WO2018159285A1 - Polyester film as surface protective film for foldable display and application thereof - Google Patents
Polyester film as surface protective film for foldable display and application thereof Download PDFInfo
- Publication number
- WO2018159285A1 WO2018159285A1 PCT/JP2018/004956 JP2018004956W WO2018159285A1 WO 2018159285 A1 WO2018159285 A1 WO 2018159285A1 JP 2018004956 W JP2018004956 W JP 2018004956W WO 2018159285 A1 WO2018159285 A1 WO 2018159285A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- foldable display
- hard coat
- polyester
- polyester film
- Prior art date
Links
- 229920006267 polyester film Polymers 0.000 title claims abstract description 60
- 230000001681 protective effect Effects 0.000 title claims abstract description 25
- 238000005452 bending Methods 0.000 claims description 29
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 239000010410 layer Substances 0.000 description 43
- 229920000139 polyethylene terephthalate Polymers 0.000 description 22
- 239000005020 polyethylene terephthalate Substances 0.000 description 22
- 238000000034 method Methods 0.000 description 21
- -1 polyethylene terephthalate Polymers 0.000 description 20
- 239000008188 pellet Substances 0.000 description 17
- 229920000728 polyester Polymers 0.000 description 17
- 238000005886 esterification reaction Methods 0.000 description 15
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 14
- 239000002245 particle Substances 0.000 description 14
- 229920005989 resin Polymers 0.000 description 13
- 239000011347 resin Substances 0.000 description 13
- 239000002994 raw material Substances 0.000 description 11
- 238000001914 filtration Methods 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 10
- 238000000576 coating method Methods 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 8
- 238000011282 treatment Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 5
- 238000001723 curing Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 229920001225 polyester resin Polymers 0.000 description 5
- 239000004645 polyester resin Substances 0.000 description 5
- 238000006116 polymerization reaction Methods 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 238000002834 transmittance Methods 0.000 description 5
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 4
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 4
- 238000005266 casting Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000006068 polycondensation reaction Methods 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 238000005809 transesterification reaction Methods 0.000 description 4
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 230000032050 esterification Effects 0.000 description 3
- 239000010954 inorganic particle Substances 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 2
- 101100029848 Arabidopsis thaliana PIP1-2 gene Proteins 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000009998 heat setting Methods 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 125000004437 phosphorous atom Chemical group 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- CYIDZMCFTVVTJO-UHFFFAOYSA-N pyromellitic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O CYIDZMCFTVVTJO-UHFFFAOYSA-N 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 2
- WVLBCYQITXONBZ-UHFFFAOYSA-N trimethyl phosphate Chemical compound COP(=O)(OC)OC WVLBCYQITXONBZ-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 101000982628 Homo sapiens Prolyl 3-hydroxylase OGFOD1 Proteins 0.000 description 1
- 230000005483 Hooke's law Effects 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 239000004594 Masterbatch (MB) Substances 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 102100026942 Prolyl 3-hydroxylase OGFOD1 Human genes 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- BWVAOONFBYYRHY-UHFFFAOYSA-N [4-(hydroxymethyl)phenyl]methanol Chemical compound OCC1=CC=C(CO)C=C1 BWVAOONFBYYRHY-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- GYUVMLBYMPKZAZ-UHFFFAOYSA-N dimethyl naphthalene-2,6-dicarboxylate Chemical compound C1=C(C(=O)OC)C=CC2=CC(C(=O)OC)=CC=C21 GYUVMLBYMPKZAZ-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 230000005525 hole transport Effects 0.000 description 1
- 239000007970 homogeneous dispersion Substances 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 239000005001 laminate film Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 1
- 229940069446 magnesium acetate Drugs 0.000 description 1
- 235000011285 magnesium acetate Nutrition 0.000 description 1
- 239000011654 magnesium acetate Substances 0.000 description 1
- 229940082328 manganese acetate tetrahydrate Drugs 0.000 description 1
- CESXSDZNZGSWSP-UHFFFAOYSA-L manganese(2+);diacetate;tetrahydrate Chemical compound O.O.O.O.[Mn+2].CC([O-])=O.CC([O-])=O CESXSDZNZGSWSP-UHFFFAOYSA-L 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000012766 organic filler Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920006289 polycarbonate film Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- GGUBFICZYGKNTD-UHFFFAOYSA-N triethyl phosphonoacetate Chemical compound CCOC(=O)CP(=O)(OCC)OCC GGUBFICZYGKNTD-UHFFFAOYSA-N 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/043—Improving the adhesiveness of the coatings per se, e.g. forming primers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/046—Forming abrasion-resistant coatings; Forming surface-hardening coatings
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
Definitions
- the present invention relates to a polyester film for a surface protective film of a foldable display, a hard coat film for a surface protective film of a foldable display, a foldable display, and a portable terminal device.
- the present invention relates to a foldable display and a portable terminal device in which image disturbance hardly occurs, and a polyester film and a hard coat film for a surface protective film of the foldable display.
- tablet terminals having a screen size of 7 inches to 10 inches have high functionality for not only video content and music but also business use, drawing use, and reading. However, it cannot be operated with one hand, has poor portability, and has a problem in convenience.
- Patent Document 1 a method of making a compact by connecting a plurality of displays has been proposed (Patent Document 1), but since the bezel portion remains, the video is cut off, and the visibility is problematic. It is not popular.
- the surface of the display could be protected with a non-flexible material such as glass.
- a non-flexible material such as glass.
- a portion corresponding to a certain folding portion is repeatedly bent, so that there is a problem that a film in the portion is deformed with time and an image displayed on the display is distorted.
- Patent Document 2 a method of partially changing the film thickness has been proposed (see Patent Document 2), but there is a problem that the mass productivity is poor.
- the present invention is intended to solve the problems of the surface protection member of the conventional display as described above, is excellent in mass productivity, and may cause disturbance in the image displayed at the folded portion after repeated folding.
- it is intended to provide a polyester film for a surface protective film of a foldable display or a hard coat film for a surface protective film. Is.
- a foldable display comprising a polyester film having a thickness of 10 to 75 ⁇ m and a 0.2% yield strength strain in at least one of a longitudinal direction and a width direction of 2.6 to 5.0% Polyester film for surface protection film.
- 3. 3 The polyester film for a surface protective film for a foldable display as described in the above 1 or 2, wherein the intrinsic viscosity of the film is 0.60 to 1.0 dl / g. 4).
- a surface protective film for a foldable display comprising a hard coat layer having a thickness of 1 to 50 ⁇ m on at least one surface of the polyester film for a surface protective film for a foldable display according to any one of the first to third shifts.
- the hard coat film for a surface protective film of the foldable display according to the fourth or fifth aspect is a foldable display arranged as a surface protective film so that the hard coat layer is positioned on the surface, and when folded, A folding display having a bending radius of 5 mm or less. 7).
- the foldable display according to the sixth aspect wherein a single continuous hard coat film is disposed through a foldable portion of the foldable display. 8).
- the foldable display using the polyester film or hard coat film for the surface protective film of the foldable display of the present invention does not cause deformation after the polyester film or hard coat film is repeatedly folded while maintaining mass productivity. Therefore, the image is not disturbed at the folding portion of the display.
- a portable terminal device equipped with a foldable display as described above provides beautiful images, is rich in functionality, and has excellent convenience such as portability.
- the display referred to in the present invention generally refers to a display device, and types of display include LCD, organic EL display, inorganic EL display, LED, FED, etc.
- Organic EL and inorganic EL are preferable.
- organic EL and inorganic EL that can reduce the layer structure are particularly preferable, and organic EL having a wide color gamut is more preferable.
- the foldable display preferably has a structure in which one continuous display is folded in half when carried and the size is reduced by half and the portability is improved. At the same time, it is desirable that the thickness and weight be reduced. Therefore, the bending radius of the foldable display is preferably 5 mm or less, and more preferably 3 mm or less. If the bending radius is 5 mm or less, it is possible to reduce the thickness in a folded state. It can be said that the smaller the bending radius, the better. However, it may be 0.1 mm or more, and may be 0.5 mm or more. Even if it is 1 mm or more, the practicality is sufficiently good as compared with a conventional display having no folding structure.
- the bending radius at the time of folding is to measure a portion indicated by reference numeral 11 in the schematic diagram of FIG. 1 and means a radius inside the folding portion at the time of folding.
- the surface protection film mentioned later may be located in the folded outer side of a foldable display, and may be located inside.
- Organic EL A general configuration of the organic EL display includes an organic EL layer composed of an electrode / electron transport layer / light emitting layer / hole transport layer / transparent electrode, a retardation plate for improving image quality, and a polarizing plate.
- a touch panel module is disposed on the organic EL display or between the organic EL layer / phase difference plate. At this time, if an impact is applied from above, there is a possibility that the circuit of the organic EL or touch panel may be disconnected. Therefore, a surface protection film is necessary, and the film disposed on the front surface of the display as the surface protection film is at least the surface of the display. It is preferable that a hard coat layer is laminated on the side.
- the surface protective film As the surface protective film, it can be used as long as it is a film having high light transmittance and low haze, such as a polyimide film, a polyester film, a polycarbonate film, an acrylic film, a triacetyl cellulose film, and a cycloolefin polymer film. Polyimide films and polyester films having high impact resistance and sufficient pencil hardness are preferred, and polyester films that can be produced at low cost are particularly preferred.
- the polyester film may be a single-layer film composed of one or more kinds of polyester resins, and when two or more kinds of polyester are used, it may be a multilayer structure film or a super multi-layer laminate film having a repeating structure. Good.
- polyester resin examples include polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, or a polyester film made of a copolymer mainly composed of components of these resins.
- a stretched polyethylene terephthalate film is particularly preferable from the viewpoint of mechanical properties, heat resistance, transparency, price, and the like.
- examples of the dicarboxylic acid component of the polyester include aliphatic dicarboxylic acids such as adipic acid and sebacic acid; terephthalic acid, isophthalic acid, phthalic acid, and 2,6-naphthalenedicarboxylic acid.
- Aromatic dicarboxylic acids such as: polyfunctional carboxylic acids such as trimellitic acid and pyromellitic acid.
- glycol component examples include fatty acid glycols such as ethylene glycol, diethylene glycol, 1,4-butanediol, propylene glycol, and neopentyl glycol, aromatic glycols such as p-xylene glycol, and 1,4-cyclohexanedimethanol. And polyethylene glycol having an average molecular weight of 150 to 20,000.
- the mass ratio of the copolymer component of the preferred copolymer is less than 20% by mass. When it is less than 20% by mass, film strength, transparency and heat resistance are maintained, which is preferable.
- the intrinsic viscosity of at least one kind of resin pellets is preferably in the range of 0.60 to 1.0 dl / g.
- the intrinsic viscosity is 0.60 dl / g or more, the impact resistance of the obtained film is improved, and it is preferable that the internal circuit is not easily broken by an external impact. Moreover, it contributes to the small deformation when bent repeatedly, which is preferable.
- the intrinsic viscosity is 1.00 dl / g or less, it is preferable that the film production can be stably operated without excessively increasing the filtration pressure of the molten fluid.
- the intrinsic viscosity of the film is preferably 0.60 dl / g or more. More preferably, it is 0.62 dl / g or more. More preferably, it is 0.68 dl / g or more. If it is 0.60 dl / g or more, fatigue resistance can be imparted and a sufficient bending resistance effect can be obtained. On the other hand, a film having an intrinsic viscosity of 1.00 dl / g or less is preferable because it can be produced with good operability.
- the thickness of the polyester film is preferably 10 to 75 ⁇ m, more preferably 25 to 75 ⁇ m.
- the thickness is 10 ⁇ m or more, an effect of improving pencil hardness is observed, and when the thickness is 75 ⁇ m or less, it is advantageous for weight reduction and excellent in flexibility, workability and handling properties.
- the surface of the polyester film of the present invention may be smooth or uneven, but since it is used for a display surface cover, a decrease in optical properties due to the unevenness is not preferable.
- the haze is preferably 3% or less, more preferably 2% or less, and most preferably 1% or less. If the haze is 3% or less, the visibility of the image can be improved. The lower limit of the haze is better, but it may be 0.1% or more, or 0.3% or more.
- the surface polyester resin It can be formed by blending a layer with a filler or coating a coating layer containing a filler during film formation.
- a known method can be adopted.
- it can be added at any stage for producing polyester, but it is preferably added as a slurry dispersed in ethylene glycol or the like at the stage of esterification or after the end of the transesterification reaction and before the start of the polycondensation reaction. Then, the polycondensation reaction may proceed.
- a method of blending a slurry of particles dispersed in ethylene glycol or water with a vented kneading extruder and a polyester raw material or a method of blending dried particles and a polyester raw material using a kneading extruder Etc.
- the filtered material is used in the remainder of the polyester raw material before, during or after the esterification reaction.
- the method of adding is preferable. According to this method, since the monomer liquid has a low viscosity, it is easy to perform homogeneous dispersion of particles and high-accuracy filtration of the slurry, and when added to the rest of the raw material, the dispersibility of the particles is good and new Aggregates are also unlikely to occur. From this point of view, it is particularly preferable to add to the remainder of the raw material in a low temperature state before the esterification reaction.
- the number of protrusions on the film surface can be further reduced by a method (master batch method) in which polyester containing particles is obtained in advance and the pellets and pellets not containing particles are kneaded and extruded.
- the polyester film may contain various additives within a range that maintains a preferable range of the total light transmittance.
- the additive include an antistatic agent, a UV absorber, and a stabilizer.
- the total light transmittance of the polyester film is preferably 85% or more, and more preferably 87% or more. If there is a transmittance of 85% or more, sufficient visibility can be secured. The higher the total light transmittance of the polyester film, the better. However, it may be 99% or less, or 97% or less.
- the surface of the polyester film of the present invention can be treated to improve the adhesion with a resin that forms a hard coat layer or the like.
- Surface treatment methods include, for example, sand blast treatment, roughening treatment by solvent treatment, corona discharge treatment, electron beam irradiation treatment, plasma treatment, ozone / ultraviolet irradiation treatment, flame treatment, chromic acid treatment, hot air treatment, etc.
- An oxidation process etc. are mentioned, It can use without limitation.
- adhesion can be improved by an adhesion improving layer such as an easy adhesion layer.
- the easy-adhesion layer can be used without particular limitation, such as an acrylic resin, a polyester resin, a polyurethane resin, or a polyether resin, and can be formed by a general coating technique, preferably a so-called in-line coating formulation.
- the polyester film described above includes, for example, a polymerization process in which inorganic particles are homogeneously dispersed in a monomer liquid that is a part of a polyester raw material and filtered, and then added to the remainder of the polyester raw material to polymerize the polyester, and the polyester is added. It can be manufactured through a film-forming step of forming a base film by melting and extruding it into a sheet form through a filter, and cooling and extruding it.
- PET polyethylene terephthalate
- the number of layers is not limited, such as a single layer configuration or a multilayer configuration.
- PET pellets After PET pellets are mixed and dried at a predetermined ratio, they are supplied to a known melt laminating extruder, extruded into a sheet from a slit-shaped die, and cooled and solidified on a casting roll to form an unstretched film.
- a single extruder may be used, but in the case of producing a multilayer film, two or more extruders, two or more manifolds or a merge block (for example, a merge having a square merge portion) A plurality of film layers constituting each outermost layer are laminated using a block, two or more sheets are extruded from the die, and cooled with a casting roll to form an unstretched film.
- the filter medium used for high-precision filtration of the molten resin is not particularly limited, but the filter medium of the stainless sintered body is excellent in removing aggregates and high-melting-point organic substances mainly composed of Si, Ti, Sb, Ge, and Cu. Therefore, it is preferable.
- the filter particle size (initial filtration efficiency 95%) of the filter medium is preferably 20 ⁇ m or less, and particularly preferably 15 ⁇ m or less.
- the filter particle size of the filter medium (initial filtration efficiency 95%) exceeds 20 ⁇ m, foreign matters having a size of 20 ⁇ m or more cannot be sufficiently removed.
- the 0.2% proof stress at least in any one of the longitudinal direction (machine flow direction) and the width direction of the polyester film is preferably 2.6 to 5.0%, more preferably 3.0 to 5.%. More preferably, it is 0%.
- the 0.2% yield strength point strain is a value used as a substitute for the yield point whether or not the yield point appears in the stress-strain curve, and can be used as an index of the elastic region.
- FIG. 3 shows a schematic diagram of a stress-strain curve for obtaining 0.2% proof stress.
- FIG. 3 shows an example where no yield point appears.
- the 0.2% proof stress is determined by a normal tensile test.
- the stress-strain curve In the stress-strain curve, a parallel line is drawn from the point Q where the stress is 0 MPa and the strain is 0.2% to OA where the Hooke's law is established, and the point where the stress-strain curve intersects is defined as the proof stress point P.
- the value of the strain at the intersection H with the strain axis when the angle is lowered is the 0.2% proof stress. As described above, the 0.2% proof stress strain can be obtained from the stress-strain curve.
- the 0.2% proof stress in the bending direction of the polyester film is preferably 2.6 to 5.0%, and more preferably 3.0 to 5.0%.
- the bending direction means a direction orthogonal to the folding portion (reference numeral 21) assumed in the use of the surface protection film of the folding display, as indicated by reference numeral 22 on the polyester film (reference numeral 2) in FIG. pointing.
- the bending direction is not limited to either the longitudinal direction or the width direction of the film.
- 0.2% proof stress can be adjusted within the above range by adjusting the draw ratio, draw temperature, heat setting temperature, polyester raw material, and the like.
- the 0.2% proof stress of the polyester film can be adjusted effectively by adjusting the draw ratio.
- the unstretched polyester sheet preferably has a stretch ratio in at least one of the longitudinal direction (machine flow direction) and the width direction of 1.0 to 3.4 times, more preferably 1.0 to 3.0 times. .
- the 0.2% yield strength strain can be adjusted to the above-mentioned range, and deformation at the time of repeated folding is small.
- stretching direction is the said bending direction.
- the stretching temperature is preferably 80 to 130 ° C, more preferably 90 to 130 ° C.
- stretching can employ
- a hot-air heating system such as a hot-air heating system, a roll heating system, and an infrared heating system.
- the draw ratio in the direction perpendicular to the bending direction when folded is preferably larger than the bending direction.
- the draw ratio in the direction perpendicular to the bending direction is 2.5-5. .0 can be exemplified. Stable productivity can be obtained by setting the draw ratio to 2.5 times or more, and good impact resistance can be obtained by setting the draw ratio to 5.0 times or less.
- the crystallinity of the polyester film is preferably 35 to 54%, more preferably 43 to 54%. By increasing the crystallinity, the 0.2% yield strength strain and impact resistance can be improved. In order to effectively increase the crystallinity, it is preferable to perform heat treatment at 180 to 250 ° C. after biaxial stretching. If it is 180 degreeC or more, a crystallinity degree can be raised effectively, and if it is 250 degrees C or less, there is no possibility that the polyester film surface may melt
- PET pellets are sufficiently vacuum-dried, then supplied to an extruder, melted and extruded into a sheet at about 280 ° C., and cooled and solidified to form an unstretched PET sheet.
- the obtained unstretched sheet is stretched 1.0 to 3.4 times in the longitudinal direction with a roll heated to 80 to 130 ° C. to obtain a uniaxially oriented PET film.
- the end of the film is gripped with a clip, guided to a hot air zone heated to 80 to 180 ° C., dried, and stretched 2.5 to 5.0 times in the width direction.
- a heat treatment zone at 180 to 250 ° C., and heat treatment is performed for 1 to 60 seconds to complete crystal orientation.
- a relaxation treatment of 1 to 12% may be performed in the width direction or the longitudinal direction as necessary.
- the polyester film that protects the display by being positioned on the surface of the foldable display preferably has a hard coat layer on the surface.
- the hard coat layer is preferably used in the display by being positioned on the display surface side on the polyester film.
- the resin for forming the hard coat layer can be used without particular limitation, such as acrylic, siloxane, inorganic hybrid, urethane acrylate, polyester acrylate, and epoxy.
- two or more kinds of materials can be mixed and used, and particles such as an inorganic filler and an organic filler can be added.
- the film thickness of the hard coat layer is preferably 1 to 50 ⁇ m. 1 to 40 ⁇ m is more preferable. If it is thicker than 1 ⁇ m, it is sufficiently cured and a good pencil hardness is obtained. Further, by setting the thickness to 50 ⁇ m or less, curling due to curing shrinkage of the hard coat can be suppressed, and the handleability of the film can be improved. More preferably, it is 2 to 25 ⁇ m, particularly preferably 2 to 20 ⁇ m, and most preferably 3 to 15 ⁇ m.
- a coating method of a hard-coat layer it can use without limitation, such as a Mayer bar, a gravure coat, a die coater, a knife coater, and can be suitably selected according to a viscosity and a film thickness.
- the pencil hardness of the hard coat layer is preferably B or higher, more preferably H or higher, and particularly preferably 2H or higher. If the pencil hardness is greater than or equal to B, it will not be easily scratched and visibility will not be reduced. Generally, the pencil hardness of the hard coat layer is preferably higher, but it may be 10H or less, 8H or less, and 6H or less can be used practically without any problem.
- the hard coat layer in the present invention may be provided with other functions as long as it can be used for the purpose of protecting the display by increasing the pencil hardness of the surface as described above.
- a hard coat layer to which functionality such as an antiglare layer having a certain pencil hardness as described above, an antiglare antireflection layer, an antireflection layer, a low reflection layer, and an antistatic layer is added in the present invention. Is preferably applied.
- the density of the film sample was measured at three points. The average value was defined as the crystallinity.
- the resin component is a mixture of completely amorphous and completely crystal, and the density is as described later.
- the density of the sample is a value obtained by dividing the total mass of each component constituting the sample by the total volume of each component.
- the crystallinity (weight ratio) of each resin was estimated based on the assumption that The sample density was measured in accordance with a method (density gradient tube method) based on JISK-7112-1980.
- the density of each component used the following value (unit: g / cm3)
- Polyethylene terephthalate resin complete amorphous 1.34, complete crystal 1.46
- Polyethylene naphthalate resin complete amorphous 1.32, complete crystal 1.41
- a polyester film was cut into a size of 200 mm (bending direction) ⁇ 50 mm (perpendicular direction) to prepare a measurement sample.
- Spacers were formed by arranging spacers of various thicknesses at the ends of two glass plates having a thickness of 5 mm, and the film was held for 10 seconds. Immediately after that, the film was made to reflect the light of the fluorescent lamp, the folding part was observed, and the interval at which no folding marks were made was recorded.
- ⁇ The interval at which no folding marks were made was less than 6.5 mm.
- ⁇ Even when the sample is not deformed or deformed, when it is placed horizontally, the maximum height is less than 3 mm.
- ⁇ The sample is deformed, and when placed horizontally, the maximum height is 3 mm or more and less than 5 mm.
- X The sample has a crease or when the sample is placed horizontally, the maximum height is 5 mm or more.
- Pencil hardness The hard coat-coated polyester film prepared in accordance with JIS K 5600-5-4: 1999 was measured at a load of 750 g and a speed of 0.5 mm / s.
- Coating liquid 1 for forming a hard coat layer To 100 parts by weight of hard coat material (manufactured by JSR, Opstar (registered trademark) Z7503, concentration 75%), 0.1 part by weight of a leveling agent (BYK307, concentration 100%) is added, and methyl ethyl ketone is added. Diluted to prepare a hard coat coating solution 1 having a solid concentration of 40% by weight.
- a leveling agent BYK307, concentration 100%
- a continuous esterification reaction apparatus comprising a three-stage complete mixing tank having a stirrer, a partial condenser, a raw material charging port, and a product take-out port is used.
- TPA is set to 2 ton / hr
- EG is set to TPA1.
- the amount of antimony trioxide is 2 mol per mol
- the amount of Sb atoms is 160 ppm with respect to the produced PET, and these slurries are continuously supplied to the first esterification reactor of the esterification reactor, at normal pressure.
- the reaction was carried out at 255 ° C. with an average residence time of 4 hours.
- the reaction product in the first esterification reaction can is continuously taken out of the system, supplied to the second esterification reaction can, and distilled from the first esterification reaction can into the second esterification reaction can.
- An EG solution containing TMPA in an amount of 1 was added and allowed to react at 260 ° C. with an average residence time of 1.5 hours at normal pressure.
- the reaction product in the second esterification reaction can is continuously taken out of the system and supplied to the third esterification reaction can, and further contains TMPA in an amount of 20 ppm of P atoms with respect to the produced PET.
- the EG solution was added and reacted at 260 ° C. at normal pressure with an average residence time of 0.5 hours.
- the esterification reaction product produced in the third esterification reaction can is continuously supplied to a three-stage continuous polycondensation reaction apparatus to carry out polycondensation, and further, a filter medium of a stainless sintered body (nominal filtration accuracy of 5 ⁇ m). The particles were filtered with a 90% cut particle) to obtain polyethylene terephthalate pellets A having an intrinsic viscosity of 0.62 dl / g.
- Polyethylene terephthalate pellet A is 0.5 mmH using a rotary vacuum polymerization apparatus. Under reduced pressure of g, solid-state polymerization was carried out at 220 ° C. for varying times to prepare polyethylene terephthalate pellets B having an intrinsic viscosity of 0.72 dL / g.
- Example 1 The polyethylene terephthalate master pellet B is dried under reduced pressure at 150 ° C. for 8 hours ( 3 Torr), polyethylene terephthalate pellets B were fed to the extruder and melted at 285 ° C. This polymer is filtered with a filter material of stainless sintered body (nominal filtration accuracy 10 ⁇ m particles 95% cut), extruded into a sheet form from the die, and then applied to a casting drum having a surface temperature of 30 ° C. using an electrostatic application casting method. It was brought into contact and cooled and solidified to produce an unstretched film. This unstretched film was uniformly heated to 75 ° C. using a heating roll and heated to 100 ° C.
- a filter material of stainless sintered body nominal filtration accuracy 10 ⁇ m particles 95% cut
- Example 2 A polyester film was obtained in the same manner as in Example 1 except that the draw ratio and heat treatment temperature described in Table 1 were changed.
- Example 7 A polyester film was obtained in the same manner as in Example 1 except that the thickness was changed to the thickness described in Table 1.
- Example 9 A polyester film was obtained in the same manner as in Example 1 except that polyethylene-2,6-naphthalate pellet C was used and the temperature was adjusted as shown in Table 1.
- Example 10 A polyester film was obtained in the same manner as in Example 1 except that the polyethylene terephthalate master pellet A was changed.
- Example 1 A polyester film was obtained in the same manner as in Example 1 except that the longitudinal draw ratio was changed to 3.5.
- the film thickness after drying the hard coat layer forming coating solution 1 is 5.0 ⁇ m. And dried at 80 ° C. for 1 minute, and then irradiated with ultraviolet rays (high pressure mercury lamp, integrated light quantity 200 mJ / cm 2 ) to obtain a hard coat film.
- a hard coat film was obtained in the same manner as in Example 1 except that the polyester film obtained in Example 1 was applied so that the film thickness after drying was 10.0 ⁇ m.
- Example 12 a hard coat film was obtained in the same manner as in Example 1, except that the hard coat layer forming coating solution 2 was applied to the polyester film obtained in Example 1.
- a smartphone-type foldable display in which these hard coat films are bonded to an organic EL module via an adhesive layer with a thickness of 25 ⁇ m and can be folded in half at the center of the entire 3 mm radius corresponding to the bending radius in FIG. It was created.
- the hard coat film is disposed on the surface of one continuous display through the folding portion, and the hard coat layer is disposed on the surface of the display.
- the polyester film or the hard coat film positioned on the surface of the foldable display while maintaining mass productivity. Since the image is not deformed after being repeatedly folded, the image is not disturbed at the folded portion of the display.
- a portable terminal device equipped with a foldable display using the polyester film or hard coat film of the present invention as a surface protective film provides a beautiful image, is rich in functionality, and has excellent convenience such as portability. .
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Laminated Bodies (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Adhesive Tapes (AREA)
Abstract
The present invention provides a foldable display well-suited for mass production and causing little distortion to an image displayed on a folded portion even after repeated folding, and a mobile terminal device equipped with the foldable display. For this purpose, the present invention also provides a polyester film and a hard coat film as a surface protective film. A polyester film serving as a surface protective film for a foldable display has a thickness of 10 through 75 µm and a deformation at 0.2% proof stress of 2.6 through 5.0% at least in either lengthwise or widthwise. A hard coat film, a foldable display, and a mobile terminal device use the polyester film as a surface protective film for a foldable display.
Description
本発明は折りたたみ型ディスプレイの表面保護フィルム用ポリエステルフィルム、折りたたみ型ディスプレイの表面保護フィルム用ハードコートフィルム、折りたたみ型ディスプレイ、及び携帯端末機器に関し、繰り返し折りたたんでも、表面に位置しているフィルムの変形による画像の乱れの起こり難い折りたたみ型ディスプレイ及び携帯端末機器、及び前記の折りたたみ型ディスプレイの表面保護フィルム用ポリエステルフィルム及びハードコートフィルムに関する。
The present invention relates to a polyester film for a surface protective film of a foldable display, a hard coat film for a surface protective film of a foldable display, a foldable display, and a portable terminal device. The present invention relates to a foldable display and a portable terminal device in which image disturbance hardly occurs, and a polyester film and a hard coat film for a surface protective film of the foldable display.
携帯端末機器の薄膜軽量化が進み、スマートフォンに代表される携帯端末機器が広く普及している。携帯端末機器には様々な機能が求められている反面、利便性もとめられている。そのため普及している携帯端末機器は、簡単な操作は片手ででき、さらに衣服のポケットなどに収納することが前提であるため6インチ程度の小さな画面サイズとする必要がある。
As mobile terminal devices are becoming lighter and thinner, mobile terminal devices such as smartphones are widely used. While various functions are required for portable terminal devices, convenience has been sought. For this reason, portable terminal devices that are in widespread use require simple operation with one hand, and are required to be stored in a pocket of clothes or the like.
一方、7インチ~10インチの画面サイズであるタブレット端末では、映像コンテンツや音楽のみならず、ビジネス用途、描画用途、読書などが想定され、機能性の高さを有している。しかし、片手での操作はできず、携帯性も劣り、利便性に課題を有する。
On the other hand, tablet terminals having a screen size of 7 inches to 10 inches have high functionality for not only video content and music but also business use, drawing use, and reading. However, it cannot be operated with one hand, has poor portability, and has a problem in convenience.
これらを達成するため、複数のディスプレイをつなぎ合わせることでコンパクトにする手法が提案されているが(特許文献1)、ベゼルの部分が残るため、映像が切れたものとなり、視認性の低下が問題となり普及していない。
In order to achieve these, a method of making a compact by connecting a plurality of displays has been proposed (Patent Document 1), but since the bezel portion remains, the video is cut off, and the visibility is problematic. It is not popular.
そこで近年、フレキシブルディスプレイ、折りたたみ型ディスプレイを組み込んだ携帯端末が提案されている。この方式であれば、画像が途切れることなく、大画面のディスプレイを搭載した携帯端末機器として利便性よく携帯できる。
Therefore, in recent years, mobile terminals incorporating a flexible display and a foldable display have been proposed. With this method, the image is not interrupted and can be conveniently carried as a mobile terminal device equipped with a large screen display.
ここで、従来の折りたたみ構造を有しないディスプレイや携帯端末機器については、そのディスプレイの表面はガラスなど可撓性を有しない素材で保護することができたが、折りたたみ型ディスプレイにおいて、折りたたみ部分を介して一面のディスプレイとする場合には、可撓性があり、かつ、表面を保護できるハードコートフィルムなどを使用する必要がある。しかしながら、折りたたみ型ディスプレイでは、一定の折りたたみ部分に当たる箇所が繰り返し折り曲げられるため、当該箇所のフィルムが経時的に変形し、ディスプレイに表示される画像を歪める等の問題があった。
Here, for displays and portable terminal devices that do not have a conventional folding structure, the surface of the display could be protected with a non-flexible material such as glass. In the case of a single-sided display, it is necessary to use a hard coat film that is flexible and can protect the surface. However, in a foldable display, a portion corresponding to a certain folding portion is repeatedly bent, so that there is a problem that a film in the portion is deformed with time and an image displayed on the display is distorted.
そこで、部分的に膜厚を変える手法も提案されているが(特許文献2参照)、量産性に乏しい問題がある。
Therefore, a method of partially changing the film thickness has been proposed (see Patent Document 2), but there is a problem that the mass productivity is poor.
本発明は上記のような従来のディスプレイの表面保護部材が有する課題を解決しようとするものであって、量産性に優れており、繰り返し折り曲げた後に折りたたみ部分で表示される画像に乱れを生じるおそれがない折りたたみ型ディスプレイと、そのような折りたたみ型ディスプレイを搭載した携帯端末機器を提供できるようにするため、折りたたみ型ディスプレイの表面保護フィルム用ポリエステルフィルムや表面保護フィルム用ハードコートフィルムを提供しようとするものである。
The present invention is intended to solve the problems of the surface protection member of the conventional display as described above, is excellent in mass productivity, and may cause disturbance in the image displayed at the folded portion after repeated folding. In order to be able to provide a foldable display with no fold and a portable terminal device equipped with such a foldable display, it is intended to provide a polyester film for a surface protective film of a foldable display or a hard coat film for a surface protective film. Is.
即ち、本発明は以下の構成よりなる。
1. 厚みが10~75μmのポリエステルフィルムであって、長手方向及び幅方向の少なくともいずれか一方向の0.2%耐力点ひずみが2.6~5.0%であることを特徴とする折りたたみ型ディスプレイの表面保護フィルム用ポリエステルフィルム。
2. 屈曲方向の0.2%耐力点ひずみが2.6~5.0%であることを特徴とする上記第1に記載の折りたたみ型ディスプレイの表面保護フィルム用ポリエステルフィルム。
(ここで、屈曲方向とは、ポリエステルフィルムを折りたたむ際の折りたたみ部と直交する方向をいう。)
3. フィルムの極限粘度が0.60~1.0dl/gであることを特徴とする上記第1又は第2に記載の折りたたみ型ディスプレイの表面保護フィルム用ポリエステルフィルム。
4. 上記第1~第3のずれかに記載の折りたたみ型ディスプレイの表面保護フィルム用ポリエステルフィルムの少なくとも片面に、厚みが1~50μmのハードコート層を有することを特徴とする折りたたみ型ディスプレイの表面保護フィルム用ハードコートフィルム。
5. JIS K5600-5-4:1999に準拠して750g荷重で測定したハードコート層の鉛筆硬度が
H以上であることを特徴とする上記第4に記載の折りたたみ型ディスプレイの表面保護フィルム用ハードコートフィルム。
6. 上記第4又は第5に記載の折りたたみ型ディスプレイの表面保護フィルム用ハードコートフィルムが、ハードコート層を表面に位置させるように表面保護フィルムとして配置された折りたたみ型ディスプレイであって、折りたたんだ際の屈曲半径が5mm以下であることを特徴とする折りたたみ型ディスプレイ。
7. 折りたたみ型ディスプレイの折りたたみ部分を介して連続した単一のハードコートフィルムが配されていることを特徴とする上記第6に記載の折りたたみ型ディスプレイ。8. 上記第6又は第7に記載の折りたたみ型ディスプレイを有する携帯端末機器。 That is, the present invention has the following configuration.
1. A foldable display comprising a polyester film having a thickness of 10 to 75 μm and a 0.2% yield strength strain in at least one of a longitudinal direction and a width direction of 2.6 to 5.0% Polyester film for surface protection film.
2. The polyester film for a surface protective film for a foldable display as described in theabove item 1, wherein the 0.2% yield strength strain in the bending direction is 2.6 to 5.0%.
(Here, the bending direction means a direction orthogonal to the folding portion when the polyester film is folded.)
3. 3. The polyester film for a surface protective film for a foldable display as described in the above 1 or 2, wherein the intrinsic viscosity of the film is 0.60 to 1.0 dl / g.
4). A surface protective film for a foldable display, comprising a hard coat layer having a thickness of 1 to 50 μm on at least one surface of the polyester film for a surface protective film for a foldable display according to any one of the first to third shifts. Hard coat film.
5). The hard coat film for a surface protective film for a foldable display as described in the above 4, wherein the pencil hardness of the hard coat layer measured at 750 g load in accordance with JIS K5600-5-4: 1999 is H or more .
6). The hard coat film for a surface protective film of the foldable display according to the fourth or fifth aspect is a foldable display arranged as a surface protective film so that the hard coat layer is positioned on the surface, and when folded, A folding display having a bending radius of 5 mm or less.
7). The foldable display according to the sixth aspect, wherein a single continuous hard coat film is disposed through a foldable portion of the foldable display. 8). A portable terminal device having the foldable display according to the sixth or seventh aspect.
1. 厚みが10~75μmのポリエステルフィルムであって、長手方向及び幅方向の少なくともいずれか一方向の0.2%耐力点ひずみが2.6~5.0%であることを特徴とする折りたたみ型ディスプレイの表面保護フィルム用ポリエステルフィルム。
2. 屈曲方向の0.2%耐力点ひずみが2.6~5.0%であることを特徴とする上記第1に記載の折りたたみ型ディスプレイの表面保護フィルム用ポリエステルフィルム。
(ここで、屈曲方向とは、ポリエステルフィルムを折りたたむ際の折りたたみ部と直交する方向をいう。)
3. フィルムの極限粘度が0.60~1.0dl/gであることを特徴とする上記第1又は第2に記載の折りたたみ型ディスプレイの表面保護フィルム用ポリエステルフィルム。
4. 上記第1~第3のずれかに記載の折りたたみ型ディスプレイの表面保護フィルム用ポリエステルフィルムの少なくとも片面に、厚みが1~50μmのハードコート層を有することを特徴とする折りたたみ型ディスプレイの表面保護フィルム用ハードコートフィルム。
5. JIS K5600-5-4:1999に準拠して750g荷重で測定したハードコート層の鉛筆硬度が
H以上であることを特徴とする上記第4に記載の折りたたみ型ディスプレイの表面保護フィルム用ハードコートフィルム。
6. 上記第4又は第5に記載の折りたたみ型ディスプレイの表面保護フィルム用ハードコートフィルムが、ハードコート層を表面に位置させるように表面保護フィルムとして配置された折りたたみ型ディスプレイであって、折りたたんだ際の屈曲半径が5mm以下であることを特徴とする折りたたみ型ディスプレイ。
7. 折りたたみ型ディスプレイの折りたたみ部分を介して連続した単一のハードコートフィルムが配されていることを特徴とする上記第6に記載の折りたたみ型ディスプレイ。8. 上記第6又は第7に記載の折りたたみ型ディスプレイを有する携帯端末機器。 That is, the present invention has the following configuration.
1. A foldable display comprising a polyester film having a thickness of 10 to 75 μm and a 0.2% yield strength strain in at least one of a longitudinal direction and a width direction of 2.6 to 5.0% Polyester film for surface protection film.
2. The polyester film for a surface protective film for a foldable display as described in the
(Here, the bending direction means a direction orthogonal to the folding portion when the polyester film is folded.)
3. 3. The polyester film for a surface protective film for a foldable display as described in the above 1 or 2, wherein the intrinsic viscosity of the film is 0.60 to 1.0 dl / g.
4). A surface protective film for a foldable display, comprising a hard coat layer having a thickness of 1 to 50 μm on at least one surface of the polyester film for a surface protective film for a foldable display according to any one of the first to third shifts. Hard coat film.
5). The hard coat film for a surface protective film for a foldable display as described in the above 4, wherein the pencil hardness of the hard coat layer measured at 750 g load in accordance with JIS K5600-5-4: 1999 is H or more .
6). The hard coat film for a surface protective film of the foldable display according to the fourth or fifth aspect is a foldable display arranged as a surface protective film so that the hard coat layer is positioned on the surface, and when folded, A folding display having a bending radius of 5 mm or less.
7). The foldable display according to the sixth aspect, wherein a single continuous hard coat film is disposed through a foldable portion of the foldable display. 8). A portable terminal device having the foldable display according to the sixth or seventh aspect.
本発明の折りたたみ型ディスプレイの表面保護フィルム用ポリエステルフィルムやハードコートフィルムを用いた折りたたみ型ディスプレイは、量産性を維持しながら、そのポリエステルフィルムやハードコートフィルムが、繰り返し折りたたんだ後の変形を起こさないため、ディスプレイの折りたたみ部分での画像の乱れを生じないものである。前記のような折りたたみ型ディスプレイを搭載した携帯端末機器は、美しい画像を提供し、機能性に富み、携帯性等の利便性に優れたものである。
The foldable display using the polyester film or hard coat film for the surface protective film of the foldable display of the present invention does not cause deformation after the polyester film or hard coat film is repeatedly folded while maintaining mass productivity. Therefore, the image is not disturbed at the folding portion of the display. A portable terminal device equipped with a foldable display as described above provides beautiful images, is rich in functionality, and has excellent convenience such as portability.
(ディスプレイ)
本発明で言うディスプレイとは、表示装置を全般に指すものであり、ディスプレイの種類としては、LCD、有機ELディスプレイ、無機ELディスプレイ、LED、FEDなどあるが、折曲げ可能な構造であるLCDや、有機EL、無機ELが好ましい。特に層構成を少なくすることができる有機EL、無機ELが特に好ましく、色域の広い有機ELがさらに好ましい。 (display)
The display referred to in the present invention generally refers to a display device, and types of display include LCD, organic EL display, inorganic EL display, LED, FED, etc. Organic EL and inorganic EL are preferable. In particular, organic EL and inorganic EL that can reduce the layer structure are particularly preferable, and organic EL having a wide color gamut is more preferable.
本発明で言うディスプレイとは、表示装置を全般に指すものであり、ディスプレイの種類としては、LCD、有機ELディスプレイ、無機ELディスプレイ、LED、FEDなどあるが、折曲げ可能な構造であるLCDや、有機EL、無機ELが好ましい。特に層構成を少なくすることができる有機EL、無機ELが特に好ましく、色域の広い有機ELがさらに好ましい。 (display)
The display referred to in the present invention generally refers to a display device, and types of display include LCD, organic EL display, inorganic EL display, LED, FED, etc. Organic EL and inorganic EL are preferable. In particular, organic EL and inorganic EL that can reduce the layer structure are particularly preferable, and organic EL having a wide color gamut is more preferable.
(折りたたみ型ディスプレイ)
折りたたみ型ディスプレイは、連続した1枚のディスプレイが、携帯時は2つ折りにすることでサイズを半減させ、携帯性を向上させた構造となっていることが好ましい。また同時に薄型、軽量化されているものが望ましい。そのため、折りたたみ型ディスプレイの屈曲半径は5mm以下が好ましく、3mm以下がさらに好ましい。屈曲半径が5mm以下であれば、折りたたんだ状態での薄型化が可能となる。屈曲半径は小さいほど良いと言えるが、0.1mm以上で構わず、0.5mm以上であっても構わない。1mm以上であっても、折りたたみ構造を有しない従来のディスプレイに対比して実用性は十分良好である。折りたたんだ際の屈曲半径とは、図1の模式図の符号11の箇所を測定するもので、折りたたんだ際の折りたたみ部分の内側の半径を意味している。なお、後述する表面保護フィルムは、折りたたみ型ディスプレイの折りたたんだ外側に位置していてもよいし、内側に位置していてもよい。 (Foldable display)
The foldable display preferably has a structure in which one continuous display is folded in half when carried and the size is reduced by half and the portability is improved. At the same time, it is desirable that the thickness and weight be reduced. Therefore, the bending radius of the foldable display is preferably 5 mm or less, and more preferably 3 mm or less. If the bending radius is 5 mm or less, it is possible to reduce the thickness in a folded state. It can be said that the smaller the bending radius, the better. However, it may be 0.1 mm or more, and may be 0.5 mm or more. Even if it is 1 mm or more, the practicality is sufficiently good as compared with a conventional display having no folding structure. The bending radius at the time of folding is to measure a portion indicated byreference numeral 11 in the schematic diagram of FIG. 1 and means a radius inside the folding portion at the time of folding. In addition, the surface protection film mentioned later may be located in the folded outer side of a foldable display, and may be located inside.
折りたたみ型ディスプレイは、連続した1枚のディスプレイが、携帯時は2つ折りにすることでサイズを半減させ、携帯性を向上させた構造となっていることが好ましい。また同時に薄型、軽量化されているものが望ましい。そのため、折りたたみ型ディスプレイの屈曲半径は5mm以下が好ましく、3mm以下がさらに好ましい。屈曲半径が5mm以下であれば、折りたたんだ状態での薄型化が可能となる。屈曲半径は小さいほど良いと言えるが、0.1mm以上で構わず、0.5mm以上であっても構わない。1mm以上であっても、折りたたみ構造を有しない従来のディスプレイに対比して実用性は十分良好である。折りたたんだ際の屈曲半径とは、図1の模式図の符号11の箇所を測定するもので、折りたたんだ際の折りたたみ部分の内側の半径を意味している。なお、後述する表面保護フィルムは、折りたたみ型ディスプレイの折りたたんだ外側に位置していてもよいし、内側に位置していてもよい。 (Foldable display)
The foldable display preferably has a structure in which one continuous display is folded in half when carried and the size is reduced by half and the portability is improved. At the same time, it is desirable that the thickness and weight be reduced. Therefore, the bending radius of the foldable display is preferably 5 mm or less, and more preferably 3 mm or less. If the bending radius is 5 mm or less, it is possible to reduce the thickness in a folded state. It can be said that the smaller the bending radius, the better. However, it may be 0.1 mm or more, and may be 0.5 mm or more. Even if it is 1 mm or more, the practicality is sufficiently good as compared with a conventional display having no folding structure. The bending radius at the time of folding is to measure a portion indicated by
(有機EL)
有機ELディスプレイの一般的な構成は、電極/電子輸送層/発光層/ホール輸送層/透明電極からなる有機EL層、画質を向上させるための位相差板、偏光板からなる。 (Organic EL)
A general configuration of the organic EL display includes an organic EL layer composed of an electrode / electron transport layer / light emitting layer / hole transport layer / transparent electrode, a retardation plate for improving image quality, and a polarizing plate.
有機ELディスプレイの一般的な構成は、電極/電子輸送層/発光層/ホール輸送層/透明電極からなる有機EL層、画質を向上させるための位相差板、偏光板からなる。 (Organic EL)
A general configuration of the organic EL display includes an organic EL layer composed of an electrode / electron transport layer / light emitting layer / hole transport layer / transparent electrode, a retardation plate for improving image quality, and a polarizing plate.
(タッチパネルを有する携帯端末機器)
タッチパネルを有する携帯端末機器に有機ELディスプレイを用いた場合、有機ELディスプレイの上部、もしくは有機EL層/位相差板間にタッチパネルモジュールを配置する。この際、上部から衝撃が加わると、有機EL、タッチパネルの回路が断線するおそれがあるため、表面保護フィルムが必要であり、表面保護フィルムとしてディスプレイの前面に配されるフィルムについて、ディスプレイの少なくとも表面側にはハードコート層が積層されたものであることが好ましい。 (Mobile terminal device with touch panel)
When an organic EL display is used for a portable terminal device having a touch panel, a touch panel module is disposed on the organic EL display or between the organic EL layer / phase difference plate. At this time, if an impact is applied from above, there is a possibility that the circuit of the organic EL or touch panel may be disconnected. Therefore, a surface protection film is necessary, and the film disposed on the front surface of the display as the surface protection film is at least the surface of the display. It is preferable that a hard coat layer is laminated on the side.
タッチパネルを有する携帯端末機器に有機ELディスプレイを用いた場合、有機ELディスプレイの上部、もしくは有機EL層/位相差板間にタッチパネルモジュールを配置する。この際、上部から衝撃が加わると、有機EL、タッチパネルの回路が断線するおそれがあるため、表面保護フィルムが必要であり、表面保護フィルムとしてディスプレイの前面に配されるフィルムについて、ディスプレイの少なくとも表面側にはハードコート層が積層されたものであることが好ましい。 (Mobile terminal device with touch panel)
When an organic EL display is used for a portable terminal device having a touch panel, a touch panel module is disposed on the organic EL display or between the organic EL layer / phase difference plate. At this time, if an impact is applied from above, there is a possibility that the circuit of the organic EL or touch panel may be disconnected. Therefore, a surface protection film is necessary, and the film disposed on the front surface of the display as the surface protection film is at least the surface of the display. It is preferable that a hard coat layer is laminated on the side.
(折りたたみ型ディスプレイの表面保護フィルム)
表面保護フィルムとしては、ポリイミドフィルム、ポリエステルフィルム、ポリカーボネートフィルム、アクリルフィルム、トリアセチルセルロースフィルム、シクロオレフィンポリマーフィルムなど光透過性が高く、ヘイズが低いフィルムであれば使用することができが、その中でも耐衝撃性が高く、十分な鉛筆硬度を有するポリイミドフィルム、ポリエステルフィルムが好ましく、安価で製造できるポリエステルフィルムが特に好ましい。 (Surface protection film for folding display)
As the surface protective film, it can be used as long as it is a film having high light transmittance and low haze, such as a polyimide film, a polyester film, a polycarbonate film, an acrylic film, a triacetyl cellulose film, and a cycloolefin polymer film. Polyimide films and polyester films having high impact resistance and sufficient pencil hardness are preferred, and polyester films that can be produced at low cost are particularly preferred.
表面保護フィルムとしては、ポリイミドフィルム、ポリエステルフィルム、ポリカーボネートフィルム、アクリルフィルム、トリアセチルセルロースフィルム、シクロオレフィンポリマーフィルムなど光透過性が高く、ヘイズが低いフィルムであれば使用することができが、その中でも耐衝撃性が高く、十分な鉛筆硬度を有するポリイミドフィルム、ポリエステルフィルムが好ましく、安価で製造できるポリエステルフィルムが特に好ましい。 (Surface protection film for folding display)
As the surface protective film, it can be used as long as it is a film having high light transmittance and low haze, such as a polyimide film, a polyester film, a polycarbonate film, an acrylic film, a triacetyl cellulose film, and a cycloolefin polymer film. Polyimide films and polyester films having high impact resistance and sufficient pencil hardness are preferred, and polyester films that can be produced at low cost are particularly preferred.
本発明において、ポリエステルフィルムは、1種類以上のポリエステル樹脂からなる単層構成のフィルムでもよいし、2種類以上のポリエステルを使用する場合、多層構造フィルムでも良いし、繰り返し構造の超多層積層フィルムでもよい。
In the present invention, the polyester film may be a single-layer film composed of one or more kinds of polyester resins, and when two or more kinds of polyester are used, it may be a multilayer structure film or a super multi-layer laminate film having a repeating structure. Good.
ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレート、またはこれらの樹脂の構成成分を主成分とする共重合体からなるポリエステルフィルムが挙げられる。なかでも、力学的性質、耐熱性、透明性、価格などの点から、延伸されたポリエチレンテレフタレートフィルムが特に好ましい。
Examples of the polyester resin include polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, or a polyester film made of a copolymer mainly composed of components of these resins. Among these, a stretched polyethylene terephthalate film is particularly preferable from the viewpoint of mechanical properties, heat resistance, transparency, price, and the like.
ポリエステルフィルムにポリエステルの共重合体を用いる場合、ポリエステルのジカルボン酸成分としては、例えば、アジピン酸、セバシン酸などの脂肪族ジカルボン酸;テレフタル酸、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸などの芳香族ジカルボン酸;トリメリット酸、ピロメリット酸などの多官能カルボン酸が挙げられる。また、グリコール成分としては、例えば、エチレングリコール、ジエチレングリコール、1,4-ブタンジオール、プロピレングリコール、ネオペンチルグリコールなどの脂肪酸グリコール、p-キシレングリコールなどの芳香族グリコール、1,4-シクロヘキサンジメタノールなどの脂環族グリコール、平均分子量が150~20,000のポリエチレングリコールが挙げられる。好ましい共重合体の共重合成分の質量比率は20質量%未満である。20質量%未満の場合には、フィルム強度、透明性、耐熱性が保持されて好ましい。
When a polyester copolymer is used for the polyester film, examples of the dicarboxylic acid component of the polyester include aliphatic dicarboxylic acids such as adipic acid and sebacic acid; terephthalic acid, isophthalic acid, phthalic acid, and 2,6-naphthalenedicarboxylic acid. Aromatic dicarboxylic acids such as: polyfunctional carboxylic acids such as trimellitic acid and pyromellitic acid. Examples of the glycol component include fatty acid glycols such as ethylene glycol, diethylene glycol, 1,4-butanediol, propylene glycol, and neopentyl glycol, aromatic glycols such as p-xylene glycol, and 1,4-cyclohexanedimethanol. And polyethylene glycol having an average molecular weight of 150 to 20,000. The mass ratio of the copolymer component of the preferred copolymer is less than 20% by mass. When it is less than 20% by mass, film strength, transparency and heat resistance are maintained, which is preferable.
また、ポリエステルフィルムの製造において、少なくとも1種類以上の樹脂ペレットの極限粘度は、0.60~1.0dl/gの範囲が好ましい。極限粘度が0.60dl/g以上であると、得られたフィルムの耐衝撃性が向上し、外部衝撃による内部回路の断線が発生しづらく好ましい。また、繰り返し屈曲された場合の変形の小ささにも寄与し好ましい。一方、極限粘度が1.00dl/g以下であると、溶融流体の濾圧上昇が大きくなり過ぎることなく、フィルム製造を安定的に操業し易く好ましい。
In the production of a polyester film, the intrinsic viscosity of at least one kind of resin pellets is preferably in the range of 0.60 to 1.0 dl / g. When the intrinsic viscosity is 0.60 dl / g or more, the impact resistance of the obtained film is improved, and it is preferable that the internal circuit is not easily broken by an external impact. Moreover, it contributes to the small deformation when bent repeatedly, which is preferable. On the other hand, if the intrinsic viscosity is 1.00 dl / g or less, it is preferable that the film production can be stably operated without excessively increasing the filtration pressure of the molten fluid.
フィルムが単層構成、積層構成であることに関わらず、フィルムの極限粘度は、0.60dl/g以上であることが好ましい。0.62dl/g以上であることがより好ましい。さらに好ましくは0.68dl/g以上である。0.60dl/g以上あれば、疲労耐性を付与することができ十分に耐屈曲性の効果が得られる。一方、極限粘度が1.00dl/g以下であるフィルムは、操業性よく製造でき好ましい。
Regardless of whether the film has a single layer structure or a laminated structure, the intrinsic viscosity of the film is preferably 0.60 dl / g or more. More preferably, it is 0.62 dl / g or more. More preferably, it is 0.68 dl / g or more. If it is 0.60 dl / g or more, fatigue resistance can be imparted and a sufficient bending resistance effect can be obtained. On the other hand, a film having an intrinsic viscosity of 1.00 dl / g or less is preferable because it can be produced with good operability.
ポリエステルフィルムの厚みは、10~75μmであることが好ましく、25~75μmであることがさらに好ましい。厚みが10μm以上であると鉛筆硬度向上効果が見られ、厚みが75μm以下であると軽量化に有利である他、可撓性、加工性やハンドリング性などに優れる。
The thickness of the polyester film is preferably 10 to 75 μm, more preferably 25 to 75 μm. When the thickness is 10 μm or more, an effect of improving pencil hardness is observed, and when the thickness is 75 μm or less, it is advantageous for weight reduction and excellent in flexibility, workability and handling properties.
本発明のポリエステルフィルムの表面は、平滑であっても凹凸を有していても良いが、ディスプレイの表面カバー用途に用いられることから、凹凸由来の光学特性低下は好ましくない。ヘイズとしては、3%以下が好ましく、2%以下がさらに好ましく、1%以下が最も好ましい。ヘイズが3%以下であれば、画像の視認性を向上させることができる。ヘイズの下限は小さいほどよいが、0.1%以上でも構わず、0.3%以上でも構わない。
The surface of the polyester film of the present invention may be smooth or uneven, but since it is used for a display surface cover, a decrease in optical properties due to the unevenness is not preferable. The haze is preferably 3% or less, more preferably 2% or less, and most preferably 1% or less. If the haze is 3% or less, the visibility of the image can be improved. The lower limit of the haze is better, but it may be 0.1% or more, or 0.3% or more.
前記のようにヘイズを低下させる目的からはあまりフィルム表面の凹凸は大きくない方がよいが、ハンドリング製の観点から程度な滑り性を与えるために、凹凸を形成する方法としては、表層のポリエステル樹脂層にフィラーを配合したり、フィラー入りのコート層を製膜途中でコーティングすることで形成することができる。
For the purpose of reducing the haze as described above, it is better that the film surface is not very uneven, but in order to give a degree of slipperiness from the viewpoint of handling, as a method of forming the unevenness, the surface polyester resin It can be formed by blending a layer with a filler or coating a coating layer containing a filler during film formation.
基材フィルムに粒子を配合する方法としては、公知の方法を採用し得る。例えば、ポリエステルを製造する任意の段階において添加することができるが、好ましくはエステル化の段階、またはエステル交換反応終了後、重縮合反応開始前の段階で、エチレングリコールなどに分散させたスラリーとして添加し、重縮合反応を進めてもよい。また、ベント付き混練押出機を用い、エチレングリコールまたは水などに分散させた粒子のスラリーとポリエステル原料とをブレンドする方法、または混練押出機を用い、乾燥させた粒子とポリエステル原料とをブレンドする方法などによって行うことができる。
As a method of blending particles into the base film, a known method can be adopted. For example, it can be added at any stage for producing polyester, but it is preferably added as a slurry dispersed in ethylene glycol or the like at the stage of esterification or after the end of the transesterification reaction and before the start of the polycondensation reaction. Then, the polycondensation reaction may proceed. Also, a method of blending a slurry of particles dispersed in ethylene glycol or water with a vented kneading extruder and a polyester raw material, or a method of blending dried particles and a polyester raw material using a kneading extruder Etc.
なかでも、ポリエステル原料の一部となるモノマー液中に凝集体無機粒子を均質分散させた後、濾過したものを、エステル化反応前、エステル化反応中またはエステル化反応後のポリエステル原料の残部に添加する方法が好ましい。この方法によると、モノマー液が低粘度であるので、粒子の均質分散やスラリーの高精度な濾過が容易に行えると共に、原料の残部に添加する際に、粒子の分散性が良好で、新たな凝集体も発生しにくい。かかる観点より、特に、エステル化反応前の低温状態の原料の残部に添加することが好ましい。
Among these, after the aggregated inorganic particles are homogeneously dispersed in the monomer liquid that is a part of the polyester raw material, the filtered material is used in the remainder of the polyester raw material before, during or after the esterification reaction. The method of adding is preferable. According to this method, since the monomer liquid has a low viscosity, it is easy to perform homogeneous dispersion of particles and high-accuracy filtration of the slurry, and when added to the rest of the raw material, the dispersibility of the particles is good and new Aggregates are also unlikely to occur. From this point of view, it is particularly preferable to add to the remainder of the raw material in a low temperature state before the esterification reaction.
また、予め粒子を含有するポリエステルを得た後、そのペレットと粒子を含有しないペレットとを混練押出しなどする方法(マスターバッチ法)により、さらにフィルム表面の突起数を少なくすることができる。
In addition, the number of protrusions on the film surface can be further reduced by a method (master batch method) in which polyester containing particles is obtained in advance and the pellets and pellets not containing particles are kneaded and extruded.
また、ポリエステルフィルムは、全光線透過率の好ましい範囲を維持する範囲内で、各種の添加剤を含有していてもよい。添加剤としては、例えば、帯電防止剤、UV吸収剤、安定剤が挙げられる。
Moreover, the polyester film may contain various additives within a range that maintains a preferable range of the total light transmittance. Examples of the additive include an antistatic agent, a UV absorber, and a stabilizer.
ポリエステルフィルムの全光線透過率は、85%以上が好ましく、87%以上がさらに好ましい。85%以上の透過率があれば、視認性を十分に確保することができる。ポリエステルフィルムの全光線透過率は高いほどよいと言えるが、99%以下でも構わず、97%以下でも構わない。
The total light transmittance of the polyester film is preferably 85% or more, and more preferably 87% or more. If there is a transmittance of 85% or more, sufficient visibility can be secured. The higher the total light transmittance of the polyester film, the better. However, it may be 99% or less, or 97% or less.
本発明のポリエステルフィルムの表面に、ハードコート層などを形成する樹脂との密着性を向上させるための処理を行うことができる。
The surface of the polyester film of the present invention can be treated to improve the adhesion with a resin that forms a hard coat layer or the like.
表面処理による方法としては、例えば、サンドブラスト処理、溶剤処理等による凹凸化処理や、コロナ放電処理、電子線照射処理、プラズマ処理、オゾン・紫外線照射処理、火炎処理、クロム酸処理、熱風処理等の酸化処理等が挙げられ、特に限定なく使用できる。
Surface treatment methods include, for example, sand blast treatment, roughening treatment by solvent treatment, corona discharge treatment, electron beam irradiation treatment, plasma treatment, ozone / ultraviolet irradiation treatment, flame treatment, chromic acid treatment, hot air treatment, etc. An oxidation process etc. are mentioned, It can use without limitation.
また、易接着層などの接着向上層により、密着性を向上させることもできる。易接着層としては、アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリエーテル樹脂など特に限定なく使用でき、一般的なコーティング手法、好ましくはいわゆるインラインコート処方により形成できる。
Also, adhesion can be improved by an adhesion improving layer such as an easy adhesion layer. The easy-adhesion layer can be used without particular limitation, such as an acrylic resin, a polyester resin, a polyurethane resin, or a polyether resin, and can be formed by a general coating technique, preferably a so-called in-line coating formulation.
上述のポリエステルフィルムは、例えば、ポリエステル原料の一部となるモノマー液中に無機粒子を均質分散させて濾過した後、ポリエステル原料の残部に添加してポリエステルの重合を行う重合工程と、そのポリエステルをフィルターを介してシート状に溶融押し出し、これを冷却後、延伸して、基材フィルムを形成するフィルム形成工程を経て、製造することができる。
The polyester film described above includes, for example, a polymerization process in which inorganic particles are homogeneously dispersed in a monomer liquid that is a part of a polyester raw material and filtered, and then added to the remainder of the polyester raw material to polymerize the polyester, and the polyester is added. It can be manufactured through a film-forming step of forming a base film by melting and extruding it into a sheet form through a filter, and cooling and extruding it.
次に、2軸延伸ポリエステルフィルムの製造方法について、ポリエチレンテレフタレート(以下、PETと記す)のペレットを基材フィルムの原料とした例について詳しく説明するが、これらに限定されるものではない。また、単層構成、多層構成など層数を限定するものではない。
Next, an example of using a polyethylene terephthalate (hereinafter referred to as PET) pellet as a raw material for a base film will be described in detail with respect to a method for producing a biaxially stretched polyester film, but is not limited thereto. Further, the number of layers is not limited, such as a single layer configuration or a multilayer configuration.
PETのペレットを所定の割合で混合、乾燥した後、公知の溶融積層用押出機に供給し、スリット状のダイからシート状に押し出し、キャスティングロール上で冷却固化させて、未延伸フィルムを形成する。単層の場合は1台の押し出し機でよいが、多層構成のフィ
ルムを製造する場合には、2台以上の押出機、2層以上のマニホールドまたは合流ブロック(例えば、角型合流部を有する合流ブロック)を用いて、各最外層を構成する複数のフィルム層を積層し、口金から2層以上のシートを押し出し、キャスティングロールで冷却して未延伸フィルムを形成することができる。 After PET pellets are mixed and dried at a predetermined ratio, they are supplied to a known melt laminating extruder, extruded into a sheet from a slit-shaped die, and cooled and solidified on a casting roll to form an unstretched film. . In the case of a single layer, a single extruder may be used, but in the case of producing a multilayer film, two or more extruders, two or more manifolds or a merge block (for example, a merge having a square merge portion) A plurality of film layers constituting each outermost layer are laminated using a block, two or more sheets are extruded from the die, and cooled with a casting roll to form an unstretched film.
ルムを製造する場合には、2台以上の押出機、2層以上のマニホールドまたは合流ブロック(例えば、角型合流部を有する合流ブロック)を用いて、各最外層を構成する複数のフィルム層を積層し、口金から2層以上のシートを押し出し、キャスティングロールで冷却して未延伸フィルムを形成することができる。 After PET pellets are mixed and dried at a predetermined ratio, they are supplied to a known melt laminating extruder, extruded into a sheet from a slit-shaped die, and cooled and solidified on a casting roll to form an unstretched film. . In the case of a single layer, a single extruder may be used, but in the case of producing a multilayer film, two or more extruders, two or more manifolds or a merge block (for example, a merge having a square merge portion) A plurality of film layers constituting each outermost layer are laminated using a block, two or more sheets are extruded from the die, and cooled with a casting roll to form an unstretched film.
この場合、溶融押出しの際、溶融樹脂が約280℃程度に保たれた任意の場所で、樹脂中に含まれる異物を除去するために高精度濾過を行うことが好ましい。溶融樹脂の高精度濾過に用いられる濾材は、特に限定されないが、ステンレス焼結体の濾材は、Si、Ti、Sb、Ge、Cuを主成分とする凝集物および高融点有機物の除去性能に優れるため好ましい。
In this case, it is preferable to perform high-precision filtration in order to remove foreign substances contained in the resin at any place where the molten resin is kept at about 280 ° C. during melt extrusion. The filter medium used for high-precision filtration of the molten resin is not particularly limited, but the filter medium of the stainless sintered body is excellent in removing aggregates and high-melting-point organic substances mainly composed of Si, Ti, Sb, Ge, and Cu. Therefore, it is preferable.
さらに、濾材の濾過粒子サイズ(初期濾過効率95%)は、20μm以下が好ましく、特に15μm以下が好ましい。濾材の濾過粒子サイズ(初期濾過効率95%)が20μmを超えると、20μm以上の大きさの異物が十分除去できない。濾材の濾過粒子サイズ(初期濾過効率95%)が20μm以下の濾材を用いて溶融樹脂の高精度濾過を行うことにより、生産性が低下する場合があるが、粗大粒子による突起の少ないフィルムを得る上で好ましい。
Furthermore, the filter particle size (initial filtration efficiency 95%) of the filter medium is preferably 20 μm or less, and particularly preferably 15 μm or less. When the filter particle size of the filter medium (initial filtration efficiency 95%) exceeds 20 μm, foreign matters having a size of 20 μm or more cannot be sufficiently removed. By performing high-precision filtration of molten resin using a filter medium having a filter particle size (initial filtration efficiency of 95%) of 20 μm or less, productivity may be reduced, but a film with few protrusions due to coarse particles is obtained. Preferred above.
また、ポリエステルフィルムの長手方向(機械流れ方向)及び幅方向の少なくともいずれか一方向の0.2%耐力点ひずみは2.6~5.0%であることが好ましく、3.0~5.0%であることが更に好ましい。0.2%耐力点ひずみとは、応力-ひずみ曲線において降伏点が現れても、現れなくても、降伏点の代替として使用する値で、弾性領域の指標として用いることができる。図3に0.2%耐力点ひずみを求めるための応力-ひずみ曲線の模式図を示す。図3は降伏点が現れない場合の例である。0.2%耐力点ひずみは、通常の引張試験によって求められる。応力-ひずみ曲線において、応力0MPa,ひずみ0.2%の点Qから、フックの法則が成り立つOAに平行線を引き、応力-ひずみ曲線と交わる点を耐力点Pとし、そこから、縦軸の平行線をおろした時のひずみ軸との交点Hのひずみの値
が、0.2%耐力点ひずみである。前記のようにして応力-ひずみ曲線より、0.2%耐力点ひずみを求めることができるが、引張試験機(島津製作所製 AUTOGRAPH AG-X Plus 1kN)により応力-ひずみ曲線を得る場合、その後、島津製作所製オートグラフソフトウェアTRAPEZIUM Xを用いれば、ひずみを0.2%で設定することにより、0.2%耐力点ひずみの算出結果を直接的に得ることができる。 The 0.2% proof stress at least in any one of the longitudinal direction (machine flow direction) and the width direction of the polyester film is preferably 2.6 to 5.0%, more preferably 3.0 to 5.%. More preferably, it is 0%. The 0.2% yield strength point strain is a value used as a substitute for the yield point whether or not the yield point appears in the stress-strain curve, and can be used as an index of the elastic region. FIG. 3 shows a schematic diagram of a stress-strain curve for obtaining 0.2% proof stress. FIG. 3 shows an example where no yield point appears. The 0.2% proof stress is determined by a normal tensile test. In the stress-strain curve, a parallel line is drawn from the point Q where the stress is 0 MPa and the strain is 0.2% to OA where the Hooke's law is established, and the point where the stress-strain curve intersects is defined as the proof stress point P. The value of the strain at the intersection H with the strain axis when the angle is lowered is the 0.2% proof stress. As described above, the 0.2% proof stress strain can be obtained from the stress-strain curve. When a stress-strain curve is obtained by a tensile tester (AUTOGRAPH AG-X Plus 1 kN manufactured by Shimadzu Corporation), If the autograph software TRAPEZIUM X manufactured by Shimadzu Corporation is used, the calculation result of 0.2% proof stress can be directly obtained by setting the strain at 0.2%.
が、0.2%耐力点ひずみである。前記のようにして応力-ひずみ曲線より、0.2%耐力点ひずみを求めることができるが、引張試験機(島津製作所製 AUTOGRAPH AG-X Plus 1kN)により応力-ひずみ曲線を得る場合、その後、島津製作所製オートグラフソフトウェアTRAPEZIUM Xを用いれば、ひずみを0.2%で設定することにより、0.2%耐力点ひずみの算出結果を直接的に得ることができる。 The 0.2% proof stress at least in any one of the longitudinal direction (machine flow direction) and the width direction of the polyester film is preferably 2.6 to 5.0%, more preferably 3.0 to 5.%. More preferably, it is 0%. The 0.2% yield strength point strain is a value used as a substitute for the yield point whether or not the yield point appears in the stress-strain curve, and can be used as an index of the elastic region. FIG. 3 shows a schematic diagram of a stress-strain curve for obtaining 0.2% proof stress. FIG. 3 shows an example where no yield point appears. The 0.2% proof stress is determined by a normal tensile test. In the stress-strain curve, a parallel line is drawn from the point Q where the stress is 0 MPa and the strain is 0.2% to OA where the Hooke's law is established, and the point where the stress-strain curve intersects is defined as the proof stress point P. The value of the strain at the intersection H with the strain axis when the angle is lowered is the 0.2% proof stress. As described above, the 0.2% proof stress strain can be obtained from the stress-strain curve. When a stress-strain curve is obtained by a tensile tester (AUTOGRAPH AG-
0.2%耐力点ひずみが2.6%以上の場合、折りたたみの際に生じるひずみによって、変形が生じづらく好ましい。5.0%以下の場合、良好な耐衝撃性が得られて好ましい。そして、ポリエステルフィルムの屈曲方向の0.2%耐力点ひずみは2.6~5.0%であることが好ましく、3.0~5.0%であることが更に好ましい。ここで、屈曲方向とは、図2のポリエステルフィルム(符号2)上の符号22に示すように、折りたたみ型ディスプレイの表面保護フィルムの用途において想定される折りたたみ部(符号21)と直交する方向を指している。屈曲方向はフィルムの長手方向、幅方向いずれにも限定されない。
When the 0.2% proof stress is 2.6% or more, it is preferable that deformation is difficult to occur due to strain generated during folding. When it is 5.0% or less, good impact resistance is obtained, which is preferable. The 0.2% proof stress in the bending direction of the polyester film is preferably 2.6 to 5.0%, and more preferably 3.0 to 5.0%. Here, the bending direction means a direction orthogonal to the folding portion (reference numeral 21) assumed in the use of the surface protection film of the folding display, as indicated by reference numeral 22 on the polyester film (reference numeral 2) in FIG. pointing. The bending direction is not limited to either the longitudinal direction or the width direction of the film.
0.2%耐力点ひずみは、延伸倍率、延伸温度、熱固定温度、ポリエステル原料などを調整することによって上記範囲内に調整することができる。
0.2% proof stress can be adjusted within the above range by adjusting the draw ratio, draw temperature, heat setting temperature, polyester raw material, and the like.
ポリエステルフィルムの0.2%耐力点ひずみは、延伸倍率を調節することで効果的に調節することができる。未延伸ポリエステルシートを長手方向(機械流れ方向)及び幅方向の少なくともいずれか一方向の延伸倍率を1.0~3.4倍とすることが好ましく、1.0~3.0倍がさらに好ましい。延伸倍率を1.0~3.4倍にすることで0.2%耐力点ひずみを高い上記の範囲に調節することができ、繰り返し折りたたんだ際の変形が少ない。そして、当該延伸方向は前記の屈曲方向であることが好ましい。延伸温度としては、80~130℃が好ましく、90~130℃が更に好ましい。なお延伸時の加熱方法は、熱風加熱方式、ロール加熱方式、赤外加熱方式など従来公知の手段を採用することができる。延伸温度を80~130℃にすることで、上記延伸倍率での延伸による厚みムラを防ぐことができる。
The 0.2% proof stress of the polyester film can be adjusted effectively by adjusting the draw ratio. The unstretched polyester sheet preferably has a stretch ratio in at least one of the longitudinal direction (machine flow direction) and the width direction of 1.0 to 3.4 times, more preferably 1.0 to 3.0 times. . By setting the draw ratio to 1.0 to 3.4 times, the 0.2% yield strength strain can be adjusted to the above-mentioned range, and deformation at the time of repeated folding is small. And it is preferable that the said extending | stretching direction is the said bending direction. The stretching temperature is preferably 80 to 130 ° C, more preferably 90 to 130 ° C. In addition, the heating method at the time of extending | stretching can employ | adopt conventionally well-known means, such as a hot-air heating system, a roll heating system, and an infrared heating system. By setting the stretching temperature to 80 to 130 ° C., thickness unevenness due to stretching at the stretching ratio can be prevented.
折りたたんだ際の屈曲方向と直交する方向(折りたたみ部の方向)の延伸倍率は屈曲方向より大きいことがフィルムの力学的特性から好ましく、屈曲方向と直交する方向の延伸倍率としては2.5~5.0倍を例示できる。延伸倍率を2.5倍以上にすることで安定した生産性が得られ、延伸倍率を5.0倍以下にすることで良好な耐衝撃性が得られる。
From the mechanical characteristics of the film, the draw ratio in the direction perpendicular to the bending direction when folded (the direction of the folding part) is preferably larger than the bending direction. The draw ratio in the direction perpendicular to the bending direction is 2.5-5. .0 can be exemplified. Stable productivity can be obtained by setting the draw ratio to 2.5 times or more, and good impact resistance can be obtained by setting the draw ratio to 5.0 times or less.
また、ポリエステルフィルムの結晶化度は35~54%が好ましく、43~54%が更に好ましい。結晶化度を高くすることで0.2%耐力点ひずみと耐衝撃性を向上させることができる。結晶化度を効果的に高めるためには、二軸延伸後に180~250℃の熱処理を施すことが好ましい。180℃以上であれば、効果的に結晶化度を高めることができ、250℃以下であれば、ポリエステルフィルム表面が溶融するおそれがなく、外観が良好に保たれて好ましい。
The crystallinity of the polyester film is preferably 35 to 54%, more preferably 43 to 54%. By increasing the crystallinity, the 0.2% yield strength strain and impact resistance can be improved. In order to effectively increase the crystallinity, it is preferable to perform heat treatment at 180 to 250 ° C. after biaxial stretching. If it is 180 degreeC or more, a crystallinity degree can be raised effectively, and if it is 250 degrees C or less, there is no possibility that the polyester film surface may melt | dissolve and an external appearance is kept favorable and preferable.
具体的には、例えば、PETのペレットを十分に真空乾燥した後、押出し機に供給し、約280℃でシート状に溶融押し出し、冷却固化させて、未延伸PETシートを形成する。得られた未延伸シートを80~130℃に加熱したロールで長手方向に1.0~3.4倍延伸して、一軸配向PETフィルムを得る。さらに、フィルムの端部をクリップで把持して、80~180℃に加熱された熱風ゾーンに導き、乾燥後、幅方向に2.5~5.0倍に延伸する。引き続き、180~250℃の熱処理ゾーンに導き、1~60秒間の熱処理を行い、結晶配向を完了させる。この熱処理工程中で、必要に応じて、幅方向または長手方向に1~12%の弛緩処理を施しても良い。
Specifically, for example, PET pellets are sufficiently vacuum-dried, then supplied to an extruder, melted and extruded into a sheet at about 280 ° C., and cooled and solidified to form an unstretched PET sheet. The obtained unstretched sheet is stretched 1.0 to 3.4 times in the longitudinal direction with a roll heated to 80 to 130 ° C. to obtain a uniaxially oriented PET film. Further, the end of the film is gripped with a clip, guided to a hot air zone heated to 80 to 180 ° C., dried, and stretched 2.5 to 5.0 times in the width direction. Subsequently, it is guided to a heat treatment zone at 180 to 250 ° C., and heat treatment is performed for 1 to 60 seconds to complete crystal orientation. During this heat treatment step, a relaxation treatment of 1 to 12% may be performed in the width direction or the longitudinal direction as necessary.
(ハードコート層)
折りたたみ型ディスプレイの表面に位置させてディスプレイを保護するポリエステルフィルムは、その表面にハードコート層を有していることが好ましい。ハードコート層は、ポリエステルフィルム上のディスプレイ表面側に位置させてディスプレイにおいて用いられることが好ましい。ハードコート層を形成する樹脂としては、アクリル系、シロキサン系、無機ハイブリッド系、ウレタンアクリレート系、ポリエステルアクリレート系、エポキシ系など特に限定なく使用できる。また、2種類以上の材料を混合して用いることもできるし、無機フィラーや有機フィラーなどの粒子を添加することもできる。 (Hard coat layer)
The polyester film that protects the display by being positioned on the surface of the foldable display preferably has a hard coat layer on the surface. The hard coat layer is preferably used in the display by being positioned on the display surface side on the polyester film. The resin for forming the hard coat layer can be used without particular limitation, such as acrylic, siloxane, inorganic hybrid, urethane acrylate, polyester acrylate, and epoxy. In addition, two or more kinds of materials can be mixed and used, and particles such as an inorganic filler and an organic filler can be added.
折りたたみ型ディスプレイの表面に位置させてディスプレイを保護するポリエステルフィルムは、その表面にハードコート層を有していることが好ましい。ハードコート層は、ポリエステルフィルム上のディスプレイ表面側に位置させてディスプレイにおいて用いられることが好ましい。ハードコート層を形成する樹脂としては、アクリル系、シロキサン系、無機ハイブリッド系、ウレタンアクリレート系、ポリエステルアクリレート系、エポキシ系など特に限定なく使用できる。また、2種類以上の材料を混合して用いることもできるし、無機フィラーや有機フィラーなどの粒子を添加することもできる。 (Hard coat layer)
The polyester film that protects the display by being positioned on the surface of the foldable display preferably has a hard coat layer on the surface. The hard coat layer is preferably used in the display by being positioned on the display surface side on the polyester film. The resin for forming the hard coat layer can be used without particular limitation, such as acrylic, siloxane, inorganic hybrid, urethane acrylate, polyester acrylate, and epoxy. In addition, two or more kinds of materials can be mixed and used, and particles such as an inorganic filler and an organic filler can be added.
(膜厚)
ハードコート層の膜厚としては、1~50μmが好ましい。1~40μmがより好ましい。1μmより厚ければ十分に硬化し、良好な鉛筆硬度が得られる。また厚みを50μm以下にすることで、ハードコートの硬化収縮によるカールを抑制し、フィルムのハンドリング性を向上させることができる。更に好ましくは2~25μm、特に好ましくは2~20μm、最も好ましくは3~15μmである。 (Film thickness)
The film thickness of the hard coat layer is preferably 1 to 50 μm. 1 to 40 μm is more preferable. If it is thicker than 1 μm, it is sufficiently cured and a good pencil hardness is obtained. Further, by setting the thickness to 50 μm or less, curling due to curing shrinkage of the hard coat can be suppressed, and the handleability of the film can be improved. More preferably, it is 2 to 25 μm, particularly preferably 2 to 20 μm, and most preferably 3 to 15 μm.
ハードコート層の膜厚としては、1~50μmが好ましい。1~40μmがより好ましい。1μmより厚ければ十分に硬化し、良好な鉛筆硬度が得られる。また厚みを50μm以下にすることで、ハードコートの硬化収縮によるカールを抑制し、フィルムのハンドリング性を向上させることができる。更に好ましくは2~25μm、特に好ましくは2~20μm、最も好ましくは3~15μmである。 (Film thickness)
The film thickness of the hard coat layer is preferably 1 to 50 μm. 1 to 40 μm is more preferable. If it is thicker than 1 μm, it is sufficiently cured and a good pencil hardness is obtained. Further, by setting the thickness to 50 μm or less, curling due to curing shrinkage of the hard coat can be suppressed, and the handleability of the film can be improved. More preferably, it is 2 to 25 μm, particularly preferably 2 to 20 μm, and most preferably 3 to 15 μm.
(塗布方法)
ハードコート層の塗布方法としては、マイヤーバー、グラビアコート、ダイコーター、ナイフコーターなど特に限定なく使用でき、粘度、膜厚に応じて適宜選択できる。 (Application method)
As a coating method of a hard-coat layer, it can use without limitation, such as a Mayer bar, a gravure coat, a die coater, a knife coater, and can be suitably selected according to a viscosity and a film thickness.
ハードコート層の塗布方法としては、マイヤーバー、グラビアコート、ダイコーター、ナイフコーターなど特に限定なく使用でき、粘度、膜厚に応じて適宜選択できる。 (Application method)
As a coating method of a hard-coat layer, it can use without limitation, such as a Mayer bar, a gravure coat, a die coater, a knife coater, and can be suitably selected according to a viscosity and a film thickness.
(硬化条件)
ハードコート層の硬化方法としては、紫外線、電子線などのエネルギー線や、熱による硬化方法など使用できるが、フィルムへのダメージを軽減させるため、紫外線や電子線などによる硬化方法が好ましい。 (Curing conditions)
As a method for curing the hard coat layer, energy rays such as ultraviolet rays and electron beams, and a curing method using heat can be used. However, a curing method using ultraviolet rays and electron beams is preferable in order to reduce damage to the film.
ハードコート層の硬化方法としては、紫外線、電子線などのエネルギー線や、熱による硬化方法など使用できるが、フィルムへのダメージを軽減させるため、紫外線や電子線などによる硬化方法が好ましい。 (Curing conditions)
As a method for curing the hard coat layer, energy rays such as ultraviolet rays and electron beams, and a curing method using heat can be used. However, a curing method using ultraviolet rays and electron beams is preferable in order to reduce damage to the film.
(鉛筆硬度)
ハードコート層の鉛筆硬度としては、B以上が好ましく、H以上が更に好ましく、2H以上が特に好ましい。B以上の鉛筆硬度があれば、容易に傷がつくことはなく、視認性を低下させない。一般にハードコート層の鉛筆硬度は高い方が好ましいが10H以下で構わず、8H以下でも構わず、6H以下でも実用上は問題なく使用できる。 (Pencil hardness)
The pencil hardness of the hard coat layer is preferably B or higher, more preferably H or higher, and particularly preferably 2H or higher. If the pencil hardness is greater than or equal to B, it will not be easily scratched and visibility will not be reduced. Generally, the pencil hardness of the hard coat layer is preferably higher, but it may be 10H or less, 8H or less, and 6H or less can be used practically without any problem.
ハードコート層の鉛筆硬度としては、B以上が好ましく、H以上が更に好ましく、2H以上が特に好ましい。B以上の鉛筆硬度があれば、容易に傷がつくことはなく、視認性を低下させない。一般にハードコート層の鉛筆硬度は高い方が好ましいが10H以下で構わず、8H以下でも構わず、6H以下でも実用上は問題なく使用できる。 (Pencil hardness)
The pencil hardness of the hard coat layer is preferably B or higher, more preferably H or higher, and particularly preferably 2H or higher. If the pencil hardness is greater than or equal to B, it will not be easily scratched and visibility will not be reduced. Generally, the pencil hardness of the hard coat layer is preferably higher, but it may be 10H or less, 8H or less, and 6H or less can be used practically without any problem.
(ハードコート層の種類)
本発明におけるハードコート層は、上述のような表面の鉛筆硬度を高めてディスプレイの保護をする目的に使用できるものであれば、他の機能が付加されたものであってもよい
。例えば、上記のような一定の鉛筆硬度を有する防眩層、防眩性反射防止層、反射防止層、低反射層および帯電防止層などの機能性が付加されたハードコート層も本発明おいては好ましく適用される。 (Type of hard coat layer)
The hard coat layer in the present invention may be provided with other functions as long as it can be used for the purpose of protecting the display by increasing the pencil hardness of the surface as described above. For example, a hard coat layer to which functionality such as an antiglare layer having a certain pencil hardness as described above, an antiglare antireflection layer, an antireflection layer, a low reflection layer, and an antistatic layer is added in the present invention. Is preferably applied.
本発明におけるハードコート層は、上述のような表面の鉛筆硬度を高めてディスプレイの保護をする目的に使用できるものであれば、他の機能が付加されたものであってもよい
。例えば、上記のような一定の鉛筆硬度を有する防眩層、防眩性反射防止層、反射防止層、低反射層および帯電防止層などの機能性が付加されたハードコート層も本発明おいては好ましく適用される。 (Type of hard coat layer)
The hard coat layer in the present invention may be provided with other functions as long as it can be used for the purpose of protecting the display by increasing the pencil hardness of the surface as described above. For example, a hard coat layer to which functionality such as an antiglare layer having a certain pencil hardness as described above, an antiglare antireflection layer, an antireflection layer, a low reflection layer, and an antistatic layer is added in the present invention. Is preferably applied.
次に、本発明の効果を実施例および比較例を用いて説明する。まず、本発明で使用した特性値の評価方法を下記に示す。
Next, the effects of the present invention will be described using examples and comparative examples. First, the evaluation method of the characteristic values used in the present invention is shown below.
(1)0.2%耐力点ひずみ
フィルムを測定方向140mmで幅10mmに短冊形に切り出して試料とし、引張試験機(島津製作所製 AUTOGRAPH AG-X Plus 1kN)により引張速度100mm/分で引張試験を行って応力-ひずみ曲線を得る。その後、島津製作所製オートグラフソフトウェアTRAPEZIUM Xを用い、ひずみ0.2%で設定し、0.2%耐力点ひずみ
を算出した。 (1) 0.2% proof stress strain The film was cut into a strip shape with a width of 10 mm in the measuring direction 140 mm and used as a sample. To obtain a stress-strain curve. Thereafter, the autograph software TRAPEZIUM X manufactured by Shimadzu Corporation was used to set the strain at 0.2%, and the 0.2% proof stress was calculated.
フィルムを測定方向140mmで幅10mmに短冊形に切り出して試料とし、引張試験機(島津製作所製 AUTOGRAPH AG-X Plus 1kN)により引張速度100mm/分で引張試験を行って応力-ひずみ曲線を得る。その後、島津製作所製オートグラフソフトウェアTRAPEZIUM Xを用い、ひずみ0.2%で設定し、0.2%耐力点ひずみ
を算出した。 (1) 0.2% proof stress strain The film was cut into a strip shape with a width of 10 mm in the measuring direction 140 mm and used as a sample. To obtain a stress-strain curve. Thereafter, the autograph software TRAPEZIUM X manufactured by Shimadzu Corporation was used to set the strain at 0.2%, and the 0.2% proof stress was calculated.
(2)極限粘度
フィルムまたはポリエステル樹脂を粉砕して乾燥した後、フェノール/テトラクロロエタン=60/40(質量比)の混合溶媒に溶解した。この溶液に遠心分離処理を施して無機粒子を取り除いた後に、ウベローデ粘度計を用いて、30℃で0.4(g/dl)の濃度の溶液の流下時間及び溶媒のみの流下時間を測定し、それらの時間比率から、Hugginsの式を用い、Hugginsの定数が0.38であると仮定して極限粘度を算出した。積層フィルムの場合は、積層厚みに応じて、フィルムの該当するポリエステル層を削り取ることで、各層単体の極限粘度を評価した。 (2) Intrinsic viscosity The film or polyester resin was pulverized and dried, and then dissolved in a mixed solvent of phenol / tetrachloroethane = 60/40 (mass ratio). After removing inorganic particles by centrifuging this solution, the flow time of the solution having a concentration of 0.4 (g / dl) and the flow time of the solvent alone were measured at 30 ° C. using an Ubbelohde viscometer. From these time ratios, the intrinsic viscosity was calculated using the Huggins equation, assuming that the Huggins constant was 0.38. In the case of a laminated film, the intrinsic viscosity of each layer was evaluated by scraping the corresponding polyester layer of the film according to the laminated thickness.
フィルムまたはポリエステル樹脂を粉砕して乾燥した後、フェノール/テトラクロロエタン=60/40(質量比)の混合溶媒に溶解した。この溶液に遠心分離処理を施して無機粒子を取り除いた後に、ウベローデ粘度計を用いて、30℃で0.4(g/dl)の濃度の溶液の流下時間及び溶媒のみの流下時間を測定し、それらの時間比率から、Hugginsの式を用い、Hugginsの定数が0.38であると仮定して極限粘度を算出した。積層フィルムの場合は、積層厚みに応じて、フィルムの該当するポリエステル層を削り取ることで、各層単体の極限粘度を評価した。 (2) Intrinsic viscosity The film or polyester resin was pulverized and dried, and then dissolved in a mixed solvent of phenol / tetrachloroethane = 60/40 (mass ratio). After removing inorganic particles by centrifuging this solution, the flow time of the solution having a concentration of 0.4 (g / dl) and the flow time of the solvent alone were measured at 30 ° C. using an Ubbelohde viscometer. From these time ratios, the intrinsic viscosity was calculated using the Huggins equation, assuming that the Huggins constant was 0.38. In the case of a laminated film, the intrinsic viscosity of each layer was evaluated by scraping the corresponding polyester layer of the film according to the laminated thickness.
(3)結晶化度
フィルムサンプルの密度を3点測定した。その平均値を結晶化度とした。
樹脂成分は完全非晶と完全結晶の混合物であり、その密度が後述のとおりであり、サンプルの密度はサンプルを構成する各成分の質量の総和を各成分の体積の総和で除した値となる、との仮定に基づき、各樹脂の結晶化度(重量比)を推算した。なお、サンプルの密度JISK-7112-1980準拠の方法(密度勾配管法)に従って行った。また、各成分単独の密度は下記の値を用いた(単位:g/cm3)
ポリエチレンテレフタレート樹脂:完全非晶1.34、完全結晶1.46
ポリエチレンナフタレート樹脂:完全非晶1.32、完全結晶1.41 (3) Crystallinity The density of the film sample was measured at three points. The average value was defined as the crystallinity.
The resin component is a mixture of completely amorphous and completely crystal, and the density is as described later. The density of the sample is a value obtained by dividing the total mass of each component constituting the sample by the total volume of each component. The crystallinity (weight ratio) of each resin was estimated based on the assumption that The sample density was measured in accordance with a method (density gradient tube method) based on JISK-7112-1980. Moreover, the density of each component used the following value (unit: g / cm3)
Polyethylene terephthalate resin: complete amorphous 1.34, complete crystal 1.46
Polyethylene naphthalate resin: complete amorphous 1.32, complete crystal 1.41
フィルムサンプルの密度を3点測定した。その平均値を結晶化度とした。
樹脂成分は完全非晶と完全結晶の混合物であり、その密度が後述のとおりであり、サンプルの密度はサンプルを構成する各成分の質量の総和を各成分の体積の総和で除した値となる、との仮定に基づき、各樹脂の結晶化度(重量比)を推算した。なお、サンプルの密度JISK-7112-1980準拠の方法(密度勾配管法)に従って行った。また、各成分単独の密度は下記の値を用いた(単位:g/cm3)
ポリエチレンテレフタレート樹脂:完全非晶1.34、完全結晶1.46
ポリエチレンナフタレート樹脂:完全非晶1.32、完全結晶1.41 (3) Crystallinity The density of the film sample was measured at three points. The average value was defined as the crystallinity.
The resin component is a mixture of completely amorphous and completely crystal, and the density is as described later. The density of the sample is a value obtained by dividing the total mass of each component constituting the sample by the total volume of each component. The crystallinity (weight ratio) of each resin was estimated based on the assumption that The sample density was measured in accordance with a method (density gradient tube method) based on JISK-7112-1980. Moreover, the density of each component used the following value (unit: g / cm3)
Polyethylene terephthalate resin: complete amorphous 1.34, complete crystal 1.46
Polyethylene naphthalate resin: complete amorphous 1.32, complete crystal 1.41
(4)耐屈曲性
ポリエステルフィルムを200mm(屈曲方向)×50mm(直行方向)の大きさに切り、測定用サンプルを作成した。厚み5mmのガラス板2枚の端部に各厚みのスペーサーを配置し空間を作り、フィルムをはさみ10秒間保持した。その直後に、フィルムを蛍光灯の光を反射させ、折りたたみ部を観察し、折りたたみ痕が付かなかった間隔を記録した。
○ :折りたたみ痕が付かなかった間隔が6.5mm未満。
△ :折りたたみ痕が付かなかった間隔が6.5mm以上7.0mm未満
× :折りたたみ痕が付かなかった間隔が7.0mm以上。 (4) Bending resistance A polyester film was cut into a size of 200 mm (bending direction) × 50 mm (perpendicular direction) to prepare a measurement sample. Spacers were formed by arranging spacers of various thicknesses at the ends of two glass plates having a thickness of 5 mm, and the film was held for 10 seconds. Immediately after that, the film was made to reflect the light of the fluorescent lamp, the folding part was observed, and the interval at which no folding marks were made was recorded.
○: The interval at which no folding marks were made was less than 6.5 mm.
(Triangle | delta): The space | interval with which the folding mark was not attached is 6.5 mm or more and less than 7.0 mm x: The space | interval with which the folding mark was not attached is 7.0 mm or more.
ポリエステルフィルムを200mm(屈曲方向)×50mm(直行方向)の大きさに切り、測定用サンプルを作成した。厚み5mmのガラス板2枚の端部に各厚みのスペーサーを配置し空間を作り、フィルムをはさみ10秒間保持した。その直後に、フィルムを蛍光灯の光を反射させ、折りたたみ部を観察し、折りたたみ痕が付かなかった間隔を記録した。
○ :折りたたみ痕が付かなかった間隔が6.5mm未満。
△ :折りたたみ痕が付かなかった間隔が6.5mm以上7.0mm未満
× :折りたたみ痕が付かなかった間隔が7.0mm以上。 (4) Bending resistance A polyester film was cut into a size of 200 mm (bending direction) × 50 mm (perpendicular direction) to prepare a measurement sample. Spacers were formed by arranging spacers of various thicknesses at the ends of two glass plates having a thickness of 5 mm, and the film was held for 10 seconds. Immediately after that, the film was made to reflect the light of the fluorescent lamp, the folding part was observed, and the interval at which no folding marks were made was recorded.
○: The interval at which no folding marks were made was less than 6.5 mm.
(Triangle | delta): The space | interval with which the folding mark was not attached is 6.5 mm or more and less than 7.0 mm x: The space | interval with which the folding mark was not attached is 7.0 mm or more.
(5)繰り返し耐屈曲性
幅方向50mm×流れ方向100mmの大きさのサンプルを用意する。無負荷U字伸縮試験機(ユアサシステム機器社製、DLDMLH-FS)を用いて、屈曲半径3mmを設定し、1回/秒の速度で、5万回屈曲させた。その際、サンプルは長辺側両端部10mmの位置を固定して、屈曲する部位は50mm×80mmとした。屈曲処理終了後、サンプルの屈曲内側を下にして平面に置き、目視検査を行った。
○ :サンプルの変形がないか又は変形があっても、水平に置いた際、浮き上がり最大高さが3mm未満。
△:サンプルに変形があり、水平に置いた際、浮き上がり最大高さが3mm以上5mm未満。
× :サンプルに折跡があるか、水平に置いた際、浮き上がり最大高さが5mm以上。 (5) Repeated bending resistance A sample having a size of 50 mm in the width direction and 100 mm in the flow direction is prepared. Using a no-load U-shaped expansion / contraction tester (manufactured by Yuasa System Equipment Co., Ltd., DLDMMLH-FS), a bending radius of 3 mm was set, and bending was performed 50,000 times at a speed of 1 time / second. At that time, the sample was fixed at the position of 10 mm at both ends on the long side, and the bent portion was 50 mm × 80 mm. After completion of the bending process, the sample was placed on a flat surface with the bending inner side down, and a visual inspection was performed.
○: Even when the sample is not deformed or deformed, when it is placed horizontally, the maximum height is less than 3 mm.
Δ: The sample is deformed, and when placed horizontally, the maximum height is 3 mm or more and less than 5 mm.
X: The sample has a crease or when the sample is placed horizontally, the maximum height is 5 mm or more.
幅方向50mm×流れ方向100mmの大きさのサンプルを用意する。無負荷U字伸縮試験機(ユアサシステム機器社製、DLDMLH-FS)を用いて、屈曲半径3mmを設定し、1回/秒の速度で、5万回屈曲させた。その際、サンプルは長辺側両端部10mmの位置を固定して、屈曲する部位は50mm×80mmとした。屈曲処理終了後、サンプルの屈曲内側を下にして平面に置き、目視検査を行った。
○ :サンプルの変形がないか又は変形があっても、水平に置いた際、浮き上がり最大高さが3mm未満。
△:サンプルに変形があり、水平に置いた際、浮き上がり最大高さが3mm以上5mm未満。
× :サンプルに折跡があるか、水平に置いた際、浮き上がり最大高さが5mm以上。 (5) Repeated bending resistance A sample having a size of 50 mm in the width direction and 100 mm in the flow direction is prepared. Using a no-load U-shaped expansion / contraction tester (manufactured by Yuasa System Equipment Co., Ltd., DLDMMLH-FS), a bending radius of 3 mm was set, and bending was performed 50,000 times at a speed of 1 time / second. At that time, the sample was fixed at the position of 10 mm at both ends on the long side, and the bent portion was 50 mm × 80 mm. After completion of the bending process, the sample was placed on a flat surface with the bending inner side down, and a visual inspection was performed.
○: Even when the sample is not deformed or deformed, when it is placed horizontally, the maximum height is less than 3 mm.
Δ: The sample is deformed, and when placed horizontally, the maximum height is 3 mm or more and less than 5 mm.
X: The sample has a crease or when the sample is placed horizontally, the maximum height is 5 mm or more.
(6)鉛筆硬度
作成したハードコート付きポリエステルフィルムをJIS K 5600-5-4:1999に準拠し、荷重750g、速度0.5mm/sで測定した。 (6) Pencil hardness The hard coat-coated polyester film prepared in accordance with JIS K 5600-5-4: 1999 was measured at a load of 750 g and a speed of 0.5 mm / s.
作成したハードコート付きポリエステルフィルムをJIS K 5600-5-4:1999に準拠し、荷重750g、速度0.5mm/sで測定した。 (6) Pencil hardness The hard coat-coated polyester film prepared in accordance with JIS K 5600-5-4: 1999 was measured at a load of 750 g and a speed of 0.5 mm / s.
(ハードコート層形成用の塗布液1)
ハードコート材料(JSR社製、オプスター(登録商標)Z7503、濃度75%)100重量部に、レベリング剤(ビックケミージャパン社製、BYK307、濃度100%)0.1重量部を添加し、メチルエチルケトンで希釈して固形分濃度40重量%のハードコート塗布液1を調製した。 (Coating liquid 1 for forming a hard coat layer)
To 100 parts by weight of hard coat material (manufactured by JSR, Opstar (registered trademark) Z7503, concentration 75%), 0.1 part by weight of a leveling agent (BYK307, concentration 100%) is added, and methyl ethyl ketone is added. Diluted to prepare a hardcoat coating solution 1 having a solid concentration of 40% by weight.
ハードコート材料(JSR社製、オプスター(登録商標)Z7503、濃度75%)100重量部に、レベリング剤(ビックケミージャパン社製、BYK307、濃度100%)0.1重量部を添加し、メチルエチルケトンで希釈して固形分濃度40重量%のハードコート塗布液1を調製した。 (
To 100 parts by weight of hard coat material (manufactured by JSR, Opstar (registered trademark) Z7503, concentration 75%), 0.1 part by weight of a leveling agent (BYK307, concentration 100%) is added, and methyl ethyl ketone is added. Diluted to prepare a hard
(ハードコート層形成用の塗布液2)
ウレタンアクリレート系ハードコート剤(荒川化学工業社製、ビームセット(登録商標)577、固形分濃度100%)95重量部、光重合開始剤(BASFジャパン社製、イルガキュア(登録商標)184、固形分濃度100%)5重量部、レベリング剤(ビックケミージャパン社製、BYK307、固形分濃度100%)0.1重量部を混合し、トルエン/MEK=1/1の溶媒で希釈して、濃度40%の塗布液2を調製した。 (Coating liquid 2 for forming a hard coat layer)
Urethane acrylate hard coat agent (Arakawa Chemical Industries, Beam Set (registered trademark) 577, solid content concentration 100%) 95 parts by weight, photopolymerization initiator (BASF Japan, Irgacure (registered trademark) 184, solid content Concentration 100%) 5 parts by weight, leveling agent (BYK307, BYK307, solid content concentration 100%) 0.1 part by weight is mixed, diluted with a solvent of toluene / MEK = 1/1, concentration 40% Coating solution 2 was prepared.
ウレタンアクリレート系ハードコート剤(荒川化学工業社製、ビームセット(登録商標)577、固形分濃度100%)95重量部、光重合開始剤(BASFジャパン社製、イルガキュア(登録商標)184、固形分濃度100%)5重量部、レベリング剤(ビックケミージャパン社製、BYK307、固形分濃度100%)0.1重量部を混合し、トルエン/MEK=1/1の溶媒で希釈して、濃度40%の塗布液2を調製した。 (
Urethane acrylate hard coat agent (Arakawa Chemical Industries, Beam Set (registered trademark) 577, solid content concentration 100%) 95 parts by weight, photopolymerization initiator (BASF Japan, Irgacure (registered trademark) 184, solid content Concentration 100%) 5 parts by weight, leveling agent (BYK307, BYK307, solid content concentration 100%) 0.1 part by weight is mixed, diluted with a solvent of toluene / MEK = 1/1, concentration 40
(ポリエチレンテレフタレートペレットAの調製)
エステル化反応装置として、攪拌装置、分縮器、原料仕込口および生成物取り出し口を有する3段の完全混合槽よりなる連続エステル化反応装置を用い、TPAを2トン/hrとし、EGをTPA1モルに対して2モルとし、三酸化アンチモンを生成PETに対してSb原子が160ppmとなる量とし、これらのスラリーをエステル化反応装置の第1エステル化反応缶に連続供給し、常圧にて平均滞留時間4時間で、255℃で反応させた。次いで、上記第1エステル化反応缶内の反応生成物を連続的に系外に取り出して第2エステル化反応缶に供給し、第2エステル化反応缶内に第1エステル化反応缶から留去されるEGを生成ポリマー(生成PET)に対し8質量%供給し、さらに、生成PETに対してMg原子が65ppmとなる量の酢酸マグネシウムを含むEG溶液と、生成PETに対してP原子が20ppmのとなる量のTMPAを含むEG溶液を添加し、常圧にて平均滞留時間1.5時間で、260℃で反応させた。次いで、上記第2エステル化反応缶内の反応生成物を連続的に系外に取り出して第3エステル化反応缶に供給し、さらに生成PETに対してP原子が20ppmとなる量のTMPAを含むEG溶液を添加し、常圧にて平均滞留時間0.5時間で、260℃で反応させた。上記第3エステル化反応缶内で生成したエステル化反応生成物を3段の連続重縮合反応装置に連続的に供給して重縮合を行い、さらに、ステンレス焼結体の濾材(公称濾過精度5μm粒子90%カット)で濾過し、極限粘度0.62dl/gのポリエチレンテレフタレートペレットAを得た。 (Preparation of polyethylene terephthalate pellet A)
As the esterification reaction apparatus, a continuous esterification reaction apparatus comprising a three-stage complete mixing tank having a stirrer, a partial condenser, a raw material charging port, and a product take-out port is used. TPA is set to 2 ton / hr, and EG is set to TPA1. The amount of antimony trioxide is 2 mol per mol, the amount of Sb atoms is 160 ppm with respect to the produced PET, and these slurries are continuously supplied to the first esterification reactor of the esterification reactor, at normal pressure. The reaction was carried out at 255 ° C. with an average residence time of 4 hours. Next, the reaction product in the first esterification reaction can is continuously taken out of the system, supplied to the second esterification reaction can, and distilled from the first esterification reaction can into the second esterification reaction can. EG solution containing 8% by mass of the produced polymer (produced PET) and further containing EG solution containing magnesium acetate in an amount of 65 ppm of Mg atoms relative to the produced PET, and 20 ppm of P atoms relative to the produced PET An EG solution containing TMPA in an amount of 1 was added and allowed to react at 260 ° C. with an average residence time of 1.5 hours at normal pressure. Next, the reaction product in the second esterification reaction can is continuously taken out of the system and supplied to the third esterification reaction can, and further contains TMPA in an amount of 20 ppm of P atoms with respect to the produced PET. The EG solution was added and reacted at 260 ° C. at normal pressure with an average residence time of 0.5 hours. The esterification reaction product produced in the third esterification reaction can is continuously supplied to a three-stage continuous polycondensation reaction apparatus to carry out polycondensation, and further, a filter medium of a stainless sintered body (nominal filtration accuracy of 5 μm). The particles were filtered with a 90% cut particle) to obtain polyethylene terephthalate pellets A having an intrinsic viscosity of 0.62 dl / g.
エステル化反応装置として、攪拌装置、分縮器、原料仕込口および生成物取り出し口を有する3段の完全混合槽よりなる連続エステル化反応装置を用い、TPAを2トン/hrとし、EGをTPA1モルに対して2モルとし、三酸化アンチモンを生成PETに対してSb原子が160ppmとなる量とし、これらのスラリーをエステル化反応装置の第1エステル化反応缶に連続供給し、常圧にて平均滞留時間4時間で、255℃で反応させた。次いで、上記第1エステル化反応缶内の反応生成物を連続的に系外に取り出して第2エステル化反応缶に供給し、第2エステル化反応缶内に第1エステル化反応缶から留去されるEGを生成ポリマー(生成PET)に対し8質量%供給し、さらに、生成PETに対してMg原子が65ppmとなる量の酢酸マグネシウムを含むEG溶液と、生成PETに対してP原子が20ppmのとなる量のTMPAを含むEG溶液を添加し、常圧にて平均滞留時間1.5時間で、260℃で反応させた。次いで、上記第2エステル化反応缶内の反応生成物を連続的に系外に取り出して第3エステル化反応缶に供給し、さらに生成PETに対してP原子が20ppmとなる量のTMPAを含むEG溶液を添加し、常圧にて平均滞留時間0.5時間で、260℃で反応させた。上記第3エステル化反応缶内で生成したエステル化反応生成物を3段の連続重縮合反応装置に連続的に供給して重縮合を行い、さらに、ステンレス焼結体の濾材(公称濾過精度5μm粒子90%カット)で濾過し、極限粘度0.62dl/gのポリエチレンテレフタレートペレットAを得た。 (Preparation of polyethylene terephthalate pellet A)
As the esterification reaction apparatus, a continuous esterification reaction apparatus comprising a three-stage complete mixing tank having a stirrer, a partial condenser, a raw material charging port, and a product take-out port is used. TPA is set to 2 ton / hr, and EG is set to TPA1. The amount of antimony trioxide is 2 mol per mol, the amount of Sb atoms is 160 ppm with respect to the produced PET, and these slurries are continuously supplied to the first esterification reactor of the esterification reactor, at normal pressure. The reaction was carried out at 255 ° C. with an average residence time of 4 hours. Next, the reaction product in the first esterification reaction can is continuously taken out of the system, supplied to the second esterification reaction can, and distilled from the first esterification reaction can into the second esterification reaction can. EG solution containing 8% by mass of the produced polymer (produced PET) and further containing EG solution containing magnesium acetate in an amount of 65 ppm of Mg atoms relative to the produced PET, and 20 ppm of P atoms relative to the produced PET An EG solution containing TMPA in an amount of 1 was added and allowed to react at 260 ° C. with an average residence time of 1.5 hours at normal pressure. Next, the reaction product in the second esterification reaction can is continuously taken out of the system and supplied to the third esterification reaction can, and further contains TMPA in an amount of 20 ppm of P atoms with respect to the produced PET. The EG solution was added and reacted at 260 ° C. at normal pressure with an average residence time of 0.5 hours. The esterification reaction product produced in the third esterification reaction can is continuously supplied to a three-stage continuous polycondensation reaction apparatus to carry out polycondensation, and further, a filter medium of a stainless sintered body (nominal filtration accuracy of 5 μm). The particles were filtered with a 90% cut particle) to obtain polyethylene terephthalate pellets A having an intrinsic viscosity of 0.62 dl / g.
(ポリエチレンテレフタレートペレットBの調製)
ポリエチレンテレフタレートペレットAを、回転型真空重合装置を用い、0.5mmH
gの減圧下、220℃で時間を変えて固相重合を行い、極限粘度0.72dL/gのポリエチレンテレフタレートペレットBを作成した。 (Preparation of polyethylene terephthalate pellet B)
Polyethylene terephthalate pellet A is 0.5 mmH using a rotary vacuum polymerization apparatus.
Under reduced pressure of g, solid-state polymerization was carried out at 220 ° C. for varying times to prepare polyethylene terephthalate pellets B having an intrinsic viscosity of 0.72 dL / g.
ポリエチレンテレフタレートペレットAを、回転型真空重合装置を用い、0.5mmH
gの減圧下、220℃で時間を変えて固相重合を行い、極限粘度0.72dL/gのポリエチレンテレフタレートペレットBを作成した。 (Preparation of polyethylene terephthalate pellet B)
Polyethylene terephthalate pellet A is 0.5 mmH using a rotary vacuum polymerization apparatus.
Under reduced pressure of g, solid-state polymerization was carried out at 220 ° C. for varying times to prepare polyethylene terephthalate pellets B having an intrinsic viscosity of 0.72 dL / g.
(ポリエチレン-2,6-ナフタレートペレットCの調整)
2,6-ナフタレンジカルボン酸ジメチル100部、エチレングリコール60部をエステル交換触媒として酢酸マンガン四水塩0.03部を使用し、常法に従ってエステル交換反応をさせた後、トリエチルホスホノアセテート0.042部を添加し実質的にエステル交換反応を終了させた。ついで、三酸化アンチモン0.024部を添加し、引き続き高温、高真空下で常法にて重合反応を行い、固有粘度0.60dl/gのポリエチレン-2,6-ナフタレート(PEN)を得た。その後、150~160℃で3時間予備乾燥した後、210℃、13kPa、窒素ガス雰囲気下で固相重合を行い、固有粘度が0.72dl/gのポリエチレン-2,6-ナフタレートペレットCを得た。 (Preparation of polyethylene-2,6-naphthalate pellet C)
Using 0.03 part of manganese acetate tetrahydrate using 100 parts ofdimethyl 2,6-naphthalenedicarboxylate and 60 parts of ethylene glycol as a transesterification catalyst and subjecting to transesterification according to a conventional method, triethylphosphonoacetate was added in an amount of 0. 042 parts were added to substantially complete the transesterification reaction. Subsequently, 0.024 part of antimony trioxide was added, and then a polymerization reaction was performed in a conventional manner under high temperature and high vacuum to obtain polyethylene-2,6-naphthalate (PEN) having an intrinsic viscosity of 0.60 dl / g. . Then, after preliminary drying at 150 to 160 ° C. for 3 hours, solid state polymerization was performed in an atmosphere of nitrogen gas at 210 ° C. and 13 kPa to obtain polyethylene-2,6-naphthalate pellets C having an intrinsic viscosity of 0.72 dl / g. Obtained.
2,6-ナフタレンジカルボン酸ジメチル100部、エチレングリコール60部をエステル交換触媒として酢酸マンガン四水塩0.03部を使用し、常法に従ってエステル交換反応をさせた後、トリエチルホスホノアセテート0.042部を添加し実質的にエステル交換反応を終了させた。ついで、三酸化アンチモン0.024部を添加し、引き続き高温、高真空下で常法にて重合反応を行い、固有粘度0.60dl/gのポリエチレン-2,6-ナフタレート(PEN)を得た。その後、150~160℃で3時間予備乾燥した後、210℃、13kPa、窒素ガス雰囲気下で固相重合を行い、固有粘度が0.72dl/gのポリエチレン-2,6-ナフタレートペレットCを得た。 (Preparation of polyethylene-2,6-naphthalate pellet C)
Using 0.03 part of manganese acetate tetrahydrate using 100 parts of
(実施例1)
上記のポリエチレンテレフタレートマスターペレットBを150℃で8時間減圧乾燥(
3Torr)した後、押出機に、ポリエチレンテレフタレートのペレットBを押出機にそ
れぞれ供給し、285℃で融解した。このポリマーを、ステンレス焼結体の濾材(公称濾過精度10μm粒子95%カット)で濾過し、口金よりシート状にして押し出した後、静電印加キャスト法を用いて表面温度30℃のキャスティングドラムに接触させ冷却固化し、未延伸フィルムを作った。この未延伸フィルムを加熱ロールを用いて75℃に均一加熱し、非接触ヒーターで100℃に加熱して3.4倍のロール延伸(縦延伸)を行った。得られた一軸延伸フィルムをテンターに導き、140℃に加熱して4.0倍に横延伸し、幅固定して240℃で5秒間の熱処理を施し、さらに210℃で幅方向に4%緩和させることにより、厚み50μmポリエチレンテレフタレートフィルムを得た。 Example 1
The polyethylene terephthalate master pellet B is dried under reduced pressure at 150 ° C. for 8 hours (
3 Torr), polyethylene terephthalate pellets B were fed to the extruder and melted at 285 ° C. This polymer is filtered with a filter material of stainless sintered body (nominal filtration accuracy 10 μm particles 95% cut), extruded into a sheet form from the die, and then applied to a casting drum having a surface temperature of 30 ° C. using an electrostatic application casting method. It was brought into contact and cooled and solidified to produce an unstretched film. This unstretched film was uniformly heated to 75 ° C. using a heating roll and heated to 100 ° C. with a non-contact heater to perform 3.4 times roll stretching (longitudinal stretching). The resulting uniaxially stretched film is guided to a tenter, heated to 140 ° C, stretched to 4.0 times, fixed in width, heat treated at 240 ° C for 5 seconds, and further relaxed by 4% in the width direction at 210 ° C. Thus, a polyethylene terephthalate film having a thickness of 50 μm was obtained.
上記のポリエチレンテレフタレートマスターペレットBを150℃で8時間減圧乾燥(
3Torr)した後、押出機に、ポリエチレンテレフタレートのペレットBを押出機にそ
れぞれ供給し、285℃で融解した。このポリマーを、ステンレス焼結体の濾材(公称濾過精度10μm粒子95%カット)で濾過し、口金よりシート状にして押し出した後、静電印加キャスト法を用いて表面温度30℃のキャスティングドラムに接触させ冷却固化し、未延伸フィルムを作った。この未延伸フィルムを加熱ロールを用いて75℃に均一加熱し、非接触ヒーターで100℃に加熱して3.4倍のロール延伸(縦延伸)を行った。得られた一軸延伸フィルムをテンターに導き、140℃に加熱して4.0倍に横延伸し、幅固定して240℃で5秒間の熱処理を施し、さらに210℃で幅方向に4%緩和させることにより、厚み50μmポリエチレンテレフタレートフィルムを得た。 Example 1
The polyethylene terephthalate master pellet B is dried under reduced pressure at 150 ° C. for 8 hours (
3 Torr), polyethylene terephthalate pellets B were fed to the extruder and melted at 285 ° C. This polymer is filtered with a filter material of stainless sintered body (nominal filtration accuracy 10 μm particles 95% cut), extruded into a sheet form from the die, and then applied to a casting drum having a surface temperature of 30 ° C. using an electrostatic application casting method. It was brought into contact and cooled and solidified to produce an unstretched film. This unstretched film was uniformly heated to 75 ° C. using a heating roll and heated to 100 ° C. with a non-contact heater to perform 3.4 times roll stretching (longitudinal stretching). The resulting uniaxially stretched film is guided to a tenter, heated to 140 ° C, stretched to 4.0 times, fixed in width, heat treated at 240 ° C for 5 seconds, and further relaxed by 4% in the width direction at 210 ° C. Thus, a polyethylene terephthalate film having a thickness of 50 μm was obtained.
(実施例2~6)
表1に記載した延伸倍率と熱処理温度に変更したこと以外は上記実施例1と同様にしてポリエステルフィルムを得た。 (Examples 2 to 6)
A polyester film was obtained in the same manner as in Example 1 except that the draw ratio and heat treatment temperature described in Table 1 were changed.
表1に記載した延伸倍率と熱処理温度に変更したこと以外は上記実施例1と同様にしてポリエステルフィルムを得た。 (Examples 2 to 6)
A polyester film was obtained in the same manner as in Example 1 except that the draw ratio and heat treatment temperature described in Table 1 were changed.
(実施例7、8)
表1に記載した厚みに変更したこと以外は、上記実施例1と同様にしてポリエステルフィルムを得た。 (Examples 7 and 8)
A polyester film was obtained in the same manner as in Example 1 except that the thickness was changed to the thickness described in Table 1.
表1に記載した厚みに変更したこと以外は、上記実施例1と同様にしてポリエステルフィルムを得た。 (Examples 7 and 8)
A polyester film was obtained in the same manner as in Example 1 except that the thickness was changed to the thickness described in Table 1.
(実施例9)
表1のようにポリエチレン-2,6-ナフタレートペレットCを用い、温度調整を実施したこと以外は上記実施例1と同様にしてポリエステルフィルムを得た。 Example 9
A polyester film was obtained in the same manner as in Example 1 except that polyethylene-2,6-naphthalate pellet C was used and the temperature was adjusted as shown in Table 1.
表1のようにポリエチレン-2,6-ナフタレートペレットCを用い、温度調整を実施したこと以外は上記実施例1と同様にしてポリエステルフィルムを得た。 Example 9
A polyester film was obtained in the same manner as in Example 1 except that polyethylene-2,6-naphthalate pellet C was used and the temperature was adjusted as shown in Table 1.
(実施例10)
ポリエチレンテレフタレートマスターペレットAに変更したこと以外は実施例1と同様
にしてポリエステルフィルムを得た。 (Example 10)
A polyester film was obtained in the same manner as in Example 1 except that the polyethylene terephthalate master pellet A was changed.
ポリエチレンテレフタレートマスターペレットAに変更したこと以外は実施例1と同様
にしてポリエステルフィルムを得た。 (Example 10)
A polyester film was obtained in the same manner as in Example 1 except that the polyethylene terephthalate master pellet A was changed.
(比較例1)
縦延伸倍率を3.5倍に変更した外は実施例1と同様にして、ポリエステルフィルムを得た。 (Comparative Example 1)
A polyester film was obtained in the same manner as in Example 1 except that the longitudinal draw ratio was changed to 3.5.
縦延伸倍率を3.5倍に変更した外は実施例1と同様にして、ポリエステルフィルムを得た。 (Comparative Example 1)
A polyester film was obtained in the same manner as in Example 1 except that the longitudinal draw ratio was changed to 3.5.
(比較例2、3)
表1の熱固定温度に変更したこと以外は実施例1と同様にしてポリエステルフィルムを得た。 (Comparative Examples 2 and 3)
A polyester film was obtained in the same manner as in Example 1 except that the heat setting temperature was changed to that shown in Table 1.
表1の熱固定温度に変更したこと以外は実施例1と同様にしてポリエステルフィルムを得た。 (Comparative Examples 2 and 3)
A polyester film was obtained in the same manner as in Example 1 except that the heat setting temperature was changed to that shown in Table 1.
上記の実施例1~10及び比較例1~3で得たポリエステルフィルムの一方の面にマイヤーバーを用いて、ハードコート層形成用塗布液1を乾燥後の膜厚が5.0μmになるように塗布し、80℃で1分間乾燥させた後、紫外線を照射し(高圧水銀ランプ、積算光量200mJ/cm2)、ハードコートフィルムを得た。実施例11においては、実施例1で得たポリエステルフィルムについて、乾燥後の膜厚が10.0μmになるように塗布した他は実施例1と同様にしてハードコートフィルムを得た。実施例12においては、実施例1で得たポリエステルフィルムについて、ハードコート層形成用塗布液2を塗布した他は実施例1と同様にしてハードコートフィルムを得た。
Using a Meyer bar on one side of the polyester films obtained in Examples 1 to 10 and Comparative Examples 1 to 3 above, the film thickness after drying the hard coat layer forming coating solution 1 is 5.0 μm. And dried at 80 ° C. for 1 minute, and then irradiated with ultraviolet rays (high pressure mercury lamp, integrated light quantity 200 mJ / cm 2 ) to obtain a hard coat film. In Example 11, a hard coat film was obtained in the same manner as in Example 1 except that the polyester film obtained in Example 1 was applied so that the film thickness after drying was 10.0 μm. In Example 12, a hard coat film was obtained in the same manner as in Example 1, except that the hard coat layer forming coating solution 2 was applied to the polyester film obtained in Example 1.
それらのハードコートフィルムを、25μm厚の粘着層を介して有機ELモジュールに貼合し、図1における屈曲半径の相当する半径が3mmの全体の中央部で二つ折りにできるスマートフォンタイプの折りたたみ型ディスプレイを作成した。ハードコートフィルムは折りたたみ部分を介して連続した1枚のディスプレイの表面に配され、ハードコート層をそのディスプレイの表面に位置するように配されている。各実施例のハードコートフィルムを用いたものは、中央部で二つ折りに折りたたんで携帯できるスマートフォンとして動作及び視認性を満足するものであった。一方、各比較例のハードコートフィルムを使用した折りたたみ型ディスプレイは、使用頻度が増えるに従って、ディスプレイの折りたたみ部で画像の歪を生じてきたように感じ、あまり好ましいものではなかった。
A smartphone-type foldable display in which these hard coat films are bonded to an organic EL module via an adhesive layer with a thickness of 25 μm and can be folded in half at the center of the entire 3 mm radius corresponding to the bending radius in FIG. It was created. The hard coat film is disposed on the surface of one continuous display through the folding portion, and the hard coat layer is disposed on the surface of the display. What used the hard coat film of each Example satisfy | filled operation | movement and visibility as a smart phone which can be folded and folded in the center part and carried. On the other hand, the foldable display using the hard coat film of each comparative example felt that image distortion occurred at the folding portion of the display as the frequency of use increased, and was not very preferable.
本発明の折りたたみ型ディスプレイの表面保護フィルム用ポリエステルフィルムやハードコートフィルムを用いた折りたたみ型ディスプレイによれば、量産性を維持しながら、折りたたみ型ディスプレイの表面に位置しているポリエステルフィルムやハードコートフィルムが繰り返し折りたたまれた後の変形を起こさないため、ディスプレイの折りたたみ部分での画像の乱れを生じることがない。本発明のポリエステルフィルムやハードコートフルムを表面保護フィルムとして使用した折りたたみ型ディスプレイを搭載した携帯端末機器は、美しい画像を提供し、機能性に富み、携帯性等の利便性に優れたものである。
According to the foldable display using the polyester film or the hard coat film for the surface protective film of the foldable display of the present invention, the polyester film or the hard coat film positioned on the surface of the foldable display while maintaining mass productivity. Since the image is not deformed after being repeatedly folded, the image is not disturbed at the folded portion of the display. A portable terminal device equipped with a foldable display using the polyester film or hard coat film of the present invention as a surface protective film provides a beautiful image, is rich in functionality, and has excellent convenience such as portability. .
1 : 折りたたみ型ディスプレイ
11: 屈曲半径
2 : 折りたたみ型ディスプレイの表面保護フィルム用ポリエステルフィルム
21: 折りたたみ部
22: 屈曲方向(折りたたみ部と直交する方向)
O : 原点
A : フックの法則が成り立つOから最も遠い点
P : QからOA線に平行線を引き、応力ひずみ曲線と交わった点
Q : 応力0MPa、伸度(ひずみ)0.2%の点
H : Pから縦軸に平行線を引き、横軸と交わった点(0.2%耐力点ひずみ(%))
σ0.2 : Pの応力値(MPa) 1: Folding display 11: Bending radius 2: Polyester film for surface protection film of folding display 21: Folding part 22: Bending direction (direction orthogonal to the folding part)
O: Origin A: Point farthest from O where Hook's law is established P: Point parallel to OA line drawn from Q and intersected with stress-strain curve Q: Point of stress 0MPa, elongation (strain) 0.2% H: A point where a parallel line is drawn from P to the vertical axis and intersects the horizontal axis (0.2% proof stress strain (%))
σ 0.2 : Stress value of P (MPa)
11: 屈曲半径
2 : 折りたたみ型ディスプレイの表面保護フィルム用ポリエステルフィルム
21: 折りたたみ部
22: 屈曲方向(折りたたみ部と直交する方向)
O : 原点
A : フックの法則が成り立つOから最も遠い点
P : QからOA線に平行線を引き、応力ひずみ曲線と交わった点
Q : 応力0MPa、伸度(ひずみ)0.2%の点
H : Pから縦軸に平行線を引き、横軸と交わった点(0.2%耐力点ひずみ(%))
σ0.2 : Pの応力値(MPa) 1: Folding display 11: Bending radius 2: Polyester film for surface protection film of folding display 21: Folding part 22: Bending direction (direction orthogonal to the folding part)
O: Origin A: Point farthest from O where Hook's law is established P: Point parallel to OA line drawn from Q and intersected with stress-strain curve Q: Point of stress 0MPa, elongation (strain) 0.2% H: A point where a parallel line is drawn from P to the vertical axis and intersects the horizontal axis (0.2% proof stress strain (%))
σ 0.2 : Stress value of P (MPa)
Claims (8)
- 厚みが10~75μmのポリエステルフィルムであって、長手方向及び幅方向の少なくともいずれか一方向の0.2%耐力点ひずみが2.6~5.0%であることを特徴とする折りたたみ型ディスプレイの表面保護フィルム用ポリエステルフィルム。 A foldable display comprising a polyester film having a thickness of 10 to 75 μm and a 0.2% yield strength strain in at least one of a longitudinal direction and a width direction of 2.6 to 5.0% Polyester film for surface protection film.
- 屈曲方向の0.2%耐力点ひずみが2.6~5.0%であることを特徴とする請求項1に記載の折りたたみ型ディスプレイの表面保護フィルム用ポリエステルフィルム。
(ここで、屈曲方向とは、ポリエステルフィルムを折りたたむ際の折りたたみ部と直交する方向をいう。) 2. The polyester film for a surface protective film for a foldable display according to claim 1, wherein the 0.2% yield strength strain in the bending direction is 2.6 to 5.0%.
(Here, the bending direction means a direction orthogonal to the folding portion when the polyester film is folded.) - フィルムの極限粘度が0.60~1.0dl/gであることを特徴とする請求項1又は2に記載の折りたたみ型ディスプレイの表面保護フィルム用ポリエステルフィルム。 The polyester film for a surface protective film for a foldable display according to claim 1 or 2, wherein the intrinsic viscosity of the film is 0.60 to 1.0 dl / g.
- 請求項1~3のずれかに記載の折りたたみ型ディスプレイの表面保護フィルム用ポリエステルフィルムの少なくとも片面に、厚みが1~50μmのハードコート層を有することを特徴とする折りたたみ型ディスプレイの表面保護フィルム用ハードコートフィルム。 4. A surface protection film for a foldable display, comprising a hard coat layer having a thickness of 1 to 50 μm on at least one side of the polyester film for a surface protection film of a foldable display according to claim 1. Hard coat film.
- JIS K5600-5-4:1999に準拠して750g荷重で測定したハードコート層の鉛筆硬度がH以
上であることを特徴とする請求項4に記載の折りたたみ型ディスプレイの表面保護フィルム用ハードコートフィルム。 The hard coat film for a surface protective film of a foldable display according to claim 4, wherein the pencil hardness of the hard coat layer measured at 750 g load in accordance with JIS K5600-5-4: 1999 is H or more. . - 請求項4又は5に記載の折りたたみ型ディスプレイの表面保護フィルム用ハードコートフィルムが、ハードコート層を表面に位置させるように表面保護フィルムとして配置された折りたたみ型ディスプレイであって、折りたたんだ際の屈曲半径が5mm以下であることを特徴とする折りたたみ型ディスプレイ。 6. The foldable display according to claim 4 or 5, wherein the hard coat film for a surface protective film of the foldable display is a foldable display arranged as a surface protective film so that the hard coat layer is located on the surface, and is bent when folded. A folding display having a radius of 5 mm or less.
- 折りたたみ型ディスプレイの折りたたみ部分を介して連続した単一のハードコートフィルムが配されていることを特徴とする請求項6に記載の折りたたみ型ディスプレイ。 The foldable display according to claim 6, wherein a continuous single hard coat film is arranged through a foldable portion of the foldable display.
- 請求項6又は7に記載の折りたたみ型ディスプレイを有する携帯端末機器。 A portable terminal device having the foldable display according to claim 6 or 7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018517640A JP7247584B2 (en) | 2017-03-02 | 2018-02-14 | Polyester film for surface protection film of foldable display and its application |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017039325 | 2017-03-02 | ||
JP2017-039325 | 2017-03-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018159285A1 true WO2018159285A1 (en) | 2018-09-07 |
Family
ID=63370774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/004956 WO2018159285A1 (en) | 2017-03-02 | 2018-02-14 | Polyester film as surface protective film for foldable display and application thereof |
Country Status (3)
Country | Link |
---|---|
JP (4) | JP7247584B2 (en) |
TW (1) | TWI782952B (en) |
WO (1) | WO2018159285A1 (en) |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019082834A1 (en) * | 2017-10-24 | 2019-05-02 | 東洋紡株式会社 | Polyester film to be used as surface protection film of flexible display |
WO2019216172A1 (en) * | 2018-05-07 | 2019-11-14 | 東洋紡株式会社 | Folding-type display and portable terminal device |
JP2020111640A (en) * | 2019-01-09 | 2020-07-27 | 東洋紡株式会社 | Polyester film and applications thereof |
WO2020162120A1 (en) * | 2019-02-08 | 2020-08-13 | 東洋紡株式会社 | Foldable display and portable terminal device |
WO2020162119A1 (en) * | 2019-02-08 | 2020-08-13 | 東洋紡株式会社 | Polyester film and use thereof |
WO2020179643A1 (en) * | 2019-03-01 | 2020-09-10 | 大日本印刷株式会社 | Resin layer, optical film, and image display device |
CN111909403A (en) * | 2019-05-08 | 2020-11-10 | Skc株式会社 | Polyester film and flexible display device including the same |
JP2020183528A (en) * | 2019-05-08 | 2020-11-12 | エスケイシー・カンパニー・リミテッドSkc Co., Ltd. | Polyester film and flexible display device comprising the same |
WO2020241278A1 (en) * | 2019-05-28 | 2020-12-03 | 東洋紡株式会社 | Multilayer film and use of same |
JPWO2020241281A1 (en) * | 2019-05-28 | 2020-12-03 | ||
WO2020241313A1 (en) * | 2019-05-30 | 2020-12-03 | 東洋紡株式会社 | Foldable display |
WO2020241279A1 (en) * | 2019-05-28 | 2020-12-03 | 東洋紡株式会社 | Polyester film, laminated film, and use thereof |
JPWO2021010158A1 (en) * | 2019-07-12 | 2021-01-21 | ||
WO2021010159A1 (en) * | 2019-07-12 | 2021-01-21 | 東洋紡株式会社 | Hard coating film for foldable display, and application of said film |
JP2021009349A (en) * | 2019-02-08 | 2021-01-28 | 東洋紡株式会社 | Polyester film and its application |
CN112714931A (en) * | 2018-09-21 | 2021-04-27 | 三菱化学株式会社 | Folding display |
CN112724432A (en) * | 2019-10-28 | 2021-04-30 | Skc株式会社 | Polyester film and flexible display device including the same |
KR20210058787A (en) * | 2018-11-08 | 2021-05-24 | 에스케이씨 주식회사 | Polyester protective film for flexible display device |
JP2021521039A (en) * | 2018-10-31 | 2021-08-26 | エルジー・ケム・リミテッド | Hard coating laminate |
WO2021215349A1 (en) * | 2020-04-22 | 2021-10-28 | 東洋紡株式会社 | Polyester film and use thereof |
WO2022102736A1 (en) * | 2020-11-16 | 2022-05-19 | 株式会社ダイセル | Laminated film and flexible device |
CN114591605A (en) * | 2020-12-07 | 2022-06-07 | Skc株式会社 | Polyester film and method for producing same |
WO2022220177A1 (en) * | 2021-04-15 | 2022-10-20 | 住友化学株式会社 | Polarizing plate, laminate, and display device |
US11776710B2 (en) | 2018-03-09 | 2023-10-03 | Dai Nippon Printing Co., Ltd. | Electroconductive film, sensor, touch panel, and image display device |
US11796719B2 (en) * | 2018-10-11 | 2023-10-24 | Lg Chem, Ltd. | Protection film for foldable display and foldable display device comprising same |
KR20230161475A (en) | 2021-03-24 | 2023-11-27 | 도요보 가부시키가이샤 | Polyester film and image display device using the same |
US11926720B2 (en) | 2019-05-28 | 2024-03-12 | Toyobo Co., Ltd. | Polyester film and application therefor |
WO2024058059A1 (en) * | 2022-09-16 | 2024-03-21 | 東洋紡株式会社 | Polyester film and use thereof |
WO2024058058A1 (en) * | 2022-09-16 | 2024-03-21 | 東洋紡株式会社 | Polyester film and use thereof |
JP7552072B2 (en) | 2019-05-28 | 2024-09-18 | 東洋紡株式会社 | Laminated film and its applications |
JP7574546B2 (en) | 2019-05-28 | 2024-10-29 | 東洋紡株式会社 | Polyester film and its uses |
JP7574545B2 (en) | 2019-05-13 | 2024-10-29 | 東洋紡株式会社 | Hard coat film and its applications |
US12219696B2 (en) | 2020-02-14 | 2025-02-04 | Samsung Display Co., Ltd. | Electronic device |
JP7671804B2 (en) | 2022-06-17 | 2025-05-02 | エスケーマイクロワークス 株式会社 | Polyester film and foldable display device including same |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7292051B2 (en) * | 2019-02-22 | 2023-06-16 | 住友化学株式会社 | FLEXIBLE LAMINATED BODY AND IMAGE DISPLAY DEVICE INCLUDING THE SAME |
CN115556967B (en) * | 2022-10-27 | 2024-05-28 | 浙江大学 | A flexible protective structure folding method considering material thickness |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012156436A (en) * | 2011-01-28 | 2012-08-16 | Toray Ind Inc | Transparent conductive substrate |
JP2016002764A (en) * | 2014-06-19 | 2016-01-12 | 日本合成化学工業株式会社 | Laminate, use thereof, and production method thereof |
JP2016126130A (en) * | 2014-12-26 | 2016-07-11 | 日東電工株式会社 | Laminate for organic el display device and organic el display device |
JP2017013492A (en) * | 2015-06-26 | 2017-01-19 | 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. | Laminate film and image display device comprising the same |
US20170032737A1 (en) * | 2015-07-31 | 2017-02-02 | Lg Display Co., Ltd. | Flexible display device and method for fabricating the same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5536697B2 (en) * | 2011-03-15 | 2014-07-02 | 三菱樹脂株式会社 | Laminated polyester film |
JP5883352B2 (en) * | 2012-06-12 | 2016-03-15 | 富士フイルム株式会社 | Laminated film and touch panel |
JP6226762B2 (en) * | 2014-01-31 | 2017-11-08 | 富士フイルム株式会社 | OPTICAL POLYESTER FILM, POLARIZING PLATE, IMAGE DISPLAY DEVICE, OPTICAL POLYESTER FILM MANUFACTURING METHOD, AND COMPOSITION FOR Easily Adhesive Layer |
-
2018
- 2018-02-14 WO PCT/JP2018/004956 patent/WO2018159285A1/en active Application Filing
- 2018-02-14 TW TW107105480A patent/TWI782952B/en active
- 2018-02-14 JP JP2018517640A patent/JP7247584B2/en active Active
-
2022
- 2022-12-27 JP JP2022210687A patent/JP7327629B2/en active Active
-
2023
- 2023-07-27 JP JP2023122165A patent/JP7568005B2/en active Active
-
2024
- 2024-09-10 JP JP2024156930A patent/JP2024161299A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012156436A (en) * | 2011-01-28 | 2012-08-16 | Toray Ind Inc | Transparent conductive substrate |
JP2016002764A (en) * | 2014-06-19 | 2016-01-12 | 日本合成化学工業株式会社 | Laminate, use thereof, and production method thereof |
JP2016126130A (en) * | 2014-12-26 | 2016-07-11 | 日東電工株式会社 | Laminate for organic el display device and organic el display device |
JP2017013492A (en) * | 2015-06-26 | 2017-01-19 | 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. | Laminate film and image display device comprising the same |
US20170032737A1 (en) * | 2015-07-31 | 2017-02-02 | Lg Display Co., Ltd. | Flexible display device and method for fabricating the same |
Cited By (78)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019082834A1 (en) * | 2017-10-24 | 2019-05-02 | 東洋紡株式会社 | Polyester film to be used as surface protection film of flexible display |
US11776710B2 (en) | 2018-03-09 | 2023-10-03 | Dai Nippon Printing Co., Ltd. | Electroconductive film, sensor, touch panel, and image display device |
WO2019216172A1 (en) * | 2018-05-07 | 2019-11-14 | 東洋紡株式会社 | Folding-type display and portable terminal device |
US12066864B2 (en) | 2018-05-07 | 2024-08-20 | Toyobo Co., Ltd. | Folding-type display and portable terminal device |
CN112714931A (en) * | 2018-09-21 | 2021-04-27 | 三菱化学株式会社 | Folding display |
US11796719B2 (en) * | 2018-10-11 | 2023-10-24 | Lg Chem, Ltd. | Protection film for foldable display and foldable display device comprising same |
JP2021521039A (en) * | 2018-10-31 | 2021-08-26 | エルジー・ケム・リミテッド | Hard coating laminate |
US12151456B2 (en) | 2018-10-31 | 2024-11-26 | Lg Chem, Ltd. | Hard coating laminate |
JP7060202B2 (en) | 2018-10-31 | 2022-04-26 | エルジー・ケム・リミテッド | Hard coating laminate |
KR20210058787A (en) * | 2018-11-08 | 2021-05-24 | 에스케이씨 주식회사 | Polyester protective film for flexible display device |
KR102363956B1 (en) * | 2018-11-08 | 2022-02-17 | 에스케이씨 주식회사 | Polyester protective film for flexible display device |
JP2020111640A (en) * | 2019-01-09 | 2020-07-27 | 東洋紡株式会社 | Polyester film and applications thereof |
JP2023061931A (en) * | 2019-02-08 | 2023-05-02 | 東洋紡株式会社 | Polyester film and application of the same |
JP2021009349A (en) * | 2019-02-08 | 2021-01-28 | 東洋紡株式会社 | Polyester film and its application |
CN113396179A (en) * | 2019-02-08 | 2021-09-14 | 东洋纺株式会社 | Polyester film and use thereof |
US11997916B2 (en) | 2019-02-08 | 2024-05-28 | Toyobo Co., Ltd. | Polyester film and use thereof |
WO2020162119A1 (en) * | 2019-02-08 | 2020-08-13 | 東洋紡株式会社 | Polyester film and use thereof |
US11934226B2 (en) | 2019-02-08 | 2024-03-19 | Toyobo Co., Ltd. | Foldable display and portable terminal device |
WO2020162120A1 (en) * | 2019-02-08 | 2020-08-13 | 東洋紡株式会社 | Foldable display and portable terminal device |
JP7484882B2 (en) | 2019-03-01 | 2024-05-16 | 大日本印刷株式会社 | Resin layer, optical film and image display device |
JP7619504B2 (en) | 2019-03-01 | 2025-01-22 | 大日本印刷株式会社 | Resin layer, optical film and image display device |
WO2020179643A1 (en) * | 2019-03-01 | 2020-09-10 | 大日本印刷株式会社 | Resin layer, optical film, and image display device |
CN111909403B (en) * | 2019-05-08 | 2024-04-09 | 爱思开迈克沃有限公司 | Polyester film and flexible display device containing the same |
US11745470B2 (en) | 2019-05-08 | 2023-09-05 | Sk Microworks Co., Ltd. | Polyester film and flexible display device comprising the same |
KR20200129372A (en) * | 2019-05-08 | 2020-11-18 | 에스케이씨 주식회사 | Polyester film and flexible display apparatus comprising same |
JP2020183528A (en) * | 2019-05-08 | 2020-11-12 | エスケイシー・カンパニー・リミテッドSkc Co., Ltd. | Polyester film and flexible display device comprising the same |
CN111909403A (en) * | 2019-05-08 | 2020-11-10 | Skc株式会社 | Polyester film and flexible display device including the same |
KR102308471B1 (en) * | 2019-05-08 | 2021-10-05 | 에스케이씨 주식회사 | Polyester film and flexible display apparatus comprising same |
JP7574545B2 (en) | 2019-05-13 | 2024-10-29 | 東洋紡株式会社 | Hard coat film and its applications |
JP7435448B2 (en) | 2019-05-28 | 2024-02-21 | 東洋紡株式会社 | Laminated film and its uses |
JP7574546B2 (en) | 2019-05-28 | 2024-10-29 | 東洋紡株式会社 | Polyester film and its uses |
CN113874212A (en) * | 2019-05-28 | 2021-12-31 | 东洋纺株式会社 | Laminated films and their uses |
CN113924331A (en) * | 2019-05-28 | 2022-01-11 | 东洋纺株式会社 | Polyester films, laminated films and their uses |
US11926720B2 (en) | 2019-05-28 | 2024-03-12 | Toyobo Co., Ltd. | Polyester film and application therefor |
JP7435449B2 (en) | 2019-05-28 | 2024-02-21 | 東洋紡株式会社 | Transparent conductive polyester film and its uses |
WO2020241278A1 (en) * | 2019-05-28 | 2020-12-03 | 東洋紡株式会社 | Multilayer film and use of same |
JPWO2020241281A1 (en) * | 2019-05-28 | 2020-12-03 | ||
US11899167B2 (en) | 2019-05-28 | 2024-02-13 | Toyobo Co., Ltd. | Polyester film, laminated film, and use thereof |
EP3978244A4 (en) * | 2019-05-28 | 2023-06-07 | Toyobo Co., Ltd. | Multilayer film and use of same |
JP7552072B2 (en) | 2019-05-28 | 2024-09-18 | 東洋紡株式会社 | Laminated film and its applications |
WO2020241279A1 (en) * | 2019-05-28 | 2020-12-03 | 東洋紡株式会社 | Polyester film, laminated film, and use thereof |
WO2020241281A1 (en) * | 2019-05-28 | 2020-12-03 | 東洋紡株式会社 | Transparent conductive polyester film and use of same |
CN113874211A (en) * | 2019-05-28 | 2021-12-31 | 东洋纺株式会社 | Transparent conductive polyester film and its use |
US11939499B2 (en) | 2019-05-28 | 2024-03-26 | Toyobo Co., Ltd. | Multilayer film and use of same |
JPWO2020241278A1 (en) * | 2019-05-28 | 2020-12-03 | ||
CN113874212B (en) * | 2019-05-28 | 2023-10-24 | 东洋纺株式会社 | Laminated film and use thereof |
CN113874211B (en) * | 2019-05-28 | 2024-05-10 | 东洋纺株式会社 | Transparent conductive polyester film and use thereof |
WO2020241313A1 (en) * | 2019-05-30 | 2020-12-03 | 東洋紡株式会社 | Foldable display |
JPWO2020241313A1 (en) * | 2019-05-30 | 2021-09-13 | 東洋紡株式会社 | Folding display |
US12298547B2 (en) | 2019-05-30 | 2025-05-13 | Toyobo Co., Ltd. | Foldable display |
JPWO2021010158A1 (en) * | 2019-07-12 | 2021-01-21 | ||
WO2021010158A1 (en) * | 2019-07-12 | 2021-01-21 | 東洋紡株式会社 | Hard coat film for foldable display and use thereof |
WO2021010159A1 (en) * | 2019-07-12 | 2021-01-21 | 東洋紡株式会社 | Hard coating film for foldable display, and application of said film |
JPWO2021010159A1 (en) * | 2019-07-12 | 2021-01-21 | ||
JP2021066881A (en) * | 2019-10-28 | 2021-04-30 | エスケイシー・カンパニー・リミテッドSkc Co., Ltd. | Polyester film and flexible display apparatus comprising the same |
CN112724432A (en) * | 2019-10-28 | 2021-04-30 | Skc株式会社 | Polyester film and flexible display device including the same |
JP7369112B2 (en) | 2019-10-28 | 2023-10-25 | エスケーマイクロワークス 株式会社 | Polyester film and flexible display device containing the same |
US11551584B2 (en) | 2019-10-28 | 2023-01-10 | Skc Co., Ltd. | Polyester film and flexible display apparatus comprising same |
US12219696B2 (en) | 2020-02-14 | 2025-02-04 | Samsung Display Co., Ltd. | Electronic device |
CN115398513A (en) * | 2020-04-22 | 2022-11-25 | 东洋纺株式会社 | Polyester film and its uses |
JPWO2021215349A1 (en) * | 2020-04-22 | 2021-10-28 | ||
JP7662070B2 (en) | 2020-04-22 | 2025-04-15 | 東洋紡株式会社 | Polyester film and its uses |
WO2021215349A1 (en) * | 2020-04-22 | 2021-10-28 | 東洋紡株式会社 | Polyester film and use thereof |
JP7447994B2 (en) | 2020-04-22 | 2024-03-12 | 東洋紡株式会社 | Polyester film and its uses |
JP2022081716A (en) * | 2020-11-16 | 2022-06-01 | 株式会社ダイセル | Laminate film and foldable device |
WO2022102736A1 (en) * | 2020-11-16 | 2022-05-19 | 株式会社ダイセル | Laminated film and flexible device |
JP7074825B1 (en) | 2020-11-16 | 2022-05-24 | 株式会社ダイセル | Laminated film and foldable device |
CN114591605B (en) * | 2020-12-07 | 2023-08-08 | 爱思开迈克沃有限公司 | Polyester film and method for producing same |
JP2022090636A (en) * | 2020-12-07 | 2022-06-17 | エスケイシー・カンパニー・リミテッド | Polyester based film and method for manufacturing the same |
US20220176605A1 (en) * | 2020-12-07 | 2022-06-09 | Skc Co., Ltd. | Polyester film and preperation method thereof |
CN114591605A (en) * | 2020-12-07 | 2022-06-07 | Skc株式会社 | Polyester film and method for producing same |
JP7212750B2 (en) | 2020-12-07 | 2023-01-25 | エスケイシー・カンパニー・リミテッド | Polyester film and its manufacturing method |
US11642825B2 (en) | 2020-12-07 | 2023-05-09 | Skc Co., Ltd. | Polyester film and preperation method thereof |
KR20230161475A (en) | 2021-03-24 | 2023-11-27 | 도요보 가부시키가이샤 | Polyester film and image display device using the same |
WO2022220177A1 (en) * | 2021-04-15 | 2022-10-20 | 住友化学株式会社 | Polarizing plate, laminate, and display device |
JP7671804B2 (en) | 2022-06-17 | 2025-05-02 | エスケーマイクロワークス 株式会社 | Polyester film and foldable display device including same |
WO2024058058A1 (en) * | 2022-09-16 | 2024-03-21 | 東洋紡株式会社 | Polyester film and use thereof |
WO2024058059A1 (en) * | 2022-09-16 | 2024-03-21 | 東洋紡株式会社 | Polyester film and use thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2023153164A (en) | 2023-10-17 |
TW201842006A (en) | 2018-12-01 |
JP2024161299A (en) | 2024-11-15 |
JP2023033345A (en) | 2023-03-10 |
JP7247584B2 (en) | 2023-03-29 |
TWI782952B (en) | 2022-11-11 |
JP7327629B2 (en) | 2023-08-16 |
JP7568005B2 (en) | 2024-10-16 |
JPWO2018159285A1 (en) | 2019-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7568005B2 (en) | Polyester film for surface protection of folding displays and its applications | |
JP2018072663A (en) | Folding display and mobile terminal device | |
JP7380758B2 (en) | Polyester film and its uses | |
JP7670184B2 (en) | Foldable displays and mobile terminal devices | |
WO2019202992A1 (en) | Polyester film for surface protection film of foldable display and use thereof | |
JP7662070B2 (en) | Polyester film and its uses | |
WO2020241278A1 (en) | Multilayer film and use of same | |
WO2021182191A1 (en) | Polyester film and use thereof | |
JP2020196255A (en) | Polyester film and use of the same | |
JP2025039796A (en) | Surface protection film for foldable displays | |
JP2020111640A (en) | Polyester film and applications thereof | |
WO2024058059A1 (en) | Polyester film and use thereof | |
JP7574545B2 (en) | Hard coat film and its applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018517640 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18760326 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18760326 Country of ref document: EP Kind code of ref document: A1 |