+

WO2018159562A1 - Gas separation membrane, gas separation module, gas separation device, and gas separation method - Google Patents

Gas separation membrane, gas separation module, gas separation device, and gas separation method Download PDF

Info

Publication number
WO2018159562A1
WO2018159562A1 PCT/JP2018/007051 JP2018007051W WO2018159562A1 WO 2018159562 A1 WO2018159562 A1 WO 2018159562A1 JP 2018007051 W JP2018007051 W JP 2018007051W WO 2018159562 A1 WO2018159562 A1 WO 2018159562A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas separation
gas
group
separation membrane
layer
Prior art date
Application number
PCT/JP2018/007051
Other languages
French (fr)
Japanese (ja)
Inventor
北村 哲
基 原田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2018159562A1 publication Critical patent/WO2018159562A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • C08J9/42Impregnation with macromolecular compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention relates to a gas separation membrane, a gas separation module, a gas separation device, and a gas separation method.
  • a material composed of a polymer compound has gas permeability specific to each material. Based on the property, a desired gas component can be selectively permeated and separated by a membrane composed of a specific polymer compound.
  • this gas separation membrane gas separation membrane
  • Natural gas, biogas biological waste, organic fertilizer, biodegradable substances, sewage, garbage, gas generated by fermentation and anaerobic digestion of energy crops, etc.
  • Patent Document 1 mentions the use of a fluorine-containing cellulose derivative having a specific structure as a separation membrane.
  • a polymer compound is made into an asymmetric membrane by a phase separation method, and a portion contributing to separation is made into a thin layer called a dense layer or a skin layer.
  • a portion other than the dense layer is allowed to function as a support layer that bears the mechanical strength of the membrane.
  • a composite membrane is also known. In this composite membrane, the gas separation layer responsible for the gas separation function and the support layer responsible for the mechanical strength are made of different materials, and the gas separation layer having gas separation ability is formed in a thin layer on the gas permeable support layer. .
  • the present invention realizes both high gas permeability and excellent gas separation selectivity at a sufficient level even when used under high pressure conditions, and enables high-speed and high-selective gas separation. It is an object of the present invention to provide a gas separation membrane that can maintain good gas separation selectivity even when in contact with a plasticizing component. Another object of the present invention is to provide a gas separation module, a gas separation apparatus, and a gas separation method using the gas separation membrane.
  • a cellulose compound in a form in which at least a part of the hydrogen atoms constituting the hydroxyl group of cellulose is substituted with a group having active hydrogen and fluorine atoms is used as a gas.
  • this gas separation membrane When used as a gas separation layer of a separation membrane, this gas separation membrane exhibits excellent gas separation selectivity even when used under high pressure conditions, has excellent gas permeability, and is plasticized by the influence of impurity components such as toluene. I found out that it is difficult to make it.
  • the present invention has been completed through further studies based on these findings.
  • R 1 to R 3 represent a hydrogen atom or a substituent.
  • at least one of R 1 to R 3 is a substituent T having an active hydrogen and a fluorine atom and having a molecular weight of 100 or more and less than 500.
  • R f represents a group having a fluorine atom. * Indicates a binding site.
  • L f represents a divalent group having a fluorine atom. * Indicates a binding site.
  • the numerical value range represented by “to” means that the numerical values described before and after the numerical value range are included as a lower limit value and an upper limit value.
  • substituents when there are a plurality of substituents, linking groups, and the like (hereinafter referred to as substituents) indicated by specific symbols, or when a plurality of substituents are specified simultaneously or alternatively, It means that a substituent etc. may mutually be same or different. The same applies to the definition of the number of substituents and the like. Further, when there are repetitions of a plurality of partial structures represented by the same indication in the formula, each partial structure or repeating unit may be the same or different.
  • the term “compound” or “group” is used to mean a compound or group itself, a salt thereof, or an ion thereof. In addition, it means that a part of the structure is changed as long as the desired effect is achieved.
  • the gas separation membrane of the present invention contains a specific cellulose compound in the gas separation layer. A preferred embodiment of the gas separation membrane of the present invention will be described.
  • R 1 to R 3 represent a hydrogen atom or a substituent. At least one of R 1 to R 3 is a substituent having an active hydrogen and a fluorine atom and having a molecular weight of 100 or more and less than 500 (hereinafter referred to as “substituent T”).
  • a hydrogen bond constituting a urethane bond (—O—CO—NH—) or a boric acid group (—B (OH) 2 ), and a hydrogen atom constituting a hydroxyl group, a carboxy group or a urethane bond is preferably More preferably, it is a hydrogen atom which comprises a carboxy group or a urethane bond.
  • the cellulose compound preferably has methyl or acetyl as R 1 to R 3 .
  • R 1 to R 3 By these forms, it can be set as the form which methoxy or acetyloxy was introduce
  • Methoxy and acetyloxy are compact polar groups, and are preferable because they can increase the solubility of the cellulose compound in a solvent without deteriorating gas separation selectivity.
  • At least one of R 1 to R 3 is a group represented by any one of the following general formulas (2-1) to (2-3) (the following general formulas (2-1) to (2-3) It is preferable that it is the substituent T) represented by either.
  • * indicates a binding site (bonding hand).
  • the aryl group having a fluorine atom is preferably phenyl having a fluorine atom.
  • R f is preferably an aryl group having a fluorine atom as a substituent and / or an aryl group having a fluorinated alkyl group (preferably trifluoromethyl).
  • the aryl group preferably has active hydrogen, and the aryl group having active hydrogen is preferably an aryl group having a hydroxyl group or a carboxy group. Preferred specific examples of R f are shown below.
  • R 1 to R 3 is a group represented by any one of the following general formulas (3-1) to (3-3) (the following general formulas (3-1) to (3-3) It is also preferred that it is a substituent T) represented by any one of
  • L f represents a divalent group having a fluorine atom.
  • L f is preferably an alkylene group or an arylene group having a fluorine atom, and more preferably an arylene group having a fluorine atom.
  • the alkylene group having a fluorine atom which can be taken as L f , preferably has 1 to 8 carbon atoms, more preferably 1 to 6, still more preferably 1 to 4, and particularly preferably 1 to 3.
  • the substituent T is a group represented by any one of the above general formulas (3-1) to (3-3), gas separation selectivity or plasticization resistance tends to be further improved.
  • the substituent T is a group represented by any one of the general formulas (3-1) to (3-3), the general formula is used from the viewpoint of membrane rigidity that affects gas separation selectivity and plasticization resistance.
  • a group represented by (3-1) is more preferable.
  • the cellulose compound used in the present invention is a group represented by any one of general formulas (2-1) to (2-3) and general formulas (3-1) to (3-3) as R 1 to R 3. May have two or more groups.
  • the cellulose compounds used in the present invention have groups represented by general formulas (2-1) to (2-3) as R 1 to R 3 , the general formulas (3-1) to (3- 3)
  • the general formula (2-1) ) To (2-3) are preferred.
  • the ratio of the total number of groups is preferably 25 to 100%, more preferably 50 to 100%, and further preferably 75 to 100%.
  • the cellulose compound preferably has a degree of substitution with a substituent T of 0.5 or more and 3.0 or less from the viewpoint of solubility in a solvent necessary for film formation and gas permeability.
  • substitution degree of the cellulose compound will be described.
  • the ⁇ -1,4-bonded glucose unit constituting cellulose has a total of three hydroxyl groups at the 2nd, 3rd and 6th positions.
  • the degree of substitution of the cellulose compound indicates the degree of substitution of hydrogen atoms in these hydroxyl groups with other groups. For example, when all of the hydrogen atoms constituting the 2nd, 3rd, and 6th hydroxyl groups of all glucose units are substituted with other groups, the degree of substitution is 3.
  • the cellulose compound has a degree of substitution by a substituent T of 1.0 or more and 2.75 or less from the viewpoint of enhancing solubility in a solvent while imparting desired gas separation selectivity and gas permeability to the gas separation layer. It is preferable that it is 1.5 or more and 2.5 or less.
  • the degree of substitution with the substituent T is preferably 1.0 to 2.5, and more preferably 1.0 to 2.0.
  • the cellulose compound preferably has a degree of substitution (including substitution with a substituent T) of more than 2.5, preferably more than 2.8, more preferably more than 2.9. That is, it is preferable that the cellulose compound has a smaller amount of hydroxyl groups. When the amount of hydroxyl groups is large, gas permeability tends to decrease.
  • the molecular weight of the cellulose compound is preferably a number average molecular weight (Mn) in the range of 5 ⁇ 10 3 to 1000 ⁇ 10 3 , more preferably in the range of 10 ⁇ 10 3 to 500 ⁇ 10 3 , and 10 ⁇ 10 3 to 200 ⁇ . 10 3 ranges are most preferred.
  • the weight average molecular weight (Mw) is preferably in the range of 7 ⁇ 10 3 to 10000 ⁇ 10 3 , more preferably in the range of 15 ⁇ 10 3 to 5000 ⁇ 10 3 , and in the range of 100 ⁇ 10 3 to 3000 ⁇ 10 3 . Is most preferred.
  • the manufacturing method of the cellulose compound used for this invention is not specifically limited, It can obtain by introduce
  • the etherification reaction for example, by reacting cellulose with various alkyl halides, various aryl halides, various epoxies and the like in the presence of a base, a target cellulose compound can be obtained.
  • the target cellulose compound can be obtained by making a cellulose react with various acid chlorides, various acid anhydrides, etc., for example.
  • the raw material cellulose is not particularly limited.
  • substituted celluloses such as ethyl cellulose can also be used. Details of these raw material celluloses can be found in, for example, Marusawa and Uda, “Plastic Materials Course (17) Fibrous Resin”, Nikkan Kogyo Shimbun (published in 1970), and Japan Institute of Invention and Technology Publication No. 2001-2001. 1745 (pages 7 to 8).
  • FIG. 1 is a longitudinal sectional view schematically showing a gas separation composite membrane 10 which is a preferred embodiment of the present invention. 1 is a gas separation layer, 2 is a support layer. FIG. 2 is a cross-sectional view schematically showing a gas separation composite membrane 20 which is another preferred embodiment of the present invention.
  • the nonwoven fabric layer 3 is added as a further support body. 1 and 2 show a mode in which carbon dioxide is selectively permeated from a mixed gas of carbon dioxide and methane.
  • upper support layer means that another layer may be interposed between the support layer and the gas separation layer.
  • the side on which the gas to be separated is supplied is “upper”, and the side on which the separated gas (permeate gas) is emitted is “lower”.
  • a gas separation layer is formed on at least the surface of the gas permeable support layer.
  • a composite membrane having both gas separation selectivity and gas permeability and mechanical strength can be obtained.
  • the layer thickness of the gas separation layer is preferably a thin film as much as possible within the range showing high gas permeability while having desired mechanical strength and separation selectivity.
  • the thickness of the gas separation layer is preferably 0.01 to 5.0 ⁇ m, and more preferably 0.05 to 2.0 ⁇ m.
  • the support layer is not particularly limited as long as it has the purpose of meeting mechanical strength and high gas permeability, and may be either organic or inorganic material.
  • An organic polymer porous film is preferable, and the thickness thereof is 1 to 3000 ⁇ m, preferably 5 to 500 ⁇ m, and more preferably 5 to 150 ⁇ m.
  • the pore structure of this porous membrane usually has an average pore diameter of 10 ⁇ m or less, preferably 0.5 ⁇ m or less, more preferably 0.2 ⁇ m or less.
  • the porosity is preferably 20 to 90%, more preferably 30 to 80%.
  • the support layer has “gas permeability” means that carbon dioxide is supplied to the support layer (a film composed of only the support layer) at a temperature of 40 ° C.
  • the permeation rate of carbon dioxide is 1 ⁇ 10 ⁇ 5 cm 3 (STP) / cm 2 ⁇ sec ⁇ cmHg (10 GPU) or more.
  • the gas permeability of the support layer is such that when carbon dioxide is supplied at a temperature of 40 ° C. and the total pressure on the gas supply side is 4 MPa, the carbon dioxide permeation rate is 3 ⁇ 10 ⁇ 5 cm 3 (STP) / It is preferably cm 2 ⁇ sec ⁇ cmHg (30 GPU) or more, more preferably 100 GPU or more, further preferably 200 GPU or more, and further preferably 500 GPU or more.
  • the material for the support layer examples include conventionally known polymers such as polyolefin resins such as polyethylene and polypropylene, fluorine-containing resins such as polytetrafluoroethylene, polyvinyl fluoride, and polyvinylidene fluoride, polystyrene, cellulose acetate, polyurethane, Polyacrylonitrile, polyphenylene oxide, polysulfone, polyethersulfone, polyimide, polyaramid and the like can be mentioned.
  • the shape of the support layer can be any shape such as a flat plate shape, a spiral shape, a tubular shape, and a hollow fiber shape.
  • the gas separation membrane of the present invention is not limited to the above-described composite membrane, but is preferably an asymmetric membrane as described later.
  • the gas separation membrane of the present invention is preferably in the form of a composite membrane in which a gas separation layer is provided on a gas-permeable support layer (porous support layer).
  • the gas separation membrane of the present invention can be in the form of an asymmetric membrane in which the support and the gas separation layer are integrally formed of the same cellulose compound.
  • the composite membrane of the present invention preferably includes forming a gas separation layer by applying a coating liquid containing the cellulose compound on a gas permeable support layer and drying the coating membrane.
  • the cellulose compound content in the coating solution is not particularly limited, but is preferably 0.1 to 30% by mass, more preferably 0.5 to 15% by mass.
  • the content of the cellulose compound is too small, when the film is formed on the porous support, it easily penetrates into the lower layer, and there is a high possibility that defects will occur in the surface layer that contributes to separation.
  • the cellulose compound content is too high, the pores are filled at a high concentration when a film is formed on the porous support, and sufficient permeability may not be obtained.
  • the organic solvent used as a medium for the coating solution is not particularly limited, but hydrocarbons such as n-hexane and n-heptane, esters such as methyl acetate, ethyl acetate and butyl acetate; methanol, ethanol, n- Alcohols such as propanol, isopropanol, n-butanol, isobutanol, tert-butanol, ethylene glycol, diethylene glycol, triethylene glycol, glycerin, propylene glycol; acetone, methyl ethyl ketone, methyl isobutyl ketone, diacetone alcohol, cyclopentanone, cyclohexanone, etc.
  • hydrocarbons such as n-hexane and n-heptane, esters such as methyl acetate, ethyl acetate and butyl acetate
  • methanol, ethanol, n- Alcohols such as
  • Aliphatic ketones ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol methyl ether, dipropylene glycol methyl ether, tri Lopylene glycol methyl ether, ethylene glycol phenyl ether, propylene glycol phenyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, dibutyl ether, tetrahydrofuran, methylcyclopentyl ether,
  • Examples include ethers such as dioxane; N-methylpyrrolidone, 2-pyrrolidone, dimethylformamide, dimethylimidazolidinone, dimethyl sulfoxide, and dimethylacetamide, and one or more of these can be used.
  • another layer may exist between the support layer and the gas separation layer.
  • a preferred example of the other layer is a siloxane compound layer.
  • the siloxane compound layer By providing the siloxane compound layer, the unevenness on the outermost surface of the support can be smoothed, and the separation layer can be easily thinned.
  • the siloxane compound forming the siloxane compound layer include those having a main chain made of polysiloxane and compounds having a siloxane structure and a non-siloxane structure in the main chain.
  • siloxane compound means an organopolysiloxane compound unless otherwise specified.
  • siloxane compound having a main chain made of polysiloxane examples include one or more polyorganosiloxanes represented by the following formula (1) or (2). Moreover, these polyorganosiloxanes may form a crosslinking reaction product.
  • a cross-linking reaction for example, a compound represented by the following formula (1) is crosslinked by a polysiloxane compound having a group capable of linking by reacting with the reactive group X S of the formula (1) at both ends The compound of the form is mentioned.
  • R S is a non-reactive group and is an alkyl group (preferably an alkyl group having 1 to 18 carbon atoms, more preferably an alkyl group having 1 to 12 carbon atoms) or an aryl group (preferably having 6 to 6 carbon atoms). 15, more preferably an aryl group having 6 to 12 carbon atoms, and still more preferably phenyl).
  • X S is a reactive group selected from a hydrogen atom, a halogen atom, a vinyl group, a hydroxyl group, and a substituted alkyl group (preferably an alkyl group having 1 to 18 carbon atoms, more preferably an alkyl group having 1 to 12 carbon atoms). It is preferably a group.
  • Y S and Z S are the above R S or X S.
  • m is a number of 1 or more, preferably 1 to 100,000.
  • n is a number of 0 or more, preferably 0 to 100,000.
  • X S, Y S, Z S, R S, m and n are X S of each formula (1), Y S, Z S, R S, and m and n synonymous.
  • non-reactive group R S when the non-reactive group R S is an alkyl group, examples of the alkyl group include methyl, ethyl, hexyl, octyl, decyl, and octadecyl. .
  • examples of the fluoroalkyl group include —CH 2 CH 2 CF 3 and —CH 2 CH 2 C 6 F 13 .
  • examples of the alkyl group include a hydroxyalkyl group having 1 to 18 carbon atoms and an aminoalkyl group having 1 to 18 carbon atoms.
  • the number of carbon atoms of the alkyl group constituting the hydroxyalkyl group is preferably an integer of 1 to 10, for example, —CH 2 CH 2 CH 2 OH.
  • the preferable number of carbon atoms of the epoxy cyclohexyl alkyl group having 7 to 16 carbon atoms is an integer of 8 to 12.
  • a preferable carbon number of the (1-oxacyclobutan-3-yl) alkyl group having 4 to 18 carbon atoms is an integer of 4 to 10.
  • a preferable carbon number of the alkyl group constituting the methacryloxyalkyl group is an integer of 1 to 10, and examples thereof include —CH 2 CH 2 CH 2 —OOC—C (CH 3 ) ⁇ CH 2 .
  • a preferable carbon number of the alkyl group constituting the mercaptoalkyl group is an integer of 1 to 10, and examples thereof include —CH 2 CH 2 CH 2 SH.
  • m and n are preferably numbers that give a molecular weight of 5,000 to 1,000,000.
  • a reactive group-containing siloxane unit (wherein the number is a structural unit represented by n) and a siloxane unit having no reactive group (wherein the number is m)
  • the distribution of the structural unit represented by That is, in the formulas (1) and (2), the (Si (R S ) (R S ) —O) units and the (Si (R S ) (X S ) —O) units may be randomly distributed. .
  • R S, m and n are respectively the same as R S, m and n in formula (1).
  • R L is —O— or —CH 2 —
  • R S1 is a hydrogen atom or methyl. Both ends of the formula (3) are preferably an amino group, a hydroxyl group, a carboxy group, a trimethylsilyl group, an epoxy group, a vinyl group, a hydrogen atom, or a substituted alkyl group.
  • n and n are synonymous with m and n in Formula (1), respectively.
  • m and n have the same meanings as m and n in formula (1), respectively.
  • m and n are synonymous with m and n in Formula (1), respectively. It is preferable that the both ends of Formula (6) have an amino group, a hydroxyl group, a carboxy group, a trimethylsilyl group, an epoxy group, a vinyl group, a hydrogen atom, or a substituted alkyl group bonded thereto.
  • m and n are synonymous with m and n in formula (1), respectively. It is preferable that an amino group, a hydroxyl group, a carboxy group, a trimethylsilyl group, an epoxy, a vinyl group, a hydrogen atom, or a substituted alkyl group is bonded to both ends of the formula (7).
  • the siloxane structural unit and the non-siloxane structural unit may be randomly distributed.
  • the compound having a siloxane structure and a non-siloxane structure in the main chain preferably contains 50 mol% or more of siloxane structural units, more preferably 70 mol% or more, based on the total number of moles of all repeating structural units. .
  • siloxane compound which comprises a siloxane compound layer is enumerated below.
  • the thickness of the siloxane compound layer is preferably 0.01 to 5 ⁇ m, and more preferably 0.05 to 1 ⁇ m, from the viewpoint of smoothness and gas permeability.
  • the gas permeability at 40 ° C. and 4 MPa of the siloxane compound layer is preferably 100 GPU or more, more preferably 300 GPU or more, and further preferably 1000 GPU or more in terms of carbon dioxide transmission rate.
  • the gas separation membrane of the present invention may be an asymmetric membrane.
  • the asymmetric membrane can be formed by a phase change method using a solution containing a cellulose compound.
  • the phase inversion method is a known method for forming a film while bringing a polymer solution into contact with a coagulation liquid to cause phase conversion.
  • a so-called dry / wet method is suitably used.
  • the dry and wet method evaporates the solution on the surface of the polymer solution in the form of a film to form a thin dense layer, and then immerses it in a coagulation liquid (solvent that is compatible with the solvent of the polymer solution and the polymer is insoluble),
  • a coagulation liquid solvent that is compatible with the solvent of the polymer solution and the polymer is insoluble
  • the thickness of the surface layer contributing to gas separation called a dense layer or skin layer is not particularly limited.
  • the thickness of the surface layer is preferably 0.01 to 5.0 ⁇ m and more preferably 0.05 to 1.0 ⁇ m from the viewpoint of imparting practical gas permeability.
  • the porous layer below the dense layer lowers the gas permeability resistance and at the same time plays a role of imparting mechanical strength, and its thickness is particularly limited as long as it is self-supporting as an asymmetric membrane. It is not limited.
  • This thickness is preferably 5 to 500 ⁇ m, more preferably 5 to 200 ⁇ m, and even more preferably 5 to 100 ⁇ m.
  • the gas separation asymmetric membrane of the present invention may be a flat membrane or a hollow fiber membrane.
  • the asymmetric hollow fiber membrane can be produced by a dry and wet spinning method.
  • the dry-wet spinning method is a method for producing an asymmetric hollow fiber membrane by applying a dry-wet method to a polymer solution that is discharged from a spinning nozzle to have a hollow fiber-shaped target shape. More specifically, the polymer solution is discharged from a nozzle into a hollow fiber-shaped target shape, and after passing through an air or nitrogen gas atmosphere immediately after discharge, the polymer is not substantially dissolved and is compatible with the solvent of the polymer solution.
  • an asymmetric structure is formed by dipping in a coagulating liquid having a gas, then dried, and further heat-treated as necessary to produce a gas separation asymmetric membrane.
  • the solution viscosity of the solution containing the cellulose compound discharged from the nozzle is 2 to 17000 Pa ⁇ s, preferably 10 to 1500 Pa ⁇ s, particularly 20 to 1000 Pa ⁇ s at the discharge temperature (for example, 10 ° C.). This is preferable because the shape after discharge can be stably obtained.
  • the film is immersed in the primary coagulation liquid and solidified to such an extent that the shape of the hollow fiber or the like can be maintained, wound on a guide roll, and then immersed in the secondary coagulation liquid to fully saturate the entire film. It is preferable to solidify. It is efficient to dry the coagulated film after replacing the coagulating liquid with a solvent such as hydrocarbon.
  • the heat treatment for drying is preferably performed at a temperature lower than the softening point or secondary transition point of the cellulose compound used.
  • a siloxane compound layer may be provided on the gas separation layer as a protective layer in contact with the gas separation layer.
  • the surfactant include alkylbenzene sulfonate, alkylnaphthalene sulfonate, higher fatty acid salt, sulfonate of higher fatty acid ester, sulfate ester of higher alcohol ether, sulfonate of higher alcohol ether, higher alkyl
  • Anionic surfactants such as alkyl carboxylates of sulfonamides, alkyl phosphates, polyoxyethylene alkyl ethers, polyoxyethylene alkyl phenyl ethers, polyoxyethylene fatty acid esters, sorbitan fatty acid esters, ethylene oxide adducts of acetylene glycol,
  • Nonionic surfactants such as ethylene oxide adducts of glycerin and polyoxyethylene sorbitan fatty acid esters, and other amphoteric boundaries such as alkyl betaines and amide betaines
  • a polymer dispersant may be included, and specific examples of the polymer dispersant include polyvinyl pyrrolidone, polyvinyl alcohol, polyvinyl methyl ether, polyethylene oxide, polyethylene glycol, polypropylene glycol, and polyacrylamide. Of these, polyvinylpyrrolidone is preferably used.
  • the conditions for forming the gas separation membrane of the present invention are not particularly limited, but the temperature is preferably ⁇ 30 to 100 ° C., more preferably ⁇ 10 to 80 ° C., and particularly preferably 5 to 50 ° C.
  • a gas such as air or oxygen may coexist at the time of forming the film, but it is preferably in an inert gas atmosphere.
  • the content of the cellulose compound in the gas separation layer is not particularly limited as long as desired gas separation performance can be obtained. From the viewpoint of further improving the gas separation performance, the content of the cellulose compound in the gas separation layer is preferably 20% by mass or more, more preferably 40% by mass or more, and 60% by mass or more. Is preferable, and it is more preferable that it is 70 mass% or more.
  • the content of the polyimide compound in the gas separation layer may be 100% by mass, but is usually 99% by mass or less.
  • the gas separation membrane (composite membrane and asymmetric membrane) of the present invention can be suitably used as a gas separation recovery method and gas separation purification method.
  • gas separation membrane capable of efficiently separating a specific gas from a gas mixture containing a gas such as perfluorohydrocarbon.
  • a gas separation membrane that selectively permeates carbon dioxide from a gas mixture containing carbon dioxide and hydrocarbon (preferably methane) is preferable.
  • the permeation rate of carbon dioxide at 40 ° C. and 5 MPa is preferably 20 GPU or more, and 30 GPU or more. More preferably, it is 35 to 500 GPU.
  • the permeation rate ratio between carbon dioxide and methane (R CO2 / R CH4 ) is preferably 15 or more, and more preferably 20 or more.
  • R CO2 represents the permeation rate of carbon dioxide
  • R CH4 represents the permeation rate of methane.
  • 1 GPU is 1 ⁇ 10 ⁇ 6 cm 3 (STP) / (cm 2 ⁇ sec ⁇ cmHg).
  • the gas separation method of the present invention is a method for separating a specific gas from a mixed gas of two or more components using the gas separation membrane of the present invention.
  • the gas separation method of the present invention preferably includes selectively allowing carbon dioxide to permeate from a mixed gas containing carbon dioxide and methane.
  • the pressure during gas separation is preferably 0.5 to 10 MPa, more preferably 1 to 10 MPa, and further preferably 2 to 7 MPa.
  • the gas separation temperature is preferably ⁇ 30 to 90 ° C., more preferably 15 to 70 ° C.
  • a gas separation membrane module can be prepared using the gas separation membrane of the present invention.
  • modules include spiral type, hollow fiber type, pleated type, tubular type, plate & frame type and the like.
  • a gas separation apparatus having means for separating and recovering or purifying gas can be obtained using the gas separation membrane or gas separation membrane module of the present invention.
  • the gas separation composite membrane of the present invention may be applied to, for example, a gas separation and recovery device as a membrane / absorption hybrid method used in combination with an absorbing solution as described in JP-A-2007-297605.
  • This solid was reslurried four times with a mixed solution of isopropanol (40 mL) / hexane (160 mL), and vacuum dried to obtain 3.10 g of cellulose compound 1 as a white powder.
  • the obtained cellulose compound 1 the type of functional groups substituting for the hydrogen atom constituting a hydroxyl group contained in the cellulose raw material (R 1 in the general formula (1), R 2, and R 3), as well as cellulose compound 1
  • the degree of substitution was observed and determined by 1 H-NMR using the method described in Cellulose Communication 6, 73-79 (1999).
  • the weight average molecular weight Mw of the cellulose compound 1 was measured using the gel permeation chromatography (GPC).
  • N-methylpyrrolidone was used as a solvent
  • a polystyrene gel was used
  • a molecular weight calibration curve obtained in advance from a constituent curve of standard monodisperse polystyrene was used.
  • the GPC apparatus HLC-8220 GPC (manufactured by Tosoh Corporation) was used.
  • the weight average molecular weight of the cellulose compound 1 was 406000.
  • cellulose compound 6 was synthesized in the same manner as in the synthesis of cellulose compound 1 except that tetrafluorosuccinic anhydride (manufactured by Tokyo Chemical Industry) was used instead of 4- (trifluoromethyl) phenyl isocyanate. did.
  • the weight average molecular weight of the cellulose compound 6 was 255000.
  • Comparative compound 1 is acetylcellulose (acetyl substitution degree 2.4, manufactured by Daicel), comparative compound 2 is a cellulose compound described in Example 1 of JP-A-59-55307, and comparative compound 3 is Japanese Patent Publication No. 58-24161.
  • the structure of the substituent corresponding to R 1 to R 3 in the general formula (1) and the degree of substitution thereof for each comparative compound (cellulose compound) are shown below. The parenthesis indicates the molecular weight.
  • the gas separation composite membrane shown in FIG. 2 was produced (the smooth layer is not shown in FIG. 2).
  • 0.08 g of cellulose compound 1 and 9.92 g of tetrahydrofuran were mixed and stirred for 30 minutes, and then spin coated on the PAN porous membrane provided with the above smooth layer to form a gas separation layer.
  • a composite membrane of Example 1 was obtained.
  • the thickness of the layer of the cellulose compound 1 was about 70 nm
  • the thickness of the PAN porous film was about 180 ⁇ m including the nonwoven fabric.
  • These polyacrylonitrile porous membranes had a molecular weight cut-off of 100,000 or less.
  • the permeability of carbon dioxide at 40 ° C. and 5 MPa of this porous membrane was 25000 GPU.
  • Example 2 Production of composite membranes
  • Example 3 Cellulose Compound 3
  • Example 4 Cellulose Compound 4
  • Example 5 Cellulose Compound 5
  • Example 6 Cellulose Compound 6
  • Example 7 Cellulose Compound 7
  • Example 8 Cellulose compound 8
  • Comparative Examples 1 to 5 Preparation of Composite Membrane Composite membranes of Comparative Examples 1 to 5 in the same manner as in Example 1 except that Comparative Compound 1 to 5 was used instead of Cellulose Compound 1 in Example 1 above. Was made.
  • the comparative compounds used in Comparative Examples 1 to 5 are as follows. Comparative Example 1: Comparative Compound 1, Comparative Example 2: Comparative Compound 2, Comparative Example 3: Comparative Compound 3, Comparative Example 4: Comparative Compound 4, Comparative Example 5: Comparative Compound 5
  • Test Example 1 Evaluation of CO 2 Permeation Rate and Gas Separation Selectivity of Gas Separation Membrane Gas separation performance was evaluated as follows using the gas separation membranes (composite membranes) of the above Examples and Comparative Examples. The gas separation membrane was cut to a diameter of 5 cm together with the porous support (support layer) to prepare a permeation test sample.
  • a mixed gas of carbon dioxide (CO 2 ): methane (CH 4 ) of 13:87 (volume ratio) is used, and the total pressure on the gas supply side is 5 MPa (minus CO 2 The pressure was adjusted to 0.65 MPa), the flow rate was 500 mL / min, and 40 ° C., and the gas was supplied from the gas separation layer side.
  • the permeated gas was analyzed by gas chromatography. The gas permeability of the membrane was compared by calculating the gas permeation rate as gas permeability (Permeance).
  • the gas separation selectivity was calculated as the ratio of the CO 2 permeation rate R CO2 to the CH 4 permeation rate R CH4 of this membrane (R CO2 / R CH4 ).
  • the evaluation criteria of gas permeability and gas separation selectivity were as follows.
  • R CO2 is 60 or more
  • B R CO2 is 45 or more and less than 60
  • C R CO2 is 30 or more and less than 45
  • D R CO2 is less than 30
  • R CO2 / R CH4 is 20 or more

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

A gas separation membrane which comprises a gas separation layer that contains a cellulose compound as a constituent material, and wherein the cellulose compound has a repeating unit represented by general formula (1); a gas separation module which uses this gas separation membrane; a gas separation device; and a gas separation method. In general formula (1), each of R1-R3 moieties represents a hydrogen atom or a substituent, provided that at least one of the R1-R3 moieties represents a substituent T that comprises an active hydrogen and a fluorine atom, while having a molecular weight of 100 or more but less than 500.

Description

ガス分離膜、ガス分離モジュール、ガス分離装置、及びガス分離方法Gas separation membrane, gas separation module, gas separation device, and gas separation method
 本発明は、ガス分離膜、ガス分離モジュール、ガス分離装置、及びガス分離方法に関する。 The present invention relates to a gas separation membrane, a gas separation module, a gas separation device, and a gas separation method.
 高分子化合物からなる素材には、その素材ごとに特有の気体透過性がある。その性質に基づき、特定の高分子化合物から構成された膜によって、所望の気体成分を選択的に透過させて分離することができる。この気体分離膜(ガス分離膜)の産業上の利用態様として、地球温暖化の問題と関連し、火力発電所やセメントプラント、製鉄所高炉等において、大規模な二酸化炭素発生源からこれを分離回収することが検討されている。また、天然ガス、バイオガス(生物の排泄物、有機質肥料、生分解性物質、汚水、ゴミ、エネルギー作物などの発酵、嫌気性消化により発生するガス)等は主としてメタンと二酸化炭素を含む混合ガスであり、その二酸化炭素等の不純物を除去する手段としてガス分離膜の利用が検討されている。 A material composed of a polymer compound has gas permeability specific to each material. Based on the property, a desired gas component can be selectively permeated and separated by a membrane composed of a specific polymer compound. As an industrial application of this gas separation membrane (gas separation membrane), it is related to the problem of global warming and separated from large-scale carbon dioxide generation sources in thermal power plants, cement plants, steelworks blast furnaces, etc. Recovery is under consideration. Natural gas, biogas (biological waste, organic fertilizer, biodegradable substances, sewage, garbage, gas generated by fermentation and anaerobic digestion of energy crops, etc.) are mainly mixed gases containing methane and carbon dioxide. As a means for removing impurities such as carbon dioxide, the use of gas separation membranes is being studied.
 このガス分離膜の素材として、ポリイミド化合物を用いたガス分離膜が盛んに検討されている。また、セルロース化合物を用いたガス分離膜も知られており、例えば特許文献1には、特定構造の含フッ素セルロース誘導体の分離膜としての利用について言及されている。 As a material for this gas separation membrane, a gas separation membrane using a polyimide compound has been actively studied. Gas separation membranes using cellulose compounds are also known. For example, Patent Document 1 mentions the use of a fluorine-containing cellulose derivative having a specific structure as a separation membrane.
 実用的なガス分離膜とするためには、ガス分離層を薄層にして十分なガス透過性を確保する必要がある。ガス分離層を薄層化する手法としては、高分子化合物を相分離法により非対称膜とし、分離に寄与する部分を緻密層あるいはスキン層と呼ばれる薄層にする方法がある。この非対称膜では、緻密層以外の部分を膜の機械的強度を担う支持層として機能させる。
 また、上記非対称膜の他に、複合膜の形態も知られている。この複合膜では、ガス分離機能を担うガス分離層と機械強度を担う支持層とを別素材とし、ガス透過性の支持層上に、ガス分離能を有するガス分離層が薄層に形成される。
In order to obtain a practical gas separation membrane, it is necessary to secure a sufficient gas permeability by making the gas separation layer thin. As a method for thinning the gas separation layer, there is a method in which a polymer compound is made into an asymmetric membrane by a phase separation method, and a portion contributing to separation is made into a thin layer called a dense layer or a skin layer. In this asymmetric membrane, a portion other than the dense layer is allowed to function as a support layer that bears the mechanical strength of the membrane.
In addition to the asymmetric membrane, a composite membrane is also known. In this composite membrane, the gas separation layer responsible for the gas separation function and the support layer responsible for the mechanical strength are made of different materials, and the gas separation layer having gas separation ability is formed in a thin layer on the gas permeable support layer. .
特開平2-212501号公報JP-A-2-212501
 膜分離方法を用いた天然ガスの精製では、より効率的にガスを分離するために、優れたガス透過性とガス分離選択性が求められる。しかし一般に、ガス透過性とガス分離選択性は互いにいわゆるトレードオフの関係にある。それ故、ガス分離層に用いる高分子化合物の分子構造を調整することにより、ガス分離層のガス透過性及びガス分離選択性のいずれかを改善することはできても、両特性を高いレベルで両立するのは困難とされる。
 また、実際のプラント等においては、高圧条件、あるいは天然ガス中に存在する不純物(ベンゼン、トルエン、キシレン等)の影響等によって膜が可塑化し、これによるガス分離選択性の低下が問題となる。したがって、ガス分離膜には、ガス透過性とガス分離選択性を高めるだけでなく、高圧条件下や、上記不純物成分の存在下においても良好なガス透過性とガス分離選択性を持続的に発現できる可塑化耐性も求められる。
In the purification of natural gas using a membrane separation method, excellent gas permeability and gas separation selectivity are required in order to separate gases more efficiently. However, in general, gas permeability and gas separation selectivity are in a so-called trade-off relationship. Therefore, by adjusting the molecular structure of the polymer compound used in the gas separation layer, either the gas permeability or gas separation selectivity of the gas separation layer can be improved, but both characteristics are at a high level. It is difficult to achieve both.
Further, in an actual plant or the like, the membrane is plasticized due to high pressure conditions or the influence of impurities (benzene, toluene, xylene, etc.) present in natural gas, and this causes a problem of reduction in gas separation selectivity. Therefore, the gas separation membrane not only enhances gas permeability and gas separation selectivity, but also continuously exhibits good gas permeability and gas separation selectivity under high pressure conditions and in the presence of the above impurity components. A plasticizing resistance that can be produced is also required.
 本発明は、高圧条件下の使用においても優れたガス透過性と優れたガス分離選択性の両立を十分なレベルで実現して高速かつ高選択性のガス分離を可能とし、また、トルエン等の可塑化成分と接触してもガス分離選択性を良好に維持することができるガス分離膜を提供することを課題とする。また、本発明は、上記ガス分離膜を用いたガス分離モジュール、ガス分離装置及びガス分離方法を提供することを課題とする。 The present invention realizes both high gas permeability and excellent gas separation selectivity at a sufficient level even when used under high pressure conditions, and enables high-speed and high-selective gas separation. It is an object of the present invention to provide a gas separation membrane that can maintain good gas separation selectivity even when in contact with a plasticizing component. Another object of the present invention is to provide a gas separation module, a gas separation apparatus, and a gas separation method using the gas separation membrane.
 本発明者らは上記課題に鑑み鋭意検討を重ねた結果、セルロースが有する水酸基を構成する水素原子のうち少なくとも一部を活性水素とフッ素原子とを有する基で置換した形態のセルロース化合物を、ガス分離膜のガス分離層として用いた場合に、このガス分離膜が高圧条件下の使用においても優れたガス分離選択性を示し、ガス透過性にも優れ、さらにトルエン等の不純物成分の影響による可塑化も生じにくいことを見い出した。本発明は、これらの知見に基づきさらに検討を重ねて完成させるに至ったものである。 As a result of intensive studies in view of the above problems, the present inventors have determined that a cellulose compound in a form in which at least a part of the hydrogen atoms constituting the hydroxyl group of cellulose is substituted with a group having active hydrogen and fluorine atoms is used as a gas. When used as a gas separation layer of a separation membrane, this gas separation membrane exhibits excellent gas separation selectivity even when used under high pressure conditions, has excellent gas permeability, and is plasticized by the influence of impurity components such as toluene. I found out that it is difficult to make it. The present invention has been completed through further studies based on these findings.
 上記課題は下記の手段により解決された。
〔1〕
 セルロース化合物を構成材料として含むガス分離層を有するガス分離膜であって、上記セルロース化合物が下記一般式(1)で表される繰り返し単位を有する、ガス分離膜。
Figure JPOXMLDOC01-appb-C000004
 一般式(1)中、R~Rは水素原子又は置換基を示す。但しR~Rのうち少なくとも1つは活性水素とフッ素原子とを有する分子量100以上500未満の置換基Tである。
〔2〕
 上記活性水素が、水酸基、カルボキシ基、アミド基、アミド結合、スルファモイル基、-SONH-、ウレタン結合、又はホウ酸基を構成する水素原子である、〔1〕に記載のガス分離膜。
〔3〕
 上記R~Rのうち少なくとも1つがメチル又はアセチルである、〔1〕又は〔2〕に記載のガス分離膜。
〔4〕
 上記R~Rのうち少なくとも1つが下記一般式(2-1)~(2-3)で表される基である、〔1〕~〔3〕のいずれか1つに記載のガス分離膜。
Figure JPOXMLDOC01-appb-C000005
 一般式(2-1)~(2-3)中、Rはフッ素原子を有する基を示す。*は結合部位を示す。
〔5〕
 上記R~Rのうち少なくとも1つが下記一般式(3-1)~(3-3)のいずれかで表される基である、〔1〕~〔4〕のいずれか1つに記載のガス分離膜。
Figure JPOXMLDOC01-appb-C000006
 
 一般式(3-1)~(3-3)中、Lはフッ素原子を有する2価の基を示す。*は結合部位を示す。
〔6〕
 上記セルロース化合物の置換基Tによる置換度が0.5以上3.0以下である、〔1〕~〔5〕のいずれか1つに記載のガス分離膜。
〔7〕
 上記セルロース化合物の置換度が2.5越えである、〔1〕~〔6〕のいずれか1つに記載のガス分離膜。
〔8〕
 上記ガス分離膜が、上記ガス分離層をガス透過性の支持層上側に有するガス分離複合膜である、〔1〕~〔7〕のいずれか1つに記載のガス分離膜。
〔9〕
 上記支持層が、上記ガス分離層側の多孔質層と、上記ガス分離層とは逆側の不織布層とからなる、〔8〕に記載のガス分離膜。
〔10〕
 二酸化炭素及びメタンを含むガスから二酸化炭素を選択的に透過させるために用いられる、〔1〕~〔9〕のいずれか1つに記載のガス分離膜。
〔11〕
 分離処理されるガスが二酸化炭素とメタンとの混合ガスである場合において、40℃、5MPaのガス供給条件における二酸化炭素の透過速度が20GPU以上であり、メタンの透過速度に対する二酸化炭素の透過速度の比が15以上である、〔1〕~〔10〕のいずれか1つに記載のガス分離膜。
〔12〕
 〔1〕~〔11〕のいずれか1つに記載のガス分離膜を具備するガス分離モジュール。
〔13〕
 〔1〕~〔11〕のいずれか1つに記載のガス分離膜を具備するガス分離装置。
〔14〕
 〔1〕~〔11〕のいずれか1つに記載のガス分離膜を用いたガス分離方法。
The above problems have been solved by the following means.
[1]
A gas separation membrane having a gas separation layer containing a cellulose compound as a constituent material, wherein the cellulose compound has a repeating unit represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000004
In general formula (1), R 1 to R 3 represent a hydrogen atom or a substituent. However, at least one of R 1 to R 3 is a substituent T having an active hydrogen and a fluorine atom and having a molecular weight of 100 or more and less than 500.
[2]
The gas separation membrane according to [1], wherein the active hydrogen is a hydrogen atom constituting a hydroxyl group, a carboxy group, an amide group, an amide bond, a sulfamoyl group, —SO 2 NH—, a urethane bond, or a boric acid group.
[3]
The gas separation membrane according to [1] or [2], wherein at least one of R 1 to R 3 is methyl or acetyl.
[4]
The gas separation according to any one of [1] to [3], wherein at least one of R 1 to R 3 is a group represented by the following general formulas (2-1) to (2-3): film.
Figure JPOXMLDOC01-appb-C000005
In general formulas (2-1) to (2-3), R f represents a group having a fluorine atom. * Indicates a binding site.
[5]
[1] to [4], wherein at least one of R 1 to R 3 is a group represented by any one of the following general formulas (3-1) to (3-3): Gas separation membrane.
Figure JPOXMLDOC01-appb-C000006

In the general formulas (3-1) to (3-3), L f represents a divalent group having a fluorine atom. * Indicates a binding site.
[6]
The gas separation membrane according to any one of [1] to [5], wherein the degree of substitution by the substituent T of the cellulose compound is 0.5 or more and 3.0 or less.
[7]
The gas separation membrane according to any one of [1] to [6], wherein the degree of substitution of the cellulose compound exceeds 2.5.
[8]
The gas separation membrane according to any one of [1] to [7], wherein the gas separation membrane is a gas separation composite membrane having the gas separation layer above the gas-permeable support layer.
[9]
The gas separation membrane according to [8], wherein the support layer includes a porous layer on the gas separation layer side and a nonwoven fabric layer on the opposite side to the gas separation layer.
[10]
The gas separation membrane according to any one of [1] to [9], which is used for selectively permeating carbon dioxide from a gas containing carbon dioxide and methane.
[11]
In the case where the gas to be separated is a mixed gas of carbon dioxide and methane, the transmission rate of carbon dioxide under a gas supply condition of 40 ° C. and 5 MPa is 20 GPU or more, and the transmission rate of carbon dioxide relative to the transmission rate of methane The gas separation membrane according to any one of [1] to [10], wherein the ratio is 15 or more.
[12]
[1] A gas separation module comprising the gas separation membrane according to any one of [11].
[13]
[1] A gas separation apparatus comprising the gas separation membrane according to any one of [11].
[14]
[1] A gas separation method using the gas separation membrane according to any one of [11].
 本明細書において「~」で表される数値範囲は、その前後に記載される数値を下限値及び上限値として含む意味である。
 本明細書において、特定の符号で表示された置換基や連結基等(以下、置換基等という)が複数あるとき、あるいは複数の置換基等を同時もしくは択一的に規定するときには、それぞれの置換基等は互いに同一でも異なっていてもよいことを意味する。このことは、置換基等の数の規定についても同様である。また、式中に同一の表示で表された複数の部分構造の繰り返しがある場合は、各部分構造ないし繰り返し単位は同一でも異なっていてもよい。
In the present specification, the numerical value range represented by “to” means that the numerical values described before and after the numerical value range are included as a lower limit value and an upper limit value.
In the present specification, when there are a plurality of substituents, linking groups, and the like (hereinafter referred to as substituents) indicated by specific symbols, or when a plurality of substituents are specified simultaneously or alternatively, It means that a substituent etc. may mutually be same or different. The same applies to the definition of the number of substituents and the like. Further, when there are repetitions of a plurality of partial structures represented by the same indication in the formula, each partial structure or repeating unit may be the same or different.
 本明細書において化合物ないし基の表示については、化合物ないし基そのもののほか、それらの塩、それらのイオンを含む意味に用いる。また、目的の効果を奏する範囲で、構造の一部を変化させたものを含む意味である。 In the present specification, the term “compound” or “group” is used to mean a compound or group itself, a salt thereof, or an ion thereof. In addition, it means that a part of the structure is changed as long as the desired effect is achieved.
 本発明のガス分離膜、ガス分離モジュール、及びガス分離装置は、高圧のガス供給条件下の使用においても、優れたガス透過性と優れたガス分離選択性の両立を高度なレベルで実現することができ、高速かつ高選択性のガス分離を可能とする。
 本発明のガス分離方法によれば、高圧のガス供給条件下においても、優れたガス透過性で、且つ、優れたガス分離選択性で目的のガスを分離することができ、高速かつ高選択性のガス分離が可能となる。
The gas separation membrane, gas separation module, and gas separation apparatus of the present invention achieve a high level of both excellent gas permeability and excellent gas separation selectivity even when used under high pressure gas supply conditions. This enables high-speed and highly selective gas separation.
According to the gas separation method of the present invention, the target gas can be separated with excellent gas permeability and excellent gas separation selectivity even under high-pressure gas supply conditions, and high speed and high selectivity. Gas separation is possible.
本発明のガス分離複合膜の一実施形態を模式的に示す断面図である。It is sectional drawing which shows typically one Embodiment of the gas separation composite membrane of this invention. 本発明のガス分離複合膜の別の実施形態を模式的に示す断面図である。It is sectional drawing which shows typically another embodiment of the gas separation composite membrane of this invention.
 本発明のガス分離膜は、ガス分離層に特定のセルロース化合物を含む。本発明のガス分離膜の好ましい実施形態について説明する。 The gas separation membrane of the present invention contains a specific cellulose compound in the gas separation layer. A preferred embodiment of the gas separation membrane of the present invention will be described.
[セルロース化合物]
 本発明のガス分離膜のガス分離層は、下記一般式(1)で表される繰り返し単位を有するセルロース化合物を含む。
[Cellulose compound]
The gas separation layer of the gas separation membrane of the present invention contains a cellulose compound having a repeating unit represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 一般式(1)中、R~Rは水素原子又は置換基を示す。R~Rのうち少なくとも1つは、活性水素とフッ素原子とを有する分子量100以上500未満の置換基(以下、「置換基T」と称す。)である。 In general formula (1), R 1 to R 3 represent a hydrogen atom or a substituent. At least one of R 1 to R 3 is a substituent having an active hydrogen and a fluorine atom and having a molecular weight of 100 or more and less than 500 (hereinafter referred to as “substituent T”).
 本発明において置換基Tが有する「活性水素」は、窒素原子、酸素原子又は硫黄原子に結合した水素原子を意味する。この活性水素は好ましくは水酸基(-OH)、カルボキシ基(-COOH)、アミド基(-CONH)、アミド結合(-CONH-)、スルファモイル基(-SONH)、-SONH-、ウレタン結合(-O-CO-NH-)、又はホウ酸基(-B(OH))を構成する水素原子であることが好ましく、水酸基、カルボキシ基、又はウレタン結合を構成する水素原子がより好ましく、さらに好ましくはカルボキシ基又はウレタン結合を構成する水素原子である。
 ガス分離層を構成するセルロース化合物が置換基T中に活性水素を有することにより、セルロース鎖間の相互作用性が効果的に高められ、ガス分離層が剛直化してガス分離選択性をより向上させることができ、可塑化耐性もより高めることができる。
 他方、上記セルロース化合物は置換基T中にフッ素原子を有するため、電子反発によりガス分離層内に微小な空孔が形成されるなどして、ガス分離層は十分なガス透過性も示すことができる。さらにフッ素原子は、トルエン等の可塑化成分に対する親和性を抑制し、可塑化耐性の向上にも寄与すると考えられる。
In the present invention, the “active hydrogen” of the substituent T means a hydrogen atom bonded to a nitrogen atom, an oxygen atom or a sulfur atom. This active hydrogen is preferably a hydroxyl group (—OH), a carboxy group (—COOH), an amide group (—CONH 2 ), an amide bond (—CONH—), a sulfamoyl group (—SO 2 NH 2 ), —SO 2 NH—. , A hydrogen bond constituting a urethane bond (—O—CO—NH—) or a boric acid group (—B (OH) 2 ), and a hydrogen atom constituting a hydroxyl group, a carboxy group or a urethane bond is preferably More preferably, it is a hydrogen atom which comprises a carboxy group or a urethane bond.
When the cellulose compound constituting the gas separation layer has active hydrogen in the substituent T, the interaction between the cellulose chains is effectively enhanced, and the gas separation layer is stiffened to further improve the gas separation selectivity. And the plasticization resistance can be further increased.
On the other hand, since the cellulose compound has a fluorine atom in the substituent T, the gas separation layer may also exhibit sufficient gas permeability due to the formation of minute holes in the gas separation layer due to electron repulsion. it can. Furthermore, the fluorine atom is considered to suppress the affinity for plasticizing components such as toluene and contribute to the improvement of plasticization resistance.
 置換基Tの分子量は100以上500未満である。置換基Tの分子量が大きすぎると、セルロース鎖間の相互作用性が低下して可塑化耐性が低下するおそれがある。置換基Tの分子量は125以上450未満が好ましく、より好ましくは150以上400未満である。 The molecular weight of the substituent T is 100 or more and less than 500. If the molecular weight of the substituent T is too large, the interaction between the cellulose chains may be reduced, and the plasticization resistance may be reduced. The molecular weight of the substituent T is preferably 125 or more and less than 450, more preferably 150 or more and less than 400.
 上記セルロース化合物は、R~Rとして、置換基Tに加え、メチル又はアセチルを有することも好ましい。これらの形態により、セルロース化合物にメトキシあるいはアセチルオキシが導入された形態とすることができる。メトキシ及びアセチルオキシはコンパクトな極性基であり、ガス分離選択性を悪化させることなくセルロース化合物の溶媒に対する溶解性を高めることができ好ましい。 In addition to the substituent T, the cellulose compound preferably has methyl or acetyl as R 1 to R 3 . By these forms, it can be set as the form which methoxy or acetyloxy was introduce | transduced into the cellulose compound. Methoxy and acetyloxy are compact polar groups, and are preferable because they can increase the solubility of the cellulose compound in a solvent without deteriorating gas separation selectivity.
 上記R~Rのうち少なくとも1つは、下記一般式(2-1)~(2-3)のいずれかで表される基(下記一般式(2-1)~(2-3)のいずれかで表される置換基T)であることが好ましい。なお、本明細書において*は結合部位(結合手)を示す。 At least one of R 1 to R 3 is a group represented by any one of the following general formulas (2-1) to (2-3) (the following general formulas (2-1) to (2-3) It is preferable that it is the substituent T) represented by either. In the present specification, * indicates a binding site (bonding hand).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 各式中、Rはフッ素原子を有する基を示す。
 Rは、フッ素原子を有するアルキル基又はフッ素原子を有するアリール基が好ましく、フッ素原子を有するアリール基がより好ましい。
 上記のフッ素原子を有するアルキル基は、炭素数1~8が好ましく、1~6がより好ましく、1~4がさらに好ましく、1~3が特に好ましい。
In each formula, R f represents a group having a fluorine atom.
R f is preferably an alkyl group having a fluorine atom or an aryl group having a fluorine atom, and more preferably an aryl group having a fluorine atom.
The alkyl group having a fluorine atom preferably has 1 to 8 carbon atoms, more preferably 1 to 6 carbon atoms, still more preferably 1 to 4 carbon atoms, and particularly preferably 1 to 3 carbon atoms.
 上記のフッ素原子を有するアリール基は、フッ素原子を有するフェニルであることが好ましい。Rはフッ素原子を置換基として有するアリール基であるか、及び/又はフッ化アルキル基(好ましくはトリフルオロメチル)を有するアリール基であることが好ましい。このアリール基は活性水素を有することも好ましく、活性水素を有するアリール基としては、水酸基又はカルボキシ基を有するアリール基の形態が好ましい。
 Rの好ましい具体例を以下に示す。
The aryl group having a fluorine atom is preferably phenyl having a fluorine atom. R f is preferably an aryl group having a fluorine atom as a substituent and / or an aryl group having a fluorinated alkyl group (preferably trifluoromethyl). The aryl group preferably has active hydrogen, and the aryl group having active hydrogen is preferably an aryl group having a hydroxyl group or a carboxy group.
Preferred specific examples of R f are shown below.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 置換基Tが上記一般式(2-1)~(2-3)のいずれかで表される基であることにより、ガス透過性がより高められる傾向にある。置換基Tが一般式(2-1)~(2-3)のいずれかで表される基である場合、ガス分離選択性や可塑化耐性に影響を与える膜の剛直性の観点から一般式(2-1)で表される基であることがより好ましい。 When the substituent T is a group represented by any one of the above general formulas (2-1) to (2-3), gas permeability tends to be further improved. When the substituent T is a group represented by any one of the general formulas (2-1) to (2-3), the general formula is used from the viewpoint of membrane rigidity that affects gas separation selectivity and plasticization resistance. A group represented by (2-1) is more preferable.
 また、上記R~Rのうち少なくとも1つが、下記一般式(3-1)~(3-3)のいずれかで表される基(下記一般式(3-1)~(3-3)のいずれかで表される置換基T)であることも好ましい。 Further, at least one of R 1 to R 3 is a group represented by any one of the following general formulas (3-1) to (3-3) (the following general formulas (3-1) to (3-3) It is also preferred that it is a substituent T) represented by any one of
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 各式中、Lはフッ素原子を有する2価の基を示す。Lはフッ素原子を有するアルキレン基又はアリーレン基が好ましく、フッ素原子を有するアリーレン基がより好ましい。
 Lとして採り得る、フッ素原子を有するアルキレン基は、炭素数炭素数1~8が好ましく、1~6がより好ましく、1~4がさらに好ましく、1~3が特に好ましい。
In each formula, L f represents a divalent group having a fluorine atom. L f is preferably an alkylene group or an arylene group having a fluorine atom, and more preferably an arylene group having a fluorine atom.
The alkylene group having a fluorine atom, which can be taken as L f , preferably has 1 to 8 carbon atoms, more preferably 1 to 6, still more preferably 1 to 4, and particularly preferably 1 to 3.
 Lとして採り得る、フッ素原子を有するアリーレン基は、フッ素原子を有するフェニレンであることが好ましい。Lはフッ素原子を置換基として有するアリーレン基であるか、及び/又はフッ化アルキル基(好ましくはトリフルオロメチル)を置換基として有するアリーレン基であることが好ましい。 It can take as L f, arylene group having a fluorine atom is preferably a phenylene having a fluorine atom. L f is preferably an arylene group having a fluorine atom as a substituent and / or an arylene group having a fluorinated alkyl group (preferably trifluoromethyl) as a substituent.
 一般式(3-1)~(3-3)中の「-L-COOH」について、その好ましい具体例を以下に示す。 Preferable specific examples of “—L f —COOH” in the general formulas (3-1) to (3-3) are shown below.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 置換基Tが上記一般式(3-1)~(3-3)のいずれかで表される基であることにより、ガス分離選択性ないし可塑化耐性がより高められる傾向にある。置換基Tが一般式(3-1)~(3-3)のいずれかで表される基である場合、ガス分離選択性や可塑化耐性に影響を与える膜の剛直性の観点から一般式(3-1)で表される基であることがより好ましい。 When the substituent T is a group represented by any one of the above general formulas (3-1) to (3-3), gas separation selectivity or plasticization resistance tends to be further improved. In the case where the substituent T is a group represented by any one of the general formulas (3-1) to (3-3), the general formula is used from the viewpoint of membrane rigidity that affects gas separation selectivity and plasticization resistance. A group represented by (3-1) is more preferable.
 本発明に用いるセルロース化合物は、R~Rとして、一般式(2-1)~(2-3)及び一般式(3-1)~(3-3)のいずれかで表される基のうち2種以上の基を有していてもよい。
 本発明に用いるセルロース化合物は、R~Rとして、一般式(2-1)~(2-3)で表される基を有する場合には、一般式(3-1)~(3-3)のいずれかで表される基を有さず、逆に一般式(3-1)~(3-3)のいずれかで表される基を有する場合には、一般式(2-1)~(2-3)で表される基を有しないことが好ましい。このような形態とすることにより、所望のガス透過性とガス分離選択性の両立を実現しながら、目的の特性(ガス透過性又はガス分離選択性)についてさらに高められたガス分離膜とすることができる。
 本発明に用いるセルロース化合物が有する置換基Tの総数に占める、一般式(2-1)~(2-3)及び一般式(3-1)~(3-3)のいずれかで表される基の総数の割合は、25~100%が好ましく、50~100%がより好ましく、75~100%がさらに好ましい。
The cellulose compound used in the present invention is a group represented by any one of general formulas (2-1) to (2-3) and general formulas (3-1) to (3-3) as R 1 to R 3. May have two or more groups.
When the cellulose compounds used in the present invention have groups represented by general formulas (2-1) to (2-3) as R 1 to R 3 , the general formulas (3-1) to (3- 3) In the case where the group represented by any one of the general formulas (3-1) to (3-3) is not present, the general formula (2-1) ) To (2-3) are preferred. By adopting such a form, a gas separation membrane having a further improved target property (gas permeability or gas separation selectivity) while realizing both desired gas permeability and gas separation selectivity is obtained. Can do.
It is represented by any one of the general formulas (2-1) to (2-3) and the general formulas (3-1) to (3-3) in the total number of substituents T included in the cellulose compound used in the present invention. The ratio of the total number of groups is preferably 25 to 100%, more preferably 50 to 100%, and further preferably 75 to 100%.
 置換基Tの具体例を以下に示すが、本発明はこれらの形態に限定されるものではない。 Specific examples of the substituent T are shown below, but the present invention is not limited to these forms.
Figure JPOXMLDOC01-appb-C000012
 
Figure JPOXMLDOC01-appb-C000012
 
 上記セルロース化合物は、製膜に必要な溶媒への溶解性およびガス透過性の観点から、置換基Tによる置換度が0.5以上3.0以下であることが好ましい。
 ここで、セルロース化合物の置換度について説明する。セルロースを構成するβ-1,4結合しているグルコース単位は、2位、3位および6位に計3つの水酸基を有している。セルロース化合物の置換度とは、これらの水酸基における水素原子が他の基に置換された度合いを示すものである。例えば、全てのグルコース単位の2位、3位および6位の水酸基を構成する水素原子がいずれも他の基で置換された場合、置換度は3となる。また例えば、全てのグルコース単位で、6位の水酸基を構成する水素原子が全て他の基で置換され、2位及び3位の水酸基を構成する水素原子についてはいずれも他の基で置換されていない場合(2位及び3位の水酸基が水酸基の状態で残っている場合)、置換度は1となる。
 セルロースの水酸基を構成する水素原子と置換された官能基の種類、及びセルロース化合物の置換度は、Cellulose Communication 1999年,第6巻,p.73-79に記載の方法に基づき、H-NMRにより決定できる。
 上記セルロース化合物は、ガス分離層に所望のガス分離選択性とガス透過性を付与しながら、溶剤中への溶解性も高める観点から、置換基Tによる置換度が1.0以上2.75以下であることが好ましく、1.5以上2.5以下がより好ましい。また、置換基Tによる置換度は1.0~2.5とすることも好ましく、1.0~2.0とすることも好ましい。
The cellulose compound preferably has a degree of substitution with a substituent T of 0.5 or more and 3.0 or less from the viewpoint of solubility in a solvent necessary for film formation and gas permeability.
Here, the substitution degree of the cellulose compound will be described. The β-1,4-bonded glucose unit constituting cellulose has a total of three hydroxyl groups at the 2nd, 3rd and 6th positions. The degree of substitution of the cellulose compound indicates the degree of substitution of hydrogen atoms in these hydroxyl groups with other groups. For example, when all of the hydrogen atoms constituting the 2nd, 3rd, and 6th hydroxyl groups of all glucose units are substituted with other groups, the degree of substitution is 3. Further, for example, in all glucose units, all the hydrogen atoms constituting the hydroxyl group at the 6-position are substituted with other groups, and the hydrogen atoms constituting the hydroxyl groups at the 2-position and the 3-position are both substituted with other groups. When there is no hydroxyl group (when the 2-position and 3-position hydroxyl groups remain in the hydroxyl state), the degree of substitution is 1.
The kind of functional group substituted with the hydrogen atom constituting the hydroxyl group of cellulose and the degree of substitution of the cellulose compound are described in Cellulose Communication 1999, Vol. 6, p. It can be determined by 1 H-NMR based on the method described in 73-79.
The cellulose compound has a degree of substitution by a substituent T of 1.0 or more and 2.75 or less from the viewpoint of enhancing solubility in a solvent while imparting desired gas separation selectivity and gas permeability to the gas separation layer. It is preferable that it is 1.5 or more and 2.5 or less. The degree of substitution with the substituent T is preferably 1.0 to 2.5, and more preferably 1.0 to 2.0.
 上記セルロース化合物は、置換度(置換基Tによる置換を含む)が2.5越えであることが好ましく、2.8越えが好ましく、2.9越えがより好ましい。すなわち、セルロース化合物が有する水酸基の量は少ない方が好ましい。水酸基の量が多いと、ガス透過性が低下する傾向にある。 The cellulose compound preferably has a degree of substitution (including substitution with a substituent T) of more than 2.5, preferably more than 2.8, more preferably more than 2.9. That is, it is preferable that the cellulose compound has a smaller amount of hydroxyl groups. When the amount of hydroxyl groups is large, gas permeability tends to decrease.
 上記セルロース化合物の分子量は、数平均分子量(Mn)が5×10~1000×10の範囲が好ましく、10×10~500×10の範囲が更に好ましく、10×10~200×10の範囲が最も好ましい。また、重量平均分子量(Mw)は、7×10~10000×10の範囲が好ましく、15×10~5000×10の範囲が更に好ましく、100×10~3000×10の範囲が最も好ましい。
 本発明において、数平均分子量(Mn)、及び重量平均分子量(Mw)の測定は、ゲル パーミエーション クロマトグラフィー(GPC)を用いて行うことができる。具体的には、N-メチルピロリドンを溶媒とし、ポリスチレンゲルを使用し、標準単分散ポリスチレンの構成曲線から予め求められた換算分子量較正曲線を用いて求めることができる。
The molecular weight of the cellulose compound is preferably a number average molecular weight (Mn) in the range of 5 × 10 3 to 1000 × 10 3 , more preferably in the range of 10 × 10 3 to 500 × 10 3 , and 10 × 10 3 to 200 ×. 10 3 ranges are most preferred. The weight average molecular weight (Mw) is preferably in the range of 7 × 10 3 to 10000 × 10 3 , more preferably in the range of 15 × 10 3 to 5000 × 10 3 , and in the range of 100 × 10 3 to 3000 × 10 3 . Is most preferred.
In the present invention, the number average molecular weight (Mn) and the weight average molecular weight (Mw) can be measured using gel permeation chromatography (GPC). Specifically, N-methylpyrrolidone is used as a solvent, a polystyrene gel is used, and the molecular weight can be determined using a conversion molecular weight calibration curve obtained in advance from a standard monodisperse polystyrene constituent curve.
(セルロース化合物の調製)
 本発明に用いるセルロース化合物の製造方法は特に限定されず、原料セルロースに対し、常法により、エーテル化反応ないしエステル化反応により目的の置換基を導入することにより得ることができる。エーテル化反応としては、例えば、塩基存在下、セルロースと各種アルキルハライド、各種アリールハライド、各種エポキシ等を反応させることにより、目的のセルロース化合物を得ることができる。また、エステル化反応としては、例えば、セルロースと各種酸クロライド、各種酸無水物等を反応させることにより、目的のセルロース化合物を得ることができる。原料セルロースとしては特に制限されず、例えば、綿、リンター、パルプ等の他、セルロースの水酸基があらかじめ一部置換されたメチルセルロース、エチルセルロース、酢酸セルロース、ヒドロキシメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルエチルセルロース等の各種置換セルロースも用いることができる。これらの原料セルロースについての詳細は、例えば、丸澤、宇田著,「プラスチック材料講座(17)繊維素系樹脂」,日刊工業新聞社(1970年発行)及び発明協会公開技報公技番号2001-1745号(7頁~8頁)に記載されている。
(Preparation of cellulose compound)
The manufacturing method of the cellulose compound used for this invention is not specifically limited, It can obtain by introduce | transducing the target substituent by etherification reaction or esterification reaction with respect to raw material cellulose by a conventional method. As the etherification reaction, for example, by reacting cellulose with various alkyl halides, various aryl halides, various epoxies and the like in the presence of a base, a target cellulose compound can be obtained. Moreover, as an esterification reaction, the target cellulose compound can be obtained by making a cellulose react with various acid chlorides, various acid anhydrides, etc., for example. The raw material cellulose is not particularly limited. For example, methyl cellulose, ethyl cellulose, cellulose acetate, hydroxymethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, hydroxypropyl in which the hydroxyl group of cellulose is partially substituted in advance in addition to cotton, linter, pulp, etc. Various substituted celluloses such as ethyl cellulose can also be used. Details of these raw material celluloses can be found in, for example, Marusawa and Uda, “Plastic Materials Course (17) Fibrous Resin”, Nikkan Kogyo Shimbun (published in 1970), and Japan Institute of Invention and Technology Publication No. 2001-2001. 1745 (pages 7 to 8).
[ガス分離膜]
 本発明のガス分離膜の好ましい態様であるガス分離複合膜は、ガス透過性の支持層の上側に、特定のセルロース化合物を含有してなるガス分離層が形成されている。ガス透過性の支持層としては多孔質支持層が用いられる。
 図1は、本発明の好ましい実施形態であるガス分離複合膜10を模式的に示す縦断面図である。1はガス分離層、2は支持層である。図2は、本発明の別の好ましい実施形態であるガス分離複合膜20を模式的に示す断面図である。この実施形態では、ガス分離層1及び支持層2に加え、さらなる支持体として不織布層3が追加されている。
 図1及び2は、二酸化炭素とメタンの混合ガスから二酸化炭素を選択的に透過させる形態を示す。
[Gas separation membrane]
In the gas separation composite membrane which is a preferred embodiment of the gas separation membrane of the present invention, a gas separation layer containing a specific cellulose compound is formed on the upper side of the gas permeable support layer. A porous support layer is used as the gas permeable support layer.
FIG. 1 is a longitudinal sectional view schematically showing a gas separation composite membrane 10 which is a preferred embodiment of the present invention. 1 is a gas separation layer, 2 is a support layer. FIG. 2 is a cross-sectional view schematically showing a gas separation composite membrane 20 which is another preferred embodiment of the present invention. In this embodiment, in addition to the gas separation layer 1 and the support layer 2, the nonwoven fabric layer 3 is added as a further support body.
1 and 2 show a mode in which carbon dioxide is selectively permeated from a mixed gas of carbon dioxide and methane.
 本明細書において「支持層上側」とは、支持層とガス分離層との間に他の層が介在してもよい意味である。また、上下の表現については、特に断らない限り、分離対象とするガスが供給される側を「上」とし、分離されたガス(透過ガス)が出される側を「下」とする。 In the present specification, “upper support layer” means that another layer may be interposed between the support layer and the gas separation layer. For the upper and lower expressions, unless otherwise specified, the side on which the gas to be separated is supplied is “upper”, and the side on which the separated gas (permeate gas) is emitted is “lower”.
 本発明のガス分離複合膜では、ガス透過性の支持層の少なくとも表面にガス分離層が形成される。支持層表面にガス分離層を形成することで、ガス分離選択性とガス透過性、更には機械的強度を兼ね備えた複合膜とすることができる。ガス分離層の層厚としては、所望の機械的強度、分離選択性を有しつつ高ガス透過性を示す範囲において可能な限り薄膜であることが好ましい。 In the gas separation composite membrane of the present invention, a gas separation layer is formed on at least the surface of the gas permeable support layer. By forming a gas separation layer on the surface of the support layer, a composite membrane having both gas separation selectivity and gas permeability and mechanical strength can be obtained. The layer thickness of the gas separation layer is preferably a thin film as much as possible within the range showing high gas permeability while having desired mechanical strength and separation selectivity.
 本発明のガス分離複合膜において、ガス分離層の厚さは0.01~5.0μmであることが好ましく、0.05~2.0μmであることがより好ましい。 In the gas separation composite membrane of the present invention, the thickness of the gas separation layer is preferably 0.01 to 5.0 μm, and more preferably 0.05 to 2.0 μm.
 支持層は、機械的強度及び高気体透過性の付与に合致する目的のものであれば、特に限定されるものではなく有機、無機どちらの素材であっても構わない。好ましくは有機高分子の多孔質膜であり、その厚さは1~3000μm、好ましくは5~500μmであり、より好ましくは5~150μmである。この多孔質膜の細孔構造は、通常平均細孔直径が10μm以下、好ましくは0.5μm以下、より好ましくは0.2μm以下である。空孔率は好ましくは20~90%であり、より好ましくは30~80%である。
 ここで、支持層が「ガス透過性」を有するとは、支持層(支持層のみからなる膜)に対して、40℃の温度下、ガス供給側の全圧力を4MPaにして二酸化炭素を供給した際に、二酸化炭素の透過速度が1×10-5cm(STP)/cm・sec・cmHg(10GPU)以上であることを意味する。さらに、支持層のガス透過性は、40℃の温度下、ガス供給側の全圧力を4MPaにして二酸化炭素を供給した際に、二酸化炭素透過速度が3×10-5cm(STP)/cm・sec・cmHg(30GPU)以上であることが好ましく、100GPU以上であることがより好ましく、200GPU以上であることがさらに好ましく、500GPU以上であることがさらに好ましい。
 支持層の素材としては、従来公知の高分子、例えばポリエチレン、ポリプロピレン等のポリオレフィン系樹脂等、ポリテトラフルオロエチレン、ポリフッ化ビニル、ポリフッ化ビニリデン等の含フッ素樹脂等、ポリスチレン、酢酸セルロース、ポリウレタン、ポリアクリロニトリル、ポリフェニレンオキシド、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリアラミド等を挙げることができる。支持層の形状としては、平板状、スパイラル状、管状、中空糸状などいずれの形状をとることもできる。
The support layer is not particularly limited as long as it has the purpose of meeting mechanical strength and high gas permeability, and may be either organic or inorganic material. An organic polymer porous film is preferable, and the thickness thereof is 1 to 3000 μm, preferably 5 to 500 μm, and more preferably 5 to 150 μm. The pore structure of this porous membrane usually has an average pore diameter of 10 μm or less, preferably 0.5 μm or less, more preferably 0.2 μm or less. The porosity is preferably 20 to 90%, more preferably 30 to 80%.
Here, the support layer has “gas permeability” means that carbon dioxide is supplied to the support layer (a film composed of only the support layer) at a temperature of 40 ° C. with the total pressure on the gas supply side being 4 MPa. This means that the permeation rate of carbon dioxide is 1 × 10 −5 cm 3 (STP) / cm 2 · sec · cmHg (10 GPU) or more. Further, the gas permeability of the support layer is such that when carbon dioxide is supplied at a temperature of 40 ° C. and the total pressure on the gas supply side is 4 MPa, the carbon dioxide permeation rate is 3 × 10 −5 cm 3 (STP) / It is preferably cm 2 · sec · cmHg (30 GPU) or more, more preferably 100 GPU or more, further preferably 200 GPU or more, and further preferably 500 GPU or more.
Examples of the material for the support layer include conventionally known polymers such as polyolefin resins such as polyethylene and polypropylene, fluorine-containing resins such as polytetrafluoroethylene, polyvinyl fluoride, and polyvinylidene fluoride, polystyrene, cellulose acetate, polyurethane, Polyacrylonitrile, polyphenylene oxide, polysulfone, polyethersulfone, polyimide, polyaramid and the like can be mentioned. The shape of the support layer can be any shape such as a flat plate shape, a spiral shape, a tubular shape, and a hollow fiber shape.
 本発明のガス分離複合膜においては、ガス分離層を形成する支持層の下部にさらに機械的強度を付与するために支持体が形成されていることが好ましい。このような支持体としては、織布、不織布、ネット等が挙げられるが、製膜性及びコスト面から不織布が好適に用いられる。不織布としてはポリエステル、ポリプロピレン、ポリアクリロニトリル、ポリエチレン、ポリアミド等からなる繊維を単独あるいは複数を組み合わせて用いてもよい。不織布は、例えば、水に均一に分散した主体繊維とバインダー繊維を円網や長網等で抄造し、ドライヤーで乾燥することにより製造できる。また、毛羽を除去したり機械的性質を向上させたり等の目的で、不織布を2本のロール挟んで圧熱加工を施すことも好ましい。 In the gas separation composite membrane of the present invention, it is preferable that a support is formed to further impart mechanical strength to the lower part of the support layer forming the gas separation layer. Examples of such a support include woven fabrics, nonwoven fabrics, nets, and the like, but nonwoven fabrics are preferably used in terms of film forming properties and cost. As the nonwoven fabric, fibers made of polyester, polypropylene, polyacrylonitrile, polyethylene, polyamide or the like may be used alone or in combination. The nonwoven fabric can be produced, for example, by making a main fiber and a binder fiber uniformly dispersed in water using a circular net or a long net, and drying with a dryer. Moreover, it is also preferable to apply a heat treatment by sandwiching a non-woven fabric between two rolls for the purpose of removing fluff and improving mechanical properties.
 本発明のガス分離膜は、上述した複合膜の形態に限られず、後述するような非対称膜の形態であることも好ましい。 The gas separation membrane of the present invention is not limited to the above-described composite membrane, but is preferably an asymmetric membrane as described later.
<ガス分離膜の製造>
 続いて本発明のガス分離膜の製造について説明する。
 本発明のガス分離膜は、上述のようにガス透過性の支持層(多孔質支持層)上にガス分離層を設けた複合膜の形態が好ましい。また、本発明のガス分離膜は支持体とガス分離層を同一のセルロース化合物で一体的に形成した非対称膜の形態とすることもできる。
<Manufacture of gas separation membrane>
Next, production of the gas separation membrane of the present invention will be described.
As described above, the gas separation membrane of the present invention is preferably in the form of a composite membrane in which a gas separation layer is provided on a gas-permeable support layer (porous support layer). In addition, the gas separation membrane of the present invention can be in the form of an asymmetric membrane in which the support and the gas separation layer are integrally formed of the same cellulose compound.
(ガス分離複合膜の製造)
 本発明の複合膜は、好ましくは、上記セルロース化合物を含有する塗布液をガス透過性の支持層上に塗布し、この塗布膜を乾燥することによりガス分離層を形成することを含む。塗布液中のセルロース化合物の含有量は特に限定されないが、0.1~30質量%であることが好ましく、0.5~15質量%であることがより好ましい。セルロース化合物の含有量が少なすぎると、多孔質支持体上に製膜した際に、下層に浸透しやすくなり、分離に寄与する表層に欠陥が生じるおそれが高くなる。また、セルロース化合物の含有量が高すぎると、多孔質支持体上に製膜した際に孔内に高濃度に充填されてしまい、十分な透過性が得られなくなるおそれがある。
(Manufacture of gas separation composite membrane)
The composite membrane of the present invention preferably includes forming a gas separation layer by applying a coating liquid containing the cellulose compound on a gas permeable support layer and drying the coating membrane. The cellulose compound content in the coating solution is not particularly limited, but is preferably 0.1 to 30% by mass, more preferably 0.5 to 15% by mass. When the content of the cellulose compound is too small, when the film is formed on the porous support, it easily penetrates into the lower layer, and there is a high possibility that defects will occur in the surface layer that contributes to separation. On the other hand, if the cellulose compound content is too high, the pores are filled at a high concentration when a film is formed on the porous support, and sufficient permeability may not be obtained.
 塗布液の媒体とする有機溶剤としては、特に限定されるものではないが、n-ヘキサン、n-ヘプタン等の炭化水素、酢酸メチル、酢酸エチル、酢酸ブチル等のエステル;メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、tert-ブタノール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、グリセリン、プロピレングリコール等のアルコール;アセトン、メチルエチルケトン、メチルイソブチルケトン、ジアセトンアルコール、シクロペンタノン、シクロヘキサノン等の脂肪族ケトン;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールメチルエーテル、ジプロピレングリコールメチルエーテル、トリプロピレングリコールメチルエーテル、エチレングリコールフェニルエーテル、プロピレングリコールフェニルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、ジブチルエーテル、テトラヒドロフラン、メチルシクロペンチルエーテル、ジオキサン等のエーテル;N-メチルピロリドン、2-ピロリドン、ジメチルホルムアミド、ジメチルイミダゾリジノン、ジメチルスルホキシド、及びジメチルアセトアミドなどが挙げられ、これらの1種又は2種以上を用いることができる。 The organic solvent used as a medium for the coating solution is not particularly limited, but hydrocarbons such as n-hexane and n-heptane, esters such as methyl acetate, ethyl acetate and butyl acetate; methanol, ethanol, n- Alcohols such as propanol, isopropanol, n-butanol, isobutanol, tert-butanol, ethylene glycol, diethylene glycol, triethylene glycol, glycerin, propylene glycol; acetone, methyl ethyl ketone, methyl isobutyl ketone, diacetone alcohol, cyclopentanone, cyclohexanone, etc. Aliphatic ketones; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol methyl ether, dipropylene glycol methyl ether, tri Lopylene glycol methyl ether, ethylene glycol phenyl ether, propylene glycol phenyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, dibutyl ether, tetrahydrofuran, methylcyclopentyl ether, Examples include ethers such as dioxane; N-methylpyrrolidone, 2-pyrrolidone, dimethylformamide, dimethylimidazolidinone, dimethyl sulfoxide, and dimethylacetamide, and one or more of these can be used.
 本発明のガス分離複合膜において、支持層とガス分離層との間には他の層が存在していてもよい。他の層の好ましい例として、シロキサン化合物層が挙げられる。シロキサン化合物層を設けることで、支持体最表面の凹凸を平滑化することができ、分離層の薄層化が容易になる。シロキサン化合物層を形成するシロキサン化合物としては、主鎖がポリシロキサンからなるものと、主鎖にシロキサン構造と非シロキサン構造を有する化合物とが挙げられる。
 本明細書において「シロキサン化合物」という場合、特に断りのない限り、オルガノポリシロキサン化合物を意味する。
In the gas separation composite membrane of the present invention, another layer may exist between the support layer and the gas separation layer. A preferred example of the other layer is a siloxane compound layer. By providing the siloxane compound layer, the unevenness on the outermost surface of the support can be smoothed, and the separation layer can be easily thinned. Examples of the siloxane compound forming the siloxane compound layer include those having a main chain made of polysiloxane and compounds having a siloxane structure and a non-siloxane structure in the main chain.
In the present specification, the term “siloxane compound” means an organopolysiloxane compound unless otherwise specified.
-主鎖がポリシロキサンからなるシロキサン化合物-
 シロキサン化合物層に用いうる、主鎖がポリシロキサンからなるシロキサン化合物としては、下記式(1)もしくは(2)で表されるポリオルガノシロキサンの1種又は2種以上が挙げられる。また、これらのポリオルガノシロキサンは架橋反応物を形成していてもよい。この架橋反応物としては、例えば、下記式(1)で表される化合物が、下記式(1)の反応性基Xと反応して連結する基を両末端に有するポリシロキサン化合物により架橋された形態の化合物が挙げられる。
-Siloxane compounds whose main chain consists of polysiloxane-
Examples of the siloxane compound having a main chain made of polysiloxane that can be used in the siloxane compound layer include one or more polyorganosiloxanes represented by the following formula (1) or (2). Moreover, these polyorganosiloxanes may form a crosslinking reaction product. As the cross-linking reaction, for example, a compound represented by the following formula (1) is crosslinked by a polysiloxane compound having a group capable of linking by reacting with the reactive group X S of the formula (1) at both ends The compound of the form is mentioned.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式(1)中、Rは非反応性基であって、アルキル基(好ましくは炭素数1~18、より好ましくは炭素数1~12のアルキル基)又はアリール基(好ましくは炭素数6~15、より好ましくは炭素数6~12のアリール基、さらに好ましくはフェニル)であることが好ましい。
 Xは反応性基であって、水素原子、ハロゲン原子、ビニル基、ヒドロキシル基、及び置換アルキル基(好ましくは炭素数1~18、より好ましくは炭素数1~12のアルキル基)から選ばれる基であることが好ましい。
 Y及びZは上記R又はXである。
 mは1以上の数であり、好ましくは1~100,000である。
 nは0以上の数であり、好ましくは0~100,000である。
In the formula (1), R S is a non-reactive group and is an alkyl group (preferably an alkyl group having 1 to 18 carbon atoms, more preferably an alkyl group having 1 to 12 carbon atoms) or an aryl group (preferably having 6 to 6 carbon atoms). 15, more preferably an aryl group having 6 to 12 carbon atoms, and still more preferably phenyl).
X S is a reactive group selected from a hydrogen atom, a halogen atom, a vinyl group, a hydroxyl group, and a substituted alkyl group (preferably an alkyl group having 1 to 18 carbon atoms, more preferably an alkyl group having 1 to 12 carbon atoms). It is preferably a group.
Y S and Z S are the above R S or X S.
m is a number of 1 or more, preferably 1 to 100,000.
n is a number of 0 or more, preferably 0 to 100,000.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式(2)中、X、Y、Z、R、m及びnは、それぞれ式(1)のX、Y、Z、R、m及びnと同義である。 Wherein (2), X S, Y S, Z S, R S, m and n are X S of each formula (1), Y S, Z S, R S, and m and n synonymous.
 上記式(1)及び(2)において、非反応性基Rがアルキル基である場合、このアルキル基の例としては、メチル、エチル、へキシル、オクチル、デシル、及びオクタデシルを挙げることができる。また、非反応性基Rがフルオロアルキル基である場合、このフルオロアルキル基としては、例えば、-CHCHCF、-CHCH13が挙げられる。 In the above formulas (1) and (2), when the non-reactive group R S is an alkyl group, examples of the alkyl group include methyl, ethyl, hexyl, octyl, decyl, and octadecyl. . When the non-reactive group R is a fluoroalkyl group, examples of the fluoroalkyl group include —CH 2 CH 2 CF 3 and —CH 2 CH 2 C 6 F 13 .
 上記式(1)及び(2)において、反応性基Xが置換アルキル基である場合、このアルキル基の例としては、炭素数1~18のヒドロキシアルキル基、炭素数1~18のアミノアルキル基、炭素数1~18のカルボキシアルキル基、炭素数1~18のクロロアルキル基、炭素数1~18のグリシドキシアルキル基、グリシジル基、炭素数7~16のエポキシシクロへキシルアルキル基、炭素数4~18の(1-オキサシクロブタン-3-イル)アルキル基、メタクリロキシアルキル基、及びメルカプトアルキル基が挙げられる。
 上記ヒドロキシアルキル基を構成するアルキル基の炭素数は1~10の整数であることが好ましく、例えば、-CHCHCHOHが挙げられる。
 上記アミノアルキル基を構成するアルキル基の好ましい炭素数は1~10の整数であることが好ましく、例えば、-CHCHCHNHが挙げられる。
 上記カルボキシアルキル基を構成するアルキル基の好ましい炭素数は1~10の整数であることが好ましく、例えば、-CHCHCHCOOHが挙げられる。
 上記クロロアルキル基を構成するアルキル基の好ましい炭素数は1~10の整数であることが好ましく、好ましい例としては-CHClが挙げられる。
 上記グリシドキシアルキル基を構成するアルキル基の好ましい炭素数は1~10の整数であり、好ましい例としては、3-グリシジルオキシプロピルが挙げられる。
 上記炭素数7~16のエポキシシクロへキシルアルキル基の好ましい炭素数は8~12の整数である。
 炭素数4~18の(1-オキサシクロブタン-3-イル)アルキル基の好ましい炭素数は4~10の整数である。
 上記メタクリロキシアルキル基を構成するアルキル基の好ましい炭素数は1~10の整数であり、例えば、-CHCHCH-OOC-C(CH)=CHが挙げられる。
 上記メルカプトアルキル基を構成するアルキル基の好ましい炭素数は1~10の整数であり、例えば、-CHCHCHSHが挙げられる。
 m及びnは、化合物の分子量が5,000~1000,000になる数であることが好ましい。
In the above formulas (1) and (2), when the reactive group XS is a substituted alkyl group, examples of the alkyl group include a hydroxyalkyl group having 1 to 18 carbon atoms and an aminoalkyl group having 1 to 18 carbon atoms. A carboxyalkyl group having 1 to 18 carbon atoms, a chloroalkyl group having 1 to 18 carbon atoms, a glycidoxyalkyl group having 1 to 18 carbon atoms, a glycidyl group, an epoxycyclohexylalkyl group having 7 to 16 carbon atoms, Examples thereof include a (1-oxacyclobutan-3-yl) alkyl group having 4 to 18 carbon atoms, a methacryloxyalkyl group, and a mercaptoalkyl group.
The number of carbon atoms of the alkyl group constituting the hydroxyalkyl group is preferably an integer of 1 to 10, for example, —CH 2 CH 2 CH 2 OH.
The number of carbon atoms of the alkyl group constituting the aminoalkyl group is preferably an integer of 1 to 10, and examples thereof include —CH 2 CH 2 CH 2 NH 2 .
The number of carbon atoms of the alkyl group constituting the carboxyalkyl group is preferably an integer of 1 to 10, and examples thereof include —CH 2 CH 2 CH 2 COOH.
The number of carbon atoms of the alkyl group constituting the chloroalkyl group is preferably an integer of 1 to 10, and a preferred example is —CH 2 Cl.
A preferable carbon number of the alkyl group constituting the glycidoxyalkyl group is an integer of 1 to 10, and a preferred example is 3-glycidyloxypropyl.
The preferable number of carbon atoms of the epoxy cyclohexyl alkyl group having 7 to 16 carbon atoms is an integer of 8 to 12.
A preferable carbon number of the (1-oxacyclobutan-3-yl) alkyl group having 4 to 18 carbon atoms is an integer of 4 to 10.
A preferable carbon number of the alkyl group constituting the methacryloxyalkyl group is an integer of 1 to 10, and examples thereof include —CH 2 CH 2 CH 2 —OOC—C (CH 3 ) ═CH 2 .
A preferable carbon number of the alkyl group constituting the mercaptoalkyl group is an integer of 1 to 10, and examples thereof include —CH 2 CH 2 CH 2 SH.
m and n are preferably numbers that give a molecular weight of 5,000 to 1,000,000.
 上記式(1)及び(2)において、反応性基含有シロキサン単位(式中、その数がnで表される構成単位)と反応性基を有さないシロキサン単位(式中、その数がmで表される構成単位)の分布に特に制限はない。すなわち、式(1)及び(2)中、(Si(R)(R)-O)単位と(Si(R)(X)-O)単位はランダムに分布していてもよい。 In the above formulas (1) and (2), a reactive group-containing siloxane unit (wherein the number is a structural unit represented by n) and a siloxane unit having no reactive group (wherein the number is m The distribution of the structural unit represented by That is, in the formulas (1) and (2), the (Si (R S ) (R S ) —O) units and the (Si (R S ) (X S ) —O) units may be randomly distributed. .
-主鎖にシロキサン構造と非シロキサン構造を有する化合物-
 シロキサン化合物層に用いうる、主鎖にシロキサン構造と非シロキサン構造を有する化合物としては、例えば、下記式(3)~(7)で表される化合物が挙げられる。
-Compounds with siloxane and non-siloxane structures in the main chain-
Examples of the compound having a siloxane structure and a non-siloxane structure in the main chain that can be used in the siloxane compound layer include compounds represented by the following formulas (3) to (7).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式(3)中、R、m及びnは、それぞれ式(1)のR、m及びnと同義である。Rは-O-又は-CH-であり、RS1は水素原子又はメチルである。式(3)の両末端はアミノ基、水酸基、カルボキシ基、トリメチルシリル基、エポキシ基、ビニル基、水素原子、置換アルキル基であることが好ましい。 Wherein (3), R S, m and n are respectively the same as R S, m and n in formula (1). R L is —O— or —CH 2 —, and R S1 is a hydrogen atom or methyl. Both ends of the formula (3) are preferably an amino group, a hydroxyl group, a carboxy group, a trimethylsilyl group, an epoxy group, a vinyl group, a hydrogen atom, or a substituted alkyl group.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式(4)中、m及びnは、それぞれ式(1)におけるm及びnと同義である。 In Formula (4), m and n are synonymous with m and n in Formula (1), respectively.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式(5)中、m及びnは、それぞれ式(1)におけるm及びnと同義である。 In formula (5), m and n have the same meanings as m and n in formula (1), respectively.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 式(6)中、m及びnは、それぞれ式(1)におけるm及びnと同義である。式(6)の両末端はアミノ基、水酸基、カルボキシ基、トリメチルシリル基、エポキシ基、ビニル基、水素原子、又は置換アルキル基が結合していることが好ましい。 In Formula (6), m and n are synonymous with m and n in Formula (1), respectively. It is preferable that the both ends of Formula (6) have an amino group, a hydroxyl group, a carboxy group, a trimethylsilyl group, an epoxy group, a vinyl group, a hydrogen atom, or a substituted alkyl group bonded thereto.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 式(7)中、m及びnは、それぞれ式(1)におけるm及びnと同義である。式(7)の両末端はアミノ基、水酸基、カルボキシ基、トリメチルシリル基、エポキシ、ビニル基、水素原子、又は置換アルキル基が結合していることが好ましい。 In formula (7), m and n are synonymous with m and n in formula (1), respectively. It is preferable that an amino group, a hydroxyl group, a carboxy group, a trimethylsilyl group, an epoxy, a vinyl group, a hydrogen atom, or a substituted alkyl group is bonded to both ends of the formula (7).
 上記式(3)~(7)において、シロキサン構造単位と非シロキサン構造単位とは、ランダムに分布していてもよい。 In the above formulas (3) to (7), the siloxane structural unit and the non-siloxane structural unit may be randomly distributed.
 主鎖にシロキサン構造と非シロキサン構造を有する化合物は、全繰り返し構造単位の合計モル数に対して、シロキサン構造単位を50モル%以上含有することが好ましく、70モル%以上含有することがさらに好ましい。 The compound having a siloxane structure and a non-siloxane structure in the main chain preferably contains 50 mol% or more of siloxane structural units, more preferably 70 mol% or more, based on the total number of moles of all repeating structural units. .
 シロキサン化合物層に用いるシロキサン化合物の重量平均分子量は、薄膜化と耐久性の両立の観点から、5,000~1000,000であることが好ましい。重量平均分子量の測定方法は上述したとおりである。 The weight average molecular weight of the siloxane compound used in the siloxane compound layer is preferably 5,000 to 1,000,000 from the viewpoint of achieving both a thin film and durability. The method for measuring the weight average molecular weight is as described above.
 さらに、シロキサン化合物層を構成するシロキサン化合物の好ましい例を以下に列挙する。
 ポリジメチルシロキサン、ポリメチルフェニルシロキサン、ポリジフェニルシロキサン、ポリスルホン/ポリヒドロキシスチレン/ポリジメチルシロキサン共重合体、ジメチルシロキサン/メチルビニルシロキサン共重合体、ジメチルシロキサン/ジフェニルシロキサン/メチルビニルシロキサン共重合体、メチル-3,3,3-トリフルオロプロピルシロキサン/メチルビニルシロキサン共重合体、ジメチルシロキサン/メチルフェニルシロキサン/メチルビニルシロキサン共重合体、ジフェニルシロキサン/ジメチルシロキサン共重合体末端ビニル、ポリジメチルシロキサン末端ビニル、ポリジメチルシロキサン末端H、及びジメチルシロキサン-メチルハイドロシロキサン共重合体から選ばれる1種又は2種以上。なお、これらは架橋反応物を形成している形態も含まれる。
Furthermore, the preferable example of the siloxane compound which comprises a siloxane compound layer is enumerated below.
Polydimethylsiloxane, polymethylphenylsiloxane, polydiphenylsiloxane, polysulfone / polyhydroxystyrene / polydimethylsiloxane copolymer, dimethylsiloxane / methylvinylsiloxane copolymer, dimethylsiloxane / diphenylsiloxane / methylvinylsiloxane copolymer, methyl -3,3,3-trifluoropropylsiloxane / methylvinylsiloxane copolymer, dimethylsiloxane / methylphenylsiloxane / methylvinylsiloxane copolymer, diphenylsiloxane / dimethylsiloxane copolymer terminal vinyl, polydimethylsiloxane terminal vinyl, One or more selected from polydimethylsiloxane terminal H and dimethylsiloxane-methylhydrosiloxane copolymer. In addition, these include the form which forms the cross-linking reaction product.
 本発明の複合膜において、シロキサン化合物層の厚さは、平滑性及びガス透過性の観点から、0.01~5μmであることが好ましく、0.05~1μmであることがより好ましい。
 また、シロキサン化合物層の40℃、4MPaにおける気体透過率は二酸化炭素透過速度で100GPU以上であることが好ましく、300GPU以上であることがより好ましく、1000GPU以上であることがさらに好ましい。
In the composite film of the present invention, the thickness of the siloxane compound layer is preferably 0.01 to 5 μm, and more preferably 0.05 to 1 μm, from the viewpoint of smoothness and gas permeability.
Further, the gas permeability at 40 ° C. and 4 MPa of the siloxane compound layer is preferably 100 GPU or more, more preferably 300 GPU or more, and further preferably 1000 GPU or more in terms of carbon dioxide transmission rate.
(ガス分離非対称膜の製造)
 本発明のガス分離膜は、非対称膜であってもよい。非対称膜は、セルロース化合物を含む溶液を用いて相転換法によって形成することができる。相転換法は、ポリマー溶液を凝固液と接触させて相転換させながら膜を形成する公知の方法であり、本発明ではいわゆる乾湿式法が好適に用いられる。乾湿式法は、膜形状にしたポリマー溶液の表面の溶液を蒸発させて薄い緻密層を形成し、ついで凝固液(ポリマー溶液の溶媒とは相溶し、ポリマーは不溶な溶剤)に浸漬し、その際生じる相分離現象を利用して微細孔を形成して多孔質層を形成させる方法であり、ロブ・スリラージャンらの提案(例えば、米国特許第3,133,132号明細書)したものである。
(Manufacture of gas separation asymmetric membrane)
The gas separation membrane of the present invention may be an asymmetric membrane. The asymmetric membrane can be formed by a phase change method using a solution containing a cellulose compound. The phase inversion method is a known method for forming a film while bringing a polymer solution into contact with a coagulation liquid to cause phase conversion. In the present invention, a so-called dry / wet method is suitably used. The dry and wet method evaporates the solution on the surface of the polymer solution in the form of a film to form a thin dense layer, and then immerses it in a coagulation liquid (solvent that is compatible with the solvent of the polymer solution and the polymer is insoluble), This is a method of forming a porous layer by forming micropores using the phase separation phenomenon that occurs at that time, and proposed by Rob Thrillerjan et al. (For example, US Pat. No. 3,133,132) It is.
 本発明のガス分離非対称膜において、緻密層あるいはスキン層と呼ばれるガス分離に寄与する表層の厚さは特に限定されない。表層の厚さは、実用的なガス透過性を付与する観点から、0.01~5.0μmであることが好ましく、0.05~1.0μmであることがより好ましい。一方、緻密層より下部の多孔質層はガス透過性の抵抗を下げると同時に機械強度の付与の役割を担うものであり、その厚さは非対称膜としての自立性が付与される限りにおいては特に限定されるものではない。この厚さは5~500μmであることが好ましく、5~200μmであることがより好ましく、5~100μmであることがさらに好ましい。 In the gas separation asymmetric membrane of the present invention, the thickness of the surface layer contributing to gas separation called a dense layer or skin layer is not particularly limited. The thickness of the surface layer is preferably 0.01 to 5.0 μm and more preferably 0.05 to 1.0 μm from the viewpoint of imparting practical gas permeability. On the other hand, the porous layer below the dense layer lowers the gas permeability resistance and at the same time plays a role of imparting mechanical strength, and its thickness is particularly limited as long as it is self-supporting as an asymmetric membrane. It is not limited. This thickness is preferably 5 to 500 μm, more preferably 5 to 200 μm, and even more preferably 5 to 100 μm.
 本発明のガス分離非対称膜は、平膜であってもあるいは中空糸膜であってもよい。非対称中空糸膜は乾湿式紡糸法により製造することができる。乾湿式紡糸法は、乾湿式法を紡糸ノズルから吐出して中空糸状の目的形状としたポリマー溶液に適用して非対称中空糸膜を製造する方法である。より詳しくは、ポリマー溶液をノズルから中空糸状の目的形状に吐出させ、吐出直後に空気又は窒素ガス雰囲気中を通した後、ポリマーを実質的には溶解せず且つポリマー溶液の溶媒とは相溶性を有する凝固液に浸漬して非対称構造を形成し、その後乾燥し、さらに必要に応じて加熱処理してガス分離非対称膜を製造する方法である。 The gas separation asymmetric membrane of the present invention may be a flat membrane or a hollow fiber membrane. The asymmetric hollow fiber membrane can be produced by a dry and wet spinning method. The dry-wet spinning method is a method for producing an asymmetric hollow fiber membrane by applying a dry-wet method to a polymer solution that is discharged from a spinning nozzle to have a hollow fiber-shaped target shape. More specifically, the polymer solution is discharged from a nozzle into a hollow fiber-shaped target shape, and after passing through an air or nitrogen gas atmosphere immediately after discharge, the polymer is not substantially dissolved and is compatible with the solvent of the polymer solution. In this method, an asymmetric structure is formed by dipping in a coagulating liquid having a gas, then dried, and further heat-treated as necessary to produce a gas separation asymmetric membrane.
 ノズルから吐出させるセルロース化合物を含む溶液の溶液粘度は、吐出温度(例えば10℃)で2~17000Pa・s、好ましくは10~1500Pa・s、特に20~1000Pa・sであることが、中空糸状などの吐出後の形状を安定に得ることができるので好ましい。凝固液への浸漬は、一次凝固液に浸漬して中空糸状等の膜の形状が保持出来る程度に凝固させた後、案内ロールに巻き取り、ついで二次凝固液に浸漬して膜全体を十分に凝固させることが好ましい。凝固した膜の乾燥は、凝固液を炭化水素などの溶媒に置換してから行うのが効率的である。乾燥のための加熱処理は、用いたセルロース化合物の軟化点又は二次転移点よりも低い温度で実施することが好ましい。 The solution viscosity of the solution containing the cellulose compound discharged from the nozzle is 2 to 17000 Pa · s, preferably 10 to 1500 Pa · s, particularly 20 to 1000 Pa · s at the discharge temperature (for example, 10 ° C.). This is preferable because the shape after discharge can be stably obtained. For immersion in the coagulation liquid, the film is immersed in the primary coagulation liquid and solidified to such an extent that the shape of the hollow fiber or the like can be maintained, wound on a guide roll, and then immersed in the secondary coagulation liquid to fully saturate the entire film. It is preferable to solidify. It is efficient to dry the coagulated film after replacing the coagulating liquid with a solvent such as hydrocarbon. The heat treatment for drying is preferably performed at a temperature lower than the softening point or secondary transition point of the cellulose compound used.
 本発明のガス分離膜は、上記ガス分離層上に保護層として、ガス分離層に接してシロキサン化合物層が設けられていてもよい。 In the gas separation membrane of the present invention, a siloxane compound layer may be provided on the gas separation layer as a protective layer in contact with the gas separation layer.
(ガス分離層中のその他の成分)
 本発明のガス分離膜のガス分離層には、膜物性を調整するため、各種高分子化合物を添加することもできる。高分子化合物としては、アクリル系重合体、ポリウレタン樹脂、ポリアミド樹脂、ポリエステル樹脂、エポキシ樹脂、フェノール樹脂、ポリカーボネート樹脂、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、シェラック、ビニル系樹脂、アクリル系樹脂、ゴム系樹脂、ワックス類、その他の天然樹脂等が使用できる。また、これらは2種以上併用してもかまわない。
 また、液物性調整のためにノニオン性界面活性剤、カチオン性界面活性剤、有機フルオロ化合物などを添加することもできる。
(Other components in the gas separation layer)
Various polymer compounds can be added to the gas separation layer of the gas separation membrane of the present invention in order to adjust the membrane properties. High molecular compounds include acrylic polymers, polyurethane resins, polyamide resins, polyester resins, epoxy resins, phenol resins, polycarbonate resins, polyvinyl butyral resins, polyvinyl formal resins, shellac, vinyl resins, acrylic resins, rubber resins. Waxes and other natural resins can be used. Two or more of these may be used in combination.
In addition, nonionic surfactants, cationic surfactants, organic fluoro compounds, and the like can be added to adjust liquid properties.
 界面活性剤の具体例としては、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、高級脂肪酸塩、高級脂肪酸エステルのスルホン酸塩、高級アルコールエーテルの硫酸エステル塩、高級アルコールエーテルのスルホン酸塩、高級アルキルスルホンアミドのアルキルカルボン酸塩、アルキルリン酸塩などのアニオン界面活性剤、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、アセチレングリコールのエチレンオキサイド付加物、グリセリンのエチレンオキサイド付加物、ポリオキシエチレンソルビタン脂肪酸エステルなどの非イオン性界面活性剤、また、この他にもアルキルベタイン、アミドベタインなどの両性界面活性剤、シリコン系界面活性剤、フッ素系界面活性剤などを含めて、従来公知である界面活性剤及びその誘導体から適宜選ぶことができる。 Specific examples of the surfactant include alkylbenzene sulfonate, alkylnaphthalene sulfonate, higher fatty acid salt, sulfonate of higher fatty acid ester, sulfate ester of higher alcohol ether, sulfonate of higher alcohol ether, higher alkyl Anionic surfactants such as alkyl carboxylates of sulfonamides, alkyl phosphates, polyoxyethylene alkyl ethers, polyoxyethylene alkyl phenyl ethers, polyoxyethylene fatty acid esters, sorbitan fatty acid esters, ethylene oxide adducts of acetylene glycol, Nonionic surfactants such as ethylene oxide adducts of glycerin and polyoxyethylene sorbitan fatty acid esters, and other amphoteric boundaries such as alkyl betaines and amide betaines Active agents, silicone surface active agent, including a fluorine-based surfactant, can be appropriately selected from surfactants and derivatives thereof are known.
 また、高分子分散剤を含んでいてもよく、この高分子分散剤として、具体的にはポリビニルピロリドン、ポリビニルアルコール、ポリビニルメチルエーテル、ポリエチレンオキシド、ポリエチレングリコール、ポリプロピレングリコール、ポリアクリルアミド等が挙げられ、中でもポリビニルピロリドンを用いることが好ましい。 In addition, a polymer dispersant may be included, and specific examples of the polymer dispersant include polyvinyl pyrrolidone, polyvinyl alcohol, polyvinyl methyl ether, polyethylene oxide, polyethylene glycol, polypropylene glycol, and polyacrylamide. Of these, polyvinylpyrrolidone is preferably used.
 本発明のガス分離膜を形成する条件に特に制限はないが、温度は-30~100℃が好ましく、-10~80℃がより好ましく、5~50℃が特に好ましい。 The conditions for forming the gas separation membrane of the present invention are not particularly limited, but the temperature is preferably −30 to 100 ° C., more preferably −10 to 80 ° C., and particularly preferably 5 to 50 ° C.
 本発明においては、膜の形成時に空気や酸素などの気体を共存させてもよいが、不活性ガス雰囲気下であることが望ましい。
 本発明のガス分離膜において、ガス分離層中のセルロース化合物の含有量は、所望のガス分離性能が得られれば特に制限はない。ガス分離性能をより向上させる観点から、ガス分離層中のセルロース化合物の含有量は、20質量%以上であることが好ましく、40質量%以上であることがより好ましく、60質量%以上であることが好ましく、70質量%以上であることがさらに好ましい。また、ガス分離層中のポリイミド化合物の含有量は、100質量%であってもよいが、通常は99質量%以下である。
In the present invention, a gas such as air or oxygen may coexist at the time of forming the film, but it is preferably in an inert gas atmosphere.
In the gas separation membrane of the present invention, the content of the cellulose compound in the gas separation layer is not particularly limited as long as desired gas separation performance can be obtained. From the viewpoint of further improving the gas separation performance, the content of the cellulose compound in the gas separation layer is preferably 20% by mass or more, more preferably 40% by mass or more, and 60% by mass or more. Is preferable, and it is more preferable that it is 70 mass% or more. The content of the polyimide compound in the gas separation layer may be 100% by mass, but is usually 99% by mass or less.
<ガス分離膜の用途と特性>
 本発明のガス分離膜(複合膜及び非対称膜)は、ガス分離回収法、ガス分離精製法として好適に用いることができる。例えば、水素、ヘリウム、一酸化炭素、二酸化炭素、硫化水素、酸素、窒素、アンモニア、硫黄酸化物、窒素酸化物、メタン、エタンなどの飽和炭化水素、プロピレンなどの不飽和炭化水素、テトラフルオロエタンなどのパーフルオロ炭化水素などのガスを含有する気体混合物から特定の気体を効率よく分離し得るガス分離膜とすることができる。特に二酸化炭素と炭化水素(好ましくはメタン)とを含む気体混合物から二酸化炭素を選択透過するガス分離膜とすることが好ましい。
<Applications and characteristics of gas separation membranes>
The gas separation membrane (composite membrane and asymmetric membrane) of the present invention can be suitably used as a gas separation recovery method and gas separation purification method. For example, hydrogen, helium, carbon monoxide, carbon dioxide, hydrogen sulfide, oxygen, nitrogen, ammonia, sulfur oxides, nitrogen oxides, saturated hydrocarbons such as methane and ethane, unsaturated hydrocarbons such as propylene, and tetrafluoroethane A gas separation membrane capable of efficiently separating a specific gas from a gas mixture containing a gas such as perfluorohydrocarbon. In particular, a gas separation membrane that selectively permeates carbon dioxide from a gas mixture containing carbon dioxide and hydrocarbon (preferably methane) is preferable.
 本発明のガス分離膜は、分離処理されるガスが二酸化炭素とメタンとの混合ガスである場合においては、40℃、5MPaにおける二酸化炭素の透過速度が20GPU以上であることが好ましく、30GPU以上であることがより好ましく、35~500GPUであることがより好ましい。二酸化炭素とメタンとの透過速度比(RCO2/RCH4)は15以上であることが好ましく、20以上であることがより好ましい。RCO2は二酸化炭素の透過速度、RCH4はメタンの透過速度を示す。
 なお、1GPUは1×10-6cm(STP)/(cm・sec・cmHg)である。
In the gas separation membrane of the present invention, when the gas to be separated is a mixed gas of carbon dioxide and methane, the permeation rate of carbon dioxide at 40 ° C. and 5 MPa is preferably 20 GPU or more, and 30 GPU or more. More preferably, it is 35 to 500 GPU. The permeation rate ratio between carbon dioxide and methane (R CO2 / R CH4 ) is preferably 15 or more, and more preferably 20 or more. R CO2 represents the permeation rate of carbon dioxide, and R CH4 represents the permeation rate of methane.
1 GPU is 1 × 10 −6 cm 3 (STP) / (cm 2 · sec · cmHg).
[ガス分離方法]
 本発明のガス分離方法は、本発明のガス分離膜を用いて2成分以上の混合ガスから特定のガスを分離する方法である。本発明のガス分離方法では、二酸化炭素及びメタンを含む混合ガスから二酸化炭素を選択的に透過させることを含むことが好ましい。ガス分離の際の圧力は0.5~10MPaであることが好ましく、1~10MPaであることがより好ましく、2~7MPaであることがさらに好ましい。また、ガス分離温度は、-30~90℃であることが好ましく、15~70℃であることがさらに好ましい。二酸化炭素とメタンガスとを含む混合ガスにおいて、二酸化炭素とメタンガスの混合比に特に制限はないが、二酸化炭素:メタンガス=1:99~99:1(体積比)であることが好ましく、二酸化炭素:メタンガス=5:95~90:10であることがより好ましい。
[Gas separation method]
The gas separation method of the present invention is a method for separating a specific gas from a mixed gas of two or more components using the gas separation membrane of the present invention. The gas separation method of the present invention preferably includes selectively allowing carbon dioxide to permeate from a mixed gas containing carbon dioxide and methane. The pressure during gas separation is preferably 0.5 to 10 MPa, more preferably 1 to 10 MPa, and further preferably 2 to 7 MPa. The gas separation temperature is preferably −30 to 90 ° C., more preferably 15 to 70 ° C. In the mixed gas containing carbon dioxide and methane gas, the mixing ratio of carbon dioxide and methane gas is not particularly limited, but is preferably carbon dioxide: methane gas = 1: 99 to 99: 1 (volume ratio). More preferably, methane gas = 5: 95 to 90:10.
[ガス分離モジュール及びガス分離装置]
 本発明のガス分離膜を用いてガス分離膜モジュールを調製することができる。モジュールの例としては、スパイラル型、中空糸型、プリーツ型、管状型、プレート&フレーム型などが挙げられる。
 また、本発明のガス分離膜又はガス分離膜モジュールを用いて、ガスを分離回収又は分離精製させるための手段を有するガス分離装置を得ることができる。本発明のガス分離複合膜は、例えば、特開2007-297605号公報に記載のような吸収液と併用した膜/吸収ハイブリッド法としての気体分離回収装置に適用してもよい。
[Gas separation module and gas separation device]
A gas separation membrane module can be prepared using the gas separation membrane of the present invention. Examples of modules include spiral type, hollow fiber type, pleated type, tubular type, plate & frame type and the like.
In addition, a gas separation apparatus having means for separating and recovering or purifying gas can be obtained using the gas separation membrane or gas separation membrane module of the present invention. The gas separation composite membrane of the present invention may be applied to, for example, a gas separation and recovery device as a membrane / absorption hybrid method used in combination with an absorbing solution as described in JP-A-2007-297605.
 本発明を実施例に基づき更に詳細に説明するが、本発明はこれらの実施例により限定されるものではない。 The present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
[合成例]
<セルロース化合物1の合成>
 原料セルロースとしてヒドロキシプロピルメチルセルロース(商品名メトローズ90SH-100;信越化学製)2.0gとピリジン50mLとを混合し、80℃で1時間撹拌した。次いで4-(トリフルオロメチル)フェニルイソシアネートを9.36g(50mmol)添加し、80℃でさらに3時間撹拌した。反応液を室温まで冷却した後、イソプロパノール20mL,ヘキサン180mLを添加し析出した固体を濾過し、ヘキサンで洗浄した。この固体をイソプロパノール(40mL)/ヘキサン(160mL)混合液で4回リスラリーし、真空乾燥することによりセルロース化合物1を白色粉末として3.10g得た。
 得られたセルロース化合物1について、原料セルロースに含まれる水酸基を構成する水素原子と置換した官能基(一般式(1)中のR、R、及びR)の種類、並びにセルロース化合物1の置換度は、Cellulose Communication 6,73-79(1999)に記載の方法を利用して、H-NMRにより、観測及び決定した。
 また、ゲル パーミエーション クロマトグラフィー(GPC)を用いて、セルロース化合物1の重量平均分子量Mwを測定した。具体的には、N-メチルピロリドンを溶媒とし、ポリスチレンゲルを使用し、標準単分散ポリスチレンの構成曲線から予め求められた換算分子量較正曲線を用いて求めた。GPC装置は、HLC-8220GPC(東ソー社製)を使用した。
 セルロース化合物1の重量平均分子量は406000であった。
[Synthesis example]
<Synthesis of Cellulose Compound 1>
As raw material cellulose, 2.0 g of hydroxypropylmethylcellulose (trade name Metroze 90SH-100; manufactured by Shin-Etsu Chemical Co., Ltd.) and 50 mL of pyridine were mixed and stirred at 80 ° C. for 1 hour. Next, 9.36 g (50 mmol) of 4- (trifluoromethyl) phenyl isocyanate was added, and the mixture was further stirred at 80 ° C. for 3 hours. After cooling the reaction solution to room temperature, 20 mL of isopropanol and 180 mL of hexane were added, and the precipitated solid was filtered and washed with hexane. This solid was reslurried four times with a mixed solution of isopropanol (40 mL) / hexane (160 mL), and vacuum dried to obtain 3.10 g of cellulose compound 1 as a white powder.
The obtained cellulose compound 1, the type of functional groups substituting for the hydrogen atom constituting a hydroxyl group contained in the cellulose raw material (R 1 in the general formula (1), R 2, and R 3), as well as cellulose compound 1 The degree of substitution was observed and determined by 1 H-NMR using the method described in Cellulose Communication 6, 73-79 (1999).
Moreover, the weight average molecular weight Mw of the cellulose compound 1 was measured using the gel permeation chromatography (GPC). Specifically, N-methylpyrrolidone was used as a solvent, a polystyrene gel was used, and a molecular weight calibration curve obtained in advance from a constituent curve of standard monodisperse polystyrene was used. As the GPC apparatus, HLC-8220 GPC (manufactured by Tosoh Corporation) was used.
The weight average molecular weight of the cellulose compound 1 was 406000.
<セルロース化合物2の合成>
 セルロース化合物1の合成において、ヒドロキシプロピルメチルセルロースに代えてメチルセルロース(メチル置換度1.8、和光純薬製)を、また4-(トリフルオロメチル)フェニルイソシアネートに代えて3,5-ビス(トリフルオロメチル)フェニルイソシアネート(東京化成製)を用いた以外は、セルロース化合物1の合成と同様にしてセルロース化合物2を得た。
 セルロース化合物1の重量平均分子量は621000であった。
<Synthesis of Cellulose Compound 2>
In the synthesis of cellulose compound 1, methyl cellulose (methyl substitution degree 1.8, manufactured by Wako Pure Chemical Industries) was substituted for hydroxypropylmethylcellulose, and 3,5-bis (trifluoro) was substituted for 4- (trifluoromethyl) phenyl isocyanate. Cellulose compound 2 was obtained in the same manner as in the synthesis of cellulose compound 1 except that methyl) phenyl isocyanate (manufactured by Tokyo Chemical Industry Co., Ltd.) was used.
The weight average molecular weight of the cellulose compound 1 was 621000.
<セルロース化合物3の合成>
 セルロース化合物1の合成において、4-(トリフルオロメチル)フェニルイソシアネートに代えて4,5-ジフルオロフタル酸無水物(東京化成製)を用いた以外は、セルロース化合物1の合成と同様にしてセルロース化合物3を得た。
 セルロース化合物3の重量平均分子量は281000であった。
<Synthesis of Cellulose Compound 3>
Cellulose compound 1 was synthesized in the same manner as cellulose compound 1 except that 4,5-difluorophthalic anhydride (manufactured by Tokyo Chemical Industry) was used in place of 4- (trifluoromethyl) phenyl isocyanate in the synthesis of cellulose compound 1. 3 was obtained.
The weight average molecular weight of the cellulose compound 3 was 281000.
<セルロース化合物4の合成>
 セルロース化合物1の合成において、ヒドロキシプロピルメチルセルロースに代えてメチルセルロース(メチル置換度1.8、和光純薬製)を、また4-(トリフルオロメチル)フェニルイソシアネートに代えて、4-トリフルオロメチルフタル酸(東京化成製)からOrganic Letters,2010年,第12巻,p.4796-4799に記載の方法で合成した4-トリフルオロメチルフタル酸無水物を用いた以外は、セルロース化合物1の合成と同様にしてセルロース化合物4を合成した。
 セルロース化合物4の重量平均分子量は597000であった。
<Synthesis of Cellulose Compound 4>
In the synthesis of the cellulose compound 1, methylcellulose (methyl substitution degree 1.8, manufactured by Wako Pure Chemical Industries) was substituted for hydroxypropylmethylcellulose, and 4-trifluoromethylphthalic acid was substituted for 4- (trifluoromethyl) phenyl isocyanate. (Manufactured by Tokyo Chemical Industry), Organic Letters, 2010, Vol. 12, p. Cellulose compound 4 was synthesized in the same manner as cellulose compound 1 except that 4-trifluoromethylphthalic anhydride synthesized by the method described in 4796-4799 was used.
The weight average molecular weight of the cellulose compound 4 was 597,000.
<セルロース化合物5の合成>
 セルロース化合物1の合成において、ヒドロキシプロピルメチルセルロースに代えてアセチルセルロース(アセチル置換度2.2、ダイセル製)を、また4-(トリフルオロメチル)フェニルイソシアネートに代えて、3-ヒドロキシ-5-(トリフルオロメチル)安息香酸からJournal of Medicinal Chemistry,2016年,第59巻,p.2478-2496に記載の方法で合成した3-ヒドロキシ-5-(トリフルオロメチル)安息香酸クロリドを用いた以外は、セルロース化合物1の合成と同様にしてセルロース化合物5を合成した。
 セルロース化合物5の重量平均分子量は273000であった。
<Synthesis of Cellulose Compound 5>
In the synthesis of cellulose compound 1, acetyl cellulose (acetyl substitution degree 2.2, manufactured by Daicel) was substituted for hydroxypropylmethylcellulose, and 3-hydroxy-5- (trimethyl) was substituted for 4- (trifluoromethyl) phenyl isocyanate. Fluoromethyl) benzoic acid from Journal of Medicinal Chemistry, 2016, Vol. 59, p. Cellulose compound 5 was synthesized in the same manner as cellulose compound 1 except that 3-hydroxy-5- (trifluoromethyl) benzoic acid chloride synthesized by the method described in 2478-2496 was used.
The weight average molecular weight of the cellulose compound 5 was 273,000.
<セルロース化合物6の合成>
 セルロース化合物1の合成において、4-(トリフルオロメチル)フェニルイソシアネートに代えてテトラフルオロこはく酸無水物(東京化成製)を用いた以外は、セルロース化合物1の合成と同様にしてセルロース化合物6を合成した。
 セルロース化合物6の重量平均分子量は255000であった。
<Synthesis of Cellulose Compound 6>
In the synthesis of cellulose compound 1, cellulose compound 6 was synthesized in the same manner as in the synthesis of cellulose compound 1 except that tetrafluorosuccinic anhydride (manufactured by Tokyo Chemical Industry) was used instead of 4- (trifluoromethyl) phenyl isocyanate. did.
The weight average molecular weight of the cellulose compound 6 was 255000.
<セルロース化合物7の合成>
 セルロース化合物1の合成において、ヒドロキシプロピルメチルセルロースに代えてメチルセルロース(メチル置換度1.8、和光純薬製)を、また4-(トリフルオロメチル)フェニルイソシアネートに代えて、3,3,3、-トリフルオロ-2-ヒドロキシ-2-メチルプロピオン酸からJournal of Medicinal Chemistry,1996年,第39巻,p.4592-4601に記載の方法で合成した3,3,3、-トリフルオロ-2-ヒドロキシ-2-メチルプロピオン酸クロリドを用いた以外は、セルロース化合物1の合成と同様にしてセルロース化合物7を合成した。
 セルロース化合物7の重量平均分子量は575000であった。
<Synthesis of Cellulose Compound 7>
In the synthesis of cellulose compound 1, methyl cellulose (methyl substitution degree 1.8, manufactured by Wako Pure Chemical Industries) was substituted for hydroxypropylmethylcellulose, and 3, 3, 3,-instead of 4- (trifluoromethyl) phenyl isocyanate. From trifluoro-2-hydroxy-2-methylpropionic acid, Journal of Medicinal Chemistry, 1996, Vol. 39, p. Cellulose compound 7 was synthesized in the same manner as cellulose compound 1 except that 3,3,3, -trifluoro-2-hydroxy-2-methylpropionic acid chloride synthesized by the method described in 4592-4601 was used. did.
The weight average molecular weight of the cellulose compound 7 was 575000.
<セルロース化合物8の合成>
 セルロース化合物1の合成において、ヒドロキシプロピルメチルセルロースに代えてエチルセルロース(エトキシ置換度2.4、アルドリッチ製)を、また4-(トリフルオロメチル)フェニルイソシアネートに代えて3,5-ジフルオロフェニルイソシアネート(Aldrich製)を用いた以外は、セルロース化合物1の合成と同様にしてセルロース化合物8を合成した。
 セルロース化合物8の重量平均分子量は599000であった。
<Synthesis of Cellulose Compound 8>
In the synthesis of cellulose compound 1, ethylcellulose (ethoxy substitution degree 2.4, manufactured by Aldrich) was substituted for hydroxypropylmethylcellulose, and 3,5-difluorophenylisocyanate (manufactured by Aldrich) instead of 4- (trifluoromethyl) phenylisocyanate. The cellulose compound 8 was synthesized in the same manner as the synthesis of the cellulose compound 1 except that.
The weight average molecular weight of the cellulose compound 8 was 599000.
<セルロース化合物9の合成>
 セルロース化合物1の合成において、ヒドロキシプロピルメチルセルロースに代えてメチルセルロース(メチル置換度1.8、和光純薬製)を、また4-(トリフルオロメチル)フェニルイソシアネート(50mmol)に代えて3,6-ジフルオロフタル酸無水物(Aldrich製)(20mmol)を用いた以外は、セルロース化合物1の合成と同様にしてセルロース化合物9を合成した。
 セルロース化合物9の重量平均分子量は571000であった。
<Synthesis of Cellulose Compound 9>
In the synthesis of cellulose compound 1, methylcellulose (methyl substitution degree 1.8, manufactured by Wako Pure Chemical Industries) was substituted for hydroxypropylmethylcellulose, and 3,6-difluoro was substituted for 4- (trifluoromethyl) phenyl isocyanate (50 mmol). Cellulose compound 9 was synthesized in the same manner as cellulose compound 1 except that phthalic anhydride (manufactured by Aldrich) (20 mmol) was used.
The weight average molecular weight of the cellulose compound 9 was 571,000.
 上記各合成例で得たセルロース化合物1~9において、一般式(1)のR~Rに相当する置換基の構造を以下に示す。各置換基の下に付した数値は置換度を示し、括弧内は分子量を示す。また、Meはメチルを示し、Etはエチルを示す。 In the cellulose compounds 1 to 9 obtained in the above synthesis examples, the structures of substituents corresponding to R 1 to R 3 in the general formula (1) are shown below. The numerical value attached below each substituent indicates the degree of substitution, and the parenthesis indicates the molecular weight. Me represents methyl, and Et represents ethyl.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
[比較合成例]
 比較化合物1としてアセチルセルロース(アセチル置換度2.4、ダイセル製)、比較化合物2として特開昭59-55307号公報の実施例1に記載のセルロース化合物、比較化合物3として特公昭58-24161号公報の実施例1に記載のセルロース化合物、比較化合物4として特開平2-227401号公報の実施例2に記載のセルロース化合物、比較化合物5として特開平2-212501号公報の実施例6に記載のセルロース化合物を用いた。
 各比較化合物(セルロース化合物)の、一般式(1)におけるR~Rに相当する置換基の構造とそれらの置換度を以下に示す。また括弧内は分子量を示す。
[Comparative synthesis example]
Comparative compound 1 is acetylcellulose (acetyl substitution degree 2.4, manufactured by Daicel), comparative compound 2 is a cellulose compound described in Example 1 of JP-A-59-55307, and comparative compound 3 is Japanese Patent Publication No. 58-24161. The cellulose compound described in Example 1 of the gazette, the cellulose compound described in Example 2 of JP-A-2-227401 as the comparative compound 4 and the compound described in Example 6 of JP-A-2-212501 as the comparative compound 5 A cellulose compound was used.
The structure of the substituent corresponding to R 1 to R 3 in the general formula (1) and the degree of substitution thereof for each comparative compound (cellulose compound) are shown below. The parenthesis indicates the molecular weight.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
[実施例1] 複合膜の作製
<平滑層付PAN多孔質膜の作製>
(ジアルキルシロキサン基を有する放射線硬化性ポリマーの調製)
 150mLの3口フラスコにUV9300(Momentive社製)39g、X-22-162C(信越化学工業社製)10g、DBU(1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン)0.007gを加え、n-ヘプタン50gに溶解させた。これを95℃で168時間維持させて、ポリ(シロキサン)基を有する放射線硬化性ポリマー溶液(25℃で粘度22.8mPa・s)を得た。
[Example 1] Production of composite membrane <Production of PAN porous membrane with smooth layer>
(Preparation of radiation curable polymer having dialkylsiloxane group)
In a 150 mL three-necked flask, 39 g of UV9300 (manufactured by Momentive), 10 g of X-22-162C (manufactured by Shin-Etsu Chemical), DBU (1,8-diazabicyclo [5.4.0] undec-7-ene). 007 g was added and dissolved in 50 g of n-heptane. This was maintained at 95 ° C. for 168 hours to obtain a radiation curable polymer solution having a poly (siloxane) group (viscosity of 22.8 mPa · s at 25 ° C.).
(重合性の放射線硬化性組成物の調製)
 上記放射線硬化性ポリマー溶液5gを20℃まで冷却し、n-ヘプタン95gで希釈した。得られた溶液に対し、光重合開始剤であるUV9380C(Momentive社製)0.5g及びオルガチックスTA-10(マツモトファインケミカル社製)0.1gを添加し、重合性の放射線硬化性組成物を調製した。
(Preparation of polymerizable radiation curable composition)
5 g of the radiation curable polymer solution was cooled to 20 ° C. and diluted with 95 g of n-heptane. To the obtained solution, 0.5 g of UV9380C (manufactured by Momentive) as a photopolymerization initiator and 0.1 g of organics TA-10 (manufactured by Matsumoto Fine Chemical) are added to obtain a polymerizable radiation-curable composition. Prepared.
(重合性の放射線硬化性組成物の多孔質支持体への塗布、平滑層の形成)
 PAN(ポリアクリロニトリル)多孔質膜(不織布上にポリアクリロニトリル多孔質膜が存在、不織布を含め、膜厚は約180μm)を支持体として上記の重合性の放射線硬化性組成物をスピンコートした後、UV強度24kW/m、処理時間10秒のUV処理条件でUV処理(Fusion UV System社製、Light Hammer 10、D-バルブ)を行った後、乾燥させた。このようにして、多孔質支持体上にジアルキルシロキサン基を有する厚み1μmの平滑層を形成した。
(Application of polymerizable radiation curable composition to porous support, formation of smooth layer)
PAN (polyacrylonitrile) porous membrane (polyacrylonitrile porous membrane is present on the nonwoven fabric, including the nonwoven fabric, the film thickness is about 180 μm) After spin coating the above polymerizable radiation curable composition as a support, After UV treatment (Fusion UV System, Light Hammer 10, D-bulb) under UV treatment conditions with a UV intensity of 24 kW / m and a treatment time of 10 seconds, it was dried. In this way, a smooth layer having a thickness of 1 μm and having a dialkylsiloxane group was formed on the porous support.
<複合膜の作製>
 図2に示すガス分離複合膜を作製した(図2には平滑層は図示していない)。
 30ml褐色バイアル瓶に、セルロース化合物1を0.08g、テトラヒドロフラン9.92gを混合して30分攪拌した後、上記平滑層を付与したPAN多孔質膜上にスピンコートしてガス分離層を形成し、実施例1の複合膜を得た。セルロース化合物1の層の厚さは約70nmであり、PAN多孔質膜の厚さは不織布を含めて約180μmであった。
 なお、これらのポリアクリロニトリル多孔質膜の分画分子量は100,000以下のものを使用した。また、この多孔質膜の40℃、5MPaにおける二酸化炭素の透過性は、25000GPUであった。
<Production of composite membrane>
The gas separation composite membrane shown in FIG. 2 was produced (the smooth layer is not shown in FIG. 2).
In a 30 ml brown vial, 0.08 g of cellulose compound 1 and 9.92 g of tetrahydrofuran were mixed and stirred for 30 minutes, and then spin coated on the PAN porous membrane provided with the above smooth layer to form a gas separation layer. A composite membrane of Example 1 was obtained. The thickness of the layer of the cellulose compound 1 was about 70 nm, and the thickness of the PAN porous film was about 180 μm including the nonwoven fabric.
These polyacrylonitrile porous membranes had a molecular weight cut-off of 100,000 or less. Further, the permeability of carbon dioxide at 40 ° C. and 5 MPa of this porous membrane was 25000 GPU.
[実施例2~9] 複合膜の作製
 上記実施例1において、セルロース化合物1に代えてセルロース化合物2~9を用いた以外は、実施例1と同様にして、それぞれ実施例2~9の複合膜を作製した。実施例2~9で用いたセルロース化合物は次の通りである。
 実施例2:セルロース化合物2、実施例3:セルロース化合物3、実施例4:セルロース化合物4、実施例5:セルロース化合物5、実施例6:セルロース化合物6、実施例7:セルロース化合物7、実施例8:セルロース化合物8、実施例9:セルロース化合物9
[Examples 2 to 9] Production of composite membranes In Example 1 above, composites of Examples 2 to 9 were used in the same manner as Example 1 except that cellulose compounds 2 to 9 were used instead of cellulose compound 1. A membrane was prepared. The cellulose compounds used in Examples 2 to 9 are as follows.
Example 2: Cellulose Compound 2, Example 3: Cellulose Compound 3, Example 4: Cellulose Compound 4, Example 5: Cellulose Compound 5, Example 6: Cellulose Compound 6, Example 7: Cellulose Compound 7, Example 8: Cellulose compound 8, Example 9: Cellulose compound 9
[比較例1~5] 複合膜の作製
 上記実施例1において、セルロース化合物1に代えて比較化合物1~5を用いた以外は実施例1と同様にして、それぞれ比較例1~5の複合膜を作製した。比較例1~5で用いた比較化合物は次の通りである。
 比較例1:比較化合物1、比較例2:比較化合物2、比較例3:比較化合物3、比較例4:比較化合物4、比較例5:比較化合物5
[Comparative Examples 1 to 5] Preparation of Composite Membrane Composite membranes of Comparative Examples 1 to 5 in the same manner as in Example 1 except that Comparative Compound 1 to 5 was used instead of Cellulose Compound 1 in Example 1 above. Was made. The comparative compounds used in Comparative Examples 1 to 5 are as follows.
Comparative Example 1: Comparative Compound 1, Comparative Example 2: Comparative Compound 2, Comparative Example 3: Comparative Compound 3, Comparative Example 4: Comparative Compound 4, Comparative Example 5: Comparative Compound 5
[試験例1] ガス分離膜のCO透過速度及びガス分離選択性の評価
 上記各実施例及び比較例のガス分離膜(複合膜)を用いて、ガス分離性能を以下のように評価した。
 ガス分離膜を多孔質支持体(支持層)ごと直径5cmに切り取り、透過試験サンプルを作製した。GTRテック株式会社製ガス透過率測定装置を用い、二酸化炭素(CO):メタン(CH)が13:87(体積比)の混合ガスをガス供給側の全圧力が5MPa(COの分圧:0.65MPa)、流量500mL/min、40℃となるように調整しガス分離層の側から供給した。透過してきたガスをガスクロマトグラフィーにより分析した。膜のガス透過性は、ガス透過率(Permeance)としてガス透過速度を算出することにより比較した。ガス透過率(ガス透過速度)の単位はGPU(ジーピーユー、Gas Permeation Unit)単位〔1GPU=1×10-6cm(STP)/(cm・sec・cmHg)〕で表した。なお、STPはStandard Temperature and pressureであり、1×10-6cm(STP)は、1気圧、0℃での気体の体積である。ガス分離選択性は、この膜のCHの透過速度RCH4に対するCOの透過速度RCO2の比率(RCO2/RCH4)として計算した。ガス透過性とガス分離選択性の評価基準を次のようにした。
Test Example 1 Evaluation of CO 2 Permeation Rate and Gas Separation Selectivity of Gas Separation Membrane Gas separation performance was evaluated as follows using the gas separation membranes (composite membranes) of the above Examples and Comparative Examples.
The gas separation membrane was cut to a diameter of 5 cm together with the porous support (support layer) to prepare a permeation test sample. Using a gas permeability measuring device manufactured by GTR Tech Co., Ltd., a mixed gas of carbon dioxide (CO 2 ): methane (CH 4 ) of 13:87 (volume ratio) is used, and the total pressure on the gas supply side is 5 MPa (minus CO 2 The pressure was adjusted to 0.65 MPa), the flow rate was 500 mL / min, and 40 ° C., and the gas was supplied from the gas separation layer side. The permeated gas was analyzed by gas chromatography. The gas permeability of the membrane was compared by calculating the gas permeation rate as gas permeability (Permeance). The unit of gas permeability (gas permeation rate) was expressed by GPU (Gas Permeation Unit) unit [1 GPU = 1 × 10 −6 cm 3 (STP) / (cm 2 · sec · cmHg)]. Note that STP is Standard Temperature and pressure, and 1 × 10 −6 cm 3 (STP) is the volume of gas at 1 atm and 0 ° C. The gas separation selectivity was calculated as the ratio of the CO 2 permeation rate R CO2 to the CH 4 permeation rate R CH4 of this membrane (R CO2 / R CH4 ). The evaluation criteria of gas permeability and gas separation selectivity were as follows.
-ガス透過性評価基準-
 A:RCO2が60以上
 B:RCO2が45以上60未満
 C:RCO2が30以上45未満
 D:RCO2が30未満
-Gas permeability evaluation criteria-
A: R CO2 is 60 or more B: R CO2 is 45 or more and less than 60 C: R CO2 is 30 or more and less than 45 D: R CO2 is less than 30
-ガス分離選択性評価基準-
 A:RCO2/RCH4が20以上
 B:RCO2/RCH4が17以上20未満
 C:RCO2/RCH4が14以上17未満
 D:RCO2/RCH4が14未満
-Gas separation selectivity evaluation criteria-
A: R CO2 / R CH4 is 20 or more B: R CO2 / R CH4 is 17 or more and less than 20 C: R CO2 / R CH4 is 14 or more and less than 17 D: R CO2 / R CH4 is less than 14
[試験例2] 可塑化耐性の評価
 上記試験例1で用いたガス分離膜を、トルエン溶媒を張ったシャーレを入れたステンレス製容器内に、実施例及び比較例において作製したガス分離膜を入れ、密閉系とした。その後、25℃条件下で20分間保存して複合膜をトルエン蒸気に曝した後、上記[試験例1]と同様にしてガス分離選択性を評価した。トルエン曝露前のガス分離選択性(P)に対するトルエン曝露後のガス分離選択性(Q)の比(Q/P、トルエン蒸気曝露後のガス分離選択性維持率)を算出し、下記評価基準により可塑化耐性を評価した。
 トルエン暴露によって、ベンゼン、トルエン、キシレン等の不純物成分に対するガス分離膜の可塑化耐性を評価できる。
[Test Example 2] Evaluation of resistance to plasticization The gas separation membrane used in Test Example 1 was placed in a stainless steel container containing a petri dish filled with a toluene solvent, and the gas separation membranes prepared in Examples and Comparative Examples were placed. , A closed system. Then, after storing for 20 minutes at 25 ° C. and exposing the composite membrane to toluene vapor, gas separation selectivity was evaluated in the same manner as in [Test Example 1]. Calculate the ratio of gas separation selectivity (Q) after exposure to toluene to the gas separation selectivity (P) before exposure to toluene (Q / P, retention rate of gas separation selectivity after exposure to toluene vapor). Plasticization resistance was evaluated.
By exposure to toluene, it is possible to evaluate the plasticization resistance of the gas separation membrane against impurity components such as benzene, toluene and xylene.
-可塑化耐性評価基準-
 A:トルエン蒸気曝露後のガス分離選択性維持率が0.9以上
 B:トルエン蒸気曝露後のガス分離選択性維持率が0.8以上0.9未満
 C:トルエン蒸気曝露後のガス分離選択性維持率が0.7以上0.8未満
 D:トルエン蒸気曝露後のガス分離選択性維持率が0.7未満
-Plasticization resistance evaluation criteria-
A: Gas separation selectivity maintenance ratio after exposure to toluene vapor is 0.9 or more B: Gas separation selectivity maintenance ratio after exposure to toluene vapor is 0.8 or more and less than 0.9 C: Gas separation selection after exposure to toluene vapor Maintenance ratio is 0.7 or more and less than 0.8 D: Gas separation selectivity maintenance ratio after exposure to toluene vapor is less than 0.7
 上記の各試験例の結果を下表に示す。 The results of the above test examples are shown in the table below.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 上記表に示されるように、ガス分離層を構成するセルロース化合物が置換基中に活性水素を有しない場合、ガス透過性が大きく低下し、ガス分離選択性及び可塑化耐性にも劣る結果となった(比較例1~4)。このことは、置換基中にフッ素原子を導入しても改善しなかった(比較例2~4)。また、ガス分離層を構成するセルロース化合物が、活性水素とフッ素原子を有する置換基を有する形態であっても、この置換基の分子量が本発明で規定するよりも大きい場合には、やはりガス透過性、ガス分離選択性及び可塑化耐性のいずれにも劣る結果となった(比較例5)。
 これに対し、置換基Tを有するセルロース化合物をガス分離層に用いた実施例1~9のガス分離膜はいずれも、ガス透過性とガス分離選択性を高いレベルで両立し、かつ可塑化耐性にも優れていた。
As shown in the above table, when the cellulose compound constituting the gas separation layer does not have active hydrogen in the substituent, the gas permeability is greatly reduced, resulting in poor gas separation selectivity and plasticization resistance. (Comparative Examples 1 to 4). This did not improve even when a fluorine atom was introduced into the substituent (Comparative Examples 2 to 4). Even if the cellulose compound constituting the gas separation layer has a form having a substituent having active hydrogen and a fluorine atom, if the molecular weight of the substituent is larger than that defined in the present invention, the gas permeation is still necessary. The results were inferior to all of the properties, gas separation selectivity and plasticization resistance (Comparative Example 5).
In contrast, any of the gas separation membranes of Examples 1 to 9 using a cellulose compound having a substituent T in the gas separation layer has both high gas permeability and high gas separation selectivity and is resistant to plasticization. It was also excellent.
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and are contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.
 本願は、2017年2月28日に日本国で特許出願された特願2017-037647に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。 This application claims priority based on Japanese Patent Application No. 2017-037647 filed in Japan on February 28, 2017, which is hereby incorporated herein by reference. Capture as part.
1 ガス分離層
2 多孔質層
3 不織布層
10、20 ガス分離複合膜
DESCRIPTION OF SYMBOLS 1 Gas separation layer 2 Porous layer 3 Nonwoven fabric layer 10, 20 Gas separation composite membrane

Claims (14)

  1.  セルロース化合物を構成材料として含むガス分離層を有するガス分離膜であって、前記セルロース化合物が下記一般式(1)で表される繰り返し単位を有する、ガス分離膜。
    Figure JPOXMLDOC01-appb-C000001
     
     一般式(1)中、R~Rは水素原子又は置換基を示す。但しR~Rのうち少なくとも1つは活性水素とフッ素原子とを有する分子量100以上500未満の置換基Tである。
    A gas separation membrane having a gas separation layer containing a cellulose compound as a constituent material, wherein the cellulose compound has a repeating unit represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001

    In general formula (1), R 1 to R 3 represent a hydrogen atom or a substituent. However, at least one of R 1 to R 3 is a substituent T having an active hydrogen and a fluorine atom and having a molecular weight of 100 or more and less than 500.
  2.  前記活性水素が、水酸基、カルボキシ基、アミド基、アミド結合、スルファモイル基、-SONH-、ウレタン結合、又はホウ酸基を構成する水素原子である、請求項1に記載のガス分離膜。 2. The gas separation membrane according to claim 1, wherein the active hydrogen is a hydrogen atom constituting a hydroxyl group, a carboxy group, an amide group, an amide bond, a sulfamoyl group, —SO 2 NH—, a urethane bond, or a boric acid group.
  3.  前記R~Rのうち少なくとも1つがメチル又はアセチルである、請求項1又は2に記載のガス分離膜。 The gas separation membrane according to claim 1 or 2, wherein at least one of R 1 to R 3 is methyl or acetyl.
  4.  前記R~Rのうち少なくとも1つが下記一般式(2-1)~(2-3)で表される基である、請求項1~3のいずれか1項に記載のガス分離膜。
    Figure JPOXMLDOC01-appb-C000002
     一般式(2-1)~(2-3)中、Rはフッ素原子を有する基を示す。*は結合部位を示す。
    The gas separation membrane according to any one of claims 1 to 3, wherein at least one of R 1 to R 3 is a group represented by the following general formulas (2-1) to (2-3).
    Figure JPOXMLDOC01-appb-C000002
    In general formulas (2-1) to (2-3), R f represents a group having a fluorine atom. * Indicates a binding site.
  5.  前記R~Rのうち少なくとも1つが下記一般式(3-1)~(3-3)のいずれかで表される基である、請求項1~4のいずれか1項に記載のガス分離膜。
    Figure JPOXMLDOC01-appb-C000003
     一般式(3-1)~(3-3)中、Lはフッ素原子を有する2価の基を示す。*は結合部位を示す。
    The gas according to any one of claims 1 to 4, wherein at least one of R 1 to R 3 is a group represented by any one of the following general formulas (3-1) to (3-3): Separation membrane.
    Figure JPOXMLDOC01-appb-C000003
    In the general formulas (3-1) to (3-3), L f represents a divalent group having a fluorine atom. * Indicates a binding site.
  6.  前記セルロース化合物の置換基Tによる置換度が0.5以上3.0以下である、請求項1~5のいずれか1項に記載のガス分離膜。 The gas separation membrane according to any one of claims 1 to 5, wherein the degree of substitution with the substituent T of the cellulose compound is 0.5 or more and 3.0 or less.
  7.  前記セルロース化合物の置換度が2.5越えである、請求項1~6のいずれか1項に記載のガス分離膜。 The gas separation membrane according to any one of claims 1 to 6, wherein the substitution degree of the cellulose compound exceeds 2.5.
  8.  前記ガス分離膜が、前記ガス分離層をガス透過性の支持層上側に有するガス分離複合膜である、請求項1~7のいずれか1項に記載のガス分離膜。 The gas separation membrane according to any one of claims 1 to 7, wherein the gas separation membrane is a gas separation composite membrane having the gas separation layer on the gas permeable support layer.
  9.  前記支持層が、前記ガス分離層側の多孔質層と、前記ガス分離層とは逆側の不織布層とからなる、請求項8に記載のガス分離膜。 The gas separation membrane according to claim 8, wherein the support layer comprises a porous layer on the gas separation layer side and a nonwoven fabric layer on the opposite side to the gas separation layer.
  10.  二酸化炭素及びメタンを含むガスから二酸化炭素を選択的に透過させるために用いられる、請求項1~9のいずれか1項に記載のガス分離膜。 The gas separation membrane according to any one of claims 1 to 9, which is used for selectively permeating carbon dioxide from a gas containing carbon dioxide and methane.
  11.  分離処理されるガスが二酸化炭素とメタンとの混合ガスである場合において、40℃、5MPaのガス供給条件における二酸化炭素の透過速度が20GPU以上であり、メタンの透過速度に対する二酸化炭素の透過速度の比が15以上である、請求項1~10のいずれか1項に記載のガス分離膜。 In the case where the gas to be separated is a mixed gas of carbon dioxide and methane, the transmission rate of carbon dioxide under a gas supply condition of 40 ° C. and 5 MPa is 20 GPU or more, and the transmission rate of carbon dioxide relative to the transmission rate of methane The gas separation membrane according to any one of claims 1 to 10, wherein the ratio is 15 or more.
  12.  請求項1~11のいずれか1項に記載のガス分離膜を具備するガス分離モジュール。 A gas separation module comprising the gas separation membrane according to any one of claims 1 to 11.
  13.  請求項1~11のいずれか1項に記載のガス分離膜を具備するガス分離装置。 A gas separation apparatus comprising the gas separation membrane according to any one of claims 1 to 11.
  14.  請求項1~11のいずれか1項に記載のガス分離膜を用いたガス分離方法。 A gas separation method using the gas separation membrane according to any one of claims 1 to 11.
PCT/JP2018/007051 2017-02-28 2018-02-26 Gas separation membrane, gas separation module, gas separation device, and gas separation method WO2018159562A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017037647A JP2020073249A (en) 2017-02-28 2017-02-28 Gas separation membrane, gas separation module, gas separator and gas separation method
JP2017-037647 2017-02-28

Publications (1)

Publication Number Publication Date
WO2018159562A1 true WO2018159562A1 (en) 2018-09-07

Family

ID=63370906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007051 WO2018159562A1 (en) 2017-02-28 2018-02-26 Gas separation membrane, gas separation module, gas separation device, and gas separation method

Country Status (2)

Country Link
JP (1) JP2020073249A (en)
WO (1) WO2018159562A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02212501A (en) * 1989-02-10 1990-08-23 Daikin Ind Ltd Fluorinated cellulose derivative
JP2005315668A (en) * 2004-04-28 2005-11-10 Daicel Chem Ind Ltd Separating agent for optical isomers
WO2008102920A1 (en) * 2007-02-23 2008-08-28 Daicel Chemical Industries, Ltd. Optical isomer separating filler
WO2016047351A1 (en) * 2014-09-22 2016-03-31 富士フイルム株式会社 Gas separation membrane, gas separation module, gas separator and gas separation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02212501A (en) * 1989-02-10 1990-08-23 Daikin Ind Ltd Fluorinated cellulose derivative
JP2005315668A (en) * 2004-04-28 2005-11-10 Daicel Chem Ind Ltd Separating agent for optical isomers
WO2008102920A1 (en) * 2007-02-23 2008-08-28 Daicel Chemical Industries, Ltd. Optical isomer separating filler
WO2016047351A1 (en) * 2014-09-22 2016-03-31 富士フイルム株式会社 Gas separation membrane, gas separation module, gas separator and gas separation method

Also Published As

Publication number Publication date
JP2020073249A (en) 2020-05-14

Similar Documents

Publication Publication Date Title
WO2014141868A1 (en) Gas separation composite membrane, gas separation module, gas separation device and gas separation method
WO2016136294A1 (en) Gas separation membrane, gas separation module, gas separation device, gas separation method, and method for producing gas separation asymmetric membrane
JP6521052B2 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
WO2015041250A1 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
WO2014087928A1 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
JP6038058B2 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
WO2015053102A1 (en) Gas separation membrane, and gas separation membrane module
JP2016503448A (en) Blend polymer membrane for gas separation containing fluorinated ethylene-propylene polymer
JP2015066484A (en) Gas separation membrane, manufacturing method therefor, and gas separation membrane module
JP6366813B2 (en) Gas separation asymmetric membrane, gas separation module, gas separation device, and gas separation method
WO2015033772A1 (en) Composite gas separation membrane, gas separation module, gas separation apparatus and gas separation method
JP2014024939A (en) Method for manufacturing a polyimide resin, gas separation membrane, gas separation module, gas separation apparatus, and gas separation method
KR101461199B1 (en) Composite hollow fiber membrane for separation of carbon dioxide/methane in the biogas purification process, membrane module comprising the same and manufacturing method thereof
WO2015129553A1 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
WO2018204580A1 (en) Crosslinked polymer membranes and methods of their production
JP2018012089A (en) Gas separation membrane, manufacturing method of gas separation membrane, gas separation membrane module and gas separator
WO2017145747A1 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
WO2017175598A1 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
WO2018159563A1 (en) Composite separation membrane, separation membrane module, separation device, composition for forming separation membrane, and method for producing composite separation membrane
WO2017145432A1 (en) Gas separation membrane, gas separation module, gas separation device, gas separation method, composition for forming gas separation layer, method for producing gas separation membrane, polyimide compound and diamine monomer
WO2018159562A1 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
WO2016047351A1 (en) Gas separation membrane, gas separation module, gas separator and gas separation method
JP5833986B2 (en) Gas separation composite membrane, method for producing the same, gas separation module using the same, gas separation device, and gas separation method
WO2017145728A1 (en) Gas separation membrane, gas separation module, gas separation device, gas separation method, and polyimide compound
JP2020203227A (en) Separation membrane, separation membrane module, separation device, composition for separation membrane formation, method for producing composite membrane for separation, and cellulose compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18761340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载