+

WO2018159497A1 - ポリビニルアルコール分解酵素とその製造方法 - Google Patents

ポリビニルアルコール分解酵素とその製造方法 Download PDF

Info

Publication number
WO2018159497A1
WO2018159497A1 PCT/JP2018/006767 JP2018006767W WO2018159497A1 WO 2018159497 A1 WO2018159497 A1 WO 2018159497A1 JP 2018006767 W JP2018006767 W JP 2018006767W WO 2018159497 A1 WO2018159497 A1 WO 2018159497A1
Authority
WO
WIPO (PCT)
Prior art keywords
pva
amino acid
degrading enzyme
acid sequence
enzyme
Prior art date
Application number
PCT/JP2018/006767
Other languages
English (en)
French (fr)
Inventor
山中 章裕
直紀 松尾
森 哲也
西本 友之
Original Assignee
株式会社林原
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社林原 filed Critical 株式会社林原
Priority to JP2019502962A priority Critical patent/JP7250673B2/ja
Priority to KR1020197028016A priority patent/KR102588044B1/ko
Priority to US16/490,000 priority patent/US20210207187A1/en
Priority to EP18761535.6A priority patent/EP3581647A4/en
Priority to CN201880028253.6A priority patent/CN110573615B/zh
Publication of WO2018159497A1 publication Critical patent/WO2018159497A1/ja
Priority to US17/449,888 priority patent/US11859229B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/03Oxidoreductases acting on the CH-OH group of donors (1.1) with a oxygen as acceptor (1.1.3)
    • C12Y101/03018Secondary-alcohol oxidase (1.1.3.18)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/03Oxidoreductases acting on the CH-OH group of donors (1.1) with a oxygen as acceptor (1.1.3)
    • C12Y101/0303Polyvinyl-alcohol oxidase (1.1.3.30)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y307/00Hydrolases acting on carbon-carbon bonds (3.7)
    • C12Y307/01Hydrolases acting on carbon-carbon bonds (3.7) in ketonic substances (3.7.1)
    • C12Y307/01007Beta-diketone hydrolase (3.7.1.7)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • Patent Documents 1 to 5 and the like include Pseudomonas, Acinetobacter, Sphingopyxis (formerly classified as Sphingomonas and Pseudomonas), Comamonas (red bacteria, photosynthetic bacteria), microbacterium, enterobacter, coryne Bacteria, Rhodococcus, Caseobacter, Xanthomonas, Neisseria, Bacillus, Brevibacterium, Escherichia, Aerobacter, Alcaligenes, Agrobacterium, Arthrobacter, Paenibacillus, Cardiobacterium, Streptomyces, Povalibacter (formerly steroid bacter And bacteria such as Thalassospira are disclosed, and fungi such as
  • FIG. 1 schematically shows the enzymatic degradation mechanism of PVA.
  • PVA oxidase also called “secondary alcohol oxidase”
  • PQQ pyrroloquinoline quinone
  • PVA dehydrogenase PVA dehydrogenase
  • PVA hydrolase oxidized PVA hydrolase, oxidized PVA hydrolase, OPH
  • ⁇ -diketone hydrolase oxidized PVA hydrolase
  • Patent Document 6 discloses an “enzyme composition” prepared from a culture solution of Pseudomonas microorganisms, which includes an enzyme capable of oxidizing PVA and an enzyme capable of hydrolyzing oxidized PVA. It is described that the “enzyme composition” can be used for the removal of PVA when repairing cultural assets containing PVA.
  • PVA dehydrogenase using PQQ as a coenzyme the amino acid sequences of enzymes derived from a plurality of microorganisms have been clarified (Patent Document 7, Non-Patent Document 5).
  • Pseudomonas genus The amino acid sequence of an enzyme derived from a microorganism (see Patent Document 3) and its three-dimensional structure have already been clarified (Non-Patent Document 6).
  • Patent Document 3 The amino acid sequence of an enzyme derived from a microorganism (see Patent Document 3) and its three-dimensional structure have already been clarified (Non-Patent Document 6).
  • PVA oxidase has been purified to a single level as a polypeptide, and there are few reports that have revealed physicochemical properties, and no specific amino acid sequence has been reported at all. For this reason, there are many unclear points in the entities of the conventionally known enzymes or enzyme groups involved in the degradation of PVA, and the entities have a sufficient level to perform the degradation of PVA stably and efficiently on an industrial scale.
  • the elucidated PVA-degrading enzyme is not yet known.
  • Pseudomonas sp. VT1B strain (NBRC110478), which has been known to produce PVA oxidase and oxidative PVA hydrolase, has unexpectedly increased PVA oxidation activity and oxidative PVA hydrolysis. It has been found that a novel PVA degrading enzyme is produced that has both degrading activities and can degrade PVA alone as a double-headed enzyme. Then, the amino acid sequence and various properties of the PVA-degrading enzyme are clarified, its production method is established, and the DNA encoding the enzyme, the recombinant DNA containing this, and the transformant are established. The present invention has been completed.
  • FIG. 2 is an SDS-polyacrylamide gel electrophoresis diagram of a purified sample of PVA-degrading enzyme.
  • FIG. 2 is a graph showing the optimum temperature for PVA oxidation activity of a purified PVA-A PVA-A degrading enzyme.
  • FIG. 3 is a graph showing the optimum pH of the PVA oxidation activity of the purified PVA-A PVA-degrading enzyme.
  • FIG. 3 is a graph showing the temperature stability of the PVA oxidation activity of the purified PVA-A PVA-A preparation.
  • FIG. 2 is a graph showing the pH stability of the PVA oxidation activity of a purified PVA-A purified PVA-A product. It is a figure which shows the result of having investigated the homology of the amino acid sequence of the N terminal side first half part of the PVA decomposing enzyme of this invention, and well-known PVA dehydrogenase. It is a figure which shows the result of having investigated the homology of the amino acid sequence of the C terminal side latter half part of the PVA decomposing enzyme of this invention, and a well-known oxidation PVA hydrolase. It is the figure which showed typically the structure of PVA degradation enzyme, PVA-A, and PVA-B.
  • the absorbance at 410 nm (A 410 ) changes by “1”. Therefore, in the following equation 1, the amount of change in absorbance is expressed by “3.65. ”Is multiplied.
  • One unit of PVA oxidation activity is defined as the amount of enzyme that produces 1 ⁇ mol of hydrogen peroxide per minute under the above conditions.
  • the titanium reagent is prepared by diluting a titanium (IV) sulfate solution (5%, sold by Nacalai Tesque Co., Ltd.) 25 times with 10% (w / w) sulfuric acid.
  • ⁇ Measurement method of PVA decomposition activity (viscosity reduction activity)> A substrate solution prepared by dissolving PVA (reagent grade polyvinyl alcohol, polymerization degree 2,000, sold by Nacalai Tesque Co., Ltd.) in 100 mM sodium phosphate buffer (pH 7.0) to a concentration of 2% (w / v). To 5 mL, 15 ⁇ L of 2% (w / v) sodium azide solution is added, 0.5 mL of enzyme solution is added thereto, and the mixture is reacted at 27 ° C. for 60 minutes with shaking. After the reaction, 0.6 mL of the reaction solution is used, and the viscosity is measured at 30 ° C.
  • PVA reaction grade polyvinyl alcohol, polymerization degree 2,000, sold by Nacalai Tesque Co., Ltd.
  • PVA decomposition activity is calculated based on the following formula.
  • One unit of PVA degradation activity is defined as the amount of enzyme that causes a 10% reduction in relative viscosity per minute under the above conditions.
  • the PVA-degrading enzyme of the present invention usually has the characteristics shown in (3) above, that is, the molecular weight of 100,000 ⁇ 20,000 in SDS-polyacrylamide gel electrophoresis (SDS-PAGE).
  • the PVA-degrading enzyme of the present invention as a double-headed enzyme, oxidizes PVA in the first half of the N-terminal side of the polypeptide and oxidizes in the latter half of the C-terminal side. This suggests the possibility of hydrolyzing PVA.
  • PVA oxidase fragments derived from the first half of the N-terminal side of the polypeptide and PVA hydrolase fragments derived from the second half of the C-terminal side of the polypeptide are Pseudomonas species. Since it was actually recognized in the culture solution of VT1B strain, the PVA-degrading enzyme of the present invention functions as a double-headed enzyme, and PVA oxidase and The presence of oxidized PVA hydrolase was demonstrated. This means that the PVA oxidase and the oxidized PVA hydrolase can be separately prepared by artificially limiting the PVA-degrading enzyme of the present invention with a protease or the like as necessary.
  • the PVA-degrading enzyme of the present invention is not limited by its source, a preferable source is a microorganism belonging to the genus Pseudomonas, and a microorganism found by the present inventors, Pseudomonas sp. VT1B strain or a mutant thereof Are preferably used.
  • the DNA of the present invention means all DNA having a base sequence encoding the amino acid sequence of the PVA-degrading enzyme of the present invention described above. As long as the DNA of the present invention has a base sequence that encodes the amino acid sequence of the PVA-degrading enzyme of the present invention, it may be naturally derived or artificially synthesized. . Examples of natural sources include Pseudomonas microorganisms including the Pseudomonas species VT1B strain, and genomic DNA containing the DNA of the present invention can be obtained from these cells.
  • the DNA of the present invention may be chemically synthesized based on the amino acid sequence represented by SEQ ID NO: 2 or 3 in the sequence listing.
  • PCR synthesis can be advantageously carried out using chemically synthesized DNA as an appropriate primer using genomic DNA containing the DNA as a template.
  • the DNA of the present invention usually has a predetermined base sequence, and examples thereof include the base sequence shown in SEQ ID NO: 4 or 5 in the sequence listing, or base sequences homologous thereto, and further A base sequence complementary to the base sequence of The DNA having a base sequence homologous to the base sequence shown in SEQ ID NO: 4 or 5 in the sequence listing is 1 in the base sequence shown in SEQ ID NO: 4 or 5 as long as it retains the activity of the encoded PVA-degrading enzyme. Examples include those having a base sequence in which more than one base has been deleted, substituted or added, and are usually 82% or more, preferably 85% or more, more preferably, with respect to the base sequence represented by SEQ ID NO: 4 or 5.
  • an appropriate promoter sequence may be selected in order to ensure the expression of the gene, and those in which this gene and the gene are incorporated into various plasmids may be used as an expression vector.
  • expression vectors include, for example, phage vectors, plasmid vectors, viral vectors, retroviral vectors, chromosomal vectors, episomal vectors and viral vectors (e.g., bacterial plasmids, bacteriophages, yeast episomes, yeast chromosomal elements and viruses (e.g., Baculovirus, papovavirus, vaccinia virus, adenovirus, tripox virus, pseudorabies virus, herpes virus, lentivirus and retrovirus)) and combinations thereof (eg cosmids and phagemids) can be used.
  • phage vectors include, for example, phage vectors, plasmid vectors, viral vectors, retroviral vectors, chromosomal vectors, episomal vectors and viral vectors
  • a general method is usually employed in this field. Specifically, first, a gene DNA containing the target DNA and a vector capable of autonomous replication are cleaved with a restriction enzyme and / or ultrasound, and then the generated DNA fragment and the vector fragment are ligated. The recombinant DNA thus obtained can be replicated indefinitely by appropriately introducing it into a host to form a transformant and culturing it.
  • the recombinant DNA thus obtained can be introduced into an appropriate host microorganism such as Escherichia coli, Bacillus subtilis, actinomycetes, or yeast.
  • an appropriate host microorganism such as Escherichia coli, Bacillus subtilis, actinomycetes, or yeast.
  • a colony hybridization method may be applied or a culture that is cultured in a nutrient medium to produce a PVA-degrading enzyme may be selected.
  • the PVA-degrading enzyme of the present invention has both PVA oxidizing activity and oxidized PVA hydrolyzing activity. Further, as described later in the experimental section, the PVA dehydrogenase known in the first half of the N-terminal side of the amino acid sequence of the enzyme polypeptide. It has a region showing low homology with the amino acid sequence of the enzyme, but also has a region showing relatively high homology with the amino acid sequence of a known oxidized PVA hydrolase in the latter half of the C-terminal side. Based on this finding, by inserting a stop codon, terminator sequence, etc.
  • the enzyme having only the PVA oxidation activity created above has an amino acid sequence consisting of about 450 amino acid residues in the first half of the N-terminal side of the amino acid sequence shown in SEQ ID NO: 2 or 3 in the Sequence Listing.
  • a mutant enzyme in which one or more amino acid residues are deleted, added or substituted within a range that maintains about 90% homology (sequence identity) in the amino acid sequence can be mentioned.
  • a promoter sequence, a start codon, a base sequence encoding a secretory signal sequence, etc. are inserted in the middle of the DNA of the present invention, that is, the DNA encoding the PVA-degrading enzyme of the present invention.
  • a polypeptide (enzyme) having only oxidized PVA hydrolyzing activity can be obtained by artificially creating a DNA encoding the amino acid sequence of only the latter half of the C-terminal side of the PVA-degrading enzyme of the present invention. And can be used as a recombinant oxidized PVA hydrolase.
  • amino acid sequence represented by SEQ ID NO: 2 in the sequence listing exemplified as the amino acid sequence of the PVA-degrading enzyme of the present invention and the amino acid sequence represented by SEQ ID NO: 3 in the sequence listing are as follows.
  • homology is about 84%, it is limited to an amino acid sequence region consisting of about 340 amino acid residues in the C-terminal latter half having homology with the amino acid sequence of a known oxidized PVA hydrolase.
  • the homology (sequence identity) is about 85%.
  • an amino acid sequence consisting of about 340 amino acid residues in the C-terminal half of the amino acid sequence shown in SEQ ID NO: 2 or 3 in the sequence listing Or a mutant enzyme in which one or more amino acid residues are deleted, added or substituted within a range that maintains about 85% homology (sequence identity) in the amino acid sequence. .
  • amino acid sequences shown in SEQ ID NOs: 2 and 3 in the sequence listing exemplified as the amino acid sequence of the PVA-degrading enzyme of the present invention are homologous to the amino acid sequence of the PVA dehydrogenase in the first half of the N-terminal side.
  • a region having homology with the amino acid sequence of the oxidized PVA hydrolase in the latter half of the C-terminal side has a linker portion consisting of a sequence of about 90 to 100 amino acid residues.
  • the linker is 2 It appears to be helpful in the construction of double-headed enzymes without adversely affecting the types of enzyme activities. There is a possibility that the linker part can be used not only for the PVA-degrading enzyme of the present invention but also for linking two other appropriate enzymes to form a double-headed enzyme.
  • the medium used for culturing microorganisms (including transformants) having the ability to produce PVA-degrading enzymes of the present invention may be any nutrient medium that can grow microorganisms and produce PVA-degrading enzymes. Either is acceptable.
  • inorganic nitrogen compounds such as ammonium salts and nitrates, and organic nitrogen-containing materials such as urea, corn steep liquor, casein, peptone, yeast extract and meat extract can be used as appropriate.
  • inorganic component for example, salts such as calcium salt, magnesium salt, potassium salt, sodium salt, phosphate, manganese salt, zinc salt, iron salt, copper salt, molybdenum salt, and cobalt salt are appropriately used. it can.
  • amino acids, vitamins and the like can be appropriately used as necessary.
  • the culture containing the PVA-degrading enzyme of the present invention is recovered.
  • the activity of PVA-degrading enzyme is observed mainly in the culture supernatant obtained by removing the cells from the culture.
  • the culture supernatant can be collected as a crude enzyme solution, or the whole culture can be used as a crude enzyme solution. You can also.
  • a known solid-liquid separation method is employed to remove the cells from the culture. For example, a method of centrifuging the culture itself, a method of filtering and separating using a precoat filter or the like, a method of separating by membrane filtration such as a flat membrane or a hollow fiber membrane, and the like are appropriately employed.
  • the culture supernatant can be used as a crude enzyme solution as it is, it is generally used after being concentrated.
  • concentration method an ammonium sulfate salting-out method, an acetone and alcohol precipitation method, a membrane concentration method using a flat membrane, a hollow membrane, or the like can be employed.
  • the PVA-degrading enzyme of the present invention can be used as it is or after being concentrated, but can be further separated and purified by a known method if necessary.
  • a known method for example, as will be described later in the experimental section, an anion exchange column chromatography using “DEAE-Toyopearl 650S” after dialysis of a partially purified enzyme obtained by salting out the processed product of the culture broth and subjecting it to concentration.
  • the PVA-degrading enzyme of the present invention can be electrophoretically obtained as a single enzyme by purification using cation exchange column chromatography using “CM-Toyopearl 650S”.
  • CM-Toyopearl 650S for the purification of PVA-degrading enzyme, other appropriate purification methods such as hydrophobic column chromatography, gel filtration column chromatography, affinity column chromatography, and isoelectric focusing for preparation can be advantageously used.
  • the PVA-degrading enzyme is a recombinant enzyme
  • the enzyme may accumulate in the microbial cells depending on the type of host.
  • the cells or culture can be used as they are, but usually, prior to use, after extraction from the cells by osmotic shock or a surfactant, if necessary, or It is also possible to advantageously carry out the use of the recombinant enzyme separated from the bacterial cells or the disrupted cells by filtration, centrifugation or the like after disrupting the cells with ultrasonic waves or cell wall lytic enzymes.
  • the PVA as a substrate of the PVA-degrading enzyme of the present invention is not particularly limited by its molecular weight (or polymerization degree) and saponification degree, but generally the molecular weight is 15,000 to 200,000 (polymerization). The degree is 400 to 3,900), and the saponification degree is 70 to 99 mol%.
  • the substrate concentration is not particularly limited.
  • a substrate concentration of 1% (w / v) or more is suitable, and PVA can be advantageously decomposed under these conditions.
  • the reaction temperature may be a temperature at which the reaction proceeds, that is, up to about 55 ° C. Preferably, a temperature around 25 to 50 ° C. is used.
  • the reaction pH is usually adjusted to 4.5 to 8.0, preferably pH 5.0 to 7.5. The amount of enzyme used and the reaction time are closely related and may be appropriately selected depending on the progress of the target enzyme reaction.
  • Pseudomonas sp. VT1B strain (NBRC110478) subcultured on a plate agar medium was scraped with a platinum loop and suspended in sterilized 0.85% saline (about 2 mL). Adjust the turbidity of the suspension (absorbance at a wavelength of 660 nm, A 660 ) to 0.5, inoculate 60 ⁇ L into a test tube containing 3 mL of the liquid medium, and incubate at 27 ° C. and 240 rpm for 5 days. A seed culture was used.
  • Example 2 Purification of PVA-degrading enzyme> Ammonium sulfate was added to 4 L of the culture supernatant obtained in Experiment 1 so that the final concentration was 60% saturation, and the mixture was allowed to stand at 4 ° C. for 24 hours for salting out. The generated salting-out precipitate is collected by centrifugation (11,000 rpm, 30 minutes), dissolved in 10 mM phosphate buffer (pH 7.0), dialyzed against the same buffer, and ammonium sulfate salting-out. About 45 mL was obtained as a dialysate.
  • This ammonium sulfate salting-out dialyzate was subjected to anion exchange column chromatography (gel capacity: 24 mL) using “DEAE-Toyopearl 650S” gel (manufactured by Tosoh Corporation).
  • the PVA oxidation activity consists of an active fraction that elutes to the non-adsorbed fraction without adsorbing to the column equilibrated with 10 mM phosphate buffer (pH 7.0), and a salt concentration of the buffer that is adsorbed to the column from 0 M.
  • the fraction was separated into active fractions eluted by gradient elution that linearly increased to 0.5M.
  • PVA-B The active fraction adsorbed on “DEAE-Toyopearl 650S” gel and eluted with sodium chloride was dialyzed against 10 mM phosphate buffer (pH 7.0) to obtain a purified PVA-degrading enzyme (PVA-B).
  • the active fraction that was not adsorbed on the anion exchange column using “DEAE-Toyopearl 650S” was subjected to cation exchange column chromatography (gel capacity) using “CM-Toyopearl 650S” gel (manufactured by Tosoh Corporation). 23 mL).
  • the PVA oxidation activity was adsorbed on a “CM-Toyopearl 650S” gel and eluted with a linear gradient from 0 M to 0.5 M salt concentration. As a result, it eluted at around 0.08 M salt concentration.
  • the active fraction was collected and dialyzed against 10 mM phosphate buffer (pH 7.0) to obtain a purified PVA-degrading enzyme preparation (PVA-A).
  • Table 1 summarizes the total activity, total protein, specific activity, and yield of the PVA-degrading enzyme in each stage of the purification process as PVA oxidation activity.
  • the 2,4-pentanedione degradation activity qualitatively confirmed for the culture supernatant (crude enzyme) and the purified enzyme preparation, and the PVA degradation measured at each stage of the purification process together with the measurement of the PVA oxidation activity The activities are shown in Table 1, respectively.
  • the notation “ ⁇ ” for 2,4-pentanedione decomposition activity means that acetone, which is a hydrolysis product of 2,4-pentanedione, was detected.
  • ⁇ Experiment 3 Properties of PVA-degrading enzyme>
  • ⁇ Experiment 3-1 Molecular weight>
  • the symbol M represents a molecular weight marker that has been electrophoresed simultaneously
  • the symbols A and B represent PVA-A and PVA-B, respectively.
  • PVA-A and PVA-B both show almost a single protein band, and have almost the same molecular weight, 100,000 ⁇ 20,000, by comparison with molecular weight markers. There was found.
  • Example 3-3 Temperature stability and pH stability> Among the PVA-degrading enzyme purified preparations obtained by the method of Experiment 2, PVA-A was used, and the temperature stability and pH stability were examined using PVA oxidation activity as an index. The temperature stability was determined by measuring the remaining enzyme activity after holding the enzyme solution (10 mM phosphate buffer, pH 7.0) at each temperature for 60 minutes, cooling with water. The pH stability was determined by maintaining the enzyme solution in 100 mM buffer at each pH at 4 ° C. for 24 hours, adjusting the pH to 7.0, and measuring the remaining enzyme activity. These results are shown in FIG. 5 (temperature stability) and FIG. 6 (pH stability). The symbols ⁇ , ⁇ , ⁇ and ⁇ in FIG.
  • N-terminal amino acid sequence > The purified samples of PVA-degrading enzyme obtained in Experiment 2, ie, PVA-A and PVA-B were each subjected to N-terminal amino acid sequence analysis, and the amino acid sequence from the N-terminal to 20 residues was analyzed. N-terminal amino acid sequence analysis was performed using a peptide sequencer (device name “PPSQ-31A”, manufactured by Shimadzu Corporation).
  • ⁇ Experiment 4-1 Preparation of genomic DNA> Pseudomonas sp. VT1B strain (NBRC110478) subcultured on flat plate agar medium was inoculated into a test tube containing 3 mL of the liquid medium used in Experiment 1 and shaken at 27 ° C. and 240 rpm for 5 days. Cultured. After completion of the culture, genomic DNA was prepared from cells collected by centrifuging the culture using a commercially available total DNA purification kit (trade name “DNeasy Blood & Tissue Kit”, sold by QIAGEN).
  • Experiment 4-2 Determination of whole genome base sequence using next-generation sequencer>
  • the genomic DNA obtained in Experiment 4-1 was enzymatically fragmented using a commercially available kit (trade name “Nextera XT DNA Library Preparation Kit”, sold by Illumina), and blunting of the ends of the fragmented DNA and DNA
  • a DNA fragment was made into a library by adding an adapter sequence to the terminal, further amplified by PCR, and then purified using a commercially available DNA purification kit (trade name “AMPure XP”, sold by Beckman Coulter).
  • the base sequence of the DNA fragment that is made into a library is determined using a next-generation sequencer (device name “MiSeq”, manufactured by Illumina), and the determined base sequence (contig sequence) of each DNA fragment is integrated on a computer. As a result, the base sequence of total genomic DNA was obtained.
  • a next-generation sequencer device name “MiSeq”, manufactured by Illumina
  • the base sequence of ORF3286 that is, the base sequence represented by SEQ ID NO: 4 in the sequence listing is the structural gene DNA of PVA-A, and PVA-A is written together with the base sequence represented by SEQ ID NO: 4 in the sequence listing. It was found that the amino acid sequence was composed of the amino acid sequence obtained by removing the 26 amino acid residues at the N-terminal part presumed to be a secretory signal sequence, that is, the amino acid sequence represented by SEQ ID NO: 2 in the sequence listing.
  • the base sequence of ORF 3283 that is, the base sequence represented by SEQ ID NO: 5 in the sequence listing is the structural gene DNA of PVA-B
  • PVA-B is the base sequence represented by SEQ ID NO: 5 in the sequence listing. It was found that the amino acid sequence shown was composed of the amino acid sequence obtained by removing the 26 amino acid residues at the N-terminal part, which was presumed to be a secretory signal sequence, that is, the amino acid sequence represented by SEQ ID NO: 3 in the sequence listing.
  • amino acid sequences of these PVA-A and PVA-B are the N-terminal first half showing homology with PVA dehydrogenase and the C-terminal second half showing homology with oxidized PVA hydrolase. Were linked via a relatively low amino acid sequence predicted to be a linker.
  • the amino acid sequence of PVA-A that is, the first half of the N-terminal side (residues 1 to 442) of the amino acid sequence represented by SEQ ID NO: 2 in the sequence listing is the amino acid sequence of PVA dehydrogenase derived from Pseudomonas sp. (Residues 144 to 627) and about 24% homology (sequence identity), and the first half of the N-terminal side (residues 1 to 429) is a PVA dehydrogenase derived from Sphingopyces sp. 113P3 About 26% homology (sequence identity) with the amino acid sequence (residues 151 to 627).
  • the amino acid sequence of PVA-B that is, the N-terminal first half (residues 1 to 445) of the amino acid sequence shown in SEQ ID NO: 3 in the sequence listing is the amino acid sequence of PVA dehydrogenase derived from Pseudomonas sp. 144 to 630 residues) and about 23% homology (sequence identity), and the first half of the N-terminal side (residues 1 to 429) is a PVA dehydrogenase derived from the Sphingopyces sp. 113P3 strain. It showed about 25% homology (sequence identity) with the amino acid sequence (151 to 627 residues).
  • the amino acid sequence of PVA-A that is, the C-terminal second half (625 to 973 residues) in the amino acid sequence shown in SEQ ID NO: 2 in the sequence listing is the PVA hydrolase amino acid sequence derived from Pseudomonas sp. VM15C strain (34 to 379 residues) and about 54% homology (sequence identity), and the latter half of the C-terminal side (643 to 973 residues) is oxidized PVA hydrolysis derived from Sphingopyces sp. 113P3 strain It showed about 55% homology (sequence identity) with the amino acid sequence of the enzyme (39 to 363 residues).
  • the amino acid sequence of PVA-B that is, the C-terminal latter half (586 to 963 residues) in the amino acid sequence shown in SEQ ID NO: 3 in the sequence listing is the amino acid sequence of oxidized PVA hydrolase derived from Pseudomonas species VM15C strain ( 3 to 379 residues) and about 50% homology (sequence identity), and the latter half of the C-terminal side (619 to 963 residues) is an oxidized PVA hydrolase derived from Sphingopyces sp. 113P3 strain And about 51% homology (sequence identity) with the amino acid sequence (24 to 363 residues).
  • the latter half of the C-terminal side of the amino acid sequences of PVA-A and PVA-B has a relatively high homology with oxidized PVA hydrolase derived from Pseudomonas sp. VM15C or Sphingopyces sp. 113P3.
  • FIG. 8 can also be seen visually.
  • ⁇ Experiment 9-1 Cloning of DNA encoding PVA-degrading enzyme and preparation of recombinant DNA> First, PCR was performed using the plasmid vector pRSET A as a template and Primer 1 and Primer 2 having the nucleotide sequences shown in SEQ ID NOs: 6 and 7 in the sequence listing, respectively, to prepare linear pRSET A. Next, using genomic DNA as a template, PCR was performed using primer 3 and primer 4 having the nucleotide sequences shown in SEQ ID NOs: 8 and 9 in the sequence listing, respectively, and the amino acid sequence in which the signal sequence was removed from the amino acid sequence encoded by ORF3286 The sequence, ie DNA encoding PVA-A, was amplified.
  • PCR is performed using Primer 3 and Primer 5 having the nucleotide sequences shown in SEQ ID NOs: 8 and 10 in the Sequence Listing using genomic DNA as a template, and the signal sequence is removed from the amino acid sequence encoded by ORF 3283.
  • the resulting amino acid sequence ie, DNA encoding PVA-B was amplified.
  • Example 9-2 Preparation of transformant and expression of PVA-degrading enzyme protein> Using the recombinant DNA encoding PVA-A obtained in Experiment 9-1, “pRSET A-PVA-A”, E. coli HST08 was transformed in accordance with a conventional method to prepare a large amount of recombinant DNA, and then E. coli BL21 ( When DE3) was transformed and expression of the recombinant enzyme was attempted, production of an expressed protein accompanying the expression of the recombinant DNA was observed.
  • PVA as a substrate (reagent grade polyvinyl alcohol, polymerization degree 2,000, sold by Nacalai Tesque), 50 mM sodium phosphate buffer (pH 7.0), and purified enzyme solution of PVA-A dissolved in the same buffer
  • the final concentration of PVA is 1%, 4% or 10% (w / v)
  • the enzyme action amount of PVA-A is 1 (or 1.25) as PVA oxidation activity per 1 PVA, and 5 or 10 units.
  • a reaction solution (1 mL each) was prepared and reacted in a plastic tube at 35 ° C. for 1, 4 or 20 hours with shaking at 160 rpm.
  • Gel filtration HPLC uses a column in which two “TSKgel ⁇ -4000” (manufactured by Tosoh Corporation) are connected, a 50 mM phosphate buffer (pH 7.0) is used as an eluent, a column temperature of 40 ° C., Detection was performed under the condition of a flow rate of 0.5 ml / min, and detection was performed using a differential refractometer RID-20A (manufactured by Shimadzu Corporation). The molecular weights of PVA and PVA degradation products were calculated based on molecular weight calibration curves prepared by subjecting pullulan standards for molecular weight measurement (sales by Hayashibara Co., Ltd.) to gel filtration HPLC in the same manner.
  • FIG. 11 shows the gel filtration HPLC chromatogram of the reaction solution (reference symbol b in FIG. 11) in comparison with that of PVA used as a substrate (reference symbol a in FIG. 11).
  • PVA used as a substrate showed a peak top at a retention time of 30.6 minutes, and its weight average molecular weight (Mw) was calculated to be about 10.6 ⁇ 10 4 .
  • the decomposition reaction liquid obtained by acting for 20 hours with a PVA concentration of 1% (w / v) and an enzyme action amount of 10 units, the decomposition product showed a peak top at a retention time of 40.4 minutes, The weight average molecular weight (Mw) was calculated to be about 4,400. From this result, it was found that PVA used as a substrate in the PVA decomposition reaction solution was decomposed to low molecules by PVA-A.
  • the PVA-degrading enzyme of the present application alone can efficiently decompose PVA. This is possible only when the PVA-degrading enzyme of the present application is a double-headed enzyme having both PVA oxidizing activity and oxidized PVA hydrolyzing activity.
  • the fraction obtained by CM-Toyopearl 650S column chromatography in the purification process of PVA-A and PVA-B in Experiment 2 is different from PVA-A and PVA-B, and contains oxidized PVA water. A fraction having degrading activity was also found.
  • this fraction was subjected to SDS-polyacrylamide gel electrophoresis, a protein band having a molecular weight of about 35,000 having a lower molecular weight than PVA-A and PVA-B was detected.
  • the N-terminal amino acid sequence of this protein was examined in the same manner as in Experiment 3-6, 5 amino acid residues were found, and valine-serine-glycine-glycine-threonine was observed.
  • FIG. 8 compares the amino acid sequences of PVA-A and PVA-B with the amino acid sequences of known oxidized PVA hydrolases
  • FIG. 9 schematically shows the structures of PVA-A and PVA-B.
  • PVA (reagent grade polyvinyl alcohol, polymerization degree 500, sold by Nacalai Tesque) 1 g / L, monopotassium phosphate 1 g / L, sodium chloride 0.5 g / L, ammonium nitrate 4 g / L, magnesium sulfate heptahydrate 0
  • Liquid medium consisting of 0.5 g / L, yeast extract (Yeast extract D-3H, manufactured by Nippon Pharmaceutical Co., Ltd.) and water is adjusted to pH 7.0 and then sterilized in an autoclave (121 ° C., 20 minutes). Furthermore, a liquid medium obtained by adding pyrroloquinoline quinone (PQQ) sterilized by filtration to a final concentration of 10 ⁇ g / L was used for the culture.
  • PQQ pyrroloquinoline quinone
  • Pseudomonas species VT1B strain was seed-cultured in the same manner as in Experiment 1, and 50% of the above liquid medium was dispensed into a 500-mL Erlenmeyer flask. Shake and tow culture at 240 rpm for 5 days.
  • the activity of the PVA-degrading enzyme in the culture supernatant obtained after the culture was 0.034 units / mL as the PVA oxidation activity.
  • the main culture supernatant was allowed to act on 2,4-pentanedione, the hydrolysis product, acetone, was detected and had ⁇ -diketone hydrolysis activity, ie, oxidized PVA hydrolysis activity. It was confirmed that The main culture supernatant can be advantageously used as a crude enzyme of PVA-degrading enzyme.
  • ⁇ PVA degrading enzyme agent About 1 L of the culture solution of Pseudomonas species VT1B obtained by the method of Example 1 was centrifuged (10,000 rpm, 30 minutes), and about 960 mL of the resulting culture supernatant (PVA oxidation activity about 32 units) was 25%. Ammonium sulfate was added and dissolved so as to be saturated, and left overnight in a cold room. The obtained salted-out product was collected by centrifugation, dissolved in 10 mM phosphate buffer (pH 7.0), and dialyzed against the same buffer.
  • ⁇ PVA degrading enzyme agent About 600 mL of the culture solution of Pseudomonas sp. VT1B obtained by the method of Experiment 1 was centrifuged (10,000 rpm, 30 minutes), and about 560 mL of the resulting culture supernatant (PVA oxidation activity 19.1 units) was 60%. Ammonium sulfate was added and dissolved so as to be saturated, and left overnight in a cold room. The obtained salted-out product was collected by centrifugation, dissolved in 5 mM phosphate buffer (pH 7.0), and dialyzed against the same buffer.
  • the obtained dialysate was subjected to liquid chromatography using a column packed with “Toyopearl AF-Blue HC-650M” (carrier having “Cibacron Blue F3GA” as a functional group) equilibrated with the same phosphate buffer, Elution was performed with a linear gradient of potassium chloride from 0M to 1M. Since the PVA-degrading enzyme was eluted at a potassium chloride concentration of about 0.2M, the active fraction was recovered and used as a partially purified product of PVA-degrading enzyme. Since this product has been confirmed to have ⁇ -diketone hydrolysis activity, that is, oxidized PVA hydrolysis activity as well as PVA oxidation activity, it can be advantageously used as a PVA degrading enzyme agent.
  • the present invention it is possible to produce and provide a large amount of a PVA-degrading enzyme as a completely novel double-headed enzyme having both PVA oxidizing activity and oxidized PVA hydrolyzing activity, which has been unknown in the past.
  • the present invention which makes it possible to provide a completely new PVA-degrading enzyme, contributes to various fields in which degradation and removal of PVA are required, and its industrial significance is extremely great.
  • FIG. M Molecular weight marker A: PVA-degrading enzyme purified sample
  • PVA-A B PVA-degrading enzyme purified sample PVA-B 4 and 6,
  • Acetate buffer
  • Glycine-NaOH buffer
  • Potassium chloride-NaOH buffer
  • Amino acid residues are indicated by a single letter, and an amino acid residue shaded in gray means an amino acid residue that is identical in three of the four amino acid sequences compared, and an amino acid residue shaded in black is 4 Means amino acid residues that are identical in all of the species amino acid sequences.
  • PVA-A amino acid sequence of PVA-A (amino acid sequence represented by SEQ ID NO: 2 in the sequence listing)
  • PVA-B amino acid sequence of PVA-B (amino acid sequence represented by SEQ ID NO: 3 in the sequence listing)
  • PVADH_VM15C Amino acid sequence of PVA dehydrogenase derived from Pseudomonas sp.
  • VM15C strain PVADH — 113P3: Amino acid sequence of PVA dehydrogenase derived from Strain 113P3
  • OPH_VM15C Pseudomonas sp. Amino acid sequence of oxidized PVA hydrolase derived from Pixis sp. 113P3 strain In FIG.
  • FIG. 9 numbers indicate amino acid residue numbers, N means N-terminal, and C means C-terminal.
  • FIG. f1 ori f1 phage origin of replication Ampicillin: ampicillin resistance gene
  • pUC ori pUC origin of replication
  • PVA-A PVA-A gene
  • FIG. a Gel filtration HPLC chromatogram of PVA as substrate
  • b Gel filtration HPLC chromatogram of PVA degradation product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

アミノ酸配列のレベルまで実体が解明された新規なPVA分解酵素を提供するとともに、その製造方法、当該酵素をコードするDNA、これを含んでなる組換えDNA及び形質転換体を提供することを課題とし、下記(1)乃至(3)の特徴を有するポリビニルアルコール分解酵素、その製造方法、当該酵素をコードするDNA、これを含んでなる組換えDNA及び形質転換体を提供することにより上記課題を解決する: (1)ポリビニルアルコールを酸化し、過酸化水素を生成する活性を有する。 (2)β-ジケトンを加水分解する活性を有する。 (3)SDS-ポリアクリルアミドゲル電気泳動において分子量100,000±20,000を示す。

Description

ポリビニルアルコール分解酵素とその製造方法
 本発明は、ポリビニルアルコール分解酵素とその製造方法に関し、詳細には、新規ポリビニルアルコール分解酵素とその製造方法、当該酵素をコードするDNAとこれを含んでなる組換えDNA、及び、形質転換体に関する。
 ポリビニルアルコール(以下、「PVA」と略称する。)は、酢酸ビニルのモノマーを重合させて得られるポリマーであるポリ酢酸ビニルを、鹸化(アルカリ加水分解)することにより得られる水溶性のポリマーであって、接着性、粘結性、造膜性、被膜性、界面活性に優れるとともに高い化学安定性を備えていることから、ビニロン繊維、繊維糊剤、紙加工剤、接着剤、フィルム、及び重合助剤等の原料として工業的に広く用いられている。ただし、繊維糊剤などの用途では、使用後にPVAを除去する必要があり、PVAの除去には大量の水や、薬剤などが用いられることから、コストに及ぼす影響や環境への負荷が大きい。PVAは合成高分子であるが故に自然界にて分解され難いという不都合を有している。
 PVAを分解する手段としては、PVAを含む工場廃液を処理するための活性汚泥からPVA分解能を有する微生物を単離し、当該微生物を用いてPVAを分解する試みが数多く報告されている。PVA分解能を有する微生物として、特許文献1乃至5などには、シュードモナス、アシネトバクター、スフィンゴピクシス(以前はスフィンゴモナス、シュードモナスに分類)、コマモナス(紅色細菌、光合成細菌)、ミクロバクテリウム、エンテロバクター、コリネバクテリウム、ロドコッカス、カセオバクター、キサントモナス、ナイセリア、バチルス、ブレビバクテリウム、エッシェリヒア、アエロバクター、アルカリゲネス、アグロバクテリウム、アルスロバクター、パエニバチラス、カルディオバクテリウム、ストレプトマイセス、ポヴァリバクター(以前はステロイドバクターに分類)、サラッソスピラなどの細菌が開示されており、また、ペニシリウム、ゲオトリカムなどのカビ類、担子菌類も開示されている。
 微生物によるPVAの分解は、一般に、PVAを酸化する酵素と酸化されたPVAを加水分解する酵素との共同作用により行われることが報告されている(非特許文献1)。図1にPVAの酵素分解メカニズムを模式的に示した。図1に見られるとおり、PVAを酸化する酵素としては、PVA酸化酵素(PVAオキシダーゼ、「第二級アルコールオキシダーゼ(Secondary Alcohol Oxidase)」とも呼称される。)と、ピロロキノリンキノン(PQQ)を補酵素とするPVA脱水素酵素(PVAデヒドロゲナーゼ,PVADH)の2種類が知られており、一方、酸化されたPVAを加水分解する酵素としては、酸化PVA加水分解酵素(酸化PVAヒドロラーゼ(Oxidized PVA Hydrolase、OPH)、「β-ジケトン加水分解酵素」とも呼称される。)が知られている。
 シュードモナス属微生物由来の第二級アルコールオキシダーゼ(PVA酸化酵素)及び酸化PVA加水分解酵素については、1970年代後半から1980年代前半にかけて、酵素の精製とその性質がそれぞれ報告されており(非特許文献2及び3)、PVA酸化酵素は分子量約50,000の単一ポリペプチドとして、また、酸化PVA加水分解酵素は分子量約38,000の単一ポリペプチドとして、それぞれ特徴付けられている。さらに、特定のクロマトグラフィー用担体を用いてPVA酸化酵素と酸化PVA加水分解酵素を効率的に分離精製する方法も報告されている(非特許文献4)。また、特許文献6には、シュードモナス属微生物の培養液から調製された「酵素組成物」が開示され、PVAを酸化可能な酵素と、酸化されたPVAを加水分解可能な酵素とを含む当該「酵素組成物」が、PVAを含む文化財を修復する際のPVAの除去に利用できることが記載されている。PQQを補酵素とするPVA脱水素酵素については、複数の微生物由来の酵素についてそのアミノ酸配列が明らかにされており(特許文献7、非特許文献5)、酸化PVA加水分解酵素については、シュードモナス属微生物由来の酵素のアミノ酸配列(特許文献3を参照)や、その立体構造までが既に明らかにされている(非特許文献6)。その一方で、PVA酸化酵素をポリペプチドとして単一なレベルまで精製し、理化学的性質を明らかにした報告例は数少なく、また、具体的なアミノ酸配列などは一切報告されていない。このためPVAの分解にかかわる従来公知の酵素又は酵素群の実体には不明な点が多く、PVAの分解を産業的規模で安定的に、かつ効率良く行う上で十分なレベルにまでその実体が解明されたPVA分解酵素は未だ知られていない。
特開2004-000259号公報 特開2005-278639号公報 特開2006-042611号公報 特開2006-042612号公報 特開2006-180706号公報 特許第5891478号公報 特開平09-206079号公報
Matsumuraら、『マクロモレキュールズ(Macromolecules)』、32巻、7753-7761頁(1999年) Moritaら、『アグリカルチュラル・バイオロジカル・ケミストリー(Agric.Biol.Chem.)』,第43巻、1225-1235頁(1979年) Sakaiら、『アグリカルチュラル・バイオロジカル・ケミストリー(Agric.Biol.Chem.)』,第45巻、63-71頁(1981年) Sakaiら、『アグリカルチュラル・バイオロジカル・ケミストリー(Agric.Biol.Chem.)』,第47巻、153-155頁(1983年) Shimaoら、『Biosci.Biotechnol.Biochem.』、60巻、1056-1062頁(1996年) Yangら、『Chembiochem.』、15巻,1882-1886頁(2014年)
 本発明の課題は、そのアミノ酸配列のレベルまで実体が解明された新規なPVA分解酵素を提供するとともに、その製造方法、当該酵素をコードするDNA、これを含んでなる組換えDNA及び形質転換体を提供することにあり、以て、PVAの産業的規模での安定的かつ高効率の分解に資することにある。
 本発明者等は、上記課題を解決するために、新規なPVA分解酵素に期待を込めて、PVAの分解に関与する酵素を産生する微生物について検討を重ねてきた。その過程で、従来よりPVA酸化酵素や酸化PVA加水分解酵素を産生することが知られていたシュードモナス・スピーシーズ(Pseudomonas sp.) VT1B株(NBRC110478)が、意外にも、PVA酸化活性と酸化PVA加水分解活性の両方を併せ持ち、双頭酵素として単独でPVAを分解できる、全く新規なPVA分解酵素を産生することを見出した。そして、当該PVA分解酵素のアミノ酸配列並びに諸性質を明らかにするとともに、その製造方法を確立し、また、当該酵素をコードするDNAとこれを含んでなる組換えDNA及び形質転換体を確立して本発明を完成した。
 すなわち、本発明は、下記(1)乃至(3)の特徴を有する新規なPVA分解酵素を提供するとともに、その製造方法、当該酵素をコードするDNAとこれを含んでなる組換えDNA及び形質転換体を提供することによって上記課題を解決するものである:
(1)PVAを酸化し、過酸化水素を生成する活性を有する;
(2)β-ジケトンを加水分解する活性を有する;及び
(3)SDS-ポリアクリルアミドゲル電気泳動において分子量100,000±20,000を示す。
 本発明によれば、その実体がアミノ酸配列レベル並びにDNAレベルで解明された新規なPVA分解酵素とその製造方法を提供することができるので、分解酵素の産生も含めて、PVAの分解を工業的又は産業的規模で、より効率良く安定的に実行することが可能になるという利点が得られる。また、当該PVA分解酵素は、PVA酸化活性と酸化PVA加水分解活性の両方を併せ持つ双頭酵素であり、他の酵素と併用する必要がなく、それ単独でPVAを効率よく酸化及び分解することができるので、使い勝手が良いという利点を有している。このため、本発明が提供する新規なPVA分解酵素は、PVAの分解のみでなく、PVA含有製品の改質、改良など、PVAが関与する幅広い分野に有利に使用することができる。
PVA酸化酵素と酸化PVA加水分解酵素の共同作用によるPVAの分解メカニズムを模式的に示した図である。 PVA分解酵素の精製標品のSDS-ポリアクリルアミドゲル電気泳動図である。 PVA分解酵素の精製標品PVA-AのPVA酸化活性の至適温度を示した図である。 PVA分解酵素の精製標品PVA-AのPVA酸化活性の至適pHを示した図である。 PVA分解酵素の精製標品PVA-AのPVA酸化活性の温度安定性を示した図である。 PVA分解酵素の精製標品PVA-AのPVA酸化活性のpH安定性を示した図である。 本発明のPVA分解酵素のN末端側前半部のアミノ酸配列と、公知のPVA脱水素酵素との相同性を調べた結果を示す図である。 本発明のPVA分解酵素のC末端側後半部のアミノ酸配列と、公知の酸化PVA加水分解酵素との相同性を調べた結果を示す図である。 PVA分解酵素、PVA-A及びPVA-Bの構造を模式的に示した図である。 PVA分解酵素PVA-AをコードするDNAを含む自律複製可能な組換えDNA「pRSET A-PVA-A」の構造を示す模式図である。 基質PVAにPVA分解酵素PVA-Aを作用させて得られたPVA分解物のゲル濾過クロマトグラムである。
 本発明は、下記(1)乃至(3)の特徴を有する新規なPVA分解酵素に係るものである:
(1)PVAを酸化し、過酸化水素を生成する活性を有する;
(2)β-ジケトンを加水分解する活性を有する;及び
(3)SDS-ポリアクリルアミドゲル電気泳動において分子量100,000±20,000を示す。
 本発明のPVA分解酵素は、上記(1)に示されるとおり、基質としてのPVAを酸化するとともに過酸化水素を生成する反応を触媒する活性、すなわち、PVA酸化活性を有している。PVA酸化活性は、例えば、以下の方法により測定することができる。
<PVA酸化活性の測定方法>
 PVA(試薬級ポリビニルアルコール、重合度2,000、ナカライテスク株式会社販売)を2%(w/v)の濃度になるよう100mMリン酸ナトリウム緩衝液(pH7.0)に溶解した基質溶液0.5mLに、2%(w/v)のアジ化ナトリウム溶液を15μL添加し、これに酵素液0.5mLを添加し27℃で60分間振トウしながら反応させる。反応後、反応液0.32mLをチタニウム試薬0.8mLと混合して反応を停止させ、酵素反応により生成した過酸化水素とチタニウム試薬が反応して生ずる黄色い呈色を410nmの吸光度(A410)を指標に測定する。別途、基質溶液に酵素液を添加し、直ちにチタニウム試薬と混合し同様に測定した値を反応0分の値とし、以下に示す式に基づき生成した過酸化水素の量を求めPVA酸化活性を算出する。因みに、過酸化水素が3.65μモル/mL生成すると、410nmの吸光度(A410)は「1」変化することが分かっているので、下記式1においては、吸光度の変化量に「3.65」の係数が乗算されている。PVA酸化活性1単位は、上記条件下で1分間に1μモルの過酸化水素を生成する酵素量と定義する。なお、チタニウム試薬は、硫酸チタン(IV)溶液(5%、ナカライテスク株式会社販売)を10%(w/w)硫酸にて25倍希釈して調製する。
式1:
Figure JPOXMLDOC01-appb-M000001
 また、本発明のPVA分解酵素は、上記(2)に示されるとおり、β-ジケトンを加水分解する活性、すなわち、β-ジケトン加水分解活性を有している。β-ジケトン加水分解活性を有する酵素はβ-ジケトン構造を有する酸化されたPVA(酸化PVA)を加水分解することができる。β-ジケトン加水分解活性は、β-ジケトン構造を有する酸化PVAのモデル化合物である2,4-ペンタンジオンの加水分解を調べることで確認できる。PVA分解酵素が2,4-ペンタンジオンを加水分解するとアセトンと酢酸を生成する。したがって、β-ジケトン加水分解活性は、2,4-ペンタンジオンを基質として用い、例えば、下記の方法で確認することができる。
<β-ジケトン加水分解活性の確認方法>
 2,4-ペンタンジオン(試薬、和光純薬工業株式会社販売)を0.2%(w/v)の濃度になるように調製した50mMリン酸ナトリウム緩衝液(pH7.0)1mLを基質溶液とし、これに酵素液0.2mL、50mMリン酸ナトリウム緩衝液(pH7.0)0.8mLを添加し、27℃で3時間振トウして反応させる。反応後、2mLの反応液をガラスバイアルに分注、密閉し、95℃、40分間加熱し、バイアル中の気体1mLを採取して下記のガスクロマトグラフィー(GC)分析に供することにより、2,4-ペンタンジオンの加水分解産物であるアセトンを検出する。アセトンの生成が認められた酵素液を「β-ジケトン加水分解活性あり」と判定する。
(GC条件)
装置:GC-2010 Plus(株式会社島津製作所製)
カラム:DB-5(Part number.122-5032)(アジレント・テクノロジー株式会社製)
気化室温度:150℃;        注入モード:スプリット;
キャリアガス:ヘリウム;
 制御モード:線速度         圧力:114.6kPa
 全流量:12.6mL/分      カラム流量:1.6mL/分
 線速度:35.0cm/秒      パージ流量:3.0mL/分
 スプリット比:5.0
カラム温度:40℃;         平衡時間:1.0分;
カラム温度プログラム:カラム温度40℃で5分間保持した後、12分かけて100℃まで5℃/分で昇温し、次いで、15分かけて250℃まで10℃/分で昇温した後、250℃で3分間保持
検出器:FID;           検出器温度:260℃;
 本発明のPVA分解酵素は、上述したPVA酸化活性(特徴(1))とβ-ジケトン加水分解活性(特徴(2))とを併せ持つことによって、PVA分解活性を有し、単独でPVA分解酵素として機能するものであるが、PVA分解酵素としての活性は、例えば、下記の方法でPVAの分解にともなうPVA溶液の粘度低減を指標として測定することができる。
<PVA分解活性(粘度低減活性)の測定方法>
 PVA(試薬級ポリビニルアルコール、重合度2,000、ナカライテスク株式会社販売)を2%(w/v)の濃度になるよう100mMリン酸ナトリウム緩衝液(pH7.0)に溶解した基質溶液0.5mLに、2%(w/v)のアジ化ナトリウム溶液を15μL添加し、これに酵素液0.5mLを添加し27℃で60分間振トウしながら反応させる。反応後、反応液0.6mLを用い、コーンプレート型粘度計(商品名『DV-II+Pro』、ブルックフィールド社製)を使用して、30℃で粘度を測定する。別途、基質溶液に酵素液を添加し、直ちに測定した粘度を反応0分の粘度とし、下記式に基づきPVA分解活性を算出する。PVA分解活性1単位は、上記条件下、1分間に10%の相対粘度の低減を引き起こす酵素量と定義する。
式2:
Figure JPOXMLDOC01-appb-M000002
 さらに、本発明のPVA分解酵素は、通常、上記(3)に示される特徴、すなわち、SDS-ポリアクリルアミドゲル電気泳動(SDS-PAGE)において、100,000±20,000の分子量を示すという特徴を有する。
 また、本発明のPVA分解酵素の好適な一態様としては、PVA酸化活性に関し、下記(4)乃至(7)の酵素学的性質を有する酵素が挙げられる:
(4)至適温度
  pH7.0、60分間反応の条件下で、35乃至40℃;
(5)至適pH
  27℃、60分間反応の条件下で、pH6.5乃至8.0;
(6)温度安定性
  pH7.0、60分間保持の条件下で、45℃まで安定;及び
(7)pH安定性
  4℃、24時間保持の条件下で、pH4.5乃至10.5で安定。
 さらに、本発明のPVA分解酵素のより好適な一態様としては、下記(8)の特徴をさらに有する酵素が挙げられる:
(8)N末端アミノ酸配列として、配列表における配列番号1で示されるアミノ酸配列を有する。
 本発明のPVA分解酵素は、通常、ポリペプチドとして所定のアミノ酸配列を有しており、その好適な例としては、例えば、配列表における配列番号2又は3で示されるアミノ酸配列、又は、それらに相同的なアミノ酸配列が挙げられる。配列表における配列番号2又は3で示されるアミノ酸配列に相同的なアミノ酸配列を有する酵素としては、PVAを酸化し過酸化水素を生成する活性、及び、β-ジケトンを分解する活性を保持する範囲で、配列番号2又は3で示されるアミノ酸配列において1個以上のアミノ酸が欠失、置換若しくは付加したアミノ酸配列を有するものが挙げられ、配列表における配列番号2又は3で示されるアミノ酸配列に対し、通常、84%以上、望ましくは、90%以上、さらに望ましくは、95%以上の相同性(配列同一性)を有するアミノ酸配列を有するものが好適である。
 本発明のPVA分解酵素のアミノ酸配列として例示される、配列表における配列番号2又は3で示されるアミノ酸配列は、実験の項で後述するように、いずれもアミノ酸配列のN末端側前半部に公知のPVA脱水素酵素と相同性を示す領域が、また、C末端側後半部に公知の酸化PVA加水分解酵素と相同性を示す領域がそれぞれ存在するという、特徴的な構造を有するアミノ酸配列である。このような特徴的なアミノ酸配列を有しているという知見は、本発明のPVA分解酵素が双頭酵素として、そのポリペプチドのN末端側前半部でPVAを酸化し、C末端側後半部で酸化PVAを加水分解している可能性を示唆している。
 なお、後述する実験の項でも示すとおり、ポリペプチドのN末端側前半部に由来するPVA酸化酵素フラグメントと、ポリペプチドのC末端側後半部に由来する酸化PVA加水分解酵素フラグメントが、シュードモナス・スピーシーズ VT1B株の培養液中に実際に認められたことから、本発明のPVA分解酵素が双頭酵素として機能しており、当該N末端側前半部と当該C末端側後半部とにそれぞれPVA酸化酵素と酸化PVA加水分解酵素が存在していることが実証された。このことは、必要に応じ、本発明のPVA分解酵素を人為的にプロテアーゼなどで限定分解することにより、PVA酸化酵素と酸化PVA加水分解酵素とを別々に調製できることを物語るものである。
 本発明のPVA分解酵素はその給源によって制限されないものの、好ましい給源として、シュードモナス属に属する微生物が挙げられ、本発明者らが見出した微生物、シュードモナス・スピーシーズ(Pseudomonas sp.)VT1B株又はその変異株が好適に用いられる。
 本発明のDNAとは、前述した本発明のPVA分解酵素のアミノ酸配列をコードする塩基配列を有するDNA全般を意味する。本発明のDNAは、本発明のPVA分解酵素のアミノ酸配列をコードする塩基配列を有するものである限り、それが天然由来のものであっても、人為的に合成されたものであってもよい。天然の給源としては、例えば、シュードモナス・スピーシーズ VT1B株を含むシュードモナス属の微生物が挙げられ、これらの菌体から本発明のDNAを含むゲノムDNAを得ることができる。すなわち、斯かる微生物を栄養培地に接種し、好気的条件下で約5乃至10日間培養後、培養物から菌体を採取し、リゾチームやβ-グルカナーゼなどの細胞壁溶解酵素や超音波で処理することにより当該DNAを含むゲノムDNAを菌体外に溶出させる。このとき、プロテアーゼなどの蛋白質分解酵素を併用したり、SDSなどの界面活性剤を共存させたり凍結融解してもよい。斯くして得られる処理物に、例えば、フェノール抽出、アルコール沈殿、遠心分離、リボヌクレアーゼ処理などの常法を適用すれば目的のゲノムDNAが得られる。本発明のDNAを人為的に合成するには、例えば、配列表における配列番号2又は3で示されるアミノ酸配列に基づいて化学合成すればよい。また、当該DNAを含むゲノムDNAを鋳型として、適当なプライマーとなる化学合成DNAを用いてPCR合成することも有利に実施できる。
 本発明のDNAは、通常、所定の塩基配列を有しており、その一例としては、配列表における配列番号4又は5で示される塩基配列、又はそれらに相同的な塩基配列、さらには、それらの塩基配列に相補的な塩基配列が挙げられる。配列表における配列番号4又は5で示される塩基配列に相同的な塩基配列を有するDNAとしては、コードするPVA分解酵素の活性を保持する範囲で、配列番号4又は5で示される塩基配列において1個以上の塩基が欠失、置換若しくは付加した塩基配列を有するものが挙げられ、配列番号4又は5で示される塩基配列に対し、通常、82%以上、望ましくは、85%以上、さらに望ましくは、90%以上、またさらに望ましくは95%以上の相同性(配列同一性)を有する塩基配列を有するものが好適である。また、これらPVA分解酵素をコードするDNAにおいて、遺伝子コードの縮重に基づき、それぞれがコードするPVA分解酵素のアミノ酸配列を変えることなく塩基の1個又は2個以上を他の塩基に置換したものも当然、本発明のDNAに包含される。
 本発明のDNAを、自律複製可能な適宜ベクターに挿入して組換えDNAとすることも有利に実施できる。組換えDNAは、通常、DNAと自律複製可能なベクターとからなり、DNAが入手できれば、常法の組換えDNA技術により比較的容易に調製することができる。斯かるベクターの例としては、プラスミド、ファージ又はコスミド等を用いることができ、導入される細胞又は導入方法に応じて適宜選択できる。ベクターの具体的な種類は特に限定されるものではなく、宿主細胞中で発現可能なベクターを適宜選択すればよい。宿主細胞の種類に応じて、確実に上記遺伝子を発現させるために適宜プロモーター配列を選択し、これと上記遺伝子を各種プラスミド等に組み込んだものを発現ベクターとして用いればよい。かかる発現ベクターとしては、例えば、ファージベクター、プラスミドベクター、ウィルスベクター、レトロウィルスベクター、染色体ベクター、エピソームベクター及びウィルス由来ベクター(例えば、細菌プラスミド、バクテリオファージ、酵母エピソーム、酵母染色体エレメント及びウィルス(例えば、バキュロウィルス、パポバウィルス、ワクシニアウィルス、アデノウィルス、トリポックスウィルス、仮性狂犬病ウィルス、ヘルペスウィルス、レンチウィルス及びレトロウィルス))並びにそれらの組合せに由来するベクター(例えば、コスミド及びファージミド)を利用可能である。
 細菌における使用に好ましいベクターとしては、例えば、pQE-70、pQE-60、pBSベクター、Phagescriptベクター、Bluesciptベクター、pNH8A、pNH6a、pNH18A及びpNH46A;並びにptrc99a、pKK223-3、pKK233-3、pDR540及びpRIT5などが挙げられる。また、真核生物における使用に好ましいベクターとしては、pWLNE0、pSV2CAT、pOG44、pXT1及びpSG;並びにpSVK3、pBPV、pMSG及びpSVLなどが挙げられる。
 本発明のDNAを斯かるベクターに挿入するには、斯界において通常一般の方法が採用される。具体的には、まず、目的とするDNAを含む遺伝子DNAと自律複製可能なベクターとを制限酵素及び/又は超音波により切断し、次に、生成したDNA断片とベクター断片とを連結する。斯くして得られる組換えDNAは、適宜宿主に導入して形質転換体とし、これを培養することにより無限に複製することができる。
 このようにして得られる組換えDNAは、大腸菌、枯草菌、放線菌、酵母をはじめとする適宜の宿主微生物に導入することができる。形質転換体を取得するには、コロニーハイブリダイゼーション法を適用するか、栄養培地で培養し、PVA分解酵素を産生するものを選択すればよい。
 本発明のPVA分解酵素は、PVA酸化活性と酸化PVA加水分解活性とを併せ持ち、さらに、実験の項で後述するように、酵素ポリペプチドのアミノ酸配列のN末端側前半部に公知のPVA脱水素酵素のアミノ酸配列と低いながらも相同性を示す領域を有し、また、C末端側後半部に公知の酸化PVA加水分解酵素のアミノ酸配列と比較的高い相同性を示す領域を有する。この知見に基づいて、本発明のDNA、すなわち、本発明のPVA分解酵素をコードするDNAの中間部に終始コドン、ターミネーター配列などを挿入することにより、PVA分解酵素のN末端側前半部のみのアミノ酸配列をコードするDNAを人為的に創出し、組換えDNA技術を用いて適宜の宿主微生物中でその改変遺伝子を発現させることにより、PVA酸化活性のみを有するポリペプチド(酵素)を創出でき、これを組換え型PVA酸化酵素として製造及び利用できる。
 本発明のPVA分解酵素のアミノ酸配列として例示した配列表における配列番号2で示されるアミノ酸配列と、同じく配列表における配列番号3で示されるアミノ酸配列とは、実験の項で後述するとおり、アミノ酸配列全体では相同性(配列同一性)が約84%を示すものの、公知のPVA脱水素酵素のアミノ酸配列との相同性を有するN末端側前半部約450アミノ酸残基からなるアミノ酸配列の領域に限定すれば、その相同性(配列同一性)は約90%となる。このことから、上記で創出されるPVA酸化活性のみを有する酵素としては、配列表における配列番号2又は3で示されるアミノ酸配列のN末端側前半部約450アミノ酸残基からなるアミノ酸配列を有するか、又は、当該アミノ酸配列において、約90%の相同性(配列同一性)を維持する範囲内で1個以上のアミノ酸残基が欠失、付加又は置換した変異体酵素を挙げることができる。
 一方、同様に上述した知見に基づいて、本発明のDNA、すなわち、本発明のPVA分解酵素をコードするDNAの中間部にプロモーター配列、開始コドン、分泌シグナル配列をコードする塩基配列などを挿入することにより、本発明のPVA分解酵素のC末端側後半部のみのアミノ酸配列をコードするDNAを人為的に創出し、同様に発現させることにより、酸化PVA加水分解活性のみを有するポリペプチド(酵素)を創出でき、これを組換え型酸化PVA加水分解酵素として利用できる。
 また、上記のとおり、本発明のPVA分解酵素のアミノ酸配列として例示した配列表における配列番号2で示されるアミノ酸配列と、同じく配列表における配列番号3で示されるアミノ酸配列とは、アミノ酸配列全体では相同性(配列同一性)が約84%を示すものの、公知の酸化PVA加水分解酵素のアミノ酸配列との相同性を有するC末端側後半部約340アミノ酸残基からなるアミノ酸配列の領域に限定すれば、その相同性(配列同一性)は約85%となる。このことから、上記で創出される酸化PVA加水分解活性のみを有する酵素としては、配列表における配列番号2又は3で示されるアミノ酸配列のC末端側後半部約340アミノ酸残基からなるアミノ酸配列を有するか、又は、当該アミノ酸配列において、約85%の相同性(配列同一性)を維持する範囲内で1個以上のアミノ酸残基が欠失、付加又は置換した変異体酵素を挙げることができる。
 さらに、本発明のPVA分解酵素のアミノ酸配列として例示した配列表における配列番号2及び3で示されるアミノ酸配列は、そのいずれにおいても、N末端側前半部のPVA脱水素酵素のアミノ酸配列と相同性を示す領域とC末端側後半部の酸化PVA加水分解酵素のアミノ酸配列と相同性を示す領域との間に、約90乃至100アミノ酸残基の配列からなるリンカー部を有している。本発明のPVA分解酵素がN末端側前半部のみでPVA酸化酵素の機能を有し、C末端側後半部のみで酸化PVA加水分解酵素の機能を有しているのであれば、当該リンカーが2種類の酵素活性に悪影響を及ぼすことなく、双頭酵素の構成に役立っていると考えられる。当該リンカー部は、本発明のPVA分解酵素のみでなく、他の適宜の2種類の酵素を連結し双頭酵素とするために利用できる可能性がある。
 本発明のPVA分解酵素産生能を有する微生物(形質転換体を含む)の培養に用いる培地は、微生物が生育でき、PVA分解酵素を産生しうる栄養培地であればよく、合成培地及び天然培地のいずれでもよい。炭素源としては、微生物が生育に利用できる物であればよく、例えば、グリセリン、エチレングリコール、PVAなどのポリアルコール類、植物由来の澱粉やフィトグリコーゲン、動物や微生物由来のグリコーゲンやプルラン、また、これらの部分分解物やグルコース、フラクトース、ラクトース、スクロース、マンニトール、ソルビトール、糖蜜などの糖質、また、クエン酸、コハク酸などの有機酸も使用することができる。培地におけるこれらの炭素源の濃度は炭素源の種類により適宜選択できる。窒素源としては、例えば、アンモニウム塩、硝酸塩などの無機窒素化合物、及び、例えば、尿素、コーン・スティープ・リカー、カゼイン、ペプトン、酵母エキス、肉エキスなどの有機窒素含有物を適宜用いることができる。また、無機成分としては、例えば、カルシウム塩、マグネシウム塩、カリウム塩、ナトリウム塩、リン酸塩、マンガン塩、亜鉛塩、鉄塩、銅塩、モリブデン塩、コバルト塩などの塩類を適宜用いることができる。更に、必要に応じて、アミノ酸、ビタミンなども適宜用いることができる。
 微生物の培養は、通常、温度15乃至37℃でpH5.5乃至10の範囲、好ましくは温度20乃至34℃でpH5.5乃至8.5の範囲から選ばれる条件で好気的に行われる。培養時間は当該微生物が増殖し得る時間であればよく、好ましくは5日間乃至10日間である。また、培養条件における培養液の溶存酸素濃度には特に制限はないが、通常は、0.5乃至20ppmが好ましい。そのために、通気量を調節したり、攪拌したりするなどの手段を適宜採用する。また、培養方式は、回分培養または連続培養のいずれでもよい。
 このようにして微生物を培養した後、本発明のPVA分解酵素を含む培養物を回収する。PVA分解酵素の活性は、主に培養物から菌体を除去して得られる培養上清に認められ、培養上清を粗酵素液として採取することも、培養物全体を粗酵素液として用いることもできる。培養物から菌体を除去するには公知の固液分離法が採用される。例えば、培養物そのものを遠心分離する方法、あるいは、プレコートフィルターなどを用いて濾過分離する方法、平膜、中空糸膜などの膜濾過により分離する方法などが適宜採用される。培養上清をそのまま粗酵素液として用いることができるものの、一般的には、濃縮して用いられる。濃縮法としては、硫安塩析法、アセトン及びアルコール沈殿法、平膜、中空膜などを用いた膜濃縮法などを採用することができる。
 上記のように本発明のPVA分解酵素は、粗酵素液をそのまま又は濃縮して用いることができるものの、必要に応じて、公知の方法によって、さらに分離・精製して利用することもできる。例えば、実験の項で後述するように、培養液の処理物を硫安塩析して濃縮した部分精製酵素を透析後、『DEAE-トヨパール(Toyopearl)650S』を用いた陰イオン交換カラムクロマトグラフィー、続いて、『CM-トヨパール650S』を用いた陽イオン交換カラムクロマトグラフィーを用いて精製することにより、本発明のPVA分解酵素を電気泳動的に単一な酵素として得ることができる。また、PVA分解酵素の精製には、その他、疎水カラムクロマトグラフィー、ゲル濾過カラムクロマトグラフィー、アフィニティーカラムクロマトグラフィー、調製用等電点電気泳動などの適宜の精製方法が有利に利用できる。
 PVA分解酵素が組換え型酵素である場合には、宿主の種類によっては菌体内に酵素が蓄積することがある。このような場合には、菌体又は培養物をそのまま使用することも可能であるものの、通常は使用に先立ち、必要に応じて、浸透圧ショックや界面活性剤により菌体から抽出した後、又は、超音波や細胞壁溶解酵素により菌体を破砕した後、濾過、遠心分離などにより組換え型酵素を菌体又は菌体破砕物から分離して用いることも有利に実施できる。
 本発明のPVA分解酵素の基質としてのPVAは、その分子量(又は重合度)、鹸化度により、特に限定されるものではないが、一般的には、分子量は15,000~200,000(重合度は400~3,900)、鹸化度は70~99モル%等のものが挙げられる。
 本発明のPVA分解酵素を基質であるPVAに作用させるに際しては、その基質濃度は特に限定されず、例えば、基質濃度0.1%(w/v)の比較的低濃度の溶液を用いた場合でも、本発明のPVA分解酵素の反応は進行してPVAを分解する。工業的には、基質濃度1%(w/v)以上が好適であり、この条件でPVAを有利に分解できる。反応温度は反応が進行する温度、即ち55℃付近までで行えばよい。好ましくは25乃至50℃付近の温度を用いる。反応pHは、通常、4.5乃至8.0の範囲、好ましくはpH5.0乃至7.5の範囲に調整するのがよい。酵素の使用量と反応時間とは密接に関係しており目的とする酵素反応の進行により適宜選択すればよい。
 以下、実験により本発明を詳細に説明する。
<実験1:シュードモナス・スピーシーズ VT1B株(NBRC110478)の培養と粗酵素剤の調製>
 PVA(試薬級ポリビニルアルコール、重合度500、ナカライテスク株式会社販売)1g/L、リン酸二カリウム0.3g/L、リン酸一カリウム1g/L、塩化ナトリウム0.5g/L、硝酸アンモニウム1g/L及び水からなる液体培地をpH7.0に調整後オートクレーブ(121℃、20分間)にて滅菌し、この滅菌培地に、別途ろ過滅菌した硫酸マグネシウム・7水和物、塩化カルシウム・2水和物及び硫酸第二鉄・7水和物をそれぞれ終濃度0.5g/L、0.05g/L及び0.02g/Lとなるように添加し、さらに、ろ過滅菌した塩酸チアミン及びピロロキノリンキノン(PQQ)をそれぞれ終濃度0.01g/L及び10μg/Lとなるように添加して得られる液体培地を培養に用いた。
 平板寒天培地にて継代培養したシュードモナス・スピーシーズ VT1B株(NBRC110478)を白金耳でかきとり、滅菌した0.85%食塩水(約2mL)に懸濁した。懸濁液の濁度(波長660nmの吸光度、A660)を0.5に調整し、上記液体培地3mLを入れた試験管に60μL植菌し、27℃、240rpmで5日間振トウ培養してシード培養とした。
 さらに消泡剤(アデカノールLG-126)を終濃度0.2g/Lとなるように添加した以外は上記液体培地と同じものを200mLずつ20本の500mL容三角フラスコに分注し、それぞれに、上記で得たシード培養液を2%(v/v)ずつ植菌し、27℃、240rpmで10日間振トウ培養し、メイン培養とした。培養後、培養液を遠心分離(8,000rpm、20分間)して菌体を除き、培養上清約4Lを粗酵素液として得た。粗酵素液のPVA酸化活性は、全活性として約139単位であった。
<実験2:PVA分解酵素の精製>
 実験1で得た培養上清4Lに、終濃度60%飽和となるように硫安を添加し、4℃、24時間放置することにより塩析した。生成した塩析沈殿物を遠心分離(11,000rpm、30分間)にて回収し、これを10mMリン酸緩衝液(pH7.0)に溶解後、同緩衝液に対して透析し、硫安塩析透析液として約45mLを得た。この硫安塩析透析液を『DEAE-トヨパール 650S』ゲル(東ソー株式会社製)を用いた陰イオン交換カラムクロマトグラフィー(ゲル容量24mL)に供した。PVA酸化活性は、10mMリン酸緩衝液(pH7.0)で平衡化したカラムに吸着することなく非吸着画分に溶出する活性画分と、カラムに吸着し同緩衝液の食塩濃度を0Mから0.5Mまで直線的に上昇させるグラジエント溶出にて溶出する活性画分とに分かれた。『DEAE-トヨパール 650S』ゲルに吸着し食塩で溶出させた活性画分を10mMリン酸緩衝液(pH7.0)に透析してPVA分解酵素精製標品(PVA-B)とした。
 次いで、『DEAE-トヨパール 650S』を用いた陰イオン交換カラムに非吸着であった活性画分を『CM-トヨパール 650S』ゲル(東ソー株式会社製)を用いた陽イオン交換カラムクロマトグラフィー(ゲル容量23mL)に供した。PVA酸化活性は『CM-トヨパール 650S』ゲルに吸着し、食塩濃度0Mから0.5Mのリニアグラジエントで溶出させたところ、食塩濃度約0.08M付近に溶出した。活性画分を回収し、10mMリン酸緩衝液(pH7.0)に透析してPVA分解酵素精製標品(PVA-A)とした。
 上記精製工程の各段階におけるPVA分解酵素の、PVA酸化活性としての全活性、全蛋白、比活性及び収率を表1にまとめた。また、別途、培養上清(粗酵素)と精製酵素標品について定性的に確認した2,4-ペンタンジオン分解活性と、PVA酸化活性の測定と併せて精製工程の各段階で測定したPVA分解活性について、それぞれ表1に併記した。なお、表1における2,4-ペンタンジオン分解活性についての表記「○」は、2,4-ペンタンジオンの加水分解産物であるアセトンが検出されたことを意味する。
Figure JPOXMLDOC01-appb-T000003
 表1に見られるとおり、PVAを酸化して過酸化水素を生成するPVA酸化活性とβ-ジケトンである2,4-ペンタンジオンを加水分解する活性、さらには、PVA分解活性(粘度低減活性)のいずれをも有する2種類の精製酵素標品「PVA-A」及び「PVA-B」が得られた。
 PVA分解酵素精製標品としてのPVA-A及びPVA-Bを、それぞれSDS-ポリアクリルアミドゲル電気泳動(SDS-PAGE)(8乃至16w/v%濃度勾配)に供し、純度を検定したところ、いずれも単一な蛋白バンドを示し、純度の高い標品であることが判明した。
<実験3:PVA分解酵素の性質>
<実験3-1:分子量>
 実験2で得たPVA分解酵素精製標品、すなわち、PVA-A及びPVA-Bを、それぞれSDS-ポリアクリルアミドゲル電気泳動(8乃至16w/v%濃度勾配)に供し、同時に泳動した分子量マーカー(商品名『プレシジョンPlusプロテイン未着色スタンダード』、日本バイオ・ラッド・ラボラトリーズ株式会社販売)と比較して分子量を測定した。結果を図2に示す。なお、図2において、符号Mは、同時に電気泳動した分子量マーカーを、符号A及びBは、それぞれPVA-A及びPVA-Bを意味する。図2に見られるとおり、PVA-A及びPVA-Bはいずれもほぼ単一な蛋白バンドを示し、また、分子量マーカーとの対比により、ほぼ同等の分子量、100,000±20,000を有することが判明した。
<実験3-2:至適温度及び至適pH>
 実験2で得たPVA分解酵素精製標品の内、PVA-Aを用い、PVA酸化活性を指標として、酵素活性に及ぼす温度、pHの影響を活性測定法に準じ調べた。これらの結果を図3(至適温度)、図4(至適pH)に示した。なお、図4中の符号●、■及び▲は、それぞれ、pHコントロールに酢酸緩衝液、リン酸緩衝液及びグリシン-NaOH緩衝液を用いて測定した値を意味する。PVA酸化活性の至適温度は、pH7.0、60分間反応の条件下で、35乃至40℃であり、至適pHは、27℃、60分間反応の条件下で6.5乃至8.0であることが判明した。また、詳細なデータは省略するものの、PVA-BもPVA-Aとほぼ同じ至適温度及び至適pHを示した。
<実験3-3:温度安定性及びpH安定性>
 実験2の方法で得たPVA分解酵素精製標品の内、PVA-Aを用い、PVA酸化活性を指標として、温度安定性及びpH安定性を調べた。温度安定性は、酵素溶液(10mMリン酸緩衝液、pH7.0)を各温度に60分間保持し、水冷した後、残存する酵素活性を測定することにより求めた。pH安定性は、酵素溶液を各pHの100mM緩衝液中で4℃、24時間保持した後、pHを7.0に調整し、残存する酵素活性を測定することにより求めた。これらの結果を図5(温度安定性)、図6(pH安定性)に示した。なお、図6中の符号●、■、▲及び◆は、それぞれ、pHコントロールに酢酸緩衝液、リン酸緩衝液、グリシン-NaOH緩衝液及び塩化カリウム-NaOH緩衝液を用いて得た値を意味する。図5から明らかなように、PVA酸化活性の温度安定性は45℃までであることが判明した。また、図6から明らかなように、PVA酸化活性のpH安定性はpH4.5乃至10.5の範囲であることが判明した。また、詳細なデータは省略するものの、PVA-BもPVA-Aとほぼ同じ温度安定性及びpH安定性を示した。
<実験3-4:PVA酸化活性に及ぼす各種金属塩の影響>
 実験2の方法で得たPVA-A及びPVA-Bの精製酵素標品を用い、PVA酸化活性を指標として、各種金属塩が酵素活性に及ぼす影響を濃度1mMの金属塩の存在下で活性測定方法に準じて調べた。結果を表2に示した。
Figure JPOXMLDOC01-appb-T000004
 表2に見られるとおり、PVA酸化活性に及ぼす金属塩の影響においてPVA-AとPVA-Bとの間に大きな差は認められず、Hg2+、Fe3+イオンで著しく阻害され、また、EDTAによっても阻害されることが判明した。
<実験3-5:PVA酸化活性についての基質特異性>
 実験2の方法で得たPVA-A及びPVA-Bの精製酵素標品を用い、基質として各種の第二級アルコール、第一級アルコール、他に作用させ、PVA酸化活性についての基質特異性を調べた。すなわち、鎖長の異なる第一級アルコール(メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、デカノール)、第二級アルコール(2-プロパノール、2-ペンタノール、2-ヘキサノール、4-ヘプタノール、2-オクタノール、4-デカノール、2,4-ペンタンジオール)、第三級アルコール(tert-ブタノール)に対する酵素活性を測定した。基質濃度は1%(v/v)とし、水に溶解しないものは懸濁し飽和濃度とした。結果を表3に示した。
Figure JPOXMLDOC01-appb-T000005
 表3に見られるとおり、PVA-A及びPVA-BはPVAに対する酸化活性を100%とした場合の相対活性で、第二級アルコールである4-ヘプタノールに対して12乃至21%と弱く作用し、同じく第二級アルコールである2-ヘキサノール、2-オクタノールに対して3乃至8%と僅かに作用した以外は、他の第二級アルコール、第一級アルコール、第三級アルコール(tert-ブタノール)、ジオールにはほとんど作用しなかった。
<実験3-6:N末端アミノ酸配列>
 実験2で得たPVA分解酵素の精製標品、すなわち、PVA-A及びPVA-BをそれぞれN末端アミノ酸配列分析に供し、N末端から20残基までのアミノ酸配列を解析した。なお、N末端アミノ酸配列分析は、ペプチドシーケンサー(装置名『PPSQ-31A』、島津製作所製)を用いて実施した。その結果、PVA-Aは、配列表における配列番号11で示されるアミノ酸配列、すなわち、アラニン-グルタミン酸-アスパラギン-トリプトファン-プロリン-メチオニン-フェニルアラニン-グリシン-リジン-アスパラギン-チロシン-グルタミン酸-アスパラギン-スレオニン-アルギニン-アラニン-スレオニン-セリン-アスパラギン酸-スレオニン;のアミノ酸配列を、また、PVA-Bは、配列表における配列番号12で示されるアミノ酸配列、すなわち、アラニン-グルタミン酸-アスパラギン-トリプトファン-プロリン-メチオニン-フェニルアラニン-グリシン-リジン-アスパラギン-チロシン-グルタミン酸-アスパラギン-セリン-アルギニン-アラニン-スレオニン-アラニン-アスパラギン酸-スレオニン;のアミノ酸配列を、それぞれ有していることが判明した。さらに、両者は、N末端から13残基までは同一のアミノ酸配列、すなわち、配列表における配列番号1で示されるアミノ酸配列を共通して有していることが判明した。
<実験4:シュードモナス・スピーシーズ VT1B株(NBRC110478)の全ゲノム解析>
 本発明のPVA分解酵素をコードするDNAの塩基配列並びにPVA分解酵素のアミノ酸配列を決定するため、同酵素を産生するシュードモナス・スピーシーズ VT1B株(NBRC110478)の全ゲノム解析を行った。
<実験4-1:ゲノムDNAの調製>
 平板寒天培地にて継代培養したシュードモナス・スピーシーズ VT1B株(NBRC110478)を一白金耳かきとり、実験1で用いた液体培地3mLを入れた試験管に植菌し、27℃、240rpmで5日間振トウ培養した。培養終了後、培養液を遠心分離して回収した菌体より、市販の全DNA精製キット(商品名『DNeasy Blood&Tissue Kit』,QIAGEN社販売)を用いて、常法によりゲノムDNAを調製した。
<実験4-2:次世代シーケンサーを用いた全ゲノム塩基配列の決定>
 実験4-1で得たゲノムDNAを市販のキット(商品名『Nextera XT DNA Library Preparation Kit』、イルミナ社販売)を用いて酵素的に断片化し、断片化したDNAの末端の平滑化処理とDNA末端へのアダプター配列の付加を行うことによりDNA断片をライブラリー化し、さらにPCRで増幅した後、市販のDNA精製キット(商品名『AMPure XP』、ベックマン・コールター社販売)を用いて精製した。次いで、ライブラリー化したDNA断片の塩基配列を次世代シーケンサー(装置名『MiSeq』、イルミナ社製)を用いて決定し、決定した各DNA断片の塩基配列(コンティグ配列)をコンピュータ上で統合することにより、全ゲノムDNAの塩基配列を得た。
 次いで、遺伝子領域予測ソフトウェア(『Glimmer』)を用いて全ゲノムDNAの塩基配列を解析し、蛋白質をコードしていると推定されるオープンリーディングフレーム(Open Reading Frame、ORF:推定遺伝子領域)を予測したところ、シュードモナス・スピーシーズ VT1B株(NBRC110478)の全ゲノムDNAには、ORFが4,749個あることが判明した。
<実験4-3:PVA分解酵素をコードするORFの同定>
 実験4-2の全ゲノム解析において認められた4,749個のORFを対象とし、実験3-2で決定した2種のPVA分解酵素PVA-A及びPVA-BのN末端アミノ酸配列と一致するアミノ酸配列をコードするORFを検索したところ、PVA-AのN末端アミノ酸配列と完全に一致するアミノ酸配列がORF3286にコードされており、また、PVA-BのN末端アミノ酸配列と完全に一致するアミノ酸配列がORF3283にコードされていることが判明した。この結果から、ORF3286の塩基配列、すなわち配列表における配列番号4で示される塩基配列がPVA-Aの構造遺伝子DNAであり、PVA-Aは、配列表における配列番号4で示される塩基配列に併記されたアミノ酸配列から、分泌シグナル配列と推定されるN末端部分の26アミノ酸残基が除去されたアミノ酸配列、すなわち、配列表における配列番号2で示されるアミノ酸配列からなることが判明した。また、同様に、ORF3283の塩基配列、すなわち配列表における配列番号5で示される塩基配列がPVA-Bの構造遺伝子DNAであり、PVA-Bは、配列表における配列番号5で示される塩基配列に併記されたアミノ酸配列から、分泌シグナル配列と推定されるN末端部分の26アミノ酸残基が除去されたアミノ酸配列、すなわち、配列表における配列番号3で示されるアミノ酸配列からなることが判明した。
 因みに、配列表における配列番号2で示されるアミノ酸配列からなるPVA-Aの分子量は101,426と、また、配列番号3で示されるアミノ酸配列からなるPVA-Bの分子量は109,679と算出され、これら両者の分子量はいずれも、前記実験3-1においてSDS-PAGEにより求めた分子量100,000±20,000とよく一致した。配列表における配列番号2で示されるPVA-Aのアミノ酸配列と、配列表における配列番号3で示されるPVA-Bのアミノ酸配列との相同性(配列同一性)を市販の遺伝情報処理ソフトウェア(『GENETYX Ver.13』、株式会社ゼネティックス販売)を用いて調べたところ、84%と算出された。また同様に、それぞれの酵素をコードする配列表における配列番号4で示される塩基配列と配列番号5で示される塩基配列との相同性(配列同一性)は82%と算出された。
<実験5:PVA分解酵素のアミノ酸配列に基づく相同性探索>
 実験4で得たPVA-A及びPVA-Bのアミノ酸配列、すなわち、配列表における配列番号2又は3で示されるアミノ酸配列に基づき、配列データベースGenBankを対象にBLAST検索したところ、全く意外なことにPVA-A及びPVA-Bのアミノ酸配列は、GenBankに登録されているPVA脱水素酵素のアミノ酸配列、及びこれと触媒する反応が全く異なる酸化PVA加水分解酵素のアミノ酸配列の双方と相同性を示すことが判明し、さらにこれらPVA-A及びPVA-Bのアミノ酸配列は、PVA脱水素酵素と相同性を示すN末端側前半部と、酸化PVA加水分解酵素と相同性を示すC末端側後半部がリンカーと予測される相同性が比較的低いアミノ酸配列を介して連結していることが判明した。
 上記BLAST検索において本発明のPVA分解酵素と相同性を有することが判明した公知の酵素群のアミノ酸配列の内、PVA-A及びPVA-BのN末端側前半部のアミノ酸配列と比較的高い相同性を有する酵素のアミノ酸配列として、シュードモナス・スピーシーズ VM15C株由来のPVA脱水素酵素のアミノ酸配列(GenBank アクセッションNo.BAA94193.1)と、スフィンゴピクシス・スピーシーズ(Sphingopyxis sp.) 113P3株由来のPVA脱水素酵素のアミノ酸配列(GenBank アクセッションNo.BAD95543.3)の2つのアミノ酸配列を選択し、その相同性を遺伝情報処理ソフトウェア(『GENETYX Ver.13』、株式会社ゼネティックス販売)を用いて調べた。
 その結果、PVA-Aのアミノ酸配列、すなわち配列表における配列番号2で示されるアミノ酸配列のN末端側前半部(1乃至442残基)は、シュードモナス・スピーシーズ VM15C株由来PVA脱水素酵素のアミノ酸配列(144乃至627残基)と約24%の相同性(配列同一性)を、また、同N末端側前半部(1乃至429残基)は、スフィンゴピクシス・スピーシーズ 113P3株由来のPVA脱水素酵素のアミノ酸配列(151乃至627残基)と約26%の相同性(配列同一性)を示した。
 一方、PVA-Bのアミノ酸配列、すなわち配列表における配列番号3で示されるアミノ酸配列のN末端側前半部(1乃至445残基)は、シュードモナス・スピーシーズ VM15C株由来PVA脱水素酵素のアミノ酸配列(144乃至630残基)と約23%の相同性(配列同一性)を、また、同N末端側前半部(1乃至429残基)は、スフィンゴピクシス・スピーシーズ 113P3株由来のPVA脱水素酵素のアミノ酸配列(151乃至627残基)と約25%の相同性(配列同一性)を示した。
 PVA-A及びPVA-BのN末端側前半部のアミノ酸配列と、シュードモナス・スピーシーズ VM15C株由来、及び、スフィンゴピクシス・スピーシーズ 113P3株由来PVA脱水素酵素のアミノ酸配列の計4種のアミノ酸配列の多重シークエンスアラインメントを図7に示した。PVA-A及びPVA-Bのアミノ酸配列のN末端側前半部が、それぞれシュードモナス・スピーシーズ VM15C株由来、又は、スフィンゴピクシス・スピーシーズ 113P3株由来のPVA脱水素酵素のアミノ酸配列と低いながらも相同性を示すことは、図7からも視覚的に見て取れる。これらの結果は、本発明のPVA分解酵素のアミノ酸配列のN末端側前半部が、PVA分解酵素が有する2つの活性の内、PVAを酸化する活性を有するドメインを形成していることを示唆するものである。
 また、N末端前半部のアミノ酸配列について調べたのと同様に、上記BLAST検索において本発明のPVA分解酵素と相同性を有することが判明した公知の酵素群のアミノ酸配列の中から、PVA-A及びPVA-BのC末端側後半部のアミノ酸配列と比較的高い相同性を有する酵素のアミノ酸配列として、シュードモナス・スピーシーズ VM15C株由来の酸化PVA加水分解酵素のアミノ酸配列(GenBank アクセッションNo.BAA94192.1)と、スフィンゴピクシス・スピーシーズ 113P3株由来の酸化PVA加水分解酵素のアミノ酸配列(GenBank アクセッションNo.BAD95542.3)の2つのアミノ酸配列を選択し、その相同性を同様に調べた。
 その結果、PVA-Aのアミノ酸配列、すなわち配列表における配列番号2で示されるアミノ酸配列におけるC末端側後半部(625乃至973残基)は、シュードモナス・スピーシーズ VM15C株由来酸化PVA加水分解酵素アミノ酸配列(34乃至379残基)と約54%の相同性(配列同一性)を、また、同C末端側後半部(643乃至973残基)は、スフィンゴピクシス・スピーシーズ 113P3株由来の酸化PVA加水分解酵素のアミノ酸配列(39乃至363残基)と約55%の相同性(配列同一性)を示した。
 一方、PVA-Bのアミノ酸配列、すなわち配列表における配列番号3で示されるアミノ酸配列におけるC末端後半部(586乃至963残基)は、シュードモナス・スピーシーズ VM15C株由来酸化PVA加水分解酵素のアミノ酸配列(3乃至379残基)と約50%の相同性(配列同一性)を、また、同C末端側後半部(619乃至963残基)は、スフィンゴピクシス・スピーシーズ 113P3株由来の酸化PVA加水分解酵素のアミノ酸配列(24乃至363残基)と約51%の相同性(配列同一性)を示した。
 PVA-AとPVA-BのC末端側後半部のアミノ酸配列と、シュードモナス・スピーシーズ VM15C株由来、及び、スフィンゴピクシス・スピーシーズ 113P3株由来酸化PVA加水分解酵素のアミノ酸配列の計4種のアミノ酸配列の多重シークエンスアラインメントを図8に示した。PVA-A及びPVA-Bのアミノ酸配列のC末端側後半部が、シュードモナス・スピーシーズ VM15C株由来、又は、スフィンゴピクシス・スピーシーズ 113P3株由来の酸化PVA加水分解酵素と比較的高い相同性を示すことは、図8からも視覚的に見て取れる。これらの結果は、本発明のPVA分解酵素のアミノ酸配列のC末端側後半部が、PVA分解酵素が有する2つの活性の内、酸化PVA加水分解活性を有するドメインを形成していることを示唆するものである。
 上記の知見をまとめ、PVA分解酵素としてのPVA-AとPVA-Bの構造を図9にそれぞれ模式的に示した。図9に見られるとおり、PVA-Aのアミノ酸配列(配列表における配列番号2で示されるアミノ酸配列)の内、442番目のアミノ酸残基までのN末端側前半部は、公知のPVA脱水素酵素のアミノ酸配列と相同性を示すPVAの酸化を触媒するドメインを形成しており、アミノ酸残基約90残基の長さのリンカー配列を介して、633番目のアミノ酸残基から963番目のアミノ酸残基までのC末端側後半部は、公知の酸化PVA加水分解酵素のアミノ酸配列と相同性を示す酸化PVAの加水分解を触媒するドメインを形成していることとなる。PVA-Bのアミノ酸配列(配列表における配列番号3で示されるアミノ酸配列)の場合もほぼ同様である。
<実験9:PVA分解酵素をコードするDNAのクローニングと組換えDNAの調製>
 ORF3286とORF3283がそれぞれコードするPVA分解酵素の分泌シグナル配列と推定される部分を欠損させたDNAをIn-Fusion反応させることによって、PVA-A又はPVA-BをコードするDNAのクローニングを行った。
<実験9-1:PVA分解酵素をコードするDNAのクローニングと組換えDNAの調製>
 まず、プラスミドベクターpRSET Aを鋳型とし、配列表における配列番号6及び7で示される塩基配列をそれぞれ有するプライマー1及びプライマー2を用いてPCRを行い、直鎖状のpRSET Aを作製した。次いで、ゲノムDNAを鋳型として、配列表における配列番号8及び9で示される塩基配列をそれぞれ有するプライマー3及びプライマー4を用いてPCRを行い、ORF3286がコードするアミノ酸配列からシグナル配列が除去されたアミノ酸配列、すなわちPVA-AをコードするDNAを増幅した。また、同様に、ゲノムDNAを鋳型として、配列表における配列番号8及び10で示される塩基配列をそれぞれ有するプライマー3及びプライマー5を用いてPCRを行い、ORF3283がコードするアミノ酸配列からシグナル配列が除去されたアミノ酸配列、すなわちPVA-BをコードするDNAを増幅した。
 上記で作製した直鎖状プラスミドとPVA-A遺伝子又はPVA-B遺伝子を市販のIn-Fusionクローニングキット(商品名『In-Fusion HD Cloning Kit』、タカラバイオ株式会社販売)を用いてIn-Fusion反応させることにより、それぞれ組換えプラスミドを作製し、それぞれ「pRSET A-PVA-A」及び「pRSET A-PVA-B」と名付けた。上記の方法で得られた、PVA-Aをコードする組換えDNAである「pRSET A-PVA-A」の構造を模式的に図10に示した。
<実験9-2:形質転換体の調製とPVA分解酵素蛋白の発現>
 実験9-1で得たPVA-Aをコードする組換えDNA、「pRSET A-PVA-A」を用い、常法に従い大腸菌HST08を形質転換して組換えDNAを大量調製した後、大腸菌BL21(DE3)を形質転換して組換え酵素の発現を試みたところ、組換えDNAの発現にともなう発現蛋白の生成が認められた。
<実験10:PVA分解酵素によるPVAの分解>
 実験2の方法で得たPVA-A精製酵素標品を用い、PVA濃度を変えた基質溶液に酵素作用量を変えて作用させ、溶液の粘度低下を指標としてPVAの分解を経時的に調べた。
 基質としてのPVA(試薬級ポリビニルアルコール、重合度2,000、ナカライテスク株式会社販売)、50mMリン酸ナトリウム緩衝液(pH7.0)、及び、同緩衝液に溶解したPVA-Aの精製酵素液を混合し、PVAの終濃度が1%、4%又は10%(w/v)、PVA-Aの酵素作用量がPVA1g当たりPVA酸化活性として1(又は1.25)、5又は10単位となる反応液(反応液量各1mL)を調製し、プラスチックチューブ内で35℃で1、4又は20時間、160rpmで振トウしながら反応させた。なお、各PVA濃度において、酵素液に替えて50mMリン酸ナトリウム緩衝液(pH7.0)を加えたものを対照(酵素作用量0単位)とした。各条件下で反応させることにより得た反応液0.6mLをコーンプレート型粘度計(商品名『DV-II+Pro』、ブルックフィールド社製)を用いた粘度測定に供した。各反応条件における反応液の粘度を表4に纏めた。
Figure JPOXMLDOC01-appb-T000006
 表4に見られるとおり、いずれのPVA濃度においても、PVA1g当たりPVA酸化活性として1単位以上のPVA分解酵素を作用させた場合、PVA溶液の粘度低下が観察された。濃度1%(w/v)のPVA溶液を基質とした反応では、反応開始時の溶液の粘度が2.7mPa・sであったものが、酵素作用量10単位で20時間作用させた反応液では粘度は1.2mPa・sまで低下した(因みに、同一条件での粘度測定において、精製水の粘度は約1.0mPa・sである。)。また、濃度4%(w/v)のPVA溶液を基質とした反応では、反応開始時の溶液の粘度が約36mPa・sであったものが、酵素作用量5単位で20時間作用させた反応液では粘度は約1/10の3.7mPa・sまで低下した。さらに、PVA分解酵素PVA-Aは10%(w/v)と比較的高濃度の基質溶液であっても良く作用し、PVA1g当たり5単位の酵素作用量で20時間作用させると、反応液の粘度が反応開始時の2,430mPa・sから約1/10の231mPa・sまで低下した。
 一方、PVA濃度1%(w/v)、酵素作用量10単位で20時間作用させて得た反応液について、PVA分解物の分子量を常法のゲル濾過HPLC法にて分析した。ゲル濾過HPLCは、カラムに『TSKgel α-4000』(東ソー株式会社製)を2本連結したものを用い、溶離液に50mMリン酸緩衝液(pH7.0)を用いて、カラム温度40℃、流速0.5ml/分の条件で行い、検出は示差屈折計RID-20A(株式会社島津製作所製造)を用いて行った。なお、PVA及びPVA分解物の分子量は、分子量測定用プルラン標準品(株式会社林原販売)を同様にゲル濾過HPLCに供して作成した分子量の検量線に基づきそれぞれ算出した。図11に反応液のゲル濾過HPLCクロマトグラム(図11における符号b)を、基質として用いたPVAのそれ(図11における符号a)と比較しつつ示した。
 図11に見られるとおり、基質として用いたPVA(符号a)は保持時間30.6分にピークトップを示し、その重量平均分子量(Mw)は約10.6×10と算出された。一方、PVA濃度1%(w/v)、酵素作用量10単位で20時間作用させて得たPVA分解反応液(符号b)では、分解物が保持時間40.4分にピークトップを示し、その重量平均分子量(Mw)は約4,400と算出された。この結果から、PVA分解反応液において基質としたPVAはPVA-Aにより低分子まで分解されていることが分かった。
 上記のとおり、本願のPVA分解酵素は単独で効率よくPVAを分解することができる。このことは、本願のPVA分解酵素が、PVA酸化活性と酸化PVA加水分解活性の両方を有する双頭酵素であって初めて可能なことである。
<実験11:PVA酸化酵素フラグメントと酸化PVA加水分解酵素フラグメントの検出>
 実験2のPVA-A及びPVA-Bの精製工程におけるCM-トヨパール650Sカラムクロマトグラフィーにより得られたフラクションには、PVA-A及びPVA-B以外にもPVA酸化活性を示す画分が認められ、同画分を実験3と同様のSDS-ポリアクリルアミドゲル電気泳動に供したところ、PVA-A及びPVA-Bよりも低分子の分子量約50,000の蛋白質バンドが検出された。この蛋白質について実験3-6と同様の方法でN末端アミノ酸配列をN末端から20残基調べたところ、PVA-AのN末端アミノ酸配列と全く同一のアミノ酸配列、すなわち、アラニン-グルタミン酸-アスパラギン-トリプトファン-プロリン-メチオニン-フェニルアラニン-グリシン-リジン-アスパラギン-チロシン-グルタミン酸-アスパラギン-スレオニン-アルギニン-アラニン-スレオニン-セリン-アスパラギン酸-スレオニン;が認められた。また、詳細なデータは省略するものの、PVA酸化活性を示す同画分には、酸化PVAを加水分解する活性は認められなかった。この結果は、同画分に存在するPVA酸化活性を有する酵素が、PVA-Aに由来するPVA酸化活性のみを有するPVA酸化酵素フラグメントであることを物語っている。
 また、同様に、実験2のPVA-A及びPVA-Bの精製工程におけるCM-トヨパール650Sカラムクロマトグラフィーにより得られたフラクションには、PVA-A及びPVA-Bとは異なり、且つ、酸化PVA加水分解活性を有する画分も見出された。同画分をSDS-ポリアクリルアミドゲル電気泳動に供したところ、PVA-A及びPVA-Bよりも低分子の分子量約35,000の蛋白質バンドが検出された。この蛋白質について実験3-6と同様の方法でN末端アミノ酸配列を調べたところ、5アミノ酸残基が判明し、バリン-セリン-グリシン-グリシン-スレオニン;が認められた。このアミノ酸配列は、PVA-Aのアミノ酸配列、すなわち、配列表における配列番号2で示されるアミノ酸配列の623残基から627残基までのアミノ酸配列と完全に一致した。PVA-A及びPVA-Bのアミノ酸配列と公知の酸化PVA加水分解酵素のアミノ酸配列とを比較した図8、及び、PVA-AとPVA-Bの構造を模式的に表わした図9、に示した知見と考え合わせると、このPVA-Aのアミノ酸配列の623残基から627残基までのアミノ酸配列をN末端アミノ酸配列として有する分子量約35,000の蛋白質は、PVA-Aに由来する酸化PVA加水分解活性のみを有する酸化PVA加水分解酵素フラグメントであると考えられた。
 上記結果は、シュードモナス・スピーシーズ VT1B株(NBRC110478)の培養液において、PVA酸化活性と酸化PVA加水分解活性の両方を併せ持つ双頭酵素として産生されたPVA分解酵素の内、少なくともPVA-Aが部分分解を受け、PVA酸化酵素フラグメントと酸化PVA加水分解酵素フラグメントとが生成していることを物語るものである。このことから、双頭酵素であるPVA-A及びPVA-Bをプロテアーゼで人為的に限定分解することで、PVA酸化酵素と酸化PVA加水分解酵素とを別々に調製することも可能と考えられる。
 以下、実施例によりさらに詳細に本発明を説明する。しかしながら、本発明はこれら実施例により限定されるものではない。
<PVA分解酵素の調製>
 PVA(試薬級ポリビニルアルコール、重合度500、ナカライテスク株式会社販売)1g/L、リン酸一カリウム1g/L、塩化ナトリウム0.5g/L、硝酸アンモニウム4g/L、硫酸マグネシウム・7水和物0.5g/L、酵母エキス(酵母エキスD-3H、日本製薬株式会社製)0.5g/L及び水からなる液体培地をpH7.0に調整後オートクレーブ(121℃、20分間)にて滅菌し、さらに、ろ過滅菌したピロロキノリンキノン(PQQ)を終濃度10μg/Lとなるように添加して得られる液体培地を培養に用いた。
 シュードモナス・スピーシーズ VT1B株を実験1と同じ方法でシード培養し、上記液体培地50mLを500mL容三角フラスコに分注したものに、シード培養液を1%(w/v)植菌し、27℃、240rpmで5日間振トウ培養した。培養後に得られた培養上清のPVA分解酵素の活性は、PVA酸化活性として0.034単位/mLであった。また、本培養上清を2,4-ペンタンジオンに作用させたところ、加水分解産物であるアセトンが検出され、β-ジケトン加水分解活性、すわなち、酸化PVA加水分解活性をも有していることが確認された。本培養上清は、PVA分解酵素の粗酵素として有利に利用することができる。
<PVA分解酵素剤>
 実施例1の方法で得たシュードモナス・スピーシーズ VT1B株の培養液約1Lを遠心分離(10,000rpm、30分)し、得られた培養上清約960mL(PVA酸化活性約32単位)に25%飽和となるように硫安を添加、溶解し、冷室にて一夜放置した。得られた塩析物を遠心分離にて回収し、10mMリン酸緩衝液(pH7.0)に溶解し、同緩衝液に対して透析した。得られた透析液について実験3-1の方法でSDS-PAGEを行ったところ、分子量100,000±20,000を示す蛋白バンドのみが検出され、培養上清中に認められた夾雑蛋白はほぼ除去されていた。この精製手段によって、PVA分解酵素が効率よく精製できることが分かった。得られた部分精製PVA分解酵素には、PVA酸化活性とともにβ-ジケトン加水分解活性、すわなち、酸化PVA加水分解活性が確認されたことから、PVA分解酵素剤として有利に利用することができる。
<PVA分解酵素剤>
 実験1の方法で得たシュードモナス・スピーシーズ VT1B株の培養液約600mLを遠心分離(10,000rpm、30分)し、得られた培養上清約560mL(PVA酸化活性19.1単位)に60%飽和となるように硫安を添加、溶解し、冷室にて一夜放置した。得られた塩析物を遠心分離にて回収し、5mMリン酸緩衝液(pH7.0)に溶解し、同緩衝液に対して透析した。得られた透析液を同リン酸緩衝液で平衡化した『トヨパール AF-Blue HC-650M』(官能基として「Cibacron Blue F3GA」を有する担体)を充填したカラムを用いた液体クロマトグラフィーに供し、塩化カリウム0Mから1Mのリニアーグラジエントにより溶出した。PVA分解酵素は、塩化カリウム濃度約0.2Mで溶出したため、活性画分を回収しPVA分解酵素部分精製品とした。本品は、PVA酸化活性とともにβ-ジケトン加水分解活性、すわなち、酸化PVA加水分解活性をも有することが確認されたことから、PVA分解酵素剤として有利に利用することができる。
 本発明によれば、従来未知であった、PVA酸化活性と酸化PVA加水分解活性の両方を併せ持つ、全く新規な双頭酵素としてのPVA分解酵素を大量に製造し、提供することが可能となる。全く新規なPVA分解酵素の提供を可能とする本発明は、PVAの分解、除去などが求められる種々の利用分野に貢献することとなり、その産業的意義はきわめて大きい。
 図2において、
M:分子量マーカー
A:PVA分解酵素精製標品PVA-A
B:PVA分解酵素精製標品PVA-B
 図4及び図6において、
●:酢酸緩衝液
■:リン酸緩衝液
▲:グリシン-NaOH緩衝液
◆:塩化カリウム-NaOH緩衝液
 図7及び図8において、
 アミノ酸残基は一文字表記で示し、灰色で網掛けしたアミノ酸残基は比較した4種アミノ酸配列の内3種で一致しているアミノ酸残基を意味し、黒色で網掛けしたアミノ酸残基は4種アミノ酸配列の全てで一致しているアミノ酸残基を意味する。
PVA-A:PVA-Aのアミノ酸配列(配列表における配列番号2で示されるアミノ酸配列)
PVA-B:PVA-Bのアミノ酸配列(配列表における配列番号3で示されるアミノ酸配列)
PVADH_VM15C:シュードモナス・スピーシーズ VM15C株由来PVA脱水素酵素のアミノ酸配列
PVADH_113P3:スフィンゴピクシス・スピーシーズ 113P3株由来PVA脱水素酵素のアミノ酸配列
OPH_VM15C:シュードモナス・スピーシーズ VM15C株由来酸化PVA加水分解酵素のアミノ酸配列
OPH_113P3:スフィンゴピクシス・スピーシーズ 113P3株由来酸化PVA加水分解酵素のアミノ酸配列
 図9において、数字はアミノ酸残基番号を示し、NはN末端、CはC末端を意味する。
 図10において、
f1 ori:f1ファージ複製起点
Ampicillin:アンピシリン耐性遺伝子
pUC ori:pUC複製起点
PVA-A:PVA-A遺伝子
 図11において、
a:基質としたPVAのゲル濾過HPLCクロマトグラム
b:PVA分解物のゲル濾過HPLCクロマトグラム

Claims (13)

  1.  下記(1)乃至(3)の特徴を有するポリビニルアルコール分解酵素:
    (1)ポリビニルアルコールを酸化し、過酸化水素を生成する活性を有する;
    (2)β-ジケトンを加水分解する活性を有する;及び
    (3)SDS-ポリアクリルアミドゲル電気泳動において分子量100,000±20,000を示す。
  2.  さらに、ポリビニルアルコール酸化活性が、下記(4)乃至(7)の特徴を有する請求項1記載のポリビニルアルコール分解酵素:
    (4)至適温度
     pH7.0、60分間反応の条件下で、35乃至40℃;
    (5)至適pH
     27℃、60分間反応の条件下で、pH6.5乃至8.0;
    (6)温度安定性
     pH7.0、60分間保持の条件下で、45℃まで安定;及び
    (7)pH安定性
     4℃、24時間保持の条件下で、pH4.5乃至10.5で安定。
  3.  さらに、下記(8)の特徴を有する請求項1又は2記載のポリビニルアルコール分解酵素:
    (8)N末端アミノ酸配列として、配列表における配列番号1で示されるアミノ酸配列を有する。
  4.  配列表における配列番号2又は3で示されるアミノ酸配列か、又は、それらアミノ酸配列において、ポリビニルアルコール分解酵素の活性を保持する範囲で1個以上のアミノ酸残基が欠失、付加若しくは置換したアミノ酸配列であって、且つ、配列表における配列番号2又は3で示されるアミノ酸配列との相同性(配列同一性)が84%以上であるアミノ酸配列を有する請求項1乃至3のいずれかに記載のポリビニルアルコール分解酵素。
  5.  シュードモナス(Pseudomonas)属微生物由来の酵素である請求項1乃至3のいずれかに記載のポリビニルアルコール分解酵素。
  6.  請求項4記載のポリビニルアルコール分解酵素をコードするDNA。
  7.  配列表における配列番号4又は5で示される塩基配列か、若しくは、それらの塩基配列において、コードするポリビニルアルコール分解酵素の活性を保持する範囲で1個以上の塩基が欠失、付加若しくは置換した塩基配列であって、且つ、配列表における配列番号4又は5で示される塩基配列との相同性(配列同一性)が82%以上である塩基配列、又はそれらに相補的な塩基配列を有する請求項6記載のDNA。
  8.  遺伝子コードの縮重に基づき、コードするアミノ酸配列を変えることなく、配列表における配列番号4又は5で示される塩基配列における塩基の1個以上を他の塩基で置換した請求項6又は7記載のDNA。
  9.  請求項6乃至8のいずれかに記載のDNAと自律複製可能なベクターを含んでなる複製可能な組換えDNA。
  10.  請求項9記載の組換えDNAを適宜の宿主に導入してなる形質転換体。
  11.  請求項1乃至5のいずれかに記載のポリビニルアルコール分解酵素の産生能を有する微生物を栄養培地で培養する工程、及び得られる培養物から、請求項1乃至5のいずれかに記載のポリビニルアルコール分解酵素を採取する工程を含むことを特徴とするポリビニルアルコール分解酵素の製造方法。 
  12. 微生物が、シュードモナス(Pseudomonas)属に属する微生物である請求項11記載のポリビニルアルコール分解酵素の製造方法。 
  13. 請求項10記載の形質転換体を培養し、培養物から組換え型ポリビニルアルコール分解酵素を採取することを特徴とする組換え型ポリビニルアルコール分解酵素の製造方法。
PCT/JP2018/006767 2017-03-02 2018-02-23 ポリビニルアルコール分解酵素とその製造方法 WO2018159497A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019502962A JP7250673B2 (ja) 2017-03-02 2018-02-23 ポリビニルアルコール分解酵素とその製造方法
KR1020197028016A KR102588044B1 (ko) 2017-03-02 2018-02-23 폴리비닐알코올 분해효소와 그 제조방법
US16/490,000 US20210207187A1 (en) 2017-03-02 2018-02-23 Polyvinyl alcohol-degrading enzyme and process for producing the same
EP18761535.6A EP3581647A4 (en) 2017-03-02 2018-02-23 POLYVINYL ALCOHOL DEGRADING ENZYME AND MANUFACTURING PROCESS FOR IT
CN201880028253.6A CN110573615B (zh) 2017-03-02 2018-02-23 聚乙烯醇降解酶和其制造方法
US17/449,888 US11859229B2 (en) 2017-03-02 2021-10-04 Polyvinyl alcohol-degrading enzyme and process for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-039678 2017-03-02
JP2017039678 2017-03-02

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/490,000 A-371-Of-International US20210207187A1 (en) 2017-03-02 2018-02-23 Polyvinyl alcohol-degrading enzyme and process for producing the same
US17/449,888 Division US11859229B2 (en) 2017-03-02 2021-10-04 Polyvinyl alcohol-degrading enzyme and process for producing the same

Publications (1)

Publication Number Publication Date
WO2018159497A1 true WO2018159497A1 (ja) 2018-09-07

Family

ID=63371412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006767 WO2018159497A1 (ja) 2017-03-02 2018-02-23 ポリビニルアルコール分解酵素とその製造方法

Country Status (6)

Country Link
US (2) US20210207187A1 (ja)
EP (1) EP3581647A4 (ja)
JP (1) JP7250673B2 (ja)
KR (1) KR102588044B1 (ja)
CN (1) CN110573615B (ja)
WO (1) WO2018159497A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116789276B (zh) * 2023-03-23 2025-02-25 江苏尚维斯环境科技股份有限公司 一种提高鞘氨醇菌降解印染废水中聚乙烯醇能力的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09206079A (ja) 1996-01-31 1997-08-12 Kaiyo Bio Technol Kenkyusho:Kk ポリビニルアルコール脱水素酵素遺伝子
JPH11103861A (ja) * 1997-10-01 1999-04-20 Marine Biotechnol Inst Co Ltd 酸化ポリビニルアルコール加水分解酵素およびそれをコードする遺伝子
JP2004000259A (ja) 2003-07-14 2004-01-08 National Institute Of Advanced Industrial & Technology 微生物を用いるポリビニルアルコールの分解方法尾及び廃水の処理方法
JP2005278639A (ja) 2004-03-01 2005-10-13 Fuji Photo Film Co Ltd Pva分解菌及びpvaの分解方法
JP2006042611A (ja) 2004-07-30 2006-02-16 Fuji Photo Film Co Ltd Pva分解菌及びpvaの分解方法
JP2006042612A (ja) 2004-07-30 2006-02-16 Fuji Photo Film Co Ltd Pva分解菌及びpvaの分解方法
JP2006180706A (ja) 2003-03-10 2006-07-13 Ip Bio Corp 新規ポリビニルアルコール分解菌
JP5891478B2 (ja) 2011-12-02 2016-03-23 地方独立行政法人 大阪市立工業研究所 文化財からポリビニルアルコールを除去する方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891478U (ja) 1981-12-15 1983-06-21 中国工業株式会社 果粒状農作物選別用ベルトコンベヤ−装置
CN1212388C (zh) * 2003-06-03 2005-07-27 江南大学 一种聚乙烯醇降解酶高产菌及其选育方法和用该菌发酵法生产聚乙烯醇降解酶
EP1571202B1 (en) 2004-03-01 2009-07-01 FUJIFILM Corporation PVA-decomposing bacteria and method for decomposing PVA
CN102134557B (zh) * 2010-01-25 2012-07-25 江南大学 一种产氧化型pva水解酶的基因工程菌及其构建方法与应用
CN102080054B (zh) * 2010-12-10 2012-07-25 江南大学 一种产pva脱氢酶的基因工程菌及其构建方法与应用
CN103756933B (zh) * 2013-12-31 2016-05-18 江南大学 一株可降解pva的假单胞菌菌株

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09206079A (ja) 1996-01-31 1997-08-12 Kaiyo Bio Technol Kenkyusho:Kk ポリビニルアルコール脱水素酵素遺伝子
JPH11103861A (ja) * 1997-10-01 1999-04-20 Marine Biotechnol Inst Co Ltd 酸化ポリビニルアルコール加水分解酵素およびそれをコードする遺伝子
JP2006180706A (ja) 2003-03-10 2006-07-13 Ip Bio Corp 新規ポリビニルアルコール分解菌
JP2004000259A (ja) 2003-07-14 2004-01-08 National Institute Of Advanced Industrial & Technology 微生物を用いるポリビニルアルコールの分解方法尾及び廃水の処理方法
JP2005278639A (ja) 2004-03-01 2005-10-13 Fuji Photo Film Co Ltd Pva分解菌及びpvaの分解方法
JP2006042611A (ja) 2004-07-30 2006-02-16 Fuji Photo Film Co Ltd Pva分解菌及びpvaの分解方法
JP2006042612A (ja) 2004-07-30 2006-02-16 Fuji Photo Film Co Ltd Pva分解菌及びpvaの分解方法
JP5891478B2 (ja) 2011-12-02 2016-03-23 地方独立行政法人 大阪市立工業研究所 文化財からポリビニルアルコールを除去する方法

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
KAWAI, F. ET AL.: "Biochemistry of microbial polyvinyl alcohol degradation", APPL MICROBIOL BIOTECHNOL, vol. 84, 2009, pages 227 - 237, XP019737779 *
KLOMKLANG, W. ET AL.: "Biochemical and molecular characterization of a periplasmic hydro lase for oxidized polyvinyl alcohol from Sphingomonas sp. strain 113P3", MICROBIOLOGY, vol. 151, 2005, pages 1255 - 1262, XP055561107 *
MATSUMURA ET AL., MACROMOLECULES, vol. 32, 1999, pages 7753 - 7761
MORITA ET AL., AGRIC. BIOL. CHEM., vol. 43, 1979, pages 1225 - 1235
SAKAI ET AL., AGRIC. BIOL. CHEM., vol. 45, 1981, pages 63 - 71
SAKAI ET AL., AGRIC. BIOL. CHEM., vol. 47, 1983, pages 153 - 155
SHIMAO ET AL., BIOSCI. BIOTECHNOL. BIOCHEM., vol. 60, 1996, pages 1056 - 1062
SHIMAO, M. ET AL.: "Properties and Roles of Bacterial Symbionts of Polyvinyl Alcohol-Utilizing Mixed Cultures", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 46, no. 3, 1983, pages 605 - 610, XP055561137 *
SHIMAO, M. ET AL.: "The gene pvaB encodes oxidized polyvinylalcohol hydrolase of Pseudomonas sp. strain VM15C and forms an operon with the polyvinyl alcohol dehydrogenase gene pvaA", MICROBIOLOGY, vol. 146, 2000, pages 649 - 657, XP055561061 *
YANG ET AL., CHEMBIOCHEM., vol. 15, 2014, pages 1882 - 1886

Also Published As

Publication number Publication date
EP3581647A1 (en) 2019-12-18
EP3581647A4 (en) 2020-09-23
CN110573615A (zh) 2019-12-13
US20220017934A1 (en) 2022-01-20
JPWO2018159497A1 (ja) 2019-12-26
US20210207187A1 (en) 2021-07-08
KR20190125364A (ko) 2019-11-06
KR102588044B1 (ko) 2023-10-12
US11859229B2 (en) 2024-01-02
JP7250673B2 (ja) 2023-04-03
CN110573615B (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
CA2360376C (en) Novel carbonyl reductase, gene thereof and method of using the same
JP4012257B2 (ja) 新規カルボニル還元酵素、およびこれをコードする遺伝子、ならびにこれらの利用方法
EP2527436B1 (en) Nadh oxidase mutant having improved stability and use thereof
KR100819228B1 (ko) 신규의 니트릴히드라타제
DK2217714T3 (en) Sequestering of FORMALDEHYDE STABILIZATION OF NITRILASESPECIFIK ACTIVITY WHEN Glycolonitrile CONVERTED TO glycolic
JP4896718B2 (ja) 微生物によるl−アスコルビン酸の製造
US11859229B2 (en) Polyvinyl alcohol-degrading enzyme and process for producing the same
CA2365092A1 (en) Sorbitol dehydrogenase, gene encoding the same and use thereof
JP4216719B2 (ja) ハロゲン化合物耐性新規ギ酸脱水素酵素及びその製造方法
EP0268452A2 (en) Novel hydrolase and method of production
CN114457062A (zh) 用于制备褐藻寡糖的褐藻胶裂解酶及其用途
JP2005160403A (ja) ニトリルヒドラターゼ活性を有する酵素の改変方法
EP1306438B1 (en) Novel carbonyl reductase, gene thereof and method of using the same
WO2005098012A1 (ja) キラルなヒドロキシアルデヒド化合物の製造方法
WO2007099994A1 (ja) 新規カルボニル還元酵素、その遺伝子、ベクター、形質転換体、およびそれらを利用した光学活性アルコールの製造方法
JP2006055131A (ja) 新規なd−アミノアシラーゼおよびその遺伝子
JP2023141245A (ja) 3-ヒドロキシカルボン酸化合物又はその塩の製造方法
JP4513967B2 (ja) D−アミノアシラーゼの活性向上方法
JPWO2005054462A1 (ja) 耐熱性を有する2,6−ジヒドロキシ安息香酸デカルボキシラーゼおよび2,6−ジヒドロキシ安息香酸の製造方法
JP2006211938A (ja) アラビノガラクタン分解酵素及びその製造方法並びに当該酵素によるガラクトビオースの製造方法
JP2009017875A (ja) 新規カタラーゼ及びこれをコードする遺伝子
JPH11243962A (ja) 新規イヌリン分解酵素遺伝子及びその利用
JP2007228925A (ja) 新規酸化酵素及びそれを用いたグリオキサールの製造方法
JP2004113040A (ja) 新規なフラビンレダクターゼ及び該酵素をコードするdnaおよび該dnaで形質転換された形質転換細胞

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761535

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019502962

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197028016

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018761535

Country of ref document: EP

Effective date: 20190909

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载