one of (1) to (2), wherein the urea-decomposing microorganism is a Sporosarcina ureae JCM2577 strain.
本発明の別の一態様によれば、下記(4)~(7)の方法が提供される。
(4)本発明の一態様の組成物と鉱物とを接触させることにより、鉱物中又は鉱物間の間隙を充填する工程を含む、鉱物の充填方法。
(5)本発明の一態様の組成物と鉱物とを接触させることにより、鉱物を強化する工程を含む、鉱物の強度増加方法。
(6)本発明の一態様の組成物と鉱物とを接触させることにより、鉱物強化物を得る工程を含む、鉱物強化物の製造方法。
According to another aspect of the present invention, the following methods (4) to (7) are provided.
(4) A method for filling a mineral, comprising a step of filling a gap in or between minerals by bringing the composition of one embodiment of the present invention into contact with the mineral.
(5) A method for increasing the strength of a mineral, comprising a step of strengthening the mineral by bringing the composition of one embodiment of the present invention into contact with the mineral.
(6) A method for producing a mineral reinforcement, comprising a step of obtaining a mineral reinforcement by bringing the composition of one embodiment of the present invention into contact with the mineral.
本発明の一態様の組成物は、従前の充填材と比して非常に粘性が低く、高い浸透力を有していることから、土壌や地層の中の微小亀裂や鉱物粒子間隙において広範囲に広がり充填することができる。また、本発明の一態様の組成物は、尿素分解微生物自身の増殖及び拡散による充填範囲の増大が期待できる。また、本発明の一態様の組成物が含有する各成分は環境への負荷が小さく、さらに充填後の組成物のpHは8程度であることから周囲に及ぼす変化量が小さいという利点がある。 Since the composition of one embodiment of the present invention has a very low viscosity and high penetrability compared to conventional fillers, it is widely used in microcracks and mineral particle gaps in soil and formations. Can be spread and filled. In addition, the composition of one embodiment of the present invention can be expected to increase the filling range due to the growth and diffusion of the urea-decomposing microorganisms themselves. In addition, each component contained in the composition of one embodiment of the present invention has an advantage that the environmental load is small, and the pH of the composition after filling is about 8, so that the amount of change on the surroundings is small.
本発明の一態様の方法により、土壌や地層の中の微小亀裂や間隙を充填して、土壌や地層を強化することが可能である。特に、本発明の一態様の方法は、高圧下の土壌や地層、例えば、多数の岩や石を積んで形成される背の高い石垣の下部や底部、地下深くの断層、海溝の岩壁など、高圧下にあって通常の微生物が増殖し難いような環境にある土壌や地層を適用対象とすることにより、既存の充填技術や水圧入技術を使用することでは不可能であった開口亀裂を充填し、地層強度を上げることが可能である。これにより、本発明の一態様の組成物や方法を用いれば、地震や地滑りなどを防ぐという防災目的に加えて、掘削孔の安定化、地盤改良、島嶼部海岸の保全、断層メカニズムの研究などが促進されることが期待できる。 By the method of one embodiment of the present invention, it is possible to reinforce the soil or the formation by filling microcracks or gaps in the soil or the formation. In particular, the method according to one embodiment of the present invention is applicable to soils and strata under high pressure, for example, the lower and bottom portions of tall stone walls formed by stacking a large number of rocks and stones, deep underground faults, and trench walls. By applying soil and strata in an environment where normal microorganisms are difficult to grow under high pressure, it is possible to eliminate open cracks that were not possible using existing filling and water injection techniques. It can be filled to increase the formation strength. Thus, using the composition and method of one aspect of the present invention, in addition to disaster prevention purposes such as preventing earthquakes and landslides, stabilization of excavation holes, ground improvement, conservation of island coasts, research on fault mechanisms, etc. Can be expected to be promoted.
図1aは、実施例に記載されているとおりの充填用溶液に浸漬した後の岩石の電子顕微鏡の撮影結果(倍率50)を示す。FIG. 1 a shows the electron microscope image (magnification 50) of the rock after immersion in the filling solution as described in the examples. 図1bは、実施例に記載されているとおりの対照溶液に浸漬した後の岩石の電子顕微鏡の撮影結果(倍率50)を示す。FIG. 1b shows the electron microscope image (magnification 50) of the rock after immersion in a control solution as described in the examples. 図1cは、実施例に記載されているとおりの充填用溶液に浸漬した後の岩石の電子顕微鏡の撮影結果(倍率1000)を示す。図中の四角で囲った箇所は図1dの観察部位を示す。FIG. 1c shows an electron microscope image (magnification 1000) of the rock after immersion in the filling solution as described in the examples. A portion surrounded by a square in the figure indicates an observation site in FIG. 図1dは、実施例に記載されているとおりの充填用溶液に浸漬した後の岩石の電子顕微鏡の撮影結果(倍率7500)を示す。図中の矢印は尿素分解微生物であると推定する球状物質を示す。FIG. 1d shows an electron microscope image (magnification 7500) of the rock after immersion in the filling solution as described in the examples. The arrow in the figure indicates a spherical substance estimated to be a urea-decomposing microorganism. 図2aは、回転式せん断摩擦試験機の概略図である。図中の四角で囲った箇所は試料ホルダ部を示す。FIG. 2a is a schematic view of a rotary shear friction tester. A portion surrounded by a square in the figure indicates a sample holder portion. 図2bは、回転式せん断摩擦試験機の試料ホルダ部の概略図である。FIG. 2b is a schematic view of a sample holder part of a rotary shear friction tester. 図3aは、実施例に記載されているとおりのスライド-ホールド-スライドテストにおける摩擦係数の測定結果を示した図である。図中のCM+bacteriaは充填用溶液を用いた場合の結果を示し、CM_run1及びrun2は対照溶液を用いた場合の結果を示す。FIG. 3a is a diagram showing the measurement result of the friction coefficient in the slide-hold-slide test as described in the examples. CM + bacteria in the figure indicates the results when the filling solution is used, and CM_run1 and run2 indicate the results when the control solution is used. 図3bは、実施例に記載されているとおりのスライド-ホールド-スライドテストにおける最大摩擦係数の測定結果を示した図である。図中のCM+bacteriaは充填用溶液を用いた場合の結果を示し、CM_run1及びrun2は対照溶液を用いた場合の結果を示す。FIG. 3b is a diagram showing the measurement result of the maximum friction coefficient in the slide-hold-slide test as described in the example. CM + bacteria in the figure indicates the results when the filling solution is used, and CM_run1 and run2 indicate the results when the control solution is used.
以下、本発明の一態様である組成物及び方法の詳細について説明するが、本発明の技術的範囲は本項目の事項によってのみに限定されるものではなく、本発明はその目的を達成する限りにおいて種々の態様をとり得る。 Hereinafter, the composition and method of one embodiment of the present invention will be described in detail. However, the technical scope of the present invention is not limited only to the matters of this item, and the present invention is not limited to the purpose. Various aspects can be taken.
本発明の一態様の組成物は、高圧下で増殖可能な尿素分解微生物、尿素、カルシウム塩及び該尿素分解微生物の増殖に適した成分を少なくとも含有する。 The composition of one embodiment of the present invention contains at least a urea-decomposing microorganism capable of growing under high pressure, urea, a calcium salt, and components suitable for the growth of the urea-decomposing microorganism.
本発明の一態様の組成物は、水溶液系において、尿素分解微生物の作用により、以下のとおりに尿素を炭酸イオンに分解する。
(NHCO+2HO→2NH +CO 2-
The composition of one embodiment of the present invention decomposes urea into carbonate ions in an aqueous solution system by the action of urea-decomposing microorganisms as follows.
(NH 2 ) 2 CO + 2H 2 O → 2NH 4 + CO 3 2−
また、生じたアンモニウムイオン(NH )により系のpHが弱アルカリ側になる。これにより、生じた炭酸イオンは、同一系内にあるカルシウムイオンと反応し、以下のとおりに炭酸カルシウムを形成する。
Ca2++CO 2-→CaCO
Further, the generated ammonium ion (NH 4 + ) brings the pH of the system to the weak alkali side. Thereby, the produced carbonate ions react with calcium ions in the same system to form calcium carbonate as follows.
Ca 2+ + CO 3 2− → CaCO 3
生じた炭酸カルシウムは、結晶多形を示し、本発明の一態様の組成物を適用した対象物の中の間隙を充填するように、又は該対象物とともに固化する。特に、高圧下で増殖可能な尿素分解微生物の好ましい一態様であるスポロサルシナ・ウレア(Sporosarcina ureae)  JCM2577株を用いることにより、鉱物への定着が良好であり、さらに炭酸カルシウムの形成が早いことに加え、生じた炭酸カルシウムは硬度が高く、可溶性が低い方解石(カルサイト)を呈することにより、固化した対象物の強度を増加することができる。 The resulting calcium carbonate exhibits crystalline polymorphism and solidifies to fill the gaps in or with the object to which the composition of one aspect of the invention is applied. In particular, by using Sporosarcina ureae JCM2577 , which is a preferred embodiment of a urea-decomposing microorganism that can grow under high pressure, it is well established in minerals, and further, the formation of calcium carbonate is fast. The resulting calcium carbonate has a high hardness and low solubility of calcite, thereby increasing the strength of the solidified object.
本発明の一態様の組成物を供すべき対象物は、炭酸カルシウムの形成により固化又は強度が増加し得るものであれば特に限定されないが、例えば、砂、石、岩、土壌、地層などの地質学的作用により生じる無機物などが挙げられる。本明細書では、これらの無機物を「鉱物」と総称する場合がある。鉱物は、学術的な意義として結晶性無機物を指す場合があるが、本明細書においては非結晶性無機物を包含する。また、鉱物は、天然に存在するものに限られるものではなく、人工的に製造されたものを包含する。 The object to which the composition of one embodiment of the present invention is to be provided is not particularly limited as long as it can be solidified or increased in strength by the formation of calcium carbonate. For example, the geology such as sand, stone, rock, soil, and stratum Examples include inorganic substances generated by the scientific action. In the present specification, these inorganic substances may be collectively referred to as “minerals”. Mineral may refer to a crystalline inorganic substance for academic purposes, but includes an amorphous inorganic substance in the present specification. Further, the mineral is not limited to a naturally occurring one, but includes an artificially manufactured one.
鉱物としては、上記したものであれば特に限定されないが、高圧下、すなわち、大気圧より高い圧力下にある鉱物が好ましく、0.5MPa以上の圧力下にある鉱物がより好ましく、1MPa以上の圧力下にある鉱物がさらに好ましく、2MPa以上の圧力下にある鉱物がなおさらに好ましい。鉱物の具体例は、3MPa程度の圧力下にある鉱物である。高圧下にある鉱物は、鉱物の一部又は全体が高圧下にあればよく、例えば、鉱物中又は鉱物間の亀裂や間隙の圧力が高圧状態にあればよい。高圧下にある鉱物としては、例えば、高傾斜法面岩盤、海岸浸食軽減のための露出岩盤及び石垣の下部や底部、地下深くの断層、海溝の岩壁、深海底、掘削孔壁などに存在する鉱物など挙げられるが、これらに限定されない。 The mineral is not particularly limited as long as it is as described above, but is preferably a mineral under high pressure, that is, a pressure higher than atmospheric pressure, more preferably a mineral under a pressure of 0.5 MPa or more, and a pressure of 1 MPa or more. Minerals underneath are more preferred, and minerals under a pressure of 2 MPa or more are even more preferred. A specific example of the mineral is a mineral under a pressure of about 3 MPa. As for the mineral under high pressure, a part or all of the mineral only needs to be under high pressure. For example, the pressure of cracks or gaps in the mineral or between the minerals may be high. Examples of minerals under high pressure are high slope slope rocks, exposed rocks to reduce coastal erosion, and the bottom and bottom of stone walls, deep underground faults, trench walls, deep seabeds, drilling holes, etc. But not limited to these.
高圧下で増殖可能な尿素分解微生物としては、高圧下で維持又は増殖が可能である尿素分解活性を有する真正細菌、古細菌、真菌といった微生物であれば特に限定されない。尿素分解微生物としては、例えば、真正細菌としてはスポロサルシナ属微生物、バチルス(Bacillus)属微生物、スポロラクトバチルス(Sporolactobacillus)属微生物、クロストリディウム(Clostridium)属微生物、デスルフォトマクラム(Desulfotomaculum)属微生物といったBacillacae科微生物などが挙げられるが、本発明の一態様の組成物では、これらのうちの高圧下で増殖可能なものを使用する。 The urea-decomposing microorganism that can be grown under high pressure is not particularly limited as long as it is a microorganism such as an eubacteria, archaea, or fungus having urea decomposing activity that can be maintained or grown under high pressure. The urea degrading microorganisms, for example, as eubacteria Sporosarcina microorganism belonging to the genus Bacillus (Bacillus) a microorganism belonging to the genus, vinegar polo Lactobacillus (Sporolactobacillus) a microorganism belonging to the genus, Clostridium (Clostridium) microorganisms of the genus, Death Le photo Mak Lamb (Desulfotomaculum And Bacilliaceae microorganisms such as genus microorganisms, and the like. In the composition of one embodiment of the present invention, those that can grow under high pressure are used.
また、高圧下で増殖可能な尿素分解微生物としては、対象物が海溝や地底などの鉱物であり得るという観点から、好気条件下かつ嫌気条件下で維持又は増殖可能な尿素分解微生物が好ましく、スポロサルシナ属微生物がより好ましく、スポロサルシナ・ウレアがさらに好ましく、スポロサルシナ・ウレア JCM2577株がなおさらに好ましい。高圧下で増殖可能な尿素分解微生物は、これらの1種を単独で、又は2種以上を組み合わせて使用できる。 In addition, the urea-decomposing microorganism that can grow under high pressure is preferably a urea-decomposing microorganism that can be maintained or proliferated under anaerobic conditions and anaerobic conditions from the viewpoint that the object can be a mineral such as a trench or the seafloor, Sporosarcina microorganisms are more preferable, Sporosarcina urea is more preferable, Sporosarcina urea JCM2577 strain is still more preferable. Urea-decomposing microorganisms that can grow under high pressure can be used alone or in combination of two or more.
本発明の一態様の組成物における高圧下で増殖可能な尿素分解微生物の使用量は、水溶液系において、最終的に炭酸カルシウムを形成することができる量であれば特に限定されない。高圧下で増殖可能な尿素分解微生物は、室温又は低温下で保存した状態のものを用いてもよく、保存した微生物を予め前培養した培養液とした状態のものであってもよい。前培養液は一部又は全部を用いることができる。 The amount of the urea-decomposing microorganism that can be grown under high pressure in the composition of one embodiment of the present invention is not particularly limited as long as it can form calcium carbonate finally in the aqueous solution system. Urea-decomposing microorganisms that can be grown under high pressure may be those stored at room temperature or low temperature, or may be those in the state of a culture solution in which the stored microorganisms are pre-cultured in advance. A part or all of the preculture solution can be used.
高圧下で増殖可能な尿素分解微生物の好ましい態様であるスポロサルシナ・ウレア JCM2577株は、高圧下において、増殖が可能であり、かつ、尿素分解作用を有することから、本発明の一態様の組成物への含有量を少なくすることができる。この結果として、スポロサルシナ・ウレア JCM2577株を用いる場合は、本発明の一態様の組成物の経済性を良好にし、かつ、水溶液系での粘性を低減することができることから、より広範囲な鉱物への適用が可能になるという利点が生じる。 Since the sporosarcinina urea JCM2577 strain, which is a preferred embodiment of a urea-decomposing microorganism that can grow under high pressure, can grow under high pressure and has a urea-decomposing action, the composition according to one embodiment of the present invention is obtained. The content of can be reduced. As a result, when Sporosarcinina urea JCM2577 strain is used, the composition of one embodiment of the present invention can be economically improved and the viscosity in an aqueous solution system can be reduced. The advantage is that it can be applied.
尿素は、示性式が(NHCOであるものとして通常知られているものであれば特に限定されず、尿素分解微生物の作用により炭酸イオンが発生する限りにおいて塩などの形態であってもよい。カルシウム塩は、水溶液中でカルシウムイオン(Ca2+)を発生し得るものであれば特に限定されないが、例えば、塩化カルシウム、水酸化カルシウム、硝酸カルシウム、硫酸カルシウム、リン酸カルシウムなどのカルシウム無機塩などが挙げられ、経済性、溶解速度、溶解溶液が中性に近いという観点から塩化カルシウムが好ましい。 Urea is not particularly limited as long as it is normally known as having a formula of (NH 2 ) 2 CO, and is in the form of a salt or the like as long as carbonate ions are generated by the action of urea-decomposing microorganisms. May be. The calcium salt is not particularly limited as long as it can generate calcium ions (Ca 2+ ) in an aqueous solution, and examples thereof include calcium inorganic salts such as calcium chloride, calcium hydroxide, calcium nitrate, calcium sulfate, and calcium phosphate. Calcium chloride is preferred from the viewpoint of economy, dissolution rate, and dissolution solution being nearly neutral.
本発明の一態様の組成物における尿素及びカルシウム塩の使用量は、水溶液系において、高圧下で増殖可能な尿素分解微生物の作用によって最終的に炭酸カルシウムが形成し、かつ、高圧下で増殖可能な尿素分解微生物の増殖を阻害しないような量であれば特に限定されないが、例えば、それぞれ、100~500mMであり、好ましくは150~250mMであり、より好ましくは190~220mMである。尿素及びカルシウム塩のモル比は特に限定されず、いずれか一方のモル量が多くても、両方が同モル量であってもよい。 The amount of urea and calcium salt used in the composition of one embodiment of the present invention is such that calcium carbonate is finally formed by the action of urea-decomposing microorganisms that can grow under high pressure in an aqueous solution system, and can grow under high pressure. The amount is not particularly limited as long as it does not inhibit the growth of ureolytic microorganisms. For example, it is 100 to 500 mM, preferably 150 to 250 mM, and more preferably 190 to 220 mM. The molar ratio of urea and calcium salt is not particularly limited, and either the molar amount of either one may be large or both may be the same molar amount.
高圧下で増殖可能な尿素分解微生物の増殖に適した成分は、通常知られているとおりの尿素分解微生物を培養する際に用いられるような、尿素分解微生物の生育を促す成分であれば特に限定されないが、例えば、該尿素分解微生物の培養に通常用いられる培地に含まれる成分などが挙げられ、ペプトン、ポリペプトン、バクトペプトン、魚肉ペプトン、獣肉ペプトン、魚肉エキス、獣肉エキス、酵母エキス、コーンスティープリカー、大豆粉、大豆粕などの動植物由来成分が好ましい。動植物由来成分は、これらの1種を単独で、又は2種以上を組み合わせて使用できる。高圧下で増殖可能な尿素分解微生物の増殖に適した成分としては、動植物由来成分に加えて、通常知られている微生物用培地成分、例えば、炭素源、窒素源、ミネラル類、ビタミン類、微量栄養素などを組み合わせて用いてもよい。これらの成分は天然物、合成物のいずれであってもよい。 Ingredients suitable for the growth of urea-decomposing microorganisms that can be grown under high pressure are particularly limited as long as they are components that promote the growth of urea-decomposing microorganisms, such as those used for culturing urea-decomposing microorganisms as is generally known. However, for example, components contained in a medium usually used for culturing the urea-decomposing microorganisms, such as peptone, polypepton, bacto peptone, fish peptone, animal meat peptone, fish meat extract, animal meat extract, yeast extract, corn steep liquor Animal and plant-derived components such as soybean powder and soybean meal are preferred. The animal and plant derived components can be used alone or in combination of two or more. Ingredients suitable for the growth of urea-degrading microorganisms that can grow under high pressure include, in addition to animal and plant derived components, commonly known microbial medium components such as carbon sources, nitrogen sources, minerals, vitamins, trace amounts A combination of nutrients and the like may also be used. These components may be natural products or synthetic products.
高圧下で増殖可能な尿素分解微生物の増殖に適した成分の使用量は、成分ごとに、通常微生物の培養に用いられている量であれば特に限定されない。高圧下で増殖可能な尿素分解微生物の増殖に適した成分の具体例としては、NB培地(Nutrient Broth)が挙げられるが、これに限定されない。 The amount of the component suitable for the growth of the urea-decomposing microorganism that can be grown under high pressure is not particularly limited as long as it is an amount usually used for culturing the microorganism for each component. Specific examples of components suitable for the growth of urea-degrading microorganisms that can grow under high pressure include NB medium (Nutrient Broth), but are not limited thereto.
本発明の一態様の組成物は、尿素からの炭酸カルシウムの形成や高圧下で増殖可能な尿素分解微生物の増殖が阻害されない限りは、高圧下で増殖可能な尿素分解微生物、尿素、カルシウム塩及び該尿素分解微生物の増殖に適した成分に加えて、その他の成分を含有してもよい。例えば、尿素及びカルシウム塩の使用量によって、本発明の一態様の組成物の水溶液のpHが中性付近にならない場合は、本発明の一態様の組成物に通常知られているpH調整剤やpH緩衝剤などを加えてもよい。その他の成分の使用量は、成分の使用目的によって当業者によって適宜設定することができる。 The composition according to one aspect of the present invention includes a urea-decomposing microorganism that can grow under high pressure, urea, a calcium salt, and the like, as long as the formation of calcium carbonate from urea and the growth of a urea-decomposing microorganism that can grow under high pressure are not inhibited. In addition to the components suitable for the growth of the urea-decomposing microorganism, other components may be contained. For example, when the pH of the aqueous solution of the composition of one embodiment of the present invention does not become near neutral due to the use amount of urea and calcium salt, a pH adjuster generally known in the composition of one embodiment of the present invention or A pH buffer or the like may be added. The amount of other components used can be appropriately set by those skilled in the art depending on the purpose of use of the components.
本発明の一態様の組成物は、その形態について特に限定されず、例えば、固形状組成物や液体状組成物などの形態をとり得る。本発明の一態様の組成物が固形状組成物である場合は、使用時に本発明の一態様の組成物を水又は水性溶媒と混合して水溶液とする。 The composition of one embodiment of the present invention is not particularly limited with respect to its form, and can take the form of, for example, a solid composition or a liquid composition. In the case where the composition of one embodiment of the present invention is a solid composition, the composition of one embodiment of the present invention is mixed with water or an aqueous solvent at the time of use to obtain an aqueous solution.
固形状組成物は、各成分を別々に、又は一部若しくは全部を同時に固形状にし、必要によっては乾燥処理などの加工処理に供することなどにより調製することができる。液体状組成物は、本発明の一態様の組成物の各成分を水又は水性溶媒に溶解した水溶液として調製することが好ましい。 The solid composition can be prepared by making each component separately, or by making a part or all of them into a solid state and subjecting them to a processing treatment such as a drying treatment if necessary. The liquid composition is preferably prepared as an aqueous solution in which each component of the composition of one embodiment of the present invention is dissolved in water or an aqueous solvent.
ただし、本発明の一態様の組成物において、高圧下で増殖可能な尿素分解微生物と該尿素分解微生物の増殖に適した成分とを混合した状態は、該尿素分解微生物が増殖する可能性があることから好ましくない。そこで、本発明の一態様の組成物は、高圧下で増殖可能な尿素分解微生物と該尿素分解微生物の増殖に適した成分とを隔てて維持することやこれらを混合したものを該尿素分解微生物が増殖及び死滅しない程度の温度で維持することなどが好ましい。 However, in the composition of one embodiment of the present invention, the state in which the urea-decomposing microorganism capable of growing under high pressure and a component suitable for the growth of the urea-decomposing microorganism are mixed may cause the urea-decomposing microorganism to grow. That is not preferable. Therefore, the composition of one embodiment of the present invention maintains a urea-decomposing microorganism capable of growing under high pressure and a component suitable for the growth of the urea-decomposing microorganism separately, or a mixture of these components. It is preferable to maintain the temperature at such a level that does not grow and die.
本発明の一態様の組成物は、容器に詰めて密封した容器詰組成物とすることができる。容器詰組成物とすることにより、組成物の保存、輸送、調製などが簡便となるという利点がある。容器は、本発明の一態様の組成物に含まれる各成分が変質しない、又は不活化しないものであれば特に限定されないが、例えば、アルミなどの金属、紙、PETやPTPなどのプラスチック、ガラスなどを素材とする1層又は積層(ラミネート)のフィルム袋、レトルトパウチ、真空パック、アルミ容器、プラスチック容器、瓶、缶などの包装容器が挙げられるが、容器内への空気及び/又は光の通過が遮断される材質を用いた容器が好ましい。 The composition of one embodiment of the present invention can be a container-packed composition sealed in a container. By using a container-packed composition, there is an advantage that the composition can be easily stored, transported, and prepared. The container is not particularly limited as long as each component contained in the composition of one embodiment of the present invention is not altered or inactivated. For example, metal such as aluminum, paper, plastic such as PET or PTP, glass, and the like Examples include single-layer or laminated (laminate) film bags, retort pouches, vacuum packs, aluminum containers, plastic containers, bottles, cans, and other packaging containers. A container using a material that blocks passage is preferable.
使用する容器は、予めオートクレーブやUVなどの通常知られている滅菌処理に供しているものであることが好ましい。容器を滅菌処理済みのものとすることにより、意図的でない微生物の混入を防止し、尿素分解微生物の良好な増殖が行えるようになる。 The container to be used is preferably one that has been previously subjected to a conventionally known sterilization treatment such as autoclave or UV. By making the container sterilized, unintentional contamination of microorganisms can be prevented and ureolytic microorganisms can be favorably grown.
容器詰組成物において、高圧下で増殖可能な尿素分解微生物と該尿素分解微生物の増殖に適した成分とは、二つ以上の容器に別々に詰めた状態にあってもよく、使用時に挿通するような隔壁に隔てられた一つの容器中の二つ以上の区画に別々に詰めた状態にあってもよい。 In the container-packed composition, the urea-decomposing microorganisms that can be grown under high pressure and the components suitable for the growth of the urea-decomposing microorganisms may be separately packed in two or more containers, and are inserted during use. You may be in the state packed separately in two or more divisions in one container separated by such a partition.
本発明の一態様の組成物は、その使用方法については特に限定されないが、例えば、固形状組成物の場合は水溶液に調製して、又は液体状組成物の場合はそのままで、各成分がよく混ざり合った状態にして、鉱物と接触させるように使用する。本発明の一態様の組成物が含有する各成分が個装されている場合は、それらを同時に、又は順番に鉱物に接触するように使用することができる。 The composition of one embodiment of the present invention is not particularly limited in its use method. For example, in the case of a solid composition, it is prepared as an aqueous solution, or in the case of a liquid composition, each component is good. Use in a mixed state and in contact with minerals. When the components contained in the composition of one embodiment of the present invention are individually packaged, they can be used to contact the mineral simultaneously or sequentially.
本発明の一態様の組成物と鉱物とを接触させると、高圧下で増殖可能な尿素分解微生物の代謝プロセスにおいて、尿素はアンモニウムイオンと炭酸イオンへと分解され、時間経過とともに水中のこれらのイオン濃度が上昇する。本発明の一態様の組成物は、粘性が低いことから鉱物への浸透が高く、さらに環境負荷が比較的小さいという利点がある。 When the composition of one embodiment of the present invention is brought into contact with minerals, urea is decomposed into ammonium ions and carbonate ions in a metabolic process of a urea-decomposing microorganism that can grow under high pressure, and these ions in water with time. Concentration increases. The composition of one embodiment of the present invention has an advantage that since the viscosity is low, the penetration into the mineral is high and the environmental load is relatively small.
本発明の一態様の組成物と鉱物との接触は、本発明の一態様の組成物が鉱物の表面に当接した部分、鉱物中又は鉱物間の亀裂や間隙に到達した部分などにおいて、炭酸カルシウムが形成されるような接触であれば、本発明の一態様の組成物の使用量、温度、時間といった接触条件、接触手段などについては特に限定されない。具体的には、高圧下で増殖可能な尿素分解微生物としてスポロサルシナ・ウレア JCM2577株を用いる場合は、温度は好ましくは10~40℃、より好ましくは室温程度であり、時間は炭酸カルシウムを安定に形成させるためには好ましくは24時間以上であり、より好ましくは48時間以上である。鉱物中の微小亀裂内部への炭酸カルシウムの形成を促進するために、水溶液状態にある本発明の一態様の組成物、特にカルシウム塩及び高圧下で増殖可能な尿素分解微生物の増殖に適した成分を圧入し続けることが好ましい。 The contact between the composition of one embodiment of the present invention and the mineral is caused by carbonation in a portion where the composition of one embodiment of the present invention is in contact with the surface of the mineral, a portion in the mineral, or a crack or gap between the minerals. There are no particular limitations on the contact conditions such as the amount of use, temperature, and time of the composition of one embodiment of the present invention, the contact means, and the like as long as the contact forms calcium. Specifically, when Sporosarcina urea JCM2577 strain is used as a urea-degrading microorganism that can grow under high pressure, the temperature is preferably 10 to 40 ° C., more preferably about room temperature, and calcium carbonate is stably formed over time. For this purpose, it is preferably 24 hours or longer, more preferably 48 hours or longer. In order to promote the formation of calcium carbonate inside microcracks in minerals, the composition of one embodiment of the present invention in aqueous solution, particularly suitable for the growth of calcium salts and ureolytic microorganisms that can grow under high pressure It is preferable to continue press-fitting.
本発明の一態様の組成物と鉱物とを接触させることにより、鉱物中又は鉱物間の亀裂や間隙を充填することができ、さらに鉱物を強化することができる。したがって、本発明の一態様の組成物の具体的態様は、充填用組成物及び強化用組成物であり、より具体的には鉱物充填用組成物及び鉱物強化用組成物である。本発明の一態様の組成物は、砂や石などの鉱物とともに混ざり合い結合して硬化することから、セメント材としても利用可能である。 By bringing the composition of one embodiment of the present invention into contact with a mineral, cracks or gaps in the mineral or between the minerals can be filled, and the mineral can be further strengthened. Therefore, specific embodiments of the composition of one embodiment of the present invention are a filling composition and a reinforcing composition, and more specifically, a mineral filling composition and a mineral reinforcing composition. The composition of one embodiment of the present invention can be used as a cement material because it is mixed and bonded together with minerals such as sand and stone and cured.
本発明の別の一態様は、本発明の一態様の組成物を利用した方法及び製造方法である。本発明の別の具体的一態様は、本発明の一態様の組成物と鉱物とを接触させることにより、鉱物中又は鉱物間の間隙を充填する工程を含む、鉱物の充填方法である。本発明の別の具体的一態様は、本発明の一態様の組成物と鉱物とを接触させることにより、鉱物を強化する工程を含む、鉱物の強化方法である。 Another embodiment of the present invention is a method and a manufacturing method using the composition of one embodiment of the present invention. Another specific aspect of the present invention is a method for filling minerals, the method comprising filling a gap in or between minerals by bringing the composition of one aspect of the present invention into contact with the mineral. Another specific aspect of the present invention is a method for strengthening a mineral, comprising the step of strengthening the mineral by bringing the composition of one aspect of the present invention into contact with the mineral.
本発明の一態様の方法において、鉱物の充填の程度や鉱物の強化の程度については特に限定されず、後述する実施例に記載したとおりの電子顕微鏡観察や回転式せん断摩擦試験機を用いたスライド-ホールド-スライドテストの結果として、本発明の一態様の組成物を使用しない場合と比べて、鉱物中又は鉱物間の亀裂や間隙が炭酸カルシウムにより充填されていることやせん断摩擦係数又はせん断最大摩擦係数が上昇して鉱物が強化されていることを確認できる程度であればよい。 In the method of one embodiment of the present invention, the degree of mineral filling and the degree of mineral strengthening are not particularly limited, and slides using an electron microscope observation or a rotary shear friction tester as described in Examples described later. -As a result of the hold-slide test, as compared with the case where the composition of one embodiment of the present invention is not used, cracks or gaps in the mineral or between the minerals are filled with calcium carbonate, the shear coefficient of friction, or the shear maximum. It is sufficient that the friction coefficient is increased and it can be confirmed that the mineral is strengthened.
本発明の別の具体的一態様は、本発明の一態様の組成物と鉱物とを接触させることにより、鉱物強化物を得る工程を含む、鉱物強化物の製造方法である。鉱物強化物は特に限定されないが、例えば、本発明の一態様の組成物を使用しない場合に得られるものと比べて、せん断摩擦係数の増加の割合(%=本発明の一態様の組成物を使用して得られる鉱物のせん断摩擦係数/本発明の一態様の組成物を使用せずに得られる鉱物のせん断摩擦係数×100)については0.1%以上、好ましくは1%以上、より好ましくは2%以上、なおさらに好ましくは3%以上であり、及び/又はせん断最大摩擦係数の増加の割合(%=本発明の一態様の組成物を使用して得られる鉱物のせん断最大摩擦係数/本発明の一態様の組成物を使用せずに得られる鉱物のせん断最大摩擦係数×100)について0.1%以上、好ましくは1%以上、より好ましくは1.5%以上、なおさらに好ましくは2%以上である鉱物強化物などが挙げられる。 Another specific embodiment of the present invention is a method for producing a mineral fortified product, which comprises a step of obtaining a mineral fortified product by bringing the composition of one embodiment of the present invention into contact with a mineral. The mineral reinforcement is not particularly limited, but, for example, the rate of increase in the shear friction coefficient (% = composition of the composition of one embodiment of the present invention compared to that obtained when the composition of one embodiment of the present invention is not used). Mineral shear friction coefficient obtained by use / mineral shear friction coefficient obtained without using the composition of one embodiment of the present invention × 100) is 0.1% or more, preferably 1% or more, more preferably Is greater than or equal to 2%, even more preferably greater than or equal to 3%, and / or the rate of increase in shear maximum friction coefficient (% = shear maximum friction coefficient of minerals obtained using the composition of one aspect of the invention / 0.1% or more, preferably 1% or more, more preferably 1.5% or more, even more preferably about the shear maximum friction coefficient of minerals obtained without using the composition of one embodiment of the present invention × 100) Minerals that are 2% or more Examples include reinforcements.
本発明の一態様の方法や製造方法では、本発明の目的を達成し得る限り、上記した工程の前段若しくは後段又は工程中に、種々の工程や操作を加入することができる。 In the method and the manufacturing method of one embodiment of the present invention, various processes and operations can be added before, after, or during the above-described process as long as the object of the present invention can be achieved.
本発明の製造方法の具体的態様は、例えば、以下のとおりである。
スポロサルシナ・ウレア JCM2577株 1~10mg(湿菌体重量)、100~500mM 尿素及び100~500mM 塩化カルシウム及びNB培地成分を含有する水溶液を含む容器中に鉱物を浸漬し、又は該水溶液を鉱物の亀裂又は間隙がある部分に注入し、10~40℃、好ましくは室温で、数時間~数十時間、好ましくは48時間以上静置又は圧入し続けることにより、該水溶液と鉱物とを接触させる。この際、雰囲気圧力が大気圧以上、好ましくは1MPa以上、より好ましくは3MPa程度である場合、他の微生物の増殖を抑えつつ、スポロサルシナ・ウレア JCM2577株を増殖させることができる。炭酸カルシウムの形成は、目視などによって、鉱物の表面の炭酸カルシウムの沈着によって確認することができる。炭酸カルシウムの沈着がみられた鉱物について、後述する実施例に記載の回転式せん断摩擦試験機を用いることによりせん断摩擦係数やせん断最大摩擦係数の増加量を確認することによって、炭酸カルシウムの沈着がみられた鉱物を鉱物強化物と評価して得ることができる。
Specific embodiments of the production method of the present invention are as follows, for example.
Sporosarcina urea JCM2577 strain 1-10mg (wet cell weight), 100-500mM urea, 100-500mM calcium chloride and NB Medium is immersed in a container containing an aqueous solution, or the aqueous solution is cracked Alternatively, the aqueous solution and the mineral are brought into contact with each other by injecting into a portion having a gap and allowing to stand or press-fit at 10 to 40 ° C., preferably room temperature, for several hours to several tens of hours, preferably 48 hours or more. At this time, if the atmospheric pressure is atmospheric pressure or higher, preferably 1 MPa or higher, more preferably about 3 MPa, the Sporosarcinina urea JCM2577 strain can be grown while suppressing the growth of other microorganisms. The formation of calcium carbonate can be confirmed by visual observation or the like by the deposition of calcium carbonate on the surface of the mineral. For minerals in which calcium carbonate deposition has been observed, by confirming the increase in shear friction coefficient and shear maximum friction coefficient by using the rotary shear friction tester described in the examples described later, the deposition of calcium carbonate can be confirmed. The observed mineral can be obtained by evaluating it as a mineral reinforcement.
以下、本発明を実施例によってさらに具体的に説明するが、本発明はこれら実施例に限定されるものではなく、本発明の課題を解決し得る限り、本発明は種々の態様をとることができる。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples, and the present invention can take various modes as long as the problems of the present invention can be solved. it can.
[例1.尿素分解微生物のスクリーニング]
1.被験微生物
スポロサルシナ・ウレア(Sporosarcina ureae) JCM2577株(RIKEN BRC;国立研究開発法人 理化学研究所 バイオリソースセンター 微生物材料開発室)、スポロサルシナ・パストゥリ(Sporosarcina pasteurii) ATCC11859株(American Type Culuture Collection)、リシニバチルス・スファエリカス(Lysinibacillus sphaericus) LCM 2502株(RIKEN BRC)及びハロバチルス・ハロフィラス(Halobacillus halophilus) LCM20832株(RIKEN BRC)を用いた。
[Example 1. Screening for urea-degrading microorganisms]
1. Test organism Sporosarcina ureae JCM2577 strain (RIKEN BRC; Bioresource Center, RIKEN Bioresource Center), Sporosarcina pasteurii ATCC11859 strain Lysinibacillus sphaericus) LCM 2502 strain (RIKEN BRC) and Harobachirusu-halophilus (Halobacillus halophilus) LCM20832 shares (RIKEN BRC) was used.
2.スクリーニング方法
被験微生物のうち、ハロバチルス・ハロフィラス以外の微生物については、200mM 尿素及び200mM 塩化カルシウムを含有するNB培地(Nutrient Broth;Difco;牛肉抽出物 0.3wt%、ペプトン 0.5wt%)を用いた。ハロバチルス・ハロフィラスについては200mM 尿素及び200mM 塩化カルシウムを含有するMB培地(Marine Broth;Difco;ペプトン 0.5wt%、酵母抽出物 0.1wt%、鉄クエン酸 0.01wt%、塩化ナトリウム 1.945wt%、塩化マグネシウム 0.88wt%、硫酸ナトリウム 0.324wt%、塩化カルシウム 0.18wt%、塩化カリウム 0.055wt%、炭酸水素ナトリウム 0.016wt%、臭化カリウム 0.008wt%、塩化ストロンチウム 0.0034wt%、ホウ酸 0.0022wt%、ケイ酸ナトリウム 0.0004wt%、フッ化ナトリウム 0.00024wt%、硝酸アンモニウム 0.00016wt%、リン酸水素ナトリウム 0.0008wt%)を用いた。
2. Screening method Among microorganisms to be tested, microorganisms other than Halobacillus halophyllus used NB medium (Nutrient Broth; Difco; beef extract 0.3 wt%, peptone 0.5 wt%) containing 200 mM urea and 200 mM calcium chloride. . For Halobacillus halophyllus, MB medium containing 200 mM urea and 200 mM calcium chloride (Marine Broth; Difco; peptone 0.5 wt%, yeast extract 0.1 wt%, iron citrate 0.01 wt%, sodium chloride 1.945 wt% , Magnesium chloride 0.88 wt%, Sodium sulfate 0.324 wt%, Calcium chloride 0.18 wt%, Potassium chloride 0.055 wt%, Sodium bicarbonate 0.016 wt%, Potassium bromide 0.008 wt%, Strontium chloride 0.0034 wt% %, Boric acid 0.0022 wt%, sodium silicate 0.0004 wt%, sodium fluoride 0.00024 wt%, ammonium nitrate 0.00016 wt%, sodium hydrogen phosphate 0.0008 wt%).
被験微生物の一白金耳分(約2mg)を含む培地を入れたオートクレーブ滅菌済みの非密閉ガラス瓶中に、オートクレーブ滅菌済みの標準岩石(ベレア砂岩)を浸漬し、室温で12日間静置した。静置後の岩石表面を目視にて確認した。 Autoclave-sterilized standard rock (Berea sandstone) was immersed in an autoclave-sterilized non-sealed glass bottle containing a medium containing one platinum loop (about 2 mg) of the test microorganism and allowed to stand at room temperature for 12 days. The rock surface after standing was confirmed visually.
3.スクリーニング結果
被験微生物のいずれを用いても、微生物の増殖及び沈殿物の形成を確認できた。しかし、スポロサルシナ・ウレア JCM2577株以外の被験微生物を用いた場合には、それらの量は微少量であった。それに対して、スポロサルシナ・ウレア JCM2577株の微生物の増殖及び沈殿物の形成の量は顕著に大きかった。
3. Screening results Using any of the test microorganisms, growth of microorganisms and formation of precipitates could be confirmed. However, when test microorganisms other than Sporosarcina urea JCM2577 were used, the amount thereof was very small. In contrast, the amount of sporosarcina urea urea JCM2577 microbial growth and precipitate formation was significantly greater.
[例2.尿素分解微生物を含有する充填用溶液を用いた岩石空隙充填評価]
1.充填用溶液
スポロサルシナ・ウレア JCM2577株 1本を、無菌的にJCM MD22寒天培地(Nutrient Agar No.2;牛肉抽出物10%、ペプトン10%、NaCl5%、寒天15%)にて30℃で前培養した。
[Example 2. Evaluation of rock void filling using a filling solution containing urea-decomposing microorganisms]
1. One filling solution Sporosarcina urea JCM2577 strain is pre-cultured aseptically at 30 ° C. in JCM MD22 agar medium (Nutient Agar No. 2; beef extract 10%, peptone 10%, NaCl 5%, agar 15%) did.
培養したスポロサルシナ・ウレアの一白金耳分(約2mg)を、200mM 尿素及び200mM 塩化カルシウムを含有するNB培地 50mlを含むオートクレーブ滅菌済みの試験管に添加し、充填用溶液を調製した。また、充填用溶液が含有する成分のうち、スポロサルシナ・ウレアを除いて調製したものを対照溶液とした。 One platinum loop (about 2 mg) of the cultured Sporosarcina urea was added to an autoclave-sterilized test tube containing 50 ml of NB medium containing 200 mM urea and 200 mM calcium chloride to prepare a filling solution. Further, among the components contained in the filling solution, a solution prepared by removing Sporosarcina urea was used as a control solution.
2.評価方法
充填用溶液又は対照溶液を入れたオートクレーブ滅菌済みの非密閉ガラス瓶中に、オートクレーブ滅菌済みの標準岩石(ベレア砂岩)を浸漬し、室温で12日間静置した。静置後の岩石表面を、電子顕微鏡(JSM-7600F;日本電子株式会社)を用いて倍率50、1000及び7500で観察及び撮影した。また、静置前後の溶液中の水素イオン指数(pH)を、pHメーター(S220;メトラートレド社)を用いて測定した。
2. Evaluation method Standard autoclaved rock (Berea sandstone) was immersed in an autoclave-sterilized non-sealed glass bottle containing a filling solution or a control solution and allowed to stand at room temperature for 12 days. The rock surface after standing was observed and photographed at 50, 1000 and 7500 magnifications using an electron microscope (JSM-7600F; JEOL Ltd.). Further, the hydrogen ion index (pH) in the solution before and after standing was measured using a pH meter (S220; METTLER TOLEDO).
3.評価結果
充填用溶液及び対照溶液を用いた場合の電子顕微鏡の撮影結果(倍率50)を、それぞれ図1a及び図1bに示す。図1bが示すように、対照溶液を用いた場合の岩石表面において、数100μm以上の構成鉱物粒子が確認され、各粒子の間にはやはり数100μm程度の間隙がみられた。
3. Evaluation Results The results of photographing with an electron microscope (magnification 50) when using the filling solution and the control solution are shown in FIGS. As shown in FIG. 1 b, constituent mineral particles of several hundred μm or more were confirmed on the rock surface when the control solution was used, and a gap of several hundred μm was also observed between the particles.
これに対し、図1aが示すように、尿素分解微生物を含有する充填用溶液を用いた場合の岩石表面には、数μm~数10μmの微結晶が確認された。微結晶の径は10μm程度のものが多く、最大で30μm程度であった。これは尿素分解微生物の作用により析出した炭酸カルシウムの微結晶であると考えられる。また、図1aにより、炭酸カルシウムの微結晶が岩石表面を覆い、鉱物粒子の間の空隙を埋めていることが認められた。 In contrast, as shown in FIG. 1a, microcrystals of several μm to several tens of μm were confirmed on the rock surface when the filling solution containing urea decomposing microorganisms was used. In many cases, the diameter of the microcrystals was about 10 μm, and the maximum was about 30 μm. This is considered to be a microcrystal of calcium carbonate precipitated by the action of urea decomposing microorganisms. Moreover, it was recognized by FIG. 1a that the microcrystal of calcium carbonate covered the rock surface and filled the space | gap between mineral particles.
充填用溶液を用いた場合の電子顕微鏡の撮影結果(倍率1000)を図1cに示し、さらに拡大した撮影結果(倍率7500)を図1dに示す。図1cに示すとおり、形成した炭酸カルシウム結晶は主として角礫状を呈しており、なかには薔薇状やドーナツ状を呈するものもよく見受けられた。また、図1dに示すとおり、角礫状の炭酸カルシウム結晶の近接する部分に1μm程度の球状物質がみられた(図中の矢印を参照)。これは、尿素分解微生物であると推定される。 The imaging result (magnification 1000) of the electron microscope when the filling solution is used is shown in FIG. 1c, and the further enlarged imaging result (magnification 7500) is shown in FIG. 1d. As shown in FIG. 1c, the formed calcium carbonate crystals mainly had a breccia shape, and some of them had a rose shape or a donut shape. In addition, as shown in FIG. 1d, a spherical substance having a size of about 1 μm was observed in the adjacent portion of the breccia-like calcium carbonate crystal (see the arrow in the figure). This is presumed to be a urea-decomposing microorganism.
また、充填用溶液を用いた場合の溶液のpHは、静置前が6.20~6.34であり、静置後が8.03であった。すなわち、静置後の溶液は、pHが上昇し、弱塩基性となっていることが確認された。静置後の溶液のpHは、一般的なセメント系材料を用いた場合のセメント系材料が溶出した際のpH(12~13)に比べて有意に小さかった。このことから、尿素分解微生物を含有する充填用溶液は、環境負荷の観点において有用であることが示された。 In addition, when the filling solution was used, the pH of the solution was 6.20 to 6.34 before standing, and 8.03 after standing. That is, it was confirmed that the solution after standing increased in pH and became weakly basic. The pH of the solution after standing was significantly lower than the pH (12 to 13) when the cementitious material was eluted when a general cementitious material was used. From this, it was shown that the filling solution containing urea-decomposing microorganisms is useful from the viewpoint of environmental load.
[例3.尿素分解微生物を含有する充填用溶液を用いた模擬断層硬化・摩擦強度評価]
1.充填用溶液
例2の充填用溶液及び対照溶液を用いた。
[Example 3. Simulated fault hardening and friction strength evaluation using a filling solution containing urea-decomposing microorganisms]
1. The filling solution of Example 2 and the control solution were used.
2.評価方法
以下のとおりに、充填用溶液を用い、土壌空隙や地層中の断層などの亀裂を充填し強度を上昇させることを想定して、模擬断層を硬化し、次いで摩擦強度の測定を行った。
2. Evaluation method As described below, using the filling solution, assuming that the cracks such as soil voids and faults in the formation are filled and increasing the strength, the simulated fault was cured, and then the friction strength was measured. .
硬化及び摩擦強度測定には、図2aに示すとおりの、Tanikawaらの文献(Tanikawa, W. et al, (2012), Journal of Structural Geology, 38, 90-101. ;該文献の全記載はここに開示として援用される)に記載の回転式せん断摩擦試験機を用いた。図2bに、該試験機の試料ホルダ部の概略を示す。試料ホルダは、予めエタノールを用いた殺菌処理に供した。試料ホルダに、125μmの粉体砂を模擬断層として15g程度戴置し、これを充填用溶液 4ml又は対照溶液 4mlで浸した。 For hardening and friction strength measurements, see Tanikawa et al. (Tanikawa, W. et al, (2012), Journal of Structural Geology, 38, 90-101.; See the full description here) The rotary shear friction tester described in (1) is used as disclosure. FIG. 2b shows an outline of the sample holder portion of the testing machine. The sample holder was previously subjected to a sterilization treatment using ethanol. About 15 g of 125 μm powder sand as a simulated fault was placed on the sample holder, and this was immersed in 4 ml of the filling solution or 4 ml of the control solution.
次いで、試料ホルダの上下方向から3MPaの軸圧を負荷し、スライド-ホールド-スライドテスト(含水ガウジ摩擦試験)を行った。スライド時の平均変位速度は毎秒5μmとし、ホールド時間は2、5、10、20、50、100、200、500、1,000、3,600、10,800及び43,200秒とした。試験中は試料ホルダを密閉し、試料ホルダ内の気体及び液体が外部と交換されないようにした。 Next, an axial pressure of 3 MPa was applied from the vertical direction of the sample holder, and a slide-hold-slide test (water-containing gouge friction test) was performed. The average displacement speed during sliding was 5 μm per second, and the hold time was 2, 5, 10, 20, 50, 100, 200, 500, 1,000, 3,600, 10,800 and 43,200 seconds. During the test, the sample holder was sealed so that the gas and liquid in the sample holder were not exchanged with the outside.
3.評価結果
各ホールド時間後に摩擦強度を測定した結果を図3a及び図3bに示す。図3aはスライド時の摩擦係数を示し、図3bホールドからスライドに移行する際の最大摩擦係数を示す。また、図中のCM+bacteriaは充填用溶液を用いた場合の結果を示し、CM_run1及びrun2は対照溶液を用いた場合の結果を示す。
3. Evaluation Results The results of measuring the friction strength after each hold time are shown in FIGS. 3a and 3b. FIG. 3a shows the friction coefficient at the time of sliding, and FIG. Further, CM + bacteria in the figure indicates the result when the filling solution is used, and CM_run1 and run2 indicate the results when the control solution is used.
図3a及び図3bが示すとおりに、摩擦強度の絶対値の増加及び強度回復速度の増加が確認されたことから、尿素分解微生物を含有する充填用溶液の作用によって模擬断層の硬化が生じたことが確認された。また、尿素分解微生物を含有する充填用溶液を用いることにより、粉体砂の間隙を充填して硬化するだけではなく、摩擦強度が摩擦係数について0.05程度増加し、さらに強度回復速度が約2倍に増加することが確認された。 As shown in FIGS. 3a and 3b, since the increase in the absolute value of the friction strength and the increase in the strength recovery rate were confirmed, the hardening of the simulated fault occurred due to the action of the filling solution containing urea-decomposing microorganisms. Was confirmed. In addition, by using a filling solution containing urea-decomposing microorganisms, not only does the powder sand fill and harden, but the friction strength increases by about 0.05 with respect to the coefficient of friction, and the strength recovery rate is about It was confirmed that it increased by a factor of two.
一方、スポロサルシナ・ウレア JCM2577株に代えて、スポロサルシナ・ウレア JCM2502株、スポロサルシナ・ウレア JCM20832株、スポロサルシナ・ウレア JCM14577株及びスポロサルシナ・パストゥリ ATCC11859株を用いた場合は、3MPaの高圧力下では、微生物はほとんど増殖せず、さらに炭酸カルシウムの形成もほとんどみられなかった。 On the other hand, in the case of using Sporosarcina urea JCM2502 strain, Sporosarcina urea JCM20832 strain, Sporosarcina urea JCM14577 strain and Sporosarcina pasturi ATCC11859 strain instead of Sporosarcina urea JCM2577 strain, most microorganisms are under high pressure of 3 MPa. There was no growth and almost no calcium carbonate was formed.
以上の結果より、高圧下で増殖可能な尿素分解微生物、尿素、カルシウム塩及び培地成分を含有する溶液は、鉱物の間隙を充填する作用を有し、さらに驚くべきことに鉱物強度を高める作用を有することがわかった。 From the above results, the solution containing urea-decomposing microorganisms, urea, calcium salts and medium components that can grow under high pressure has the effect of filling the gaps of minerals, and surprisingly has the effect of increasing mineral strength. I found it.
本発明の一態様の組成物及び方法は、高圧下にある鉱物、例えば、背の高い石垣の下部や底部、地下深くの断層、海溝の岩壁などの土壌や地層の中の微小亀裂や間隙を充填し強化することができることから、建築資材や石材などに対して利用可能であるばかりか、海底掘削のセメンチングや防災分野に利用可能である。

 
Compositions and methods according to one aspect of the present invention include minerals under high pressure, such as microcracks and gaps in soils and strata such as the bottom and bottom of tall stone walls, deep underground faults, and trench walls. Because it can be filled and strengthened, it can be used not only for building materials and stones, but also for cementing undersea drilling and disaster prevention.

Claims (6)

  1. 高圧下で増殖可能な尿素分解微生物、尿素、カルシウム塩及び該尿素分解微生物の増殖に適した成分を含有する組成物。 A composition comprising a urea-decomposing microorganism capable of growing under high pressure, urea, a calcium salt, and components suitable for the growth of the urea-decomposing microorganism.
  2. 前記組成物は、充填用組成物又は強化用組成物である、請求項1に記載の組成物。 The composition according to claim 1, wherein the composition is a filling composition or a reinforcing composition.
  3. 前記尿素分解微生物は、スポロサルシナ・ウレア(Sporosarcina ureae) JCM2577株である、請求項1に記載の組成物。 The composition according to claim 1, wherein the urea-decomposing microorganism is Sporosarcina ureae JCM2577 strain.
  4. 請求項1に記載の組成物と鉱物とを接触させることにより、鉱物中又は鉱物間の間隙を充填する工程を含む、鉱物の充填方法。 A method for filling a mineral comprising a step of filling a gap in or between minerals by bringing the composition according to claim 1 into contact with the mineral.
  5. 請求項1に記載の組成物と鉱物とを接触させることにより、鉱物を強化する工程を含む、鉱物の強化方法。 The mineral strengthening method including the process of strengthening a mineral by making the composition and mineral of Claim 1 contact.
  6. 請求項1に記載の組成物と鉱物とを接触させることにより、鉱物強化物を得る工程を含む、鉱物強化物の製造方法。 The manufacturing method of a mineral reinforcement | strengthening including the process of obtaining a mineral reinforcement | strength by making the composition and mineral of Claim 1 contact.
PCT/JP2018/007124 2017-02-28 2018-02-27 Microbe-containing composition for filling, and application of same WO2018159577A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-036727 2017-02-28
JP2017036727 2017-02-28

Publications (1)

Publication Number Publication Date
WO2018159577A1 true WO2018159577A1 (en) 2018-09-07

Family

ID=63370732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007124 WO2018159577A1 (en) 2017-02-28 2018-02-27 Microbe-containing composition for filling, and application of same

Country Status (1)

Country Link
WO (1) WO2018159577A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113563015A (en) * 2021-08-04 2021-10-29 上海天互智慧健康科技发展有限公司 Preparation method of economic, environment-friendly and high-water-stability engineering muck pavement base
CN114517167A (en) * 2022-01-20 2022-05-20 吉林省农业科学院 Straw fermentation heat production method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008524096A (en) * 2004-12-20 2008-07-10 マードック ユニバーシティ Microbial biocementation method
JP2013505705A (en) * 2009-08-03 2013-02-21 ユニバーシティ オブ アイダホ In situ calcium carbonate (CaCO3) deposition by resident microorganisms that improve the mechanical properties of geomaterials

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008524096A (en) * 2004-12-20 2008-07-10 マードック ユニバーシティ Microbial biocementation method
JP2013505705A (en) * 2009-08-03 2013-02-21 ユニバーシティ オブ アイダホ In situ calcium carbonate (CaCO3) deposition by resident microorganisms that improve the mechanical properties of geomaterials

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Research team hopes to reduce size of tsunami using bacteria", THE MAINICHI NEWSPAPERS, 14 May 2017 (2017-05-14), XP055538442, Retrieved from the Internet <URL:https://mainichi.jp/english/articles/20170514/p2a/00m/0na/003000c> *
MITCHELL, A. C. ET AL.: "Microbial CaC03 mineral formation and stability in an experimentally simulated high pressure saline aquifer with supercritical C02", INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, vol. 15, July 2013 (2013-07-01), pages 86 - 96, XP055538434 *
PHILLIPS, A. J. ET AL.: "Design of a meso-scale high pressure vessel for the laboratory examination of biogeochemical subsurface processes", JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, vol. 126, February 2015 (2015-02-01), pages 55 - 62, XP055538437 *
VERBA, C ET AL.: "Mineral changes in cement-sandstone matrices induced by biocementation", INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, vol. 49, April 2016 (2016-04-01), pages 312 - 322, XP029541988 *
ZHANG, GAIYUN ET AL.: "Sporosarcina siberiensis sp. nov. isolated from the East Siberian Sea", ANTONIE VAN LEEUWENHOEK, vol. 106, September 2014 (2014-09-01), pages 489 - 495, XP055538445 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113563015A (en) * 2021-08-04 2021-10-29 上海天互智慧健康科技发展有限公司 Preparation method of economic, environment-friendly and high-water-stability engineering muck pavement base
CN114517167A (en) * 2022-01-20 2022-05-20 吉林省农业科学院 Straw fermentation heat production method
CN114517167B (en) * 2022-01-20 2024-02-27 吉林省农业科学院 Straw fermentation heat production method

Similar Documents

Publication Publication Date Title
CA2591097C (en) Microbial biocementation
Zhang et al. Microbial‐induced carbonate precipitation: a review on influencing factors and applications
TWI414664B (en) An improved method of using microbiological sites
JP5547444B2 (en) Cement method with carbonate
Assadi-Langroudi et al. Recent advances in nature-inspired solutions for ground engineering (NiSE)
Khaleghi et al. Biologic improvement of a sandy soil using single and mixed cultures: A comparison study
Martin et al. Mid-scale biocemented soil columns via enzyme-induced carbonate precipitation (EICP)
WO2018159577A1 (en) Microbe-containing composition for filling, and application of same
Mamo et al. Alkaliphiles: the emerging biological tools enhancing concrete durability
US20160244931A1 (en) Mineral Precipitation Methods
Hamza et al. The effect of soil incubation on bio self-healing of cementitious mortar
Omoregie et al. Microbially induced carbonate precipitation via ureolysis process: A Mini-Review
Achal et al. Biocement, recent research in construction engineering: Status of China against rest of world
Akyel et al. Key applications of biomineralization
Liu et al. A study on the enhancement of the mechanical properties of weak structural planes based on microbiologically induced calcium carbonate precipitation
DONG et al. Evaluation of the effect of natural seawater solidifying calcareous sand based on MICP
Zhang et al. Use of biomineralisation in developing smart concrete inspired by nature
Teng et al. STRENGTH IMPROVEMENT OF A SILTY CLAY WITH MICROBIOLOGICALLY INDUCED PROCESS AND COIR FIBER.
Fu et al. Growth and mineralization characteristics of Bacillus subtilis isolated from marine aquaculture wastewater and its application in coastal self-healing concrete
CA3106081A1 (en) Composition comprising at least one microorganism and use thereof
Akyel Improving pH and temperature stability of urease for ureolysis-induced calcium carbonate precipitation
CN112227345A (en) Construction method for improving cement mixing of expansive soil
JP7449596B2 (en) Ground reinforcement method and soil consolidation material used in this method
Zhang et al. Solidification of sodium sulfate saline loess by biomineralization of reactive magnesium oxide binder
KR20110087141A (en) Soft ground improvement method using urease producing microorganism

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761127

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18761127

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载