WO2018152967A1 - 一种柔性显示面板及其制备方法 - Google Patents
一种柔性显示面板及其制备方法 Download PDFInfo
- Publication number
- WO2018152967A1 WO2018152967A1 PCT/CN2017/082916 CN2017082916W WO2018152967A1 WO 2018152967 A1 WO2018152967 A1 WO 2018152967A1 CN 2017082916 W CN2017082916 W CN 2017082916W WO 2018152967 A1 WO2018152967 A1 WO 2018152967A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- vapor deposition
- chemical vapor
- display panel
- flexible display
- Prior art date
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 42
- 238000005229 chemical vapour deposition Methods 0.000 claims abstract description 29
- 239000000539 dimer Substances 0.000 claims abstract description 20
- 229920000642 polymer Polymers 0.000 claims abstract description 12
- 239000010410 layer Substances 0.000 claims description 167
- 239000011241 protective layer Substances 0.000 claims description 45
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 37
- 230000000903 blocking effect Effects 0.000 claims description 32
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 9
- 238000000151 deposition Methods 0.000 claims description 8
- 238000002347 injection Methods 0.000 claims description 8
- 239000007924 injection Substances 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 239000000758 substrate Substances 0.000 claims description 7
- 238000009616 inductively coupled plasma Methods 0.000 claims description 6
- 238000006471 dimerization reaction Methods 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 23
- 238000005538 encapsulation Methods 0.000 abstract description 6
- 230000008569 process Effects 0.000 description 15
- 238000004210 cathodic protection Methods 0.000 description 6
- 238000002834 transmittance Methods 0.000 description 5
- IWKPBYPUIPVYNZ-UHFFFAOYSA-N 1,2,4,5-tetrafluoro-3,6-dimethylbenzene Chemical group CC1=C(F)C(F)=C(C)C(F)=C1F IWKPBYPUIPVYNZ-UHFFFAOYSA-N 0.000 description 3
- -1 SiCNx Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- UQEAIHBTYFGYIE-UHFFFAOYSA-N hexamethyldisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)C UQEAIHBTYFGYIE-UHFFFAOYSA-N 0.000 description 2
- 238000007641 inkjet printing Methods 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910004205 SiNX Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/875—Arrangements for extracting light from the devices
- H10K59/876—Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/16—Electron transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/17—Carrier injection layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/81—Anodes
- H10K50/813—Anodes characterised by their shape
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/82—Cathodes
- H10K50/822—Cathodes characterised by their shape
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/84—Passivation; Containers; Encapsulations
- H10K50/844—Encapsulations
- H10K50/8445—Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/85—Arrangements for extracting light from the devices
- H10K50/852—Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/16—Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
- H10K71/164—Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K77/00—Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
- H10K77/10—Substrates, e.g. flexible substrates
- H10K77/111—Flexible substrates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/311—Flexible OLED
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/351—Thickness
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/361—Temperature
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/84—Passivation; Containers; Encapsulations
- H10K50/844—Encapsulations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/87—Passivation; Containers; Encapsulations
- H10K59/873—Encapsulations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the invention belongs to the technical field of liquid crystal display, and in particular to a flexible display panel and a preparation method thereof.
- OLED display technology With the development of OLED display technology becoming more and more mature, consumers have experienced huge differences between OLED display and traditional LCD display, and the rapid growth of the OLED consumer market. Due to the self-luminous characteristics of the OLED, the characteristics of short response time, high contrast, wide viewing angle, wide color gamut, thin and light display panel, and bendability can be realized. In particular, the bendability of OLED display panels has brought consumers a subversive concept, so Flexible (flexible) OLEDs have been the mainstream of the industry in recent years.
- the bendable display panel also poses a challenge to the material and preparation process of the electronic device itself.
- the microcavity adjustment layer, the cathodic protection layer and the package filling layer are all made by different materials and process technologies, and the process is relatively cumbersome, and not only the types of materials, but also the preparation equipment and reaction conditions are diverse.
- the transportation cost between each link is also high, which is not conducive to the reduction of production costs.
- the present invention provides a method for preparing a flexible display panel, which can greatly simplify the preparation process and save cost.
- the preparation method of the flexible display panel comprises the following steps:
- the chemical vapor deposition method is used to control the temperature of 650-750 ° C to form a polymer on the anode layer as a microcavity adjustment layer; the structural formula of the organic dimer is as shown in Formula 1:
- R represents at least one of H, F, Cl, and Br
- a cathode layer is formed on the electron transport layer.
- the method further comprises depositing an organic dimer onto the cathode layer by using a chemical vapor deposition method at a temperature of 100 to 150 ° C as a cathode protective layer.
- a protective layer preparation forming an n-layer protective layer on the cathode protective layer, n is an integer greater than 0; the protective layer comprises a water blocking layer and a buffer layer deposited in order from bottom to top;
- a top water blocking layer is deposited on the nth protective layer.
- the method further comprises the steps of: preparing a filling layer by depositing the organic dimer to the protective layer by a chemical vapor deposition method at a temperature of 100 to 150 ° C. on.
- the chemical vapor deposition method includes any one of plasma enhanced chemical vapor deposition, high density plasma chemical vapor deposition, and inductively coupled plasma chemical vapor deposition.
- the present invention also provides such a flexible display panel, comprising at least a substrate, an anode layer, a microcavity adjustment layer, a hole injection layer, an organic emission layer, an electron transport layer and a cathode layer from bottom to top, wherein the microcavity adjustment layer
- the material is a polymer formed by an organic dimer, and the organic dimer and the polymer structural formula thereof are respectively represented by Formula 1 and Formula 2:
- R is at least one selected from the group consisting of H, F, Cl, and Br.
- cathode protective layer deposited on the cathode layer, the cathode protective layer being made of an organic dimer as shown in the above formula 1.
- the method further includes an n-layer protective layer sequentially deposited on the cathode protective layer, wherein n is an integer greater than 0; and a top water blocking layer disposed on the n-th protective layer; the protective layer includes The buffer layer and the water blocking layer are stacked on top of each other.
- the method further includes a package filling layer disposed on the protective layer, wherein the package filling layer material is an organic dimer as shown in the formula 1.
- the thickness of the microcavity adjustment layer, the cathode protection layer and the package filling layer is 0.1 to 10 ⁇ m.
- the invention proposes to apply polytetrafluoro-p-xylene to prepare a flexible OLED microcavity adjustment layer, a cathode protection layer and a package filling layer by changing process conditions, thereby improving the light-emitting effect of the device, enhancing the water-proof capability of the encapsulation layer, and reducing the driving voltage. While improving the operational stability of the device, the process can be reduced, no need to replace the raw materials, and multiple processes can be completed in one chamber of the CVD, which greatly reduces the process steps of the OLED.
- FIG. 1 is a schematic structural view of a flexible display panel according to Embodiment 1 of the present invention.
- FIG. 2 is a schematic structural view of a flexible display panel according to Embodiment 2 of the present invention.
- FIG. 3 is a schematic structural view of a flexible display panel according to Embodiment 3 of the present invention.
- the present invention provides a flexible display panel, as shown in FIG. 1, which includes at least a substrate 10, an anode layer 11 (semiconductor transparent conductive layer, ITO for short), and a microcavity adjustment covering the anode layer 11 from bottom to top.
- the microcavity adjustment layer 20 is mainly used to enhance the current density, brightness, and driving voltage of the device, and improve the operational stability of the device.
- the microcavity adjustment layer is made of a polymer formed of an organic dimer, and the organic dimer and the polymer structural formula thereof are as shown in Formula 1 and Formula 2, respectively:
- R represents at least one of H, F, Cl, and Br.
- the compound of Formula 1 can be cleaved at a high temperature into a free radical to repolymerize into a polymer of Formula 2 having a relatively large molecular weight.
- the organic dimer is preferably dimeric tetrafluoro-p-xylene or di-tetrabromo-p-xylene, then the structural formula of Formula 2 may be further simplified and expressed as For example, the corresponding polymer formed is polytetrafluoro-p-xylene or polytetrabromo-p-xylene.
- a cathode protective layer 30 is also deposited on the surface of the cathode layer 15, mainly for protecting the cathode layer and improving the light transmittance of the device.
- the cathodic protection layer 30 is made of an organic dimer as shown in the above formula 1.
- Each of the protective layers 40 includes a water blocking layer 42 and a buffer layer 41 which are vertically stacked.
- the buffer layer 41 is used for stressing when the damper member is bent and folded; the water blocking layer 42 is for increasing the waterproof function of the display panel.
- a top water blocking layer 60 is also finally disposed on the nth protective layer 40 for direct contact by the user.
- the materials of the top water blocking layer 60 and the water blocking layer 42 may be the same or different, and generally are preferably inorganic hydrophobic.
- the material of the buffer layer 41 is generally preferably an organic material.
- a semiconductor transparent electrode film is formed on the glass substrate as an anode layer. Specifically, it includes a pretreatment cleaning of ITO, a photolithography process, and the like to form a patterned ITO electrode layer on a glass substrate.
- a microcavity adjustment layer is formed on the anode layer.
- the chemical vapor deposition method is used to evaporate dimeric tetrafluoro-p-xylene (see Formula 4, abbreviated as AF 4 ) at a temperature of 100 to 150 ° C in the reaction chamber, and then raise the temperature to 650 to 750 ° C.
- the AF 4 vapor is cracked into a radical (Formula 5), and finally deposited on the anode layer and polymerized to form a polymer (such as Formula 6) as a microcavity conditioning layer overlying the anode layer.
- the AF 4 forming the microcavity adjustment layer has a film thickness of 0.1 to 10 ⁇ m; it can enhance the current density, brightness, and driving voltage of the device, and improve the operational stability of the device.
- the chemical vapor deposition method used in this step may be any one of plasma enhanced chemical vapor deposition (PECVD), high density plasma chemical vapor deposition (HDPCVD), and inductively coupled plasma chemical vapor deposition (ICPCVD). .
- PECVD plasma enhanced chemical vapor deposition
- HDPCVD high density plasma chemical vapor deposition
- ICPCVD inductively coupled plasma chemical vapor deposition
- Step S3 as shown in FIG. 1, a hole injection layer, an organic emission layer, an electron transport layer, and a cathode layer are sequentially deposited on the microcavity adjustment layer by a vacuum evaporation process.
- Step S4 using a chemical vapor deposition method to evaporate dimeric tetrafluoro-p-xylene (see Formula 4, abbreviated as AF 4 ) while controlling the temperature in the reaction chamber at a temperature of 100 to 150 ° C, and depositing an AF 4 film on the cathode layer.
- AF 4 dimeric tetrafluoro-p-xylene
- the AF4 which forms the cathodic protection layer has a film thickness of 0.1 to 10 ⁇ m, a light transmittance of more than 98%, and a refractive index of 1.6 to 1.8, which can protect the cathode and improve the light transmittance of the device.
- a water blocking layer is formed on the cathodic protection layer by PECVD, atomic layer deposition (ALD), laser deposition (PLD) or Sputter process.
- the material of the water blocking layer is, for example, at least one of Al 2 O 3 , TiO 2 , SiNx, SiCNx, and SiOx.
- Step S6 preparing an organic buffer layer by inkjet printing (IJP) or PECVD;
- the buffer layer material is selected from the group consisting of Acryl, hexamethyldisiloxane (HMDSO), polyacrylate and its derivatives, and polycarbonate.
- HMDSO hexamethyldisiloxane
- Step S5 and step S6 complete the preparation of the first protective layer.
- Step S7 preparation of the top water blocking layer.
- a top water blocking layer is formed on the buffer layer using the same materials and process conditions as described in the step S5.
- the material of the top water blocking layer is the same as the material of the water blocking layer.
- the flexible display panel of the present embodiment is obtained.
- the first embodiment is different from the first embodiment.
- a package filling layer 50 is further disposed between the protective layer 40 and the top water blocking layer 60 of the embodiment.
- the protective layer 40, the package fill layer 50, and the top water blocking layer 60 structure on the package fill layer 50 ultimately achieve a protective structure of "water blocking layer - buffer layer - AF 4 - water blocking layer".
- the package filling layer is mainly used to improve the water-proof capability of the encapsulation layer and prolong the service life of the OLED device.
- the encapsulating filling layer material is an organic dimer as shown in the above formula 1.
- Steps S1 to S6 refer to Embodiment 1; S5 and S6 complete preparation of a protective layer 40;
- Step S7 using a chemical vapor deposition method, evaporating ditetrafluoro-p-xylene (see Formula 4, abbreviated as AF4) while controlling the temperature in the reaction chamber at a temperature of 100 to 150 ° C, and depositing an AF4 film on the buffer layer as a package. Fill the layer.
- the package fill layer has a film thickness of 0.1 to 10 ⁇ m and a light transmittance of more than 98%. The ratio is 1.4 to 1.6, which can be used to improve the water-proof ability of the encapsulation layer and prolong the service life of the OLED device.
- Step S8 preparation of the top water blocking layer.
- a top water blocking layer is formed on the package fill layer using the same materials and process conditions as described in step S5.
- the material of the top water blocking layer is the same as the material of the water blocking layer.
- the flexible display panel of the present embodiment is obtained.
- the present embodiment is not only formed with the first protective layer 40a, and the second protective layer 40b is formed between the package filling layer 50 and the top water blocking layer 60. .
- Steps S1 to S6 are as shown in Embodiment 1; S5 and S6 complete the preparation of the first protective layer 40a;
- Step S7 using a chemical vapor deposition method, evaporating ditetrafluoro-p-xylene (see Formula 4, abbreviated as AF4) while controlling the temperature in the reaction chamber at a temperature of 100 to 150 ° C, and depositing an AF4 film on the buffer layer as a package. Fill the layer.
- the package fill layer has a film thickness of 0.1 to 10 ⁇ m, a light transmittance of more than 98%, and a refractive index of 1.4 to 1.6, which can be used to improve the water vapor resistance of the package layer and prolong the service life of the OLED device.
- step S8 the steps S5 and S6 are repeated once to form a second protective layer 40b on the package filling layer.
- Step S9 preparation of the top water blocking layer.
- a top water blocking layer is formed on the second protective layer using the same materials and process conditions as described in the step S5.
- the material of the top water blocking layer is the same as the material of the water blocking layer.
- the flexible display panel of the present embodiment is obtained.
- the protective layer and the package fill layer can be repeatedly deposited in response to different product requirements, and the folding strength and waterproof performance of the flexible display panel can be continuously improved.
- the topmost material layer of either structure is an inorganic water barrier.
- the film formed by polytetrafluoro-p-xylene has excellent water repellency and corrosion resistance, and can be made into an ultra-thin, transparent non-porous film by CVD.
- the film formed by polytetrafluoro-p-xylene has high transparency, excellent water repellency and corrosion resistance, and can be plated on the anode to form a microcavity adjustment layer to improve the light-emitting effect of the OLED device. Meanwhile, the excellent water resistance indicates polytetrafluoroethylene.
- Paraxylene is also a good packaging material for flexible OLED packages.
- the invention proposes to apply the AF 4 to prepare the flexible OLED microcavity adjustment layer, the cathodic protection layer and the package filling layer by changing the process conditions, thereby improving the light-emitting effect of the device, enhancing the water-proof capability of the encapsulation layer, and lowering the driving voltage to improve the operation of the device.
- the process can be reduced, the raw materials need not be replaced, and multiple processes can be completed in one chamber of the CVD, which greatly reduces the process steps of the OLED.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
一种柔性显示面板的制备方法,包括利用化学气相沉积方法,控制温度650~750℃、使对有机二聚体蒸汽在阳极层(11)上形成聚合物作为微腔调节层(20);有机二聚体的结构式如式1所示,其中,R代表为H、F、Cl、Br中的至少一种,还可以采用相同的材料和步骤获得阴极保护层(30)和封装填充层(50)。通过将柔性OLED微腔调节层、阴极保护层和封装填充层采用同一种材料制备,能降低制程难度。
Description
本发明属于液晶显示技术领域,具体地讲,涉及一种柔性显示面板的及其制备方法。
随着OLED显示技术的发展日趋成熟,广大消费者体验到了OLED显示与传统LCD显示的巨大差异,随之而来的是OLED消费市场的迅速增长。由于OLED自发光的特性,使得响应时间短、高对比度、广视角、广色域、显示面板轻薄化、可弯折性等特点得以实现。特别是OLED显示面板的可弯折性,给消费者带来了颠覆性的概念,因此Flexible(可弯折)OLED近年来是行业发展的主流。
然后,可弯折的显示面板对电子设备自身器件的材质和制备工艺也形成了挑战。传统的柔性OLED制程工艺中,微腔调节层、阴极保护层和封装填充层都是采用不同的材料和制程工艺制作的,过程相对繁琐,不仅材料种类多带来制备器材多、反应条件多样且各个环节之间的运送成本也较高,不利于生产成本的降低。
发明内容
为了解决上述现有技术存在的问题,本发明提供一种柔性显示面板的制备方法,能够大大简化制备工艺,节约成本。
这种柔性显示面板的制备方法,包括如下步骤:
在基板上形成阳极层;
利用化学气相沉积方法,控制温度650~750℃、使对有机二聚体蒸汽在所述阳极层上形成聚合物作为微腔调节层;所述有机二聚体的结构式如式1所示:
其中,所述R代表为H、F、Cl、Br中至少一种;
在所述微腔调节层上形成空穴注入层;
在所述空穴注入层上形成有机发射层;
在所述有机发射层上形成电子传输层;
在所述电子传输层上形成阴极层。
其中,还包括利用化学气相沉积方法,控制温度100~150℃将有机二聚体沉积至所述阴极层上作为阴极保护层。
其中,还包括:
防护层制备:在所述阴极保护层上形成n层防护层,n为大于0的整数;所述防护层包括从下至上依次沉积的阻水层和缓冲层;
在第n层防护层上沉积顶部阻水层。
其中,完成所述防护层制备步骤后,还包括封装填充层的制备步骤:利用化学气相沉积方法,控制温度100~150℃将所述有机二聚体沉积至所述防护层
上。
其中,所述化学气相沉积方法包括等离子体增强化学气相沉积、高密度等离子体化学气相沉积、感应耦合等离子体化学气相沉积中的任一种。
本发明还提供这种柔性显示面板,从下至上至少包括:基板、阳极层、微腔调节层、空穴注入层、有机发射层、电子传输层和阴极层,其中,所述微腔调节层材质为有机二聚体形成的聚合物,所述有机二聚体及其形成的聚合物结构式分别如式1、式2所示:
其中,所述R选自H、F、Cl、Br中的至少一种。
其中,还包括沉积在所述阴极层上的阴极保护层,所述阴极保护层材质为如所述式1所示的有机二聚体。
其中,还包括依次沉积在所述阴极保护层上的n层防护层,所述n为大于0的整数;以及设置于所述第n层防护层上的顶部阻水层;所述防护层包括上下层叠设置的缓冲层和阻水层。
其中,还包括设置于所述防护层上的封装填充层,所述封装填充层材质为如所述式1所示的有机二聚体。
其中,所述微腔调节层、所述阴极保护层和所述封装填充层的厚度为0.1~10μm。
本发明提出通过改变制程条件将聚四氟对二甲苯应用于制备柔性OLED微腔调节层、阴极保护层和封装填充层,在提高器件出光效果、增强封装层抗水氧能力、降低驱动电压以提高器件操作稳定性的同时,还可降低制程难度,无需更换原料,并可将多个工艺过程在CVD的一个腔室内完成,大大减少了OLED的制程步骤。
通过结合附图进行的以下描述,本发明的实施例的上述和其它方面、特点和优点将变得更加清楚,附图中:
图1是本发明实施例1的柔性显示面板的结构示意图;
图2是本发明实施例2的柔性显示面板的结构示意图;
图3是本发明实施例3的柔性显示面板的结构示意图。
以下,将参照附图来详细描述本发明的实施例。然而,可以以许多不同的形式来实施本发明,并且本发明不应该被解释为限制于这里阐述的具体实施例。相反,提供这些实施例是为了解释本发明的原理及其实际应用,从而使本领域的其他技术人员能够理解本发明的各种实施例和适合于特定预期应用的各种修改。
实施例1
本发明提供一种柔性显示面板,如图1所示,其从下至上至少包括:基板10、阳极层11(半导体透明导电层,简称ITO)、覆盖于所述阳极层11上的微腔调节层20、空穴注入层12、有机发射层13、电子传输层14和阴极层15。
其中,所述微腔调节层20主要用于增强器件的电流密度、亮度、降低驱动电压,同时提高器件操作稳定性。在本发明中,微腔调节层材质为有机二聚体形成的聚合物,所述有机二聚体及其形成的聚合物结构式分别如式1、式2所示:
其中,所述R代表为H、F、Cl、Br中的至少一种。式1中化合物能够在高温下裂解为自由基重新聚合成分子量较大的式2的聚合物。若式1的结构中R均来自同一种原子,例如,所述有机二聚体优选二聚四氟对二甲苯或二聚四溴对二甲苯,那么式2的结构式还可能进一步简化和表达为式3,例如,对应形成的聚合物则为聚四氟对二甲苯、聚四溴对二甲苯。
在所述阴极层15表面还沉积有阴极保护层30,主要用于保护阴极层,并提高器件的光透过率。在本发明中,所述阴极保护层30材质为如所述式1所示的有机二聚体。
为了进一步保护显示面板,在所述阴极保护层30上还依次形成有n层防护层40,n为大于0的整数。在本实施例中,n=1。每层防护层40包括上下层叠设置的阻水层42、缓冲层41。缓冲层41用于缓冲器件在弯曲、折叠时的应力;阻水层42用于增加显示面板的防水功能。
在第n层防护层40上还最后设置顶部阻水层60,用于用户直接接触。顶部阻水层60和阻水层42的材质可以相同也可以不同,一般均优选为无机疏水
性材料;缓冲层41材质一般优选为有机材料。
下面介绍本实施例这种柔性显示面板的制备方法。
步骤S1,在玻璃基板上形成半导体透明电极膜(ITO)作为阳极层。具体包括对ITO的预处理清洗、光刻工序等使在玻璃基板上形成图案化的ITO电极层。
步骤S2,在阳极层上形成微腔调节层。结合方程式2所示,利用化学气相沉积方法,在反应腔内控制温度100~150℃时使二聚四氟对二甲苯(见式4,简称AF4)蒸发,再提升温度为650~750℃、使对AF4蒸汽裂解成自由基(式5),最后在所述阳极层上沉积并聚合形成聚合物(如式6)作为微腔调节层覆盖到阳极层上。形成微腔调节层的AF4,膜厚为0.1~10μm;能够增强器件的电流密度、亮度、降低驱动电压,同时提高器件操作稳定性。
其中,本步骤所采用的化学气相沉积方法,可以是等离子体增强化学气相沉积(PECVD)、高密度等离子体化学气相沉积(HDPCVD)、感应耦合等离子体化学气相沉积(ICPCVD)中的任一种。
步骤S3,如图1所示,利用真空蒸镀工艺在所述微腔调节层上依次沉积空穴注入层、有机发射层、电子传输层和阴极层。
步骤S4,利用化学气相沉积方法,在反应腔内控制温度100~150℃时使二聚四氟对二甲苯(见式4,简称AF4)蒸发,在所述阴极层上沉积形成AF4薄膜作为阴极保护层。形成阴极保护层的AF4,膜厚为0.1~10μm,光透过率大
于98%,折射率为1.6~1.8,能够保护阴极,并提高器件的光透过率。
步骤S5,利用PECVD、原子层沉积工艺(ALD)、激光沉积(PLD)或Sputter工艺在阴极保护层上制作阻水层。阻水层的材质例如为Al2O3、TiO2、SiNx、SiCNx、SiOx中的至少一种。
步骤S6,以喷墨打印(IJP)或PECVD制备有机缓冲层;这层缓冲层材料选自亚克力(Acryl)、六甲基二甲硅醚(HMDSO)、聚丙烯酸酯及其衍生物、聚碳酸酯及其衍生物、聚苯乙烯等至少一种可用于缓冲器件在弯曲、折叠时的应力的材料。
步骤S5、步骤S6完成第一防护层的制备。
步骤S7,顶部阻水层的制备。采用与所述步骤S5相同的材料和工艺条件,在缓冲层上形成顶部阻水层。在本实施例中,顶部阻水层的材质与所述阻水层材质相同。
此时,获得本实施例的柔性显示面板。
实施例2
本实施例与实施例一不同的是,如图2所示,本实施例的防护层40和顶部阻水层60之间还增设一封装填充层50。
防护层40、封装填充层50,以及在封装填充层50上的顶部阻水层60结构最终在获得“阻水层-缓冲层-AF4-阻水层”的保护结构。所述封装填充层则主要用于提高封装层抗水氧能力,延长OLED器件的使用寿命。在本发明中,所述封装填充层材质为如所述式1所示的有机二聚体。
为了获得本实施例的结构,制备步骤作出以下调整。
步骤S1~S6参照实施例1所示;S5、S6完成一层防护层40的制备;
步骤S7,利用化学气相沉积方法,在反应腔内控制温度100~150℃时使二聚四氟对二甲苯(见式4,简称AF4)蒸发,在所述缓冲层上沉积形成AF4薄膜作为封装填充层。封装填充层膜厚为0.1~10μm,光透过率大于98%,折射
率为1.4~1.6,能够用于提高封装层抗水氧能力,延长OLED器件的使用寿命。
步骤S8,顶部阻水层的制备。采用与所述步骤S5相同的材料和工艺条件,在封装填充层上形成顶部阻水层。在本实施例中,顶部阻水层的材质与所述阻水层材质相同。
此时,获得本实施例的柔性显示面板。
实施例3
本实施例与实施例二所不同的是,如图3所示,本实施例不仅仅形成有第一防护层40a,在封装填充层50和顶部阻水层60之间形成第二防护层40b。
为了获得本实施例的结构,制备步骤作出以下调整。
步骤S1~S6参照实施例1所示;S5、S6完成第一防护层40a的制备;
步骤S7,利用化学气相沉积方法,在反应腔内控制温度100~150℃时使二聚四氟对二甲苯(见式4,简称AF4)蒸发,在所述缓冲层上沉积形成AF4薄膜作为封装填充层。封装填充层膜厚为0.1~10μm,光透过率大于98%,折射率为1.4~1.6,能够用于提高封装层抗水氧能力,延长OLED器件的使用寿命。
步骤S8,重复所述步骤S5、S6一次,在封装填充层上形成第二防护层40b。
步骤S9,顶部阻水层的制备。采用与所述步骤S5相同的材料和工艺条件,在第二防护层上形成顶部阻水层。在本实施例中,顶部阻水层的材质与所述阻水层材质相同。
此时,获得本实施例的柔性显示面板。
在其他实施例中,防护层和封装填充层是可以因应不同的产品要求进行重复多次沉积的,能够不断提高柔性显示面板的折叠强度和防水性能。但是,无论哪一种结构最顶部的材料层均为无机阻水层。
综上所述,聚四氟对二甲苯(TFPX)形成的膜具有优异的防水性和抗腐蚀性,并且可通过CVD制成超薄型的、透明的无孔薄膜。聚四氟对二甲苯形成的薄膜透明度高,具有优异的防水性和抗腐蚀性,可镀在阳极上形成微腔调
节层,提高OLED器件的出光效果;同时,优异的防水性说明聚四氟对二甲苯还是一种不错的封装材料,可应用在柔性OLED封装上。本发明提出通过改变制程条件将AF4应用于制备柔性OLED微腔调节层、阴极保护层和封装填充层,在提高器件出光效果、增强封装层抗水氧能力、降低驱动电压以提高器件操作稳定性的同时,还可降低制程难度,无需更换原料,并可将多个工艺过程在CVD的一个腔室内完成,大大减少了OLED的制程步骤。
虽然已经参照特定实施例示出并描述了本发明,但是本领域的技术人员将理解:在不脱离由权利要求及其等同物限定的本发明的精神和范围的情况下,可在此进行形式和细节上的各种变化。
Claims (16)
- 根据权利要求1所述柔性显示面板的制备方法,其中,还包括利用化学气相沉积方法,控制温度100~150℃将有机二聚体沉积至所述阴极层上作为阴极保护层。
- 根据权利要求2所述柔性显示面板的制备方法,其中,还包括:防护层制备:在所述阴极保护层上形成n层防护层,n为大于0的整数;所述防护层包括从下至上依次沉积的阻水层和缓冲层;在第n层防护层上沉积顶部阻水层。
- 根据权利要求3所述柔性显示面板的制备方法,其中,还包括封装填充层的制备步骤:利用化学气相沉积方法,控制温度100~150℃将所述有机二聚体沉积至所述防护层上。
- 根据权利要求1所述柔性显示面板的制备方法,其中,所述化学气相沉积方法包括等离子体增强化学气相沉积、高密度等离子体化学气相沉积、感应耦合等离子体化学气相沉积中的任一种。
- 根据权利要求2所述柔性显示面板的制备方法,其中,所述化学气相沉积方法包括等离子体增强化学气相沉积、高密度等离子体化学气相沉积、感应耦合等离子体化学气相沉积中的任一种。
- 根据权利要求3所述柔性显示面板的制备方法,其中,所述化学气相沉积方法包括等离子体增强化学气相沉积、高密度等离子体化学气相沉积、感应耦合等离子体化学气相沉积中的任一种。
- 根据权利要求4所述柔性显示面板的制备方法,其中,所述化学气相沉积方法包括等离子体增强化学气相沉积、高密度等离子体化学气相沉积、感应耦合等离子体化学气相沉积中的任一种。
- 根据权利要求6所述柔性显示面板,其中,还包括沉积在所述阴极层上的阴极保护层,所述阴极保护层材质为如所述式1所示的有机二聚体。
- 根据权利要求7所述柔性显示面板,其中,还包括依次沉积在所述阴极保护层上的n层防护层,所述n为大于0的整数;以及设置于所述第n层防护层上的顶部阻水层;所述防护层包括上下层叠设置的缓冲层和阻水层。
- 根据权利要求8所述柔性显示面板,其中,还包括设置于所述防护层上的封装填充层,所述封装填充层材质为如所述式1所示的有机二聚体。
- 根据权利要求9所述柔性显示面板,其中,所述微腔调节层、所述阴极保护层和所述封装填充层的厚度为0.1~10μm。
- 根据权利要求10所述柔性显示面板,其中,所述微腔调节层、所述阴极保护层和所述封装填充层的厚度为0.1~10μm。
- 根据权利要求11所述柔性显示面板,其中,所述微腔调节层、所述阴极保护层和所述封装填充层的厚度为0.1~10μm。
- 根据权利要求12所述柔性显示面板,其中,所述微腔调节层、所述阴极保护层和所述封装填充层的厚度为0.1~10μm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/567,566 US10468630B2 (en) | 2017-02-24 | 2017-05-03 | Flexible display panels and manufacturing methods thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710103447.5A CN106784410B (zh) | 2017-02-24 | 2017-02-24 | 一种柔性显示面板及其制备方法 |
CN201710103447.5 | 2017-02-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018152967A1 true WO2018152967A1 (zh) | 2018-08-30 |
Family
ID=58960466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/082916 WO2018152967A1 (zh) | 2017-02-24 | 2017-05-03 | 一种柔性显示面板及其制备方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10468630B2 (zh) |
CN (1) | CN106784410B (zh) |
WO (1) | WO2018152967A1 (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109427988B (zh) * | 2017-08-21 | 2021-02-12 | 上海和辉光电股份有限公司 | 显示面板及显示装置 |
CN108075047B (zh) * | 2017-12-11 | 2025-02-25 | 合肥京东方光电科技有限公司 | 有机发光二极管器件及其制造方法、显示面板 |
CN109300919B (zh) | 2018-10-15 | 2020-09-29 | 上海天马微电子有限公司 | Micro LED显示基板及其制作方法、显示装置 |
CN112786669A (zh) * | 2021-01-08 | 2021-05-11 | 深圳市华星光电半导体显示技术有限公司 | Oled显示面板 |
CN113025960B (zh) * | 2021-03-05 | 2022-07-19 | 贵州航天林泉电机有限公司 | 一种Parylene F型气相沉积方法 |
CN113629110A (zh) * | 2021-07-23 | 2021-11-09 | 深圳市华星光电半导体显示技术有限公司 | 显示面板和显示设备 |
CN114400241A (zh) * | 2021-12-31 | 2022-04-26 | 固安翌光科技有限公司 | 一种光驱动三维oled屏体及其应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080067926A1 (en) * | 2006-09-07 | 2008-03-20 | Canon Kabushiki Kaisha | Organic light-emitting device |
CN101165912A (zh) * | 2006-10-16 | 2008-04-23 | 悠景科技股份有限公司 | 有机电致发光显示元件的彩色滤光片结构 |
US20120098412A1 (en) * | 2010-10-22 | 2012-04-26 | Dong-Woo Shin | Display devices and methods of manufacturing display devices |
CN203644825U (zh) * | 2013-12-18 | 2014-06-11 | 昆山国显光电有限公司 | 有机发光器件及电子器件 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000106396A (ja) * | 1998-09-29 | 2000-04-11 | Sharp Corp | 半導体装置の製造方法 |
JP4483207B2 (ja) * | 2003-06-06 | 2010-06-16 | コニカミノルタホールディングス株式会社 | 有機エレクトロルミネッセンス素子及び表示装置 |
CN201547733U (zh) * | 2009-07-15 | 2010-08-11 | 中国科学院上海有机化学研究所 | Led模组的防水密封结构 |
TWI424981B (zh) * | 2011-11-09 | 2014-02-01 | Chung Shan Inst Of Science | 1,4-雙(氯二氟甲基)苯之簡易式高效率製備方法 |
KR102129266B1 (ko) * | 2014-04-30 | 2020-07-03 | 삼성디스플레이 주식회사 | 유기 발광 표시 장치 |
CN105161631B (zh) * | 2015-07-21 | 2019-01-22 | 上海和辉光电有限公司 | 一种有机发光二极管器件及制备方法以及有机发光显示面板 |
-
2017
- 2017-02-24 CN CN201710103447.5A patent/CN106784410B/zh active Active
- 2017-05-03 US US15/567,566 patent/US10468630B2/en not_active Expired - Fee Related
- 2017-05-03 WO PCT/CN2017/082916 patent/WO2018152967A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080067926A1 (en) * | 2006-09-07 | 2008-03-20 | Canon Kabushiki Kaisha | Organic light-emitting device |
CN101165912A (zh) * | 2006-10-16 | 2008-04-23 | 悠景科技股份有限公司 | 有机电致发光显示元件的彩色滤光片结构 |
US20120098412A1 (en) * | 2010-10-22 | 2012-04-26 | Dong-Woo Shin | Display devices and methods of manufacturing display devices |
CN203644825U (zh) * | 2013-12-18 | 2014-06-11 | 昆山国显光电有限公司 | 有机发光器件及电子器件 |
Also Published As
Publication number | Publication date |
---|---|
CN106784410B (zh) | 2019-03-12 |
US10468630B2 (en) | 2019-11-05 |
US20180294439A1 (en) | 2018-10-11 |
CN106784410A (zh) | 2017-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018152967A1 (zh) | 一种柔性显示面板及其制备方法 | |
US20250024700A1 (en) | Device including a conductive coating disposed over emissive regions and method therefor | |
CN106450032B (zh) | Oled显示器及其制作方法 | |
CN107644946A (zh) | Oled显示面板的封装方法及封装结构 | |
US11588132B2 (en) | Thin film package structure, thin film packaging method and display device for improving characteristic of contact surface of organic layer coating | |
US10446794B2 (en) | Top-emitting organic light-emitting device and component thereof | |
US20160056414A1 (en) | Thin film permeation barrier system for substrates and devices and method of making the same | |
US20190221771A1 (en) | Buffer layer for organic light emitting devices and method of making the same | |
CN107403883A (zh) | Oled显示面板的封装方法 | |
KR20150131098A (ko) | 박막 캡슐화를 위한 n2o 희석 프로세스에 의한 배리어 막 성능의 개선 | |
TW201249266A (en) | Flexible base and flexible electronic device | |
CN107994126A (zh) | 一种oled发光结构的制备方法及oled发光结构 | |
CN107492526A (zh) | 一种具有宽带减反射作用的柔性水氧阻隔膜及其制备方法 | |
KR101801545B1 (ko) | 발광소자의 보호막 증착방법 | |
KR20050021152A (ko) | 유기 발광 소자의 보호막 형성 방법 | |
WO2019051959A1 (zh) | 一种oled器件制作方法及相应的oled器件 | |
CN107634154A (zh) | 一种oled薄膜封装方法、结构及oled结构 | |
TWI871785B (zh) | 用於在表面上圖案化塗層之方法及包括經圖案化的塗層之裝置 | |
JP6926381B2 (ja) | 発光素子の保護膜蒸着方法 | |
US10777777B2 (en) | Passivation film deposition method for light-emitting diode | |
JP2009301885A (ja) | マルチユニット型有機el素子とその製造方法 | |
US20190088901A1 (en) | Encapsulation method for oled thin film, oled thin film encapsulation structure and oled structure | |
US10868281B2 (en) | Fabricating method of OLED device with base substrate having improved water and oxygen blocking performance | |
TWI222842B (en) | Device and method to increase the color saturation of polymer OLED | |
TWI488349B (zh) | 複合阻障層結構及包括此結構之封裝結構 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 15567566 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17897928 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17897928 Country of ref document: EP Kind code of ref document: A1 |