+

WO2018151790A1 - Composés catalyseurs de hafnocène et procédé d'utilisation de ces derniers - Google Patents

Composés catalyseurs de hafnocène et procédé d'utilisation de ces derniers Download PDF

Info

Publication number
WO2018151790A1
WO2018151790A1 PCT/US2017/068175 US2017068175W WO2018151790A1 WO 2018151790 A1 WO2018151790 A1 WO 2018151790A1 US 2017068175 W US2017068175 W US 2017068175W WO 2018151790 A1 WO2018151790 A1 WO 2018151790A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
substituted
independently
borate
hydrocarbyl
Prior art date
Application number
PCT/US2017/068175
Other languages
English (en)
Inventor
Laughlin G. Mccullough
Original Assignee
Exxonmobil Chemical Patents Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxonmobil Chemical Patents Inc. filed Critical Exxonmobil Chemical Patents Inc.
Priority to CN201780086769.1A priority Critical patent/CN110312741B/zh
Priority to SG11201907045WA priority patent/SG11201907045WA/en
Priority to EP17896464.9A priority patent/EP3583137B1/fr
Priority to BR112019016048-5A priority patent/BR112019016048B1/pt
Publication of WO2018151790A1 publication Critical patent/WO2018151790A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes

Definitions

  • This invention relates to novel hafnocene catalyst compounds, catalyst systems comprising such, and uses thereof.
  • Olefin polymerization catalysts are of great use in industry. Hence there is interest in finding new catalyst systems that increase the commercial usefulness of the catalyst and allow the production of polymers having improved properties.
  • Catalysts for olefin polymerization are often based on substituted metallocenes as catalyst precursors, which are activated either with the help of an alumoxane, or with an activator containing a non-coordinating anion.
  • U.S. Pat. No. 7,829,495 discloses Me 2 Si(fluorenyl)(3-nPr-Cp)ZrCl 2 and U.S. Pat. No. 7,179,876 discloses supported (nPrCp) 2 HfMe 2 .
  • US 2004/0043893 discloses bis(trimethylsilylmethylcyclopentadienyl)hafnium diflouride at page 14, paragraph [0349], see also US 7,910,764 and US 2004/0092387.
  • US 2006/0247396 discloses bis[2-trimethylsilylethylcyclopentadienyl]hafniumA n , at page 5, paragraph [0122].
  • Ind)MCl 2 where M is Zr or Hf have been synthesized and screened for the syndiospecific polymerization of propylene; see Leino, R., Gomez, F.; Cole, A.; Waymouth, R. Macromolecules, 2001, 54, 2072-2082.
  • This invention relates to catalyst compounds represented by the formula (B), and catalyst systems comprising: activator, catalyst compound, and optional support wherein the catalyst compound is represented b the formula (B):
  • each R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 is, independently, hydrogen, alkoxide, a Ci to C 4 o substituted or unsubstituted hydrocarbyl group or is -R 20 -ER'3, where E is a group 14 element (C, Si, Ge, or Sn), R 20 is a Ci to C 4 hydrocarbyl (preferably methyl), and each R' is independently a Ci to C20 substituted or unsubstituted hydrocarbyl, provided that at least one R is not H, and provided that at least one of R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 is -R 20 - ER 3 ; and
  • each X is, independently, a univalent anionic ligand, or two X are joined and bound to the metal atom to form a metallocycle ring, or two X are joined to form a chelating ligand, a diene ligand, or an alkylidene ligand, where X is preferably not fluorine.
  • This invention further relates to hafnium metallocene compounds represented by the formula (B):
  • each R 1 , R 2 , R 4 and R 5 is independently hydrogen, alkoxide or a Ci to C40 substituted or unsubstituted hydrocarbyl group;
  • R 3 is independently hydrogen, alkoxide or a Ci to C40 substituted or unsubstituted hydrocarbyl group or is -R 20 -ER'3, where E is a group 14 element (C, Si, Ge, or Sn), R 20 is a Ci to C 4 hydrocarbyl (preferably methyl), and each R' is independently a Ci to C20 substituted or unsubstituted hydrocarbyl, provided that at least one R' is not H;
  • each R 6 , R 7 , R 8 , and R 10 is independently hydrogen, alkoxide or a Ci to C40 substituted or unsubstituted hydrocarbyl group;
  • R 9 is -R 20 -ER' 3 , where E is a group 14 element (C, Si, Ge, or Sn), R 20 is a Ci to C 4 hydrocarbyl (preferably methyl), and each R' is independently a Ci to C20 substituted or unsubstituted hydrocarbyl, provided that at least one R' is not H; and
  • each X is, independently, a univalent anionic ligand, or two X are joined and bound to the metal atom to form a metallocycle ring, or two X are joined to form a chelating ligand, a diene ligand, or an alkylidene ligand, where X is preferably not fluorine.
  • This invention also relates to catalyst systems comprising activator, a catalyst compound described above, and optional support.
  • This invention also relates to a method to polymerize olefins comprising contacting the catalyst system described above with one or more monomers.
  • This invention also relates to a method to polymerize olefins in the absence of fluorine comprising contacting the catalyst system described above with one or more monomers, where X is not F.
  • This invention further relates to polymer compositions produced by the methods described herein, said polymer preferably containing less than 100 ppm of fluorine, preferably less than 50 ppm fluorine, preferably less than 20 ppm of fluorine, preferably less than 10 ppm of fluorine.
  • the figure is a chart of catalyst productivity for Complexes 1 to 5.
  • a "group 4 metal” is an element from group 4 of the Periodic Table, e.g., Hf, Ti, or Zr.
  • Catalyst productivity is a measure of how many grams of polymer (P) are produced using a polymerization catalyst comprising W g of catalyst (cat), over a period of time of T hours; and may be expressed by the following formula: P/(T x W) and expressed in units of gPgcaHhr 1 . Conversion is the amount of monomer that is converted to polymer product, and is reported as mol% and is calculated based on the polymer yield and the amount of monomer fed into the reactor. Catalyst activity is a measure of how active the catalyst is and is reported as the mass of product polymer (P) produced per mole of catalyst (cat) used (kgP/molcat).
  • an “olefin,” alternatively referred to as “alkene,” is a linear, branched, or cyclic compound of carbon and hydrogen having at least one double bond.
  • alkene is a linear, branched, or cyclic compound of carbon and hydrogen having at least one double bond.
  • a copolymer when a copolymer is said to have an "ethylene" content of 35 wt% to 55 wt%, it is understood that the mer unit in the copolymer is derived from ethylene in the polymerization reaction and said derived units are present at 35 wt% to 55 wt%, based upon the weight of the copolymer.
  • a "polymer” has two or more of the same or different mer units.
  • a “homopolymer” is a polymer having mer units that are the same.
  • a “copolymer” is a polymer having two or more mer units that are different from each other.
  • a “terpolymer” is a polymer having three mer units that are different from each other.
  • ethylene polymer or "ethylene copolymer” is a polymer or copolymer comprising at least 50 mol% ethylene derived units
  • ethylene copolymer is a polymer or copolymer comprising at least 50 mol% propylene derived units
  • ethylene shall be considered an a-olefin.
  • substituted means that a hydrogen group has been replaced with a heteroatom, or a heteroatom containing group.
  • a “substituted hydrocarbyl” is a radical made of carbon and hydrogen where at least one hydrogen is replaced by a heteroatom or heteroatom containing group.
  • Mn is number average molecular weight
  • Mw is weight average molecular weight
  • Mz is z average molecular weight
  • wt% is weight percent
  • mol% is mole percent.
  • Molecular weight distribution also referred to as polydispersity, is defined to be Mw divided by Mn. Unless otherwise noted, all molecular weight units (e.g., Mw, Mn, Mz) are g/mol.
  • Me is methyl
  • Et is ethyl
  • Pr is propyl
  • cPR is cyclopropyl
  • nPr is n-propyl
  • iPr is isopropyl
  • Bu is butyl
  • nBu is normal butyl
  • iBu is isobutyl
  • sBu is sec-butyl
  • tBu is tert-butyl
  • Oct octyl
  • Ph is phenyl
  • Bn is benzyl
  • MAO is methylalumoxane.
  • a “catalyst system” is combination of at least one catalyst compound, at least one activator, an optional co-activator, and an optional support material.
  • catalyst systems are described as comprising neutral stable forms of the components, it is well understood by one of ordinary skill in the art, that the ionic form of the component is the form that reacts with the monomers to produce polymers.
  • the catalyst may be described as a catalyst precursor, a pre- catalyst compound, catalyst compound, a complex, transition metal complex, or a transition metal compound, and these terms are used interchangeably.
  • a polymerization catalyst system is a catalyst system that can polymerize monomers to polymer.
  • An "anionic ligand” is a negatively charged ligand which donates one or more pairs of electrons to a metal ion.
  • substituted means that a hydrogen group has been replaced with a hydrocarbyl group, a heteroatom, or a heteroatom containing group.
  • methyl cyclopentadiene (Cp) is a Cp group substituted with a methyl group.
  • alkoxides include those where the alkyl group is a Q to C 10 hydrocarbyl.
  • the alkyl group may be straight chain, branched, or cyclic.
  • the alkyl group may be saturated or unsaturated.
  • the alkyl group may comprise at least one aromatic group.
  • hydrocarbyl radical is defined to be C r C 100 radicals, that may be linear, branched, or cyclic, and when cyclic, aromatic or non-aromatic.
  • radicals include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, iso-amyl, hexyl, octyl cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclooctyl, and the like including their substituted analogues.
  • Substituted hydrocarbyl radicals are radicals in which at least one hydrogen atom of the hydrocarbyl radical has been substituted with at least one functional group, such as halogen (such as Br, CI, F or I) or at least one functional group such as NR* 2 , OR*, SeR*, TeR*, PR* 2 , AsR* 2 , SbR* 2 , SR*, BR* 2 , SiR* 3 , GeR* 3 , SnR* 3 , PbR* 3 , and the like, or where at least one heteroatom has been inserted within a hydrocarbyl ring.
  • halogen such as Br, CI, F or I
  • alkenyl means a straight-chain, branched-chain, or cyclic hydrocarbon radical having one or more double bonds. These alkenyl radicals may be optionally substituted. Examples of suitable alkenyl radicals include, but are not limited to, ethenyl, propenyl, allyl, 1,4-butadienyl cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, cyclooctenyl and the like including their substituted analogues.
  • aryl or "aryl group” means a six carbon aromatic ring and the substituted variants thereof, including but not limited to, phenyl, 2-methyl-phenyl, xylyl, 4-bromo-xylyl.
  • heteroaryl means an aryl group where a ring carbon atom (or two or thee ring carbon atoms) has been replaced with a heteroatom, preferably N, O, or S.
  • aromatic also refers to pseudoaromatic heterocycles which are heterocyclic substituents that have similar properties and structures (nearly planar) to aromatic heterocyclic ligands, but are not by definition aromatic; likewise, the term aromatic also refers to substituted aromatics.
  • isomers of a named alkyl, alkenyl, alkoxide, or aryl group exist (e.g., n-butyl, iso-butyl, sec -butyl, and tert-butyl) reference to one member of the group (e.g., n-butyl) shall expressly disclose the remaining isomers (e.g., iso-butyl, sec -butyl, and tert-butyl) in the family.
  • alkyl, alkenyl, alkoxide, or aryl group without specifying a particular isomer (e.g., butyl) expressly discloses all isomers (e.g., n-butyl, iso-butyl, sec- butyl, and tert-butyl).
  • ring atom means an atom that is part of a cyclic ring structure.
  • a benzyl group has six ring atoms and tetrahydrofuran has 5 ring atoms.
  • a heterocyclic ring is a ring having a heteroatom in the ring structure as opposed to a heteroatom substituted ring where a hydrogen on a ring atom is replaced with a heteroatom.
  • tetrahydrofuran is a heterocyclic ring
  • 4-N,N-dimethylamino-phenyl is a heteroatom substituted ring.
  • a scavenger is a compound that is typically added to facilitate polymerization by scavenging impurities. Some scavengers may also act as activators and may be referred to as co- activators. A co-activator, that is not a scavenger, may also be used in conjunction with an activator in order to form an active catalyst. In some embodiments, a co-activator can be pre- mixed with the transition metal compound to form an alkylated transition metal compound.
  • anionic ligand is a negatively charged ligand which donates one or more pairs of electrons to a metal ion.
  • neutral donor ligand is a neutrally charged ligand which donates one or more pairs of electrons to a metal ion.
  • continuous means a system that operates without interruption or cessation.
  • a continuous process to produce a polymer would be one where the reactants are continually introduced into one or more reactors and polymer product is continually withdrawn.
  • This invention relates to bridged hafnium metallocene compounds represented by the formula (B):
  • each R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 is, independently, hydrogen, alkoxide, a Ci to C40 substituted or unsubstituted hydrocarbyl group or is -R 20 -ER'3, where E is a group 14 element (C, Si, Ge, or Sn, preferably C or Si, preferably Si), R 20 is a Ci to C 4 hydrocarbyl (preferably methyl), and each R' is independently a Ci to C20 substituted or unsubstituted hydrocarbyl, provided that at least one R' is not H, and provided that at least one (preferably at least two, preferably two) of R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 is -R 20 -ER 3 ; and each X is, independently, a univalent anionic ligand, or two X are joined
  • At least one of R 6 to R 10 and optionally at least one of R 1 to R 5 are, independently, -R 20 -CMe3, or -R 20 -SiMe3 or -R 20 -GeMe3, where R 20 is independently a methyl, ethyl, propyl, or butyl group, preferably -CH2-CMe3, or -CH2- SiMe 3 or -CH 2 -GeMe 3 .
  • each R 1 , R 2 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 is independently hydrogen, or a substituted Ci to C12 hydrocarbyl group or an unsubstituted Ci to C12 hydrocarbyl group, preferably hydrogen, methyl, ethyl, propyl, butyl, pentyl, hexyl, or an isomer thereof or is -R 20 -SiR'3 or -R 20 -CR'3 where R 20 is a Ci to C 4 hydrocarbyl (preferably methyl), and each R' is independently a Ci to C20 substituted or unsubstituted hydrocarbyl, provided that at least one R' is not H (preferably each R 20 is independently a methyl, ethyl, propyl, or butyl group, preferably -CH2-CMe3, or -CH2- SiMe 3 ), and provided that at least one of R 1 , R
  • This invention relates to catalyst compounds represented by the formula (B), and catalyst systems comprising: activator, catalyst compound, and optional support wherein the catalyst compound is represented by the formula (B):
  • each R 1 , R 2 , R 4 and R 5 is independently hydrogen, alkoxide or a Ci to C40 substituted or unsubstituted hydrocarbyl group (preferably a Ci to C20 substituted or unsubstituted hydrocarbyl group);
  • R 3 is independently hydrogen, alkoxide or a Ci to C40 substituted or unsubstituted hydrocarbyl group or is -R 20 -ER'3, where E is a group 14 element (C, Si, Ge, or Sn), R 20 is a Ci to C 4 hydrocarbyl (preferably methyl), and each R' is independently a Ci to C20 substituted or unsubstituted hydrocarbyl, provided that at least one R' is not H;
  • each R 6 , R 7 , R 8 , and R 10 is independently hydrogen, alkoxide or a Ci to C40 substituted or unsubstituted hydrocarbyl group (preferably a Ci to C20 substituted or unsubstituted hydrocarbyl group);
  • this invention relates to catalyst compounds and catalyst systems comprising such compounds, represented by the formula (B):
  • each R 1 , R 2 , R 4 and R 5 is independently hydrogen, alkoxide, or a Ci to C40 substituted or unsubstituted hydrocarbyl group (preferably a Ci to C20 substituted or unsubstituted hydrocarbyl group);
  • R 3 is independently hydrogen, alkoxide or a Ci to C 4 o substituted or unsubstituted hydrocarbyl group (preferably a Ci to C20 substituted or unsubstituted hydrocarbyl group), or is -R 20 -SiR 3 or -R 20 -CR 3 where R 20 is a Ci to C 4 hydrocarbyl (preferably CH 2 ), and each R' is independently a Ci to C20 substituted or unsubstituted hydrocarbyl, provided that at least one R is not H;
  • each R 6 , R 7 , R 8 , and R 10 is independently hydrogen, alkoxide or a Ci to C 4 o substituted or unsubstituted hydrocarbyl group (preferably a Ci to C20 substituted or unsubstituted hydrocarbyl group);
  • R 9 is -R 20 -ER' 3 , where E is a group 14 element (C, Si, Ge, or Sn), R 20 is a Ci to C 4 hydrocarbyl (preferably R 20 is CH2), and each R' is independently a Ci to C20 substituted or unsubstituted hydrocarbyl, (preferably R is alkyl, such as Me, or aryl, such as phenyl), provided that at least one R' is not H, alternately 2 R' are not H, alternately 3 R' are not H; and
  • each X is, independently, a univalent anionic ligand, or two X are joined and bound to the metal atom to form a metallocycle ring, or two X are joined to form a chelating ligand, a diene ligand, or an alkylidene ligand (preferably non-flourine halogen or CI to C12 alkyl or aryl, such as Br, CI, Me, Et, Ph).
  • each R 1 , R 2 , R 4 and R 5 is independently hydrogen, or a substituted Ci to C12 hydrocarbyl group or an unsubstituted Ci to C12 hydrocarbyl group, preferably hydrogen, methyl, ethyl, propyl, butyl, pentyl, hexyl, or an isomer thereof.
  • each R 3 is independently hydrogen, or a substituted Ci to C12 hydrocarbyl group or an unsubstituted Ci to C12 hydrocarbyl group, preferably hydrogen, methyl, ethyl, propyl, butyl, pentyl, hexyl, or an isomer thereof or R 3 , is -R 20 -ER'3 , where E is a group 14 element (C, Si, Ge, or Sn), R 20 is a Ci to C 4 hydrocarbyl (preferably methyl, ethyl, propyl, butyl), and R' is a Ci to C20 substituted or unsubstituted hydrocarbyl, preferably a substituted Ci to C12 hydrocarbyl group or an unsubstituted Ci to C12 hydrocarbyl group, preferably methyl, ethyl, propyl, butyl, pentyl, hexyl, or an isomer thereof.
  • each R 6 , R 7 , R 8 , and R 10 is independently hydrogen, or a substituted Ci to C12 hydrocarbyl group or an unsubstituted Ci to C12 hydrocarbyl group, preferably hydrogen, methyl, ethyl, propyl, butyl, pentyl, hexyl, or an isomer thereof.
  • R 9 is -R 20 -ER'3, where E is a group 14 element (C, Si, Ge, or Sn), R 20 is a Ci to C 4 hydrocarbyl (preferably methyl, ethyl, propyl, butyl), and R' is a Ci to C20 substituted or unsubstituted hydrocarbyl, preferably a substituted Ci to C12 hydrocarbyl group or an unsubstituted Ci to C12 hydrocarbyl group, preferably methyl, ethyl, propyl, butyl, pentyl, hexyl, or an isomer thereof.
  • E is a group 14 element (C, Si, Ge, or Sn)
  • R 20 is a Ci to C 4 hydrocarbyl (preferably methyl, ethyl, propyl, butyl)
  • R' is a Ci to C20 substituted or unsubstituted hydrocarbyl, preferably a substituted Ci to C12 hydrocarbyl group or an un
  • R 9 and optionally R 3 are, independently, -R 20 -CMe3, or -R 20 -SiMe3 or - R 20 -GeMe3, where R 20 is a Ci to C 4 hydrocarbyl (preferably methyl, ethyl, propyl, butyl), preferably -CH 2 -CMe 3 , or -CH 2 -SiMe 3 or -CH 2 -GeMe 3 .
  • each X may be, independently, a non-flourine halide, a hydride, an alkyl group, an alkenyl group or an arylalkyl group.
  • each X is, independently, selected from the group consisting of hydrocarbyl radicals having from 1 to 20 carbon atoms, aryls, hydrides, amides, alkoxides, sulfides, phosphides, halides, dienes, amines, phosphines, ethers, and a combination thereof, (two X's may form a part of a fused ring or a ring system), preferably each X is independently selected from non-flourine halides, aryls and Q to C 5 alkyl groups, preferably each X is a phenyl, methyl, ethyl, propyl, butyl, pentyl, bromo, or chloro group.
  • R 20 is CH2 and each X is independently Br, CI, methyl, ethyl, propyl, butyl, pentyl, hexyl, or phenyl.
  • Catalyst compounds that are particularly useful in this invention include one or more of: (Me3SiCH 2 Cp)2HfCl 2 ; (Me3SiCH 2 Cp)2HfMe 2 ; (Cp)(Me3SiCH 2 Cp)HfCl 2 ; (Cp)(Me 3 SiCH 2 Cp)HfMe 2 ; (PrCp)(Me 3 SiCH 2 Cp)HfCl 2 ; (PrCp)(Me 3 SiCH 2 Cp)HfMe 2 ; (MeCp)(Me 3 SiCH 2 Cp)HfCl 2 ; (MeCp)(Me 3 SiCH 2 Cp)HfMe 2 ; (EtCp)(Me 3 SiCH 2 Cp)HfMe 2 ; (EtCp)(Me 3 SiCH 2 Cp)HfMe 2 ; (EtCp)(Me 3 SiCH 2 Cp)
  • one catalyst compound is used, e.g., the catalyst compounds are not different.
  • one catalyst compound is considered different from another if they differ by at least one atom.
  • “bisindenyl zirconium dichloride” is different from “(indenyl)(2- methylindenyl) zirconium dichloride” which is different from “(indenyl)(2-methylindenyl) hafnium dichloride.”
  • Catalyst compounds that differ only by isomer are considered the same for purposes if this invention, e.g., rac-dimethylsilylbis(2-methyl 4-phenyl)hafnium dimethyl is considered to be the same as m ⁇ ?so-dimethylsilylbis(2-methyl 4-phenyl)hafnium dimethyl.
  • two or more different catalyst compounds are present in the catalyst system used herein. In some embodiments, two or more different catalyst compounds are present in the reaction zone where the process(es) described herein occur.
  • the two transition metal compounds are preferably chosen such that the two are compatible.
  • a simple screening method such as by 3 ⁇ 4 or 13 C NMR, known to those of ordinary skill in the art, can be used to determine which transition metal compounds are compatible. It is preferable to use the same activator for the transition metal compounds, however, two different activators, such as a non-coordinating anion activator and an alumoxane, can be used in combination.
  • transition metal compounds contain an X ligand which is not a hydride, hydrocarbyl, or substituted hydrocarbyl, then the alumoxane should be contacted with the transition metal compounds prior to addition of the non-coordinating anion activator.
  • the two transition metal compounds may be used in any ratio.
  • Preferred molar ratios of (A) transition metal compound to (B) transition metal compound fall within the range of (A:B) 1:1000 to 1000:1, alternatively 1:100 to 500: 1, alternatively 1:10 to 200:1, alternatively 1:1 to 100:1, and alternatively 1:1 to 75:1, and alternatively 5:1 to 50: 1.
  • the particular ratio chosen will depend on the exact pre-catalysts chosen, the method of activation, and the end product desired.
  • useful mole percents are 10 to 99.9% A to 0.1 to 90% B, alternatively 25 to 99% A to 0.5 to 50% B, alternatively 50 to 99% A to 1 to 25% B, and alternatively 75 to 99% A to 1 to 10% B.
  • the catalyst compounds described herein may generally be prepared as illustrated in the following scheme 1 showing a general synthetic route for symmetrical and unsymmetrical
  • the symmetrical catalyst compounds may be prepared by reacting two equivalents of the substituted cyclopentadienyl anion with hafnium tetrachloride in a suitable medium (such as an ether or hydrocarbon), separating the product by extraction into an appropriate solvent, and removing the solvent to obtain the hafnocenes dichloride.
  • the unsymmetrical catalyst compounds may be prepared by reacting a substituted cyclopentadienylhafnium trichloride complex with a substituted cyclopentadienyl anion in a suitable medium (such as an ether), separating the product by extraction into an appropriate solvent, and removing the solvent to obtain the hafnocenes dichloride.
  • the requisite substituted cyclopentadienylhafnium trichloride complex may be prepared as by Lund, Eric C and Livinghouse, Tom, Organometallics, 1990, , 2426.
  • the catalyst systems described herein typically comprises a catalyst complex as described above and an activator such as alumoxane or a non-coordinating anion and may be formed by combining the catalyst components described herein with activators in any manner known from the literature including combining them with supports, such as silica.
  • the catalyst systems may also be added to or generated in solution polymerization or bulk polymerization (in the monomer).
  • Catalyst systems of the present disclosure may have one or more activators and one, two or more catalyst components.
  • Activators are defined to be any compound which can activate any one of the catalyst compounds described above by converting the neutral metal compound to a catalytically active metal compound cation.
  • Non- limiting activators include alumoxanes, aluminum alkyls, ionizing activators, which may be neutral or ionic, and conventional-type cocatalysts.
  • Preferred activators typically include alumoxane compounds, modified alumoxane compounds, and ionizing anion precursor compounds that abstract a reactive, ⁇ -bound, metal ligand making the metal compound cationic and providing a charge-balancing noncoordinating or weakly coordinating anion, e.g., a non-coordinating anion.
  • Alumoxane activators are utilized as activators in the catalyst systems described herein.
  • Alumoxanes are generally oligomeric compounds containing -A ⁇ R ⁇ -O- sub-units, where R 1 is an alkyl group.
  • Examples of alumoxanes include methylalumoxane (MAO), modified methylalumoxane (MMAO), ethylalumoxane and isobutylalumoxane.
  • Alkylalumoxanes and modified alkylalumoxanes are suitable as catalyst activators, particularly when the abstractable ligand is an alkyl, halide, alkoxide or amide.
  • alumoxanes Mixtures of different alumoxanes and modified alumoxanes may also be used. It may be preferable to use a visually clear methylalumoxane.
  • a cloudy or gelled alumoxane can be filtered to produce a clear solution or clear alumoxane can be decanted from the cloudy solution.
  • a useful alumoxane is a modified methyl alumoxane (MMAO) cocatalyst type 3A (commercially available from Akzo Chemicals, Inc. under the trade name Modified Methylalumoxane type 3A, covered under patent number U.S. Pat. No. 5,041,584).
  • MMAO modified methyl alumoxane
  • the activator is an alumoxane (modified or unmodified)
  • some embodiments select the maximum amount of activator typically at up to a 5000-fold molar excess Al/M over the catalyst compound (per metal catalytic site).
  • the minimum activator-to-catalyst-compound is a 1: 1 molar ratio. Alternate preferred ranges include from 1:1 to 500:1, alternately from 1:1 to 200:1, alternately from 1:1 to 100:1, or alternately from 1:1 to 50: 1.
  • alumoxane is present at zero mol%, alternately the alumoxane is present at a molar ratio of aluminum to catalyst compound transition metal less than 500:1, preferably less than 300:1, preferably less than 100: 1, preferably less than 1: 1.
  • non-coordinating anion means an anion which either does not coordinate to a cation or which is only weakly coordinated to a cation thereby remaining sufficiently labile to be displaced by a neutral Lewis base.
  • “Compatible” non-coordinating anions are those which are not degraded to neutrality when the initially formed complex decomposes. Further, the anion will not transfer an anionic substituent or fragment to the cation so as to cause it to form a neutral transition metal compound and a neutral by-product from the anion.
  • Non-coordinating anions useful in accordance with this invention are those that are compatible, stabilize the transition metal cation in the sense of balancing its ionic charge at +1, and yet retain sufficient lability to permit displacement during polymerization.
  • Ionizing activators useful herein typically comprise an NCA, particularly a compatible NCA.
  • an ionizing activator neutral or ionic. It is also within the scope of this invention to use neutral or ionic activators alone or in combination with alumoxane or modified alumoxane activators.
  • neutral or ionic activators alone or in combination with alumoxane or modified alumoxane activators.
  • useful activators please see U.S. Pat. Nos. 8,658,556 and 6,211,105.
  • Preferred activators include ⁇ , ⁇ -dimethylanilinium tetrakis(perfluoronaphthyl)borate, ⁇ , ⁇ -dimethylanilinium tetrakis(perfluorobiphenyl)borate, N,N-dimethylanilinium tetrakis(perfluorophenyl)borate, ⁇ , ⁇ -dimethylanilinium tetrakis(3,5- bis(trifluoromethyl)phenyl)borate, triphenylcarbenium tetrakis(perfluoronaphthyl)borate, triphenylcarbenium tetrakis(perfluorobiphenyl)borate, triphenylcarbenium tetrakis(3,5- bis(trifluoromethyl)phenyl)borate, triphenylcarbenium tetrakis(perfluorophenyl)borate, [Me 3 NH + ][B(C 6
  • the activator comprises a triaryl carbonium (such as triphenylcarbenium tetraphenylborate, triphenylcarbenium tetrakis(pentafluorophenyl)borate, triphenylcarbenium tetrakis-(2,3 ,4,6-tetrafluorophenyl)borate, triphenylcarbenium tetrakis(perfluoronaphthyl)borate, triphenylcarbenium tetrakis(perfluorobiphenyl)borate, and triphenylcarbenium tetrakis(3,5-bis(trifluoromethyl)phenyl)borate).
  • a triaryl carbonium such as triphenylcarbenium tetraphenylborate, triphenylcarbenium tetrakis(pentafluorophenyl)borate, triphenylcarbenium tetrakis-(2,3 ,4,
  • the activator comprises one or more of trialkylammonium tetrakis(pentafluorophenyl)borate, ⁇ , ⁇ -dialkylanilinium tetrakis(pentafluorophenyl)borate, N,N-dimethyl- (2,4, 6- trimethylanilinium) tetrakis (pentafluorophenyl)borate, trialkylammonium tetrakis-(2,3,4,6-tetrafluorophenyl) borate, ⁇ , ⁇ -dialkylanilinium tetrakis- (2,3,4,6-tetrafluorophenyl)borate, trialkylammonium tetrakis(perfluoronaphthyl)borate, N,N- dialkylanilinium tetrakis(perfluoronaphthyl)borate, trialkylammonium tetrakis(perfluorobiphenyl)
  • activator is represented by the formula:
  • Z is (L-H) or a reducible Lewis Acid
  • L is an neutral Lewis base
  • H is hydrogen
  • (L- H)+ is a Bronsted acid
  • a d_ is a non-coordinating anion having the charge d-
  • d is an integer from 1 to 3, preferably Z is (Ar 3 C+), where Ar is aryl or aryl substituted with a heteroatom, a Q to C 40 hydrocarbyl, or a substituted Q to C 40 hydrocarbyl.
  • the typical activator-to-catalyst ratio e.g., all NCA activators-to-catalyst ratio is about a 1:1 molar ratio.
  • Alternate preferred ranges include from 0.1:1 to 100:1, alternately from 0.5:1 to 200:1, alternately from 1:1 to 500:1 alternately from 1:1 to 1000:1.
  • a particularly useful range is from 0.5:1 to 10:1, preferably 1:1 to 5:1.
  • the catalyst compounds can be combined with combinations of alumoxanes and NCA's (see for example, U.S. Pat. Nos.
  • Aluminum alkyl or organoaluminum compounds which may be utilized as scavengers or co-activators include, for example, trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-hexylaluminum, tri-n-octylaluminum, and diethyl zinc.
  • the catalyst system may comprise an inert support material.
  • the supported material is a porous support material, for example, talc, and inorganic oxides.
  • Other support materials include zeolites, clays, organoclays, or any other organic or inorganic support material and the like, or mixtures thereof.
  • the support material is an inorganic oxide in a finely divided form.
  • Suitable inorganic oxide materials for use in catalyst systems herein include Groups 2, 4, 13, and 14 metal oxides, such as silica, alumina, and mixtures thereof.
  • Other inorganic oxides that may be employed either alone or in combination with the silica, or alumina are magnesia, titania, zirconia, and the like.
  • suitable support materials can be employed, for example, finely divided functionalized polyolefins, such as finely divided polyethylene.
  • Particularly useful supports include magnesia, titania, zirconia, montmorillonite, phyllosilicate, zeolites, talc, clays, and the like.
  • support materials may be used, for example, silica-chromium, silica-alumina, silica-titania, and the like.
  • Preferred support materials include A1 2 0 3 , Zr0 2 , Si0 2 , and combinations thereof, more preferably Si0 2 , A1 2 0 3 , or Si0 2 /Al 2 0 3 .
  • the support material most preferably an inorganic oxide, has a surface area in the range of from about 10 to about 700 m 2 /g, pore volume in the range of from about 0.1 to about 4.0 cc/g and average particle size in the range of from about 5 to about 500 ⁇ . More preferably, the surface area of the support material is in the range of from about 50 to about 500 m 2 /g, pore volume of from about 0.5 to about 3.5 cc/g and average particle size of from about 10 to about 200 ⁇ .
  • the surface area of the support material is in the range is from about 100 to about 400 m 2 /g, pore volume from about 0.8 to about 3.0 cc/g and average particle size is from about 5 to about 100 ⁇ .
  • the average pore size of the support material useful in the invention is in the range of from 10 to 1000 A, preferably 50 to about 500 A, and most preferably 75 to about 350 A.
  • Preferred silicas are marketed under the tradenames of DAVISON 952 or DAVISON 955 by the Davison Chemical Division of W.R. Grace and Company. In other embodiments, DAVISON 948 is used.
  • the support material is not fluorided, i.e. does not contain fluorine.
  • the support material is fluorided.
  • Fluoriding agent containing compounds may be any compound containing a fluorine atom. Particularly desirable are inorganic fluorine containing compounds are selected from the group consisting of NH4BF4, (NH 4 ) 2 SiF 6 , NH 4 PF 6 , NH 4 F, (NH 4 ) 2 TaF 7 , NH 4 NbF 4 , (NH 4 ) 2 GeF 6 , (NH 4 ) 2 SmF 6 , (NH 4 ) 2 TiF 6 , (NH 4 ) 2 ZrF 6 , MoF 6 , ReF 6 , GaF 3 , S0 2 C1F, F 2 , SiF 4 , SF 6 , C1F 3 , C1F 5 , BrF 5 , IF 7 , NF 3 , HF, BF 3 , NHF 2 and NH 4
  • Ammonium hexafluorosilicate and ammonium tetrafluoroborate fluorine compounds are typically solid particulates as are the silicon dioxide supports.
  • a desirable method of treating the support with the fluorine compound is to dry mix the two components by simply blending at a concentration of from 0.01 to 10.0 millimole F/g of support, desirably in the range of from 0.05 to 6.0 millimole F/g of support, and most desirably in the range of from 0.1 to 3.0 millimole F/g of support.
  • the fluorine compound can be dry mixed with the support either before or after charging to a vessel for dehydration or calcining the support. Accordingly, the fluorine concentration present on the support is in the range of from 0.1 to 25 wt%, alternately 0.19 to 19 wt%, alternately from 0.6 to 3.5 wt%, based upon the weight of the support.
  • the above catalyst components described herein are generally deposited on the support material at a loading level of 10-100 micromoles of metal per gram of solid support; alternately 20-80 micromoles of metal per gram of solid support; or 40-60 micromoles of metal per gram of support. But greater or lesser values may be used, and, typically, the total amount of solid catalyst complex does not exceed the support's pore volume.
  • the support material should be dry, that is, free of absorbed water. Drying of the support material can be effected by heating or calcining at about 100°C to about 1000°C, preferably at least about 600°C. When the support material is silica, it is heated to at least 200°C, preferably about 200°C to about 850°C, and most preferably at about 600°C; and for a time of about 1 minute to about 100 hours, from about 12 hours to about 72 hours, or from about 24 hours to about 60 hours.
  • the calcined support material must have at least some reactive hydroxyl (OH) groups to produce supported catalyst systems of this invention.
  • the calcined support material is then contacted with at least one polymerization catalyst comprising at least one catalyst compound and an activator.
  • the support material having reactive surface groups, typically hydroxyl groups, is slurried in a non-polar solvent and the resulting slurry is contacted with a solution of a catalyst compound and an activator.
  • the slurry of the support material is first contacted with the activator for a period of time in the range of from about 0.5 hours to about 24 hours, from about 2 hours to about 16 hours, or from about 4 hours to about 8 hours.
  • the solution of the catalyst compound is then contacted with the isolated support/activator.
  • the supported catalyst system is generated in situ.
  • the slurry of the support material is first contacted with the catalyst compound for a period of time in the range of from about 0.5 hours to about 24 hours, from about 2 hours to about 16 hours, or from about 4 hours to about 8 hours.
  • the slurry of the supported catalyst compound is then contacted with the activator solution.
  • the mixture of the catalyst, activator and support is heated to about 0°C to about
  • Contact times typically range from about 0.5 hours to about 24 hours, from about 2 hours to about 16 hours, or from about 4 hours to about 8 hours.
  • Suitable non-polar solvents are materials in which all of the reactants used herein, i.e., the activator, and the catalyst compound, are at least partially soluble and which are liquid at reaction temperatures.
  • Preferred non-polar solvents are alkanes, such as isopentane, hexane, n-heptane, octane, nonane, and decane, although a variety of other materials including cycloalkanes, such as cyclohexane, aromatics, such as benzene, toluene, and ethylbenzene, may also be employed.
  • the invention relates to polymerization processes where monomer (such as propylene), and optionally comonomer, are contacted with a catalyst system comprising an activator and at least one catalyst compound, as described above.
  • the catalyst compound and activator may be combined in any order, and are combined typically prior to contacting with the monomer.
  • Monomers useful herein include substituted or unsubstituted C2 to C40 alpha olefins, preferably C2 to C20 alpha olefins, preferably C2 to C12 alpha olefins, preferably ethylene, propylene, butene, pentene, hexene, heptene, octene, nonene, decene, undecene, dodecene and isomers thereof.
  • the monomer comprises propylene and an optional comonomers comprising one or more ethylene or C 4 to C 40 olefins, preferably C 4 to C 2 o olefins, or preferably C 6 to C 12 olefins.
  • the C 4 to C 0 olefin monomers may be linear, branched, or cyclic.
  • the C to C 0 cyclic olefins may be strained or unstrained, monocyclic or polycyclic, and may optionally include heteroatoms and/or one or more functional groups.
  • the monomer comprises ethylene and an optional comonomers comprising one or more C 3 to C 0 olefins, preferably C to C 20 olefins, or preferably C 6 to C 12 olefins.
  • the C 3 to C 0 olefin monomers may be linear, branched, or cyclic.
  • the C 3 to C 0 cyclic olefins may be strained or unstrained, monocyclic or polycyclic, and may optionally include heteroatoms and/or one or more functional groups.
  • Exemplary C 2 to C 0 olefin monomers and optional comonomers include ethylene, propylene, butene, pentene, hexene, heptene, octene, nonene, decene, undecene, dodecene, norbornene, norbornadiene, dicyclopentadiene, cyclopentene, cycloheptene, cyclooctene, cyclooctadiene, cyclododecene, 7-oxanorbornene, 7-oxanorbornadiene, substituted derivatives thereof, and isomers thereof, preferably hexene, heptene, octene, nonene, decene, dodecene, cyclooctene, 1,5-cyclooctadiene, l-hydroxy-4-cyclooctene, l-acetoxy-4- cyclooctene, 5-
  • one or more dienes are present in the polymerization produced herein at up to 10 wt%, preferably at 0.00001 to 1.0 wt%, preferably 0.002 to 0.5 wt%, even more preferably 0.003 to 0.2 wt%, based upon the total weight of the composition.
  • 500 ppm or less of diene is added to the polymerization, preferably 400 ppm or less, preferably or 300 ppm or less.
  • at least 50 ppm of diene is added to the polymerization, or 100 ppm or more, or 150 ppm or more.
  • Preferred diolefin monomers useful in this invention include any hydrocarbon structure, preferably C 4 to C30, having at least two unsaturated bonds, wherein at least two of the unsaturated bonds are readily incorporated into a polymer by either a stereospecific or a non-stereospecific catalyst(s). It is further preferred that the diolefin monomers be selected from alpha, omega-diene monomers (i.e., di-vinyl monomers). More preferably, the diolefin monomers are linear di-vinyl monomers, most preferably those containing from 4 to 30 carbon atoms.
  • Examples of preferred dienes include butadiene, pentadiene, hexadiene, heptadiene, octadiene, nonadiene, decadiene, undecadiene, dodecadiene, tridecadiene, tetradecadiene, pentadecadiene, hexadecadiene, heptadecadiene, octadecadiene, nonadecadiene, icosadiene, heneicosadiene, docosadiene, tricosadiene, tetracosadiene, pentacosadiene, hexacosadiene, heptacosadiene, octacosadiene, nonacosadiene, triacontadiene, particularly preferred dienes include 1,6-heptadiene, 1,7-octadiene, 1,8- nonadiene, 1,9-decadiene,
  • Preferred cyclic dienes include cyclopentadiene, vinylnorbornene, norbornadiene, ethylidene norbornene, divinylbenzene, dicyclopentadiene or higher ring containing diolefins with or without substituents at various ring positions.
  • Polymerization processes of this invention can be carried out in any manner known in the art. Any suspension, homogeneous, bulk, solution, slurry, or gas phase polymerization process known in the art can be used. Such processes can be run in a batch, semi-batch, or continuous mode.
  • a solution polymerization is a polymerization process in which the polymer is dissolved in a liquid polymerization medium, such as an inert solvent or monomer(s) or their blends.
  • a solution polymerization is typically homogeneous.
  • a homogeneous polymerization is one where the polymer product is dissolved in the polymerization medium.
  • Such systems are preferably not turbid as described in J. Vladimir Oliveira, C. Dariva and J. C. Pinto, Ind. Eng. Chem. Res., 29, 2000, 4627.
  • a homogeneous polymerization process is preferably a process where at least 90 wt% of the product is soluble in the reaction media. Solution polymerization processes and homogeneous polymerization processes are useful herein.
  • a bulk homogeneous polymerization process may also be used herein.
  • a bulk polymerization is a polymerization process in which the monomers and/or comonomers being polymerized are used as a solvent or diluent using little or no inert solvent as a solvent or diluent.
  • a small fraction of inert solvent might be used as a carrier for catalyst and scavenger.
  • a bulk polymerization system contains less than 25 wt% of inert solvent or diluent, preferably less than 10 wt%, preferably less than 1 wt%, preferably 0 wt%.
  • a bulk process is preferably a process where monomer concentration in all feeds to the reactor is 70 vol% or more. Alternately, no solvent or diluent is present or added in the reaction medium, (except for the small amounts used as the carrier for the catalyst system or other additives, or amounts typically found with the monomer; e.g., propane in propylene).
  • a slurry polymerization process may also be used.
  • the term "slurry polymerization process” means a polymerization process where a supported catalyst is employed and monomers are polymerized on the supported catalyst particles. At least 95 wt% of polymer products derived from the supported catalyst are in granular form as solid particles (not dissolved in the diluent).
  • a slurry polymerization process generally operates between 1 to about 50 atmosphere pressure range (15 psi to 735 psi, 103 kPa to 5068 kPa) or even greater and temperatures in the range of 0°C to about 120°C.
  • a suspension of solid, particulate polymer is formed in a liquid polymerization diluent medium to which monomer and comonomers, along with catalyst system as described herein, are added.
  • the suspension including diluent is intermittently or continuously removed from the reactor where the volatile components are separated from the polymer and recycled, optionally after a distillation, to the reactor.
  • the liquid diluent employed in the polymerization medium is typically an alkane having from 3 to 7 carbon atoms, preferably a branched alkane.
  • the medium employed is typically liquid under the conditions of polymerization and relatively inert.
  • propane medium is used, the process is often operated above the reaction diluent critical temperature and pressure.
  • a hexane or an isobutane medium is employed.
  • the olefins and catalyst system are contacted in a slurry loop reactor.
  • gas phase polymerization process preferably means a polymerization process where a gaseous stream containing one or more monomers is continuously cycled through a fluidized bed in the presence of a catalyst system under reactive conditions. The gaseous stream is withdrawn from the fluidized bed and recycled back into the reactor. Simultaneously, polymer product is withdrawn from the reactor and fresh monomer is added to replace the polymerized monomer.
  • Suitable diluents/solvents for polymerization include non-coordinating, inert liquids.
  • Examples include straight and branched-chain hydrocarbons, such as isobutane, butane, pentane, isopentane, hexanes, isohexane, heptane, octane, dodecane, and mixtures thereof; cyclic and alicyclic hydrocarbons, such as cyclohexane, cycloheptane, methylcyclohexane, methylcycloheptane, and mixtures thereof, such as can be found commercially (IsoparTM); perhalogenated hydrocarbons, such as perfluorinated C 4 _ 10 alkanes, chlorobenzene, and aromatic and alkylsubstituted aromatic compounds, such as benzene, toluene, mesitylene, and xylene.
  • straight and branched-chain hydrocarbons such as isobutane, butane, pentane, isopentane, hexanes, isohexan
  • Suitable solvents also include liquid olefins which may act as monomers or comonomers including ethylene, propylene, 1-butene, 1-hexene, 1-pentene, 3 -methyl- 1- pentene, 4-methyl- 1-pentene, 1-octene, 1-decene, and mixtures thereof.
  • aliphatic hydrocarbon solvents are used as the solvent, such as isobutane, butane, pentane, isopentane, hexanes, isohexane, heptane, octane, dodecane, and mixtures thereof; cyclic and alicyclic hydrocarbons, such as cyclohexane, cycloheptane, methylcyclohexane, methylcycloheptane, and mixtures thereof.
  • the solvent is not aromatic, preferably aromatics are present in the solvent at less than 1 wt%, preferably less than 0.5 wt%, preferably less than 0 wt% based upon the weight of the solvents.
  • the feed concentration of the monomers and comonomers for the polymerization is 60 vol% solvent or less, preferably 40 vol% or less, or preferably 20 vol% or less, based on the total volume of the feedstream.
  • the polymerization is run in a bulk process.
  • Preferred polymerizations can be run at any temperature and/or pressure suitable to obtain the desired ethylene polymers.
  • Typical temperatures and/or pressures include a temperature in the range of from about 0°C to about 300°C, preferably about 20°C to about 200°C, preferably about 35°C to about 150°C, preferably from about 40°C to about 120°C, preferably from about 45°C to about 80°C; and at a pressure in the range of from about 0.35 MPa to about 10 MPa, preferably from about 0.45 MPa to about 6 MPa, or preferably from about 0.5 MPa to about 4 MPa, preferably in the absence of fluorine.
  • Preferred polymerizations are run in the absence of fluorine.
  • the run time of the reaction is up to 300 minutes, preferably in the range of from about 5 to 250 minutes, or preferably from about 10 to 120 minutes.
  • hydrogen is present in the polymerization reactor at a partial pressure of 0.001 to 50 psig (0.007 to 345 kPa), preferably from 0.01 to 25 psig (0.07 to 172 kPa), more preferably 0.1 to 10 psig (0.7 to 70 kPa).
  • the activity of the catalyst is at least 50 g/mmol/hour, preferably 500 or more g/mmol/hour, preferably 5000 or more g/mmol/hr, preferably 50,000 or more g/mmol/hr.
  • the conversion of olefin monomer is at least 10%, based upon polymer yield and the weight of the monomer entering the reaction zone, preferably 20% or more, preferably 30% or more, preferably 50% or more, preferably 80% or more.
  • alumoxane is present at zero mol%, alternately the alumoxane is present at a molar ratio of aluminum to transition metal less than 500:1, preferably less than 300: 1, preferably less than 100: 1, preferably less than 1:1.
  • scavenger such as tri alkyl aluminum
  • the scavenger is present at zero mol%, alternately the scavenger is present at a molar ratio of scavenger metal to transition metal of less than 100:1, preferably less than 50:1, preferably less than 15:1, preferably less than 10:1.
  • the polymerization: 1) is conducted at temperatures of 0 to
  • 300°C (preferably 25 to 150°C, preferably 40 to 120°C, preferably 45 to 80°C); 2) is conducted at a pressure of atmospheric pressure to 10 MPa (preferably 0.35 to 10 MPa, preferably from 0.45 to 6 MPa, preferably from 0.5 to 4 MPa); 3) is conducted in an aliphatic hydrocarbon solvent (such as, isobutane, butane, pentane, isopentane, hexanes, isohexane, heptane, octane, dodecane, and mixtures thereof; cyclic and alicyclic hydrocarbons, such as cyclohexane, cycloheptane, methylcyclohexane, methylcycloheptane, and mixtures thereof; preferably aromatics are present in the solvent at less than 1 wt%, preferably less than 0.5 wt%, preferably at 0 wt% based upon the weight of the solvents); 4) wherein the catalyst system used in
  • the catalyst system used in the polymerization comprises no more than one catalyst compound.
  • a "reaction zone” also referred to as a "polymerization zone” is a vessel where polymerization takes place; for example, a batch reactor. When multiple reactors are used in either series or parallel configuration, each reactor is considered as a separate polymerization zone. For a multi-stage polymerization in both a batch reactor and a continuous reactor, each polymerization stage is considered as a separate polymerization zone. In a preferred embodiment, the polymerization occurs in one reaction zone. Room temperature is 23 °C unless otherwise noted.
  • additives may also be used in the polymerization, as desired, such as one or more scavengers, promoters, modifiers, chain transfer agents (such as diethyl zinc), reducing agents, oxidizing agents, hydrogen, aluminum alkyls, or silanes.
  • Chain transfer agents useful herein are typically alkylalumoxanes, a compound represented by the formula AIR3, ZnR2 (where each R is, independently, a Ci-C 8 aliphatic radical, preferably methyl, ethyl, propyl, butyl, pentyl, hexyl octyl or an isomer thereof) or a combination thereof, such as diethyl zinc, methylalumoxane, trimethylaluminum, triisobutylaluminum, trioctylaluminum, or a combination thereof.
  • R is, independently, a Ci-C 8 aliphatic radical, preferably methyl, ethyl, propyl, butyl, pentyl, hexyl octyl or an isomer thereof
  • a combination thereof such as diethyl zinc, methylalumoxane, trimethylaluminum, triisobutylaluminum, trioctylalum
  • the catalyst has an activity greater than 20,000 grams of polymer per gram of supported catalyst, wherein the Zr wt% on the support is between 0.1 and 0.5 wt%, based upon the weight of the catalyst and the support, and the Mw of the polymer produced is less than 100,000 g/mol (preferably from 10,000 to less than 100,000 g/mol), preferably the polymer produced comprises at least 50 mol% ethylene, preferably the polymer comprises hexene and at least 50 mol% ethylene.
  • the catalyst has an activity greater than 20,000 grams of polymer per gram of supported catalyst, wherein the Hf wt% on the support is between 0.1 and 0.5 wt%, based upon the weight of the catalyst and the support, and the Mw of the polymer produced is less than 100,000 g/mol (preferably from 10,000 to less than 100,000 g/mol), preferably the polymer produced comprises at least 50 mol% ethylene, preferably the polymer comprises hexene and at least 50 mol% ethylene.
  • This invention also relates to compositions of matter produced by the methods described herein.
  • the process described herein produces ethylene homopolymers or ethylene copolymers, such as ethylene- alphaolefin (preferably, C3 to C20) copolymers (such as, ethylene-hexene copolymers or ethylene-octene copolymers) having: a Mw/Mn of greater than 1 to 6 (preferably, greater than 1 to 3).
  • ethylene- alphaolefin preferably, C3 to C20
  • copolymers such as, ethylene-hexene copolymers or ethylene-octene copolymers having: a Mw/Mn of greater than 1 to 6 (preferably, greater than 1 to 3).
  • the process of this invention produces olefin polymers, preferably polyethylene and polypropylene homopolymers and copolymers.
  • the polymers produced herein are homopolymers of ethylene or propylene, are copolymers of ethylene preferably having from 0 to 25 mol% (alternately from 0.5 to 20 mol%, alternately from 1 to 15 mol%, preferably from 3 to 10 mol%) of one or more C3 to C20 olefin comonomer (preferably C3 to C12 alpha-olefin, preferably propylene, butene, hexene, octene, decene, dodecene, preferably propylene, butene, hexene, octene), or are copolymers of propylene preferably having from 0 to 25 mol% (alternately from 0.5 to 20 mol%, alternately from 1 to 15 mol%, preferably from 3 to 10 mol
  • the monomer is ethylene and the comonomer is hexene, preferably from 1 to 15 mol% hexene, alternately 1 to 10 mol%.
  • the polymers produced herein have an Mw of 5,000 to 1,000,000 g/mol (preferably 25,000 to 750,000 g/mol, preferably 50,000 to 500,000 g/mol), and/or an Mw/Mn of greater than 1 to 40 (alternately 1.2 to 20, alternately 1.3 to 10, alternately 1.4 to 5, 1.5 to 4, alternately 1.5 to 3).
  • the polymer produced herein has a unimodal or multimodal molecular weight distribution as determined by Gel Permeation Chromatography (GPC).
  • GPC Gel Permeation Chromatography
  • unimodal is meant that the GPC trace has one peak or two or more inflection points.
  • multimodal is meant that the GPC trace has at least two peaks or more than 2 inflection points.
  • An inflection point is that point where the second derivative of the curve changes in sign (e.g., from negative to positive or vice versa).
  • Polymers produced by the processes of this invention also have a g'(vis) of greater than 0.95 (preferably greater than 0.96, preferably greater than 0.98, preferably greater than 0.99, and, optionally, preferably less than or equal to 1.0).
  • Mw, Mn, MWD, and g'(vis) are determined by the GPC method described in the experimental section below.
  • the polymer produced herein has a composition distribution breadth index (CDBI) of 50% or more, preferably 60% or more, preferably 70% or more.
  • CDBI is a measure of the composition distribution of monomer within the polymer chains and is measured by the procedure described in PCT publication WO 93/03093, published February 18, 1993, specifically columns 7 and 8 as well as in Wild et al, J. Poly. Sci., Poly. Phys. Ed., Vol. 20, p. 441 (1982) and U.S. Pat. No. 5,008,204, including that fractions having a weight average molecular weight (Mw) below 15,000 are ignored when determining CDBI.
  • Mw weight average molecular weight
  • the polymer produced herein contains less than 100 ppm of fluorine, preferably less than 50 ppm fluorine, preferably less than 20 ppm of fluorine, preferably less than 10 ppm of fluorine.
  • the polymer (preferably the polyethylene or polypropylene) produced herein is combined with one or more additional polymers prior to being formed into a film, molded part or other article.
  • additional polymers include polyethylene, isotactic polypropylene, highly isotactic polypropylene, syndiotactic polypropylene, random copolymer of propylene and ethylene, and/or butene, and/or hexene, polybutene, ethylene vinyl acetate, LDPE, LLDPE, HDPE, ethylene vinyl acetate, ethylene methyl acrylate, copolymers of acrylic acid, polymethylmethacrylate or any other polymers polymerizable by a high-pressure free radical process, polyvinylchloride, polybutene-1, isotactic polybutene, ABS resins, ethylene-propylene rubber (EPR), vulcanized EPR, EPDM, block copolymer, styrenic block copolymers, poly
  • the polymer (preferably the polyethylene or polypropylene) is present in the above blends, at from 10 to 99 wt%, based upon the weight of the polymers in the blend, preferably 20 to 95 wt%, even more preferably at least 30 to 90 wt%, even more preferably at least 40 to 90 wt%, even more preferably at least 50 to 90 wt%, even more preferably at least 60 to 90 wt%, even more preferably at least 70 to 90 wt%.
  • the blends described above may be produced by mixing the polymers of the invention with one or more polymers (as described above), by connecting reactors together in series to make reactor blends or by using more than one catalyst in the same reactor to produce multiple species of polymer.
  • the polymers can be mixed together prior to being put into the extruder or may be mixed in an extruder.
  • the blends may be formed using conventional equipment and methods, such as by dry blending the individual components and subsequently melt mixing in a mixer, or by mixing the components together directly in a mixer, such as, for example, a Banbury mixer, a Haake mixer, a Brabender internal mixer, or a single or twin-screw extruder, which may include a compounding extruder and a side-arm extruder used directly downstream of a polymerization process, which may include blending powders or pellets of the resins at the hopper of the film extruder. Additionally, additives may be included in the blend, in one or more components of the blend, and/or in a product formed from the blend, such as a film, as desired.
  • a mixer such as, for example, a Banbury mixer, a Haake mixer, a Brabender internal mixer, or a single or twin-screw extruder, which may include a compounding extruder and a side-arm extruder used directly downstream of a polymerization
  • additives are well known in the art, and can include, for example: fillers; antioxidants (e.g., hindered phenolics such as IRGANOXTM 1010 or IRGANOXTM 1076 available from Ciba- Geigy); phosphites (e.g., IRGAFOSTM 168 available from Ciba-Geigy); anti-cling additives; tackifiers, such as polybutenes, terpene resins, aliphatic and aromatic hydrocarbon resins, alkali metal and glycerol stearates, and hydrogenated rosins; UV stabilizers; heat stabilizers; anti-blocking agents; release agents; anti-static agents; pigments; colorants; dyes; waxes; silica; fillers; talc; and the like.
  • antioxidants e.g., hindered phenolics such as IRGANOXTM 1010 or IRGANOXTM 1076 available from Ciba- Geig
  • any of the foregoing polymers such as the foregoing ethylene polymers and/or propylene polymers, or any blends thereof, may be used in a variety of end-use applications.
  • Such applications include, for example, mono- or multi-layer blown, extruded, and/or shrink films.
  • These films may be formed by any number of well known extrusion or coextrusion techniques, such as a blown bubble film processing technique, wherein the composition can be extruded in a molten state through an annular die and then expanded to form a uni-axial or biaxial orientation melt prior to being cooled to form a tubular, blown film, which can then be axially slit and unfolded to form a flat film.
  • Films may be subsequently unoriented, uniaxially oriented, or biaxially oriented to the same or different extents.
  • One or more of the layers of the film may be oriented in the transverse and/or longitudinal directions to the same or different extents.
  • the uniaxially orientation can be accomplished using typical cold drawing or hot drawing methods.
  • Biaxial orientation can be accomplished using tenter frame equipment or a double bubble processes and may occur before or after the individual layers are brought together.
  • a polyethylene layer can be extrusion coated or laminated onto an oriented polypropylene layer or the polyethylene and polypropylene can be coextruded together into a film then oriented.
  • oriented polypropylene could be laminated to oriented polyethylene or oriented polyethylene could be coated onto polypropylene then optionally the combination could be oriented even further.
  • the films are oriented in the Machine Direction (MD) at a ratio of up to 15, preferably between 5 and 7, and in the Transverse Direction (TD) at a ratio of up to 15, preferably 7 to 9.
  • MD Machine Direction
  • TD Transverse Direction
  • the film is oriented to the same extent in both the MD and TD directions.
  • the films may vary in thickness depending on the intended application; however, films of a thickness from 1 to 50 ⁇ are usually suitable. Films intended for packaging are usually from 10 to 50 ⁇ thick.
  • the thickness of the sealing layer is typically 0.2 to 50 ⁇ .
  • one or more layers may be modified by corona treatment, electron beam irradiation, gamma irradiation, flame treatment, or microwave.
  • one or both of the surface layers is modified by corona treatment.
  • MI Melt index
  • High load melt index also referred to as 121, reported in g/10 min, is determined according to ASTM D1238, 190°C, 21.6 kg load.
  • Melt index ratio is MI divided by HLMI as determined by ASTM D1238.
  • lH NMR data is collected at 120°C using a 10 mm CryoProbe with a Bruker spectrometer at a l H frequency of 400 MHz (available from Bruker Corporation, United Kingdom). Data are recorded using a maximum pulse width of 45°, 5 seconds between pulses and signal averaging 512 transients. Samples are prepared by dissolving 80 mg of sample in 3 mL of solvent heated at 140°C. Peak assignments are determined referencing the solvent of tetrachloroethane-1,2 d2 at 5.98 ppm.
  • the distribution and the moments of molecular weight (Mw, Mn, Mz, Mw/Mn, etc.), the comonomer content (C2, C3, C6, etc.) and the branching index (g'(vis)) are determined by using a high temperature Gel Permeation Chromatography (Polymer Char GPC-IR) equipped with a multiple-channel band-filter based Infrared detector IR5, an 18-angle light scattering detector and a viscometer. Three Agilent PLgel 10- ⁇ Mixed-B LS columns are used to provide polymer separation.
  • TCB Aldrich reagent grade 1,2,4- trichlorobenzene
  • BHT butylated hydroxytoluene
  • the TCB mixture is filtered through a 0.1 - ⁇ Teflon filter and degassed with an online degasser before entering the GPC instrument.
  • the nominal flow rate is 1.0 ml/min and the nominal injection volume is 200 ⁇ .
  • the whole system including transfer lines, columns, and detectors are contained in an oven maintained at 145°C. Given amount of polymer sample is weighed and sealed in a standard vial with 80- ⁇ flow marker (Heptane) added to it.
  • Heptane 80- ⁇ flow marker
  • polymer After loading the vial in the autosampler, polymer is automatically dissolved in the instrument with 8 ml added TCB solvent. The polymer is dissolved at 160°C with continuous shaking for about 1 hour for most PE samples or 2 hour for PP samples.
  • the TCB densities used in concentration calculation are 1.463 g/ml at room temperature and 1.284 g/ml at 145°C.
  • the sample solution concentration is from 0.2 to 2.0 mg/ml, with lower concentrations being used for higher molecular weight samples.
  • the mass recovery is calculated from the ratio of the integrated area of the concentration chromatography over elution volume and the injection mass which is equal to the pre-determined concentration multiplied by injection loop volume.
  • the conventional molecular weight (IR MW) is determined by combining universal calibration relationship with the column calibration which is performed with a series of monodispersed polystyrene (PS) standards ranging from 700 to 10M gm/mole.
  • PS monodispersed polystyrene
  • a and K are 0.695 and 0.000579, respectively, for ethylene polymers; a and K are 0.705 and 0.0002288, respectively, for propylene polymers; and a and K are 0.695 and 0.000579*(l-0.0075*wt% hexene comonomer), respectively, for ethylene-hexene copolymer.
  • the comonomer composition is determined by the ratio of the IR5 detector intensity corresponding to C3 ⁇ 4 and C3 ⁇ 4 channel calibrated with a series of PE and PP homo/copolymer standards whose nominal value are predetermined by NMR or FTIR.
  • the LS detector is the 18-angle Wyatt Technology High Temperature DAWN HELEOSII.
  • the LS molecular weight (M) at each point in the chromatogram is determined by analyzing the LS output using the Zimm model for static light scattering (Light Scattering from Polymer Solutions; Huglin, M. B., Ed.; Academic Press, 1972.):
  • AR(6) is the measured excess Rayleigh scattering intensity at scattering angle ⁇
  • c is the polymer concentration determined from the IR5 analysis
  • a 2 is the second virial coefficient
  • ⁇ ( ⁇ ) is the form factor for a monodisperse random coil
  • K 0 is the optical constant for the system:
  • N A is Avogadro's number
  • (dn/dc) is the refractive index increment for the system.
  • a high temperature Agilent (or Viscotek Corporation) viscometer which has four capillaries arranged in a Wheatstone bridge configuration with two pressure transducers, is used to determine specific viscosity.
  • One transducer measures the total pressure drop across the detector, and the other, positioned between the two sides of the bridge, measures a differential pressure.
  • the specific viscosity, n s for the solution flowing through the viscometer is calculated from their outputs.
  • the branching index (g' v i s ) is calculated using the output of the GPC-IR5-LS-VIS method as follows.
  • the average intrinsic viscosity, [n] g , of the sample is calculated by:
  • Slurry polymerizations Polymerizations were carried out in a 1 L Autoclave Engineers Zipperclave jacketed reactor equipped with a stirrer and baffle, and connected to supplies of ethylene, isobutane, and nitrogen. 30 mL 1-hexene and 50 ⁇ ⁇ trioctylaluminum were injected into the reactor from a transfer cylinder, and 400 mL isobutane was then added to the reactor. The reactor was heated to 80°C and the solution was saturated with ethylene containing 300 ppm hydrogen at 180psi over the reactor pressure at 80°C.
  • compositions, an element or a group of elements are preceded with the transitional phrase “comprising,” it is understood that we also contemplate the same composition or group of elements with transitional phrases “consisting essentially of,” “consisting of,” “selected from the group of consisting of,” or “is” preceding the recitation of the composition, element, or elements and vice versa.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

La présente invention concerne des composés de métallocène de hafnium ayant un groupe substitué en position 3 d'au moins un cycle cyclopentadiényle représenté par la formule -R20-SiR'3 ou -R20-CR'3 où R20 représente un hydrocarbyle C1 à C4 et R' représente un hydrocarbyle C1 à C20 substitué ou non substitué.
PCT/US2017/068175 2017-02-20 2017-12-22 Composés catalyseurs de hafnocène et procédé d'utilisation de ces derniers WO2018151790A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780086769.1A CN110312741B (zh) 2017-02-20 2017-12-22 铪茂催化剂化合物及其使用方法
SG11201907045WA SG11201907045WA (en) 2017-02-20 2017-12-22 Hafnocene catalyst compounds and process for use thereof
EP17896464.9A EP3583137B1 (fr) 2017-02-20 2017-12-22 Composés catalyseurs de hafnocène et procédé d'utilisation de ces derniers
BR112019016048-5A BR112019016048B1 (pt) 2017-02-20 2017-12-22 Compostos catalisadores de hafnoceno e seus processos de uso

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762461113P 2017-02-20 2017-02-20
US62/461,113 2017-02-20
EP17165523.6 2017-04-07
EP17165523 2017-04-07

Publications (1)

Publication Number Publication Date
WO2018151790A1 true WO2018151790A1 (fr) 2018-08-23

Family

ID=58548540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2017/068175 WO2018151790A1 (fr) 2017-02-20 2017-12-22 Composés catalyseurs de hafnocène et procédé d'utilisation de ces derniers

Country Status (1)

Country Link
WO (1) WO2018151790A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020105922A1 (fr) * 2018-11-20 2020-05-28 한화솔루션 주식회사 Composé de métal de transition pour catalyseur de polymérisation d'oléfines, et catalyseur de polymérisation d'oléfines le comprenant
WO2021015458A1 (fr) * 2019-07-22 2021-01-28 한화솔루션 주식회사 Composé de métal de transition pour catalyseur de polymérisation d'oléfine, catalyseur de polymérisation d'oléfine le comprenant, et polyoléfine polymérisée à l'aide de celui-ci
WO2021085929A1 (fr) * 2019-10-29 2021-05-06 한화솔루션 주식회사 Polymère à base d'oléfine
WO2021107508A1 (fr) * 2019-11-28 2021-06-03 한화솔루션 주식회사 Film polymère à base d'oléfines et son procédé de fabrication
WO2022131690A1 (fr) * 2020-12-17 2022-06-23 한화솔루션 주식회사 Polymère oléfinique et son procédé de préparation

Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4543399A (en) 1982-03-24 1985-09-24 Union Carbide Corporation Fluidized bed reaction systems
US4588790A (en) 1982-03-24 1986-05-13 Union Carbide Corporation Method for fluidized bed polymerization
US5008204A (en) 1988-02-02 1991-04-16 Exxon Chemical Patents Inc. Method for determining the compositional distribution of a crystalline copolymer
US5028670A (en) 1988-07-15 1991-07-02 Bp Chemicals Limited Process for the gas-phase polymerization of olefins in a fluidized-bed reactor
US5041584A (en) 1988-12-02 1991-08-20 Texas Alkyls, Inc. Modified methylaluminoxane
US5153157A (en) 1987-01-30 1992-10-06 Exxon Chemical Patents Inc. Catalyst system of enhanced productivity
WO1993003093A1 (fr) 1991-07-18 1993-02-18 Exxon Chemical Patents Inc. Article thermosoude
WO1994007928A1 (fr) 1992-10-02 1994-04-14 The Dow Chemical Company Complexes de catalyseurs supportes et homogenes utilises dans la polymerisation d'olefines
US5317036A (en) 1992-10-16 1994-05-31 Union Carbide Chemicals & Plastics Technology Corporation Gas phase polymerization reactions utilizing soluble unsupported catalysts
US5352749A (en) 1992-03-19 1994-10-04 Exxon Chemical Patents, Inc. Process for polymerizing monomers in fluidized beds
US5405922A (en) 1993-04-26 1995-04-11 Exxon Chemical Patents Inc. Process for polymerizing monomers in fluidized beds
WO1995014044A1 (fr) 1993-11-19 1995-05-26 Exxon Chemical Patents Inc. Systemes catalyseurs de polymerisation, production et utilisation de ces systemes
US5436304A (en) 1992-03-19 1995-07-25 Exxon Chemical Patents Inc. Process for polymerizing monomers in fluidized beds
US5453410A (en) 1992-01-06 1995-09-26 The Dow Chemical Company Catalyst composition
US5453471A (en) 1994-08-02 1995-09-26 Union Carbide Chemicals & Plastics Technology Corporation Gas phase polymerization process
US5462999A (en) 1993-04-26 1995-10-31 Exxon Chemical Patents Inc. Process for polymerizing monomers in fluidized beds
US5616661A (en) 1995-03-31 1997-04-01 Union Carbide Chemicals & Plastics Technology Corporation Process for controlling particle growth during production of sticky polymers
US5668228A (en) 1993-05-20 1997-09-16 Bp Chemicals Limited Polymerization process
EP0573120B1 (fr) 1992-06-05 1998-11-04 SOLVAY POLYOLEFINS EUROPE - BELGIUM (Société Anonyme) Procédé de préparation d'un système catalytique, procédé de (co)polymérisation d'oléfines et (co)polymères d'au moins une oléfine
US6211105B1 (en) 1998-11-13 2001-04-03 Univation Technologies, Lld Nitrogen-containing group 13 anionic complexes for olefin polymerization
US6469113B1 (en) * 1998-04-09 2002-10-22 Lg Chemical Ltd. Method for producing supported metallocene catalyst and olefin polymerization process using the same
US20040043893A1 (en) 2002-09-04 2004-03-04 Laughlin G. Mccullough Process for producing fluorinated catalysts
US20040092387A1 (en) 2002-11-07 2004-05-13 Matsunaga Phillip T. Synthesis of polymerization catalyst components
US20060247396A1 (en) 2005-04-29 2006-11-02 Fina Technology, Inc. Catalyst system for production of polyolefins
US7179876B2 (en) 2001-07-19 2007-02-20 Univation Technologies, Llc High tear films from hafnocene catalyzed polyethylenes
US7829495B2 (en) 1996-07-16 2010-11-09 Exxonmobil Chemical Patents Inc. Olefin polymerization process with alkyl-substituted metallocenes
US7910764B2 (en) 2004-03-22 2011-03-22 Tosoh Finechem Corporation Polymethylaluminoxane preparation, method of producing the same, polymerization catalyst, and polymerization method of olefins
US8658556B2 (en) 2011-06-08 2014-02-25 Exxonmobil Chemical Patents Inc. Catalyst systems comprising multiple non-coordinating anion activators and methods for polymerization therewith
US20150284489A1 (en) * 2014-04-03 2015-10-08 Equistar Chemicals, Lp Non-bridged metallocene complexes for the polymerization of olefins

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4588790A (en) 1982-03-24 1986-05-13 Union Carbide Corporation Method for fluidized bed polymerization
US4543399A (en) 1982-03-24 1985-09-24 Union Carbide Corporation Fluidized bed reaction systems
US5153157A (en) 1987-01-30 1992-10-06 Exxon Chemical Patents Inc. Catalyst system of enhanced productivity
US5008204A (en) 1988-02-02 1991-04-16 Exxon Chemical Patents Inc. Method for determining the compositional distribution of a crystalline copolymer
US5028670A (en) 1988-07-15 1991-07-02 Bp Chemicals Limited Process for the gas-phase polymerization of olefins in a fluidized-bed reactor
US5041584A (en) 1988-12-02 1991-08-20 Texas Alkyls, Inc. Modified methylaluminoxane
WO1993003093A1 (fr) 1991-07-18 1993-02-18 Exxon Chemical Patents Inc. Article thermosoude
US5453410A (en) 1992-01-06 1995-09-26 The Dow Chemical Company Catalyst composition
US5436304A (en) 1992-03-19 1995-07-25 Exxon Chemical Patents Inc. Process for polymerizing monomers in fluidized beds
US5352749A (en) 1992-03-19 1994-10-04 Exxon Chemical Patents, Inc. Process for polymerizing monomers in fluidized beds
EP0573120B1 (fr) 1992-06-05 1998-11-04 SOLVAY POLYOLEFINS EUROPE - BELGIUM (Société Anonyme) Procédé de préparation d'un système catalytique, procédé de (co)polymérisation d'oléfines et (co)polymères d'au moins une oléfine
WO1994007928A1 (fr) 1992-10-02 1994-04-14 The Dow Chemical Company Complexes de catalyseurs supportes et homogenes utilises dans la polymerisation d'olefines
US5317036A (en) 1992-10-16 1994-05-31 Union Carbide Chemicals & Plastics Technology Corporation Gas phase polymerization reactions utilizing soluble unsupported catalysts
US5405922A (en) 1993-04-26 1995-04-11 Exxon Chemical Patents Inc. Process for polymerizing monomers in fluidized beds
US5462999A (en) 1993-04-26 1995-10-31 Exxon Chemical Patents Inc. Process for polymerizing monomers in fluidized beds
US5668228A (en) 1993-05-20 1997-09-16 Bp Chemicals Limited Polymerization process
WO1995014044A1 (fr) 1993-11-19 1995-05-26 Exxon Chemical Patents Inc. Systemes catalyseurs de polymerisation, production et utilisation de ces systemes
US5453471A (en) 1994-08-02 1995-09-26 Union Carbide Chemicals & Plastics Technology Corporation Gas phase polymerization process
US5453471B1 (en) 1994-08-02 1999-02-09 Carbide Chemicals & Plastics T Gas phase polymerization process
US5616661A (en) 1995-03-31 1997-04-01 Union Carbide Chemicals & Plastics Technology Corporation Process for controlling particle growth during production of sticky polymers
US7829495B2 (en) 1996-07-16 2010-11-09 Exxonmobil Chemical Patents Inc. Olefin polymerization process with alkyl-substituted metallocenes
US6469113B1 (en) * 1998-04-09 2002-10-22 Lg Chemical Ltd. Method for producing supported metallocene catalyst and olefin polymerization process using the same
US6211105B1 (en) 1998-11-13 2001-04-03 Univation Technologies, Lld Nitrogen-containing group 13 anionic complexes for olefin polymerization
US7179876B2 (en) 2001-07-19 2007-02-20 Univation Technologies, Llc High tear films from hafnocene catalyzed polyethylenes
US20040043893A1 (en) 2002-09-04 2004-03-04 Laughlin G. Mccullough Process for producing fluorinated catalysts
US20040092387A1 (en) 2002-11-07 2004-05-13 Matsunaga Phillip T. Synthesis of polymerization catalyst components
US7910764B2 (en) 2004-03-22 2011-03-22 Tosoh Finechem Corporation Polymethylaluminoxane preparation, method of producing the same, polymerization catalyst, and polymerization method of olefins
US20060247396A1 (en) 2005-04-29 2006-11-02 Fina Technology, Inc. Catalyst system for production of polyolefins
US8658556B2 (en) 2011-06-08 2014-02-25 Exxonmobil Chemical Patents Inc. Catalyst systems comprising multiple non-coordinating anion activators and methods for polymerization therewith
US20150284489A1 (en) * 2014-04-03 2015-10-08 Equistar Chemicals, Lp Non-bridged metallocene complexes for the polymerization of olefins

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
"Light Scattering from Polymer Solutions", 1972, ACADEMIC PRESS
CHEMICAL AND ENGINEERING NEWS, vol. 63, no. 5, 1985, pages 27
EISCH, J. J. ET AL.: "Active sites for ethylene polymerization with titanium(IV) catalysts in homogeneous media: multinuclear NMR study of ion-pair equilibria and their relation to catalyst activity", ORGANOMETALLICS, vol. 12, no. 10, 1993, pages 3856 - 3863, XP009515965, DOI: 10.1021/om00034a018 *
J. VLADIMIR OLIVEIRAC. DARIVAJ. C. PINTO, IND. ENG. CHEM. RES., vol. 29, 2000, pages 4627
LEINO, R.GOMEZ, F.COLE, A.WAYMOUTH, R., MACROMOLECULES, vol. 34, 2001, pages 6812 - 2082
LUND, ERIC CLIVINGHOUSE, TOM, ORGANOMETALLICS, vol. 9, 1990, pages 2426
See also references of EP3583137A4
SIEDLE, A. R. ET AL.: "Stereochemical nonrigidity in metallocenium ions", JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 497, no. 1-2, 1995, pages 119 - 125, XP004023849 *
VECERA, M. ET AL.: "Group 4 Metal Complexes of Chelating Cyclopentadienyl-ketimide Ligands", ORGANOMETALLICS, vol. 35, no. 5, 2016, pages 785 - 798, XP055537330 *
WILD ET AL., J. POLY. SCI., POLY. PHYS. ED., vol. 20, 1982, pages 441

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200058768A (ko) * 2018-11-20 2020-05-28 한화솔루션 주식회사 올레핀 중합 촉매용 전이금속 화합물 및 이를 포함하는 올레핀 중합 촉매
KR102219407B1 (ko) 2018-11-20 2021-02-23 한화솔루션 주식회사 올레핀 중합 촉매용 전이금속 화합물 및 이를 포함하는 올레핀 중합 촉매
WO2020105922A1 (fr) * 2018-11-20 2020-05-28 한화솔루션 주식회사 Composé de métal de transition pour catalyseur de polymérisation d'oléfines, et catalyseur de polymérisation d'oléfines le comprenant
CN113242863A (zh) * 2018-11-20 2021-08-10 韩华思路信株式会社 用于烯烃聚合催化剂的过渡金属化合物及包含其的烯烃聚合催化剂
JP2022509060A (ja) * 2018-11-20 2022-01-20 ハンファ ソリューションズ コーポレーション オレフィン重合触媒用遷移金属化合物およびこれを含むオレフィン重合用触媒
JP7586955B2 (ja) 2018-11-20 2024-11-19 ハンファ ソリューションズ コーポレーション オレフィン重合触媒用遷移金属化合物およびこれを含むオレフィン重合用触媒
US11926692B2 (en) 2018-11-20 2024-03-12 Hanwha Solutions Corporation Transition metal compound for a catalyst for olefin polymerization and catalyst for olefin polymerization comprising the same
WO2021015458A1 (fr) * 2019-07-22 2021-01-28 한화솔루션 주식회사 Composé de métal de transition pour catalyseur de polymérisation d'oléfine, catalyseur de polymérisation d'oléfine le comprenant, et polyoléfine polymérisée à l'aide de celui-ci
KR102486137B1 (ko) 2019-10-29 2023-01-06 한화솔루션 주식회사 올레핀계 중합체 및 필름의 제조방법
WO2021085929A1 (fr) * 2019-10-29 2021-05-06 한화솔루션 주식회사 Polymère à base d'oléfine
KR20210050660A (ko) * 2019-10-29 2021-05-10 한화솔루션 주식회사 올레핀계 중합체
WO2021107508A1 (fr) * 2019-11-28 2021-06-03 한화솔루션 주식회사 Film polymère à base d'oléfines et son procédé de fabrication
CN114746485A (zh) * 2019-11-28 2022-07-12 韩华思路信株式会社 烯烃聚合物膜及其制备方法
WO2022131690A1 (fr) * 2020-12-17 2022-06-23 한화솔루션 주식회사 Polymère oléfinique et son procédé de préparation

Similar Documents

Publication Publication Date Title
US10730038B2 (en) Metallocene catalysts, catalyst systems, and methods for using the same
US10479846B2 (en) Hafnocene catalyst compounds and process for use thereof
US10640583B2 (en) Catalyst composition comprising fluorided support and processes for use thereof
CN111094366B (zh) 聚乙烯组合物和由其制备的膜
US10882932B2 (en) Sterically hindered metallocenes, synthesis and use
US10508166B2 (en) Production of polyolefins with internal unsaturation structures using a metallocene catalyst system
WO2019027585A1 (fr) Catalyseurs mixtes comprenant des hafnocènes non pontés avec des fractions -ch2-sime3
US10696758B2 (en) Group 4 catalyst compounds and process for use thereof
US20200048382A1 (en) Mixed Catalyst Systems and Methods of Using the Same
WO2016171808A1 (fr) Composition catalytique comprenant un support fluoré et procédés d'utilisation associés
US9988410B2 (en) Substituted bis indenyl metallocene catalyst compounds comprising-Si—Si-bridge
WO2018151790A1 (fr) Composés catalyseurs de hafnocène et procédé d'utilisation de ces derniers
US20200071438A1 (en) Processes for Preparing a Catalyst System and Polymerizing Olefins
EP3583140B1 (fr) Systèmes de catalyseurs supportés et leurs procédés d'utilisation
WO2017011073A1 (fr) Composés catalyseurs métallocènes de type bis-indényle substitué comprenant un pont -si-si-
WO2018067289A1 (fr) Métallocènes à encombrement stérique, synthèse et utilisation
WO2018151904A1 (fr) Composés catalyseurs et procédé d'utilisation de ces derniers
WO2019236351A1 (fr) Métallocènes comprenant des ponts si-si
EP3583137B1 (fr) Composés catalyseurs de hafnocène et procédé d'utilisation de ces derniers
EP3583141B1 (fr) Composés catalyseurs du groupe 4 et leur procédé d'utilisation
EP3523337A1 (fr) Métallocènes à encombrement stérique, synthèse et utilisation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17896464

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019016048

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017896464

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112019016048

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190802

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载