WO2018154915A1 - Non-transparent film attached member - Google Patents
Non-transparent film attached member Download PDFInfo
- Publication number
- WO2018154915A1 WO2018154915A1 PCT/JP2017/044087 JP2017044087W WO2018154915A1 WO 2018154915 A1 WO2018154915 A1 WO 2018154915A1 JP 2017044087 W JP2017044087 W JP 2017044087W WO 2018154915 A1 WO2018154915 A1 WO 2018154915A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- opaque film
- height
- convex portion
- transparent substrate
- silica
- Prior art date
Links
- 239000000758 substrate Substances 0.000 claims abstract description 74
- 239000011521 glass Substances 0.000 claims description 40
- 229910052726 zirconium Inorganic materials 0.000 claims description 16
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 15
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 14
- 229910052710 silicon Inorganic materials 0.000 claims description 14
- 238000001816 cooling Methods 0.000 claims description 7
- 239000010703 silicon Substances 0.000 claims description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 130
- 239000000377 silicon dioxide Substances 0.000 description 47
- 238000005259 measurement Methods 0.000 description 35
- 239000002245 particle Substances 0.000 description 35
- 239000008199 coating composition Substances 0.000 description 31
- 238000000034 method Methods 0.000 description 29
- 238000000576 coating method Methods 0.000 description 18
- 239000000463 material Substances 0.000 description 18
- 239000011248 coating agent Substances 0.000 description 16
- 239000002243 precursor Substances 0.000 description 16
- 239000000243 solution Substances 0.000 description 15
- -1 polyethylene terephthalate Polymers 0.000 description 14
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 11
- 238000011156 evaluation Methods 0.000 description 10
- 125000001183 hydrocarbyl group Chemical group 0.000 description 10
- 229920005989 resin Polymers 0.000 description 10
- 239000011347 resin Substances 0.000 description 10
- 229910000077 silane Inorganic materials 0.000 description 10
- 239000007787 solid Substances 0.000 description 10
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 9
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- 239000002585 base Substances 0.000 description 8
- 238000009826 distribution Methods 0.000 description 8
- 230000007062 hydrolysis Effects 0.000 description 8
- 238000006460 hydrolysis reaction Methods 0.000 description 8
- 239000011247 coating layer Substances 0.000 description 7
- 239000006185 dispersion Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000000654 additive Substances 0.000 description 6
- 239000010410 layer Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000011164 primary particle Substances 0.000 description 5
- 239000011163 secondary particle Substances 0.000 description 5
- 238000005728 strengthening Methods 0.000 description 5
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 4
- 125000003545 alkoxy group Chemical group 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 239000013522 chelant Substances 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 239000002346 layers by function Substances 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 229910017604 nitric acid Inorganic materials 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 125000002947 alkylene group Chemical group 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 238000003426 chemical strengthening reaction Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000001186 cumulative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000005337 ground glass Substances 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical group 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- 229910052809 inorganic oxide Inorganic materials 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 2
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- XUMBMVFBXHLACL-UHFFFAOYSA-N Melanin Chemical compound O=C1C(=O)C(C2=CNC3=C(C(C(=O)C4=C32)=O)C)=C2C4=CNC2=C1C XUMBMVFBXHLACL-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 238000000149 argon plasma sintering Methods 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- JXTHNDFMNIQAHM-UHFFFAOYSA-N dichloroacetic acid Chemical compound OC(=O)C(Cl)Cl JXTHNDFMNIQAHM-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000005338 frosted glass Substances 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 2
- 150000004756 silanes Chemical class 0.000 description 2
- 239000005361 soda-lime glass Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- KBQVDAIIQCXKPI-UHFFFAOYSA-N 3-trimethoxysilylpropyl prop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C=C KBQVDAIIQCXKPI-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910020203 CeO Inorganic materials 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- 239000006018 Li-aluminosilicate Substances 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- 101100072790 Mus musculus Irf4 gene Proteins 0.000 description 1
- 238000006124 Pilkington process Methods 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 125000004423 acyloxy group Chemical group 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000004450 alkenylene group Chemical group 0.000 description 1
- 125000003302 alkenyloxy group Chemical group 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000005354 aluminosilicate glass Substances 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 125000002344 aminooxy group Chemical group [H]N([H])O[*] 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 125000000732 arylene group Chemical group 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000005385 borate glass Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- FOCAUTSVDIKZOP-UHFFFAOYSA-N chloroacetic acid Chemical compound OC(=O)CCl FOCAUTSVDIKZOP-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229960005215 dichloroacetic acid Drugs 0.000 description 1
- OTARVPUIYXHRRB-UHFFFAOYSA-N diethoxy-methyl-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](C)(OCC)CCCOCC1CO1 OTARVPUIYXHRRB-UHFFFAOYSA-N 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 238000003280 down draw process Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000005816 glass manufacturing process Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229940035429 isobutyl alcohol Drugs 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000002075 main ingredient Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000012860 organic pigment Substances 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007372 rollout process Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000550 scanning electron microscopy energy dispersive X-ray spectroscopy Methods 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- UQMOLLPKNHFRAC-UHFFFAOYSA-N tetrabutyl silicate Chemical compound CCCCO[Si](OCCCC)(OCCCC)OCCCC UQMOLLPKNHFRAC-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 1
- ZQZCOBSUOFHDEE-UHFFFAOYSA-N tetrapropyl silicate Chemical compound CCCO[Si](OCCC)(OCCC)OCCC ZQZCOBSUOFHDEE-UHFFFAOYSA-N 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000005341 toughened glass Substances 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 1
- DENFJSAFJTVPJR-UHFFFAOYSA-N triethoxy(ethyl)silane Chemical compound CCO[Si](CC)(OCC)OCC DENFJSAFJTVPJR-UHFFFAOYSA-N 0.000 description 1
- JXUKBNICSRJFAP-UHFFFAOYSA-N triethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCOCC1CO1 JXUKBNICSRJFAP-UHFFFAOYSA-N 0.000 description 1
- QQQSFSZALRVCSZ-UHFFFAOYSA-N triethoxysilane Chemical compound CCO[SiH](OCC)OCC QQQSFSZALRVCSZ-UHFFFAOYSA-N 0.000 description 1
- DQZNLOXENNXVAD-UHFFFAOYSA-N trimethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OC)(OC)OC)CCC2OC21 DQZNLOXENNXVAD-UHFFFAOYSA-N 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- UVPKQBWUNYZZFZ-UHFFFAOYSA-N tris(1,1,2,2,2-pentafluoroethoxy)-(1,1,2,2,2-pentafluoroethyl)silane Chemical compound FC(F)(F)C(F)(F)O[Si](OC(F)(F)C(F)(F)F)(OC(F)(F)C(F)(F)F)C(F)(F)C(F)(F)F UVPKQBWUNYZZFZ-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 230000016776 visual perception Effects 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B9/00—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/22—Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
- C03C17/23—Oxides
Definitions
- the present invention relates to a member with an opaque film.
- Frosted glass has both a function of blocking the line of sight and a decorative function, and is widely used in windows of houses and buildings and stores.
- frosted glass is configured by performing non-permeability processing on a transparent glass substrate that transmits light.
- the etching method may cause “burnt” in the ground glass due to long-term use. Further, in the ground glass manufacturing process, if fine scratches are generated on the surface of the glass substrate, there is a problem that the strength is not improved so much even if the glass substrate is subsequently subjected to air cooling strengthening.
- burn refers to a phenomenon in which the surface of the glass substrate becomes clouded when the glass substrate is exposed to a humid environment. That is, when moisture is adsorbed on the surface of the glass substrate, the alkali component contained in the glass substrate is eluted, so that the moisture changes to alkaline. When this moisture reacts with an acidic gas such as carbon dioxide (CO 2 ) or sulfurous acid (SO x ) in the air, “burning” occurs.
- CO 2 carbon dioxide
- SO x sulfurous acid
- a coating layer such as a resin is provided on the surface of the glass substrate. Therefore, the above-mentioned “discoloration” problem can be avoided.
- the present invention has been made in view of such a background, and an object of the present invention is to provide a member with an opaque film having a relatively good strength.
- a member with an opaque film comprising a transparent substrate and an opaque film installed on the transparent substrate
- the non-transparent film has a surface shape obtained by measuring a region of (101 ⁇ m to 111 ⁇ m) ⁇ (135 ⁇ m to 148 ⁇ m) with a laser microscope, and a diameter in a cross section at a first height level H 1 (converted into a perfect circle) Including a first convex portion having a diameter of more than 10 ⁇ m, and a second convex portion having a diameter (converted to a perfect circle) of the surface shape at a second height level H 2 of 1 ⁇ m or more and 10 ⁇ m or less
- the first height level H 1 is a bearing height + 0.05 ⁇ m height
- the second height level H 2 is a bearing height + 0.5 ⁇ m height
- the maximum height L 1max of the first convex portion based on the height of the lowest portion in the region is 8 ⁇ m to 30 ⁇ m
- a member with an opaque film having a relatively good strength can be provided.
- FIG. 1 schematically shows a cross section of a member with an opaque film (hereinafter referred to as a “first member”) according to an embodiment of the present invention.
- the first member 100 has a first side 102 and a second side 104.
- the first member 100 includes a transparent substrate 110 and an opaque film 130.
- the opaque film 130 is disposed on the first side 102 of the first member 100, and the transparent substrate 110 is disposed on the second side 104 of the first member 100.
- the transparent substrate 110 has a first surface 112 and a second surface 114 facing each other, and the opaque film 130 is disposed on the first surface 112 side of the transparent substrate 110.
- the transparent substrate 110 is made of a transparent material such as glass.
- transparent means that 80% or more of light in the wavelength range of 400 to 1100 nm is transmitted on average.
- the opaque film 130 has a role to scatter transmitted light. That is, since the first member 100 includes the non-transparent film 130, the light transmitted through the transparent substrate 110 can be scattered and the non-permeability can be expressed.
- the opaque film 130 is made of a material mainly composed of an inorganic oxide.
- the opaque film 130 is made of a material whose main component is silica.
- “having silica as a main component” means containing 90 mass% or more of SiO 2 .
- the first member 100 has the following characteristics.
- (Characteristic 1) The opaque film 130 has a first convex portion and a second convex portion on the surface, and the maximum height L 1max of the first convex portion is 8 ⁇ m to 30 ⁇ m, The average height L 2ave of the protrusions is 0.1 ⁇ m to 3 ⁇ m, the number of second protrusions is 0.001 to 0.05 per 1 ⁇ m 2 , and the second protrusions are
- the opaque film 130 includes silica (SiO 2 ) and zirconia (ZrO 2 ), and the ratio of zirconium (Zr) to silicon (Si) (Zr / Si (atomic ratio) is in the range of 0.003 to 0.04.
- the non-transparent film 130 is characterized in that the first convex portion and the second convex portion are included in the surface shape measured by a laser microscope in a predetermined region.
- the “predetermined area” means a horizontal (101 ⁇ m to 111 ⁇ m) ⁇ vertical (135 ⁇ m to 148 ⁇ m) area (hereinafter referred to as “measurement area”).
- the measurement area has a size of 101 ⁇ m ⁇ 135 ⁇ m at the minimum, and a size of 111 ⁇ m ⁇ 148 ⁇ m at the maximum.
- the vertical / horizontal ratio (long side length / short side length) is usually in the range of about 1.21 to 1.46.
- first convex portion means a convex portion having a diameter in a perfect circle when the surface shape in the measurement region is cut at the first height level H 1 is more than 10 ⁇ m.
- second convex portions means convex portions having a true circle diameter of 1 ⁇ m or more and 10 ⁇ m or less when cut at the second height level H 2 .
- the maximum height L 1max of the first protrusion is 8 ⁇ m to 30 ⁇ m, and the average height L 2ave of the second protrusion is 0.1 ⁇ m to 3 ⁇ m.
- the number of the second protrusions is 0.001 to 0.05 per 1 ⁇ m 2 , and the second protrusions occupy 1% to 3% of the area of the region.
- the non-transparent film 130 By making the non-transparent film 130 have such a surface structure having both the first convex portion and the second convex portion, the light scattered by the first convex portion is further scattered by the second convex portion. Can be made. This also allows the first member 100 to exhibit relatively good opacity.
- FIG. 2 schematically shows a cross-section of the surface shape in the measurement region of the opaque film 130 for explaining the first convex portion.
- FIG. 3 schematically shows a cross-section of the surface shape in the measurement region of the opaque film 130 for explaining the second convex portion.
- the surface 132 of the opaque film 130 has an uneven shape.
- the horizontal line BH represents “bearing height”.
- bearing height means a value of the most dominant height z in the height distribution histogram obtained from the xyz data of the surface shape.
- the height z corresponds to a height based on the lowest point of the first side 102 of the first member 100.
- the height in the surface shape is expressed with reference to the bearing height BH.
- the first height level H 1 is defined as the height of the bearing height BH + 0.05 .mu.m.
- the first convex portion means a convex portion having a perfect circle diameter of more than 10 ⁇ m when the surface shape in the measurement region is cut at the first height level H 1 .
- FIG. 2 there are two such first convex portions 134. That is, in FIG. 2, the convex part 134A having a diameter P 1 (P 1 > 10 ⁇ m) converted into a perfect circle and the convex part 134B having a diameter P 2 (P 2 > 10 ⁇ m) converted into a perfect circle are shown in FIG. It is drawn as the convex part 134 of the.
- the average diameter (converted to a perfect circle) of the first protrusions 134 at the first height level H 1 is preferably more than 10 ⁇ m and 143 ⁇ m or less. If the average diameter (converted to a perfect circle) of the first convex portion 134 is within this range, the light scattering effect in the non-opaque film 130 is increased, and the non-transparency of the first member 100 is improved.
- the average diameter of the first protrusion 134 in the first height level H 1 (true circle equivalent), more preferably at most 10 ⁇ m ultra 140 .mu.m, more preferably 20 ⁇ m or more 135 ⁇ m or less.
- the maximum height L 1max (see FIG. 2) is in the range of 8 ⁇ m to 30 ⁇ m.
- the reference for the maximum height L 1max is the height at the position where the z value is the smallest in the measurement region.
- the maximum height L 1max is more preferably in the range of 10 ⁇ m to 30 ⁇ m.
- the standard deviation of the height is preferably 10 ⁇ m or less.
- standard of the height in this case is the height in the position where z value is the smallest in a measurement area
- the number of the first protrusions 134 is preferably 0.0001 to 0.76 per 1 ⁇ m 2 .
- FIG. 3 schematically shows a cross-section of the surface shape in the measurement region of the opaque film 130 for explaining the second convex portion.
- FIG. 3 shows a surface 132 of an opaque film 130 similar to FIG. Also in FIG. 3, the horizontal line BH represents the “bearing height”.
- the second height level H 2 is defined as a bearing height BH + 0.5 [mu] m. Second height level H 2 is 3, drawn in broken line on the bearing height BH.
- the second convex portion means a convex portion whose diameter in terms of a perfect circle when the surface shape in the measurement region is cut at the second height level H2 is 1 ⁇ m or more and 10 ⁇ m or less.
- FIG. 3 shows a convex portion 136A having a true circle equivalent diameter Q 1 (1 ⁇ m ⁇ Q 1 ⁇ 10 ⁇ m) and a convex portion 136B having a true circular equivalent diameter Q 2 (1 ⁇ m ⁇ Q 2 ⁇ 10 ⁇ m).
- a convex portion 136E having Q 5 (1 ⁇ m ⁇ Q 5 ⁇ 10 ⁇ m) is depicted as the second convex portion 136.
- the average diameter of the second protrusions 136 of the second height level H 2 (circularity equivalent), preferably 3 ⁇ m or more 10 ⁇ m or less. If the average diameter (converted to a perfect circle) of the second convex portion 136 is within this range, it is possible to obtain the non-transparent film 130 that is excellent in non-permeability and can significantly suppress the reflection of external light.
- the average diameter (converted into a perfect circle) of the second convex part 136 is more preferably 3 ⁇ m or more and 5 ⁇ m or less.
- the average height L 2ave of the second convex part 136 is 0.1 ⁇ m to 3 ⁇ m.
- the average height L 2ave of the second convex portion 136 is calculated as the average value of all the second convex portions 136 existing in the measurement region.
- the reference for the average height L 2ave of the second convex portion 136 is the second height level H 2 .
- the number of the second protrusions 136 is 0.001 to 0.05 per 1 ⁇ m 2 . If the number of the second protrusions 136 per 1 ⁇ m 2 (the density of the second protrusions 136) is within the above range, interference between the lights refracted by the first protrusions 134 is likely to be hindered. The effect of improving transparency is increased.
- the density of the second protrusions 136 is preferably in the range of 0.002 to 0.05.
- the area ratio of the second protrusion 136 is in the range of 1% to 3%.
- the area ratio of the second convex portion 136 is determined as a percentage of (the area of the second protrusions 136 in position with the second height H 2 relative to) / (the area of the measurement region).
- the area ratio of the second protrusion 136 is preferably in the range of 1.0% to 3.0%.
- membrane 130 with favorable "finger sliding property” can be obtained.
- the “finger slipperiness” means a feeling when the opaque film 130 is touched with a human finger, for example, a rough feeling, a smooth feeling, and a smooth feeling. Therefore, “good finger slipperiness” means that it is not an unpleasant sensation, for example, a feeling of smoothness and / or slipperiness is high.
- the “measurement region” is randomly selected from the surface of the opaque film 130 of the first member 100. Further, each parameter value including a cross section of the surface shape at the first height H 1 and a cross section of the surface shape at the second height H 2 is obtained by performing image processing on the data of the surface shape measured by the laser microscope. It can be obtained by analyzing with software (“SPIP” manufactured by Image Metrology).
- the opaque film 130 is made of a material mainly composed of an inorganic oxide, including silica (SiO 2 ) and zirconia (ZrO 2 ). Further, in the opaque film 130, the atomic ratio of zirconium (Zr) to silicon (Si) (hereinafter referred to as “Zr / Si ratio”) is in the range of 0.003 to 0.04.
- the Zr / Si ratio is preferably in the range of 0.003 to 0.04.
- the Zr / Si ratio can be measured by quantitatively analyzing the surface of the opaque film 130. More specifically, the element ratios of Si and Zr are measured from three different locations on the surface of the non-transmissive film 130, and the respective values are averaged. The Zr / Si ratio is determined from the average value of Si and the average value of Zr.
- the first member 100 does not need to etch the transparent substrate 110 in order to form irregularities on the surface, and the above-mentioned “burn” problem is significantly suppressed. be able to.
- the non-transparent film 130 has a relatively good mechanical strength, the problem that the coating layer is easily damaged and / or damaged can be significantly avoided. That is, the first member 100 that is resistant to scratches and impacts can be obtained.
- the pencil hardness is 7H or higher.
- the first member 100 can exhibit relatively good opacity.
- the clarity is 0.25 or less.
- haze is 70% or more.
- the first member 100 it is possible to obtain relatively good finger slipperiness (smooth feeling and smooth feeling).
- the material of the transparent substrate 110 is not limited as long as it is “transparent”.
- the transparent substrate 110 may be made of glass or resin.
- the glass examples include soda lime glass, borosilicate glass, borate glass, aluminosilicate glass, lithium aluminosilicate glass, and alkali-free glass.
- examples of the resin include polyethylene terephthalate, polycarbonate, triacetyl cellulose, and polymethyl methacrylate.
- the transparent base material 110 When the transparent base material 110 is a glass plate, the transparent base material 110 may be formed by a float method, a fusion (overflow down draw) method, a slot down draw method, or the like. Alternatively, the transparent substrate 110 may be formed by a roll-out method or the like.
- the transparent substrate 110 is a glass substrate
- the glass substrate may be subjected to a tempering treatment.
- the reinforcing treatment method include an air cooling strengthening method (physical strengthening method) and a chemical strengthening method.
- a glass substrate heated to near the softening point temperature of glass (for example, 600 ° C. to 700 ° C.) is rapidly cooled by air cooling or the like. Thereby, a temperature difference arises between the surface of a glass base material, and the inside, and a compressive-stress layer is formed in the surface of a glass base material.
- a glass substrate is immersed in a molten salt at a temperature equal to or lower than the strain point temperature of the glass, and ions (for example, sodium ions) contained in the glass substrate are converted into ions having a larger ion radius ( For example, potassium ion). Thereby, a compressive stress layer is formed on the surface of the glass substrate.
- ions for example, sodium ions
- ions having a larger ion radius For example, potassium ion
- the tempered glass substrate has a compressive stress layer on the first surface 112 and the second surface 114, the strength against scratches or impacts is improved.
- the physical strengthening process or the chemical strengthening process of the glass substrate may be performed in the state of the glass substrate or after the non-transparent film 130 is installed.
- the opaque film 130 is made of a material mainly composed of an inorganic oxide having the above-described composition.
- the glass substrate can be strengthened without damaging the opaque film 130.
- the transparent substrate 110 may be, for example, a plate shape or a film shape.
- the first surface 112 and / or the second surface 114 of the transparent substrate 110 are not necessarily limited to a flat shape, and they may have a curved surface.
- the first surface 112 of the transparent substrate 110 has a curved surface
- the first surface 112 may be entirely formed of a curved surface, or may have a curved surface portion and a flat portion. The same can be said for the second surface 114.
- the transparent substrate 110 may further have a functional layer on the first surface 112 and / or the second surface 114 of the transparent substrate.
- a functional layer include a colored layer, a metal layer, an adhesion improving layer, and / or a protective layer.
- the thickness of the transparent substrate 110 is, for example, in the range of 0.5 mm to 12.0 mm.
- the opaque film 130 may contain a small amount of another additive component in addition to silica and zirconia.
- additive components include Li, B, C, N, F, Na, Mg, Al, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, 1 or 2 or more elements or compounds (for example, oxides) selected from Ga, Sr, Y, Nb, Ru, Pd, Ag, In, Sn, Hf, Ta, W, Pt, Au, Bi, and lanthanoids. It is done.
- the refractive index of the opaque film 130 is preferably 1.40 to 1.46, and more preferably 1.43 to 1.46. If the refractive index of the non-transparent film 130 is 1.46 or less, the reflectance of external light on the surface of the non-transparent film 130 becomes low, and reflection of external light due to the high reflection film can be suppressed.
- the refractive index of the opaque film 130 is 1.43 or more, the denseness of the opaque film 130 is increased, and the adhesion with the transparent substrate 110 is increased.
- the refractive index of the opaque film 130 can be adjusted by the porosity of the opaque film 130, the material of the matrix of the opaque film 130, the addition of an arbitrary substance into the matrix, and the like. For example, the refractive index can be lowered by increasing the porosity of the opaque film 130. Moreover, the refractive index of the opaque film 130 can be lowered by adding a substance having a low refractive index (solid silica particles, hollow silica particles, etc.) to the matrix.
- a substance having a low refractive index solid silica particles, hollow silica particles, etc.
- the thickness of the opaque film 130 is, for example, in the range of 0.1 ⁇ m to 30 ⁇ m.
- the member with an opaque film includes, for example, an architectural exterior glass, an architectural interior glass (kitchen cabinet, table top, shower door, partition glass, etc.), decorative glass, vehicle smoke shield glass, and It can be applied to decorative glass.
- an architectural exterior glass for example, an architectural exterior glass, an architectural interior glass (kitchen cabinet, table top, shower door, partition glass, etc.), decorative glass, vehicle smoke shield glass, and It can be applied to decorative glass.
- FIG. 4 schematically shows a flow of a method for manufacturing a member with an opaque film according to an embodiment of the present invention (hereinafter referred to as “first manufacturing method”).
- the first manufacturing method is: A step of preparing a coating composition (step S110); A step of applying the coating composition to the transparent substrate (step S120); A step of heat-treating the coating composition (step S130); Have
- the coating composition includes a silica source, a zirconium source, and a solvent.
- the coating composition may further contain a binder and other additives.
- the silica concentration in the coating composition is, for example, in the range of 0.5% by mass to 24.0% by mass.
- the zirconium concentration in the coating composition is selected so that the Zr / Si ratio is in the range of 0.003 to 0.04 in the opaque film 130 obtained after step S130.
- the amount of the solvent in the coating composition is selected according to the solid content concentration of the coating composition.
- the solid content concentration of the coating composition is preferably 1% by mass to 12% by mass and more preferably 1.5% by mass to 10% by mass in the total amount (100% by mass) of the coating composition. If the solid content concentration is 1% by mass or more, the liquid amount of the coating composition can be reduced. If the solid content concentration is 12% by mass or less, the uniformity of the film is improved.
- the solid content concentration of the coating composition is the total content of all components other than the solvent in the coating composition.
- the silica source is selected from a silica precursor and silica particles.
- the silica source may include both a silica precursor and silica particles.
- each of the silica precursor and the silica particles will be described in detail.
- silica precursor means the substance which can form the matrix which has silica as a main component by baking.
- Silica precursors include silane compounds having a hydrocarbon group bonded to a silicon atom and a hydrolyzable group and their hydrolysis condensates, alkoxysilanes (excluding silane compounds) and their hydrolysis condensates (sol-gel silica). And silazane and the like.
- the hydrolyzable group bonded to a silicon atom means a group that can be converted into an OH group bonded to a silicon atom by hydrolysis.
- the hydrocarbon group bonded to the silicon atom may be a monovalent hydrocarbon group bonded to one silicon atom or a divalent hydrocarbon group bonded to two silicon atoms. Also good.
- the monovalent hydrocarbon group include an alkyl group, an alkenyl group, and an aryl group.
- Examples of the divalent hydrocarbon group include an alkylene group, an alkenylene group, and an arylene group.
- the hydrocarbon group is one or two selected from —O—, —S—, —CO— and —NR′— (wherein R ′ is a hydrogen atom or a monovalent hydrocarbon group) between carbon atoms. You may have the group which combined two or more.
- examples of the hydrolyzable group bonded to the silicon atom include an alkoxy group, an acyloxy group, a ketoxime group, an alkenyloxy group, an amino group, an aminoxy group, an amide group, an isocyanate group, and a halogen atom.
- an alkoxy group, an isocyanate group, and a halogen atom are preferable from the viewpoint of the balance between the stability of the silane compound and the ease of hydrolysis.
- the alkoxy group is preferably an alkoxy group having 1 to 3 carbon atoms, more preferably a methoxy group or an ethoxy group.
- the hydrolyzable groups may be the same group or different groups, and the same group is preferable in terms of availability. .
- silane compounds a compound represented by the formula (1) described later, an alkoxysilane having an alkyl group (methyltrimethoxysilane, ethyltriethoxysilane, etc.), an alkoxysilane having a vinyl group (vinyltrimethoxysilane, vinyl) Triethoxysilane, etc.), alkoxysilanes having an epoxy group (2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3 -Glycidoxypropyltriethoxysilane, etc.), alkoxysilanes having an acryloyloxy group (3-acryloyloxypropyltrimethoxysilane, etc.) and the like.
- the compound represented by the formula (1) is preferable from the viewpoint that cracks and film peeling hardly occur in the non-transparent film 130 even when the film thickness is increased:
- Q is a divalent hydrocarbon group (-O—, —S—, —CO— and —NR′— (where R ′ is a hydrogen atom or a monovalent hydrocarbon).
- R ′ is a hydrogen atom or a monovalent hydrocarbon.
- a group that is a combination of one or two or more selected from: What was mentioned above is mentioned as a bivalent hydrocarbon.
- Q is preferably an alkylene group having 2 to 8 carbon atoms, and is preferably an alkylene group having 2 to 6 carbon atoms from the viewpoint that it is easy to obtain and even if the film thickness is large, cracks and peeling of the non-transparent film 130 are difficult to occur. Is more preferable.
- L is a hydrolyzable group.
- hydrolyzable group examples include those described above, and preferred embodiments are also the same.
- R is a hydrogen atom or a monovalent hydrocarbon group.
- Examples of the monovalent hydrocarbon group include those described above.
- P is an integer from 1 to 3.
- p is preferably 2 or 3, particularly preferably 3, from the viewpoint that the reaction rate does not become too slow.
- the silica precursor is alkoxysilane (excluding the silane compound)
- the silica precursor is tetraalkoxysilane (tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, etc.)
- It may be selected from alkoxysilanes having a fluoropolyether group (perfluoropolyethertriethoxysilane and the like), alkoxysilanes having a perfluoroalkyl group (perfluoroethyltriethoxysilane and the like), and the like.
- Hydrolysis and condensation of the silane compound and alkoxysilane (excluding the silane compound) can be performed by a known method.
- the reaction is carried out using 4 times or more moles of water of tetraalkoxysilane and acid or alkali as a catalyst.
- Examples of the acid include inorganic acids (HNO 3 , H 2 SO 4 , HCl, etc.) and organic acids (formic acid, oxalic acid, monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, etc.).
- Examples of the alkali include ammonia, sodium hydroxide, potassium hydroxide and the like.
- As the catalyst an acid is preferable from the viewpoint of long-term storage stability of the hydrolyzed condensate of the silane compound.
- silica precursor one kind may be used alone, or two or more kinds may be used in combination.
- the silica precursor preferably contains one or both of a silane compound and a hydrolysis-condensation product thereof from the viewpoint of preventing cracking and peeling of the opaque film 130.
- the silica precursor preferably contains one or both of tetraalkoxysilane and its hydrolysis condensate from the viewpoint of the abrasion resistance strength of the non-permeable membrane 130.
- the silica precursor includes one or both of a silane compound and a hydrolysis condensate thereof, and one or both of a tetraalkoxysilane and a hydrolysis condensate thereof.
- silica particles When the silica source includes silica particles, such silica particles may include scaly silica particles.
- the scaly silica particles mean silica particles having a flat shape. The shape of the silica particles can be confirmed using a transmission electron microscope (TEM).
- the average particle diameter of the scaly silica particles is preferably 600 nm or less.
- the average particle diameter of the scaly silica particles is preferably 80 nm to 600 nm, and more preferably 170 nm to 550 nm. If the average particle diameter of the scaly silica particles is 80 nm or more, cracks and peeling of the film can be sufficiently suppressed even if the film thickness is large. When the average particle diameter of the scaly silica particles is 600 nm or less, the dispersion stability in the coating composition is good.
- Average particle diameter means a particle diameter at a point of 50% in a cumulative volume distribution curve in which the total volume of particle size distribution obtained on a volume basis is 100%, that is, a volume-based cumulative 50% diameter (D50).
- the particle size distribution is obtained from a frequency distribution and a cumulative volume distribution curve measured with a laser diffraction / scattering particle size distribution measuring apparatus.
- the average aspect ratio of the scaly silica particles is preferably 50 to 650, more preferably 60 to 350, and further preferably 65 to 240. If the average aspect ratio of the scaly silica particles is 50 or more, cracking and peeling of the film can be sufficiently suppressed even if the film thickness is large. When the average aspect ratio of the scaly silica particles is 650 or less, the dispersion stability in the coating composition is good.
- the aspect ratio is represented by the ratio of the longest length to the thickness of the particles.
- the flaky silica particles are flaky silica primary particles or silica secondary particles formed by laminating a plurality of flaky silica primary particles with their planes aligned in parallel with each other.
- the silica secondary particles usually have a particle form of a laminated structure.
- the scaly silica particles may be either one of the silica primary particles and the silica secondary particles, or both.
- the thickness of the silica primary particles is preferably 0.001 to 0.1 ⁇ m. If the thickness of the silica primary particles is within the above range, scaly silica secondary particles in which one or a plurality of sheets are superposed with the planes oriented parallel to each other can be formed.
- the thickness of the silica secondary particles is preferably 0.001 to 3 ⁇ m, more preferably 0.005 to 2 ⁇ m.
- the SiO 2 purity of the scaly silica particles is preferably 95% by mass or more, and more preferably 99% by mass or more.
- the flaky silica particles commercially available ones or manufactured ones may be used.
- the scaly silica particles can be produced, for example, by the production method described in JP-A-2014-94845.
- the silica particles may include spherical silica particles, rod-like silica particles, acicular silica particles, and the like. Among these, spherical silica particles are preferable, and porous spherical silica particles are particularly preferable.
- the average particle size of such silica particles is preferably 0.03 to 2 ⁇ m, more preferably 0.05 to 1.5 ⁇ m. When the average particle size is 2 ⁇ m or less, the dispersion stability in the coating composition is improved.
- the BET specific surface area of the porous spherical silica particles is preferably in the range of 200 to 300 m 2 / g.
- the pore volume of the porous spherical silica particles is preferably 0.5 to 1.5 cm 3 / g.
- Light Star registered trademark
- Nissan Chemical Industries there can be mentioned Light Star (registered trademark) series manufactured by Nissan Chemical Industries.
- the zirconium source is not particularly limited.
- the zirconium source may be, for example, zirconia particles or a zirconium chelate.
- the zirconia particles may be tetrahedral, plate-like, or rod-like.
- the average particle diameter of the zirconia particles is, for example, in the range of 0.01 ⁇ m to 5.00 ⁇ m.
- the solvent is selected from those that dissolve or disperse the silica precursor. Moreover, when a silica source contains a silica particle, it selects from what disperse
- the solvent is water, alcohols (methanol, ethanol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, 1-pentanol, etc.), ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.), ether (Tetrahydrofuran, 1,4-dioxane, etc.), cellosolves (methyl cellosolve, ethyl cellosolve, etc.), esters (methyl acetate, ethyl acetate, etc.), and glycol ethers (ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, etc.) ).
- alcohols methanol, ethanol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, 1-pentanol, etc.
- ketones acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.
- the solvent may be used alone or in combination of two or more.
- the coating composition may contain a binder and / or other additives.
- the binder examples include a resin that is dissolved or dispersed in a solvent.
- the resin may be, for example, a thermoplastic resin, a thermosetting resin, an ultraviolet curable resin, or the like.
- the additive may be added as particles.
- particles include metal oxide particles, metal particles, pigment-based particles, and resin particles.
- metal oxide particles examples include Al 2 O 3 , SnO 2 , TiO 2 , ZnO, CeO 2 , Sb-containing SnO X (ATO), Sn-containing In 2 O 3 (ITO), and RuO 2 .
- metal particle material examples include metals (Ag, Ru, etc.), alloys (AgPd, RuAu, etc.) and the like.
- pigment-based particles examples include inorganic pigments (titanium black, carbon black, etc.) and organic pigments.
- Examples of the resin particle material include acrylic resin, polystyrene, and melanin resin.
- the transparent substrate 110 may be a glass substrate as described above.
- the transparent substrate 110 may have a functional layer on the first surface 112 and / or the second surface 114.
- the functional layer of the second surface 114 may be formed after step S120.
- the coating composition is placed on the first surface 112 of the transparent substrate 110 by a method such as spray coating, brushing, or the like.
- the coating composition may be applied to the transparent substrate 110 a plurality of times. Thereby, a coating composition can be apply
- the coating composition may be dried.
- the temperature of a drying process is 60 degrees C or less, for example.
- the heating temperature of the transparent substrate 110 is, for example, 60 ° C. or less.
- the heating temperature of the transparent substrate 110 is preferably 15 ° C. to 50 ° C., more preferably 20 to 40 ° C.
- Step S130 Next, the coating composition is baked. By the baking treatment, the coating composition is denatured, and the opaque film 130 is formed.
- the baking treatment may be performed by locally heating the coating composition or by heating the coating composition together with the transparent substrate 110.
- the heating temperature varies depending on the material of the transparent substrate 110.
- the firing temperature may be in the range of 100 ° C. to 750 ° C.
- the firing temperature is, for example, in the range of 150 ° C to 700 ° C.
- the first member 100 as shown in FIG. 1 can be manufactured.
- the transparent base material 110 is a glass base material
- the opaque film 130 is made of a material mainly composed of oxide. Therefore, even if the air cooling process is performed, it is possible to significantly avoid the deterioration and / or peeling of the opaque film 130.
- examples 1 to 3 are examples, and examples 3 to 7 are comparative examples.
- Example 1 The member with an opaque film was manufactured by the following method.
- Modified ethanol manufactured by Nippon Alcohol Sales Co., Solmix (registered trademark) AP-11, mixed solvent mainly composed of ethanol), tetraethoxysilane (manufactured by Shin-Etsu Silicone, KBE-04), methyltrimethoxysilane (Shin-Etsu Silicone) KBM-13), a flaky silica particle dispersion (prepared by the method described in Japanese Patent No. 4063464, particle diameter is about ⁇ m) was added in this order, and the mixture was stirred for 30 minutes.
- the volume ratio (TEOS: MTMS) of tetraethoxysilane (TEOS) to methyltrimethoxysilane (MTMS) was 0.7: 0.3.
- ion-exchanged water and an aqueous nitric acid solution (nitric acid concentration: 61% by mass) were added to this solution and stirred for 60 minutes. Furthermore, 0.1% by mass of zirconium chelate (manufactured by Matsumoto Fine Chemical Co., Ltd., ORGATIZ ZC-150) was added to this mixed solution, and the mixture was stirred for 30 minutes.
- zirconium chelate manufactured by Matsumoto Fine Chemical Co., Ltd., ORGATIZ ZC-150
- the solid content concentration ratio of TEOS, MTMS, and scaly silica particle dispersion in the coating solution was 53:23:24, and the total solid content concentration was 6.1%.
- a transparent substrate having dimensions of 100 mm in length, 100 mm in width, and 5 mm in thickness was prepared.
- soda lime glass As the transparent substrate, soda lime glass (Asahi Glass Co., Ltd., FL5) was used.
- the coating liquid was applied to one surface (one region of 100 mm ⁇ 100 mm) of this transparent substrate.
- the coating liquid was applied using a spray gun while conveying the transparent substrate.
- the conveyance speed was 3 m / min.
- the temperature of the transparent substrate was adjusted to 30 ° C. ⁇ 3 ° C.
- the number of coatings was four.
- the transparent substrate was baked at 230 ° C. for 30 minutes to form an opaque film.
- the thickness (maximum value) of the opaque film was about 8 ⁇ m.
- sample 1 a member with an opaque film
- Example 2 and Example 3 A member with an opaque film was manufactured in the same manner as in Example 1. However, in Examples 2 and 3, the concentration of zirconium chelate contained in the coating solution was changed from that in Example 1. Other conditions are the same as in Example 1.
- sample 2 a member with an opaque film
- sample 3 a member with an opaque film
- Example 4 A member with an opaque film was manufactured in the same manner as in Example 1. However, in Example 4, no zirconium chelate was added to the coating solution. Other conditions are the same as in Example 1.
- sample 4 a member with an opaque film
- Example 5 and Example 6 A member with an opaque film was manufactured in the same manner as in Example 1. However, in Example 5 and Example 6, the composition of the coating solution was changed from that in Example 1, respectively. In Example 6, TEOS: MTMS was set to 0.5: 0.5.
- sample 5 a member with an opaque film
- Example 7 The member with an opaque film was manufactured by the following method.
- Modified ethanol manufactured by Nippon Alcohol Sales Co., Solmix (registered trademark) AP-11, mixed solvent containing ethanol as a main ingredient
- methyltrimethoxysilane manufactured by Shin-Etsu Silicone Co., Ltd., KBM-13
- scaly silica particle dispersion Prepared by the method described in Japanese Patent No. 4063464. Particle diameter is about 0.5 ⁇ m
- TEOS Tetraethoxysilane
- ion-exchanged water and an aqueous nitric acid solution (nitric acid concentration: 61% by mass) were added to this solution and stirred for 60 minutes.
- the solid content concentration ratio between the MTMS and the scaly silica particle dispersion in the coating solution was 40:60, and the total solid content concentration was 2.5%.
- sample 7 a member with an opaque film
- the measurement results are represented by the maximum, minimum, and average values in the measurement area, so even if the measurement area is slightly different, there is almost no difference in the results if a ⁇ 100 objective lens is selected.
- the measurement mode was “surface shape”, the measurement quality was “high definition (2048 ⁇ 1536)”, and the pitch was “0.01 ⁇ m”.
- Clarity was measured using a variable angle photometer, GC5000L, manufactured by Nippon Denshoku Industries Co., Ltd. according to the following procedure.
- the first light is irradiated at an angle ⁇ from the transparent substrate side of the sample.
- the angle ⁇ is determined so that the direction parallel to the thickness direction of the sample is 0 °.
- the first light passes through the transparent substrate and is emitted from the side of the opaque film.
- the 0 ° transmitted light emitted from the non-transparent film in the direction of 0 ° is received, and the brightness is measured to obtain “0 ° transmitted light brightness”.
- the angle ⁇ of the light emitted to the transparent substrate side is changed in the range of ⁇ 30 ° to + 30 °, and the same operation is performed.
- the luminance distribution of the light transmitted through the transparent substrate and emitted from the non-opaque film is measured and summed to obtain “the luminance of the total transmitted light”.
- Clarity (resolution index value T) is calculated from the following equation (2).
- Clarity (resolution index value T) 1- ⁇ (Brightness of total transmitted light ⁇ Brightness of transmitted light) / (Brightness of total transmitted light) ⁇ Equation (2)
- This Clarity value (resolution index value T) has been confirmed to correlate with the determination result of the visual observation by the observer and to exhibit a behavior close to human visual perception.
- a member with an opaque film showing a small resolution index value T close to 0
- a member with an opaque film showing a large value of the resolution index value T has a good resolution.
- the resolution index value T can be used as a quantitative index when determining the resolution of the member with the opaque film.
- SEM-EDX (Hitachi S-4300 and Horiba EMAX) was used to measure the atomic ratio.
- the element ratio of silicon and zirconium was measured at three arbitrary points on the opaque film with an acceleration voltage of 5 keV.
- Table 2 summarizes the evaluation results obtained in Sample 1 to Sample 7 in which the measured values of the respective elements were averaged and the Zr / Si ratio was determined from the average value of silicon and the average value of zirconium.
- Samples 4 and 7 are members with an opaque film in which the opaque film does not contain zirconium.
- Sample 5 is a member with an opaque film in which the Zr / Si ratio in the opaque film exceeds 0.04.
- the Zr / Si ratio in the opaque film is in the range of 0.003 to 0.04.
- the area ratio of the second convex portion exceeds 3%. From this result, in sample 6, the occupancy ratio of the second convex portion, which is a fine convex portion, is increased (compared to the first convex portion), and as a result, a very good mechanical strength is obtained in the opaque film. It is thought that it was not possible.
- the mechanical strength is improved by configuring the opaque film so that the opaque film has a specific surface shape and the Zr / Si ratio is in a predetermined range. Confirmed to do.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Surface Treatment Of Glass (AREA)
Abstract
A non-transparent film attached member is provided with a transparent substrate and a non-transparent film provided on the transparent substrate. In a surface shape obtained by measuring a (101 μm to 111 μm) × (135 μm to 148 μm) region with a laser microscope, the non-transparent film includes first convex parts with a diameter of more than 10 μm in a cross section at a first height level H1, and second convex parts with a diameter of 1 μm or more and 10 μm or less in a cross section at a second height level H2 in the surface shape. A maximum height of the first convex parts relative to a height of the lowest portion within the region is 8 μm to 30 μm, and an average height of the second convex parts relative to the second height level H2 is 0.1 μm to 3 μm. The number of the second convex parts is 0.001 to 0.05 per 1 μm2. The second convex parts account for 1% to 3% of the area of the region. In the non-transparent film, the ratio of Zr to Si (atomic ratio) is in the range of 0.003 to 0.04.
Description
本発明は、不透視膜付き部材に関する。
The present invention relates to a member with an opaque film.
すりガラスは、視線を遮る機能と装飾機能を併せ持ち、住宅およびビルの窓、ならびに店舗などに広く使用されている。一般に、すりガラスは、光を透過する透明なガラス基材に、不透視加工を施すことにより構成される。
Frosted glass has both a function of blocking the line of sight and a decorative function, and is widely used in windows of houses and buildings and stores. In general, frosted glass is configured by performing non-permeability processing on a transparent glass substrate that transmits light.
一般に、前述のような不透視加工の方法としては、ガラス基材をエッチングして、表面に凹凸を形成する方法(例えば特許文献1)、およびガラス基材の表面にコーティングを施工することにより、表面に凹凸を形成する方法(例えば特許文献2)などが挙げられる。
Generally, as a method of non-permeability processing as described above, by etching a glass substrate and forming irregularities on the surface (for example, Patent Document 1), and by applying a coating on the surface of the glass substrate, Examples include a method of forming irregularities on the surface (for example, Patent Document 2).
このうち、エッチングによる方法では、長時間の使用により、すりガラスに「ヤケ」が発生する場合がある。また、すりガラスの製造工程において、ガラス基材の表面に微細な傷が生じると、その後ガラス基材に対して風冷強化を実施しても、強度があまり向上しなくなるという問題が生じ得る。
Among these, the etching method may cause “burnt” in the ground glass due to long-term use. Further, in the ground glass manufacturing process, if fine scratches are generated on the surface of the glass substrate, there is a problem that the strength is not improved so much even if the glass substrate is subsequently subjected to air cooling strengthening.
ここで、「ヤケ」とは、ガラス基材が湿気の多い環境に晒された際に、ガラス基材の表面が白濁する現象を言う。すなわち、ガラス基材の表面に水分が吸着すると、ガラス基材に含まれるアルカリ成分が溶出することにより、水分がアルカリ性に変化する。この水分が空気中の炭酸ガス(CO2)や亜硫酸ガス(SOx)などの酸性ガスと反応することにより、「ヤケ」が生じる。
Here, “burn” refers to a phenomenon in which the surface of the glass substrate becomes clouded when the glass substrate is exposed to a humid environment. That is, when moisture is adsorbed on the surface of the glass substrate, the alkali component contained in the glass substrate is eluted, so that the moisture changes to alkaline. When this moisture reacts with an acidic gas such as carbon dioxide (CO 2 ) or sulfurous acid (SO x ) in the air, “burning” occurs.
一方、コーティングによる方法では、ガラス基材の表面に、樹脂などのコーティング層が設置される。従って、前述の「ヤケ」の問題を回避することができる。
On the other hand, in the coating method, a coating layer such as a resin is provided on the surface of the glass substrate. Therefore, the above-mentioned “discoloration” problem can be avoided.
しかしながら、そのようなコーティング層は、通常、比較的薄いため、機械的強度があまり良好ではないという問題がある。例えば、コーティング層に物体が当接すると、コーティング層に簡単に傷が生じたり、コーティング層が損傷したりしてしまう。コーティング層にそのような傷および/または損傷が生じると、すりガラスの所望の特性が発揮できなくなってしまうおそれがある。
However, since such a coating layer is usually relatively thin, there is a problem that mechanical strength is not so good. For example, when an object comes into contact with the coating layer, the coating layer is easily damaged or the coating layer is damaged. If such a scratch and / or damage occurs in the coating layer, the desired characteristics of the ground glass may not be exhibited.
本発明は、このような背景に鑑みなされたものであり、本発明では、比較的良好な強度を有する不透視膜付き部材を提供することを目的とする。
The present invention has been made in view of such a background, and an object of the present invention is to provide a member with an opaque film having a relatively good strength.
本発明では、透明基材と、該透明基材上に設置された不透視膜とを備える不透視膜付き部材であって、
前記不透視膜は、(101μm~111μm)×(135μm~148μm)の領域をレーザ顕微鏡で測定して得られる表面形状において、第1の高さレベルH1での断面における直径(真円換算)が10μm超である第1の凸部と、前記表面形状の第2の高さレベルH2での断面における直径(真円換算)が1μm以上10μm以下である第2の凸部とを含み、
ここで、第1の高さレベルH1は、ベアリング高さ+0.05μmの高さであり、第2の高さレベルH2は、ベアリング高さ+0.5μmの高さであり、
前記領域内で最も低い部分の高さを基準とした前記第1の凸部の最大高さL1maxは、8μm~30μmであり、
前記第2の高さレベルH2を基準とした前記第2の凸部の平均高さL2aveは、0.1μm~3μmであり、
前記第2の凸部の数は、1μm2あたり0.001個~0.05個であり、前記第2の凸部は、前記領域の面積の1%~3%を占め、
前記不透視膜において、シリコンに対するジルコニウムの比(Zr/Si比(原子比))は、0.003~0.04の範囲である、不透視膜付き部材が提供される。 In the present invention, a member with an opaque film comprising a transparent substrate and an opaque film installed on the transparent substrate,
The non-transparent film has a surface shape obtained by measuring a region of (101 μm to 111 μm) × (135 μm to 148 μm) with a laser microscope, and a diameter in a cross section at a first height level H 1 (converted into a perfect circle) Including a first convex portion having a diameter of more than 10 μm, and a second convex portion having a diameter (converted to a perfect circle) of the surface shape at a second height level H 2 of 1 μm or more and 10 μm or less,
Here, the first height level H 1 is a bearing height + 0.05 μm height, and the second height level H 2 is a bearing height + 0.5 μm height,
The maximum height L 1max of the first convex portion based on the height of the lowest portion in the region is 8 μm to 30 μm,
An average height L 2ave of the second convex portion with respect to the second height level H 2 is 0.1 μm to 3 μm,
The number of the second protrusions is 0.001 to 0.05 per 1 μm 2 , and the second protrusions occupy 1% to 3% of the area of the region,
In the opaque film, a member with an opaque film having a ratio of zirconium to silicon (Zr / Si ratio (atomic ratio)) in the range of 0.003 to 0.04 is provided.
前記不透視膜は、(101μm~111μm)×(135μm~148μm)の領域をレーザ顕微鏡で測定して得られる表面形状において、第1の高さレベルH1での断面における直径(真円換算)が10μm超である第1の凸部と、前記表面形状の第2の高さレベルH2での断面における直径(真円換算)が1μm以上10μm以下である第2の凸部とを含み、
ここで、第1の高さレベルH1は、ベアリング高さ+0.05μmの高さであり、第2の高さレベルH2は、ベアリング高さ+0.5μmの高さであり、
前記領域内で最も低い部分の高さを基準とした前記第1の凸部の最大高さL1maxは、8μm~30μmであり、
前記第2の高さレベルH2を基準とした前記第2の凸部の平均高さL2aveは、0.1μm~3μmであり、
前記第2の凸部の数は、1μm2あたり0.001個~0.05個であり、前記第2の凸部は、前記領域の面積の1%~3%を占め、
前記不透視膜において、シリコンに対するジルコニウムの比(Zr/Si比(原子比))は、0.003~0.04の範囲である、不透視膜付き部材が提供される。 In the present invention, a member with an opaque film comprising a transparent substrate and an opaque film installed on the transparent substrate,
The non-transparent film has a surface shape obtained by measuring a region of (101 μm to 111 μm) × (135 μm to 148 μm) with a laser microscope, and a diameter in a cross section at a first height level H 1 (converted into a perfect circle) Including a first convex portion having a diameter of more than 10 μm, and a second convex portion having a diameter (converted to a perfect circle) of the surface shape at a second height level H 2 of 1 μm or more and 10 μm or less,
Here, the first height level H 1 is a bearing height + 0.05 μm height, and the second height level H 2 is a bearing height + 0.5 μm height,
The maximum height L 1max of the first convex portion based on the height of the lowest portion in the region is 8 μm to 30 μm,
An average height L 2ave of the second convex portion with respect to the second height level H 2 is 0.1 μm to 3 μm,
The number of the second protrusions is 0.001 to 0.05 per 1 μm 2 , and the second protrusions occupy 1% to 3% of the area of the region,
In the opaque film, a member with an opaque film having a ratio of zirconium to silicon (Zr / Si ratio (atomic ratio)) in the range of 0.003 to 0.04 is provided.
本発明では、比較的良好な強度を有する不透視膜付き部材を提供することができる。
In the present invention, a member with an opaque film having a relatively good strength can be provided.
以下、図面を参照して、本発明の一実施形態について説明する。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
(本発明の一実施形態による不透視膜付き部材)
図1には、本発明の一実施形態による不透視膜付き部材(以下、「第1の部材」と称する)の断面を模式的に示す。 (Member with opaque film according to an embodiment of the present invention)
FIG. 1 schematically shows a cross section of a member with an opaque film (hereinafter referred to as a “first member”) according to an embodiment of the present invention.
図1には、本発明の一実施形態による不透視膜付き部材(以下、「第1の部材」と称する)の断面を模式的に示す。 (Member with opaque film according to an embodiment of the present invention)
FIG. 1 schematically shows a cross section of a member with an opaque film (hereinafter referred to as a “first member”) according to an embodiment of the present invention.
図1に示すように、第1の部材100は、第1の側102および第2の側104を有する。また、第1の部材100は、透明基材110と、不透視膜130とを有する。不透視膜130は、第1の部材100の第1の側102に配置され、透明基材110は、第1の部材100の第2の側104に配置される。
As shown in FIG. 1, the first member 100 has a first side 102 and a second side 104. The first member 100 includes a transparent substrate 110 and an opaque film 130. The opaque film 130 is disposed on the first side 102 of the first member 100, and the transparent substrate 110 is disposed on the second side 104 of the first member 100.
透明基材110は、相互に対向する第1の表面112および第2の表面114を有し、不透視膜130は、透明基材110の第1の表面112の側に設置される。
The transparent substrate 110 has a first surface 112 and a second surface 114 facing each other, and the opaque film 130 is disposed on the first surface 112 side of the transparent substrate 110.
透明基材110は、例えばガラスのような透明な材料で構成される。ここで、本願において、「透明」とは、波長400~1100nmの範囲の光を、平均して80%以上透過することを意味する。
The transparent substrate 110 is made of a transparent material such as glass. Here, in this application, “transparent” means that 80% or more of light in the wavelength range of 400 to 1100 nm is transmitted on average.
不透視膜130は、透過光を散乱させる役割を有する。すなわち、第1の部材100は、不透視膜130を備えることで、透明基材110を透過する光を散乱させ、不透視性を発現させることができる。
The opaque film 130 has a role to scatter transmitted light. That is, since the first member 100 includes the non-transparent film 130, the light transmitted through the transparent substrate 110 can be scattered and the non-permeability can be expressed.
不透視膜130は、無機酸化物を主体とする材料で構成される。特に、不透視膜130は、シリカを主成分とする材料で構成される。なお、「シリカを主成分とする」とは、SiO2を90質量%以上含むことを意味する。
The opaque film 130 is made of a material mainly composed of an inorganic oxide. In particular, the opaque film 130 is made of a material whose main component is silica. In addition, “having silica as a main component” means containing 90 mass% or more of SiO 2 .
ここで、第1の部材100は、以下の特徴を有する。
(特徴1)不透視膜130は、表面に、第1の凸部および第2の凸部を有し、第1の凸部の最大高さL1maxは、8μm~30μmであり、第2の凸部の平均高さL2aveは、0.1μm~3μmであり、第2の凸部の数は、1μm2あたり0.001~0.05個であり、第2の凸部は、前記領域の面積の1%~3%を占める:ならびに
(特徴2)不透視膜130は、シリカ(SiO2)およびジルコニア(ZrO2)を含み、ケイ素(Si)に対するジルコニウム(Zr)の比(Zr/Si(原子比))は、0.003~0.04の範囲である。 Here, thefirst member 100 has the following characteristics.
(Characteristic 1) Theopaque film 130 has a first convex portion and a second convex portion on the surface, and the maximum height L 1max of the first convex portion is 8 μm to 30 μm, The average height L 2ave of the protrusions is 0.1 μm to 3 μm, the number of second protrusions is 0.001 to 0.05 per 1 μm 2 , and the second protrusions are And (feature 2) the opaque film 130 includes silica (SiO 2 ) and zirconia (ZrO 2 ), and the ratio of zirconium (Zr) to silicon (Si) (Zr / Si (atomic ratio) is in the range of 0.003 to 0.04.
(特徴1)不透視膜130は、表面に、第1の凸部および第2の凸部を有し、第1の凸部の最大高さL1maxは、8μm~30μmであり、第2の凸部の平均高さL2aveは、0.1μm~3μmであり、第2の凸部の数は、1μm2あたり0.001~0.05個であり、第2の凸部は、前記領域の面積の1%~3%を占める:ならびに
(特徴2)不透視膜130は、シリカ(SiO2)およびジルコニア(ZrO2)を含み、ケイ素(Si)に対するジルコニウム(Zr)の比(Zr/Si(原子比))は、0.003~0.04の範囲である。 Here, the
(Characteristic 1) The
以下、各特徴について、詳しく説明する。
Hereinafter, each feature will be described in detail.
(特徴1について)
不透視膜130は、所定の領域において、レーザ顕微鏡で測定される表面形状に、第1の凸部と、第2の凸部とが含まれるという特徴を有する。 (About feature 1)
Thenon-transparent film 130 is characterized in that the first convex portion and the second convex portion are included in the surface shape measured by a laser microscope in a predetermined region.
不透視膜130は、所定の領域において、レーザ顕微鏡で測定される表面形状に、第1の凸部と、第2の凸部とが含まれるという特徴を有する。 (About feature 1)
The
ここで、「所定の領域」とは、横(101μm~111μm)×縦(135μm~148μm)の領域(以下、「測定領域」という)を意味する。測定領域は、最小の場合、101μm×135μmの寸法であり、最大の場合、111μm×148μmの寸法である。なお、通常の場合、縦/横の比率(長辺の長さ/短辺の長さ)は、通常、約1.21~1.46の範囲である。
Here, the “predetermined area” means a horizontal (101 μm to 111 μm) × vertical (135 μm to 148 μm) area (hereinafter referred to as “measurement area”). The measurement area has a size of 101 μm × 135 μm at the minimum, and a size of 111 μm × 148 μm at the maximum. In a normal case, the vertical / horizontal ratio (long side length / short side length) is usually in the range of about 1.21 to 1.46.
また、「第1の凸部」とは、測定領域における表面形状を、第1の高さレベルH1で切断したときの真円換算の直径が10μm超である凸部分を意味し、「第2の凸部」とは、第2の高さレベルH2で切断したときの真円換算の直径が1μm以上10μm以下の凸部分を意味する。
In addition, the “first convex portion” means a convex portion having a diameter in a perfect circle when the surface shape in the measurement region is cut at the first height level H 1 is more than 10 μm. “Two convex portions” means convex portions having a true circle diameter of 1 μm or more and 10 μm or less when cut at the second height level H 2 .
第1の凸部の最大高さL1maxは、8μm~30μmであり、第2の凸部の平均高さL2aveは、0.1μm~3μmである。また、第2の凸部の数は、1μm2あたり0.001~0.05個であり、第2の凸部は、前記領域の面積の1%~3%を占める。
The maximum height L 1max of the first protrusion is 8 μm to 30 μm, and the average height L 2ave of the second protrusion is 0.1 μm to 3 μm. The number of the second protrusions is 0.001 to 0.05 per 1 μm 2 , and the second protrusions occupy 1% to 3% of the area of the region.
不透視膜130を、このような第1の凸部および第2の凸部をともに有する表面構造とすることにより、第1の凸部で散乱された光を、第2の凸部でさらに散乱させることができる。また、これにより、第1の部材100に、比較的良好な不透視性を発現させることができる。
By making the non-transparent film 130 have such a surface structure having both the first convex portion and the second convex portion, the light scattered by the first convex portion is further scattered by the second convex portion. Can be made. This also allows the first member 100 to exhibit relatively good opacity.
以下、図2および図3を用いて、第1の凸部および第2の凸部についてより詳しく説明する。
Hereinafter, the first convex portion and the second convex portion will be described in more detail with reference to FIGS. 2 and 3.
図2には、第1の凸部を説明するための、不透視膜130の測定領域における表面形状の断面を模式的に示す。また、図3には、第2の凸部を説明するための、不透視膜130の測定領域における表面形状の断面を模式的に示す。
FIG. 2 schematically shows a cross-section of the surface shape in the measurement region of the opaque film 130 for explaining the first convex portion. FIG. 3 schematically shows a cross-section of the surface shape in the measurement region of the opaque film 130 for explaining the second convex portion.
図2に示すように、不透視膜130の表面132は、凹凸形状を有する。
As shown in FIG. 2, the surface 132 of the opaque film 130 has an uneven shape.
図2において、水平線BHは、「ベアリング高さ」を表す。
In FIG. 2, the horizontal line BH represents “bearing height”.
ここで、「ベアリング高さ」とは、表面形状のxyzデータから求められる高さ分布ヒストグラムにおいて、最も優勢な高さzの値を意味する。高さzは、第1の部材100の第1の側102の最低点を基準とした高さに相当する。以下、特に基準を規定しない限り、表面形状における高さは、このベアリング高さBHを基準として表すものとする。
Here, “bearing height” means a value of the most dominant height z in the height distribution histogram obtained from the xyz data of the surface shape. The height z corresponds to a height based on the lowest point of the first side 102 of the first member 100. Hereinafter, unless otherwise specified, the height in the surface shape is expressed with reference to the bearing height BH.
図2に示すように、第1の高さレベルH1は、ベアリング高さBH+0.05μmの高さとして規定される。第1の高さレベルH1は、図2において、ベアリング高さBHの上に破線で描かれている。
As shown in FIG. 2, the first height level H 1 is defined as the height of the bearing height BH + 0.05 .mu.m. The first height level H 1, in FIG. 2, drawn in broken line on the bearing height BH.
前述のように、第1の凸部は、測定領域における表面形状を、第1の高さレベルH1で切断したときの真円換算の直径が10μm超である凸部分を意味する。
As described above, the first convex portion means a convex portion having a perfect circle diameter of more than 10 μm when the surface shape in the measurement region is cut at the first height level H 1 .
図2の例では、そのような第1の凸部134が2箇所存在する。すなわち、図2には、真円換算の直径P1(P1>10μm)を有する凸部134Aと、真円換算の直径P2(P2>10μm)を有する凸部134Bとが、第1の凸部134として描かれている。
In the example of FIG. 2, there are two such first convex portions 134. That is, in FIG. 2, the convex part 134A having a diameter P 1 (P 1 > 10 μm) converted into a perfect circle and the convex part 134B having a diameter P 2 (P 2 > 10 μm) converted into a perfect circle are shown in FIG. It is drawn as the convex part 134 of the.
なお、第1の高さレベルH1における第1の凸部134の平均直径(真円換算)は、10μm超143μm以下が好ましい。第1の凸部134の平均直径(真円換算)がこの範囲内であれば、不透視膜130における光散乱効果が高くなり、第1の部材100の不透視性が向上する。
Note that the average diameter (converted to a perfect circle) of the first protrusions 134 at the first height level H 1 is preferably more than 10 μm and 143 μm or less. If the average diameter (converted to a perfect circle) of the first convex portion 134 is within this range, the light scattering effect in the non-opaque film 130 is increased, and the non-transparency of the first member 100 is improved.
第1の高さレベルH1における第1の凸部134の平均直径(真円換算)は、10μm超140μm以下がより好ましく、20μm以上135μm以下がさらに好ましい。
The average diameter of the first protrusion 134 in the first height level H 1 (true circle equivalent), more preferably at most 10μm ultra 140 .mu.m, more preferably 20μm or more 135μm or less.
また、第1の凸部134において、最大高さL1max(図2参照)は、8μm~30μmの範囲である。なお、最大高さL1maxの基準は、測定領域の中で、z値が最も小さい位置における高さである。
In the first protrusion 134, the maximum height L 1max (see FIG. 2) is in the range of 8 μm to 30 μm. The reference for the maximum height L 1max is the height at the position where the z value is the smallest in the measurement region.
最大高さL1maxがこの範囲であれば、不透視膜130の表面132と空気との界面での光の散乱が増大し、不透視膜130の不透視性効果がより高まる。
If the maximum height L 1max is within this range, light scattering at the interface between the surface 132 of the non-transparent film 130 and the air increases, and the non-transparent effect of the non-transparent film 130 is further enhanced.
最大高さL1maxは、10μm~30μmの範囲であることがより好ましい。
The maximum height L 1max is more preferably in the range of 10 μm to 30 μm.
また、第1の凸部134において、高さの標準偏差は、10μm以下であることが好ましい。なお、この際の高さの基準は、測定領域の中で、z値が最も小さい位置における高さである。
In the first convex portion 134, the standard deviation of the height is preferably 10 μm or less. In addition, the reference | standard of the height in this case is the height in the position where z value is the smallest in a measurement area | region.
また、測定領域において、第1の凸部134の数は、1μm2あたり0.0001~0.76個であることが好ましい。
In the measurement region, the number of the first protrusions 134 is preferably 0.0001 to 0.76 per 1 μm 2 .
次に、図3には、第2の凸部を説明するための、不透視膜130の測定領域における表面形状の断面を模式的に示す。図3には、図2と同様の不透視膜130の表面132が示されている。図3においても、水平線BHは、「ベアリング高さ」を表す。
Next, FIG. 3 schematically shows a cross-section of the surface shape in the measurement region of the opaque film 130 for explaining the second convex portion. FIG. 3 shows a surface 132 of an opaque film 130 similar to FIG. Also in FIG. 3, the horizontal line BH represents the “bearing height”.
図3に示すように、第2の高さレベルH2は、ベアリング高さBH+0.5μmとして規定される。第2の高さレベルH2は、図3において、ベアリング高さBHの上に破線で描かれている。
As shown in FIG. 3, the second height level H 2 is defined as a bearing height BH + 0.5 [mu] m. Second height level H 2 is 3, drawn in broken line on the bearing height BH.
前述のように、第2の凸部は、測定領域における表面形状を、第2の高さレベルH2で切断したときの真円換算の直径が1μm以上10μm以下である凸部分を意味する。
As described above, the second convex portion means a convex portion whose diameter in terms of a perfect circle when the surface shape in the measurement region is cut at the second height level H2 is 1 μm or more and 10 μm or less.
従って、図3の例では、第2の凸部136が5箇所存在する。すなわち、図3には、真円換算の直径Q1(1μm≦Q1≦10μm)を有する凸部136Aと、真円換算の直径Q2(1μm≦Q2≦10μm)を有する凸部136Bと、真円換算の直径Q3(1μm≦Q3≦10μm)を有する凸部136Cと、真円換算の直径Q4(1μm≦Q4≦10μm)を有する凸部136Dと、真円換算の直径Q5(1μm≦Q5≦10μm)を有する凸部136Eとが、第2の凸部136として描かれている。
Therefore, in the example of FIG. 3, there are five second convex portions 136. That is, FIG. 3 shows a convex portion 136A having a true circle equivalent diameter Q 1 (1 μm ≦ Q 1 ≦ 10 μm) and a convex portion 136B having a true circular equivalent diameter Q 2 (1 μm ≦ Q 2 ≦ 10 μm). , A convex portion 136C having a true circle equivalent diameter Q 3 (1 μm ≦ Q 3 ≦ 10 μm), a convex portion 136D having a true circular equivalent diameter Q 4 (1 μm ≦ Q 4 ≦ 10 μm), and a true circular equivalent diameter A convex portion 136E having Q 5 (1 μm ≦ Q 5 ≦ 10 μm) is depicted as the second convex portion 136.
なお、第2の高さレベルH2における第2の凸部136の平均直径(真円換算)は、3μm以上10μm以下が好ましい。第2の凸部136の平均直径(真円換算)がこの範囲内であれば、不透視性に優れ、外光の映り込みを有意に抑制できる不透視膜130を得ることができる。
The average diameter of the second protrusions 136 of the second height level H 2 (circularity equivalent), preferably 3μm or more 10μm or less. If the average diameter (converted to a perfect circle) of the second convex portion 136 is within this range, it is possible to obtain the non-transparent film 130 that is excellent in non-permeability and can significantly suppress the reflection of external light.
第2の凸部136の平均直径(真円換算)は、3μm以上5μm以下であることがより好ましい。
The average diameter (converted into a perfect circle) of the second convex part 136 is more preferably 3 μm or more and 5 μm or less.
また、第2の凸部136の平均高さL2aveは、0.1μm~3μmである。第2の凸部136の平均高さL2aveは、測定領域内に存在する全ての第2の凸部136の平均値として算出される。なお、第2の凸部136の平均高さL2aveの基準は、第2の高さレベルH2である。
The average height L 2ave of the second convex part 136 is 0.1 μm to 3 μm. The average height L 2ave of the second convex portion 136 is calculated as the average value of all the second convex portions 136 existing in the measurement region. The reference for the average height L 2ave of the second convex portion 136 is the second height level H 2 .
さらに、不透視膜130の測定領域において、第2の凸部136の数は、1μm2あたり0.001~0.05個である。1μm2あたりの第2の凸部136の数(第2の凸部136の密度)が前記範囲内であれば、第1の凸部134で屈折された光同士の干渉を阻害しやすく、不透視性を高める効果が大きくなる。
Further, in the measurement region of the opaque film 130, the number of the second protrusions 136 is 0.001 to 0.05 per 1 μm 2 . If the number of the second protrusions 136 per 1 μm 2 (the density of the second protrusions 136) is within the above range, interference between the lights refracted by the first protrusions 134 is likely to be hindered. The effect of improving transparency is increased.
第2の凸部136の密度は、0.002~0.05個の範囲であることが好ましい。
The density of the second protrusions 136 is preferably in the range of 0.002 to 0.05.
また、不透視膜130の測定領域において、第2の凸部136の面積率は、1%~3%の範囲である。第2の凸部136の面積率は、(前記第2の高さH2を基準とした位置における第2の凸部136の面積)/(測定領域の面積)の百分率として求められる。
Further, in the measurement region of the opaque film 130, the area ratio of the second protrusion 136 is in the range of 1% to 3%. The area ratio of the second convex portion 136 is determined as a percentage of (the area of the second protrusions 136 in position with the second height H 2 relative to) / (the area of the measurement region).
第2の凸部136の面積率は、1.0%~3.0%の範囲であることが好ましい。
The area ratio of the second protrusion 136 is preferably in the range of 1.0% to 3.0%.
なお、第1の凸部134および第2の凸部136を、前述のように構成した場合、「指滑り性」の良い不透視膜130を得ることができる。
In addition, when the 1st convex part 134 and the 2nd convex part 136 are comprised as mentioned above, the non-transparent film | membrane 130 with favorable "finger sliding property" can be obtained.
ここで、「指滑り性」とは、人の指で不透視膜130を触ったときの感覚、例えば、ざらざら感、さらさら感、およびつるつる感等を意味する。従って、「指滑り性」が良好であるとは、不快な感覚ではないこと、例えば、さらさら感および/またはつるつる感が高いことを意味する。
Here, the “finger slipperiness” means a feeling when the opaque film 130 is touched with a human finger, for example, a rough feeling, a smooth feeling, and a smooth feeling. Therefore, “good finger slipperiness” means that it is not an unpleasant sensation, for example, a feeling of smoothness and / or slipperiness is high.
なお、前記「測定領域」は、第1の部材100の不透視膜130の表面から、無作為に選択される。また、表面形状の第1の高さH1での断面、および表面形状の第2の高さH2での断面を含む、各パラメータ値は、レーザ顕微鏡で測定した表面形状のデータを画像処理ソフトウェア(イメージメトロロジー社製「SPIP」)で解析することにより、求めることができる。
The “measurement region” is randomly selected from the surface of the opaque film 130 of the first member 100. Further, each parameter value including a cross section of the surface shape at the first height H 1 and a cross section of the surface shape at the second height H 2 is obtained by performing image processing on the data of the surface shape measured by the laser microscope. It can be obtained by analyzing with software (“SPIP” manufactured by Image Metrology).
(特徴2について)
不透視膜130は、シリカ(SiO2)およびジルコニア(ZrO2)を含む、無機酸化物を主体とする材料で構成される。また、不透視膜130において、ケイ素(Si)に対するジルコニウム(Zr)の原子比(以下、「Zr/Si比」と称する)は、0.003~0.04の範囲であるという特徴を有する。 (About feature 2)
Theopaque film 130 is made of a material mainly composed of an inorganic oxide, including silica (SiO 2 ) and zirconia (ZrO 2 ). Further, in the opaque film 130, the atomic ratio of zirconium (Zr) to silicon (Si) (hereinafter referred to as “Zr / Si ratio”) is in the range of 0.003 to 0.04.
不透視膜130は、シリカ(SiO2)およびジルコニア(ZrO2)を含む、無機酸化物を主体とする材料で構成される。また、不透視膜130において、ケイ素(Si)に対するジルコニウム(Zr)の原子比(以下、「Zr/Si比」と称する)は、0.003~0.04の範囲であるという特徴を有する。 (About feature 2)
The
Zr/Si比は、0.003~0.04の範囲であることが好ましい。
The Zr / Si ratio is preferably in the range of 0.003 to 0.04.
なお、Zr/Si比は、不透視膜130の表面を定量分析することにより、測定することができる。より具体的には、不透視膜130の表面の異なる3箇所から、SiおよびZrの元素比率をそれぞれ測定し、各値を平均する。Siの平均値とZrの平均値から、Zr/Si比が求められる。
The Zr / Si ratio can be measured by quantitatively analyzing the surface of the opaque film 130. More specifically, the element ratios of Si and Zr are measured from three different locations on the surface of the non-transmissive film 130, and the respective values are averaged. The Zr / Si ratio is determined from the average value of Si and the average value of Zr.
このような特徴1および特徴2により、第1の部材100では、表面に凹凸を形成するために透明基材110をエッチングする必要がなく、前述のような「ヤケ」の問題を有意に抑制することができる。
With such features 1 and 2, the first member 100 does not need to etch the transparent substrate 110 in order to form irregularities on the surface, and the above-mentioned “burn” problem is significantly suppressed. be able to.
また、第1の部材100では、不透視膜130が比較的良好な機械的強度を有するため、コーティング層に傷および/または損傷が生じ易いという問題を、有意に回避することができる。すなわち、傷や衝撃などに耐性がある第1の部材100を得ることができる。例えば、第1の部材100の第1の側102において、鉛筆硬度は7H以上である。
Further, in the first member 100, since the non-transparent film 130 has a relatively good mechanical strength, the problem that the coating layer is easily damaged and / or damaged can be significantly avoided. That is, the first member 100 that is resistant to scratches and impacts can be obtained. For example, on the first side 102 of the first member 100, the pencil hardness is 7H or higher.
さらに、第1の部材100では、比較的良好な不透視性を発現させることができる。例えば、第1の部材100において、クラリティは0.25以下である。また、ヘイズは70%以上である。
Furthermore, the first member 100 can exhibit relatively good opacity. For example, in the first member 100, the clarity is 0.25 or less. Moreover, haze is 70% or more.
また、第1の部材100では、比較的良好な指滑り性(さらさら感およびつるつる感)を得ることができる。
Also, with the first member 100, it is possible to obtain relatively good finger slipperiness (smooth feeling and smooth feeling).
(その他の特徴)
次に、第1の部材100に関するその他の特徴について説明する。 (Other features)
Next, other features regarding thefirst member 100 will be described.
次に、第1の部材100に関するその他の特徴について説明する。 (Other features)
Next, other features regarding the
(透明基材110)
透明基材110は、「透明」である限り、その材質は限られない。例えば、透明基材110は、ガラスまたは樹脂等で構成されても良い。 (Transparent substrate 110)
The material of thetransparent substrate 110 is not limited as long as it is “transparent”. For example, the transparent substrate 110 may be made of glass or resin.
透明基材110は、「透明」である限り、その材質は限られない。例えば、透明基材110は、ガラスまたは樹脂等で構成されても良い。 (Transparent substrate 110)
The material of the
ガラスとしては、例えば、ソーダライムガラス、ホウケイ酸ガラス、ボレートガラス、アルミノシリケートガラス、リチウムアルミノシリケートガラス、および無アルカリガラス等が挙げられる。
Examples of the glass include soda lime glass, borosilicate glass, borate glass, aluminosilicate glass, lithium aluminosilicate glass, and alkali-free glass.
一方、樹脂としては、例えば、ポリエチレンテレフタレート、ポリカーボネート、トリアセチルセルロース、およびポリメタクリル酸メチル等が挙げられる。
On the other hand, examples of the resin include polyethylene terephthalate, polycarbonate, triacetyl cellulose, and polymethyl methacrylate.
透明基材110がガラス板である場合、透明基材110は、フロート法、フュージョン(オーバーフローダウンドロー)法、またはスロットダウンドロー法等により成形されても良い。あるいは、透明基材110は、ロールアウト法等で形成されても良い。
When the transparent base material 110 is a glass plate, the transparent base material 110 may be formed by a float method, a fusion (overflow down draw) method, a slot down draw method, or the like. Alternatively, the transparent substrate 110 may be formed by a roll-out method or the like.
また、透明基材110がガラス基材である場合、該ガラス基材は、強化処理されたものであっても良い。強化処理方法としては、風冷強化法(物理強化法)、および化学強化法が挙げられる。
Further, when the transparent substrate 110 is a glass substrate, the glass substrate may be subjected to a tempering treatment. Examples of the reinforcing treatment method include an air cooling strengthening method (physical strengthening method) and a chemical strengthening method.
風冷強化法では、ガラスの軟化点温度付近(例えば600℃~700℃)まで加熱したガラス基材が、風冷等により急冷される。これにより、ガラス基材の表面と内部との間に温度差が生じ、ガラス基材の表面に圧縮応力層が形成される。
In the air cooling strengthening method, a glass substrate heated to near the softening point temperature of glass (for example, 600 ° C. to 700 ° C.) is rapidly cooled by air cooling or the like. Thereby, a temperature difference arises between the surface of a glass base material, and the inside, and a compressive-stress layer is formed in the surface of a glass base material.
一方、化学強化法では、ガラスの歪点温度以下の温度で、ガラス基材を溶融塩に浸漬して、ガラス基材に含まれるイオン(例えばナトリウムイオン)を、より大きなイオン半径を有するイオン(例えばカリウムイオン)に交換する。これにより、ガラス基材の表面に圧縮応力層が形成される。
On the other hand, in the chemical strengthening method, a glass substrate is immersed in a molten salt at a temperature equal to or lower than the strain point temperature of the glass, and ions (for example, sodium ions) contained in the glass substrate are converted into ions having a larger ion radius ( For example, potassium ion). Thereby, a compressive stress layer is formed on the surface of the glass substrate.
強化処理されたガラス基材は、第1の表面112および第2の表面114に圧縮応力層を有するため、傷または衝撃に対する強度が向上する。
Since the tempered glass substrate has a compressive stress layer on the first surface 112 and the second surface 114, the strength against scratches or impacts is improved.
なお、ガラス基材の物理強化処理または化学強化処理は、ガラス基材の状態で実施しても、不透視膜130を設置した後に実施しても良い。
The physical strengthening process or the chemical strengthening process of the glass substrate may be performed in the state of the glass substrate or after the non-transparent film 130 is installed.
特に、第1の部材100では、不透視膜130は、前述のような組成を有する無機酸化物を主体とした材料で構成される。この場合、不透視膜130に損傷を及ぼさずに、ガラス基材の強化処理を実施することができる。
In particular, in the first member 100, the opaque film 130 is made of a material mainly composed of an inorganic oxide having the above-described composition. In this case, the glass substrate can be strengthened without damaging the opaque film 130.
透明基材110は、例えば、板状またはフィルム状等であっても良い。
The transparent substrate 110 may be, for example, a plate shape or a film shape.
透明基材110の第1の表面112および/または第2の表面114は、必ずしも平坦な形状に限られず、これらは、曲面を有しても良い。
The first surface 112 and / or the second surface 114 of the transparent substrate 110 are not necessarily limited to a flat shape, and they may have a curved surface.
例えば、透明基材110の第1の表面112が曲面を有する場合、第1の表面112は、全体が曲面で構成されても良く、あるいは曲面部分と平坦部分とを有しても良い。第2の表面114についても、同様のことが言える。
For example, when the first surface 112 of the transparent substrate 110 has a curved surface, the first surface 112 may be entirely formed of a curved surface, or may have a curved surface portion and a flat portion. The same can be said for the second surface 114.
なお、透明基材110は、透明基材の第1の表面112および/または第2の表面114に、さらに機能層を有しても良い。そのような機能層としては、着色層、金属層、密着改善層、および/または保護層等が挙げられる。
The transparent substrate 110 may further have a functional layer on the first surface 112 and / or the second surface 114 of the transparent substrate. Examples of such a functional layer include a colored layer, a metal layer, an adhesion improving layer, and / or a protective layer.
透明基材110の厚さは、例えば、0.5mm~12.0mmの範囲である。
The thickness of the transparent substrate 110 is, for example, in the range of 0.5 mm to 12.0 mm.
(不透視膜130)
不透視膜130は、シリカおよびジルコニアに加えて、さらに別の添加成分を少量含んでも良い。そのような添加成分としては、Li、B、C、N、F、Na、Mg、Al、P、S、K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Sr、Y、Nb、Ru、Pd、Ag、In、Sn、Hf、Ta、W、Pt、Au、Biおよびランタノイドより選ばれる、1または2以上の元素または化合物(例えば酸化物)が挙げられる。 (Opaque membrane 130)
Theopaque film 130 may contain a small amount of another additive component in addition to silica and zirconia. Such additive components include Li, B, C, N, F, Na, Mg, Al, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, 1 or 2 or more elements or compounds (for example, oxides) selected from Ga, Sr, Y, Nb, Ru, Pd, Ag, In, Sn, Hf, Ta, W, Pt, Au, Bi, and lanthanoids. It is done.
不透視膜130は、シリカおよびジルコニアに加えて、さらに別の添加成分を少量含んでも良い。そのような添加成分としては、Li、B、C、N、F、Na、Mg、Al、P、S、K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Sr、Y、Nb、Ru、Pd、Ag、In、Sn、Hf、Ta、W、Pt、Au、Biおよびランタノイドより選ばれる、1または2以上の元素または化合物(例えば酸化物)が挙げられる。 (Opaque membrane 130)
The
不透視膜130の屈折率は、1.40~1.46であることが好ましく、1.43~1.46であることがより好ましい。不透視膜130の屈折率が1.46以下であれば、不透視膜130の表面での外光の反射率が低くなり、高反射膜化による外光の映り込みを抑制することができる。
The refractive index of the opaque film 130 is preferably 1.40 to 1.46, and more preferably 1.43 to 1.46. If the refractive index of the non-transparent film 130 is 1.46 or less, the reflectance of external light on the surface of the non-transparent film 130 becomes low, and reflection of external light due to the high reflection film can be suppressed.
また、不透視膜130の屈折率が1.43以上であれば、不透視膜130の緻密性が高くなり、透明基材110との密着性が高まる。
Further, if the refractive index of the opaque film 130 is 1.43 or more, the denseness of the opaque film 130 is increased, and the adhesion with the transparent substrate 110 is increased.
不透視膜130の屈折率は、不透視膜130空隙率、不透視膜130のマトリクスの材質、およびマトリクス中への任意の物質の添加等によって調整できる。例えば、不透視膜130の空隙率を高くすることにより、屈折率を低くすることができる。また、マトリクス中に屈折率の低い物質(中実シリカ粒子、中空シリカ粒子等)を添加することにより、不透視膜130の屈折率を低くすることができる。
The refractive index of the opaque film 130 can be adjusted by the porosity of the opaque film 130, the material of the matrix of the opaque film 130, the addition of an arbitrary substance into the matrix, and the like. For example, the refractive index can be lowered by increasing the porosity of the opaque film 130. Moreover, the refractive index of the opaque film 130 can be lowered by adding a substance having a low refractive index (solid silica particles, hollow silica particles, etc.) to the matrix.
不透視膜130の厚さは、例えば、0.1μm~30μmの範囲である。
The thickness of the opaque film 130 is, for example, in the range of 0.1 μm to 30 μm.
以上、第1の部材100を例に、本発明の一実施形態による不透視膜付き部材の構成および特徴について説明した。
The configuration and characteristics of the member with an opaque film according to the embodiment of the present invention have been described above by taking the first member 100 as an example.
本発明の一実施形態による不透視膜付き部材は、例えば、建築用外装ガラス、建築用内装ガラス(キッチンキャビネット、テーブルトップ、シャワードア、仕切りガラス等)、装飾ガラス、車両用スモークシールドガラス、および加飾ガラス等に適用することができる。
The member with an opaque film according to an embodiment of the present invention includes, for example, an architectural exterior glass, an architectural interior glass (kitchen cabinet, table top, shower door, partition glass, etc.), decorative glass, vehicle smoke shield glass, and It can be applied to decorative glass.
(本発明の一実施形態による不透視膜付き部材の製造方法)
次に、前述のような特徴を有する本発明の一実施形態による不透視膜付き部材の製造方法について、説明する。 (Manufacturing method of member with opaque film according to one embodiment of the present invention)
Next, a method for manufacturing a member with an opaque film according to an embodiment of the present invention having the above-described features will be described.
次に、前述のような特徴を有する本発明の一実施形態による不透視膜付き部材の製造方法について、説明する。 (Manufacturing method of member with opaque film according to one embodiment of the present invention)
Next, a method for manufacturing a member with an opaque film according to an embodiment of the present invention having the above-described features will be described.
図4には、本発明の一実施形態による不透視膜付き部材の製造方法(以下、「第1の製造方法」という)のフローを模式的に示す。
FIG. 4 schematically shows a flow of a method for manufacturing a member with an opaque film according to an embodiment of the present invention (hereinafter referred to as “first manufacturing method”).
図4に示すように、第1の製造方法は、
塗布組成物を調製する工程(工程S110)と、
塗布組成物を透明基材に塗布する工程(工程S120)と、
塗布組成物を熱処理する工程(工程S130)と、
を有する。 As shown in FIG. 4, the first manufacturing method is:
A step of preparing a coating composition (step S110);
A step of applying the coating composition to the transparent substrate (step S120);
A step of heat-treating the coating composition (step S130);
Have
塗布組成物を調製する工程(工程S110)と、
塗布組成物を透明基材に塗布する工程(工程S120)と、
塗布組成物を熱処理する工程(工程S130)と、
を有する。 As shown in FIG. 4, the first manufacturing method is:
A step of preparing a coating composition (step S110);
A step of applying the coating composition to the transparent substrate (step S120);
A step of heat-treating the coating composition (step S130);
Have
以下、各工程について説明する。なお、ここでは、前述の第1の部材100を例に、各工程について説明する。従って、不透視膜付き部材の各素子および部分を参照する際には、図1~図3に用いた参照符号を使用する。
Hereinafter, each process will be described. Here, each process will be described using the first member 100 described above as an example. Therefore, when referring to each element and part of the member with an opaque film, the reference numerals used in FIGS. 1 to 3 are used.
(工程S110)
まず、不透視膜130用の塗布組成物が調製される。 (Process S110)
First, a coating composition for theopaque film 130 is prepared.
まず、不透視膜130用の塗布組成物が調製される。 (Process S110)
First, a coating composition for the
塗布組成物は、シリカ源と、ジルコニウム源と、溶媒とを含む。塗布組成物は、さらに、バインダ、およびその他の添加物等を含んでも良い。
The coating composition includes a silica source, a zirconium source, and a solvent. The coating composition may further contain a binder and other additives.
塗布組成物中のシリカ濃度は、例えば、0.5質量%~24.0質量%の範囲である。
The silica concentration in the coating composition is, for example, in the range of 0.5% by mass to 24.0% by mass.
一方、塗布組成物中のジルコニウム濃度は、工程S130後に得られる不透視膜130において、前記Zr/Si比が0.003~0.04の範囲となるように選定される。
On the other hand, the zirconium concentration in the coating composition is selected so that the Zr / Si ratio is in the range of 0.003 to 0.04 in the opaque film 130 obtained after step S130.
また、塗布組成物中の溶媒の量は、塗布組成物の固形分濃度に応じて選定される。塗布組成物の固形分濃度は、塗布組成物の全量(100質量%)のうち、1質量%~12質量%が好ましく、1.5質量%~10質量%がより好ましい。固形分濃度が1質量%以上であれば、塗布組成物の液量を少なくできる。固形分濃度が12質量%以下であれば、膜の均一性が向上する。
Also, the amount of the solvent in the coating composition is selected according to the solid content concentration of the coating composition. The solid content concentration of the coating composition is preferably 1% by mass to 12% by mass and more preferably 1.5% by mass to 10% by mass in the total amount (100% by mass) of the coating composition. If the solid content concentration is 1% by mass or more, the liquid amount of the coating composition can be reduced. If the solid content concentration is 12% by mass or less, the uniformity of the film is improved.
塗布組成物の固形分濃度は、塗布組成物中の、溶媒以外の全成分の含有量の合計である。
The solid content concentration of the coating composition is the total content of all components other than the solvent in the coating composition.
シリカ源は、シリカ前駆体およびシリカ粒子から選定される。シリカ源は、シリカ前駆体とシリカ粒子の両方を含んでも良い。以下、シリカ前駆体およびシリカ粒子のそれぞれについて、詳しく説明する。
The silica source is selected from a silica precursor and silica particles. The silica source may include both a silica precursor and silica particles. Hereinafter, each of the silica precursor and the silica particles will be described in detail.
(シリカ前駆体)
本願において、シリカ前駆体とは、焼成により、シリカを主成分とするマトリックスを形成し得る物質を意味する。 (Silica precursor)
In this application, a silica precursor means the substance which can form the matrix which has silica as a main component by baking.
本願において、シリカ前駆体とは、焼成により、シリカを主成分とするマトリックスを形成し得る物質を意味する。 (Silica precursor)
In this application, a silica precursor means the substance which can form the matrix which has silica as a main component by baking.
シリカ前駆体としては、ケイ素原子に結合した炭化水素基および加水分解性基を有するシラン化合物およびその加水分解縮合物、アルコキシシラン(ただしシラン化合物を除く。)およびその加水分解縮合物(ゾルゲルシリカ)、ならびにシラザン等が挙げられる。
Silica precursors include silane compounds having a hydrocarbon group bonded to a silicon atom and a hydrolyzable group and their hydrolysis condensates, alkoxysilanes (excluding silane compounds) and their hydrolysis condensates (sol-gel silica). And silazane and the like.
「ケイ素原子に結合した加水分解性基」とは、加水分解によって、ケイ素原子に結合したOH基に変換し得る基を意味する。
“The hydrolyzable group bonded to a silicon atom” means a group that can be converted into an OH group bonded to a silicon atom by hydrolysis.
前記シラン化合物において、ケイ素原子に結合した炭化水素基は、1つのケイ素原子に結合した1価の炭化水素基であってもよく、2つのケイ素原子に結合した2価の炭化水素基であってもよい。1価の炭化水素基としては、アルキル基、アルケニル基、アリール基等が挙げられる。2価の炭化水素基としては、アルキレン基、アルケニレン基、アリーレン基等が挙げられる。
In the silane compound, the hydrocarbon group bonded to the silicon atom may be a monovalent hydrocarbon group bonded to one silicon atom or a divalent hydrocarbon group bonded to two silicon atoms. Also good. Examples of the monovalent hydrocarbon group include an alkyl group, an alkenyl group, and an aryl group. Examples of the divalent hydrocarbon group include an alkylene group, an alkenylene group, and an arylene group.
炭化水素基は、炭素原子間に-O-、-S-、-CO-および-NR’-(ただしR’は水素原子または1価の炭化水素基である。)から選ばれる1つまたは2つ以上を組み合わせた基を有していてもよい。
The hydrocarbon group is one or two selected from —O—, —S—, —CO— and —NR′— (wherein R ′ is a hydrogen atom or a monovalent hydrocarbon group) between carbon atoms. You may have the group which combined two or more.
一方、ケイ素原子に結合した加水分解性基としては、アルコキシ基、アシロキシ基、ケトオキシム基、アルケニルオキシ基、アミノ基、アミノキシ基、アミド基、イソシアネート基、ハロゲン原子等が挙げられる。これらの中では、シラン化合物の安定性と加水分解のしやすさとのバランスの点から、アルコキシ基、イソシアネート基およびハロゲン原子(特に塩素原子)が好ましい。
On the other hand, examples of the hydrolyzable group bonded to the silicon atom include an alkoxy group, an acyloxy group, a ketoxime group, an alkenyloxy group, an amino group, an aminoxy group, an amide group, an isocyanate group, and a halogen atom. Among these, an alkoxy group, an isocyanate group, and a halogen atom (particularly a chlorine atom) are preferable from the viewpoint of the balance between the stability of the silane compound and the ease of hydrolysis.
アルコキシ基としては、炭素数1~3のアルコキシ基が好ましく、メトキシ基またはエトキシ基がより好ましい。
The alkoxy group is preferably an alkoxy group having 1 to 3 carbon atoms, more preferably a methoxy group or an ethoxy group.
シラン化合物中に加水分解性基が複数存在する場合には、加水分解性基は、同じ基であっても異なる基であってもよく、同じ基であることが入手しやすさの点で好ましい。
When a plurality of hydrolyzable groups are present in the silane compound, the hydrolyzable groups may be the same group or different groups, and the same group is preferable in terms of availability. .
シラン化合物の中では、後述する式(1)で表される化合物、アルキル基を有するアルコキシシラン(メチルトリメトキシシラン、エチルトリエトキシシラン等)、ビニル基を有するアルコキシシラン(ビニルトリメトキシシラン、ビニルトリエトキシシラン等)、エポキシ基を有するアルコキシシラン(2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン等)、アクリロイルオキシ基を有するアルコキシシラン(3-アクリロイルオキシプロピルトリメトキシシラン等)等が挙げられる。
Among the silane compounds, a compound represented by the formula (1) described later, an alkoxysilane having an alkyl group (methyltrimethoxysilane, ethyltriethoxysilane, etc.), an alkoxysilane having a vinyl group (vinyltrimethoxysilane, vinyl) Triethoxysilane, etc.), alkoxysilanes having an epoxy group (2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3 -Glycidoxypropyltriethoxysilane, etc.), alkoxysilanes having an acryloyloxy group (3-acryloyloxypropyltrimethoxysilane, etc.) and the like.
特に、膜厚が厚くなっても不透視膜130にクラックや膜剥が生じにくい点から、式(1)で表される化合物が好ましい:
R3-pLpSi-Q-SiLpR3-p 式(1)
式(1)中、Qは、2価の炭化水素基(炭素原子間に-O-、-S-、-CO-および-NR’-(ただし、R’は水素原子または1価の炭化水素基である。)から選ばれる1つまたは2つ以上を組み合わせた基を有していてもよい。)である。2価の炭化水素としては、上述したものが挙げられる。 In particular, the compound represented by the formula (1) is preferable from the viewpoint that cracks and film peeling hardly occur in thenon-transparent film 130 even when the film thickness is increased:
R 3-p L p Si-Q-SiL p R 3-p Formula (1)
In the formula (1), Q is a divalent hydrocarbon group (-O—, —S—, —CO— and —NR′— (where R ′ is a hydrogen atom or a monovalent hydrocarbon). A group that is a combination of one or two or more selected from: What was mentioned above is mentioned as a bivalent hydrocarbon.
R3-pLpSi-Q-SiLpR3-p 式(1)
式(1)中、Qは、2価の炭化水素基(炭素原子間に-O-、-S-、-CO-および-NR’-(ただし、R’は水素原子または1価の炭化水素基である。)から選ばれる1つまたは2つ以上を組み合わせた基を有していてもよい。)である。2価の炭化水素としては、上述したものが挙げられる。 In particular, the compound represented by the formula (1) is preferable from the viewpoint that cracks and film peeling hardly occur in the
R 3-p L p Si-Q-SiL p R 3-p Formula (1)
In the formula (1), Q is a divalent hydrocarbon group (-O—, —S—, —CO— and —NR′— (where R ′ is a hydrogen atom or a monovalent hydrocarbon). A group that is a combination of one or two or more selected from: What was mentioned above is mentioned as a bivalent hydrocarbon.
Qとしては、入手が容易であり、かつ膜厚が厚くても不透視膜130のクラックや膜剥が生じにくい点から、炭素数2~8のアルキレン基が好ましく、炭素数2~6のアルキレン基がさらに好ましい。
Q is preferably an alkylene group having 2 to 8 carbon atoms, and is preferably an alkylene group having 2 to 6 carbon atoms from the viewpoint that it is easy to obtain and even if the film thickness is large, cracks and peeling of the non-transparent film 130 are difficult to occur. Is more preferable.
式(1)中、Lは、加水分解性基である。加水分解性基としては、上述したものが挙げられ、好ましい態様も同様である。
In formula (1), L is a hydrolyzable group. Examples of the hydrolyzable group include those described above, and preferred embodiments are also the same.
Rは、水素原子または1価の炭化水素基である。1価の炭化水素基としては、上述したものが挙げられる。
R is a hydrogen atom or a monovalent hydrocarbon group. Examples of the monovalent hydrocarbon group include those described above.
pは、1~3の整数である。pは、反応速度が遅くなりすぎない点から、2または3が好ましく、3が特に好ましい。
P is an integer from 1 to 3. p is preferably 2 or 3, particularly preferably 3, from the viewpoint that the reaction rate does not become too slow.
一方、シリカ前駆体がアルコキシシラン(ただし、前記シラン化合物を除く。)である場合、シリカ前駆体は、テトラアルコキシシラン(テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン等)、パーフルオロポリエーテル基を有するアルコキシシラン(パーフルオロポリエーテルトリエトキシシラン等)、パーフルオロアルキル基を有するアルコキシシラン(パーフルオロエチルトリエトキシシラン等)等から選定されても良い。
On the other hand, when the silica precursor is alkoxysilane (excluding the silane compound), the silica precursor is tetraalkoxysilane (tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, etc.), It may be selected from alkoxysilanes having a fluoropolyether group (perfluoropolyethertriethoxysilane and the like), alkoxysilanes having a perfluoroalkyl group (perfluoroethyltriethoxysilane and the like), and the like.
シラン化合物およびアルコキシシラン(ただしシラン化合物を除く。)の加水分解および縮合は、公知の方法により行うことができる。
Hydrolysis and condensation of the silane compound and alkoxysilane (excluding the silane compound) can be performed by a known method.
例えば、テトラアルコキシシランの場合、テトラアルコキシシランの4倍モル以上の水、および触媒として酸またはアルカリを用いて行う。
For example, in the case of tetraalkoxysilane, the reaction is carried out using 4 times or more moles of water of tetraalkoxysilane and acid or alkali as a catalyst.
酸としては、無機酸(HNO3、H2SO4、HCl等。)、有機酸(ギ酸、シュウ酸、モノクロル酢酸、ジクロル酢酸、トリクロル酢酸等。)が挙げられる。アルカリとしては、アンモニア、水酸化ナトリウム、水酸化カリウム等が挙げられる。触媒としては、シラン化合物の加水分解縮合物の長期保存性の点では、酸が好ましい。
Examples of the acid include inorganic acids (HNO 3 , H 2 SO 4 , HCl, etc.) and organic acids (formic acid, oxalic acid, monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, etc.). Examples of the alkali include ammonia, sodium hydroxide, potassium hydroxide and the like. As the catalyst, an acid is preferable from the viewpoint of long-term storage stability of the hydrolyzed condensate of the silane compound.
シリカ前駆体としては、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
As the silica precursor, one kind may be used alone, or two or more kinds may be used in combination.
シリカ前駆体は、不透視膜130のクラックや剥離を防止する観点から、シラン化合物およびその加水分解縮合物のいずれか一方または両方を含むことが好ましい。
The silica precursor preferably contains one or both of a silane compound and a hydrolysis-condensation product thereof from the viewpoint of preventing cracking and peeling of the opaque film 130.
シリカ前駆体は、不透視膜130の耐摩耗強度の観点から、テトラアルコキシシランおよびその加水分解縮合物のいずれか一方または両方を含むことが好ましい。
The silica precursor preferably contains one or both of tetraalkoxysilane and its hydrolysis condensate from the viewpoint of the abrasion resistance strength of the non-permeable membrane 130.
シリカ前駆体は、シラン化合物およびその加水分解縮合物のいずれか一方または両方と、テトラアルコキシシランおよびその加水分解縮合物のいずれか一方または両方と、を含むことが特に好ましい。
It is particularly preferable that the silica precursor includes one or both of a silane compound and a hydrolysis condensate thereof, and one or both of a tetraalkoxysilane and a hydrolysis condensate thereof.
(シリカ粒子)
シリカ源がシリカ粒子を含む場合、そのようなシリカ粒子は、鱗片状シリカ粒子を含んでも良い。鱗片状シリカ粒子とは、扁平な形状を有するシリカ粒子を意味する。シリカ粒子の形状は、透過型電子顕微鏡(TEM)を用いて確認できる。 (Silica particles)
When the silica source includes silica particles, such silica particles may include scaly silica particles. The scaly silica particles mean silica particles having a flat shape. The shape of the silica particles can be confirmed using a transmission electron microscope (TEM).
シリカ源がシリカ粒子を含む場合、そのようなシリカ粒子は、鱗片状シリカ粒子を含んでも良い。鱗片状シリカ粒子とは、扁平な形状を有するシリカ粒子を意味する。シリカ粒子の形状は、透過型電子顕微鏡(TEM)を用いて確認できる。 (Silica particles)
When the silica source includes silica particles, such silica particles may include scaly silica particles. The scaly silica particles mean silica particles having a flat shape. The shape of the silica particles can be confirmed using a transmission electron microscope (TEM).
鱗片状シリカ粒子の平均粒子径は、600nm以下であることが好ましい。
The average particle diameter of the scaly silica particles is preferably 600 nm or less.
鱗片状シリカ粒子の平均粒子径は、80nm~600nmが好ましく、170nm~550nmがより好ましい。鱗片状シリカ粒子の平均粒子径が80nm以上であれば、膜厚が厚くても膜のクラックや膜剥が充分に抑えられる。鱗片状シリカ粒子の平均粒子径が600nm以下であれば、塗布組成物中における分散安定性が良好となる。
The average particle diameter of the scaly silica particles is preferably 80 nm to 600 nm, and more preferably 170 nm to 550 nm. If the average particle diameter of the scaly silica particles is 80 nm or more, cracks and peeling of the film can be sufficiently suppressed even if the film thickness is large. When the average particle diameter of the scaly silica particles is 600 nm or less, the dispersion stability in the coating composition is good.
「平均粒子径」は、体積基準で求めた粒度分布の全体積を100%とした累積体積分布曲線において50%となる点の粒子径、すなわち体積基準累積50%径(D50)を意味する。粒度分布は、レーザ回折/散乱式粒子径分布測定装置で測定した頻度分布および累積体積分布曲線で求められる。
“Average particle diameter” means a particle diameter at a point of 50% in a cumulative volume distribution curve in which the total volume of particle size distribution obtained on a volume basis is 100%, that is, a volume-based cumulative 50% diameter (D50). The particle size distribution is obtained from a frequency distribution and a cumulative volume distribution curve measured with a laser diffraction / scattering particle size distribution measuring apparatus.
鱗片状シリカ粒子の平均アスペクト比は、50~650が好ましく、60~350がより好ましく、65~240がさらに好ましい。鱗片状シリカ粒子の平均アスペクト比が50以上であれば、膜厚が厚くても膜のクラックや膜剥が充分に抑えられる。鱗片状シリカ粒子の平均アスペクト比が650以下であれば、塗布組成物中における分散安定性が良好となる。
The average aspect ratio of the scaly silica particles is preferably 50 to 650, more preferably 60 to 350, and further preferably 65 to 240. If the average aspect ratio of the scaly silica particles is 50 or more, cracking and peeling of the film can be sufficiently suppressed even if the film thickness is large. When the average aspect ratio of the scaly silica particles is 650 or less, the dispersion stability in the coating composition is good.
なお、アスペクト比は、粒子の厚さに対する最長長さの比で表される。
The aspect ratio is represented by the ratio of the longest length to the thickness of the particles.
鱗片状シリカ粒子は、薄片状のシリカ1次粒子、または複数枚の薄片状のシリカ1次粒子が、互いに面間が平行的に配向し重なって形成されるシリカ2次粒子である。シリカ2次粒子は、通常、積層構造の粒子形態を有する。
The flaky silica particles are flaky silica primary particles or silica secondary particles formed by laminating a plurality of flaky silica primary particles with their planes aligned in parallel with each other. The silica secondary particles usually have a particle form of a laminated structure.
鱗片状シリカ粒子は、シリカ1次粒子およびシリカ2次粒子のいずれか一方のみであってもよく、両方であってもよい。
The scaly silica particles may be either one of the silica primary particles and the silica secondary particles, or both.
シリカ1次粒子の厚さは、0.001~0.1μmが好ましい。シリカ1次粒子の厚さが前記範囲内であれば、互いに面間が平行的に配向して1枚または複数枚重なった鱗片状のシリカ2次粒子を形成できる。
The thickness of the silica primary particles is preferably 0.001 to 0.1 μm. If the thickness of the silica primary particles is within the above range, scaly silica secondary particles in which one or a plurality of sheets are superposed with the planes oriented parallel to each other can be formed.
シリカ2次粒子の厚さは、0.001~3μmが好ましく、0.005~2μmがより好ましい。
The thickness of the silica secondary particles is preferably 0.001 to 3 μm, more preferably 0.005 to 2 μm.
鱗片状シリカ粒子のSiO2純度は、95質量%以上が好ましく、99質量%以上がより好ましい。
The SiO 2 purity of the scaly silica particles is preferably 95% by mass or more, and more preferably 99% by mass or more.
鱗片状シリカ粒子としては、市販のものを用いても、製造したものを用いても良い。鱗片状シリカ粒子は、例えば、特開2014-94845号公報に記載の製造方法によって製造することができる。
As the flaky silica particles, commercially available ones or manufactured ones may be used. The scaly silica particles can be produced, for example, by the production method described in JP-A-2014-94845.
また、シリカ粒子は、球状シリカ粒子、棒状シリカ粒子、針状シリカ粒子等を含んでも良い。中でも、球状シリカ粒子が好ましく、特に、多孔質球状シリカ粒子がより好ましい。
In addition, the silica particles may include spherical silica particles, rod-like silica particles, acicular silica particles, and the like. Among these, spherical silica particles are preferable, and porous spherical silica particles are particularly preferable.
そのようなシリカ粒子の平均粒子径は、0.03~2μmが好ましく、0.05~1.5μmがより好ましい。平均粒子径が2μm以下であれば、塗布組成物中における分散安定性が向上する。
The average particle size of such silica particles is preferably 0.03 to 2 μm, more preferably 0.05 to 1.5 μm. When the average particle size is 2 μm or less, the dispersion stability in the coating composition is improved.
また、多孔質球状シリカ粒子のBET比表面積は、200~300m2/gの範囲が好ましい。多孔質球状シリカ粒子の細孔容積は、0.5~1.5cm3/gが好ましい。多孔質球状シリカ粒子の市販品としては、日産化学工業社製のライトスター(登録商標)シリースが挙げられる。
The BET specific surface area of the porous spherical silica particles is preferably in the range of 200 to 300 m 2 / g. The pore volume of the porous spherical silica particles is preferably 0.5 to 1.5 cm 3 / g. As a commercially available product of the porous spherical silica particles, there can be mentioned Light Star (registered trademark) series manufactured by Nissan Chemical Industries.
(ジルコニウム源)
ジルコニウム源は、特に限られない。ジルコニウム源は、例えば、ジルコニア粒子またはジルコニウムキレートであっても良い。 (Zirconium source)
The zirconium source is not particularly limited. The zirconium source may be, for example, zirconia particles or a zirconium chelate.
ジルコニウム源は、特に限られない。ジルコニウム源は、例えば、ジルコニア粒子またはジルコニウムキレートであっても良い。 (Zirconium source)
The zirconium source is not particularly limited. The zirconium source may be, for example, zirconia particles or a zirconium chelate.
ジルコニア粒子は、四面体状、板状、または棒状等であっても良い。
The zirconia particles may be tetrahedral, plate-like, or rod-like.
ジルコニア粒子の平均粒子径は、例えば、0.01μm~5.00μmの範囲である。
The average particle diameter of the zirconia particles is, for example, in the range of 0.01 μm to 5.00 μm.
(溶媒)
溶媒は、シリカ源がシリカ前駆体を含む場合、シリカ前駆体を溶解または分散するものから選定される。また、シリカ源がシリカ粒子を含む場合、シリカ粒子を分散するものから選定される。なお、シリカ源がシリカ前駆体とシリカ粒子を両方含む場合、溶媒は、シリカ前駆体を溶解または分散する機能と、シリカ粒子を分散する機能の両方を有しても良い。 (solvent)
When the silica source contains a silica precursor, the solvent is selected from those that dissolve or disperse the silica precursor. Moreover, when a silica source contains a silica particle, it selects from what disperse | distributes a silica particle. In addition, when a silica source contains both a silica precursor and a silica particle, a solvent may have both the function to melt | dissolve or disperse a silica precursor, and the function to disperse a silica particle.
溶媒は、シリカ源がシリカ前駆体を含む場合、シリカ前駆体を溶解または分散するものから選定される。また、シリカ源がシリカ粒子を含む場合、シリカ粒子を分散するものから選定される。なお、シリカ源がシリカ前駆体とシリカ粒子を両方含む場合、溶媒は、シリカ前駆体を溶解または分散する機能と、シリカ粒子を分散する機能の両方を有しても良い。 (solvent)
When the silica source contains a silica precursor, the solvent is selected from those that dissolve or disperse the silica precursor. Moreover, when a silica source contains a silica particle, it selects from what disperse | distributes a silica particle. In addition, when a silica source contains both a silica precursor and a silica particle, a solvent may have both the function to melt | dissolve or disperse a silica precursor, and the function to disperse a silica particle.
より具体的には、溶媒は、水、アルコール類(メタノール、エタノール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、1-ペンタノール等)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン等)、エーテル類(テトラヒドロフラン、1,4-ジオキサン等)、セロソルブ類(メチルセロソルブ、エチルセロソルブ等)、エステル類(酢酸メチル、酢酸エチル等)、およびグリコールエーテル類(エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル等)から選定される。
More specifically, the solvent is water, alcohols (methanol, ethanol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, 1-pentanol, etc.), ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.), ether (Tetrahydrofuran, 1,4-dioxane, etc.), cellosolves (methyl cellosolve, ethyl cellosolve, etc.), esters (methyl acetate, ethyl acetate, etc.), and glycol ethers (ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, etc.) ).
溶媒は、1種を単独で用いても良く、2種以上を組み合わせて用いても良い。
The solvent may be used alone or in combination of two or more.
(その他の添加物)
塗布組成物は、バインダおよび/またはその他の添加物を含んでも良い。 (Other additives)
The coating composition may contain a binder and / or other additives.
塗布組成物は、バインダおよび/またはその他の添加物を含んでも良い。 (Other additives)
The coating composition may contain a binder and / or other additives.
バインダとしては、溶媒に溶解または分散される樹脂等が挙げられる。樹脂は、例えば、熱可塑性樹脂、熱硬化性樹脂、紫外線硬化性樹脂等であっても良い。
Examples of the binder include a resin that is dissolved or dispersed in a solvent. The resin may be, for example, a thermoplastic resin, a thermosetting resin, an ultraviolet curable resin, or the like.
添加物は、粒子として添加されても良い。そのような粒子としては、金属酸化物粒子、金属粒子、顔料系粒子、および樹脂粒子等が挙げられる。
The additive may be added as particles. Examples of such particles include metal oxide particles, metal particles, pigment-based particles, and resin particles.
金属酸化物粒子としては、Al2O3、SnO2、TiO2、ZnO、CeO2、Sb含有SnOX(ATO)、Sn含有In2O3(ITO)、およびRuO2等が挙げられる。
Examples of the metal oxide particles include Al 2 O 3 , SnO 2 , TiO 2 , ZnO, CeO 2 , Sb-containing SnO X (ATO), Sn-containing In 2 O 3 (ITO), and RuO 2 .
金属粒子の材料としては、金属(Ag、Ru等)、合金(AgPd、RuAu等)等が挙げられる。
Examples of the metal particle material include metals (Ag, Ru, etc.), alloys (AgPd, RuAu, etc.) and the like.
顔料系粒子としては、無機顔料(チタンブラック、カーボンブラック等)、有機顔料が挙げられる。
Examples of pigment-based particles include inorganic pigments (titanium black, carbon black, etc.) and organic pigments.
樹脂粒子の材料としては、アクリル樹脂、ポリスチレン、およびメラニン樹脂等が挙げられる。
Examples of the resin particle material include acrylic resin, polystyrene, and melanin resin.
(工程S120)
次に、前述の塗布組成物が透明基材110の第1の表面112に塗布される。 (Process S120)
Next, the aforementioned coating composition is applied to thefirst surface 112 of the transparent substrate 110.
次に、前述の塗布組成物が透明基材110の第1の表面112に塗布される。 (Process S120)
Next, the aforementioned coating composition is applied to the
透明基材110は、前述のように、ガラス基材であっても良い。
The transparent substrate 110 may be a glass substrate as described above.
また、透明基材110は、第1の表面112および/または第2の表面114に、機能層を有していても良い。
The transparent substrate 110 may have a functional layer on the first surface 112 and / or the second surface 114.
ただし、第2の表面114の機能層は、工程S120の後に形成されても良い。
However, the functional layer of the second surface 114 may be formed after step S120.
塗布組成物は、スプレー塗布、刷毛塗り、またはその他等の方法により、透明基材110の第1の表面112に設置される。
The coating composition is placed on the first surface 112 of the transparent substrate 110 by a method such as spray coating, brushing, or the like.
塗布組成物は、透明基材110に対して複数回、塗布されても良い。これにより、所望の厚さで、塗布組成物を塗布することができる。
The coating composition may be applied to the transparent substrate 110 a plurality of times. Thereby, a coating composition can be apply | coated with desired thickness.
その後、塗布組成物は、乾燥処理されても良い。乾燥処理の温度は、例えば、60℃以下である。
Thereafter, the coating composition may be dried. The temperature of a drying process is 60 degrees C or less, for example.
なお、塗布組成物を透明基材110に塗布する際に、透明基材110を加熱しても良い。透明基材110を加熱した状態で、塗布組成物の塗布を行うことにより、塗布組成物の乾燥を迅速化できる。
In addition, when apply | coating a coating composition to the transparent base material 110, you may heat the transparent base material 110. FIG. By applying the coating composition while the transparent substrate 110 is heated, the drying of the coating composition can be speeded up.
透明基材110の加熱温度は、例えば60℃以下である。透明基材110の加熱温度は、15℃~50℃が好ましく、20~40℃がより好ましい。
The heating temperature of the transparent substrate 110 is, for example, 60 ° C. or less. The heating temperature of the transparent substrate 110 is preferably 15 ° C. to 50 ° C., more preferably 20 to 40 ° C.
(工程S130)
次に、塗布組成物が焼成処理される。焼成処理により、塗布組成物が変質し、不透視膜130が形成される。 (Step S130)
Next, the coating composition is baked. By the baking treatment, the coating composition is denatured, and theopaque film 130 is formed.
次に、塗布組成物が焼成処理される。焼成処理により、塗布組成物が変質し、不透視膜130が形成される。 (Step S130)
Next, the coating composition is baked. By the baking treatment, the coating composition is denatured, and the
焼成処理は、塗布組成物を局部的に加熱することにより、または塗布組成物を透明基材110ごと加熱することにより、実施されても良い。
The baking treatment may be performed by locally heating the coating composition or by heating the coating composition together with the transparent substrate 110.
後者の場合、加熱温度は、透明基材110の材料によっても変化する。例えば、透明基材110がガラス基材の場合、焼成温度は、100℃~750℃の範囲であっても良い。焼成温度は、例えば、150℃~700℃の範囲である。
In the latter case, the heating temperature varies depending on the material of the transparent substrate 110. For example, when the transparent substrate 110 is a glass substrate, the firing temperature may be in the range of 100 ° C. to 750 ° C. The firing temperature is, for example, in the range of 150 ° C to 700 ° C.
以上の工程により、前述の図1に示したような第1の部材100を製造することができる。
Through the above steps, the first member 100 as shown in FIG. 1 can be manufactured.
なお、透明基材110がガラス基材の場合、その後、第1の部材100に対して、風冷処理を実施しても良い。
In addition, when the transparent base material 110 is a glass base material, you may implement an air cooling process with respect to the 1st member 100 after that.
前述のように、第1の部材100において、不透視膜130は、酸化物を主体とする材料で構成される。従って、風冷処理を実施しても、不透視膜130の劣化および/または剥離を有意に回避することができる。
As described above, in the first member 100, the opaque film 130 is made of a material mainly composed of oxide. Therefore, even if the air cooling process is performed, it is possible to significantly avoid the deterioration and / or peeling of the opaque film 130.
以下、本発明の実施例について説明する。なお、以下の説明において、例1~例3は実施例であり、例3~例7は比較例である。
Hereinafter, examples of the present invention will be described. In the following description, examples 1 to 3 are examples, and examples 3 to 7 are comparative examples.
(例1)
以下の方法で、不透視膜付き部材を製造した。 (Example 1)
The member with an opaque film was manufactured by the following method.
以下の方法で、不透視膜付き部材を製造した。 (Example 1)
The member with an opaque film was manufactured by the following method.
(塗布液の調整)
変性エタノール(日本アルコール販売社製、ソルミックス(登録商標)AP-11、エタノールを主剤とした混合溶媒)に、テトラエトキシシラン(信越シリコーン社製、KBE-04)、メチルトリメトキシシラン(信越シリコーン社製、KBM-13)、鱗片状シリカ粒子分散液(特許第4063464号公報に記載の方法で作製したもの。粒子径は約 μm)をこの順に加え、30分間撹拌した。テトラエトキシシラン(TEOS)とメチルトリメトキシシラン(MTMS)の体積比(TEOS:MTMS)は、0.7:0.3であった。 (Coating solution adjustment)
Modified ethanol (manufactured by Nippon Alcohol Sales Co., Solmix (registered trademark) AP-11, mixed solvent mainly composed of ethanol), tetraethoxysilane (manufactured by Shin-Etsu Silicone, KBE-04), methyltrimethoxysilane (Shin-Etsu Silicone) KBM-13), a flaky silica particle dispersion (prepared by the method described in Japanese Patent No. 4063464, particle diameter is about μm) was added in this order, and the mixture was stirred for 30 minutes. The volume ratio (TEOS: MTMS) of tetraethoxysilane (TEOS) to methyltrimethoxysilane (MTMS) was 0.7: 0.3.
変性エタノール(日本アルコール販売社製、ソルミックス(登録商標)AP-11、エタノールを主剤とした混合溶媒)に、テトラエトキシシラン(信越シリコーン社製、KBE-04)、メチルトリメトキシシラン(信越シリコーン社製、KBM-13)、鱗片状シリカ粒子分散液(特許第4063464号公報に記載の方法で作製したもの。粒子径は約 μm)をこの順に加え、30分間撹拌した。テトラエトキシシラン(TEOS)とメチルトリメトキシシラン(MTMS)の体積比(TEOS:MTMS)は、0.7:0.3であった。 (Coating solution adjustment)
Modified ethanol (manufactured by Nippon Alcohol Sales Co., Solmix (registered trademark) AP-11, mixed solvent mainly composed of ethanol), tetraethoxysilane (manufactured by Shin-Etsu Silicone, KBE-04), methyltrimethoxysilane (Shin-Etsu Silicone) KBM-13), a flaky silica particle dispersion (prepared by the method described in Japanese Patent No. 4063464, particle diameter is about μm) was added in this order, and the mixture was stirred for 30 minutes. The volume ratio (TEOS: MTMS) of tetraethoxysilane (TEOS) to methyltrimethoxysilane (MTMS) was 0.7: 0.3.
次に、この溶液に、イオン交換水および硝酸水溶液(硝酸濃度:61質量%)を加え、60分間撹拌した。さらに、この混合液に、ジルコニウムキレート(マツモトファインケミカル社製、オルガチックスZC-150)を0.1質量%加え、30分間撹拌した。
Next, ion-exchanged water and an aqueous nitric acid solution (nitric acid concentration: 61% by mass) were added to this solution and stirred for 60 minutes. Furthermore, 0.1% by mass of zirconium chelate (manufactured by Matsumoto Fine Chemical Co., Ltd., ORGATIZ ZC-150) was added to this mixed solution, and the mixture was stirred for 30 minutes.
これにより、塗布液が調製された。塗布液中のTEOS、MTMS、および鱗片状シリカ粒子分散液の固形分濃度比は、53:23:24であり、総固形分濃度は6.1%であった。
Thereby, a coating solution was prepared. The solid content concentration ratio of TEOS, MTMS, and scaly silica particle dispersion in the coating solution was 53:23:24, and the total solid content concentration was 6.1%.
(不透視膜の形成)
次に、縦100mm×横100mm×厚さ5mmの寸法の透明基材を準備した。透明基材には、ソーダライムガラス(旭硝子株式会社製、FL5)を使用した。 (Formation of opaque film)
Next, a transparent substrate having dimensions of 100 mm in length, 100 mm in width, and 5 mm in thickness was prepared. As the transparent substrate, soda lime glass (Asahi Glass Co., Ltd., FL5) was used.
次に、縦100mm×横100mm×厚さ5mmの寸法の透明基材を準備した。透明基材には、ソーダライムガラス(旭硝子株式会社製、FL5)を使用した。 (Formation of opaque film)
Next, a transparent substrate having dimensions of 100 mm in length, 100 mm in width, and 5 mm in thickness was prepared. As the transparent substrate, soda lime glass (Asahi Glass Co., Ltd., FL5) was used.
この透明基材の一方の表面(100mm×100mmの一方の領域)に、塗布液を塗布した。
The coating liquid was applied to one surface (one region of 100 mm × 100 mm) of this transparent substrate.
塗布液の塗布にはスプレーガンを用い、透明基材を搬送させながら、塗布液を塗布した。搬送速度は、3m/分とした。塗布中、透明基材の温度は30℃±3℃に調整した。塗布回数は4回とした。
The coating liquid was applied using a spray gun while conveying the transparent substrate. The conveyance speed was 3 m / min. During coating, the temperature of the transparent substrate was adjusted to 30 ° C. ± 3 ° C. The number of coatings was four.
その後、透明基材を230℃で30分間焼成し、不透視膜を形成した。不透視膜の厚さ(最大値)は、約8μmであった。
Thereafter, the transparent substrate was baked at 230 ° C. for 30 minutes to form an opaque film. The thickness (maximum value) of the opaque film was about 8 μm.
以上の工程により、不透視膜付き部材(以下、「サンプル1」と称する)を得た。
Through the above steps, a member with an opaque film (hereinafter referred to as “sample 1”) was obtained.
(例2および例3)
例1と同様の方法により、不透視膜付き部材を製造した。ただし、例2および例3では、それぞれ、塗布液に含まれるジルコニウムキレートの濃度を、例1の場合とは変化させた。その他の条件は、例1と同様である。 (Example 2 and Example 3)
A member with an opaque film was manufactured in the same manner as in Example 1. However, in Examples 2 and 3, the concentration of zirconium chelate contained in the coating solution was changed from that in Example 1. Other conditions are the same as in Example 1.
例1と同様の方法により、不透視膜付き部材を製造した。ただし、例2および例3では、それぞれ、塗布液に含まれるジルコニウムキレートの濃度を、例1の場合とは変化させた。その他の条件は、例1と同様である。 (Example 2 and Example 3)
A member with an opaque film was manufactured in the same manner as in Example 1. However, in Examples 2 and 3, the concentration of zirconium chelate contained in the coating solution was changed from that in Example 1. Other conditions are the same as in Example 1.
これにより、不透視膜付き部材(以下、「サンプル2」および「サンプル3」と称する)を得た。
Thereby, a member with an opaque film (hereinafter referred to as “sample 2” and “sample 3”) was obtained.
(例4)
例1と同様の方法により、不透視膜付き部材を製造した。ただし、この例4では、塗布液中に、ジルコニウムキレートを添加しなかった。その他の条件は、例1と同様である。 (Example 4)
A member with an opaque film was manufactured in the same manner as in Example 1. However, in Example 4, no zirconium chelate was added to the coating solution. Other conditions are the same as in Example 1.
例1と同様の方法により、不透視膜付き部材を製造した。ただし、この例4では、塗布液中に、ジルコニウムキレートを添加しなかった。その他の条件は、例1と同様である。 (Example 4)
A member with an opaque film was manufactured in the same manner as in Example 1. However, in Example 4, no zirconium chelate was added to the coating solution. Other conditions are the same as in Example 1.
これにより、不透視膜付き部材(以下、「サンプル4」と称する)を得た。
Thereby, a member with an opaque film (hereinafter referred to as “sample 4”) was obtained.
(例5および例6)
例1と同様の方法により、不透視膜付き部材を製造した。ただし、例5および例6では、それぞれ、塗布液の組成を、例1の場合とは変化させた。また、例6では、TEOS:MTMSは、0.5:0.5とした。 (Example 5 and Example 6)
A member with an opaque film was manufactured in the same manner as in Example 1. However, in Example 5 and Example 6, the composition of the coating solution was changed from that in Example 1, respectively. In Example 6, TEOS: MTMS was set to 0.5: 0.5.
例1と同様の方法により、不透視膜付き部材を製造した。ただし、例5および例6では、それぞれ、塗布液の組成を、例1の場合とは変化させた。また、例6では、TEOS:MTMSは、0.5:0.5とした。 (Example 5 and Example 6)
A member with an opaque film was manufactured in the same manner as in Example 1. However, in Example 5 and Example 6, the composition of the coating solution was changed from that in Example 1, respectively. In Example 6, TEOS: MTMS was set to 0.5: 0.5.
その他の条件は、例1と同様である。
Other conditions are the same as in Example 1.
これにより、不透視膜付き部材(以下、「サンプル5」および「サンプル6」と称する)を得た。
Thereby, a member with an opaque film (hereinafter referred to as “sample 5” and “sample 6”) was obtained.
(例7)
以下の方法で、不透視膜付き部材を製造した。 (Example 7)
The member with an opaque film was manufactured by the following method.
以下の方法で、不透視膜付き部材を製造した。 (Example 7)
The member with an opaque film was manufactured by the following method.
(塗布液の調整)
変性エタノール(日本アルコール販売社製、ソルミックス(登録商標)AP-11、エタノールを主剤とした混合溶媒)に、メチルトリメトキシシラン(信越シリコーン社製、KBM-13)、鱗片状シリカ粒子分散液(特許第4063464号公報に記載の方法で作製したもの。粒子径は約0.5μm)をこの順に加え、30分間撹拌した。テトラエトキシシラン(TEOS)は添加していない。 (Coating solution adjustment)
Modified ethanol (manufactured by Nippon Alcohol Sales Co., Solmix (registered trademark) AP-11, mixed solvent containing ethanol as a main ingredient), methyltrimethoxysilane (manufactured by Shin-Etsu Silicone Co., Ltd., KBM-13), scaly silica particle dispersion (Prepared by the method described in Japanese Patent No. 4063464. Particle diameter is about 0.5 μm) was added in this order, and the mixture was stirred for 30 minutes. Tetraethoxysilane (TEOS) is not added.
変性エタノール(日本アルコール販売社製、ソルミックス(登録商標)AP-11、エタノールを主剤とした混合溶媒)に、メチルトリメトキシシラン(信越シリコーン社製、KBM-13)、鱗片状シリカ粒子分散液(特許第4063464号公報に記載の方法で作製したもの。粒子径は約0.5μm)をこの順に加え、30分間撹拌した。テトラエトキシシラン(TEOS)は添加していない。 (Coating solution adjustment)
Modified ethanol (manufactured by Nippon Alcohol Sales Co., Solmix (registered trademark) AP-11, mixed solvent containing ethanol as a main ingredient), methyltrimethoxysilane (manufactured by Shin-Etsu Silicone Co., Ltd., KBM-13), scaly silica particle dispersion (Prepared by the method described in Japanese Patent No. 4063464. Particle diameter is about 0.5 μm) was added in this order, and the mixture was stirred for 30 minutes. Tetraethoxysilane (TEOS) is not added.
次に、この溶液に、イオン交換水および硝酸水溶液(硝酸濃度:61質量%)を加え、60分間撹拌した。
Next, ion-exchanged water and an aqueous nitric acid solution (nitric acid concentration: 61% by mass) were added to this solution and stirred for 60 minutes.
これにより、塗布液が調製された。塗布液中のMTMSと鱗片状シリカ粒子分散液の固形分濃度比は、40:60であり、総固形分濃度は2.5%であった。
Thereby, a coating solution was prepared. The solid content concentration ratio between the MTMS and the scaly silica particle dispersion in the coating solution was 40:60, and the total solid content concentration was 2.5%.
得られた塗布液を使用して、前述の例1と同様の方法で、不透視膜を形成した。
Using the obtained coating solution, an opaque film was formed in the same manner as in Example 1 described above.
これにより、不透視膜付き部材(以下、「サンプル7」と称する)を得た。
Thereby, a member with an opaque film (hereinafter referred to as “sample 7”) was obtained.
以下の表1には、例1~例7において調製された塗布液の詳細をまとめて示した。
Table 1 below summarizes the details of the coating solutions prepared in Examples 1 to 7.
各サンプル1~7を用いて、以下の評価を行った。
The following evaluation was performed using each sample 1-7.
(表面形状測定)
各サンプルにおいて、不透視膜の表面形状を測定した。測定には、キーエンス社製レーザ顕微鏡VK-X100を用いた(対物レンズは「×100」を使用。測定領域:109×145μm、倍率:1000倍)。 (Surface shape measurement)
In each sample, the surface shape of the opaque film was measured. For measurement, a laser microscope VK-X100 manufactured by Keyence Corporation was used (the objective lens uses “× 100”, measurement area: 109 × 145 μm, magnification: 1000 times).
各サンプルにおいて、不透視膜の表面形状を測定した。測定には、キーエンス社製レーザ顕微鏡VK-X100を用いた(対物レンズは「×100」を使用。測定領域:109×145μm、倍率:1000倍)。 (Surface shape measurement)
In each sample, the surface shape of the opaque film was measured. For measurement, a laser microscope VK-X100 manufactured by Keyence Corporation was used (the objective lens uses “× 100”, measurement area: 109 × 145 μm, magnification: 1000 times).
測定結果は、測定領域内の最大、最小、および平均値で表されるため、わずかに測定領域が異なっても、×100の対物レンズを選定すれば、結果にはほとんど違いはない。測定モードは「表面形状」、測定品質は「高精細(2048×1536)」、ピッチは「0.01μm」とした。
The measurement results are represented by the maximum, minimum, and average values in the measurement area, so even if the measurement area is slightly different, there is almost no difference in the results if a × 100 objective lens is selected. The measurement mode was “surface shape”, the measurement quality was “high definition (2048 × 1536)”, and the pitch was “0.01 μm”.
(表面形状解析)
表面形状測定で得られた不透視膜の表面形状のxyzデータを、イメージメトロロジー社製画像処理ソフトウエアSPIP(バージョン6.4.3)を用いて解析し、以下の項目を算出した:
(i)第1の凸部の最大高さL1max
(ii)第1の凸部の高さの標準偏差;測定領域の中で、z値が最も小さい位置における高さを基準としたときの、第1の凸部のそれぞれの高さから得られる標準偏差
(iii)第1の凸部の密度;測定領域において、第1の高さレベルH1における断面に存在する直径(真円換算)10μm超の凸部の数を、測定領域の面積で除して算出
(iv)第2の凸部の平均高さL2ave;測定領域内に存在する第2の凸部の高さを第2の高さレベルH2を基準として測定し、平均した値
(v)第2の凸部の密度;測定領域において、第2の高さレベルH2における断面に存在する直径(真円換算)1μm以上の凸部の数を、測定領域の面積で除して算出
(vi)第2の凸部の面積率;第2の高さレベルH2での第2の凸部の総断面積を求め、これを測定領域で除することにより得られた値。 (Surface shape analysis)
The xyz data of the surface shape of the opaque film obtained by the surface shape measurement was analyzed using image processing software SPIP (version 6.4.3) manufactured by Image Metrology, and the following items were calculated:
(I) Maximum height L 1max of the first convex portion
(Ii) Standard deviation of the height of the first convex portion; obtained from the respective heights of the first convex portion with reference to the height at the position where the z value is the smallest in the measurement region. standard deviation (iii) the density of the first protrusion; in the measurement area, the diameter existing in cross section at the first height level H 1 the number of (perfect circle converted) 10 [mu] m greater than the convex portion, in the area of the measurement region (Iv) Average height L 2ave of the second convex portion; the height of the second convex portion existing in the measurement region was measured with respect to the second height level H 2 and averaged Value (v) Density of second protrusions: Divide the number of protrusions having a diameter (round circle equivalent) of 1 μm or more existing in the cross section at the second height level H 2 by the area of the measurement area to calculate (vi) the area ratio of the second protrusion; seek total cross-sectional area of the second protrusion at a second height level H 2, this The value obtained by dividing this by the measurement area.
表面形状測定で得られた不透視膜の表面形状のxyzデータを、イメージメトロロジー社製画像処理ソフトウエアSPIP(バージョン6.4.3)を用いて解析し、以下の項目を算出した:
(i)第1の凸部の最大高さL1max
(ii)第1の凸部の高さの標準偏差;測定領域の中で、z値が最も小さい位置における高さを基準としたときの、第1の凸部のそれぞれの高さから得られる標準偏差
(iii)第1の凸部の密度;測定領域において、第1の高さレベルH1における断面に存在する直径(真円換算)10μm超の凸部の数を、測定領域の面積で除して算出
(iv)第2の凸部の平均高さL2ave;測定領域内に存在する第2の凸部の高さを第2の高さレベルH2を基準として測定し、平均した値
(v)第2の凸部の密度;測定領域において、第2の高さレベルH2における断面に存在する直径(真円換算)1μm以上の凸部の数を、測定領域の面積で除して算出
(vi)第2の凸部の面積率;第2の高さレベルH2での第2の凸部の総断面積を求め、これを測定領域で除することにより得られた値。 (Surface shape analysis)
The xyz data of the surface shape of the opaque film obtained by the surface shape measurement was analyzed using image processing software SPIP (version 6.4.3) manufactured by Image Metrology, and the following items were calculated:
(I) Maximum height L 1max of the first convex portion
(Ii) Standard deviation of the height of the first convex portion; obtained from the respective heights of the first convex portion with reference to the height at the position where the z value is the smallest in the measurement region. standard deviation (iii) the density of the first protrusion; in the measurement area, the diameter existing in cross section at the first height level H 1 the number of (perfect circle converted) 10 [mu] m greater than the convex portion, in the area of the measurement region (Iv) Average height L 2ave of the second convex portion; the height of the second convex portion existing in the measurement region was measured with respect to the second height level H 2 and averaged Value (v) Density of second protrusions: Divide the number of protrusions having a diameter (round circle equivalent) of 1 μm or more existing in the cross section at the second height level H 2 by the area of the measurement area to calculate (vi) the area ratio of the second protrusion; seek total cross-sectional area of the second protrusion at a second height level H 2, this The value obtained by dividing this by the measurement area.
(不透視性評価)
各サンプルに対して、以下の不透視性評価を実施した。 (Opacity evaluation)
The following opacity evaluation was performed on each sample.
各サンプルに対して、以下の不透視性評価を実施した。 (Opacity evaluation)
The following opacity evaluation was performed on each sample.
(クラリティ測定)
クラリティ(Clarity)の測定は、日本電色工業株式会社製変角光度計、GC5000Lを用いて、以下の手順で行った。 (Clarity measurement)
Clarity was measured using a variable angle photometer, GC5000L, manufactured by Nippon Denshoku Industries Co., Ltd. according to the following procedure.
クラリティ(Clarity)の測定は、日本電色工業株式会社製変角光度計、GC5000Lを用いて、以下の手順で行った。 (Clarity measurement)
Clarity was measured using a variable angle photometer, GC5000L, manufactured by Nippon Denshoku Industries Co., Ltd. according to the following procedure.
サンプルの透明基体の側から、角度θで第1の光が照射される。角度θは、サンプルの厚さ方向と平行な方向が0゜として定められる。第1の光は、角度θ=0゜±0.5゜の方向(以下、「角度0°の方向」ともいう)に照射される。
The first light is irradiated at an angle θ from the transparent substrate side of the sample. The angle θ is determined so that the direction parallel to the thickness direction of the sample is 0 °. The first light is irradiated in the direction of angle θ = 0 ° ± 0.5 ° (hereinafter also referred to as “direction of angle 0 °”).
第1の光は、透明基体を透過し、不透視膜の側から出射される。不透視膜から角度0°の方向に出射された0゜透過光を受光し、その輝度を測定して、「0゜透過光の輝度」とする。
The first light passes through the transparent substrate and is emitted from the side of the opaque film. The 0 ° transmitted light emitted from the non-transparent film in the direction of 0 ° is received, and the brightness is measured to obtain “0 ° transmitted light brightness”.
次に、透明基体の側に出射される光の角度θを、-30゜~+30゜の範囲で変化させ、同様の操作を実施する。この際に、透明基体を透過して、不透視膜から出射される光の輝度分布を測定して合計し、「全透過光の輝度」とする。
Next, the angle θ of the light emitted to the transparent substrate side is changed in the range of −30 ° to + 30 °, and the same operation is performed. At this time, the luminance distribution of the light transmitted through the transparent substrate and emitted from the non-opaque film is measured and summed to obtain “the luminance of the total transmitted light”.
次に、以下の式(2)から、Clarity(解像度指標値T)を算定する
Clarity(解像度指標値T)=
1-{(全透過光の輝度-0゜透過光の輝度)/(全透過光の輝度)} 式(2)
このClarity値(解像度指標値T)は、観察者の目視による解像度の判断結果と相関し、人の視感に近い挙動を示すことが確認されている。例えば、解像度指標値Tが小さな(0に近い)値を示す不透視膜付き部材は、解像度が劣り、逆に解像度指標値Tが大きな値を示す不透視膜付き部材は、良好な解像度を有する。従って、この解像度指標値Tは、不透視膜付き部材の解像度を判断する際の定量的指標として、使用することができる。 Next, Clarity (resolution index value T) is calculated from the following equation (2).
Clarity (resolution index value T) =
1-{(Brightness of total transmitted light−Brightness of transmitted light) / (Brightness of total transmitted light)} Equation (2)
This Clarity value (resolution index value T) has been confirmed to correlate with the determination result of the visual observation by the observer and to exhibit a behavior close to human visual perception. For example, a member with an opaque film showing a small resolution index value T (close to 0) has a poor resolution, and conversely, a member with an opaque film showing a large value of the resolution index value T has a good resolution. . Therefore, the resolution index value T can be used as a quantitative index when determining the resolution of the member with the opaque film.
Clarity(解像度指標値T)=
1-{(全透過光の輝度-0゜透過光の輝度)/(全透過光の輝度)} 式(2)
このClarity値(解像度指標値T)は、観察者の目視による解像度の判断結果と相関し、人の視感に近い挙動を示すことが確認されている。例えば、解像度指標値Tが小さな(0に近い)値を示す不透視膜付き部材は、解像度が劣り、逆に解像度指標値Tが大きな値を示す不透視膜付き部材は、良好な解像度を有する。従って、この解像度指標値Tは、不透視膜付き部材の解像度を判断する際の定量的指標として、使用することができる。 Next, Clarity (resolution index value T) is calculated from the following equation (2).
Clarity (resolution index value T) =
1-{(Brightness of total transmitted light−Brightness of transmitted light) / (Brightness of total transmitted light)} Equation (2)
This Clarity value (resolution index value T) has been confirmed to correlate with the determination result of the visual observation by the observer and to exhibit a behavior close to human visual perception. For example, a member with an opaque film showing a small resolution index value T (close to 0) has a poor resolution, and conversely, a member with an opaque film showing a large value of the resolution index value T has a good resolution. . Therefore, the resolution index value T can be used as a quantitative index when determining the resolution of the member with the opaque film.
(ヘイズ測定)
各サンプルのヘイズは、ヘイズメーター(村上色彩研究所社製HR-100型)を用いて、JIS K7136:2000に規定されている方法に従って測定した。 (Haze measurement)
The haze of each sample was measured using a haze meter (HR-100 type, manufactured by Murakami Color Research Laboratory) according to the method defined in JIS K7136: 2000.
各サンプルのヘイズは、ヘイズメーター(村上色彩研究所社製HR-100型)を用いて、JIS K7136:2000に規定されている方法に従って測定した。 (Haze measurement)
The haze of each sample was measured using a haze meter (HR-100 type, manufactured by Murakami Color Research Laboratory) according to the method defined in JIS K7136: 2000.
(不透視膜の指滑り性評価)
各サンプルの不透視膜について、指滑り性の評価を実施した。評価は、各サンプルの不透視膜の表面に指を当て、指を移動させることにより実施した。評価の結果、指の移動に全く引っかかり感がないものを○とし、僅かに引っかかり感があるものを△とし、指の移動に不快な引っかかり感があるものを×と判定した。 (Evaluation of finger slipperiness of opaque film)
Evaluation of finger slipperiness was performed on the non-transparent film of each sample. The evaluation was carried out by placing a finger on the surface of the opaque film of each sample and moving the finger. As a result of the evaluation, a case where there was no feeling of being caught in the movement of the finger was rated as ◯, a case where there was a slight feeling of being caught was indicated as △, and a case where there was an unpleasant feeling of moving in the finger was judged as x.
各サンプルの不透視膜について、指滑り性の評価を実施した。評価は、各サンプルの不透視膜の表面に指を当て、指を移動させることにより実施した。評価の結果、指の移動に全く引っかかり感がないものを○とし、僅かに引っかかり感があるものを△とし、指の移動に不快な引っかかり感があるものを×と判定した。 (Evaluation of finger slipperiness of opaque film)
Evaluation of finger slipperiness was performed on the non-transparent film of each sample. The evaluation was carried out by placing a finger on the surface of the opaque film of each sample and moving the finger. As a result of the evaluation, a case where there was no feeling of being caught in the movement of the finger was rated as ◯, a case where there was a slight feeling of being caught was indicated as △, and a case where there was an unpleasant feeling of moving in the finger was judged as x.
(不透視膜の強度評価)
各サンプルの不透視膜について、JIS5600-5-4に規定された方法で、鉛筆硬度を測定した。 (Evaluation of strength of opaque film)
About the opaque film of each sample, the pencil hardness was measured by the method prescribed in JIS 5600-5-4.
各サンプルの不透視膜について、JIS5600-5-4に規定された方法で、鉛筆硬度を測定した。 (Evaluation of strength of opaque film)
About the opaque film of each sample, the pencil hardness was measured by the method prescribed in JIS 5600-5-4.
(不透視膜のZr/Si比)
各サンプルにおいて、不透視膜に含まれるジルコニウムのケイ素に対する原子比(Zr/Si比)を算定した。 (Zr / Si ratio of opaque film)
In each sample, the atomic ratio of zirconium to silicon (Zr / Si ratio) contained in the opaque film was calculated.
各サンプルにおいて、不透視膜に含まれるジルコニウムのケイ素に対する原子比(Zr/Si比)を算定した。 (Zr / Si ratio of opaque film)
In each sample, the atomic ratio of zirconium to silicon (Zr / Si ratio) contained in the opaque film was calculated.
原子比の測定には、SEM-EDX(日立製S-4300および堀場製EMAX)を用いた。5keVの加速電圧で、不透視膜上の任意の3点において、ケイ素とジルコニウムの元素比率をそれぞれ測定した。それぞれの元素の測定値を平均し、ケイ素の平均値およびジルコニウムの平均値から、Zr/Si比を求めた
サンプル1~サンプル7において得られた評価結果を、まとめて以下の表2に示す。 SEM-EDX (Hitachi S-4300 and Horiba EMAX) was used to measure the atomic ratio. The element ratio of silicon and zirconium was measured at three arbitrary points on the opaque film with an acceleration voltage of 5 keV. Table 2 below summarizes the evaluation results obtained inSample 1 to Sample 7 in which the measured values of the respective elements were averaged and the Zr / Si ratio was determined from the average value of silicon and the average value of zirconium.
サンプル1~サンプル7において得られた評価結果を、まとめて以下の表2に示す。 SEM-EDX (Hitachi S-4300 and Horiba EMAX) was used to measure the atomic ratio. The element ratio of silicon and zirconium was measured at three arbitrary points on the opaque film with an acceleration voltage of 5 keV. Table 2 below summarizes the evaluation results obtained in
一方、サンプル4~サンプル7では、鉛筆硬度が7Hを下回り、不透視膜があまり良好な機械的強度を有しないことがわかった。
On the other hand, in samples 4 to 7, it was found that the pencil hardness was less than 7H, and the opaque film did not have a very good mechanical strength.
なお、サンプル4、7は、不透視膜がジルコニウムを含まない、不透視膜付き部材である。また、サンプル5は、不透視膜におけるZr/Si比が0.04を超える、不透視膜付き部材である。これに対して、サンプル6は、不透視膜におけるZr/Si比が0.003~0.04の範囲にある。しかしながら、サンプル6では、第2の凸部の面積率が3%を超えている。この結果から、サンプル6では、微細な凸部である第2の凸部の占有率が(第1の凸部に比べて)高まり、その結果、不透視膜にあまり良好な機械的強度が得られなかったものと考えられる。
Samples 4 and 7 are members with an opaque film in which the opaque film does not contain zirconium. Sample 5 is a member with an opaque film in which the Zr / Si ratio in the opaque film exceeds 0.04. On the other hand, in sample 6, the Zr / Si ratio in the opaque film is in the range of 0.003 to 0.04. However, in sample 6, the area ratio of the second convex portion exceeds 3%. From this result, in sample 6, the occupancy ratio of the second convex portion, which is a fine convex portion, is increased (compared to the first convex portion), and as a result, a very good mechanical strength is obtained in the opaque film. It is thought that it was not possible.
以上の結果から、不透視膜付き部材において、不透視膜が特定の表面形状を有し、Zr/Si比が所定の範囲となるように不透視膜を構成することにより、機械的強度が向上することが確認された。
From the above results, in the member with the opaque film, the mechanical strength is improved by configuring the opaque film so that the opaque film has a specific surface shape and the Zr / Si ratio is in a predetermined range. Confirmed to do.
本願は、2017年2月23日に出願した日本国特許出願2017-032732号に基づく優先権を主張するものであり、同日本国出願の全内容を本願に参照により援用する。
This application claims priority based on Japanese Patent Application No. 2017-032732 filed on Feb. 23, 2017, the entire contents of which are incorporated herein by reference.
100 不透視膜付き部材(第1の部材)
102 第1の側
104 第2の側
110 透明基材
112 第1の表面
114 第2の表面
130 不透視膜
132 不透視膜の表面
134、134A、134B 第1の凸部
136、136A~136E 第2の凸部 100 Member with opaque film (first member)
102First side 104 Second side 110 Transparent substrate 112 First surface 114 Second surface 130 Impermeable membrane 132 Impervious membrane surface 134, 134A, 134B First convex portion 136, 136A-136E First 2 convex parts
102 第1の側
104 第2の側
110 透明基材
112 第1の表面
114 第2の表面
130 不透視膜
132 不透視膜の表面
134、134A、134B 第1の凸部
136、136A~136E 第2の凸部 100 Member with opaque film (first member)
102
Claims (8)
- 透明基材と、該透明基材上に設置された不透視膜とを備える不透視膜付き部材であって、
前記不透視膜は、(101μm~111μm)×(135μm~148μm)の領域をレーザ顕微鏡で測定して得られる表面形状において、第1の高さレベルH1での断面における直径(真円換算)が10μm超である第1の凸部と、前記表面形状の第2の高さレベルH2での断面における直径(真円換算)が1μm以上10μm以下である第2の凸部とを含み、
ここで、第1の高さレベルH1は、ベアリング高さ+0.05μmの高さであり、第2の高さレベルH2は、ベアリング高さ+0.5μmの高さであり、
前記領域内で最も低い部分の高さを基準とした前記第1の凸部の最大高さL1maxは、8μm~30μmであり、
前記第2の高さレベルH2を基準とした前記第2の凸部の平均高さL2aveは、0.1μm~3μmであり、
前記第2の凸部の数は、1μm2あたり0.001個~0.05個であり、前記第2の凸部は、前記領域の面積の1%~3%を占め、
前記不透視膜において、シリコンに対するジルコニウムの比(Zr/Si比(原子比))は、0.003~0.04の範囲である、不透視膜付き部材。 A member with an opaque film comprising a transparent substrate and an opaque film installed on the transparent substrate,
The non-transparent film has a surface shape obtained by measuring a region of (101 μm to 111 μm) × (135 μm to 148 μm) with a laser microscope, and a diameter in a cross section at a first height level H 1 (converted into a perfect circle) Including a first convex portion having a diameter of more than 10 μm, and a second convex portion having a diameter (converted to a perfect circle) of the surface shape at a second height level H 2 of 1 μm or more and 10 μm or less,
Here, the first height level H 1 is a bearing height + 0.05 μm height, and the second height level H 2 is a bearing height + 0.5 μm height,
The maximum height L 1max of the first convex portion based on the height of the lowest portion in the region is 8 μm to 30 μm,
An average height L 2ave of the second convex portion with respect to the second height level H 2 is 0.1 μm to 3 μm,
The number of the second protrusions is 0.001 to 0.05 per 1 μm 2 , and the second protrusions occupy 1% to 3% of the area of the region,
The member with an opaque film, wherein the ratio of zirconium to silicon (Zr / Si ratio (atomic ratio)) is in the range of 0.003 to 0.04 in the opaque film. - 前記不透視膜の側から測定される鉛筆硬度は、7H以上である、請求項1に記載の不透視膜付き部材。 The member with an opaque film according to claim 1, wherein the pencil hardness measured from the side of the opaque film is 7H or more.
- クラリティが0.25以下である、請求項1または2に記載の不透視膜付き部材。 The member with an opaque film according to claim 1 or 2, wherein the clarity is 0.25 or less.
- ヘイズが70%以上である、請求項1乃至3のいずれか一つに記載の不透視膜付き部材。 The member with an opaque film according to any one of claims 1 to 3, wherein the haze is 70% or more.
- 前記第1の凸部の高さの標準偏差は、10μm以下である、請求項1乃至4のいずれか一つに記載の不透視膜付き部材。 The member with an opaque film according to any one of claims 1 to 4, wherein a standard deviation of a height of the first convex portion is 10 µm or less.
- 前記第1の凸部の数は、1μm2あたり、0.0001個~0.76個の範囲である、請求項1乃至5のいずれか一つに記載の不透視膜付き部材。 6. The member with an opaque film according to claim 1, wherein the number of the first protrusions is in a range of 0.0001 to 0.76 per 1 μm 2 .
- 前記透明基材は、ガラス基材である、請求項1乃至6のいずれか一つに記載の不透視膜付き部材。 The member with an opaque film according to any one of claims 1 to 6, wherein the transparent substrate is a glass substrate.
- 前記ガラス基材は、風冷強化されたガラス基材である、請求項7に記載の不透視膜付き部材。 The member with an opaque film according to claim 7, wherein the glass substrate is a glass substrate tempered by air cooling.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017032732 | 2017-02-23 | ||
JP2017-032732 | 2017-02-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018154915A1 true WO2018154915A1 (en) | 2018-08-30 |
Family
ID=63253625
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/044087 WO2018154915A1 (en) | 2017-02-23 | 2017-12-07 | Non-transparent film attached member |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018154915A1 (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4694218A (en) * | 1984-05-04 | 1987-09-15 | Cotek Company | Non-glaze coating for a cathode ray tube |
JPS63313874A (en) * | 1987-05-22 | 1988-12-21 | 旭硝子株式会社 | Substrate for solar cells |
JPH04219346A (en) * | 1990-10-02 | 1992-08-10 | Asahi Glass Co Ltd | Optical glass and production thereof |
JP2002201043A (en) * | 2000-12-28 | 2002-07-16 | Nippon Sheet Glass Co Ltd | Method for manufacturing plate glass having fine projection on the surface, and plate glass |
JP2009061686A (en) * | 2007-09-06 | 2009-03-26 | Teijin Dupont Films Japan Ltd | Antiglare laminate |
JP2009140930A (en) * | 2001-10-19 | 2009-06-25 | Asahi Glass Co Ltd | Substrate with transparent conductive oxide film and photoelectric conversion element |
WO2016017645A1 (en) * | 2014-08-01 | 2016-02-04 | 旭硝子株式会社 | Support substrate with inorganic film, glass laminate, method for producing these, and method for producing electronic device |
WO2016021560A1 (en) * | 2014-08-04 | 2016-02-11 | 旭硝子株式会社 | Translucent structure, method for producing same, and product |
WO2017126230A1 (en) * | 2016-01-20 | 2017-07-27 | 旭硝子株式会社 | Transparent substrate with non-transparent film |
-
2017
- 2017-12-07 WO PCT/JP2017/044087 patent/WO2018154915A1/en active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4694218A (en) * | 1984-05-04 | 1987-09-15 | Cotek Company | Non-glaze coating for a cathode ray tube |
JPS63313874A (en) * | 1987-05-22 | 1988-12-21 | 旭硝子株式会社 | Substrate for solar cells |
JPH04219346A (en) * | 1990-10-02 | 1992-08-10 | Asahi Glass Co Ltd | Optical glass and production thereof |
JP2002201043A (en) * | 2000-12-28 | 2002-07-16 | Nippon Sheet Glass Co Ltd | Method for manufacturing plate glass having fine projection on the surface, and plate glass |
JP2009140930A (en) * | 2001-10-19 | 2009-06-25 | Asahi Glass Co Ltd | Substrate with transparent conductive oxide film and photoelectric conversion element |
JP2009061686A (en) * | 2007-09-06 | 2009-03-26 | Teijin Dupont Films Japan Ltd | Antiglare laminate |
WO2016017645A1 (en) * | 2014-08-01 | 2016-02-04 | 旭硝子株式会社 | Support substrate with inorganic film, glass laminate, method for producing these, and method for producing electronic device |
WO2016021560A1 (en) * | 2014-08-04 | 2016-02-11 | 旭硝子株式会社 | Translucent structure, method for producing same, and product |
WO2017126230A1 (en) * | 2016-01-20 | 2017-07-27 | 旭硝子株式会社 | Transparent substrate with non-transparent film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10416354B2 (en) | Translucent structure | |
US11772125B2 (en) | Antiglare film-coated substrate, antiglare film forming liquid composition, and method of producing antiglare film-coated substrate | |
US10741725B2 (en) | Transparent substrate and process for producing it | |
JP6376607B2 (en) | Anti-reflection glass article and method for producing and using the same | |
TW201606357A (en) | Substrate with anti-glare film and article thereof | |
JP6020444B2 (en) | Glass plate with low reflection film | |
JP6696486B2 (en) | Substrate with antiglare film, liquid composition for forming antiglare film, and method for producing substrate with antiglare film | |
JP6586897B2 (en) | Base material with antiglare film, coating liquid for film formation and method for producing the same | |
WO2015041257A1 (en) | Tempered glass plate with low reflective coating and production method therfor | |
WO2015186753A1 (en) | Chemically toughened glass plate with function film, method for producing same, and article | |
CN107924003A (en) | Translucency structure | |
CN103582617A (en) | Substrate element for coating with an easy-to-clean coating | |
JP2016041481A (en) | Transparent base material with antiglare antireflection film, and article | |
WO2015163330A1 (en) | Anti-glare-layer substrate and article | |
US20200055771A1 (en) | Film-attached glass substrate, article, and method for producing film-attached glass substrate | |
JP2014079920A (en) | Article and production method of the same | |
US20180319132A1 (en) | Transparent substrate with non-transparent film | |
JP2013160799A (en) | Manufacturing method of article with low reflection film | |
WO2018154915A1 (en) | Non-transparent film attached member | |
JP6164120B2 (en) | Base material and article with antireflection film | |
JP2024006900A (en) | Glass substrate with coating and manufacturing method thereof | |
JP2023079123A (en) | Cover member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17897832 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17897832 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |