WO2018157333A1 - Procédé et système de traitement de mégadonnées - Google Patents
Procédé et système de traitement de mégadonnées Download PDFInfo
- Publication number
- WO2018157333A1 WO2018157333A1 PCT/CN2017/075334 CN2017075334W WO2018157333A1 WO 2018157333 A1 WO2018157333 A1 WO 2018157333A1 CN 2017075334 W CN2017075334 W CN 2017075334W WO 2018157333 A1 WO2018157333 A1 WO 2018157333A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- processing
- big data
- processing device
- load
- server
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000013480 data collection Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000012517 data analytics Methods 0.000 description 1
- 238000007418 data mining Methods 0.000 description 1
- 238000000802 evaporation-induced self-assembly Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
Definitions
- the present invention relates to the field of data processing, and in particular, to a method and system for processing big data.
- Big Data The strategic significance of big data technology is not to master huge data information, but to professionalize these meaningful data.
- big data the key to profitability in this industry is to increase the “processing capability” of the data and “add value” of the data through “processing”.
- Big data must not be processed by a single computer, and a distributed architecture must be used. It features distributed data mining for massive data. But it must rely on cloud computing for distributed processing, distributed databases and cloud storage, and virtualization technologies. With the advent of the cloud era, big data (Big Data) has also attracted more and more attention.
- Big Data (Big) Data) is often used to describe a large amount of unstructured data and semi-structured data created by a company that spends too much time and money when downloaded to a relational database for analysis. Big data analytics is often associated with cloud computing because real-time large dataset analysis requires a framework like MapReduce to distribute work to dozens, hundreds, or even thousands of computers.
- the existing big data processing is limited to the load balancing processing, and the processing of the same type of collecting equipment cannot be classified and processed, and the processing efficiency is low.
- the present application provides a method of processing big data. It solves the shortcomings of low efficiency of the technical solutions of the prior art.
- a method of processing big data comprising the following steps: a method of processing big data, the method comprising the steps of:
- the server obtains big data to be processed
- the server allocates the big data to the processing device corresponding to the collecting device according to the type of the collecting device of the big data;
- the server establishes a processing list including: an identification of the processing device and a load amount.
- the method further includes:
- the server allocates the load of the processing device according to the load balancing principle.
- the method further includes:
- the data of the collection device corresponding to the processing device is stopped.
- a system for processing big data comprising:
- An obtaining unit configured to obtain big data to be processed
- the processing unit is configured to allocate the big data to the processing device corresponding to the collecting device according to the type of the collecting device of the big data, and establish a processing list, where the processing list includes: an identifier of the processing device and a load amount.
- system further includes:
- the processing unit is configured to allocate, by the server, the load of the processing device according to a load balancing principle.
- system further includes:
- the processing unit is configured to stop receiving data of the collection device corresponding to the processing device if the load of the processing device exceeds a set threshold.
- a third aspect provides a server, including: a processor, a wireless transceiver, a memory, and a bus, wherein the processor, the wireless transceiver, and the memory are connected by a bus, and the wireless transceiver is configured to acquire big data to be processed. ;
- the processor is configured to allocate the big data to the processing device corresponding to the collecting device according to the type of the large data collecting device, and establish a processing list, where the processing list includes: an identifier of the processing device and a load.
- the processor is configured to allocate, by the server, the load of the processing device according to a load balancing principle.
- the processor is configured to stop receiving data of the collection device corresponding to the processing device if the load of the processing device exceeds a set threshold.
- the technical solution provided by the invention classifies the processed data according to the category of the collecting device, so that it has the advantage of high processing efficiency.
- FIG. 1 is a flowchart of a method for processing big data according to a first preferred embodiment of the present invention
- FIG. 2 is a structural diagram of a system for processing big data according to a second preferred embodiment of the present invention.
- FIG. 3 is a hardware structural diagram of a server according to a second preferred embodiment of the present invention.
- FIG. 1 is a schematic diagram of a method for processing big data according to a first preferred embodiment of the present invention. The method is as shown in FIG.
- Step S101 The server acquires big data to be processed.
- Step S102 The server allocates the big data to the processing device corresponding to the collection device according to the type of the large data collection device.
- Step S103 The server establishes a processing list, where the processing list includes: an identifier of the processing device and a load amount.
- the technical solution provided by the invention classifies the processed data according to the category of the collecting device, so that it has the advantage of high processing efficiency.
- the server allocates the load of the processing device according to a load balancing principle.
- the data of the collecting device corresponding to the processing device is stopped.
- FIG. 2 is a system for processing big data according to a second preferred embodiment of the present invention.
- the system is as shown in FIG. 2, and includes:
- An obtaining unit 201 configured to acquire big data to be processed
- the processing unit 202 is configured to allocate the big data to the processing device corresponding to the collecting device according to the type of the collecting device of the big data, and establish a processing list, where the processing list includes: an identifier of the processing device and a load amount.
- the technical solution provided by the invention classifies the processed data according to the category of the collecting device, so that it has the advantage of high processing efficiency.
- the processing unit 202 is configured to allocate, by the server, the load of the processing device according to a load balancing principle.
- the processing unit 202 is configured to stop receiving data of the collection device corresponding to the processing device if the load of the processing device exceeds a set threshold.
- FIG. 3 is a server 30, including: a processor 301, a wireless transceiver 302, a memory 303, and a bus 304.
- the wireless transceiver 302 is configured to send and receive data with and from an external device.
- the number of processors 301 can be one or more.
- processor 301, memory 302, and transceiver 303 may be connected by bus 304 or other means.
- Server 30 can be used to perform the steps of FIG. For the meaning and examples of the terms involved in the embodiment, reference may be made to the corresponding embodiment of FIG. 1. I will not repeat them here.
- the wireless transceiver 302 is configured to acquire big data to be processed.
- the program code is stored in the memory 303.
- the processor 901 is configured to call the program code stored in the memory 903 for performing the following operations:
- the processor 301 is configured to allocate the big data to the processing device corresponding to the collecting device according to the type of the collecting device of the big data, and establish a processing list, where the processing list includes: an identifier of the processing device and a load.
- the processor 301 herein may be a processing component or a general term of multiple processing components.
- the processing element can be a central processor (Central) Processing Unit, CPU), or a specific integrated circuit (Application Specific Integrated) Circuit, ASIC), or one or more integrated circuits configured to implement embodiments of the present application, such as one or more microprocessors (digital singnal Processor, DSP), or one or more Field Programmable Gate Arrays (FPGAs).
- CPU central processor
- ASIC Application Specific Integrated Circuit
- DSP digital singnal Processor
- FPGAs Field Programmable Gate Arrays
- the memory 303 may be a storage device or a collective name of a plurality of storage elements, and is used to store executable program code or parameters, data, and the like required for the application running device to operate. And the memory 303 may include random access memory (RAM), and may also include non-volatile memory (non-volatile memory) Memory), such as disk storage, flash (Flash), etc.
- RAM random access memory
- non-volatile memory non-volatile memory
- flash flash
- Bus 304 can be an industry standard architecture (Industry Standard Architecture, ISA) bus, Peripheral Component (PCI) bus or extended industry standard architecture (Extended Industry Standard Architecture, EISA) bus, etc.
- the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 3, but it does not mean that there is only one bus or one type of bus.
- the terminal may further include input and output means connected to the bus 304 for connection to other parts such as the processor 301 via the bus.
- the input/output device can provide an input interface for the operator, so that the operator can select the control item through the input interface, and can also be other interfaces through which other devices can be externally connected.
- the program may be stored in a computer readable storage medium, and the storage medium may include: Flash drive, read-only memory (English: Read-Only Memory, referred to as: ROM), random accessor (English: Random Access Memory, referred to as: RAM), disk or CD.
- ROM Read-Only Memory
- RAM Random Access Memory
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Information Transfer Between Computers (AREA)
Abstract
L'invention concerne un procédé de traitement de mégadonnées, comprenant les étapes suivantes : obtention, par un serveur, de mégadonnées à traiter (101) ; attribution, par le serveur, en fonction du type d'un dispositif de collecte de mégadonnées, des mégadonnées à un dispositif de traitement correspondant au dispositif de collecte pour le traitement (102) ; établissement, par le serveur, d'une liste de traitement, la liste de traitement comprenant une identification et la capacité de charge du dispositif de traitement (103). La solution technique fournie par le procédé présente une efficacité de traitement élevée.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/075334 WO2018157333A1 (fr) | 2017-03-01 | 2017-03-01 | Procédé et système de traitement de mégadonnées |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/075334 WO2018157333A1 (fr) | 2017-03-01 | 2017-03-01 | Procédé et système de traitement de mégadonnées |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018157333A1 true WO2018157333A1 (fr) | 2018-09-07 |
Family
ID=63369591
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/075334 WO2018157333A1 (fr) | 2017-03-01 | 2017-03-01 | Procédé et système de traitement de mégadonnées |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018157333A1 (fr) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103678609A (zh) * | 2013-12-16 | 2014-03-26 | 中国科学院计算机网络信息中心 | 一种基于分布式关系-对象映射处理的大数据查询的方法 |
US20140095505A1 (en) * | 2012-10-01 | 2014-04-03 | Longsand Limited | Performance and scalability in an intelligent data operating layer system |
CN104252528A (zh) * | 2014-09-04 | 2014-12-31 | 国家电网公司 | 基于标识符空间映射的大数据二级索引构建方法 |
-
2017
- 2017-03-01 WO PCT/CN2017/075334 patent/WO2018157333A1/fr active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140095505A1 (en) * | 2012-10-01 | 2014-04-03 | Longsand Limited | Performance and scalability in an intelligent data operating layer system |
CN103678609A (zh) * | 2013-12-16 | 2014-03-26 | 中国科学院计算机网络信息中心 | 一种基于分布式关系-对象映射处理的大数据查询的方法 |
CN104252528A (zh) * | 2014-09-04 | 2014-12-31 | 国家电网公司 | 基于标识符空间映射的大数据二级索引构建方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230306020A1 (en) | System and method for analysis of graph databases using intelligent reasoning systems | |
CN108549583B (zh) | 大数据处理方法、装置、服务器及可读存储介质 | |
CN106302554A (zh) | 一种socket通信方法、装置和存储设备 | |
WO2018223354A1 (fr) | Procédé et système d'enregistrement de présence à base de positionnement | |
WO2018157330A1 (fr) | Procédé et système de partitionnement de mégadonnées | |
WO2018157333A1 (fr) | Procédé et système de traitement de mégadonnées | |
WO2018157391A1 (fr) | Procédé et système d'évaluation de mégadonnées en entreprise | |
US10725946B1 (en) | System and method of rerouting an inter-processor communication link based on a link utilization value | |
CN112506490A (zh) | 一种接口生成方法、装置、电子设备及存储介质 | |
US20200076675A1 (en) | Identification of computer performance anomalies with a logical key performance indicator network | |
WO2018157331A1 (fr) | Procédé et système de stockage appliqués à des mégadonnées | |
WO2018157332A1 (fr) | Procédé et système statistiques appliqués à des mégadonnées | |
CN113779021B (zh) | 数据处理方法、装置、计算机系统及可读存储介质 | |
WO2018157392A1 (fr) | Procédé et système pour déterminer les entreprises affiliées sur la base de mégadonnées | |
CN115604191A (zh) | 业务流量控制方法、装置、电子设备及可读存储介质 | |
WO2018170888A1 (fr) | Procédé et système de combinaison et de sélection de sous-commande de liste de mégadonnées | |
WO2018170887A1 (fr) | Procédé et système d'affichage de liste de mégadonnées | |
WO2018165839A1 (fr) | Procédé et système de mise en œuvre de chenilles distribuées | |
WO2019061384A1 (fr) | Procédé et système de sélection d'un gestionnaire de tâches dans un système de robot web distribué | |
WO2019061385A1 (fr) | Procédé et système de distribution de tâches de robots d'indexation distribués | |
WO2018223375A1 (fr) | Procédé et système de contrôle et de rappel de trafic de terminal | |
WO2018209586A1 (fr) | Procédé et système de positionnement bluetooth | |
WO2018209504A1 (fr) | Procédé et système de gestion d'application de terminal sur la base d'un groupe | |
WO2018006256A1 (fr) | Procédé et système de collecte de données de courrier locales | |
WO2018006255A1 (fr) | Procédé et système de collecte de données de messagerie de réseau |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17898493 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/01/2020) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17898493 Country of ref document: EP Kind code of ref document: A1 |