WO2018158910A1 - Diagnostic device and diagnostic method - Google Patents
Diagnostic device and diagnostic method Download PDFInfo
- Publication number
- WO2018158910A1 WO2018158910A1 PCT/JP2017/008303 JP2017008303W WO2018158910A1 WO 2018158910 A1 WO2018158910 A1 WO 2018158910A1 JP 2017008303 W JP2017008303 W JP 2017008303W WO 2018158910 A1 WO2018158910 A1 WO 2018158910A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotating machine
- diagnostic
- current
- lissajous
- machine system
- Prior art date
Links
- 238000002405 diagnostic procedure Methods 0.000 title claims description 16
- 238000009826 distribution Methods 0.000 claims abstract description 70
- 238000003745 diagnosis Methods 0.000 claims abstract description 37
- 238000005259 measurement Methods 0.000 claims abstract description 31
- 230000002093 peripheral effect Effects 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 26
- 230000008859 change Effects 0.000 claims description 24
- 238000006243 chemical reaction Methods 0.000 claims description 14
- 238000010586 diagram Methods 0.000 claims description 13
- 230000005856 abnormality Effects 0.000 claims description 10
- 238000011156 evaluation Methods 0.000 claims description 5
- 230000006866 deterioration Effects 0.000 description 35
- 238000005070 sampling Methods 0.000 description 20
- 238000001228 spectrum Methods 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000010801 machine learning Methods 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000006854 communication Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000012631 diagnostic technique Methods 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000003064 k means clustering Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M99/00—Subject matter not provided for in other groups of this subclass
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/34—Testing dynamo-electric machines
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/20—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
- H02K11/27—Devices for sensing current, or actuated thereby
Definitions
- the present invention relates to a diagnostic apparatus and a diagnostic method.
- the rotating machine system In order to prevent sudden failure of the rotating machine system (rotating machine and its associated devices (cables, power converters)), the rotating machine system is appropriately stopped and diagnosed offline, so that the deterioration condition can be grasped and It can be prevented to some extent.
- Some types of deterioration become apparent only when voltage is applied. Therefore, there is a need for diagnosing the state of the rotating machine based on the information on the current of the rotating machine system.
- Non-patent document 1 is known as a conventional technique related to diagnosis based on current information of a rotating machine system.
- a method called Motor Current Signature Analysis (MCSA) is used to determine damage to rotor bars, rotor eccentricity, stator core damage, winding shorts, bearing deterioration, etc.
- the diagnosis can be made by detecting a specific frequency spectrum.
- Patent Document 1 especially in bearing diagnosis, a method of acquiring vibration sensor data at two locations and judging an abnormality from a change in the trajectory inclination or radius of a Lissajous figure drawn with the instantaneous value of each sensor's data as an axis. Is disclosed.
- Non-Patent Document 1 and Patent Document 1 have the following problems.
- it is necessary to detect a specific frequency spectrum.
- To detect a specific frequency spectrum with high accuracy it is expensive for diagnosis corresponding to long-time measurement at a high sampling rate.
- a new data logger is necessary, and the increase in diagnostic costs has been a problem.
- the specific frequency spectrum may appear unintentionally, and there has been a problem of false alarms.
- the fundamental frequency changes and a spectrum appears at a frequency different from the expected frequency, causing a problem of misreporting.
- Patent Document 1 is a diagnosis based on vibration sensor information, and it is necessary to attach a vibration sensor to a position sensitive to a motor failure, and there is a problem that an installation place is limited. .
- a diagnostic sensor for diagnosis and an expensive data logger having a sampling rate sufficient to obtain a trajectory of a Lissajous figure are required, and an increase in diagnostic cost is a problem.
- the object of the present invention is to provide a diagnostic apparatus that performs highly accurate diagnosis even when data measurement is performed in a short time, with a low sampling rate and with a general-purpose device.
- the diagnostic device of the present invention includes a current measurement unit that measures current flowing in at least two locations of the rotating machine, and a classification unit that classifies current data measured by the current measurement unit for each command value information of the power converter.
- a distribution of Lissajous figures obtained by superimposing a plurality of periods of current data of at least two phases classified by the classification unit (defined here as a distribution in which each point is not connected by a line in time series but plotted as a collection of points.
- the status of the rotating machine or power converter is diagnosed from the change in the Lissajous figure's distribution A diagnostic unit is provided.
- the diagnostic method of the present invention measures the current flowing in at least two places of the rotating machine, classifies the measured current data for each command value information of the power converter, and classifies at least two phases and a plurality of cycles. Create a Lissajous figure distribution by superimposing current data, compare the created distribution with the Lissajous figure distribution set in advance as a normal state, and change the surroundings of the rotating machine or the power converter connected to the rotating machine Diagnose device status. Further details of the diagnostic method apparatus configuration and diagnostic method will be described in the detailed description.
- an expensive data logger is unnecessary, and the state of the rotating machine system can be diagnosed even when the driving condition of the motor changes.
- Configuration diagram of diagnosis apparatus The block diagram of the diagnostic apparatus of a conventional method.
- FIG. 6 is a configuration diagram according to a third embodiment.
- FIG. FIG. 6 is a configuration diagram according to a fifth embodiment.
- a rotating machine system including a rotating machine such as an electric motor (motor) or a generator, a cable attached to the rotating machine, and a power conversion device, occurs in various parts, and a variety of failure factors. For example, insulation deterioration, bearing deterioration, short circuit, disconnection, water immersion, etc. can be considered. Moreover, the electric motor is often installed for a long time in a harsh environment, and a diagnostic technique according to the installation condition is required.
- FIG. 14 An example of a conventional diagnostic device 14 is shown in FIG.
- a conventional diagnostic apparatus one-phase current sensor information is acquired by the current measurement unit 11, and the diagnosis unit 12 performs diagnosis based on the value of the specific frequency spectrum of the spectrum obtained by Fourier transform. Since the change in the specific frequency spectrum is measured by Fourier transform, it is necessary to perform continuous measurement at a constant sampling rate. Therefore, it is necessary to increase the capacity of the memory for temporarily storing the measured data or increase the communication speed with the device for storing the data, and an expensive device is required. Moreover, since the change of the control signal is not assumed, there is a problem that the frequency of misreporting and misreporting is high.
- the present inventors plot the intermittent sensor values for two phases among the load current values of the rotating machine on one plane, and visualize the state of the rotating machine as a data distribution map similar to one Lissajous figure. I examined that.
- the Lissajous figure is a plane figure obtained by combining two waves. Since the current sensor data of the three-phase motor is shifted by 120 degrees from each other, when the two phases are combined, it becomes an inclined elliptical shape. Normally, the data is created by continuous data, but the inventors superimpose data for a plurality of frequencies obtained at predetermined times obtained intermittently, and use the resulting data distribution for evaluation. As a result, it is possible to diagnose the state of the rotating machine system with higher accuracy than intermittent data and to omit expensive equipment such as a data logger.
- the diagnostic device of the present embodiment includes a current measuring unit that measures current flowing in at least two locations of the rotating machine, and a rotating machine and a rotating machine based on current data output from the current measuring unit.
- the current flowing in at least two places of the rotating machine is measured, and the measured current data is classified for each command value information of the power conversion device.
- Create a Lissajous figure distribution map by overlaying the classified current data for multiple periods for each information, evaluate the created Lissajous figure distribution map, and diagnose the state of the rotating machine system based on the result Can do.
- the above diagnostic device can be incorporated into a rotating machine system.
- a plurality of rotating machines may be connected to the power conversion device.
- a rotating machine system having a current measuring unit that measures a flowing current and a control unit that outputs a command value for controlling the rotating machine, and diagnoses the state of a device electrically or mechanically connected to the rotating machine And a classification unit that classifies the current data output from the current measurement unit and input to the diagnostic unit for each of the command values, and the diagnostic unit stores the current data of the rotating machine in at least two phases and Create a Lissajous figure distribution obtained by overlapping multiple periods.
- a current measurement unit that measures current flowing in at least two places of the rotating machine
- a classification unit that classifies the current data measured by the current measurement unit for each command value information of the power converter
- Distribution of Lissajous figures obtained by superimposing a plurality of periods of current data of at least two phases classified by the classification unit (here, points are defined as distributions in which points are not connected by a line in time series but plotted as a collection of points.
- FIG. 1 shows a configuration diagram of the diagnostic apparatus of Example 1, and the diagnostic apparatus and the diagnostic method will be described. A common part with the description of FIG. 2 is omitted.
- Example 1 the power source 1, the cable 2, and the power conversion device 7 are electrically connected, and the power conversion device 7 outputs a three-phase AC voltage.
- the output of the three-phase AC voltage is controlled by adjusting the timing for operating the switching element of the inverter so that the rotation speed and torque of the motor have desired values.
- the control is determined based on control information set in advance and information on the current output from the inverter.
- the current information is acquired by the current sensors 4a and 4b and the current measuring unit 9 and fed back to the control unit 8.
- the current information of the current sensors 4a and 4b acquired by the current measuring unit does not necessarily have to be a constant sampling interval, and does not necessarily need to be a continuous measurement.
- the interval between the data acquisition of the current sensor 4a and the data acquisition of the current sensor 4b is preferably constant allowing a certain variation.
- a measurement device that excels in real-time processing a certain data acquisition interval that allows a certain variation can be obtained.
- a measuring device using a microcomputer is an example.
- the current measurement unit 9 can be designed to store a certain amount of data in the memory of the microcomputer, insert a data communication process to the storage device, and then clear the memory to resume data storage. It is possible to make a system using a current sensor or a memory.
- FIG. 3a is a diagram showing a case where a frequency spectrum separated by 1 Hz from the fundamental frequency 50 Hz of the U-phase current appears.
- a frequency spectrum separated by 1 Hz from the fundamental frequency 50 Hz of the U-phase current appears.
- sideband waves of the fundamental frequency are generated due to the deterioration.
- the U-phase current appears as a waveform having a beat of 1 Hz period.
- diagnosis can be made by using any two types of current values, without increasing the sampling speed and the data length to be measured.
- FIG. 4 shows normal U-phase and W-phase current waveforms, that is, a 50 Hz sine wave without undulations.
- the U-phase and W-phase currents are 120 degrees out of phase.
- FIG. 5 shows a conceptual diagram of U-phase and W-phase current waveforms when sidebands are generated, as in FIG.
- the sampling rate is 100 Hz and the data measurement time is 1 second.
- FIGS. 4 and 5 based on the respective current waveforms obtained as a result of sampling at high speed, the U-phase current is plotted on the horizontal axis and the W-phase current is plotted on the vertical axis.
- the distribution is as follows. 6A is an example of a normal state based on FIG. 4, and FIG. 6B is a conceptual diagram when a sideband wave is generated due to deterioration of a rotating machine or the like based on FIG. 6A and 6B, it can be seen that in the deteriorated state, the distribution of the Lissajous figure is thicker than that in the normal state, and the thickness of the Lissajous figure distribution changes as the tendency of deterioration progresses.
- FIG. 7 shows an example (FIG. 7a: normal, FIG. 7b: deterioration) in which Lissajous figure distributions are created for normal and deteriorated states using U-phase and W-phase currents obtained at a sampling rate of 4.975 Hz.
- the data length to be measured is 1000 points, and the data length is the same as in Figure 6. 6 and 7 show almost the same Lissajous figure distribution.
- the distribution of the Lissajous figure may be confirmed by human eyes, or the difference in the distribution of the Lissajous figure may be digitized and compared by a method such as machine learning. That is, according to the present embodiment, it is possible to easily detect the occurrence of undulation not only in the case of performing high-speed sampling but also in any case of a slow sampling frequency.
- the sampling speed is slow, it is desirable to measure asynchronously with the fundamental frequency. Specifically, at a sampling rate having a period that is an integral multiple of the fundamental wave, a value of only a certain phase is always obtained, and there is a risk of false alarm in the case of deterioration in which a change appears only in a specific phase. Therefore, it is desirable that the sampling rate is a frequency different from an integral multiple of the fundamental wave period. As a result, a distribution map for diagnosis similar to the case where data is acquired at a high sampling rate can be acquired.
- Lissajous figure points are filled in time-sequential order with lines (Lissajous figure trajectory)
- the inside of the Lissajous figure distribution will be filled with lines, and the difference between the normal state and the deteriorated state may not be visible. It is desirable not to display the trajectory by connecting the lines in series order.
- the diagnosis unit 10 outputs the above result.
- Means for transmitting the diagnosis result to the user can be selected as appropriate. Examples of the method for transmitting to the user include display of a display, lighting of a lamp, notification by e-mail, and the like.
- the contents are also (1) a method for displaying the distribution of Lissajous figures on the screen and allowing the user to determine whether or not it is compatible, (2) a method for quantifying the difference in the distribution of Lissajous figures in some way and telling the user (3) in advance A method of notifying the user when a predetermined threshold is exceeded can be considered.
- machine learning can be applied.
- an algorithm for machine learning an algorithm that makes the difference between Lissajous figures clear should be selected.
- a local subspace method can be cited. In the local subspace method, for all the points in the distribution of the Lissajous figure to be diagnosed, two closest points are selected from the distribution of the Lissajous figure defined as normal, and the straight line connecting the two points is diagnosed. In this method, the degree of deterioration is defined by the distance between target points.
- the average value of the distances of all the points to be diagnosed In addition to the method of calculating the distance for all points to be diagnosed and digitizing the change in the distribution of the Lissajous figure, the average value of the distances of all the points to be diagnosed, the number of only the points of the specific phase, etc.
- An arbitrary evaluation method can be selected according to the variation error of the current waveform.
- a clustering method such as vector quantization clustering or K-means clustering can be used.
- a technique called a deep neural network which is a method for automatically finding feature quantities based on a large amount of data, can be applied.
- the control pattern changes When the control pattern changes, the fundamental frequency, torque, etc. of the motor change. Therefore, the conventional method sometimes diagnoses this as an abnormality. Further, when learning is performed as a normal state including a state in which the control pattern is changed, a change due to deterioration may be overlooked and reported. Therefore, it is desirable to diagnose normality and abnormality for each control pattern.
- the control command of the control unit and the current information were combined to improve the diagnostic accuracy. Since the diagnosis unit 10 diagnoses the state of the motor system based on the distribution of Lissajous figures drawn with the currents of the U phase and the W phase classified as the same state as the control command, the classification unit as shown in FIG. 6 was provided. Hereinafter, the function combining the classification unit 6 and the diagnosis unit 10 will be described.
- a voltage command value, a current command value, an excitation current command value, a torque current command value, a speed command value, a frequency command value, and the like can be arbitrarily selected from command values that can be output by the power converter 7 Can do.
- the classification unit 10 does not necessarily need to use all command values that can be output by the power conversion device 7, and can use only command values that are highly sensitive to the deterioration of the detection target.
- the command value with high sensitivity may be selected so that the difference between the deteriorated state and the normal state can be easily seen by comparing the distribution of the Lissajous figure in the deteriorated state with the distribution of the Lissajous figure in the normal state.
- the classification unit 6 distributes the current information obtained from the current measurement unit 9 according to control command values (control command A and control command B) obtained from the control unit 8. Based on the distribution of the classification unit 6, the diagnosis unit 10 stores current information and command value information at intervals of about 1 minute, and creates a Lissajous figure distribution map for each control command value.
- Figure 8 shows the distribution of normal and deteriorated Lissajous figures classified by each control command.
- 8a and 8c show the result of drawing the distribution of the Lissajous figure in the control command A, and FIGS. 8b and 8d in the control command B.
- FIG. 8a and FIG. 8b show the result of drawing the distribution of the Lissajous figure in the control command A, and FIGS. 8b and 8d in the control command B.
- the current information acquired from the current measurement unit is divided into one associated with the control command A and one associated with the control command B.
- a normal state and a deteriorated state are assigned for each of the control command A and the control command B.
- a normal state and a deteriorated state are assigned.
- Fig. 9 shows learning data Y (control command A normal) in the vicinity of the data X to be diagnosed (control command A normal or degraded) in the Lissajous figure.
- Search for data X control command A normal or degraded
- diagnosis data Y1 control command A normal
- learning data Y2 control command A normal
- the degree of abnormality was defined by the distance between the straight line connecting the data of Y1, Y2 and the data of the diagnosis target data X (control command A normal or deteriorated).
- the degree of abnormality of the diagnosis target data group X1 to n (control command A normal or degraded) with respect to the learning data group Y can be quantified.
- Fig. 10 shows the determination and evaluation results of the diagnosis results for the normal state and the abnormal state.
- An average value of the degree of abnormality of normal current data by the control command A and an average value of the degree of abnormality of current data when the device is deteriorated by the control command A are shown.
- the average value of the degree of abnormality increases due to deterioration. If a threshold value is set in advance by prior examination, an increase in the degree of abnormality, that is, the progress of deterioration can be displayed to the user.
- the case where a spectrum is generated at a specific frequency has been described.
- the type of deterioration does not generate a spectrum at a specific frequency
- some change in current occurs due to the load or impedance change of the motor due to the deterioration. Therefore, it can be detected by the diagnostic apparatus and diagnostic method of the first embodiment.
- Deterioration that does not appear as a change in the specific frequency spectrum is specifically deterioration other than the deterioration that appears as a peak at the specific frequency that can be detected by MCSA, that is, grease deterioration, thermal deterioration of insulation, and moisture absorption. Is assumed.
- the diagnostic apparatus of the first embodiment it is possible to diagnose a motor system including a motor, a cable, a power converter, a load, and other devices electrically or mechanically connected to the motor.
- a motor system including a motor, a cable, a power converter, a load, and other devices electrically or mechanically connected to the motor.
- the current flowing through the motor changes due to changes in the impedance and load of those devices. Deterioration can be detected by a technique.
- FIG. 11 is an example of a diagnostic system including a command unit 13.
- the command unit 13 sets a control command in the control unit 8 and changes it.
- the information of the control unit 8 is input to the classification unit and diagnosed.
- the information of the command unit 13 is input to the classification unit together with the control command value obtained from the control unit 8 or instead of the control command value. And may be diagnosed.
- FIG. 11 when information such as the presence of multiple types of loads to be rotated, changes in control command values according to time, etc. are stored in the command unit 13, the information of the command unit 13 is input to the classification unit, You may make a diagnosis. Thereby, diagnostic accuracy can be improved.
- Example 1 In Example 1 and Example 2, an example in which one motor 3 is connected to one power conversion device 7 has been described. In Example 3, as shown in FIG. 12, an example in which a plurality of motors 3 are connected to one power conversion device 7 will be described.
- diagnosis is performed using the result of measuring the entire load current by the current sensor in the power converter.
- the diagnosis method is the same as when one rotating machine is connected, and the diagnosis data is diagnosed as a Lissajous figure distribution along with classification using control command values and reflection of command value information.
- the current sensor and the current measurement unit in the power converter are used.
- the current sensors 4a and 4b and the current measurement unit 9 prepared separately from the power converter are used. Even so, the effect of the present invention can be obtained. Since it is not necessary to support long-term data measurement at a high sampling rate, an inexpensive general-purpose measuring device can be used.
- the current sensor and the current measurement unit in the power conversion device are used.
- a current sensor may be provided. Moreover, it is good also as providing the current sensor independent of a power converter device in the position where a motor and a power converter device are connected, and measuring the whole load current.
- a classification unit / diagnostic unit can be provided for each rotating machine, or multiple sensor information can be diagnosed with a single classification unit / diagnostic unit. It is also possible to process.
- Example 5 describes an example in which three current sensors are installed for each of a zero-phase current and a two-phase load current.
- the state of the motor system is diagnosed based on the information of the two current sensors, but as shown in FIG. 14, the distribution of the Lissajous figure is based on the information of three or more current sensors. You may get. In this case, when comparing the distributions, it is possible to obtain and evaluate a Lissajous figure distribution by a plurality of combinations of two selected from three or more current sensors.
- the current value measured by the current sensor in the case of a three-phase AC rotating machine, in addition to the U-phase, V-phase, and W-phase load currents, as well as the zero-phase current measured by clamping three phases
- Two or more currents can be set, such as two-phase current measured by clamping the selected two phases, leakage current measured by clamping both the winding start and end of the motor winding, and current flowing from the motor to the ground.
- the position of a highly sensitive current sensor can be selected for each degradation mechanism. For example, bearing deterioration can be detected with high sensitivity at load current, and insulation deterioration can be detected with zero-phase current. What is necessary is just to select arbitrarily the electric current which raises diagnostic sensitivity with respect to the cause of deterioration, and to install a current sensor in the position.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Control Of Electric Motors In General (AREA)
- Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
Abstract
Provided is a diagnostic device for highly accurately diagnosing a rotating machine even when a diagnosis is based on a small amount of current data. This diagnostic device is provided with a current measurement unit for measuring current flowing through at least two locations in a rotating machine and a diagnostic unit for diagnosing, on the basis of current data output by the current measurement unit, the state of the rotating machine and a peripheral device electrically or mechanically connected to the rotating machine. The diagnostic unit creates a Lissajous curve distribution map by layering multiple periods of the two types of current data obtained by the current measurement unit and diagnoses the state of the rotating machine system from the results of evaluating the distribution map.
Description
本発明は、診断装置および診断方法に関するものである。
The present invention relates to a diagnostic apparatus and a diagnostic method.
生産設備に組み込まれたモータ(電動機)や発電機といった回転機が突発故障すると、回転機の計画外の修理作業や置換作業が必要となり、生産設備の稼働率低下や生産計画の見直しが必要となる。同様に回転機と接続された電力変換装置やケーブルなどが故障しても、計画外の修理作業や置換作業が必要となり、生産設備の稼働率低下や生産計画の見直しが必要となる。
If a rotating machine such as a motor (electric motor) or generator built into a production facility suddenly breaks down, unscheduled repair or replacement of the rotating machine is required, which requires a reduction in the operating rate of the production facility or a review of the production plan. Become. Similarly, even if a power conversion device or cable connected to the rotating machine breaks down, unplanned repair work or replacement work is required, and it is necessary to reduce the operating rate of the production facility or review the production plan.
回転機システム(回転機およびその付帯機器(ケーブル、電力変換装置))の突発故障を未然に防ぐために、回転機システムを適宜停止させ、オフラインで診断することで、劣化具合を把握し突発故障をある程度防ぐことができる。しかしながら、オフライン診断のために回転機システムを停止させる必要があり生産設備の稼働率低下を招くことになる。また、劣化の種類によっては、電圧印加時にのみ顕在化するものもある。そこで、回転機システムの電流の情報をもとに回転機の状態を診断することに対するニーズが存在する。
In order to prevent sudden failure of the rotating machine system (rotating machine and its associated devices (cables, power converters)), the rotating machine system is appropriately stopped and diagnosed offline, so that the deterioration condition can be grasped and It can be prevented to some extent. However, it is necessary to stop the rotating machine system for off-line diagnosis, leading to a reduction in the operating rate of the production facility. Some types of deterioration become apparent only when voltage is applied. Therefore, there is a need for diagnosing the state of the rotating machine based on the information on the current of the rotating machine system.
回転機システムの電流情報をもとにした診断に関する従来技術としては、非特許文献1がある。非特許文献1では、Motor Current Signature Analysis(MCSA)と呼ばれる手法により、回転子バーの損傷、回転子の偏心、固定子の鉄心損傷、巻線の短絡、軸受の劣化などを、要因に応じた特定の周波数スペクトルの検出により診断できるとしている。
Non-patent document 1 is known as a conventional technique related to diagnosis based on current information of a rotating machine system. In Non-Patent Document 1, a method called Motor Current Signature Analysis (MCSA) is used to determine damage to rotor bars, rotor eccentricity, stator core damage, winding shorts, bearing deterioration, etc. The diagnosis can be made by detecting a specific frequency spectrum.
また、特許文献1では、特に軸受診断において、2ヶ所の振動センサデータを取得し、各センサのデータの瞬時値を軸に取り描いたリサジュー図形の軌跡傾きや半径の変化から異常を判断する手法が開示されている。
Also, in Patent Document 1, especially in bearing diagnosis, a method of acquiring vibration sensor data at two locations and judging an abnormality from a change in the trajectory inclination or radius of a Lissajous figure drawn with the instantaneous value of each sensor's data as an axis. Is disclosed.
しかしながら、前記非特許文献1および特許文献1には、次のような課題がある。前記非特許文献1に開示された技術では、特定の周波数スペクトルの検出が必要で、特定の周波数スペクトルを精度よく検出するには、高いサンプリング速度での長時間の計測に対応した診断用に高価なデータロガーが必要となり、診断コストの増加が課題であった。また、長時間のデータ計測の間で、モータの駆動条件が変わった場合に、意図せず上記特定の周波数スペクトルが現れることがあり、誤報の課題があった。また同様に、長時間のデータ計測の間で、モータの駆動条件が変わった場合に、基本波周波数が変化し想定とは異なる周波数にスペクトルが現れた場合に、失報の課題があった。
However, Non-Patent Document 1 and Patent Document 1 have the following problems. In the technique disclosed in Non-Patent Document 1, it is necessary to detect a specific frequency spectrum. To detect a specific frequency spectrum with high accuracy, it is expensive for diagnosis corresponding to long-time measurement at a high sampling rate. A new data logger is necessary, and the increase in diagnostic costs has been a problem. In addition, when the motor driving conditions change during long-time data measurement, the specific frequency spectrum may appear unintentionally, and there has been a problem of false alarms. Similarly, when the motor driving conditions change during long-term data measurement, the fundamental frequency changes and a spectrum appears at a frequency different from the expected frequency, causing a problem of misreporting.
また、前記特許文献1に開示された技術では、振動センサ情報をもとにした診断であり、モータ故障に敏感な位置に振動センサを取り付ける必要があり、設置場所が限られるという課題があった。また、診断用に診断センサと、リサジュー図形の軌跡を得るのに十分なサンプリング速度を有する高価なデータロガーが必要となり、診断コストの増加が課題であった。
Further, the technique disclosed in Patent Document 1 is a diagnosis based on vibration sensor information, and it is necessary to attach a vibration sensor to a position sensitive to a motor failure, and there is a problem that an installation place is limited. . In addition, a diagnostic sensor for diagnosis and an expensive data logger having a sampling rate sufficient to obtain a trajectory of a Lissajous figure are required, and an increase in diagnostic cost is a problem.
本発明は、データ計測を短時間、低サンプリング速度、汎用の機器で行う場合であっても、高精度な診断を行う診断装置を提供することを目的とする。
The object of the present invention is to provide a diagnostic apparatus that performs highly accurate diagnosis even when data measurement is performed in a short time, with a low sampling rate and with a general-purpose device.
前記の課題を解決して、本発明の目的を達成するために、以下のように構成した。すなわち、本発明の診断装置は、回転機の少なくとも2ヶ所に流れる電流を計測する電流計測部と、電流計測部で計測した電流データを電力変換装置の指令値情報ごとに分類する分類部を備え、分類部で分類された少なくとも2相の電流データを複数周期重ねて得たリサジュー図形の分布(各点を時系列順に線で繋がずに点の集まりとしてプロットした分布としてここでは定義する。点を時系列順に繋いでいない点が、リサジュー図形の軌跡と異なる)と、予め正常状態として設定したリサジュー図形の分布を比較し、リサジュー図形の分布の変化から回転機または電力変換装置の状態を診断する診断部を備える。
In order to solve the above-described problems and achieve the object of the present invention, the following configuration is provided. That is, the diagnostic device of the present invention includes a current measurement unit that measures current flowing in at least two locations of the rotating machine, and a classification unit that classifies current data measured by the current measurement unit for each command value information of the power converter. A distribution of Lissajous figures obtained by superimposing a plurality of periods of current data of at least two phases classified by the classification unit (defined here as a distribution in which each point is not connected by a line in time series but plotted as a collection of points. Compared with the Lissajous figure's trajectory in that they are not connected in chronological order) and the Lissajous figure's distribution set as normal in advance, the status of the rotating machine or power converter is diagnosed from the change in the Lissajous figure's distribution A diagnostic unit is provided.
また、本発明の診断方法は、回転機の少なくとも2ヶ所に流れる電流を計測し、計測した電流データを電力変換装置の指令値情報ごとに分類し、分類された少なくとも2相、複数周期分の電流データを重ねてリサジュー図形の分布を作成し、作成した分布と、予め正常状態として設定したリサジュー図形の分布とを比較し、変化より回転機または回転機に接続された電力変換装置等の周辺機器の状態を診断する。さらなる診断方法機器の構成と診断手法の詳細は発明を実施するための形態の中で説明する。
Further, the diagnostic method of the present invention measures the current flowing in at least two places of the rotating machine, classifies the measured current data for each command value information of the power converter, and classifies at least two phases and a plurality of cycles. Create a Lissajous figure distribution by superimposing current data, compare the created distribution with the Lissajous figure distribution set in advance as a normal state, and change the surroundings of the rotating machine or the power converter connected to the rotating machine Diagnose device status. Further details of the diagnostic method apparatus configuration and diagnostic method will be described in the detailed description.
本発明によれば、高価なデータロガーが不要で、モータの駆動条件が変わった場合においても、回転機システムの状態を診断することができる。
According to the present invention, an expensive data logger is unnecessary, and the state of the rotating machine system can be diagnosed even when the driving condition of the motor changes.
以下、本発明を実施するための形態(以下においては「実施例」と表記する)を、適宜、図面を参照して説明する。また、下記はあくまでも実施形態の一例であり、本発明の範囲が下記実施例に限定されることを意図するものではない。
Hereinafter, modes for carrying out the present invention (hereinafter referred to as “examples”) will be described with reference to the drawings as appropriate. Further, the following is merely an example of the embodiment, and the scope of the present invention is not intended to be limited to the following example.
電動機(モータ)や発電機などの回転機と、回転機に付帯するケーブルおよび電力変換装置を備える回転機システムの故障には、そのどの部位で発生するか、またその故障要因が多岐にわたる。例えば、絶縁劣化、軸受劣化、短絡、断線、浸水などが考えられる。また、電動機は過酷な環境で長期間設置されることも多く、設置条件に応じた診断技術が必要となる。
The failure of a rotating machine system including a rotating machine such as an electric motor (motor) or a generator, a cable attached to the rotating machine, and a power conversion device, occurs in various parts, and a variety of failure factors. For example, insulation deterioration, bearing deterioration, short circuit, disconnection, water immersion, etc. can be considered. Moreover, the electric motor is often installed for a long time in a harsh environment, and a diagnostic technique according to the installation condition is required.
従来の診断装置14の一例を図2に示す。従来の診断装置では、1相の電流センサ情報を電流計測部11で取得し、診断部12において、フーリエ変換で得たスペクトルの特定周波数スペクトルの値を基に診断している。フーリエ変換により特定周波数スペクトルの変化を計測しているため、一定のサンプリング速度で連続した計測を実施する必要がある。そのため、計測したデータを一時的に蓄積するメモリの容量を大きくするか、データを保存する装置との通信速度を上げる必要があり、高価な装置が必要であった。また、制御信号の変化を想定していないため、誤報および失報の頻度が多いという課題があった。
An example of a conventional diagnostic device 14 is shown in FIG. In a conventional diagnostic apparatus, one-phase current sensor information is acquired by the current measurement unit 11, and the diagnosis unit 12 performs diagnosis based on the value of the specific frequency spectrum of the spectrum obtained by Fourier transform. Since the change in the specific frequency spectrum is measured by Fourier transform, it is necessary to perform continuous measurement at a constant sampling rate. Therefore, it is necessary to increase the capacity of the memory for temporarily storing the measured data or increase the communication speed with the device for storing the data, and an expensive device is required. Moreover, since the change of the control signal is not assumed, there is a problem that the frequency of misreporting and misreporting is high.
本発明者らは、回転機の負荷電流値のうち、二相分の断続的なセンサ値を一平面上にプロットし、一のリサジュー図形類似のデータ分布図として、回転機の状態を可視化することを検討した。
The present inventors plot the intermittent sensor values for two phases among the load current values of the rotating machine on one plane, and visualize the state of the rotating machine as a data distribution map similar to one Lissajous figure. I examined that.
リサジュー図形とは、二つの波を合成して得られる平面図形である。三相モータの電流センサデータは互いに120度のずれがあるため、2相を組み合わせると傾いた楕円形状となる。通常、連続したデータにより作成されるが、発明者らは断続的に取得される所定時間で得られる多周波数分のデータを重ねあわせ、結果として得られるデータ分布も評価に使用した。その結果、断続的なデータより高精度に回転機システムの状態を診断するとともに、高価なデータロガーなどの設備を省略することが可能となる。
The Lissajous figure is a plane figure obtained by combining two waves. Since the current sensor data of the three-phase motor is shifted by 120 degrees from each other, when the two phases are combined, it becomes an inclined elliptical shape. Normally, the data is created by continuous data, but the inventors superimpose data for a plurality of frequencies obtained at predetermined times obtained intermittently, and use the resulting data distribution for evaluation. As a result, it is possible to diagnose the state of the rotating machine system with higher accuracy than intermittent data and to omit expensive equipment such as a data logger.
上記課題を解決すべく、本実施の形態の診断装置は、回転機の少なくとも二ヶ所に流れる電流を計測する電流計測部と、電流計測部より出力される電流データに基づき回転機および回転機に電気的または機械的に接続された周辺機器の状態を診断する診断部とを備える。診断部では、電流計測部で得られた二種類の電流データを複数周期重ねてリサジュー図形の分布図を作成し、分布図の評価結果より回転機システムの状態を診断するものである。
In order to solve the above problems, the diagnostic device of the present embodiment includes a current measuring unit that measures current flowing in at least two locations of the rotating machine, and a rotating machine and a rotating machine based on current data output from the current measuring unit. A diagnostic unit for diagnosing the state of a peripheral device electrically or mechanically connected. The diagnostic unit creates a Lissajous figure distribution map by overlapping a plurality of periods of two types of current data obtained by the current measurement unit, and diagnoses the state of the rotating machine system from the evaluation result of the distribution map.
なお、上記のような装置を備えない場合であっても、回転機の少なくとも2か所に流れる電流を計測し、計測された電流データを電力変換装置の指令値情報ごとに分類し、指令値情報ごとに、分類された電流データを複数周期分重ねてリサジュー図形の分布図作成することにより、作成されたリサジュー図形の分布図を評価し、その結果に基づき回転機システムの状態を診断することができる。
Even in the case where the device as described above is not provided, the current flowing in at least two places of the rotating machine is measured, and the measured current data is classified for each command value information of the power conversion device. Create a Lissajous figure distribution map by overlaying the classified current data for multiple periods for each information, evaluate the created Lissajous figure distribution map, and diagnose the state of the rotating machine system based on the result Can do.
また、上記診断装置は、回転機システムに組み込むことも可能である。特に、電力変換装置に回転機制御のために備えられている電流センサ、電流計測部等を共用することで、部品点数を削減することが可能となり好ましい。さらに、電力変換装置には複数の回転機を接続していてもよい。
Also, the above diagnostic device can be incorporated into a rotating machine system. In particular, it is possible to reduce the number of parts by sharing a current sensor, a current measuring unit, and the like provided for rotating machine control in the power converter. Further, a plurality of rotating machines may be connected to the power conversion device.
さらに、電力変換装置の指令値情報ごとに電流データを分類し、評価を行うことにより、回転機の駆動条件が変化する場合であっても、適切に回転機システムの状態を診断することが可能である。
In addition, by classifying and evaluating current data for each command value information of the power converter, it is possible to properly diagnose the state of the rotating machine system even when the driving conditions of the rotating machine change It is.
具体的には、一または複数の回転機と、回転機と電気的に接続され、回転機に流れる電流を制御する電力変換装置と、を備え、電力変換装置は、回転機の少なくとも二ヶ所に流れる電流を計測する電流計測部と、回転機の制御を行う指令値を出力する制御部とを有する回転機システムであって、回転機に電気的または機械的に接続された機器の状態を診断する診断部と、電流計測部より出力され、診断部に入力される電流データを前記指令値ごとに分類する分類部とをさらに備え、診断部は、回転機の電流データを、少なくとも二相かつ複数周期分重ねて得られるリサジュー図形の分布を作成する。
Specifically, it comprises one or a plurality of rotating machines, and a power converter that is electrically connected to the rotating machines and controls the current flowing through the rotating machines, and the power converters are provided at at least two locations of the rotating machines. A rotating machine system having a current measuring unit that measures a flowing current and a control unit that outputs a command value for controlling the rotating machine, and diagnoses the state of a device electrically or mechanically connected to the rotating machine And a classification unit that classifies the current data output from the current measurement unit and input to the diagnostic unit for each of the command values, and the diagnostic unit stores the current data of the rotating machine in at least two phases and Create a Lissajous figure distribution obtained by overlapping multiple periods.
以下、本実施の形態では、回転機の少なくとも2ヶ所に流れる電流を計測する電流計測部と、電流計測部で計測した電流データを電力変換装置の指令値情報ごとに分類する分類部を備え、分類部で分類された少なくとも2相の電流データを複数周期重ねて得たリサジュー図形の分布(各点を時系列順に線で繋がずに点の集まりとしてプロットした分布としてここでは定義する。点を時系列順に繋いでいない点が、リサジュー図形の軌跡と異なる)と、予め正常状態として設定したリサジュー図形の分布を比較し、リサジュー図形の分布の変化から回転機または電力変換装置の状態を診断する診断部を備える例を説明する。
Hereinafter, in the present embodiment, a current measurement unit that measures current flowing in at least two places of the rotating machine, and a classification unit that classifies the current data measured by the current measurement unit for each command value information of the power converter, Distribution of Lissajous figures obtained by superimposing a plurality of periods of current data of at least two phases classified by the classification unit (here, points are defined as distributions in which points are not connected by a line in time series but plotted as a collection of points. Compare the Lissajous figure's trajectory that is not connected in chronological order) and the Lissajous figure's distribution set as normal in advance, and diagnose the state of the rotating machine or power converter from the change in the Lissajous figure's distribution An example including a diagnosis unit will be described.
図1に、実施例1の診断装置の構成図を示し、診断装置及び診断方法を説明する。上記図2の説明との共通部分は割愛する。
FIG. 1 shows a configuration diagram of the diagnostic apparatus of Example 1, and the diagnostic apparatus and the diagnostic method will be described. A common part with the description of FIG. 2 is omitted.
実施例1では、電源1とケーブル2と電力変換装置7が電気的に接続され、電力変換装置7において、三相交流電圧が出力されている。三相交流電圧の出力は、モータの回転数やトルクが所望の値となるようにインバータのスイッチング素子を動作させるタイミングを調整することで制御されている。その制御は、予め設定した制御情報とインバータから出力される電流の情報を基に決定されており、電流情報は、電流センサ4aおよび4bと電流計測部9で取得され、制御部8にフィードバックされる。
In Example 1, the power source 1, the cable 2, and the power conversion device 7 are electrically connected, and the power conversion device 7 outputs a three-phase AC voltage. The output of the three-phase AC voltage is controlled by adjusting the timing for operating the switching element of the inverter so that the rotation speed and torque of the motor have desired values. The control is determined based on control information set in advance and information on the current output from the inverter. The current information is acquired by the current sensors 4a and 4b and the current measuring unit 9 and fed back to the control unit 8. The
電流計測部の電流センサ4aおよび4bの複数周期の電流情報は分類部に入力され、診断部で電流センサ4aおよび4bを直行する軸にとりプロットしたリサジュー図形の分布によりモータシステムを診断している。
Current information of a plurality of cycles of the current sensors 4a and 4b of the current measuring unit is input to the classification unit, and the motor system is diagnosed by the distribution of the Lissajous figure plotted on the axis orthogonal to the current sensors 4a and 4b.
電流計測部で取得する電流センサ4aおよび4bの電流情報は必ずしも一定のサンプリング間隔である必要も無く、また、必ずしも連続した計測である必要は無い。電流センサ4aのデータ取得と電流センサ4bのデータ取得の間隔は、あるバラつきを許容した一定であることが好ましい。リアルタイム処理に優れる計測装置を適用することで、あるバラつきを許容した一定のデータ取得間隔とすることができる。例えばマイコンを用いた計測装置がその一例である。
The current information of the current sensors 4a and 4b acquired by the current measuring unit does not necessarily have to be a constant sampling interval, and does not necessarily need to be a continuous measurement. The interval between the data acquisition of the current sensor 4a and the data acquisition of the current sensor 4b is preferably constant allowing a certain variation. By applying a measurement device that excels in real-time processing, a certain data acquisition interval that allows a certain variation can be obtained. For example, a measuring device using a microcomputer is an example.
さらに、電流センサ4aのデータ取得と電流センサ4bのデータ取得の間隔を一定とすることで、連続した計測である必要が無くなる。例えば、マイコンのメモリに一定量のデータを蓄積した後に、記憶装置へのデータ通信処理を挿入した後、メモリをクリアしてデータ蓄積を再開するといった電流計測部9の設計が可能となり、汎用の電流センサやメモリを利用したシステムとすることが可能である。
Furthermore, by making the interval between data acquisition of the current sensor 4a and data acquisition of the current sensor 4b constant, there is no need for continuous measurement. For example, the current measurement unit 9 can be designed to store a certain amount of data in the memory of the microcomputer, insert a data communication process to the storage device, and then clear the memory to resume data storage. It is possible to make a system using a current sensor or a memory.
以下、実施例1の診断装置を用いた診断方法の一例として、制御パターンが変化せず、一定の基本波周波数でモータが動作している場合に、特定の周波数にスペクトルが発生した状態を診断する方法について述べ、診断部の機能を説明する。
Hereinafter, as an example of a diagnostic method using the diagnostic apparatus of the first embodiment, when a control pattern does not change and the motor is operating at a constant fundamental frequency, a state where a spectrum is generated at a specific frequency is diagnosed. The method of doing this is described and the function of the diagnostic unit is explained.
図3にU相電流波形を示す。図3aは、U相電流の基本波周波数50Hzから1Hz離れた周波数スペクトルが現れた場合を示す図である。例えば、軸受劣化では、劣化により基本波周波数の側帯波が発生する。この場合、図3bのように、U相電流は1Hz周期のうなりを有する波形として現れる。
Figure 3 shows the U-phase current waveform. FIG. 3a is a diagram showing a case where a frequency spectrum separated by 1 Hz from the fundamental frequency 50 Hz of the U-phase current appears. For example, in bearing deterioration, sideband waves of the fundamental frequency are generated due to the deterioration. In this case, as shown in FIG. 3b, the U-phase current appears as a waveform having a beat of 1 Hz period.
従来の診断装置でこの波形から精度良く50Hzと51Hzの成分を分離するには、周波数200Hzで計測した場合、少なくとも100秒間、20000点のデータを連続的に計測する必要がある。よって、20000点以上の計測に対応した大容量のメモリを搭載した計測装置、もしくは200Hzで記憶装置に書き込み可能な計測装置が必要である。また、計測にする誤差を考慮すると、サンプリング速度、計測するデータ長のいずれかまたはその両方を上げることが有効である。したがって、精度良く分離するためには特殊かつ高価な計測装置を適用する必要があった。
In order to accurately separate 50 Hz and 51 Hz components from this waveform with a conventional diagnostic device, it is necessary to continuously measure 20000 points of data for at least 100 seconds when measured at a frequency of 200 Hz. Therefore, there is a need for a measuring device equipped with a large-capacity memory that can measure more than 20000 points, or a measuring device that can write to a storage device at 200 Hz. In consideration of measurement errors, it is effective to increase either or both of the sampling speed and the measured data length. Therefore, it is necessary to apply a special and expensive measuring device in order to separate with high accuracy.
一方、本実施例では、任意の2種類の電流値を用いて診断することで、サンプリング速度、計測するデータ長を上げずとも、回転機の診断を可能とする。
On the other hand, in this embodiment, diagnosis can be made by using any two types of current values, without increasing the sampling speed and the data length to be measured.
図4に正常状態のU相とW相の電流波形、つまり、うねりのない50Hzの正弦波を示す。U相とW相の電流は120度位相がずれている。一方、図5に、図3同様、側帯波が発生した場合におけるU相とW相の電流波形の概念図を示す。サンプリング速度は100Hzでデータ計測時間は1秒である。
Fig. 4 shows normal U-phase and W-phase current waveforms, that is, a 50 Hz sine wave without undulations. The U-phase and W-phase currents are 120 degrees out of phase. On the other hand, FIG. 5 shows a conceptual diagram of U-phase and W-phase current waveforms when sidebands are generated, as in FIG. The sampling rate is 100 Hz and the data measurement time is 1 second.
図4、図5のように、高速にサンプリングした結果得られるそれぞれの電流波形に基づき、U相電流を横軸に、W相電流を縦軸にとり、リサジュー図形の分布を描くと、図6のような分布となる。図6aは図4に基づく正常状態の例、図6bは図5に基づく回転機等の劣化による側帯波が発生した場合の概念図である。図6a,bの比較により、劣化した状態では、正常状態に比してリサジュー図形の分布が太くなっており、劣化進行の傾向としてリサジュー図形の分布の太さが変化することが分かる。
As shown in FIGS. 4 and 5, based on the respective current waveforms obtained as a result of sampling at high speed, the U-phase current is plotted on the horizontal axis and the W-phase current is plotted on the vertical axis. The distribution is as follows. 6A is an example of a normal state based on FIG. 4, and FIG. 6B is a conceptual diagram when a sideband wave is generated due to deterioration of a rotating machine or the like based on FIG. 6A and 6B, it can be seen that in the deteriorated state, the distribution of the Lissajous figure is thicker than that in the normal state, and the thickness of the Lissajous figure distribution changes as the tendency of deterioration progresses.
図7に、サンプリング速度4.975Hzで得たU相、W相電流で、正常および劣化状態のそれぞれについてリサジュー図形の分布を作成した例(図7a:正常、図7b:劣化)を示す。計測するデータ長は1000点で、図6とデータ長を揃えた。図6と図7はほぼ同じリサジュー図形の分布となった。
FIG. 7 shows an example (FIG. 7a: normal, FIG. 7b: deterioration) in which Lissajous figure distributions are created for normal and deteriorated states using U-phase and W-phase currents obtained at a sampling rate of 4.975 Hz. The data length to be measured is 1000 points, and the data length is the same as in Figure 6. 6 and 7 show almost the same Lissajous figure distribution.
従って、二相のデータの分布で評価することで、サンプリング速度に関わらず、劣化を検知することができた。劣化状態と正常状態の差異は、リサジュー図形の分布を人の目で確認しても良いし、リサジュー図形の分布の差異を機械学習等の手法で数値化し比較しても良い。つまり、本実施例によれば、高速サンプリングを行う場合のみならず、遅いサンプリング周波数のいずれの場合であっても、容易にうねりの発生を検知できる。
Therefore, it was possible to detect deterioration regardless of the sampling rate by evaluating the distribution of two-phase data. Regarding the difference between the deteriorated state and the normal state, the distribution of the Lissajous figure may be confirmed by human eyes, or the difference in the distribution of the Lissajous figure may be digitized and compared by a method such as machine learning. That is, according to the present embodiment, it is possible to easily detect the occurrence of undulation not only in the case of performing high-speed sampling but also in any case of a slow sampling frequency.
なお、サンプリング速度を遅くする場合は、基本波周波数と非同期で計測することが望ましい。具体的には、基本波の整数倍の周期を有するサンプリング速度では、常にある位相のみの値を取得するため、ある特定位相にのみ変化が現れる劣化の場合に失報の危険がある。従って、サンプリング速度が基本波の周期の整数倍とは異なる周波数であることが望ましい。その結果、高サンプリング速度でデータを取得した場合と同様の診断用の分布図を取得することができる。
Note that when the sampling speed is slow, it is desirable to measure asynchronously with the fundamental frequency. Specifically, at a sampling rate having a period that is an integral multiple of the fundamental wave, a value of only a certain phase is always obtained, and there is a risk of false alarm in the case of deterioration in which a change appears only in a specific phase. Therefore, it is desirable that the sampling rate is a frequency different from an integral multiple of the fundamental wave period. As a result, a distribution map for diagnosis similar to the case where data is acquired at a high sampling rate can be acquired.
また、高周波の情報を取得するためには、電力変換装置のスイッチングのタイミングと非同期で計測することが望ましい。
Also, in order to acquire high frequency information, it is desirable to measure asynchronously with the switching timing of the power converter.
さらに、リサジュー図形の点同士を線で時系列順に塗りつぶす(リサジュー図形の軌跡)と、リサジュー図形の分布の内部が線で塗りつぶされ、正常状態と劣化状態の差異が見えなくなる恐れがあるため、時系列順に線を繋いで軌跡として表示しないことが望ましい。
Furthermore, if the Lissajous figure points are filled in time-sequential order with lines (Lissajous figure trajectory), the inside of the Lissajous figure distribution will be filled with lines, and the difference between the normal state and the deteriorated state may not be visible. It is desirable not to display the trajectory by connecting the lines in series order.
診断部10は、上記の結果を出力する。診断結果をユーザーに伝える手段としては適宜選択可能であり、ユーザーへの伝達方法としては、ディスプレーによる表示の他、ランプの点灯、メールでの通知等が挙げられる。その内容も、(1)リサジュー図形の分布を画面に表示してユーザーに対応有無を判断させる方法、(2)リサジュー図形の分布の差異を何らかの方法で数値化しユーザーに伝える方法、(3)予め定めた閾値を超えた場合にユーザー通知する方法、等が考えられる。
The diagnosis unit 10 outputs the above result. Means for transmitting the diagnosis result to the user can be selected as appropriate. Examples of the method for transmitting to the user include display of a display, lighting of a lamp, notification by e-mail, and the like. The contents are also (1) a method for displaying the distribution of Lissajous figures on the screen and allowing the user to determine whether or not it is compatible, (2) a method for quantifying the difference in the distribution of Lissajous figures in some way and telling the user (3) in advance A method of notifying the user when a predetermined threshold is exceeded can be considered.
上記(2)のリサジュー図形の分布の差異を数値化する方法としては、機械学習の適用が考えられる。機械学習のアルゴリズムとしては、リサジュー図形の差異が明確になるものを選べば良く、例えば局所部分空間法が挙げられる。局所部分空間法では、診断対象のリサジュー図形の分布における点全てに対して、正常状態として定義したリサジュー図形の分布の中から一番近い点を2点選び、その2点を結んだ直線と診断対象の点の間の距離で劣化具合を定義する方法である。
As a method of quantifying the difference in the distribution of Lissajous figures in (2) above, machine learning can be applied. As an algorithm for machine learning, an algorithm that makes the difference between Lissajous figures clear should be selected. For example, a local subspace method can be cited. In the local subspace method, for all the points in the distribution of the Lissajous figure to be diagnosed, two closest points are selected from the distribution of the Lissajous figure defined as normal, and the straight line connecting the two points is diagnosed. In this method, the degree of deterioration is defined by the distance between target points.
診断対象の全ての点について距離を計算しリサジュー図形の分布の変化を数値化する方法の他、診断対象の全ての点の距離の平均値、特定位相の点のみの距離で数値化する等、電流波形のバラつき誤差に応じて任意の評価手法を選択することができる。また、計算速度を優先したい場合には、ベクトル量子化クラスタリングや、K-meansクラスタリング等のクラスタリング手法を用いることができる。また、大量のデータを元に自動的に特徴量を見つける方法である、ディープニューラルネットワークと呼ばれる手法を適用することができる。
In addition to the method of calculating the distance for all points to be diagnosed and digitizing the change in the distribution of the Lissajous figure, the average value of the distances of all the points to be diagnosed, the number of only the points of the specific phase, etc. An arbitrary evaluation method can be selected according to the variation error of the current waveform. When priority is given to the calculation speed, a clustering method such as vector quantization clustering or K-means clustering can be used. In addition, a technique called a deep neural network, which is a method for automatically finding feature quantities based on a large amount of data, can be applied.
次に、制御パターンが変化する場合について述べる。制御パターンが変化した場合はモータの基本波周波数やトルク等が変化するため、従来手法ではこれを異常と診断する場合があった。また、制御パターンが変化した状態も含めて正常状態として学習させると、劣化による変化を見逃し失報する場合があった。従って、制御パターンごとに正常および異常を診断することが望ましい。
Next, the case where the control pattern changes will be described. When the control pattern changes, the fundamental frequency, torque, etc. of the motor change. Therefore, the conventional method sometimes diagnoses this as an abnormality. Further, when learning is performed as a normal state including a state in which the control pattern is changed, a change due to deterioration may be overlooked and reported. Therefore, it is desirable to diagnose normality and abnormality for each control pattern.
本実施例では、制御部の制御指令と、電流情報とを組み合わせ、診断精度の向上を図った。制御指令が同じ状態として分類されたU相およびW相の電流で描かれたリサジュー図形の分布を基に、診断部10でモータシステムの状態を診断するため、図1に記載の通り、分類部6を設けた。以下、分類部6と診断部10を組み合わせた機能を説明する。
In this example, the control command of the control unit and the current information were combined to improve the diagnostic accuracy. Since the diagnosis unit 10 diagnoses the state of the motor system based on the distribution of Lissajous figures drawn with the currents of the U phase and the W phase classified as the same state as the control command, the classification unit as shown in FIG. 6 was provided. Hereinafter, the function combining the classification unit 6 and the diagnosis unit 10 will be described.
制御指令としては、電圧指令値、電流指令値、励磁電流指令値、トルク電流指令値、速度指令値、周波数指令値等など、電力変換装置7が出力可能な指令値の中から任意に選ぶことができる。分類部10では電力変換装置7が出力可能な指令値全てを必ずしも使用する必要は無く、検知対象の劣化に対する感度が高い指令値のみを用いることができる。感度が高い指令値とは、劣化状態におけるリサジュー図形の分布と、正常状態におけるリサジュー図形の分布を比較し、劣化状態と正常状態の差が見えやすくなるように選べばよい。
As the control command, a voltage command value, a current command value, an excitation current command value, a torque current command value, a speed command value, a frequency command value, and the like can be arbitrarily selected from command values that can be output by the power converter 7 Can do. The classification unit 10 does not necessarily need to use all command values that can be output by the power conversion device 7, and can use only command values that are highly sensitive to the deterioration of the detection target. The command value with high sensitivity may be selected so that the difference between the deteriorated state and the normal state can be easily seen by comparing the distribution of the Lissajous figure in the deteriorated state with the distribution of the Lissajous figure in the normal state.
以下、制御指令として電圧指令値と周波数指令値の異なる制御指令Aと制御指令Bの2条件でモータを駆動した際の電流波形の模式図をもとに、分類部6と診断部10の動作を説明する。
Hereinafter, the operation of the classification unit 6 and the diagnosis unit 10 based on the schematic diagram of the current waveform when the motor is driven under the two conditions of the control command A and the control command B having different voltage command values and frequency command values as control commands. Will be explained.
分類部6は、電流計測部9より得られた電流情報を、制御部8より得られる制御指令値(制御指令Aと制御指令B)により振り分ける。分類部6の振り分けに基づき、診断部10では、約1分間隔で電流情報および指令値情報を保存し、制御指令値毎のリサジュー図形の分布図を作成する。
The classification unit 6 distributes the current information obtained from the current measurement unit 9 according to control command values (control command A and control command B) obtained from the control unit 8. Based on the distribution of the classification unit 6, the diagnosis unit 10 stores current information and command value information at intervals of about 1 minute, and creates a Lissajous figure distribution map for each control command value.
図8に、各制御指令で分類した正常および劣化状態のリサジュー図形の分布を示す。図8a、図8cは制御指令A、図8b,図8dは制御指令Bにおけるリサジュー図形の分布を描いた結果である。図8a、図8bの比較により明らかなとおり制御指令Aと制御指令Bの場合では、正常状態であっても、得られるリサジュー図形が異なる。従って、単に制御指令Aの正常状態(図8a)を正常と学習しただけでは、制御指令が異なる制御指令Bにおけるリサジュー図形の分布(図8b)となった際、変化を劣化による変化と誤報を出してしまう。そこで、分類部において制御情報をもとに電流波形を分類することで、誤報を抑えることができる。
Figure 8 shows the distribution of normal and deteriorated Lissajous figures classified by each control command. 8a and 8c show the result of drawing the distribution of the Lissajous figure in the control command A, and FIGS. 8b and 8d in the control command B. FIG. As apparent from the comparison between FIG. 8a and FIG. 8b, in the case of the control command A and the control command B, the obtained Lissajous figure is different even in the normal state. Therefore, when the normal state of the control command A (FIG. 8a) is learned as normal, when the control command becomes a distribution of the Lissajous figure in the different control command B (FIG. 8b), the change is erroneously reported as a change due to deterioration. I will put it out. Therefore, misclassification can be suppressed by classifying the current waveform based on the control information in the classification unit.
分類部で、電流計測部より取得した電流情報を、制御指令Aに関連付けられるものと制御指令Bに関連付けられるものに振り分け、制御指令Aと制御指令Bのそれぞれに対し、正常状態と劣化状態の2種類のリサジュー図形の分布を描いた結果、制御指令Aにおける正常(図8a)と劣化(図8c)を比較すると、リサジュー図形の分布に差が見られ劣化を検知できることが分かる。また、制御指令Bに着目し、制御指令Bにおける正常(図8b)と劣化(図8d)を比較すると、リサジュー図形の分布に差が見られ、劣化を検知できることが分かる。
In the classification unit, the current information acquired from the current measurement unit is divided into one associated with the control command A and one associated with the control command B. For each of the control command A and the control command B, a normal state and a deteriorated state are assigned. As a result of drawing the distribution of two types of Lissajous figures, comparing normal (FIG. 8a) and deterioration (FIG. 8c) in control command A, it can be seen that there is a difference in the distribution of Lissajous figures and that the deterioration can be detected. Further, when focusing on the control command B and comparing normal (FIG. 8b) and degradation (FIG. 8d) in the control command B, it can be seen that there is a difference in the distribution of the Lissajous figure and that the degradation can be detected.
次に、図8aの制御指令A 正常を正常状態として学習した結果に基づき、制御指令Aのときに得られた診断対象データXを評価する場合を例に、リサジュー図形の変化を数値化する方法について述べる。
Next, a method for quantifying the change of the Lissajous figure, taking as an example the case where the diagnosis object data X obtained at the time of the control command A is evaluated based on the result of learning that the control command A normal in FIG. Is described.
図9はリサジュー図形のうち、診断対象のデータX(制御指令A 正常または劣化)の付近の学習データY(制御指令A 正常)を示す。診断対象のデータX(制御指令A 正常または劣化)のデータと1番目に近い学習データY1(制御指令A 正常)のデータと、2番目に近い学習データY2(制御指令A 正常)のデータを探し、Y1、Y2のデータを結んだ直線と、診断対象のデータX(制御指令A 正常または劣化)のデータとの間の距離で異常度を定義した。
Fig. 9 shows learning data Y (control command A normal) in the vicinity of the data X to be diagnosed (control command A normal or degraded) in the Lissajous figure. Search for data X (control command A normal or degraded), diagnosis data Y1 (control command A normal) closest to the data to be diagnosed, and learning data Y2 (control command A normal) closest to the second The degree of abnormality was defined by the distance between the straight line connecting the data of Y1, Y2 and the data of the diagnosis target data X (control command A normal or deteriorated).
上記内容を計測したデータ長分だけ実施することで、診断対象のデータ群X1~n(制御指令A 正常または劣化)の学習データ群Yに対する異常度を数値化することができる。
¡By performing the above contents for the measured data length, the degree of abnormality of the diagnosis target data group X1 to n (control command A normal or degraded) with respect to the learning data group Y can be quantified.
図10に、正常状態と異常状態の診断結果の判定および評価結果を示す。制御指令Aで正常な電流データの異常度の平均値と、制御指令Aで機器が劣化した場合の電流データの異常度の平均値を示す。劣化により、異常度の平均値が増加する。事前の検討により、予め閾値を定めておけば、異常度の増加、つまり劣化の進行をユーザーに表示することができる。
Fig. 10 shows the determination and evaluation results of the diagnosis results for the normal state and the abnormal state. An average value of the degree of abnormality of normal current data by the control command A and an average value of the degree of abnormality of current data when the device is deteriorated by the control command A are shown. The average value of the degree of abnormality increases due to deterioration. If a threshold value is set in advance by prior examination, an increase in the degree of abnormality, that is, the progress of deterioration can be displayed to the user.
なお、実施例1では、特定の周波数にスペクトルが発生した場合について説明したが、特定の周波数にスペクトルが発生しない種類の劣化であっても、劣化によりモータの負荷やインピーダンス変化により電流に何らかの変化が現れるため、実施例1の診断装置および診断方法により検知することができる。特定周波数スペクトルの変化として現れない劣化としては、具体的には、MCSAで検知可能な特定周波数のピークとして変化が現れる劣化以外の劣化、つまりグリス劣化や絶縁材の熱劣化および吸湿のようなものが想定される。
In the first embodiment, the case where a spectrum is generated at a specific frequency has been described. However, even if the type of deterioration does not generate a spectrum at a specific frequency, some change in current occurs due to the load or impedance change of the motor due to the deterioration. Therefore, it can be detected by the diagnostic apparatus and diagnostic method of the first embodiment. Deterioration that does not appear as a change in the specific frequency spectrum is specifically deterioration other than the deterioration that appears as a peak at the specific frequency that can be detected by MCSA, that is, grease deterioration, thermal deterioration of insulation, and moisture absorption. Is assumed.
また、実施例1の診断装置によれば、モータの他、ケーブルや電力変換装置、負荷など、モータと電気的または機械的に接続された機器を含むモータシステムの診断も可能である。モータと接続された周辺機器を含むモータシステムでは、モータ以外の周辺機器の故障や劣化であっても、それらの機器のインピーダンスや負荷が変化することで、モータに流れる電流が変化するため、本手法により劣化を検知することができる。
Further, according to the diagnostic apparatus of the first embodiment, it is possible to diagnose a motor system including a motor, a cable, a power converter, a load, and other devices electrically or mechanically connected to the motor. In motor systems that include peripheral devices connected to the motor, even if a peripheral device other than the motor fails or deteriorates, the current flowing through the motor changes due to changes in the impedance and load of those devices. Deterioration can be detected by a technique.
図11は、指令部13を備える診断システムの例である。指令部13は、制御部8に制御指令を設定し、変更を行う。実施例1では制御部8の情報を分類部に入力し診断していたが、制御部8より得られる制御指令値とともに、もしくは制御指令値に替えて、指令部13の情報を分類部に入力し、診断しても良い。図11に示すように、回転させる負荷が複数種類存在するなどの情報、時間による制御指令値の変更等が指令部13に記憶されている場合、指令部13の情報を分類部に入力し、診断しても良い。これにより、診断精度を向上することができる。
FIG. 11 is an example of a diagnostic system including a command unit 13. The command unit 13 sets a control command in the control unit 8 and changes it. In the first embodiment, the information of the control unit 8 is input to the classification unit and diagnosed. However, the information of the command unit 13 is input to the classification unit together with the control command value obtained from the control unit 8 or instead of the control command value. And may be diagnosed. As shown in FIG. 11, when information such as the presence of multiple types of loads to be rotated, changes in control command values according to time, etc. are stored in the command unit 13, the information of the command unit 13 is input to the classification unit, You may make a diagnosis. Thereby, diagnostic accuracy can be improved.
実施例1、実施例2では、1つの電力変換装置7に対し、1つのモータ3が接続されている例について説明した。実施例3では、図12に示すように、1つの電力変換装置7に対し、複数のモータ3が接続されている例について説明する。
In Example 1 and Example 2, an example in which one motor 3 is connected to one power conversion device 7 has been described. In Example 3, as shown in FIG. 12, an example in which a plurality of motors 3 are connected to one power conversion device 7 will be described.
図12では、電力変換装置内の電流センサにより、全体の負荷電流を測定した結果を用いて診断を行う。診断の方法は1つの回転機が接続されている場合と同等であり、制御指令値を用いた分類や、指令値情報の反映とともに、測定した診断データをリサジュー図形の分布として診断する。
In FIG. 12, diagnosis is performed using the result of measuring the entire load current by the current sensor in the power converter. The diagnosis method is the same as when one rotating machine is connected, and the diagnosis data is diagnosed as a Lissajous figure distribution along with classification using control command values and reflection of command value information.
なお、複数の回転機の電流信号を一の負荷電流として診断するため、劣化したモータの電流波形の変化が、その他の複数台のモータの電流波形により薄まってしまうため、機械学習、特に局所部分空間法によりリサジュー図形の分布の変化を評価することが望ましい。
In addition, since the current signals of multiple rotating machines are diagnosed as one load current, the change in the current waveform of the deteriorated motor is diminished by the current waveforms of the other multiple motors. It is desirable to evaluate the change of Lissajous figure distribution by the spatial method.
実施例1ないし3では電力変換装置内の電流センサおよび電流計測部を使用していたが、図13に示す通り、電力変換装置とは別に用意した電流センサ4a、4bおよび電流計測部9を使用しても本発明による効果を得ることができる。高いサンプリング速度での長時間データ計測に対応する必要が無いため、安価な汎用の計測機器を使用することができる。
In the first to third embodiments, the current sensor and the current measurement unit in the power converter are used. However, as shown in FIG. 13, the current sensors 4a and 4b and the current measurement unit 9 prepared separately from the power converter are used. Even so, the effect of the present invention can be obtained. Since it is not necessary to support long-term data measurement at a high sampling rate, an inexpensive general-purpose measuring device can be used.
なお、第3実施例において、図12では、複数のモータと一の電力変換装置を接続した場合に、電力変換装置内の電流センサおよび電流計測部を使用しているが、複数のモータのそれぞれに電流センサを設けてもよい。また、モータと電力変換装置とが接続される位置に、電力変換装置と独立した電流センサを設け、全体の負荷電流を測定することとしてもよい。
In the third embodiment, in FIG. 12, when a plurality of motors and one power conversion device are connected, the current sensor and the current measurement unit in the power conversion device are used. A current sensor may be provided. Moreover, it is good also as providing the current sensor independent of a power converter device in the position where a motor and a power converter device are connected, and measuring the whole load current.
また、複数のモータの負荷電流を複数の電流センサで測定する場合には、それぞれの回転機毎に分類部・診断部を設けることも、複数のセンサ情報を一の分類部・診断部で診断処理することも可能である。
In addition, when measuring the load currents of multiple motors with multiple current sensors, a classification unit / diagnostic unit can be provided for each rotating machine, or multiple sensor information can be diagnosed with a single classification unit / diagnostic unit. It is also possible to process.
実施例5は、零相電流、および二相の負荷電流それぞれに、3つの電流センサを設置する例について説明する。実施例1ないし4では2つの電流センサの情報をもとにモータシステムの状態を診断していたが、図14に示すように3つ以上の電流センサの情報をもとにリサジュー図形の分布を得ても良い。この場合、分布の比較をする場合には、3つ以上の電流センサから2個を選んだ複数の組合せでリサジュー図形の分布を得て評価することができる。
Example 5 describes an example in which three current sensors are installed for each of a zero-phase current and a two-phase load current. In the first to fourth embodiments, the state of the motor system is diagnosed based on the information of the two current sensors, but as shown in FIG. 14, the distribution of the Lissajous figure is based on the information of three or more current sensors. You may get. In this case, when comparing the distributions, it is possible to obtain and evaluate a Lissajous figure distribution by a plurality of combinations of two selected from three or more current sensors.
また、3つ以上の電流センサを直行する軸に取り、機械学習、例えば局所部分空間法により3次元以上の次元の空間におけるリサジュー図形の分布の変化を評価することができる。
Also, it is possible to evaluate changes in the distribution of Lissajous figures in three or more dimensional spaces using machine learning, for example, the local subspace method, by taking three or more current sensors as orthogonal axes.
電流センサで計測する電流値としては、3相交流の回転機の場合、U相、V相、W相のそれぞれの負荷電流の他、3相分をクランプして計測した零相電流、任意に選んだ2相をクランプして計測した2相の電流、モータの巻線の巻き始めと巻き終わりの両方をクランプして計測した漏れ電流、モータから対地に流れる電流など、複数を設定できる。このようにすることで、劣化のメカニズムごとに感度の高い電流センサの位置を選択できる。例えば、負荷電流では軸受劣化、零相電流では絶縁劣化が感度よく検出できる。劣化原因に対し、診断感度が高くなる電流を任意に選定し、その位置に電流センサを設置すれば良い。
The current value measured by the current sensor, in the case of a three-phase AC rotating machine, in addition to the U-phase, V-phase, and W-phase load currents, as well as the zero-phase current measured by clamping three phases Two or more currents can be set, such as two-phase current measured by clamping the selected two phases, leakage current measured by clamping both the winding start and end of the motor winding, and current flowing from the motor to the ground. By doing in this way, the position of a highly sensitive current sensor can be selected for each degradation mechanism. For example, bearing deterioration can be detected with high sensitivity at load current, and insulation deterioration can be detected with zero-phase current. What is necessary is just to select arbitrarily the electric current which raises diagnostic sensitivity with respect to the cause of deterioration, and to install a current sensor in the position.
1 電源
2 ケーブル
3 モータ
4a、4b、4c 電流センサ
5 抽出部
6 分類部
7 電力変換装置
8 制御部
9 電流計測部
10 診断部
11 電流計測部
12 診断部
13 司令部
14 従来の診断装置 DESCRIPTION OFSYMBOLS 1 Power supply 2 Cable 3 Motor 4a, 4b, 4c Current sensor 5 Extraction part 6 Classification | category part 7 Power converter 8 Control part 9 Current measurement part 10 Diagnosis part 11 Current measurement part 12 Diagnosis part 13 Command part 14 Conventional diagnostic apparatus
2 ケーブル
3 モータ
4a、4b、4c 電流センサ
5 抽出部
6 分類部
7 電力変換装置
8 制御部
9 電流計測部
10 診断部
11 電流計測部
12 診断部
13 司令部
14 従来の診断装置 DESCRIPTION OF
Claims (12)
- 回転機の少なくとも二ヶ所に流れる電流を計測する電流計測部と、
前記電流計測部より出力される電流データに基づき前記回転機および前記回転機に電気的または機械的に接続された周辺機器の状態を診断する診断部と、
を備える回転機システムの診断装置であって、
前記診断部は、前記電流計測部で得られた二種類の電流データを複数周期重ねてリサジュー図形の分布図を作成し、前記分布図の評価結果より回転機システムの状態を診断することを特徴とする回転機システムの診断装置。 A current measuring unit that measures current flowing in at least two locations of the rotating machine;
A diagnostic unit for diagnosing the state of the rotating machine and peripheral devices electrically or mechanically connected to the rotating machine based on current data output from the current measuring unit;
A diagnostic device for a rotating machine system comprising:
The diagnostic unit creates a Lissajous figure distribution diagram by overlapping a plurality of periods of the two types of current data obtained by the current measurement unit, and diagnoses the state of the rotating machine system from the evaluation result of the distribution diagram. Diagnostic equipment for rotating machine system. - 請求項1における回転機システムの診断装置において、
前記回転機と電気的に接続され前記回転機に流れる電流を制御する電力変換装置の指令値情報ごとに、前記電流データを分類する分類部を備え、
前記診断部は、前記分類部で分類された少なくとも二相の電流データを用いることを特徴とする回転機システムの診断装置。 In the diagnostic apparatus for a rotating machine system according to claim 1,
A classification unit that classifies the current data for each command value information of a power conversion device that is electrically connected to the rotating machine and controls a current flowing through the rotating machine,
The diagnostic device for a rotating machine system, wherein the diagnostic unit uses at least two-phase current data classified by the classification unit. - 請求項1または2における回転機システムの診断装置において、
前記診断部は、前記作成されたリサジュー図形の分布を、予め正常状態として設定したリサジュー図形の分布と比較し、異常の有無を診断することを特徴とする回転機システムの診断装置。 In the diagnostic apparatus for a rotating machine system according to claim 1 or 2,
The diagnostic unit compares the created Lissajous figure distribution with a Lissajous figure distribution set as a normal state in advance, and diagnoses the presence or absence of an abnormality. - 請求項3における回転機システムの診断装置において、
前記診断部は、前記予め正常状態として設定したリサジュー図形の分布に対する前記作成されたリサジュー図形の分布の変化を数値化し、診断することを特徴とする回転機システムの診断装置。 In the diagnostic apparatus for a rotating machine system according to claim 3,
The diagnostic device for a rotating machine system, wherein the diagnosis unit quantifies and diagnoses a change in the distribution of the created Lissajous figure with respect to the distribution of the Lissajous figure set as a normal state in advance. - 請求項1ないし4のいずれかにおける回転機システムの診断装置において、
前記電流計測部は、前記回転機と電気的に接続され、前記回転機に流れる電流を制御する電力変換装置内に設けられていることを特徴とする回転機システムの診断装置。 In the diagnostic apparatus for a rotating machine system according to any one of claims 1 to 4,
The diagnostic device for a rotating machine system, wherein the current measuring unit is provided in a power converter that is electrically connected to the rotating machine and controls a current flowing through the rotating machine. - 請求項1ないし5のいずれかにおける回転機システムの診断装置において、
前記電流計測部は、前記回転機の基本波の周期の整数倍とは異なる周波数で電流データを計測することを特徴とする回転機システムの診断装置。 In the diagnostic apparatus for a rotating machine system according to any one of claims 1 to 5,
The diagnostic apparatus for a rotating machine system, wherein the current measuring unit measures current data at a frequency different from an integer multiple of a fundamental wave period of the rotating machine. - 一または複数の回転機と、前記回転機と電気的に接続され、前記回転機に流れる電流を制御する電力変換装置とを備える回転機システムの診断方法であって、
前記回転機の少なくとも2か所に流れる電流を計測し、
前記計測された電流データを前記電力変換装置の指令値情報ごとに分類し、
前記指令値情報ごとに、分類された電流データを複数周期分重ねてリサジュー図形の分布図作成し、
前記作成されたリサジュー図形の分布図に基づき前記回転機システムの状態を診断する、
ことを特徴とする回転機システムの診断方法。 A diagnostic method for a rotating machine system comprising: one or a plurality of rotating machines; and a power conversion device that is electrically connected to the rotating machines and controls a current flowing through the rotating machines,
Measure the current flowing in at least two places of the rotating machine,
Classifying the measured current data for each command value information of the power converter,
For each of the command value information, create a Lissajous figure distribution map by overlapping the classified current data for a plurality of periods,
Diagnosing the state of the rotating machine system based on the created Lissajous figure distribution map;
A diagnostic method for a rotating machine system. - 請求項7における回転機システムの診断方法において、
少なくとも二相の電流データを用いることを特徴とする回転機システムの診断方法。 In the diagnostic method of the rotating machine system in Claim 7,
A diagnostic method for a rotating machine system, characterized by using at least two-phase current data. - 請求項7における回転機システムの診断方法において、
前記診断は、前記作成されたリサジュー図形の分布を、予め正常状態として設定したリサジュー図形の分布と比較することを特徴とする回転機システムの診断方法。 In the diagnostic method of the rotating machine system in Claim 7,
The diagnosis includes comparing the created Lissajous figure distribution with a Lissajous figure distribution set in a normal state in advance. - 請求項9における回転機システムの診断方法において、
前記診断は、前記予め正常状態として設定したリサジュー図形の分布に対する前記作成されたリサジュー図形の分布の変化を数値化することを特徴とする回転機システムの診断方法。 In the diagnosis method of the rotating machine system according to claim 9,
The diagnostic method for a rotating machine system is characterized in that a change in the distribution of the created Lissajous figure with respect to the distribution of the Lissajous figure previously set as a normal state is quantified. - 請求項7における回転機システムの診断方法において、
前記電流データの計測は、前記回転機の基本波の周期の整数倍とは異なる周波数で行うことを特徴とする回転機システムの診断方法。 In the diagnostic method of the rotating machine system in Claim 7,
The method for diagnosing a rotating machine system, wherein the current data is measured at a frequency different from an integer multiple of a period of a fundamental wave of the rotating machine. - 一または複数の回転機と、前記回転機と電気的に接続され、前記回転機に流れる電流を制御する電力変換装置と、を備え、
前記電力変換装置は、前記回転機の少なくとも二ヶ所に流れる電流を計測する電流計測部と、前記回転機の制御を行う指令値を出力する制御部とを有する回転機システムであって、
前記回転機に電気的または機械的に接続された機器の状態を診断する診断部と、
前記電流計測部より出力され、前記診断部に入力される電流データを前記指令値ごとに分類する分類部とをさらに備え、
前記診断部は、前記回転機の電流データを、少なくとも二相かつ複数周期分重ねて得られるリサジュー図形の分布を作成すること、を特徴とする回転機システム。 One or a plurality of rotating machines, and a power conversion device that is electrically connected to the rotating machines and controls a current flowing through the rotating machines,
The power converter is a rotating machine system having a current measuring unit that measures current flowing in at least two locations of the rotating machine, and a control unit that outputs a command value for controlling the rotating machine,
A diagnostic unit for diagnosing the state of equipment electrically or mechanically connected to the rotating machine;
A classification unit that classifies current data output from the current measurement unit and input to the diagnosis unit for each command value;
The diagnostic unit creates a Lissajous figure distribution obtained by superimposing current data of the rotating machine for at least two phases and a plurality of cycles.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/008303 WO2018158910A1 (en) | 2017-03-02 | 2017-03-02 | Diagnostic device and diagnostic method |
TW107106931A TWI665458B (en) | 2017-03-02 | 2018-03-02 | Diagnostic device and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/008303 WO2018158910A1 (en) | 2017-03-02 | 2017-03-02 | Diagnostic device and diagnostic method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018158910A1 true WO2018158910A1 (en) | 2018-09-07 |
Family
ID=63370653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/008303 WO2018158910A1 (en) | 2017-03-02 | 2017-03-02 | Diagnostic device and diagnostic method |
Country Status (2)
Country | Link |
---|---|
TW (1) | TWI665458B (en) |
WO (1) | WO2018158910A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113227751A (en) * | 2019-01-11 | 2021-08-06 | 松下知识产权经营株式会社 | Diagnostic system, diagnostic method, program, and recording medium |
US11372048B2 (en) * | 2019-11-29 | 2022-06-28 | Hitachi, Ltd. | Diagnostic device and diagnostic method |
US11708816B2 (en) * | 2020-04-28 | 2023-07-25 | Mitsubishi Heavy Industries, Ltd. | Condition monitoring device and condition monitoring method for wind turbine power generating apparatus |
WO2023176039A1 (en) * | 2022-03-17 | 2023-09-21 | 三菱電機株式会社 | Equipment diagnostic device and equipment diagnostic system |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7198089B2 (en) * | 2019-01-10 | 2022-12-28 | 株式会社日立産機システム | POWER CONVERTER, ROTATING MACHINE SYSTEM, AND DIAGNOSTIC METHOD |
JP7218239B2 (en) * | 2019-04-26 | 2023-02-06 | 株式会社日立製作所 | Electric machine diagnostic method and diagnostic device, and rotary electric machine |
US20240385082A1 (en) * | 2021-12-24 | 2024-11-21 | Hitachi Industrial Equipment Systems Co., Ltd. | Management Device for Power Transmission Mechanism, Management Method for Power Transmission Mechanism, and Management System |
JP7592577B2 (en) * | 2021-12-27 | 2024-12-02 | 株式会社神戸製鋼所 | Rolling bearing abnormality detection device and rolling bearing abnormality detection method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0974794A (en) * | 1995-09-05 | 1997-03-18 | Toyota Motor Corp | Abnormality detection device for control circuit of ac motor |
JP2003274691A (en) * | 2002-03-14 | 2003-09-26 | Jfe Steel Kk | Method and device for detecting abnormality of rotor in ac motor |
JP2005251185A (en) * | 2004-02-05 | 2005-09-15 | Toenec Corp | Electric equipment diagnostic system |
JP2010288352A (en) * | 2009-06-10 | 2010-12-24 | Nippon Steel Corp | Equipment abnormality diagnosis method |
JP2011075522A (en) * | 2009-10-02 | 2011-04-14 | Jfe Mechanical Co Ltd | Diagnostic apparatus of facility equipment |
EP2851698A1 (en) * | 2013-09-18 | 2015-03-25 | ABB Technology Ltd | A method for detecting a fault in an electrical machine |
JP2015227889A (en) * | 2015-08-10 | 2015-12-17 | 株式会社高田工業所 | Abnormal diagnosis method for rotating machinery |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4184827A (en) * | 1975-12-16 | 1980-01-22 | General Electric Company | Apparatus for monitoring and controlling the operation of a dual platen press |
US6986649B2 (en) * | 2003-04-09 | 2006-01-17 | Motorola, Inc. | Micropump with integrated pressure sensor |
-
2017
- 2017-03-02 WO PCT/JP2017/008303 patent/WO2018158910A1/en active Application Filing
-
2018
- 2018-03-02 TW TW107106931A patent/TWI665458B/en active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0974794A (en) * | 1995-09-05 | 1997-03-18 | Toyota Motor Corp | Abnormality detection device for control circuit of ac motor |
JP2003274691A (en) * | 2002-03-14 | 2003-09-26 | Jfe Steel Kk | Method and device for detecting abnormality of rotor in ac motor |
JP2005251185A (en) * | 2004-02-05 | 2005-09-15 | Toenec Corp | Electric equipment diagnostic system |
JP2010288352A (en) * | 2009-06-10 | 2010-12-24 | Nippon Steel Corp | Equipment abnormality diagnosis method |
JP2011075522A (en) * | 2009-10-02 | 2011-04-14 | Jfe Mechanical Co Ltd | Diagnostic apparatus of facility equipment |
EP2851698A1 (en) * | 2013-09-18 | 2015-03-25 | ABB Technology Ltd | A method for detecting a fault in an electrical machine |
JP2015227889A (en) * | 2015-08-10 | 2015-12-17 | 株式会社高田工業所 | Abnormal diagnosis method for rotating machinery |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113227751A (en) * | 2019-01-11 | 2021-08-06 | 松下知识产权经营株式会社 | Diagnostic system, diagnostic method, program, and recording medium |
CN113227751B (en) * | 2019-01-11 | 2024-06-04 | 松下知识产权经营株式会社 | Diagnostic system, diagnostic method, program, and recording medium |
US11372048B2 (en) * | 2019-11-29 | 2022-06-28 | Hitachi, Ltd. | Diagnostic device and diagnostic method |
US11708816B2 (en) * | 2020-04-28 | 2023-07-25 | Mitsubishi Heavy Industries, Ltd. | Condition monitoring device and condition monitoring method for wind turbine power generating apparatus |
WO2023176039A1 (en) * | 2022-03-17 | 2023-09-21 | 三菱電機株式会社 | Equipment diagnostic device and equipment diagnostic system |
JP7580658B2 (en) | 2022-03-17 | 2024-11-11 | 三菱電機株式会社 | Equipment diagnostic device and equipment diagnostic system |
Also Published As
Publication number | Publication date |
---|---|
TW201835598A (en) | 2018-10-01 |
TWI665458B (en) | 2019-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018158910A1 (en) | Diagnostic device and diagnostic method | |
US7081760B2 (en) | Method of diagnosing a broken bar fault in an induction motor | |
Mehrjou et al. | Rotor fault condition monitoring techniques for squirrel-cage induction machine—A review | |
EP2743669B1 (en) | Fault detection system and associated method | |
US8536839B2 (en) | Device and method for monitoring and/or analyzing rotors of electric machines in operation | |
JP6353694B2 (en) | Deterioration diagnosis system | |
KR101748559B1 (en) | Apparatus for inspecting rotating device and method thereof | |
JP6945371B2 (en) | Diagnostic equipment for rotating machine systems, power converters, rotating machine systems, and diagnostic methods for rotating machine systems. | |
EP3480610B1 (en) | Diagnosing a winding set of a stator | |
EP2728367A1 (en) | A method for detecting a fault condition in an electrical machine | |
JP2005251185A (en) | Electric equipment diagnostic system | |
He et al. | Diagnosis of stator winding short-circuit faults in an interior permanent magnet synchronous machine | |
KR102687049B1 (en) | Fault determining methods for the electronic motor using the wavelet transform | |
KR102133385B1 (en) | Artificial intelligence device providing induction motor real-time diagnostic service and operating method thereof | |
JPWO2020208743A1 (en) | Motor equipment abnormality diagnosis device, motor equipment abnormality diagnosis method, and motor equipment abnormality diagnosis system | |
CN113806876B (en) | Robot state judging method and device | |
US8368420B2 (en) | Method of error detection when controlling a rotating-field motor | |
JP2020114084A (en) | Electric power conversion device, rotating machine system, and diagnostic method | |
Bangura et al. | Comparison between characterization and diagnosis of broken bars/end-ring connectors and airgap eccentricities of induction motors in ASDs using a coupled finite element-state space method | |
JP6801144B2 (en) | Diagnostic device and diagnostic method | |
CN102621490B (en) | The situation inspection method of motor and motor characteristic testing fixture | |
Yang et al. | Condition monitoring and fault diagnosis of generators in power networks | |
US9223667B2 (en) | Method for identifying root cause failure in a multi-parameter self learning machine application model | |
JP7352371B2 (en) | diagnostic equipment | |
Vilhekar et al. | Application of double park's vector approach for detection of inter-turn fault in induction motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17899185 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17899185 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |