+

WO2018151307A1 - 人工多能性幹細胞由来腸管幹細胞の維持培養 - Google Patents

人工多能性幹細胞由来腸管幹細胞の維持培養 Download PDF

Info

Publication number
WO2018151307A1
WO2018151307A1 PCT/JP2018/005849 JP2018005849W WO2018151307A1 WO 2018151307 A1 WO2018151307 A1 WO 2018151307A1 JP 2018005849 W JP2018005849 W JP 2018005849W WO 2018151307 A1 WO2018151307 A1 WO 2018151307A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cell
inhibitor
intestinal
test substance
Prior art date
Application number
PCT/JP2018/005849
Other languages
English (en)
French (fr)
Inventor
岳洋 岩尾
民秀 松永
聡志 近藤
翔太 水野
Original Assignee
公立大学法人名古屋市立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人名古屋市立大学 filed Critical 公立大学法人名古屋市立大学
Priority to CN201880012849.7A priority Critical patent/CN110382689A/zh
Priority to KR1020197024160A priority patent/KR20190105237A/ko
Priority to CA3053893A priority patent/CA3053893A1/en
Priority to JP2018568660A priority patent/JP6949336B2/ja
Priority to KR1020217006315A priority patent/KR102323928B1/ko
Priority to EP18755030.6A priority patent/EP3584313A4/en
Publication of WO2018151307A1 publication Critical patent/WO2018151307A1/ja
Priority to US16/544,993 priority patent/US11725189B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0679Cells of the gastro-intestinal tract
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0679Cells of the gastro-intestinal tract
    • C12N5/068Stem cells; Progenitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5014Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing toxicity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/065Modulators of histone acetylation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/11Epidermal growth factor [EGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/119Other fibroblast growth factors, e.g. FGF-4, FGF-8, FGF-10
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/15Transforming growth factor beta (TGF-β)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/155Bone morphogenic proteins [BMP]; Osteogenins; Osteogenic factor; Bone inducing factor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/16Activin; Inhibin; Mullerian inhibiting substance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/40Regulators of development
    • C12N2501/415Wnt; Frizzeled
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/72Transferases [EC 2.]
    • C12N2501/727Kinases (EC 2.7.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/999Small molecules not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2503/00Use of cells in diagnostics
    • C12N2503/02Drug screening
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/45Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/54Collagen; Gelatin
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/46Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
    • G01N2333/47Assays involving proteins of known structure or function as defined in the subgroups
    • G01N2333/4701Details
    • G01N2333/4725Mucins, e.g. human intestinal mucin
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/575Hormones
    • G01N2333/635Parathyroid hormone (parathormone); Parathyroid hormone-related peptides

Definitions

  • the present invention relates to a technique for culturing intestinal stem cells derived from induced pluripotent stem cells and use thereof.
  • intestinal epithelial cells prepared from human induced pluripotent stem cells (iPS cells) that have the same pluripotency and almost unlimited proliferative potential as human embryonic stem cells (embryonic stem cells: ES cells) Is expected to be used.
  • Patent Document 1 Several techniques have been reported for isolating intestinal stem cells from the intestinal tract of a living body and culturing intestinal stem cells or intestinal epithelial cells outside the body, or for inducing differentiation of intestinal epithelial cells from human iPS cells (for example, Patent Document 1). To 4 and Non-Patent Documents 1 to 3), no culture technique for maintaining or proliferating human iPS cell-derived intestinal stem cells has been reported.
  • the present invention provides a culture technique that enables the maintenance and culture of iPS cell-derived intestinal stem cells while maintaining the properties of intestinal stem cells, that is, the ability to differentiate into intestinal epithelial cells. It is an object of the present invention to provide applications and uses thereof.
  • the culture method that has been successfully established is useful not only for preparing large amounts of intestinal stem cell-like cells and maintaining them for a long period of time, but also for promoting differentiation into intestinal epithelial cells and improving their functions.
  • the following invention is mainly based on the above results.
  • Intestinal stem cell-like cells derived from induced pluripotent stem cells in the presence of GSK-3 ⁇ inhibitor, histone deacetylation inhibitor, and serum substitute, or in the presence of GSK-3 ⁇ inhibitor and serum substitute A method of culturing intestinal stem cell-like cells derived from induced pluripotent stem cells, comprising a step of culturing.
  • GSK-3 ⁇ inhibitor is CHIR 99021, SB216763, CHIR 98014, TWS119, Tideglusib, SB415286, BIO, AZD2858, AZD1080, AR-A014418, TDZD-8, LY2090314, IM-12, Indirubin, Bikinin or 1-Azakenpaullone
  • the histone deacetylation inhibitor is valproic acid, vorinostat, trichostatin A, tubastatin A, gibinostat or plasinostat, and the serum substitute is a knockout serum substitute.
  • the culture is performed under conditions in which at least one compound selected from the group consisting of epidermal growth factor, TGF ⁇ receptor inhibitor and fibroblast growth factor is further present [1] or [2] The method described in 1.
  • the TGF ⁇ receptor inhibitor is A-83-01
  • the fibroblast growth factor is FGF2, FGF4, or FGF10.
  • [10] A method for preparing intestinal epithelial cell-like cells, comprising a step of differentiating intestinal stem cell-like cells cultured by the method according to any one of [1] to [9] into intestinal epithelial cell-like cells.
  • [12] A method for evaluating the pharmacokinetics or toxicity of a test substance using the intestinal epithelial cell-like cells according to [11].
  • [13] The method according to [12], wherein the pharmacokinetics is metabolism, absorption, excretion, drug interaction, induction of a drug metabolizing enzyme, or induction of a drug transporter.
  • a method for evaluating the gastrointestinal mucosal disorder action of a test substance comprising the following steps (a) and (b): (A) a step of bringing a test substance into contact with the intestinal epithelial cell-like cell according to [11]; (B) a step of detecting the expression of mucin 2 or chromogranin A in the intestinal epithelial cell-like cell and determining the gastrointestinal mucosal disorder action of the test substance based on the detection result, wherein the expression of mucin 2 or chromogranin A is decreased Is a process that serves as an indicator that the test substance has a gastrointestinal mucosal disorder effect.
  • a method for evaluating the gastrointestinal mucosa protective action of a test substance comprising the following steps (A) and (B): (A) A step of bringing a test substance into contact with the intestinal epithelial cell-like cell according to [11] in the presence of a substance exhibiting a gastrointestinal mucosal disorder effect; (B) a step of detecting the expression of mucin 2 or chromogranin A in the intestinal epithelial cell-like cell and determining the gastrointestinal mucosa protective action of the test substance based on the detection result, wherein mucin 2 or chromogranin A by the substance is determined.
  • a process in which the suppression of the decrease in the expression of ceramide is recognized as an indicator that the test substance has a gastrointestinal mucosa protective action.
  • a cell preparation comprising the intestinal epithelial cell-like cell according to [11].
  • intestinal stem cell-related genes in maintenance culture of intestinal stem cells differentiated from human iPS cells.
  • the results when FGF2 is added to the medium are shown.
  • the control was a cell differentiated from human iPS cells into intestinal stem cells (non-passaged).
  • the result at the time of adding FGF4 to a culture medium is shown.
  • the control was a cell differentiated from human iPS cells into intestinal stem cells (non-passaged).
  • Expression of intestinal stem cell-related genes in maintenance culture of intestinal stem cells differentiated from human iPS cells The result at the time of adding FGF10 to a culture medium is shown.
  • Con Control (intestinal epithelial cells cultured in a medium not containing indomethacin and rebamipide).
  • I50 Intestinal epithelial cells cultured in a medium supplemented with indomethacin at a concentration of 50 ⁇ M.
  • I200 Intestinal epithelial cells cultured in a medium supplemented with indomethacin at a concentration of 200 ⁇ M.
  • R50 Intestinal epithelial cells cultured in a medium supplemented with rebamipide at a concentration of 50 ⁇ M.
  • R100 Intestinal epithelial cells cultured in a medium supplemented with rebamipide at a concentration of 100 ⁇ M.
  • R200 Intestinal epithelial cells cultured in a medium supplemented with rebamipide at a concentration of 200 ⁇ M.
  • I200 + R50 Intestinal epithelial cells cultured in a medium supplemented with indomethacin at a concentration of 200 ⁇ M and rebamipide at a concentration of 50 ⁇ M.
  • I200 + R100 Intestinal epithelial cells cultured in a medium supplemented with indomethacin at a concentration of 200 ⁇ M and rebamipide at a concentration of 100 ⁇ M.
  • I200 + R200 Intestinal epithelial cells cultured in a medium supplemented with indomethacin at a concentration of 200 ⁇ M and rebamipide at a concentration of 200 ⁇ M.
  • SI Commercially available human small intestinal cells.
  • Caco-2 Human colon cancer-derived cells.
  • CgA chromogranin A
  • Con Control (intestinal epithelial cells cultured in a medium not containing indomethacin and rebamipide).
  • I50 Intestinal epithelial cells cultured in a medium supplemented with indomethacin at a concentration of 50 ⁇ M.
  • I200 Intestinal epithelial cells cultured in a medium supplemented with indomethacin at a concentration of 200 ⁇ M.
  • R50 Intestinal epithelial cells cultured in a medium supplemented with rebamipide at a concentration of 50 ⁇ M.
  • R100 Intestinal epithelial cells cultured in a medium supplemented with rebamipide at a concentration of 100 ⁇ M.
  • R200 Intestinal epithelial cells cultured in a medium supplemented with rebamipide at a concentration of 200 ⁇ M.
  • I200 + R50 Intestinal epithelial cells cultured in a medium supplemented with indomethacin at a concentration of 200 ⁇ M and rebamipide at a concentration of 50 ⁇ M.
  • I200 + R100 Intestinal epithelial cells cultured in a medium supplemented with indomethacin at a concentration of 200 ⁇ M and rebamipide at a concentration of 100 ⁇ M.
  • I200 + R200 Intestinal epithelial cells cultured in a medium supplemented with indomethacin at a concentration of 200 ⁇ M and rebamipide at a concentration of 200 ⁇ M.
  • SI Commercially available human small intestinal cells.
  • P0 is a group differentiated without maintenance culture as intestinal stem cells.
  • the present invention relates to a method for culturing intestinal stem cell-like cells derived from induced pluripotent stem cells (iPS cells). According to the present invention, it is possible to maintain and proliferate iPS cell-derived intestinal stem cell-like cells while maintaining the properties of intestinal stem cells, that is, the ability to differentiate into undifferentiated, proliferative and epithelial cells. .
  • iPS cells induced pluripotent stem cells
  • An “iPS cell-derived intestinal stem cell-like cell” is a cell obtained by inducing differentiation of an iPS cell into an intestinal epithelial cell lineage and having characteristics similar to intestinal stem cells in a living body. If iPS cell-derived intestinal stem cell-like cells are further induced to differentiate under appropriate conditions, cells similar to intestinal epithelial cells in the living body (intestinal epithelial cell-like cells) can be obtained.
  • inducing differentiation means acting to differentiate along a specific cell lineage.
  • iPS cells are cells having pluripotency (pluripotency) and proliferative ability produced by reprogramming somatic cells by introduction of reprogramming factors. Artificial pluripotent stem cells exhibit properties similar to ES cells. Somatic cells used for the production of iPS cells are not particularly limited, and may be differentiated somatic cells or undifferentiated stem cells. Although the origin thereof is not particularly limited, preferably, somatic cells of mammals (eg, primates such as humans and chimpanzees, rodents such as mice and rats), particularly preferably human somatic cells are used. iPS cells can be prepared by various methods reported so far. In addition, it is naturally assumed that an iPS cell production method developed in the future will be applied.
  • mammals eg, primates such as humans and chimpanzees, rodents such as mice and rats
  • iPS cell production The most basic method of iPS cell production is to introduce four factors, transcription factors Oct3 / 4, Sox2, Klf4 and c-Myc, into cells using viruses (Takahashi K, Yamanaka S : Cell 126 (4), 663-676, 2006; Takahashi, K, et al: Cell 131 (5), 861-72, 2007).
  • Human iPS cells have been reported to be established by introducing four factors, Oct4, Sox2, Lin28 and Nonog (Yu J, et al: Science 318 (5858), 1917-1920, 2007).
  • Three factors excluding c-Myc (Nakagawa M, et al: Nat. Biotechnol.
  • lentiviruses (Yu J, et al: Science 318 (5858), 1917-1920, 2007), adenoviruses (Stadtfeld M, et al: Science 322 (5903 ), 945-949, 2008), plasmid (Okita K, et al: Science 322 (5903), 949-953, 2008), transposon vectors (Woltjen K, Michael IP, Mohseni P, et al: Nature 458, 766- 770, 2009; Kaji K, Norrby K, Pac a A, et al: Nature 458, 771-775, 2009; Yusa K, Rad R, Takeda J, et al: Nat Methods 6, 363-369, 2009), or Techniques using episomal vectors (Yu J, Hu K, Smuga-Otto K, Tian S, et al: Science 324, 797-801, 2009) have been developed.
  • pluripotent stem cell markers such as Fbxo15, Nanog, Oct / 4, Fgf-4, Esg-1, and Cript Etc. can be selected as an index.
  • the selected cells are collected as iPS cells.
  • IPS cells can also be provided by, for example, Kyoto University or RIKEN BioResource Center.
  • iPS induced pluripotent stem cell-derived intestinal stem cell-like cells
  • One aspect of the culture method of the present invention is an iPS obtained by inducing differentiation of iPS cells.
  • Cell-derived intestinal stem cell-like cells are cultured in the presence of a GSK-3 ⁇ inhibitor, a histone deacetylation inhibitor, and a serum substitute.
  • a step of culturing iPS cell-derived intestinal stem cell-like cells in the presence of a GSK-3 ⁇ inhibitor, a histone deacetylation inhibitor, and a serum substitute is performed.
  • “In the presence of a GSK-3 ⁇ inhibitor, a histone deacetylation inhibitor, and a serum substitute” has the same meaning as the conditions in which these compounds are added to the medium. Therefore, the culture may be performed using a medium to which these compounds are added.
  • the combined use of these three components can be expected to maintain the properties of intestinal stem cells, that is, the ability to maintain undifferentiation, proliferation ability and differentiation ability into epithelial cells.
  • group 1 components the GSK-3 ⁇ inhibitor, histone deacetylation inhibitor, and serum substitute are collectively referred to as “group 1 components”.
  • a histone deacetylation inhibitor is omitted from the components of the first group.
  • the culture is performed in the presence of a GSK-3 ⁇ inhibitor and a serum substitute, and a simplified culture method is obtained.
  • GSK-3 ⁇ inhibitors examples include CHIR 99021, SB216763, CHIR 98014, TWS119, Tideglusib, SB415286, BIO, AZD2858, AZD1080, AR-A014418, TDZD-8, LY2090314, IM-12, Indirubin, Bikinin, 1-Azakenpaullone be able to.
  • histone deacetylation inhibitors include valproic acid, vorinostat, trichostatin A, tubastatin A, gibinostat, and plasinostat.
  • a serum substitute is a composition used as a substitute for serum containing a differentiation-inducing factor in order to culture iPS cells, ES cells and the like while maintaining their undifferentiated state.
  • a knockout serum substitute (Knockout ⁇ ⁇ ⁇ serum replacement (KSR)) is used.
  • concentration of GSK-3 ⁇ inhibitor added is 1 ⁇ M to 100 ⁇ M, preferably 3 ⁇ M to 30 ⁇ M. In the case of the second culture method, 2 ⁇ M to 20 ⁇ M is also a preferable addition concentration range.
  • an example of the addition concentration of histone deacetylation inhibitor in the case of valproic acid is 0.1 to 10 ⁇ m, preferably 0.5 to 3 to mM
  • an example of the concentration of serum substitute (of KSR) Case) is 5% (v / v) to 20% (v / v), preferably 5% (v / v) to 10% (v / v).
  • the medium may be changed once every 24 hours to 3 days. Moreover, it is good to subculture at the stage which became confluent or subconfluent.
  • epidermal growth factor EGF
  • TGF ⁇ receptor inhibitor TGF ⁇ receptor inhibitor
  • fibroblast growth factor a compound selected from the group consisting of epidermal growth factor (EGF), TGF ⁇ receptor inhibitor and fibroblast growth factor. Cultivation is performed below.
  • epidermal growth factor (EGF), TGF ⁇ receptor inhibitor and fibroblast growth factor are collectively referred to as “second group components”.
  • the effect of promoting cell proliferation can be expected by using epidermal growth factor.
  • a TGF ⁇ receptor inhibitor can be expected to have an effect of suppressing conversion to a mesenchymal cell and a differentiation inducing factor, and a fibroblast growth factor has an effect of promoting cell growth and an effect of suppressing differentiation.
  • all of the components of the second group are used together (a total of 6 components are used in combination with the components of the first group).
  • A-83-01 can be used as a TGF ⁇ receptor inhibitor.
  • FGF2, FGF4 or FGF10 may be employed. Two or three of these FGF families may be used in combination.
  • An example of the concentration of epidermal growth factor added is 10 ng / mL to 500 ng / mL, preferably 50 ng / mL to 200 ng / mL.
  • an example of the addition concentration of the TGF ⁇ receptor inhibitor in the case of A-83-01
  • 0.3 ⁇ M to 5 ⁇ M preferably 0.5 ⁇ M to 3 ⁇ M
  • an example of the addition concentration of fibroblast growth factor In the case of FGF2, it is 5 ng / mL to 200 ng / mL, preferably 20 ng / mL to 50 ng / mL.
  • 0.3 ⁇ M to 3 ⁇ M is also a preferable addition concentration range.
  • the culturing is carried out under conditions in which at least one compound selected from the group consisting of a BMP inhibitor, a Wnt signal activator and a Wnt agonist is further present.
  • BMP inhibitors, Wnt signal activators and Wnt agonists are collectively referred to as “group 3 components”.
  • the effect of suppressing stem cell differentiation and maintaining stem cell properties can be expected.
  • the Wnt signal activator can be expected to maintain stem cell proliferation and stem cell properties
  • the Wnt agonist can be expected to activate stem cell proliferation and stem cell properties by activating Wnt signals.
  • all of the components of the second group and all of the components of the third group are used in combination (in the case of the first culture method, a total of 9 components are used in combination with the components of the first group. Become).
  • Noggin can be used as a BMP inhibitor.
  • R-spondin 1 can be used as the Wnt signal activator.
  • Wnt3a can be used as the Wnt agonist.
  • concentration of BMP inhibitor added is 10 ng / mL to 500 ng / mL, preferably 50 ng / mL to 200 ng / mL.
  • concentration of Wnt signal activator added is 10 mLng / mL to 1000 ng / mL, preferably 50 ng / mL to 500 ng / mL.
  • concentration of addition is 10 ng / mL to 500 ng / mL, preferably 50 ng / mL to 200 ng / mL.
  • the culturing is carried out under conditions in which one or more compounds selected from the group consisting of nicotinamide, N-acetylcysteine, p38 inhibitor and ROCK inhibitor are further present.
  • group 4 components nicotinamide, N-acetylcysteine, p38 inhibitor and ROCK inhibitor are collectively referred to as “group 4 components”.
  • nicotinamide By using nicotinamide, an effect of maintaining stem cell properties can be expected.
  • N-acetylcysteine is expected to suppress cell death
  • p38 inhibitors are expected to suppress cell stress and inflammation, and differentiation are suppressed
  • ROCK inhibitors are expected to suppress cell death. it can.
  • all of the components of the second group, all of the components of the third group, and all of the components of the fourth group are used together (combined with the components of the first group, A total of 13 components will be used in combination).
  • the components of the third group are omitted, and only the ROCK inhibitor is used in combination with all of the components of the second group and the components of the fourth group (the components of the first group ( A total of 6 components will be used in combination with GSK-3 ⁇ inhibitor and serum substitute).
  • SB202190 can be used as a p38 inhibitor.
  • Y-27632 can be used as a ROCK inhibitor, for example.
  • concentration of nicotinamide added is 0.1 mg / mL to 5 mg / mL, preferably 0.5 mg / mL to 2 mg / mL.
  • addition concentration of N-acetylcysteine is 0.1 mM to 5 mM, preferably 0.5 MmM to 2 ⁇ ⁇ mM
  • an example of p38 inhibitor addition concentration is 1 ⁇ M to 50 mM.
  • the concentration is 5 ⁇ M to 20 ⁇ M
  • an example of the concentration of ROCK inhibitor added is 1 ⁇ M to 50 ⁇ M, preferably 3 ⁇ M to 30 ⁇ M.
  • addition concentration of the ROCK inhibitor in the second culture method 1 to 10 ⁇ M (in the case of Y-27632) is also a preferable addition concentration range.
  • a condition in which a ROCK inhibitor is always added to the medium may be employed.
  • culture conditions may be those generally employed in animal cell culture. That is, for example, it may be cultured in an environment of 37 ° C. and 5% CO 2 .
  • the basic medium is not particularly limited as long as it can maintain and proliferate intestinal stem cell-like cells.
  • a basic medium for example, a mixed medium of D-MEM and Ham F12 medium, D-MEM
  • components that can be added to the medium include bovine serum albumin (BSA), antibiotics, 2-mercaptoethanol, PVA, non-essential amino acids (NEAA), insulin, transferrin, and selenium.
  • BSA bovine serum albumin
  • NEAA non-essential amino acids
  • insulin transferrin, and selenium.
  • cells are cultured two-dimensionally using a culture dish or the like.
  • intestinal epithelial cell-like cells can be obtained from iPS cells by two-dimensional culture.
  • three-dimensional culture using a gel culture substrate or a three-dimensional culture plate may be performed.
  • G protein-coupled receptor 5 LGR5 containing leucine-rich repeat, which is an intestinal stem cell marker, an intestinal progenitor cell marker SOX9 and the expression of CDX2, a hindgut marker, can be determined or evaluated using as an index.
  • iPS cell-derived intestinal stem cell-like cells may be prepared by inducing differentiation of iPS cells according to past reports.
  • a specific example of a method for preparing iPS cell-derived intestinal stem cell-like cells will be described below.
  • the preparation method of this example includes a step of differentiating iPS cells into endoderm-like cells (step (1)) and a step of differentiating the obtained endoderm-like cells into intestinal stem cell-like cells (step (2)). including.
  • the culture conditions not particularly mentioned may be those generally adopted in animal cell culture.
  • the cells are cultured in an environment of 37 ° C. and 5% CO 2 .
  • Iskov modified Dulbecco medium IMDM
  • GBCO Iskov modified Dulbecco medium
  • Ham F12 medium HamF12
  • D-MEM Dulbecco modified Eagle medium
  • Gibco, etc. Glasgow basic medium
  • RPMI1640 medium Two or more basic media may be used in combination.
  • a basic medium for example, a mixed medium of D-MEM and Ham F12 medium, D-MEM
  • components that can be added to the medium include bovine serum albumin (BSA), antibiotics, 2-mercaptoethanol, PVA, non-essential amino acids (NEAA), insulin, transferrin, and selenium.
  • iPS cells are cultured and differentiated into endoderm-like cells.
  • iPS cells are cultured under conditions that induce differentiation into endoderm-like cells.
  • the culture conditions are not particularly limited as long as iPS cells differentiate into endoderm-like cells.
  • the cells are cultured in a medium supplemented with activin A according to a conventional method.
  • the concentration of activin A in the medium is, for example, 10 ng / mL to 200 ng / mL, preferably 20 ng / mL to 150 ng / mL.
  • serum or serum replacement Knockout serum replacement (KSR), etc.
  • Serum is not limited to fetal bovine serum, and human serum, sheep serum, and the like can also be used.
  • the amount of serum or serum replacement added is, for example, 0.1% (v / v) to 10% (v / v).
  • An inhibitor of the Wnt / ⁇ -catenin signaling pathway eg, hexachlorophene, quercetin, Wnt3a, which is a Wnt ligand
  • Wnt3a which is a Wnt ligand
  • two-stage culture is performed as step (1).
  • the first stage culture is performed in a medium supplemented with a relatively low concentration of serum (eg, 0.1% (v / v) to 1% (v / v)), and the second stage culture is the first stage culture.
  • a medium with a higher serum concentration for example, the serum concentration is 1% (v / v) to 10% (v / v)).
  • Adopting the two-stage culture in this way is preferable in that the growth of undifferentiated cells is suppressed by the first-stage culture and the differentiated cells are grown in the subsequent second stage.
  • the period of step (1) is, for example, 1 day to 10 days, preferably 2 days to 7 days.
  • the first stage culture period is, for example, 1 to 7 days, preferably 2 to 5 days
  • the second stage culture period is, for example, 1 to 6 days. Days, preferably 1 to 4 days.
  • the endoderm-like cells obtained in step (1) are cultured and differentiated into intestinal stem cell-like cells.
  • the endoderm cells are cultured under conditions that induce differentiation into intestinal stem cell-like cells.
  • the culture conditions are not particularly limited as long as the endoderm-like cells differentiate into intestinal stem cell-like cells.
  • the culture is performed in the presence of FGF2 (fibroblast growth factor 2).
  • FGF2 fibroblast growth factor 2.
  • human FGF2 for example, human recombinant FGF2 is used.
  • step (2) may be carried out.
  • the endoderm-like cells may be selected with a flow cytometer (cell sorter) using a cell surface marker as an index.
  • FGF2 In the presence of FGF2 is synonymous with the condition in which FGF2 is added to the medium. Therefore, in order to perform culture in the presence of FGF2, a medium supplemented with FGF2 may be used.
  • An example of the concentration of FGF2 added is 100 ng / mL to 500 ng / mL.
  • the period of step (2) (culture period) is, for example, 2 days to 10 days, preferably 3 days to 7 days. If the culture period is too short, the expected effects (increased differentiation efficiency, promotion of acquisition of functions as intestinal stem cells) cannot be sufficiently obtained. On the other hand, if the culture period is too long, the differentiation efficiency is lowered.
  • intestinal stem cell-like cells Differentiation into intestinal stem cell-like cells can be determined or evaluated using, for example, the expression of intestinal stem cell marker as an index.
  • intestinal stem cell markers are G protein-coupled receptor 5 (LGR5) and ephrin B2 receptor (EphB2) containing leucine-rich repeats.
  • the second aspect of the present invention relates to a method for preparing intestinal epithelial cell-like cells from intestinal stem cell-like cells cultured by the culture method of the present invention.
  • the preparation method of the present invention is characterized by differentiating intestinal stem cell-like cells cultured by the culture method of the present invention into intestinal epithelial cell-like cells.
  • a step of differentiating intestinal stem cell-like cells cultured by the culture method of the present invention into intestinal epithelial cell-like cells is performed.
  • the culture conditions not particularly mentioned may be those generally adopted in animal cell culture.
  • the basic medium is preferably a basic medium (for example, a mixed medium of D-MEM and Ham F12 medium, D-MEM) suitable for epithelial cell culture.
  • components that can be added to the medium include bovine serum albumin (BSA), antibiotics, 2-mercaptoethanol, PVA, non-essential amino acids (NEAA), insulin, transferrin, and selenium.
  • the differentiation into intestinal epithelial cell-like cells is determined using, for example, expression of intestinal epithelial cell markers and pharmacokinetic-related genes, peptide uptake, or induction of drug metabolizing enzyme expression via vitamin D receptor as an index. It can be evaluated.
  • intestinal epithelial cell markers and pharmacokinetic genes include: Villin 1 (Villin 1), sucrase-isomaltase, SLC (solute (carrier) organic anion transporter 2B1 (SLCO2B1 / OATP2B1), SLC (solute (carrier) family members 15A1 / peptide transporter 1 (SLC15A1 / PEPT1), SLC (solute carrier) family member 46A1 / proton conjugated folate transporter (SLC46A1 / PCFT), ATP binding cassette transporter B1 / multidrug resistance protein 1 (ABCB1 / MDR1), ATP binding cassette transporter G2 / breast cancer resistance protein (ABCG2 / BCRP), caudal homeobox transcription factor 2 (CDX2), dipeptidyl peptidase 4 (DPP4), pregnane X receptor (PXR), uridine diphosphate-glucuron These are acid transferase 1A1 (UGT1A1) and SL
  • sucrase-isomaltase and villin 1 which are highly specific to the intestinal epithelium, SLC15A1 / PEPT1 involved in the absorption of peptides in the small intestine, and SLCO2B1 / OATP2B1 involved in the absorption of organic anions in the small intestine are particularly effective markers. is there.
  • Example 1 of differentiation process In this example, one or more compounds selected from the group consisting of MEK1 inhibitor, DNA methylation inhibitor and TGF ⁇ receptor inhibitor (hereinafter also referred to as “first inducer”) and EGF (hereinafter referred to as “second” In the presence of an inducer), the intestinal stem cell-like cells are differentiated into intestinal epithelial cell-like cells.
  • first inducer DNA methylation inhibitor and TGF ⁇ receptor inhibitor
  • second EGF
  • the intestinal stem cell-like cells are differentiated into intestinal epithelial cell-like cells.
  • the cell population obtained by applying the culture method of the present invention or a part thereof is subjected to a differentiation step without being selected.
  • the differentiation step may be performed after selecting intestinal stem cell-like cells from the cell population obtained by applying the culture method of the present invention. Selection of intestinal stem cell-like cells may be performed, for example, with a flow cytometer (cell sorter) using a cell surface marker as an index.
  • first inducer DNA methylation inhibitor and TGF ⁇ receptor inhibitor
  • second inducer EGF
  • the first inducer and the second inducer are synonymous with the conditions added to the medium. Therefore, in order to perform culture in the presence of the first inducer and the second inducer, a medium to which the first inducer and the second inducer are added may be used.
  • Examples of MEK1 inhibitors include PD98059, PD184352, PD184161, PD0325901, U0126, MEK inhibitor I, MEK inhibitor II, MEK1 / 2 inhibitor II, and SL327.
  • examples of DNA methylation inhibitors include 5-aza-2'-deoxycytidine, 5-azacytidine, RG108, and zebralin.
  • TGF ⁇ receptor inhibitors preferably, the TGF- ⁇ receptors ALK4, ALK5, ALK7 are considered in view of the experimental results of A-83-01 exhibiting inhibitory activity on TGF- ⁇ receptors ALK4, ALK5, ALK7. Those exhibiting inhibitory activity against one or more of these may be used.
  • A-83-01, SB431542, SB-505124, SB525334, D4476, ALK5 inhibitor, LY2157299, LY364947, GW788388, and RepSox satisfy the condition.
  • concentration of MEK1 inhibitor added is 4 ⁇ M to 100 ⁇ M, preferably 10 to 40 ⁇ M.
  • an example of the addition concentration of a methylation inhibitor in the case of 5-aza-2′-deoxycytidine is 1 ⁇ M to 25 ⁇ M, preferably 2.5 ⁇ M to 10 ⁇ M
  • the addition concentration of the TGF ⁇ receptor inhibitor is 0.1 ⁇ M to 2.5 ⁇ M, preferably 0.2 ⁇ M to 1 ⁇ M.
  • two or more of MEK1 inhibitor, DNA methylation inhibitor, and TGF ⁇ receptor inhibitor are used in combination as the first inducer.
  • first inducers By using two or more different first inducers in combination, an additive or synergistic effect can be obtained, and differentiation into intestinal epithelium can be promoted. Most preferably, all (ie, three types) of first inducers are used in combination.
  • the period of the step is, for example, 7 days to 30 days, preferably 10 days to 20 days. If the culture period is too short, the expected effects (increased differentiation efficiency, promotion of acquisition of functions as intestinal epithelial cells) cannot be sufficiently obtained. On the other hand, if the culture period is too long, the differentiation efficiency is lowered.
  • intestinal stem cell-like cells obtained by applying the two-step culture are converted into GSK inhibitors (for example, GSK3iXV) and / or BMP inhibitors (for example, dorsomorphin).
  • GSK inhibitors for example, GSK3iXV
  • BMP inhibitors for example, dorsomorphin
  • a step of culturing in the presence of EGF is converted into GSK inhibitors (for example, GSK3iXV) and / or BMP inhibitors (for example, dorsomorphin).
  • GSK inhibitors for example, GSK3iXV
  • BMP inhibitors for example, dorsomorphin
  • the culture in the presence of a GSK inhibitor and / or a BMP inhibitor is performed before the culture using the first inducer and the second inducer.
  • the main purpose of culturing in the presence of GSK inhibitors and / or BMP inhibitors is to promote intestinal stem cell proliferation.
  • the culture period of differentiation step 1 is, for example, 3 to 14 days, preferably 4 to 10 days
  • the culture period of differentiation step 2 is, for example, 3 to 21 days, preferably Is 5 to 15 days.
  • subculture may be performed in the middle.
  • the cells may be seeded at a cell density of about 1 ⁇ 10 4 cells / cm 2 to 1 ⁇ 10 6 cells / cm 2 .
  • ROCK inhibitor Rho-associated coiled-coil forming kinase / Rho-binding kinase
  • a cell population consisting only of the target cells (intestinal epithelial cell-like cells) or a cell population that contains the target cells in a high ratio (high purity)
  • select a cell surface marker that is characteristic for the target cells may be selected and sorted as an index.
  • Example 2 of differentiation process in the presence of a MEK1 inhibitor, a DNA methylation inhibitor, a TGF ⁇ receptor inhibitor, and EGF (hereinafter, this condition is referred to as “first condition”), and cAMP is supplied to the cell ( Hereinafter, this condition is referred to as “second condition”), and intestinal stem cell-like cells obtained by applying the culture method of the present invention are differentiated into intestinal epithelial cell-like cells.
  • first condition a DNA methylation inhibitor, a TGF ⁇ receptor inhibitor, and EGF
  • second condition intestinal stem cell-like cells obtained by applying the culture method of the present invention are differentiated into intestinal epithelial cell-like cells.
  • the cell population obtained by applying the culture method of the present invention or a part thereof is subjected to a differentiation step without being selected.
  • the differentiation step may be performed after selecting intestinal stem cell-like cells from the cell population obtained by applying the culture method of the present invention. Selection of intestinal stem cell-like cells may be performed, for example, with a flow cytometer (cell
  • the first condition that is, the presence of MEK1 inhibitor, DNA methylation inhibitor, TGF ⁇ receptor inhibitor and EGF is synonymous with the condition in which these compounds are added to the medium. Therefore, in order to satisfy the first condition, a medium to which these compounds are added may be used.
  • Examples of MEK1 inhibitors include PD98059, PD184352, PD184161, PD0325901, U0126, MEK inhibitor I, MEK inhibitor II, MEK1 / 2 inhibitor II, and SL327.
  • examples of DNA methylation inhibitors include 5-aza-2'-deoxycytidine, 5-azacytidine, RG108, and zebralin.
  • TGF ⁇ receptor inhibitors preferably, the TGF- ⁇ receptors ALK4, ALK5, ALK7 are considered in view of the experimental results of A-83-01 exhibiting inhibitory activity on TGF- ⁇ receptors ALK4, ALK5, ALK7. Those exhibiting inhibitory activity against one or more of these may be used.
  • A-83-01, SB431542, SB-505124, SB525334, D4476, ALK5 inhibitor, LY2157299, LY364947, GW788388, and RepSox satisfy the condition.
  • concentration of MEK1 inhibitor added is 4 ⁇ M to 100 ⁇ M, preferably 10 to 40 ⁇ M.
  • an example of the addition concentration of a methylation inhibitor in the case of 5-aza-2′-deoxycytidine is 1 ⁇ M to 25 ⁇ M, preferably 2.5 ⁇ M to 10 ⁇ M
  • the addition concentration of the TGF ⁇ receptor inhibitor is 0.1 ⁇ M to 2.5 ⁇ M, preferably 0.2 ⁇ M to 1 ⁇ M.
  • concentration when using the compound different from the illustrated compound ie, PD98059, 5-aza-2'-deoxycytidine, and A-83-01
  • concentration when using the compound different from the illustrated compound ie, PD98059, 5-aza-2'-deoxycytidine, and A-83-01
  • concentration when using the compound different from the illustrated compound ie, PD98059, 5-aza-2'-deoxycytidine, and A-83-01
  • concentration according to the above concentration range In view of the difference in properties (particularly the difference in activity) of PD98059, 5-aza-2′-deoxycytidine, A-83-01), those skilled in the art can set the concentration according to the above concentration range. Whether or not the set concentration range is appropriate can be confirmed by a preliminary experiment.
  • the second condition that is, the condition under which cAMP is supplied to the cell is synonymous with the condition in which a compound that can be taken into the cell and a compound that acts as cAMP when taken into the cell is present. Therefore, in order to satisfy the second condition, for example, a medium to which a cAMP derivative that can be taken into cells is added may be used.
  • PAMP activators e.g., 8-Br-cAMP (8-Bromoadenosine-3 ′, 5′-cyclic monophosphate sodium salt, CAS Number: 76939-46-3), 6-Bnz-cAMP (N6-Benzoyladenosine- 3 ', 5'-cyclic monophosphate sodium salt salt, CAS Number: 1135306-29-4), cAMPS-Rp ((R) -Adenosine, cyclic 3', 5 '-(hydrogenphosphorothioate) triethylammonium salt, CAS Number: 151837- 09-1), cAMPS-Sp ((S) -Adenosine, cyclic 3 ', 5'-(hydrogenphosphorothioate) triethylammonium salt, CAS Number: 93602-66-5), Dibutyryl-cAMP (N6, O2'-Dibutyryl adenosine 3 ', 5'-cyclic monophosphate
  • 8-CPT-cAMP 8 -(4-Chlorophenylthio) adenosine 3 ', 5'-cyclic monophosphate, CAS Number: 93882-12-3
  • 8-pCPT-2'-OM e-cAMP e.g., 8- (4-Chlorophenylthio) -2′-O-methyladenosine 3 ′, 5′-cyclic monophosphate monosodium, CAS No Number: 634634207-53-7) can be used.
  • concentration of cAMP derivative added is 0.1 to 10 mm, preferably 0.2 to 5 mm, and more preferably 0.5 to 2 mm.
  • addition concentration in the case of using the exemplified compound, that is, a compound different from 8-Br-cAMP, the difference between the characteristics of the compound used and the characteristics of the exemplified compound (8-Br-cAMP) (particularly In view of the difference in activity), those skilled in the art can set the concentration according to the above concentration range. Whether or not the set concentration range is appropriate can be confirmed by a preliminary experiment.
  • the period of the step is, for example, 7 to 40 days, preferably 10 to 30 days. If the culture period is too short, the expected effects (increased differentiation efficiency, promotion of acquisition of functions as intestinal epithelial cells) cannot be sufficiently obtained. On the other hand, if the culture period is too long, the differentiation efficiency is lowered.
  • a cell population consisting only of the target cells (intestinal epithelial cell-like cells) or a cell population that contains the target cells in a high ratio (high purity)
  • select a cell surface marker that is characteristic for the target cells may be selected and sorted as an index.
  • any of the following culture steps A to C is performed as the differentiation step.
  • ⁇ Culture process A> In the culture step A, (a-1) culture in the presence of a MEK1 inhibitor, a DNA methylation inhibitor, a TGF ⁇ receptor inhibitor and EGF, followed by the culture, (a-2) a MEK1 inhibitor, DNA Culturing is performed in the presence of a methylation inhibitor, a TGF ⁇ receptor inhibitor, and EGF, and under conditions where cAMP is supplied to the cells. That is, two-stage culture is performed depending on whether or not cAMP is supplied to the cells. In this way, effects of promoting differentiation into intestinal epithelial cells, maturation, and function acquisition can be obtained.
  • the culture period of (a-1) is, for example, 1 day to 5 days.
  • the culture period of (a-2) is, for example, 3 to 15 days.
  • the culture of (a-2) may be performed under conditions where a cAMP-degrading enzyme inhibitor is also present in addition to the MEK1 inhibitor, the DNA methylation inhibitor, the TGF ⁇ receptor inhibitor and the EGF. If such conditions are adopted, it can be expected that inhibition of cAMP degradation suppresses a decrease in intracellular cAMP concentration and promotes differentiation into intestinal epithelium, in particular, acquisition of functions as intestinal epithelial cells. That is, this condition is advantageous for the preparation of more functional intestinal epithelial cell-like cells.
  • cAMP-degrading enzyme inhibitors include IBMX® (3-isobutyl-1-methylxanthine) ® (MIX), Theophylline, Papaverine, Pentoxifylline® (Trental), KS-505, 8-Methoxymethyl-IBMX, Vinpocetine® (TCV-3B), EHNA, Trequinsin (HL-725), Lixazinone (RS-82856), (LY-186126), Cilostamide (OPC3689), Bemorradan (RWJ-22867), Anergrelide (BL4162A), Indolidan (LY195115), Cilostazol (OPC-13013), Milrinone ( WIN47203), Siguazodan (SKF-94836), 5-Methyl-imazodan (CI 930), SKF-95654, Pirilobendan (UD-CG 115 BS), Enoximone (MDL 17043), Imazodan (CL 914), SKF-94120, Vesnarin
  • concentration of cAMP-degrading enzyme inhibitor added is 0.05 to 5 mm, preferably 0.1 to 3 mm, more preferably 0.2 to 1 mm.
  • addition concentration when using a compound different from the exemplified compound that is, a compound different from IBMX, considering the difference between the characteristics of the compound used and the characteristics of the exemplified compound (IBMX) (particularly the difference in activity)
  • concentration range considering the difference between the characteristics of the compound used and the characteristics of the exemplified compound (IBMX) (particularly the difference in activity)
  • concentration range considering the difference between the characteristics of the compound used and the characteristics of the exemplified compound (IBMX) (particularly the difference in activity)
  • concentration range Whether or not the set concentration range is appropriate can be confirmed by a preliminary experiment.
  • culture in the presence of a MEK1 inhibitor, a DNA methylation inhibitor, a TGF ⁇ receptor inhibitor and EGF may be performed.
  • the culture period is, for example, 1 day to 10 days.
  • ⁇ Culture process B> In the culture step B, (b-1) culture in the presence of a MEK1 inhibitor, a DNA methylation inhibitor, a TGF ⁇ receptor inhibitor, and EGF, and a condition in which cAMP is supplied to the cells, followed by the culture. (B-2) Cultivation is carried out in the presence of a MEK1 inhibitor, a DNA methylation inhibitor, a TGF ⁇ receptor inhibitor, EGF and a cAMP degrading enzyme inhibitor.
  • a MEK1 inhibitor a DNA methylation inhibitor
  • TGF ⁇ receptor inhibitor a TGF ⁇ receptor inhibitor
  • EGF EGF
  • a cAMP degrading enzyme inhibitor a cAMP degrading enzyme inhibitor
  • the culture period of (b-1) is, for example, 3 to 15 days.
  • the culture period of (b-2) is, for example, 3 to 15 days.
  • the culture of (b-1) may be carried out under conditions where a cAMP-degrading enzyme inhibitor is present in addition to the MEK1 inhibitor, DNA methylation inhibitor, TGF ⁇ receptor inhibitor and EGF.
  • a cAMP-degrading enzyme inhibitor is present in addition to the MEK1 inhibitor, DNA methylation inhibitor, TGF ⁇ receptor inhibitor and EGF.
  • culture in (b-2) After the culture in (b-2), culture in the presence of a MEK1 inhibitor, a DNA methylation inhibitor, a TGF ⁇ receptor inhibitor and EGF (culture in (b-3)) may be performed.
  • the culture period is, for example, 1 day to 10 days.
  • ⁇ Culture process C> In the culturing step C, (c-1) culturing is performed in the presence of a MEK1 inhibitor, a DNA methylation inhibitor, a TGF ⁇ receptor inhibitor, and EGF, and under conditions where cAMP is supplied to the cells.
  • the culture period of (c-1) is, for example, 3 to 15 days.
  • concentration of each compound, etc. said corresponding description is used.
  • a condition in which a cAMP-degrading enzyme inhibitor is present in addition to the MEK1 inhibitor, the DNA methylation inhibitor, the TGF ⁇ receptor inhibitor and the EGF is also used (the condition in which cAMP is supplied to the cells is used in combination). You may decide to do it. When such conditions are employed, a decrease in intracellular cAMP concentration can be suppressed while supplying cAMP to the cells. Therefore, it is an effective condition for maintaining intracellular cAMP at a high level, and it can be expected that efficient differentiation induction into intestinal epithelial cells is promoted.
  • culture in (c-2) After the culture in (c-1), culture in the presence of a MEK1 inhibitor, a DNA methylation inhibitor, a TGF ⁇ receptor inhibitor and EGF (culture in (c-2)) may be performed.
  • the culture period is, for example, 1 day to 10 days.
  • subculture may be performed in the middle.
  • the cells may be seeded at a cell density of about 1 ⁇ 10 4 cells / cm 2 to 1 ⁇ 10 6 cells / cm 2 .
  • ROCK inhibitor Rho-associated coiled-coil forming kinase / Rho-binding kinase
  • a further aspect of the invention relates to the use of intestinal epithelial cell-like cells.
  • Various assays are provided as a first use.
  • the intestinal epithelial cell-like cell of the present invention can be used in a model system of the intestine, particularly the small intestine, and is useful for evaluating pharmacokinetics (absorption, metabolism, etc.) and toxicity in the intestine, particularly the small intestine.
  • the intestinal epithelial cell-like cell of the present invention can be used for evaluating the pharmacokinetics and toxicity of the compound.
  • the intestinal epithelial cell-like cells of the present invention can be used to test the absorbability or membrane permeability of a test substance, drug interaction, induction of drug metabolizing enzymes, induction of drug transporters, toxicity, etc. it can. That is, the present invention evaluates the absorbability or membrane permeability of a test substance, drug interaction, induction of a drug metabolizing enzyme, induction of a drug transporter, toxicity, etc. as one of the uses of intestinal epithelial cell-like cells.
  • a method (first aspect) is provided.
  • a step of preparing a cell layer composed of intestinal epithelial cell-like cells obtained by the differentiation induction method of the present invention and (ii) a step of bringing a test substance into contact with the cell layer; (Iii) quantifying a test substance that has permeated through the cell layer, and evaluating the absorbability or membrane permeability of the test substance, drug interaction, induction of a drug metabolizing enzyme, induction of a drug transporter, or toxicity Do.
  • the absorbability of the test substance can also be evaluated by the method described later (second aspect).
  • intestinal epithelial cell-like cells are typically cultured on a semipermeable membrane (porous membrane) to form a cell layer.
  • a semipermeable membrane for example, Transwell (registered trademark) provided by Corning
  • a culture insert for example, Transwell (registered trademark) provided by Corning
  • “Contact” in step (ii) is typically performed by adding a test substance to the medium.
  • the timing of adding the test substance is not particularly limited. Therefore, after culturing is started in a medium not containing the test substance, the test substance may be added at a certain point in time, or the culture may be started in advance in a medium containing the test substance.
  • organic compounds or inorganic compounds having various molecular sizes can be used as the test substance.
  • organic compounds include nucleic acids, peptides, proteins, lipids (simple lipids, complex lipids (phosphoglycerides, sphingolipids, glycosylglycerides, cerebrosides, etc.), prostaglandins, isoprenoids, terpenes, steroids, polyphenols, catechins, vitamins (B1, B2, B3, B5, B6, B7, B9, B12, C, A, D, E, etc.) Existing or candidate ingredients such as pharmaceuticals, nutritional foods, food additives, agricultural chemicals, cosmetics (cosmetics)
  • One of the preferable test substances is a plant extract, cell extract, culture supernatant, etc.
  • the test substance can be used by simultaneously adding two or more kinds of test substances.
  • the test substance may be derived from a natural product or synthesized, for example, in the latter case It is possible to build an efficient assay systems using techniques
  • the period for contacting the test substance can be set arbitrarily.
  • the contact period is, for example, 10 minutes to 3 days, preferably 1 hour to 1 day.
  • the contact may be performed in a plurality of times.
  • the test substance that has permeated the cell layer is quantified.
  • a culture vessel equipped with a culture insert such as Transwell a test substance that has passed through the culture insert, that is, a sample that has moved into the upper or lower vessel through the cell layer.
  • the test substance is quantified by a measurement method such as mass spectrometry, liquid chromatography, or immunological technique (for example, fluorescence immunoassay (FIA method), enzyme immunoassay (EIA method)) according to the test substance.
  • FIA method fluorescence immunoassay
  • EIA method enzyme immunoassay
  • the absorbability or membrane permeability of the test substance Based on the quantification result (the amount of the test substance that has permeated the cell layer) and the amount of the test substance used (typically the amount added to the medium), the absorbability or membrane permeability of the test substance, drug interaction, Judge and evaluate drug-metabolizing enzyme induction, drug transporter induction, or toxicity.
  • the present invention also provides a method for evaluating metabolism or absorption of a test substance as another aspect (second aspect).
  • this method (I) a step of bringing a test substance into contact with the intestinal epithelial cell-like cell obtained by the differentiation induction method of the present invention, and (II) metabolism or absorption of the test substance, drug interaction, drug metabolizing enzyme Induction, drug transporter induction, or a step of measuring and evaluating toxicity.
  • Step (I) that is, the contact between the intestinal epithelial cell-like cells and the test substance can be performed in the same manner as in the above step (ii). However, it is not essential to form a cell layer in advance.
  • step (II) the metabolism or absorption of the test substance, drug interaction, induction of drug metabolizing enzyme, induction of drug transporter, or toxicity is measured and evaluated (step (II)).
  • step (I) that is, after contact with the test substance, metabolism or the like can be measured and evaluated without a substantial time interval, or for a certain time (for example, 10 minutes to 5 hours).
  • Metabolism etc. may be measured and evaluated after the passage. Metabolism can be measured, for example, by detecting a metabolite. In this case, the expected metabolite is usually measured qualitatively or quantitatively using the culture solution after step (I) as a sample.
  • An appropriate measurement method may be selected according to the metabolite. For example, mass spectrometry, liquid chromatography, immunological method (eg, fluorescence immunoassay (FIA method), enzyme immunoassay (EIA method)) ) Etc. can be adopted.
  • FFA method fluorescence immunoassay
  • EIA method enzyme
  • the metabolic amount of the test substance can be evaluated according to the amount of the metabolite.
  • the metabolic efficiency of the test substance may be calculated based on the detection result of the metabolite and the amount of the test substance used (typically, the amount added to the medium).
  • Test substance using the expression of drug metabolizing enzymes (cytochrome P450 (especially CYP3A4), uridine diphosphate-glucuronyltransferase (especially UGT1A8, UGT1A10), sulfate transferase (especially SULT1A3, etc.)) in intestinal epithelial cell-like cells It is also possible to measure the metabolism.
  • the expression of drug metabolizing enzymes can be assessed at the mRNA level or protein level. For example, when an increase in the mRNA level of the drug-metabolizing enzyme is observed, it can be determined that “the test substance has been metabolized”. Similarly, when an increase in the activity of the drug-metabolizing enzyme is observed, it can be determined that “the test substance has been metabolized”. As in the case of determining a metabolite as an index, quantitative determination / evaluation may be performed based on the expression level of a drug metabolizing enzyme.
  • the remaining amount of the test substance in the culture solution is measured.
  • the test substance is quantified using the culture solution after step (I) as a sample.
  • An appropriate measuring method may be selected according to the test substance. For example, mass spectrometry, liquid chromatography, immunological techniques (for example, fluorescence immunoassay (FIA method), enzyme immunoassay (EIA method)) and the like can be employed.
  • FFA method fluorescence immunoassay
  • EIA method enzyme immunoassay
  • the amount of absorption or absorption efficiency of the test substance can be determined and evaluated according to the degree of decrease.
  • the absorption can also be evaluated by measuring the amount of the test substance taken up into the cells.
  • the measurement / evaluation of metabolism and the measurement / evaluation of absorption may be performed simultaneously or in parallel.
  • mucin 2 and chromogranin A which are highly expressed in human small intestinal epithelial cells. It was found that the expression level of Caco-2 cells (cells derived from human colon cancer), which are frequently used as a model system for the small intestine, is high at a level that is not comparable. This fact confirms that the cells are extremely useful as a model system for the small intestine, and also shows that expression of mucin 2 and CgA is useful as an index for assays using the cells.
  • the present invention provides, as a further embodiment (third embodiment) of an assay using intestinal epithelial cell-like cells, two evaluation methods using mucin 2 or CgA expression as an index, namely, the digestive tract mucosa of the test substance.
  • a method for evaluating the disorder action (third aspect; hereinafter referred to as “disorder action evaluation method”) and a method for evaluating the protective action of the test substance on the gastrointestinal mucosa (fourth aspect.
  • “protective action evaluation method” Abbreviated as “protective action evaluation method”.
  • the method for evaluating the disorder action of the present invention is particularly useful for predicting a drug that may cause mucosal disorder (ulcer) as a side effect (prediction of the risk of side effects). It is particularly useful for screening for new drugs that have the effect of suppressing side effects or stress ulcers.
  • the disorder action evaluation method (third aspect) of the present invention (a) a step of bringing a test substance into contact with an intestinal epithelial cell-like cell obtained by the differentiation induction method of the present invention, and (b) the intestinal epithelial cell Detecting the expression of mucin 2 or CgA in a cell-like cell and determining the gastrointestinal mucosal disorder action of the test substance based on the detection result, the test substance being observed to have decreased expression of mucin 2 or CgA Is a process that serves as an indicator of having a gastrointestinal mucosal disorder effect.
  • Step (a) that is, the contact between the intestinal epithelial cell-like cell and the test substance can be carried out in the same manner as in the above-described embodiment (first embodiment, second embodiment). However, it is not essential to form a cell layer in advance. Since the test substance that can be used is the same as the above-described aspects (the first aspect and the second aspect), the description thereof is omitted.
  • the expression of mucin 2 or CgA in the intestinal epithelial cell-like cells is detected, and the gastrointestinal mucosal disorder action of the test substance is determined based on the detection result. That is, in the present invention, the gastrointestinal mucosal disorder action of the test substance is determined using the expression of mucin 2 or CgA. More specifically, the fact that decreased expression of mucin 2 or CgA is observed is used as an indicator that the test substance has a gastrointestinal mucosal disorder effect.
  • the test substance has gastrointestinal mucosal disorder action when mucin 2 or CgA expression is decreased, and the test substance is digestive mucosal disorder action when mucin 2 or CgA expression is not decreased. It is determined that it does not have.
  • the strength (degree) of gastrointestinal mucosal damage may be determined based on the degree (level) of mucin 2 or CgA expression reduction. Further, when a plurality of test substances are used, the intensity of the gastrointestinal mucosal disorder action of each test substance may be compared and evaluated based on the degree (level) of mucin 2 or CgA expression decrease. .
  • Mucin 2 and CgA are both secreted proteins.
  • Mucin 2 is a mucosal substance involved in the protection of the intestinal mucosa, and it is known that a decrease in the quality and quantity of mucin 2 induces ulcerative colitis and cancer.
  • CgA is a substance secreted by the excitement of autonomic nerves, and is known clinically as one of tumor markers in blood concentration. In recent years, CgA concentration in saliva is an indicator of stress. (Toyota Central Research Institute R & D Review Vol. 34 No. 3, 17-22 (1999. 9), Kochi Women's University Journal of Nursing VOL.40, NO.1, pp24-30 2014, etc.).
  • mucin 2 and CgA may be detected, for example, according to a conventional method.
  • Detection methods for mucin 2 and CgA include immunological techniques such as RT-PCR, real-time PCR (mRNA measurement / quantification), fluorescence immunoassay (FIA), enzyme immunoassay (EIA), mass An analysis method and the like can be exemplified.
  • FIA fluorescence immunoassay
  • EIA enzyme immunoassay
  • mass An analysis method and the like can be exemplified.
  • CgA there are detection reagents and kits (for example, YK070 Human Chromogranin A provided by Yanaihara Laboratory Co., Ltd.), and these can also be used.
  • control intestinal epithelial cell-like cells (other conditions are the same) (hereinafter referred to as “control”) that are not brought into contact with the test substance are prepared as comparative controls, and the expression of mucin 2 or CgA is also detected. . Then, by comparing with the expression level of the control, it is determined whether the test substance has decreased the expression of mucin 2 or CgA. As described above, when the gastrointestinal mucosal disorder action of the test substance is determined by comparison with the control, a more reliable determination result can be obtained.
  • the protective action evaluation method of the present invention (fourth embodiment), (A) in the presence of a substance exhibiting a gastrointestinal mucosal disorder action, a test substance is applied to the intestinal epithelial cell-like cells obtained by the differentiation induction method of the present invention. And (B) detecting mucin 2 or CgA expression in the intestinal epithelial cell-like cell and determining the protective action of the test substance on the gastrointestinal mucosa based on the detection result, the mucin produced by the substance 2 or the suppression of the decrease in the expression of CgA is performed as a step that serves as an indicator that the test substance has a gastrointestinal mucosa protective action.
  • step (A) intestinal epithelial cell-like cells are contacted with a test substance in the presence of a substance exhibiting a gastrointestinal mucosal disorder action (hereinafter referred to as “mucosal disorder agent”).
  • the contact between the intestinal epithelial cell-like cell and the test substance can be carried out in the same manner as in the above-described embodiment (third embodiment).
  • Intestinal epithelial cell-like cells are cultured in a state where is added.
  • the timing of adding the mucosal disorder agent and the test substance is not particularly limited.
  • the mucosal disorder agent and the test substance are included in advance. You may decide to start culture with a culture medium.
  • the order of adding the mucosal disorder agent and the test substance is not particularly limited. That is, the former may be added first, the latter added first, or both added simultaneously.
  • mucosal disorder agents Various substances that damage the gastrointestinal mucosa by reducing the expression of mucin 2 and / or CgA can be used as mucosal disorder agents in the present invention.
  • substances that can be used as mucosal disorder agents include indomethacin, aspirin, ketoprofen, ibuprofen, and the like.
  • the amount (addition concentration) of the mucosal disorder agent may be set with reference to past reports on the action of the mucosal disorder agent to be used or through preliminary experiments. Two or more substances may be used in combination.
  • the description is abbreviate
  • the expression of mucin 2 or CgA in the intestinal epithelial cell-like cells is detected, and the gastrointestinal mucosa protective action of the test substance is determined based on the detection result. That is, in the present invention, the protective action of the test substance on the gastrointestinal mucosa is determined using the expression of mucin 2 or CgA. More specifically, the suppression of mucin 2 or CgA expression reduction by a mucosal disorder agent is used as an indicator that the test substance has a gastrointestinal mucosa protective action.
  • the test substance is judged to have a gastrointestinal mucosal protective action, and the mucosal 2 agent or CgA expression decrease by the mucosal disorder agent is not suppressed
  • the test substance is determined not to have a protective action on the mucosa of the digestive tract.
  • the strength (degree) of gastrointestinal mucosa protective action may be determined based on the degree (level) at which the decrease in mucin 2 or CgA expression is suppressed.
  • the strength of the gastrointestinal mucosa protective action of each test substance will be compared and evaluated. Also good.
  • a comparative control control
  • intestinal epithelial cell-like cells contacted with a test substance in the absence of a mucosal disorder agent and / or intestinal epithelial cell-like cells not contacted with a test substance (in the presence of a mucosal disorder agent) Can be used.
  • the evaluation method of this aspect is particularly useful for screening for a new drug having an action of suppressing mucosal damage or stress ulcer as a side effect of the drug.
  • an effective test substance is selected based on the determination result in the step (B).
  • the selected substance has a sufficient medicinal effect
  • the substance can be used as an active ingredient of the intestinal mucosa protective agent as it is.
  • it does not have a sufficient medicinal effect it can be used as an active ingredient of an intestinal mucosa protective agent after improving its medicinal effect by modifying such as chemical modification.
  • the same modification may be applied for the purpose of further increasing the medicinal effect.
  • a cell preparation containing intestinal epithelial cell-like cells is provided as a second use of the intestinal epithelial cell-like cells prepared by the differentiation induction method of the present invention.
  • the cell preparation of the present invention can be applied to the treatment of various intestinal diseases. In particular, it is expected to be used as a material for regeneration / reconstruction of intestinal epithelial tissue that has been impaired (including dysfunction). That is, contribution to regenerative medicine can be expected.
  • intestinal epithelial cell-like cells obtained by the method of the present invention are suspended in physiological saline or a buffer solution (for example, a phosphate buffer solution), or the cells are used. It can be prepared by producing a three-dimensional tissue (organoid or spheroid).
  • 1 ⁇ 10 5 to 1 ⁇ 10 10 cells may be contained as a single dose so that a therapeutically effective amount of cells can be administered.
  • the content of the cells can be appropriately adjusted in consideration of the purpose of use, the target disease, the sex of the application target (recipient), age, weight, diseased state, cell state, and the like.
  • DMSO Dimethyl sulfoxide
  • serum albumin for the purpose of cell protection, antibiotics for the purpose of blocking bacterial contamination, and various components (vitamins for the purpose of cell activation, proliferation or differentiation induction, etc. , Cytokines, growth factors, steroids, etc.) may be included in the cell preparation of the present invention.
  • other pharmaceutically acceptable ingredients for example, carriers, excipients, disintegrants, buffers, emulsifiers, suspensions, soothing agents, stabilizers, preservatives, preservatives, physiological saline, etc. You may make it contain in the cell formulation of this invention.
  • Method (1) Cells Human iPS cells (iPS-51: Windy) are expressed in human fetal lung fibroblasts MRC-5, octamer binding protein 3/4 (OCT3 / 4), sex determining region Y-box 2 (SOX2), After introducing kruppel-like factor 4 (KLF4), v-myc myelocytomatosis viral oncogene homolog (avian) (c-MYC) using a pantropic retrovirus vector, human ES cell-like colonies are cloned, Granted by Dr. Akihiro Umezawa, National Center for Child Health and Development. Mouse fetal fibroblasts (MEF) were used as feeder cells.
  • KLF4 kruppel-like factor 4
  • c-MYC v-myc myelocytomatosis viral oncogene homolog
  • FBS fetal bovine serum
  • L-Glu 2 mmol / L L-glutamine
  • NEAA non-essential amino acid
  • 100 units / mL penicillin G 100 ⁇ g / mL Dulbecco's modified Eagle medium (DMEM) containing streptomycin was used.
  • EDTA trypsin-ethylenediaminetetraacetic acid
  • Cell Banker 1 was used as the MEF stock solution.
  • Human iPS cells were seeded on MEF (5 ⁇ 10 5 cells / 100 mm dish) treated with mitomycin C and cultured in a CO 2 incubator under 5% CO 2 /95% air conditions. Incubated at 0 ° C. Human iPS cells were subcultured at a split ratio of 1: 2 to 1: 3 after 3-5 days of culture. For human iPS cells, the medium was changed 48 hours after thawing and thereafter daily.
  • maintenance medium (10% KSR, 100 units / mL penicillin G, 100 ⁇ g / mL) containing factors considered necessary for maintaining stem cell properties Streptomycin, 1% glutamax, 5 ⁇ M Y-27632, 100 ng / mL EGF, 100 ng / mL Noggin, 100 ng / mL R-spondin 1, 100 ng / mL Wnt 3a, fibroblast growth factor (5 ng / mL Advanced with FGF2 or 100 ng / mL FGF4 or 100 ng / mL FGF10), 10 ⁇ M CHIR 99021, 1 mM valproic acid, 1 mg / mL nicotinamide, 1.5 ⁇ M A-83-01, 10 ⁇ M SB202190, 1 mM N-Acetylcystein DMEM / F12) was newly devised and used in this study.
  • Intestinal stem cells differentiated from iPS cells were detached with actase, suspended in a maintenance medium, and seeded in a gelatin-coated 6- or 10-cm dish for cell culture. This time was designated as Passage IV1.
  • the medium was replaced every 2-3 days with a medium obtained by removing Y-27632 from the maintenance medium. Passaging was started with the proportion of cells to the culture dish being about 80%.
  • the culture solution was removed from the culture dish by aspiration, and washed twice with D-PBS ( ⁇ ) 5 mL / 10 cm dish.
  • the cell suspension was peeled off with actase and recovered in a 15 mL centrifuge tube.
  • RNA ribonucleic acid
  • RNA extraction After completion of recovery after subculture of intestinal stem cells and differentiation into intestinal epithelial cells, extraction was performed according to the attached manual of Agencourt (registered trademark) RNAdvance TM issue Kit.
  • cDNA Reverse Transcription Reaction Complementary DNA
  • LGR5 G protein-coupled receptor including leucine-rich repeat, marker of intestinal stem cell
  • SOX9 intestinal progenitor cell marker
  • Villin Villin 1, a major component of microvilli
  • Sucrase-isomaltase Sucrase-isomaltase, Disaccharide-degrading enzyme in the intestinal epithelium, Intestinal epithelial specific marker
  • PEPT1 SLC (solute carrier) family member 15A1 / peptide transporter 1, expressed on the apical membrane side of the small intestine
  • MDR1 ATP binding cassette transporter B1 / multidrug resistance protein 1, P glycoprotein, excretion transporter
  • the increase in mRNA expression was found to be 4.1 to 15.8 times for Villin, 53.6 to 86.2 times for Sucrase-isomaltase, 4.0 to 6.1 times for PEPT1, and 23.4 to 28.0 times for MDR1. (FIG. 4).
  • intestinal stem cells differentiated from human iPS cells can be cultured while maintaining the properties of intestinal stem cells.
  • intestinal stem cells cultured for maintenance were differentiated into intestinal epithelial cells, the mRNA expression levels of intestinal epithelial markers and pharmacokinetic-related genes were greatly increased compared to controls.
  • This result shows that the well-established maintenance culture method of human iPS cell-derived intestinal stem cells is not only a means to proliferate and maintain intestinal stem cells in large quantities, but also to promote differentiation and function into intestinal epithelial cells. It is useful for improvement.
  • Real-time reverse polymerase chain reaction (Real-Time RT-PCR)>
  • KAPA SYBR Fast qPCR Kit was used, and the reaction was performed according to the attached manual using cDNA as a template. Results were corrected using hypoxanthine-guanine phosphoribosyltransferase (HPRT) as an endogenous control.
  • HPRT hypoxanthine-guanine phosphoribosyltransferase
  • Real-time reverse polymerase chain reaction (Real-Time RT-PCR)>
  • KAPA SYBR Fast qPCR Kit was used, and the reaction was performed according to the attached manual using cDNA as a template. Results were corrected using hypoxanthine-guanine phosphoribosyltransferase (HPRT) as an endogenous control.
  • HPRT hypoxanthine-guanine phosphoribosyltransferase
  • FIG. 5 shows the detection results of mucin 2 mRNA.
  • the intestinal epithelial cells (Con) prepared by this method highly expressed mucin 2, which is hardly expressed in Caco-2 cells derived from human colon cancer (Caco-2).
  • the expression level reaches about 30% of the expression level of commercially available human small intestine-derived cells (SI). This fact indicates that the intestinal epithelial cells prepared by this method are extremely useful as a model system for the small intestine.
  • the intestinal epithelial cells prepared by this method used CgA expression as an index (specifically, prediction of drugs causing mucosal damage (ulcer) as a side effect (prediction of side effect risk) and It is useful for the screening system of drugs having the effect of suppressing various side effects or stress ulcers).
  • a Advanced DMEM / F12 containing -83-01 is used to subculture intestinal stem cells obtained by differentiating human iPS cells, and the expression level of markers (LGR5: small intestinal stem cell marker, CDX2: hindgut marker) is used as an indicator It was evaluated whether the stem cell nature was maintained. Other than the medium conditions, the same as in the case of A above.
  • the cells to be used (human iPS cells, MEF), the method for culturing human iPS cells and the like were the same as in the case of A above.
  • the medium used in this study has a significantly smaller number of factors added than the medium used in the study of A above, and in particular, valproic acid which is a histone deacetylation inhibitor is not added. There are features.
  • the maintenance culture method using the above medium is extremely effective for maintaining (culturing) human iPS cell-derived intestinal stem cell-like cells, promoting differentiation into intestinal epithelial cells, and improving functions. .
  • the culture method of the present invention makes it possible to prepare a large amount of iPS cell-derived intestinal stem cell-like cells and maintain them for a long period of time.
  • more mature intestinal epithelial cell-like cells can be obtained by preparing iPS cell-derived intestinal epithelial cell-like cells via the culture method of the present invention.
  • Intestinal epithelial cell-like cells are useful as a model system for the small intestine, and can be used for absorption / metabolism / membrane permeability, induction of drug-metabolizing enzymes, induction of drug transporters, evaluation of toxicity, and the like.
  • it is expected to be used as an active ingredient of cell preparations for treating various intestinal diseases or as a material for regenerative medicine.
  • the present invention is also expected to contribute to elucidation of the function of intestinal stem cells, elucidation of the intestinal development process, elucidation of the cause and progression mechanism of gastrointestinal diseases.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Cell Biology (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Engineering & Computer Science (AREA)
  • Developmental Biology & Embryology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

腸管幹細胞の性質を維持させたまま、人工多能性幹細胞由来腸管幹細胞を維持・培養することを可能にする培養方法を提供することを課題とする。人工多能性幹細胞由来腸管幹細胞様細胞をGSK-3β阻害剤、ヒストン脱アセチル化阻害剤、及び血清代替物の存在下、或いはGSK-3β阻害剤及び血清代替物の存在下で培養する。好ましくは、上皮成長因子、TGFβ受容体阻害剤及び線維芽細胞増殖因子からなる群より選択される一以上の化合物が更に存在する条件下で培養する。

Description

人工多能性幹細胞由来腸管幹細胞の維持培養
 本発明は人工多能性幹細胞由来の腸管幹細胞を培養する技術及びその用途に関する。本出願は、2017年2月20日に出願された日本国特許出願第2017-029448号に基づく優先権を主張するものであり、当該特許出願の全内容は参照により援用される。
 小腸には多くの薬物代謝酵素や薬物トランスポーターが存在することから、肝臓と同様、薬物の初回通過効果に関わる臓器として非常に重要である。そのため、医薬品開発早期の段階から小腸における医薬品の膜透過性や代謝を評価することが、薬物動態特性に優れた医薬品の開発に必要である。現在、小腸のモデル系としてはヒト結腸癌由来のCaco-2細胞が多用されている。しかし、Caco-2細胞における薬物トランスポーターの発現パターンはヒト小腸とは異なる。また、Caco-2細胞には薬物代謝酵素の発現及び酵素誘導はほとんど認められないことから、正確に小腸での薬物動態を評価することは難しい。したがって、小腸における薬物代謝及び膜透過性を総合的に評価するためには初代小腸上皮細胞の利用が望ましいが、初代小腸上皮細胞の入手は困難である。
 そこで、ヒト胚性幹細胞(embryonic stem cells:ES細胞)と同様の多分化能とほぼ無限の増殖能を有するヒト人工多能性幹細胞(induced pluripotent stem cells:iPS細胞)から作製される腸管上皮細胞の利用が期待されている。
 尚、生体の腸管から腸管幹細胞を単離し、体外で腸管幹細胞や腸管上皮細胞を培養する技術やヒトiPS細胞から腸管上皮細胞を分化誘導する技術はいくつか報告されているが(例えば特許文献1~4、非特許文献1~3を参照)、ヒトiPS細胞由来の腸管幹細胞の維持又は増殖を目的とした培養技術は報告されていない。
国際公開第2014/132933号パンフレット 特表2016-512958号公報 特表2014-516562号公報 再表2012-060315号公報
Yin X. et al., Niche-independent high-purity cultures of Lgr5(+) intestinal stem cells and their progeny. Nature Methods, 2014. 11(1): p. 106-112. Wang X. et al., Cloning and Variation of Ground State Intestinal Stem Cells. Nature, 522 (7555):173-178. (2015) Sato T. et al., Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology. 2011 Nov;141(5):1762-72
 iPS細胞から腸管上皮細胞まで分化させるには多くの時間と費用がかかることが課題である。また、ヒトiPS細胞由来腸管上皮細胞を大量に供給するためには、分化途中の腸管幹細胞の段階における培養技術の開発が必要不可欠である。そこで、本発明は、腸管幹細胞の性質、即ち、未分化性、増殖能及び腸管上皮細胞への分化能を維持させたまま、iPS細胞由来腸管幹細胞を維持・培養することを可能にする培養技術及びその応用・用途を提供することを課題とする。
 これまでの報告を踏まえつつ、未分化性の維持に必要又は有効と考えられる因子の様々な組合せを設定し、ヒトiPS細胞から誘導した腸管幹細胞様細胞の培養における効果・影響を詳細に検討した。その結果、特に有効な因子の組合せが見出され、当該組合せを用いた培養液を使用することにより、その性質を維持させたままでヒトiPS由来腸管幹細胞様細胞を維持、増殖させることが可能になった。また、驚くべきことに、当該培養方法で維持した腸管幹細胞様細胞を腸管上皮細胞へと分化誘導したところ、当該培養方法による培養を経ていない場合に比較して、腸管上皮マーカー及び薬物動態関連遺伝子の発現が大きく上昇した。即ち、確立に成功した培養方法が、腸管幹細胞様細胞を大量に調製することや長期間にわたって維持することのみならず、腸管上皮細胞への分化促進及び機能向上にも有用であることが判明した。以下の発明は、主として、以上の成果に基づく。
 [1]人工多能性幹細胞由来の腸管幹細胞様細胞をGSK-3β阻害剤、ヒストン脱アセチル化阻害剤、及び血清代替物の存在下、或いはGSK-3β阻害剤及び血清代替物の存在下で培養する工程を含む、人工多能性幹細胞由来の腸管幹細胞様細胞を培養する方法。
 [2]GSK-3β阻害剤がCHIR 99021、SB216763、CHIR 98014、TWS119、Tideglusib、SB415286、BIO、AZD2858、AZD1080、AR-A014418、TDZD-8、LY2090314、IM-12、Indirubin、Bikinin又は1-Azakenpaulloneであり、ヒストン脱アセチル化阻害剤がバルプロ酸、ボリノスタット、トリコスタチンA、ツバスタチンA、ギビノスタット又はプラシノスタットであり、血清代替物がノックアウト血清代替物である、[1]に記載の方法。
 [3]前記培養が、上皮成長因子、TGFβ受容体阻害剤及び線維芽細胞増殖因子からなる群より選択される一以上の化合物が更に存在する条件下で行われる、[1]又は[2]に記載の方法。
 [4]TGFβ受容体阻害剤がA-83-01であり、線維芽細胞増殖因子がFGF2、FGF4又はFGF10である、[3]に記載の方法。
 [5]前記培養が、BMP阻害剤、Wntシグナル活性化剤及びWntアゴニストからなる群より選択される一以上の化合物が更に存在する条件下で行われる、[1]~[4]のいずれか一に記載の方法。
 [6]BMP阻害剤がNogginであり、Wntシグナル活性化剤がR-spondin 1であり、WntアゴニストがWnt3aである、[5]に記載の方法。
 [7]前記培養が、ニコチンアミド、N-アセチルシステイン、p38阻害剤及びROCK阻害剤からなる群より選択される一以上の化合物が更に存在する条件下で行われる、[1]~[6]のいずれか一に記載の方法。
 [8]p38阻害剤がSB202190であり、ROCK阻害剤がY-27632である、[7]に記載の方法。
 [9]人工多能性幹細胞がヒト人工多能性幹細胞である、[1]~[8]のいずれか一に記載の方法。
 [10][1]~[9]のいずれか一に記載の方法で培養した腸管幹細胞様細胞を腸管上皮細胞様細胞へと分化させる工程を含む、腸管上皮細胞様細胞を調製する方法。
 [11][10]に記載の方法で得られた腸管上皮細胞様細胞。
 [12][11]に記載の腸管上皮細胞様細胞を用いた、被検物質の体内動態又は毒性を評価する方法。
 [13]前記体内動態が、代謝、吸収、排泄、薬物相互作用、薬物代謝酵素の誘導、又は薬物トランスポーターの誘導である、[12]に記載の方法。
 [14]以下の工程(i)~(iii)を含む、[12]又は[13]に記載の方法:
 (i)[11]に記載の腸管上皮細胞様細胞で構成された細胞層を用意する工程;
 (ii)前記細胞層に被検物質を接触させる工程;
 (iii)前記細胞層を透過した被検物質を定量し、被検物質の吸収性ないし膜透過性、薬物相互作用、薬物代謝酵素の誘導、薬物トランスポーターの誘導、又は毒性を評価する工程。
 [15]以下の工程(I)及び(II)を含む、[12]又は[13]に記載の方法:
 (I)[11]に記載の腸管上皮細胞様細胞に被検物質を接触させる工程;
 (II)被検物質の代謝若しくは吸収、薬物相互作用、薬物代謝酵素の誘導、薬物トランスポーターの誘導、又は毒性を測定・評価する工程。
 [16]以下の工程(a)及び(b)を含む、被検物質の消化管粘膜障害作用を評価する方法:
 (a)[11]に記載の腸管上皮細胞様細胞に被検物質を接触させる工程;
 (b)前記腸管上皮細胞様細胞におけるムチン2又はクロモグラニンAの発現を検出し、検出結果に基づき被検物質の消化管粘膜障害作用を判定する工程であって、ムチン2又はクロモグラニンAの発現低下が認められることが、被検物質が消化管粘膜障害作用を有することの指標となる工程。
 [17]以下の工程(A)及び(B)を含む、被検物質の消化管粘膜保護作用を評価する方法:
 (A)消化管粘膜障害作用を示す物質の存在下、[11]に記載の腸管上皮細胞様細胞に被検物質を接触させる工程;
 (B)前記腸管上皮細胞様細胞におけるムチン2又はクロモグラニンAの発現を検出し、検出結果に基づき被検物質の消化管粘膜保護作用を判定する工程であって、前記物質によるムチン2又はクロモグラニンAの発現低下の抑制が認められることが、被検物質が消化管粘膜保護作用を有することの指標となる工程。
 [18][11]に記載の腸管上皮細胞様細胞を含む、細胞製剤。
ヒトiPS細胞から分化させた腸管幹細胞の維持培養における腸管幹細胞関連遺伝子の発現。FGF2を培地に添加した場合の結果を示す。コントロールはヒトiPS細胞から腸管幹細胞へ分化させた細胞(未継代)。 ヒトiPS細胞から分化させた腸管幹細胞の維持培養における腸管幹細胞関連遺伝子の発現。FGF4を培地に添加した場合の結果を示す。コントロールはヒトiPS細胞から腸管幹細胞へ分化させた細胞(未継代)。 ヒトiPS細胞から分化させた腸管幹細胞の維持培養における腸管幹細胞関連遺伝子の発現。FGF10を培地に添加した場合の結果を示す。コントロールはヒトiPS細胞から腸管幹細胞へ分化させた細胞(未継代)。 腸管幹細胞から分化させた腸管上皮細胞における各種マーカー遺伝子のmRNA発現量。平均値± S.D. (n=3)で結果を示した。コントロールは腸管幹細胞として維持培養せずに分化させた群。 腸管幹細胞から分化させた腸管上皮細胞におけるムチン2の発現(mRNAレベル)及びそれを利用したアッセイの結果。縦軸は、市販のヒト小腸細胞(SI)の発現レベルを基準(1)にした相対値。 Con:コントロール(インドメタシン及びレバミピド非添加の培地で培養した腸管上皮細胞)。 I50:インドメタシンを濃度50μMで添加した培地で培養した腸管上皮細胞。 I200:インドメタシンを濃度200μMで添加した培地で培養した腸管上皮細胞。 R50:レバミピドを濃度50μMで添加した培地で培養した腸管上皮細胞。 R100:レバミピドを濃度100μMで添加した培地で培養した腸管上皮細胞。 R200:レバミピドを濃度200μMで添加した培地で培養した腸管上皮細胞。 I200+R50:インドメタシンを濃度200μM、レバミピドを濃度50μMで添加した培地で培養した腸管上皮細胞。 I200+R100:インドメタシンを濃度200μM、レバミピドを濃度100μMで添加した培地で培養した腸管上皮細胞。 I200+R200:インドメタシンを濃度200μM、レバミピドを濃度200μMで添加した培地で培養した腸管上皮細胞。 SI:市販のヒト小腸細胞。 Caco-2:ヒト結腸癌由来細胞。 腸管幹細胞から分化させた腸管上皮細胞におけるクロモグラニンA(CgA)の発現(mRNAレベル)及びそれを利用したアッセイの結果。縦軸は、市販のヒト小腸細胞(SI)の発現レベルを基準(1)にした相対値。 Con:コントロール(インドメタシン及びレバミピド非添加の培地で培養した腸管上皮細胞)。 I50:インドメタシンを濃度50μMで添加した培地で培養した腸管上皮細胞。 I200:インドメタシンを濃度200μMで添加した培地で培養した腸管上皮細胞。 R50:レバミピドを濃度50μMで添加した培地で培養した腸管上皮細胞。 R100:レバミピドを濃度100μMで添加した培地で培養した腸管上皮細胞。 R200:レバミピドを濃度200μMで添加した培地で培養した腸管上皮細胞。 I200+R50:インドメタシンを濃度200μM、レバミピドを濃度50μMで添加した培地で培養した腸管上皮細胞。 I200+R100:インドメタシンを濃度200μM、レバミピドを濃度100μMで添加した培地で培養した腸管上皮細胞。 I200+R200:インドメタシンを濃度200μM、レバミピドを濃度200μMで添加した培地で培養した腸管上皮細胞。 SI:市販のヒト小腸細胞。 Caco-2:ヒト結腸癌由来細胞。 ヒトiPS細胞から分化させた腸管幹細胞の維持培養における腸管幹細胞関連遺伝子の発現。P0は未継代。n=1、P:=継代数、SI:ヒト小腸、C:Caco-2細胞。 腸管幹細胞から分化させた腸管上皮細胞における各種マーカー遺伝子のmRNA発現量。平均値± S.D. (n=3)で結果を示した。P0は腸管幹細胞として維持培養せずに分化させた群。P:継代数、SI:ヒト小腸、C:Caco-2細胞。 腸管幹細胞から分化させた腸管上皮細胞における各種マーカー遺伝子のmRNA発現量。P:継代数、SI:ヒト小腸、C:Caco-2細胞。CYP3A4については、Caco-2での発現は検出されず(N.D.)。
 本発明は、人工多能性幹細胞(iPS細胞)由来の腸管幹細胞様細胞を培養する方法に関する。本発明によれば、腸管幹細胞の性質、即ち、未分化性、増殖能及び上皮細胞への分化能を維持させたまま、iPS細胞由来腸管幹細胞様細胞を維持し、増殖させることが可能になる。
1.用語
 本発明において重要な用語の一部を説明する。「iPS細胞由来腸管幹細胞様細胞」とは、iPS細胞を腸管上皮細胞系譜へ分化誘導することによって得られる、生体における腸管幹細胞に類似した特徴を示す細胞である。iPS細胞由来腸管幹細胞様細胞を適切な条件で更に分化誘導すれば、生体における腸管上皮細胞に類似した細胞(腸管上皮細胞様細胞)が得られる。尚、本明細書において「分化誘導する」とは、特定の細胞系譜に沿って分化するように働きかけることをいう。
 「人工多能性幹細胞(iPS細胞)」とは、初期化因子の導入などにより体細胞をリプログラミングすることによって作製される、多能性(多分化能)と増殖能を有する細胞である。人工多能性幹細胞はES細胞に近い性質を示す。iPS細胞の作製に使用する体細胞は特に限定されず、分化した体細胞でもよいし、未分化の幹細胞でもよい。また、その由来も特に限定されないが、好ましくは哺乳動物(例えば、ヒトやチンパンジーなどの霊長類、マウスやラットなどのげっ歯類)の体細胞、特に好ましくはヒトの体細胞を用いる。iPS細胞は、これまでに報告された各種方法によって作製することができる。また、今後開発されるiPS細胞作製法を適用することも当然に想定される。
 iPS細胞作製法の最も基本的な手法は、転写因子であるOct3/4、Sox2、Klf4及びc-Mycの4因子を、ウイルスを利用して細胞へ導入する方法である(Takahashi K, Yamanaka S: Cell 126 (4), 663-676, 2006; Takahashi, K, et al: Cell 131 (5), 861-72, 2007)。ヒトiPS細胞についてはOct4、Sox2、Lin28及びNonogの4因子の導入による樹立の報告がある(Yu J, et al: Science 318(5858), 1917-1920, 2007)。c-Mycを除く3因子(Nakagawa M, et al: Nat. Biotechnol. 26 (1), 101-106, 2008)、Oct3/4及びKlf4の2因子(Kim J B, et al: Nature 454 (7204), 646-650, 2008)、或いはOct3/4のみ(Kim J B, et al: Cell 136 (3), 411-419, 2009)の導入によるiPS細胞の樹立も報告されている。また、遺伝子の発現産物であるタンパク質を細胞に導入する手法(Zhou H, Wu S, Joo JY, et al: Cell Stem Cell 4, 381-384, 2009; Kim D, Kim CH, Moon JI, et al: Cell Stem Cell 4, 472-476, 2009)も報告されている。一方、ヒストンメチル基転移酵素G9aに対する阻害剤BIX-01294やヒストン脱アセチル化酵素阻害剤バルプロ酸(VPA)或いはBayK8644等を使用することによって作製効率の向上や導入する因子の低減などが可能であるとの報告もある(Huangfu D, et al: Nat. Biotechnol. 26 (7), 795-797, 2008; Huangfu D, et al: Nat. Biotechnol. 26 (11), 1269-1275, 2008; Silva J, et al: PLoS. Biol. 6 (10), e 253, 2008)。遺伝子導入法についても検討が進められ、レトロウイルスの他、レンチウイルス(Yu J, et al: Science 318(5858), 1917-1920, 2007)、アデノウイルス(Stadtfeld M, et al: Science 322 (5903), 945-949, 2008)、プラスミド(Okita K, et al: Science 322 (5903), 949-953, 2008)、トランスポゾンベクター(Woltjen K, Michael IP, Mohseni P, et al: Nature 458, 766-770, 2009; Kaji K, Norrby K, Pac a A, et al: Nature 458, 771-775, 2009; Yusa K, Rad R, Takeda J, et al: Nat Methods 6, 363-369, 2009)、或いはエピソーマルベクター(Yu J, Hu K, Smuga-Otto K, Tian S, et al: Science 324, 797-801, 2009)を遺伝子導入に利用した技術が開発されている。
 iPS細胞への形質転換、即ち初期化(リプログラミング)が生じた細胞はFbxo15、Nanog、Oct/4、Fgf-4、Esg-1及びCript等の多能性幹細胞マーカー(未分化マーカー)の発現などを指標として選択することができる。選択された細胞をiPS細胞として回収する。
 iPS細胞は、例えば、国立大学法人京都大学又は国立研究開発法人理化学研究所バイオリソースセンターから提供を受けることもできる。
2.人工多能性幹細胞由来腸管幹細胞様細胞の培養
 本発明の培養方法の一態様(以下の説明において「第1培養方法」と呼ぶことがある)は、iPS細胞を分化誘導することによって得られるiPS細胞由来腸管幹細胞様細胞をGSK-3β阻害剤、ヒストン脱アセチル化阻害剤、及び血清代替物の存在下で培養することを特徴とする。換言すれば、本発明では、iPS細胞由来腸管幹細胞様細胞をGSK-3β阻害剤、ヒストン脱アセチル化阻害剤、及び血清代替物の存在下で培養する工程を行う。
 「GSK-3β阻害剤、ヒストン脱アセチル化阻害剤、及び血清代替物の存在下」とは、これらの化合物が培地中に添加された条件と同義である。従って、これらの化合物が添加された培地を用いて培養を実施すればよい。これら3成分を併用することにより、腸管幹細胞の性質、即ち、未分化性、増殖能及び上皮細胞への分化能を維持させる効果を期待できる。尚、説明の便宜上、GSK-3β阻害剤、ヒストン脱アセチル化阻害剤、及び血清代替物をまとめて、「第1群の成分」と呼ぶ。
 本発明の別の一態様(以下の説明において「第2培養方法」と呼ぶことがある)では、第1群の成分の内、ヒストン脱アセチル化阻害剤を省略する。換言すれば、GSK-3β阻害剤及び血清代替物の存在下で培養することを特徴とし、簡素化された培養方法となる。
 GSK-3β阻害剤としてCHIR 99021、SB216763、CHIR 98014、TWS119、Tideglusib、SB415286、BIO、AZD2858、AZD1080、AR-A014418、TDZD-8、LY2090314、IM-12、Indirubin、Bikinin、1-Azakenpaulloneを例示することができる。同様にヒストン脱アセチル化阻害剤としてバルプロ酸、ボリノスタット、トリコスタチンA、ツバスタチンA、ギビノスタット、プラシノスタットを例示することができる。一方、血清代替物とは、iPS細胞やES細胞等をその未分化な状態を維持させたままで培養するために、分化誘導因子を含む血清の代わりとして使用される組成物である。好ましくは、ノックアウト血清代替物(Knockout serum replacement(KSR))を用いる。
 GSK-3β阻害剤の添加濃度の例(CHIR 99021の場合)を示すと1μM~100μM、好ましくは3μM~30μMである。第2培養方法の場合には2μM~20μMも好ましい添加濃度範囲である。同様に、ヒストン脱アセチル化阻害剤の添加濃度の例(バルプロ酸の場合)を示すと0.1 mM~10 mM、好ましくは0.5 mM~3 mMであり、血清代替物の添加濃度の例(KSRの場合)を示すと5%(v/v)~20%(v/v)、好ましくは5%(v/v)~10%(v/v)である。
 活性や増殖率の低下を防止する等の理由から、必要に応じて培地交換をする。例えば、24時間~3日に1回の頻度で培地交換するとよい。また、コンフルエント又はサブコンフルエントになった段階で継代するとよい。
 好ましい一態様では、上記の第1群の成分に加えて、上皮成長因子(EGF)、TGFβ受容体阻害剤及び線維芽細胞増殖因子からなる群より選択される一以上の化合物が更に存在する条件下で培養を実施する。尚、説明の便宜上、上皮成長因子(EGF)、TGFβ受容体阻害剤及び線維芽細胞増殖因子をまとめて、「第2群の成分」と呼ぶ。
 上皮成長因子を用いることにより、細胞増殖を促進させる効果を期待できる。同様に、TGFβ受容体阻害剤には間葉系細胞への転換と分化誘導因子を抑制する効果、線維芽細胞増殖因子には細胞増殖を促進させる効果と、分化を抑制する効果を期待できる。好ましくは、これら第2群の成分を全て併用する(第1群の成分と合わせ、合計で6成分が併用されることになる)。
 TGFβ受容体阻害剤として例えばA-83-01を用いることができる。また、線維芽細胞増殖因子としてはFGF2、FGF4又はFGF10を採用するとよい。これらFGFファミリーの2つ又は3つを組み合わせて使用してもよい。
 上皮成長因子の添加濃度の例を示すと10 ng/mL~500 ng/mL、好ましくは50 ng/mL~200 ng/mLである。同様に、TGFβ受容体阻害剤の添加濃度の例(A-83-01の場合)を示すと0.3μM~5μM、好ましくは0.5μM~3μMであり、線維芽細胞増殖因子の添加濃度の例(FGF2の場合)を示すと5 ng/mL~200 ng/mL、好ましくは20 ng/mL~50 ng/mLである。第2培養方法の場合のTGFβ受容体阻害剤の添加濃度については、0.3μM~3μM(A-83-01の場合)も好ましい添加濃度範囲である。
 更に好ましい一態様では、BMP阻害剤、Wntシグナル活性化剤及びWntアゴニストからなる群より選択される一以上の化合物が更に存在する条件下で培養を実施する。尚、説明の便宜上、BMP阻害剤、Wntシグナル活性化剤及びWntアゴニストをまとめて、「第3群の成分」と呼ぶ。
 BMP阻害剤を用いることにより、幹細胞の分化を抑制し、幹細胞性を維持する効果を期待できる。同様に、Wntシグナル活性化剤には幹細胞の増殖と幹細胞性を維持する効果、WntアゴニストにはWntシグナルを活性化することで幹細胞の増殖と幹細胞性を維持する効果を期待できる。好ましくは、上記第2群の成分の全てと、これら第3群の成分の全てを併用する(第1培養方法の場合、第1群の成分と合わせ、合計で9成分が併用されることになる)。
 BMP阻害剤として例えばNogginを用いることができる。また、Wntシグナル活性化剤として例えばR-spondin 1を用いることができる。Wntアゴニストとして例えばWnt3aを用いることができる。
 BMP阻害剤の添加濃度の例(Nogginの場合)を示すと10 ng/mL~500 ng/mL、好ましくは50 ng/mL~200 ng/mLである。同様に、Wntシグナル活性化剤の添加濃度の例(R-spondin 1の場合)を示すと10 ng/mL~1000 ng/mL、好ましくは50 ng/mL~500 ng/mLであり、Wntアゴニストの添加濃度の例(Wnt3aの場合)を示すと10 ng/mL~500 ng/mL、好ましくは50 ng/mL~200 ng/mLである。
 より一層好ましい一態様では、ニコチンアミド、N-アセチルシステイン、p38阻害剤及びROCK阻害剤からなる群より選択される一以上の化合物が更に存在する条件下で培養を実施する。尚、説明の便宜上、ニコチンアミド、N-アセチルシステイン、p38阻害剤及びROCK阻害剤をまとめて、「第4群の成分」と呼ぶ。
 ニコチンアミドを用いることにより、幹細胞性を維持する効果を期待できる。同様に、N-アセチルシステインには細胞死を抑制する効果、p38阻害剤には細胞ストレスや炎症を抑制する効果、及び分化を抑制する効果、ROCK阻害剤には細胞死を抑制する効果を期待できる。第1培養方法においては、好ましくは、上記第2群の成分の全てと、上記第3群の成分の全てと、これら第4群の成分の全てを併用する(第1群の成分と合わせ、合計で13成分が併用されることになる)。第2培養方法においては、好ましくは、第3群の成分は省略し、第2群の成分の全てと、第4群の成分の内、ROCK阻害剤のみを併用する(第1群の成分(GSK-3β阻害剤と血清代替物)と合わせ、合計で6成分が併用されることになる)。
 p38阻害剤として例えばSB202190を用いることができる。また、ROCK阻害剤として例えばY-27632を用いることができる。
 ニコチンアミドの添加濃度の例を示すと0.1 mg/mL~5 mg/mL、好ましくは0.5 mg/mL~2 mg/mLである。同様に、N-アセチルシステインの添加濃度の例を示すと0.1mM~5mM、好ましくは0.5 mM~2 mMであり、p38阻害剤の添加濃度の例(SB202190の場合)を示すと1μM~50 mM、好ましくは5μM~20 mMであり、ROCK阻害剤の添加濃度の例(Y-27632の場合)を示すと1 μM~50 μM、好ましくは3 μM~30 μMである。第2培養方法の場合のROCK阻害剤の添加濃度については、1 μM~10 μM(Y-27632の場合)も好ましい添加濃度範囲である。尚、ROCK阻害剤については、培地交換に使用する培養液には含めないことが好ましい。但し、第2培養方法の場合は、培地中にROCK阻害剤が常時添加された条件を採用してもよい。
 その他の培養条件(培養温度など)は、動物細胞の培養において一般に採用されている条件とすればよい。即ち、例えば37℃、5%CO2の環境下で培養すればよい。また、基本培地は、腸管幹細胞様細胞の維持、増殖が可能である限り特に限定されない。好ましくは、上皮細胞の培養に適した基本培地(例えばD-MEMとハムF12培地の混合培地、D-MEM)を用いる。培地に添加可能な成分の例としてウシ血清アルブミン(BSA)、抗生物質、2-メルカプトエタノール、PVA、非必須アミノ酸(NEAA)、インスリン、トランスフェリン、セレニウムを挙げることができる。典型的には培養皿などを用いて二次元的に細胞を培養する。本発明の方法によれば、二次元培養によってiPS細胞から腸管上皮細胞様細胞を得ることが可能となる。但し、ゲル状の培養基材あるいは3次元培養プレートなどを用いた3次元培養を実施することにしてもよい。
 尚、培養中又は培養後の細胞が所望の性質を維持しているか否かは、例えば、腸管幹細胞マーカーであるロイシンリッチリピートを含むGタンパク質共役受容体5(LGR5)、腸管前駆細胞マーカーであるSOX9、後腸マーカーであるCDX2の発現を指標として判定ないし評価することができる。
3.iPS細胞由来腸管幹細胞様細胞の調製
 本発明の培養工程に用いるiPS細胞由来腸管幹細胞様細胞の調製方法は特に限定されない。例えば、過去の報告に準じてiPS細胞を分化誘導することによってiPS細胞由来腸管幹細胞様細胞を調製すればよい。iPS細胞由来腸管幹細胞様細胞の調製方法の具体例を以下で説明する。この例の調製方法は、iPS細胞を内胚葉様細胞へと分化させる工程(工程(1))と、得られた内胚葉様細胞を腸管幹細胞様細胞へと分化させる工程(工程(2))を含む。尚、特に言及しない培養条件は、動物細胞の培養において一般に採用されている条件とすればよい。例えば、37℃、5%CO2の環境下で培養する。また、基本培地として、イスコフ改変ダルベッコ培地(IMDM)(GIBCO社等)、ハムF12培地(HamF12)(SIGMA社、Gibco社等)、ダルベッコ変法イーグル培地(D-MEM)(ナカライテスク株式会社、シグマ社、Gibco社等)、グラスゴー基本培地(Gibco社等)、RPMI1640培地等を用いることができる。二種以上の基本培地を併用することにしてもよい。工程(2)には、好ましくは上皮細胞の培養に適した基本培地(例えばD-MEMとハムF12培地の混合培地、D-MEM)を用いる。また、培地に添加可能な成分の例としてウシ血清アルブミン(BSA)、抗生物質、2-メルカプトエタノール、PVA、非必須アミノ酸(NEAA)、インスリン、トランスフェリン、セレニウムを挙げることができる。
<工程(1) 内胚葉様細胞への分化>
 この工程ではiPS細胞を培養し、内胚葉様細胞へと分化させる。換言すれば、内胚葉様細胞への分化を誘導する条件下でiPS細胞を培養する。iPS細胞が内胚葉様細胞に分化する限り、培養条件は特に限定されない。例えば、常法に従い、アクチビンAを添加した培地で培養する。この場合、培地中のアクチビンAの濃度を例えば10 ng/mL~200 ng/mL、好ましくは20 ng/mL~150 ng/mLとする。細胞の増殖率や維持等の観点から、培地に血清又は血清代替物(Knockout serum replacement(KSR)など)を添加することが好ましい。血清はウシ胎仔血清に限られるものではなく、ヒト血清や羊血清等を用いることもできる。血清又は血清代替物の添加量は例えば0.1%(v/v)~10%(v/v)である。
 Wnt/β-カテニンシグナル経路の阻害剤(例えば、ヘキサクロロフェン、クエルセチン、WntリガンドであるWnt3a)を培地に添加し、内胚葉様細胞への分化の促進を図ってもよい。
 好ましい一態様では、工程(1)として2段階の培養を行う。1段階目の培養では比較的低濃度の血清(例えば、0.1%(v/v)~1%(v/v))を添加した培地で行い、続く2段階目の培養では一段階目の培養よりも血清濃度を高めた培地(血清濃度を例えば1%(v/v)~10%(v/v))で行う。このように2段階の培養を採用することは、1段階目の培養により未分化細胞の増殖を抑制し、続く2段階目により分化した細胞を増殖させる点で好ましい。
 工程(1)の期間(培養期間)は例えば1日間~10日間、好ましくは2日間~7日間である。工程(1)として2段階の培養を採用する場合には1段階目の培養期間を例えば1日間~7日間、好ましくは2日間~5日間とし、2段階目の培養期間を例えば1日間~6日間、好ましくは1日間~4日間とする。
<工程(2) 腸管幹細胞様細胞への分化>
 この工程では、工程(1)で得られた内胚葉様細胞を培養し、腸管幹細胞様細胞へと分化させる。換言すれば、腸管幹細胞様細胞への分化を誘導する条件下で内胚葉細胞を培養する。内胚葉様細胞が腸管幹細胞様細胞へ分化する限り、培養条件は特に限定されない。好ましくは、FGF2(線維芽細胞増殖因子2)の存在下で培養を行う。好ましくはヒトFGF2(例えばヒト組換えFGF2)を用いる。
 典型的には、工程(1)を経て得られた細胞集団又はその一部を、選別することなく工程(2)に供する。一方で、工程(1)を経て得られた細胞集団の中から内胚葉様細胞を選別した上で工程(2)を実施することにしてもよい。内胚葉様細胞の選別は例えば、細胞表面マーカーを指標にしてフローサイトメーター(セルソーター)で行えばよい。
 「FGF2の存在下」とは、FGF2が培地中に添加された条件と同義である。従って、FGF2の存在下での培養を行うためには、FGF2が添加された培地を用いればよい。FGF2の添加濃度の例を示すと100 ng/mL~500 ng/mLである。
 工程(2)の期間(培養期間)は例えば2日間~10日間、好ましくは3日間~7日間である。当該培養期間が短すぎると、期待される効果(分化効率の上昇、腸管幹細胞としての機能の獲得の促進)が十分に得られない。他方、当該培養期間が長すぎると、分化効率の低下を引き起こす。
 腸管幹細胞様細胞へ分化したことは、例えば、腸管幹細胞マーカーの発現を指標にして判定ないし評価することができる。腸管幹細胞マーカーの例を挙げると、ロイシンリッチリピートを含むGタンパク質共役受容体5(LGR5)、エフリンB2受容体(EphB2)である。
4.腸管上皮細胞様細胞の調製
 本発明の第2の局面は、本発明の培養方法で培養した腸管幹細胞様細胞から腸管上皮細胞様細胞を調製する方法に関する。本発明の調製方法は、本発明の培養方法で培養した腸管幹細胞様細胞を腸管上皮細胞様細胞へと分化させることを特徴とする。換言すれば、本発明の調製方法では、本発明の培養方法で培養した腸管幹細胞様細胞を腸管上皮細胞様細胞へと分化させる工程(分化工程)を行う。腸管幹細胞様細胞を腸管上皮細胞様細胞へと分化させることが可能な限り、当該工程の操作、条件等は特に限定されない。以下、好ましい分化工程の具体例(例1、例2)を示す。以下の例1及び例2において、特に言及しない培養条件は、動物細胞の培養において一般に採用されている条件とすればよい。例えば、37℃、5%CO2の環境下で培養することにし、基本培地は好ましくは上皮細胞の培養に適した基本培地(例えばD-MEMとハムF12培地の混合培地、D-MEM)を用いる。また、培地に添加可能な成分の例としてウシ血清アルブミン(BSA)、抗生物質、2-メルカプトエタノール、PVA、非必須アミノ酸(NEAA)、インスリン、トランスフェリン、セレニウムを挙げることができる。
 尚、腸管上皮細胞様細胞へ分化したことは、例えば、腸管上皮細胞マーカーや薬物動態関連遺伝子の発現、ペプチドの取り込み、或いはビタミンD受容体を介した薬物代謝酵素の発現誘導を指標にして判定ないし評価することができる。腸管上皮細胞マーカー及び薬物動態関連遺伝子の例を挙げると、ビリン 1(Villin 1)、スクラーゼ-イソマルターゼ、SLC(solute carrier)有機アニオントランスポーター2B1(SLCO2B1/OATP2B1)、SLC(solute carrier)ファミリーメンバー15A1/ペプチドトランスポーター1(SLC15A1/PEPT1)、SLC(solute carrier)ファミリーメンバー46A1/プロトン共役葉酸トランスポーター(SLC46A1/PCFT)、ATP結合カセットトランスポーターB1/多剤耐性タンパク1(ABCB1/MDR1)、ATP結合カセットトランスポーターG2/乳ガン耐性タンパク(ABCG2/BCRP)、尾側型ホメオボックス転写因子2(CDX2)、ジペプチジルペプチダーゼ4(DPP4)、プレグナンX受容体(PXR)、ウリジン2リン酸-グルクロン酸転移酵素1A1(UGT1A1)、ウリジン2リン酸-グルクロン酸転移酵素1A4(UGT1A4)である。この中でも、腸管上皮に特異性の高いスクラーゼ-イソマルターゼ及びビリン1、小腸でのペプチドの吸収に関与するSLC15A1/PEPT1、小腸での有機アニオンの吸収に関与するSLCO2B1/OATP2B1は特に有効なマーカーである。
4-1.分化工程の例1
 この例では、MEK1阻害剤、DNAメチル化阻害剤及びTGFβ受容体阻害剤からなる群より選択される一以上の化合物(以下、「第1誘導因子」とも呼ぶ)とEGF(以下、「第2誘導因子」とも呼ぶ)の存在下で培養を行い、腸管幹細胞様細胞を腸管上皮細胞様細胞へと分化させる。典型的には、本発明の培養方法を適用することで得られた細胞集団又はその一部を、選別することなく分化工程に供する。一方で、本発明の培養方法を適用することで得られた細胞集団の中から腸管幹細胞様細胞を選別した上で分化工程を実施することにしてもよい。腸管幹細胞様細胞の選別は例えば、細胞表面マーカーを指標にしてフローサイトメーター(セルソーター)で行えばよい。
 MEK1阻害剤、DNAメチル化阻害剤及びTGFβ受容体阻害剤からなる群より選択される一以上の化合物(第1誘導因子)とEGF(第2誘導因子)の存在下とは、第1誘導因子と第2誘導因子が培地中に添加された条件と同義である。従って、第1誘導因子と第2誘導因子の存在下での培養を行うためには、第1誘導因子と第2誘導因子が添加された培地を用いればよい。
 MEK1阻害剤として、PD98059、PD184352、PD184161、PD0325901、U0126、MEK inhibitor I、MEK inhibitor II、MEK1/2 inhibitor II、SL327を挙げることができる。同様に、DNAメチル化阻害剤として5-アザ-2’-デオキシシチジン、5-アザシチジン、RG108、ゼブラリンを挙げることができる。TGFβ受容体阻害剤については、A-83-01がTGF-β受容体ALK4、ALK5、ALK7に阻害活性を示した実験結果を考慮すれば、好ましくは、TGF-β受容体ALK4、ALK5、ALK7の一以上に対して阻害活性を示すものを用いるとよい。例えば、A-83-01、SB431542、SB-505124、SB525334、D4476、ALK5 inhibitor、LY2157299、LY364947、GW788388、RepSoxが当該条件を満たす。
 MEK1阻害剤の添加濃度の例(PD98059の場合)を示すと4μM~100μM、好ましくは10~40μMである。同様にメチル化阻害剤の添加濃度の例(5-アザ-2’-デオキシシチジンの場合)を示すと、1μM~25μM、好ましくは2.5μM~10μMであり、TGFβ受容体阻害剤の添加濃度の例(A-83-01の場合)を示すと0.1μM~2.5μM、好ましくは0.2μM~1μMである。
 好ましい一態様では、第1誘導因子として、MEK1阻害剤、DNAメチル化阻害剤、TGFβ受容体阻害剤の中の二以上を併用する。異なる二以上の第1誘導因子を併用することにより、相加的又は相乗的効果が得られ、腸管上皮への分化を促進できる。最も好ましくは、全て(即ち3種類)の第1誘導因子を併用する。
 当該工程の期間(培養期間)は例えば7日間~30日間、好ましくは10日間~20日間である。当該培養期間が短すぎると、期待される効果(分化効率の上昇、腸管上皮細胞としての機能の獲得の促進)が十分に得られない。他方、当該培養期間が長すぎると、分化効率の低下を引き起こす。
 好ましい一態様では当該工程として2段階の培養、即ち、本発明の培養方法を適用することで得られた腸管幹細胞様細胞をGSK阻害剤(例えばGSK3iXV)及び/又はBMP阻害剤(例えばドルソモルフィン)とEGFの存在下で培養する工程(分化工程1)とそれに続いて、MEK1阻害剤、DNAメチル化阻害剤及びTGFβ受容体阻害剤からなる群より選択される一以上の化合物(第1誘導因子)とEGF(第2誘導因子)の存在下で培養する工程(分化工程2)を行う。従って、この態様では、第1誘導因子と第2誘導因子を用いた培養の前に、GSK阻害剤及び/又はBMP阻害剤の存在下での培養を行うことになる。GSK阻害剤及び/又はBMP阻害剤の存在下での培養の主たる目的は、腸管幹細胞の増殖を促進することである。
 分化工程1と分化工程2を行う場合、分化工程1の培養期間は例えば3日間~14日間、好ましくは4日間~10日間であり、分化工程2の培養期間は例えば3日間~21日間、好ましくは5日間~15日間である。
 各工程において、途中で継代培養を行ってもよい。例えばコンフルエント又はサブコンフルエントになった際に細胞の一部を採取して別の培養容器に移し、培養を継続する。分化を促進するために細胞密度を低く設定することが好ましい。例えば1×104個/cm2~1×106個/cm2程度の細胞密度で細胞を播種するとよい。
 培地交換や継代培養などに伴う、細胞の回収の際には、細胞死を抑制するためにY-27632等のROCK阻害剤(Rho-associated coiled-coil forming kinase/Rho結合キナーゼ)で予め細胞を処理しておくとよい。
 目的の細胞(腸管上皮細胞様細胞)のみからなる細胞集団又は目的の細胞が高比率(高純度)で含まれた細胞集団を得ようと思えば、目的の細胞に特徴的な細胞表面マーカーを指標にして培養後の細胞集団を選別・分取すればよい。
4-2.分化工程の例2
 この例では、MEK1阻害剤、DNAメチル化阻害剤、TGFβ受容体阻害剤及びEGFの存在下(以下、この条件を「第1条件」と呼ぶ)、且つcAMPが細胞へ供給される条件下(以下、この条件を「第2条件」と呼ぶ)で培養し、本発明の培養方法を適用することで得られた腸管幹細胞様細胞を腸管上皮細胞様細胞へと分化させる。典型的には、本発明の培養方法を適用することで得られた細胞集団又はその一部を、選別することなく分化工程に供する。一方で、本発明の培養方法を適用することで得られた細胞集団の中から腸管幹細胞様細胞を選別した上で分化工程を実施することにしてもよい。腸管幹細胞様細胞の選別は例えば、細胞表面マーカーを指標にしてフローサイトメーター(セルソーター)で行えばよい。
 第1条件、即ちMEK1阻害剤、DNAメチル化阻害剤、TGFβ受容体阻害剤及びEGFの存在下とは、これらの化合物が培地中に添加された条件と同義である。従って、第1条件を満たすためには、これらの化合物が添加された培地を用いればよい。
 MEK1阻害剤として、PD98059、PD184352、PD184161、PD0325901、U0126、MEK inhibitor I、MEK inhibitor II、MEK1/2 inhibitor II、SL327を挙げることができる。同様に、DNAメチル化阻害剤として5-アザ-2’-デオキシシチジン、5-アザシチジン、RG108、ゼブラリンを挙げることができる。TGFβ受容体阻害剤については、A-83-01がTGF-β受容体ALK4、ALK5、ALK7に阻害活性を示した実験結果を考慮すれば、好ましくは、TGF-β受容体ALK4、ALK5、ALK7の一以上に対して阻害活性を示すものを用いるとよい。例えば、A-83-01、SB431542、SB-505124、SB525334、D4476、ALK5 inhibitor、LY2157299、LY364947、GW788388、RepSoxが当該条件を満たす。
 MEK1阻害剤の添加濃度の例(PD98059の場合)を示すと4μM~100μM、好ましくは10~40μMである。同様にメチル化阻害剤の添加濃度の例(5-アザ-2’-デオキシシチジンの場合)を示すと、1μM~25μM、好ましくは2.5μM~10μMであり、TGFβ受容体阻害剤の添加濃度の例(A-83-01の場合)を示すと0.1μM~2.5μM、好ましくは0.2μM~1μMである。尚、例示した化合物、即ち、PD98059、5-アザ-2’-デオキシシチジン及びA-83-01とは異なる化合物を使用する場合の添加濃度については、使用する化合物の特性と、例示した化合物(PD98059、5-アザ-2’-デオキシシチジン、A-83-01)の特性の相違(特に活性の相違)を考慮すれば、当業者であれば上記濃度範囲に準じて設定することができる。また、設定した濃度範囲が適切であるか否かは、予備実験によって確認することができる。
 第2条件、即ち、cAMPが細胞へ供給される条件とは、細胞内へ取り込み可能な化合物であって、細胞内に取り込まれるとcAMPとして作用する化合物が存在する条件と同義である。従って、第2条件を満たすためには、例えば、細胞内へと取り込み可能なcAMP誘導体が添加された培地を用いればよい。cAMP誘導体としてPKA活性剤(例えば、8-Br-cAMP(8-Bromoadenosine-3′,5′-cyclic monophosphate sodium salt, CAS Number : 76939-46-3)、6-Bnz-cAMP(N6-Benzoyladenosine-3',5'-cyclic monophosphate sodium salt salt, CAS Number : 1135306-29-4)、cAMPS-Rp((R)-Adenosine, cyclic 3',5'-(hydrogenphosphorothioate) triethylammonium salt, CAS Number : 151837-09-1)、cAMPS-Sp((S)-Adenosine, cyclic 3',5'-(hydrogenphosphorothioate) triethylammonium salt, CAS Number : 93602-66-5)、Dibutyryl-cAMP(N6,O2'-Dibutyryl adenosine 3',5'-cyclic monophosphate sodium salt salt, CAS Number : 16980-89-5)、8-Cl-cAMP(8-Chloroadenosine- 3', 5'- cyclic monophosphate salt, CAS Number : 124705-03-9))、Epac活性剤(Rp-8-Br-cAMPS(8-Bromoadenosine 3',5'-cyclic Monophosphothioate, Rp-Isomer . sodium salt, CAS Number : 129735-00-8)、8-CPT-cAMP(8-(4-Chlorophenylthio)adenosine 3',5'-cyclic monophosphate, CAS Number : 93882-12-3)、8-pCPT-2'-O-Me-cAMP(8-(4-Chlorophenylthio)-2'-O-methyladenosine 3',5'-cyclic monophosphate monosodium, CAS Number : 634207-53-7)等)を採用することができる。cAMP誘導体の添加濃度の例(8-Br-cAMPの場合)を示すと、0.1 mM~10 mM、好ましくは0.2 mM~5 mM、更に好ましくは0.5 mM~2 mMである。尚、例示した化合物、即ち、8-Br-cAMPとは異なる化合物を使用する場合の添加濃度については、使用する化合物の特性と、例示した化合物(8-Br-cAMP)の特性の相違(特に活性の相違)を考慮すれば、当業者であれば上記濃度範囲に準じて設定することができる。また、設定した濃度範囲が適切であるか否かは、予備実験によって確認することができる。
 当該工程の期間(培養期間)は例えば7日間~40日間、好ましくは10日間~30日間である。当該培養期間が短すぎると、期待される効果(分化効率の上昇、腸管上皮細胞としての機能の獲得の促進)が十分に得られない。他方、当該培養期間が長すぎると、分化効率の低下を引き起こす。
 目的の細胞(腸管上皮細胞様細胞)のみからなる細胞集団又は目的の細胞が高比率(高純度)で含まれた細胞集団を得ようと思えば、目的の細胞に特徴的な細胞表面マーカーを指標にして培養後の細胞集団を選別・分取すればよい。
 好ましくは、分化工程として、以下のA~Cのいずれかの培養工程を行う。
<培養工程A>
 培養工程Aでは、(a-1)MEK1阻害剤、DNAメチル化阻害剤、TGFβ受容体阻害剤及びEGFの存在下での培養と、当該培養に続く、(a-2)MEK1阻害剤、DNAメチル化阻害剤、TGFβ受容体阻害剤及びEGFの存在下、且つcAMPが細胞へ供給される条件下での培養を行う。即ち、cAMPが細胞へ供給される条件の有無で異なる2段階の培養を行う。このようにすれば、腸管上皮細胞への分化促進、成熟化、機能獲得の効果が得られる。(a-1)の培養の期間は例えば1日間~5日間である。同様に、(a-2)の培養の期間は例えば3日間~15日間である。尚、特に説明しない事項(各培養に使用可能な化合物、各化合物の添加濃度等)については、上記の対応する説明が援用される。
 (a-2)の培養を、MEK1阻害剤、DNAメチル化阻害剤、TGFβ受容体阻害剤及びEGFに加えてcAMP分解酵素阻害剤も存在する条件で行うことにしてもよい。当該条件を採用すると、cAMPの分解阻害によって細胞内cAMP濃度の低下が抑えられ、腸管上皮への分化誘導、特に腸管上皮細胞としての機能の獲得が促されることを期待できる。即ち、当該条件は、より機能的な腸管上皮細胞様細胞の調製に有利なものである。cAMP分解酵素阻害剤として、IBMX (3-isobutyl-1-methylxanthine) (MIX)、Theophylline、Papaverine、Pentoxifylline (Trental)、KS-505、8-Methoxymethyl-IBMX、Vinpocetine (TCV-3B)、EHNA、Trequinsin (HL-725)、Lixazinone (RS-82856)、(LY-186126)、Cilostamide (OPC3689)、Bemoradan (RWJ-22867)、Anergrelide (BL4162A)、Indolidan (LY195115)、Cilostazol (OPC-13013)、Milrinone (WIN47203)、Siguazodan (SKF-94836)、5-Methyl-imazodan (CI 930)、SKF-95654、Pirilobendan (UD-CG 115 BS)、Enoximone (MDL 17043)、Imazodan (CL 914)、SKF-94120、Vesnarinone (OPC 8212)、Rolipram (Ro-20-1724)、(ZK-62711)、Denbufyll'ine、Zaprinast (M&B-22, 948)、Dipyridamole、Zaprinast (M&B-22, 948)、Dipyridamole、Zardaverine、AH-21-132、Sulmazol (AR-L 115 BS)を例示することができる。cAMP分解酵素阻害剤の添加濃度の例(IBMXの場合)を示すと、0.05 mM~5 mM、好ましくは0.1 mM~3 mM、更に好ましくは0.2 mM~1 mMである。尚、例示した化合物、即ち、IBMXとは異なる化合物を使用する場合の添加濃度については、使用する化合物の特性と、例示した化合物(IBMX)の特性の相違(特に活性の相違)を考慮すれば、当業者であれば上記濃度範囲に準じて設定することができる。また、設定した濃度範囲が適切であるか否かは、予備実験によって確認することができる。
 (a-2)の培養の後に、MEK1阻害剤、DNAメチル化阻害剤、TGFβ受容体阻害剤及びEGFの存在下での培養((a-3)の培養)を行うことにしてもよい。この培養の期間は例えば1日間~10日間とする。この培養を行うと腸管上皮細胞への分化促進、成熟化、機能獲得の効果が得られる。
<培養工程B>
 培養工程Bでは、(b-1)MEK1阻害剤、DNAメチル化阻害剤、TGFβ受容体阻害剤及びEGFの存在下、且つcAMPが細胞へ供給される条件下での培養と、当該培養に続く、(b-2)MEK1阻害剤、DNAメチル化阻害剤、TGFβ受容体阻害剤、EGF及びcAMP分解酵素阻害剤の存在下での培養を行う。このように、cAMPが細胞へ供給される条件で培養した後、cAMP分解酵素阻害剤が存在する条件で培養すると、腸管上皮細胞への分化促進、成熟化、機能獲得の効果が得られる。(b-1)の培養の期間は例えば3日間~15日間である。同様に、(b-2)の培養の期間は例えば3日間~15日間である。尚、特に説明しない事項(各培養に使用可能な化合物、各化合物の添加濃度等)については、上記の対応する説明が援用される。
 (b-1)の培養を、MEK1阻害剤、DNAメチル化阻害剤、TGFβ受容体阻害剤及びEGFに加えてcAMP分解酵素阻害剤も存在する条件で行うことにしてもよい。当該条件を採用すると、早い段階から細胞内cAMP濃度の低下が抑えられ、腸管上皮への分化誘導、特に腸管上皮細胞としての機能の獲得が促されることを期待できる。即ち、当該条件は、より機能的な腸管上皮細胞様細胞の効率的な調製に有利なものである。
 (b-2)の培養の後に、MEK1阻害剤、DNAメチル化阻害剤、TGFβ受容体阻害剤及びEGFの存在下での培養((b-3)の培養)を行うことにしてもよい。この培養の期間は例えば1日間~10日間とする。この培養を行うと腸管上皮細胞への分化促進、成熟化、機能獲得の効果が得られる。
<培養工程C>
 培養工程Cでは、(c-1)MEK1阻害剤、DNAメチル化阻害剤、TGFβ受容体阻害剤及びEGFの存在下、且つcAMPが細胞へ供給される条件下での培養を行う。(c-1)の培養の期間は例えば3日間~15日間である。尚、特に説明しない事項(各培養に使用可能な化合物、各化合物の添加濃度等)については、上記の対応する説明が援用される。
 (c-1)の培養を、MEK1阻害剤、DNAメチル化阻害剤、TGFβ受容体阻害剤及びEGFに加えてcAMP分解酵素阻害剤も存在する条件(cAMPが細胞へ供給される条件も併用される)で行うことにしてもよい。当該条件を採用すると、cAMPを細胞へ供給しつつ、細胞内cAMP濃度の低下を抑えることができる。従って、細胞内cAMPを高レベルに維持するために有効な条件となり、腸管上皮細胞への効率的な分化誘導が促されることを期待できる。
 (c-1)の培養の後に、MEK1阻害剤、DNAメチル化阻害剤、TGFβ受容体阻害剤及びEGFの存在下での培養((c-2)の培養)を行うことにしてもよい。この培養の期間は例えば1日間~10日間とする。この培養を行うと腸管上皮細胞への分化促進、成熟化、機能獲得の効果が得られる。
 本発明を構成する各工程において、途中で継代培養を行ってもよい。例えばコンフルエント又はサブコンフルエントになった際に細胞の一部を採取して別の培養容器に移し、培養を継続する。分化を促進するために細胞密度を低く設定することが好ましい。例えば1×104個/cm2~1×106個/cm2程度の細胞密度で細胞を播種するとよい。
 培地交換や継代培養などに伴う、細胞の回収の際には、細胞死を抑制するためにY-27632等のROCK阻害剤(Rho-associated coiled-coil forming kinase/Rho結合キナーゼ)で予め細胞を処理しておくとよい。
5.腸管上皮細胞様細胞の用途
 本発明の更なる局面は腸管上皮細胞様細胞の用途に関する。第1の用途として各種アッセイが提供される。本発明の腸管上皮細胞様細胞は腸管、特に小腸のモデル系に利用可能であり、腸管、特に小腸での薬物動態(吸収、代謝など)の評価や毒性の評価に有用である。換言すれば、本発明の腸管上皮細胞様細胞は、化合物の体内動態の評価や毒性の評価にその利用が図られる。
 具体的には、本発明の腸管上皮細胞様細胞を用いて被検物質の吸収性ないし膜透過性、薬物相互作用、薬物代謝酵素の誘導、薬物トランスポーターの誘導、毒性等を試験することができる。即ち、本発明は、腸管上皮細胞様細胞の用途の一つとして、被検物質の吸収性ないし膜透過性、薬物相互作用、薬物代謝酵素の誘導、薬物トランスポーターの誘導、毒性等を評価する方法(第1の態様)を提供する。当該方法では、(i)本発明の分化誘導方法で得られた腸管上皮細胞様細胞で構成された細胞層を用意する工程と、(ii)前記細胞層に被検物質を接触させる工程と、(iii)前記細胞層を透過した被検物質を定量し、被検物質の吸収性ないし膜透過性、薬物相互作用、薬物代謝酵素の誘導、薬物トランスポーターの誘導、又は毒性を評価する工程を行う。尚、被検物質の吸収性については、後述の方法(第2の態様)でも評価することができる。
 工程(i)では、典型的には、半透過性膜(多孔性膜)の上で腸管上皮細胞様細胞を培養し、細胞層を形成させる。具体的には、例えば、カルチャーインサートを備えた培養容器(例えば、コーニング社が提供するトランスウェル(登録商標))を使用し、カルチャーインサート内に細胞を播種して培養することにより、腸管上皮細胞様細胞で構成された細胞層を得る。
 工程(ii)での「接触」は、典型的には、培地に被検物質を添加することによって行われる。被検物質の添加のタイミングは特に限定されない。従って、被検物質を含まない培地で培養を開始した後、ある時点で被検物質を添加することにしても、予め被検物質を含む培地で培養を開始することにしてもよい。
 被検物質には様々な分子サイズの有機化合物又は無機化合物を用いることができる。有機化合物の例として核酸、ペプチド、タンパク質、脂質(単純脂質、複合脂質(ホスホグリセリド、スフィンゴ脂質、グリコシルグリセリド、セレブロシド等)、プロスタグランジン、イソプレノイド、テルペン、ステロイド、ポリフェノール、カテキン、ビタミン(B1、B2、B3、B5、B6、B7、B9、B12、C、A、D、E等)を例示できる。医薬品、栄養食品、食品添加物、農薬、香粧品(化粧品)等の既存成分或いは候補成分も好ましい被検物質の一つである。植物抽出液、細胞抽出液、培養上清などを被検物質として用いてもよい。2種類以上の被検物質を同時に添加することにより、被検物質間の相互作用、相乗作用などを調べることにしてもよい。被検物質は天然物由来であっても、或いは合成によるものであってもよい。後者の場合には例えばコンビナトリアル合成の手法を利用して効率的なアッセイ系を構築することができる。
 被検物質を接触させる期間は任意に設定可能である。接触期間は例えば10分間~3日間、好ましくは1時間~1日間である。接触を複数回に分けて行うことにしてもよい。
 工程(iii)では、細胞層を透過した被検物質を定量する。例えば、トランスウェル(登録商標)のようなカルチャーインサートを備えた培養容器を使用した場合には、カルチャーインサートを透過した被検物質、即ち、細胞層を介して上部もしくは下部容器内に移動した被検物質を、被検物質に応じて、質量分析、液体クロマトグラフィー、免疫学的手法(例えば蛍光免疫測定法(FIA法)、酵素免疫測定法(EIA法))等の測定方法で定量する。定量結果(細胞層を透過した被検物質の量)と被検物質の使用量(典型的には培地への添加量)に基づき、被検物質の吸収性ないし膜透過性、薬物相互作用、薬物代謝酵素の誘導、薬物トランスポーターの誘導、又は毒性を判定・評価する。
 本発明は別の態様(第2の態様)として、被検物質の代謝又は吸収を評価する方法も提供する。当該方法では、(I)本発明の分化誘導方法で得られた腸管上皮細胞様細胞に被検物質を接触させる工程と、(II)被検物質の代謝若しくは吸収、薬物相互作用、薬物代謝酵素の誘導、薬物トランスポーターの誘導、又は毒性を測定・評価する工程を行う。
 工程(I)、即ち腸管上皮細胞様細胞と被検物質の接触は、上記工程(ii)と同様に実施することができる。但し、予め細胞層を形成させることは必須ではない。
 工程(I)の後、被検物質の代謝若しくは吸収、薬物相互作用、薬物代謝酵素の誘導、薬物トランスポーターの誘導、又は毒性を測定・評価する(工程(II))。工程(I)の直後、即ち、被検物質の接触の後、実質的な時間間隔を置かずに代謝等を測定・評価しても、或いは、一定の時間(例えば10分~5時間)を経過した後に代謝等を測定・評価することにしてもよい。代謝の測定は、例えば、代謝産物の検出によって行うことができる。この場合には、通常、工程(I)後の培養液をサンプルとして、予想される代謝産物を定性的又は定量的に測定する。測定方法は代謝産物に応じて適切なものを選択すればよいが、例えば、質量分析、液体クロマトグラフィー、免疫学的手法(例えば蛍光免疫測定法(FIA法)、酵素免疫測定法(EIA法))等を採用可能である。
 典型的には、被検物質の代謝産物が検出されたとき、「被検物質が代謝された」と判定ないし評価する。また、代謝産物の量に応じて被検物質の代謝量を評価することができる。代謝産物の検出結果と、被検物質の使用量(典型的には培地への添加量)に基づき、被検物質の代謝効率を算出することにしてもよい。
 腸管上皮細胞様細胞における薬物代謝酵素(シトクロムP450(特にCYP3A4)、ウリジン2リン酸-グルクロン酸転移酵素(特にUGT1A8、UGT1A10)、硫酸転移酵素(特にSULT1A3など))の発現を指標として被検物質の代謝を測定することも可能である。薬物代謝酵素の発現はmRNAレベル又はタンパク質レベルで評価することができる。例えば、薬物代謝酵素のmRNAレベルに上昇を認めたとき、「被検物質が代謝された」と判定することができる。同様に、薬物代謝酵素の活性に上昇を認めたとき、「被検物質が代謝された」と判定することができる。代謝産物を指標として判定する場合と同様に、薬物代謝酵素の発現量に基づいて定量的な判定・評価を行うことにしてもよい。
 被検物質の吸収を評価するためには、例えば、培養液中の被検物質の残存量を測定する。通常、工程(I)後の培養液をサンプルとして被検物質を定量する。測定方法は被検物質に応じて適切なものを選択すればよい。例えば、質量分析、液体クロマトグラフィー、免疫学的手法(例えば蛍光免疫測定法(FIA法)、酵素免疫測定法(EIA法))等を採用可能である。典型的には、培養液中の被検物質の含有量の低下を認めたとき、「被検物質が吸収された」と判定・評価する。また、低下の程度に応じて被検物質の吸収量ないし吸収効率を判定・評価することができる。尚、細胞内に取り込まれた被検物質の量を測定することによっても、吸収の評価は可能である。
 尚、代謝の測定・評価と吸収の測定・評価を同時に又は並行して行うことにしてもよい。
 後述の実施例に示す通り、本発明の方法を利用して調製した人工多能性幹細胞由来腸管上皮細胞様細胞では、ヒト小腸上皮細胞で高発現を認めるムチン2及びクロモグラニンA(CgA)が、小腸のモデル系として頻用されているCaco-2細胞(ヒト結腸癌由来の細胞)とは比較にならないレベルで高発現していることが判明した。この事実は当該細胞が小腸のモデル系として極めて利用価値が高いことを裏づけるとともに、当該細胞を用いたアッセイの指標としてムチン2及びCgAの発現が有用であることを示す。そこで本発明は、腸管上皮細胞様細胞を用いたアッセイの更なる態様(第3の態様)として、ムチン2又はCgAの発現を指標とした二つの評価法、即ち、被検物質の消化管粘膜障害作用を評価する方法(第3の態様。以下、「障害作用評価法」と略称することがある)と被検物質の消化管粘膜保護作用を評価する方法(第4の態様。以下、「保護作用評価法」と略称することがある)を提供する。尚、本発明の障害作用評価法は、副作用として粘膜障害(潰瘍)を起こす可能性がある薬物の予測(副作用リスクの予測)に特に有用であり、本発明の保護作用評価法はこの様な副作用又はストレス性潰瘍を抑制する作用を持つ新規薬物のスクリーニングに特に有用である。
 本発明の障害作用評価法(第3の態様)では、(a)本発明の分化誘導方法で得られた腸管上皮細胞様細胞に被検物質を接触させる工程と、(b)前記腸管上皮細胞様細胞におけるムチン2又はCgAの発現を検出し、検出結果に基づき被検物質の消化管粘膜障害作用を判定する工程であって、ムチン2又はCgAの発現低下が認められることが、被検物質が消化管粘膜障害作用を有することの指標となる工程を行う。
 工程(a)、即ち腸管上皮細胞様細胞と被検物質の接触は、上記態様(第1態様、第2態様)と同様に実施することができる。但し、予め細胞層を形成させることは必須ではない。使用可能な被検物質についても、上記の態様(第1態様及び第2態様)と同様であるため、その説明を省略する。
 工程(a)に続く工程(b)では、腸管上皮細胞様細胞におけるムチン2又はCgAの発現を検出し、検出結果に基づき被検物質の消化管粘膜障害作用を判定する。即ち、本発明ではムチン2又はCgAの発現を利用して被検物質の消化管粘膜障害作用が判定される。より具体的には、ムチン2又はCgAの発現低下が認められることを、被検物質が消化管粘膜障害作用を有することの指標として用いる。従って、ムチン2又はCgAの発現低下を認めた場合に被検物質は消化管粘膜障害作用を有すると判定し、ムチン2又はCgAの発現低下を認めない場合に被検物質は消化管粘膜障害作用を有しないと判定する。ムチン2又はCgAの発現低下の程度(レベル)に基づき、消化管粘膜障害作用の強さ(程度)を決定することにしてもよい。また、複数の被検物質を用いた場合には、ムチン2又はCgAの発現低下の程度(レベル)に基づき、各被検物質の消化管粘膜障害作用の強弱を比較評価することにしてもよい。
 ムチン2とCgAはどちらも分泌タンパク質である。ムチン2は腸管粘膜の保護に関わっている粘膜質であり、ムチン2の質や量の低下は潰瘍性大腸炎や癌を誘発することが知られている。他方、CgAは自律神経が興奮することで分泌される物質であり、血中濃度においては臨床化学的に腫瘍マーカーの一つとして知られており、また、近年、唾液のCgA濃度はストレスの指標として注目されている(豊田中央研究所 R&D レビュー Vol. 34 No. 3, 17-22 (1999. 9)、高知女子大学看護学会誌VOL.40, NO.1, pp24-30 2014等)。
 ムチン2及びCgAの発現は例えば常法に従って検出すればよい。ムチン2及びCgAの検出方法として、RT-PCR法やリアルタイムPCR法(mRNAの測定/定量)、蛍光免疫測定法(FIA法)や酵素免疫測定法(EIA法)等の免疫学的手法、質量分析法等を例示することができる。CgAについては、検出用試薬やキット(例えば株式会社矢内原研究所が提供するYK070 Human Chromogranin A)もあり、これらを利用することもできる。
 通常は、比較対照として、被検物質に接触させない腸管上皮細胞様細胞(その他の条件は同一とする)(以下、「コントロール」と呼ぶ)を用意し、そのムチン2又はCgAの発現も検出する。そして、当該コントロールの発現レベルと比較することによって、被検物質がムチン2又はCgAの発現を低下させたか判断する。このようにコントロールとの比較によって被験物質の消化管粘膜障害作用を判定すれば、より信頼性の高い判定結果が得られる。
 本発明の保護作用評価法(第4の態様)では、(A)消化管粘膜障害作用を示す物質の存在下、本発明の分化誘導方法で得られた腸管上皮細胞様細胞に被検物質を接触させる工程と、(B)前記腸管上皮細胞様細胞におけるムチン2又はCgAの発現を検出し、検出結果に基づき被検物質の消化管粘膜保護作用を判定する工程であって、前記物質によるムチン2又はCgAの発現低下の抑制が認められることが、被検物質が消化管粘膜保護作用を有することの指標となる工程を行う。
 工程(A)では、消化管粘膜障害作用を示す物質(以下、「粘膜障害剤」と呼称する)の存在下で、腸管上皮細胞様細胞と被検物質の接触が行われる。腸管上皮細胞様細胞と被検物質の接触は、上記態様(第3態様)と同様に実施することができ、典型的には、粘膜障害剤と被検物質の存在下(即ち培地にこれら両者が添加された状態)で腸管上皮細胞様細胞を培養することになる。粘膜障害剤と被検物質の添加のタイミングは特に限定されない。従って、例えば、粘膜障害剤と被検物質を含まない培地で培養を開始した後、ある時点で粘膜障害剤と被検物質を添加することにしても、予め粘膜障害剤と被検物質を含む培地で培養を開始することにしてもよい。また、粘膜障害剤と被検物質の添加の順序は特に問わない。即ち、前者を先に添加、後者を先に添加、両者を同時に添加、のいずれであってもよい。
 ムチン2及び/又はCgAの発現を低下させることで消化管粘膜を障害する各種物質を、本発明における粘膜障害剤として採用することができる。粘膜障害剤として用いることが可能な物質の例を挙げると、インドメタシン、アスピリン、ケトプロフェン、イブプロフェン等である。粘膜障害剤の使用量(添加濃度)は、使用する粘膜障害剤の作用に関する過去の報告等を参考にして、或いは予備実験を通して設定すればよい。二以上の物質を併用することにしてもよい。尚、使用可能な被検物質については、上記の態様(第1態様及び第2態様)と同様であるため、その説明を省略する。
 工程(A)に続く工程(B)では、腸管上皮細胞様細胞におけるムチン2又はCgAの発現を検出し、検出結果に基づき被検物質の消化管粘膜保護作用を判定する。即ち、本発明ではムチン2又はCgAの発現を利用して被検物質の消化管粘膜保護作用が判定される。より具体的には、粘膜障害剤によるムチン2又はCgAの発現低下の抑制が認められることを、被検物質が消化管粘膜保護作用を有することの指標に用いる。従って、粘膜障害剤によるムチン2又はCgAの発現低下を抑制した場合に被検物質は消化管粘膜保護作用を有すると判定し、粘膜障害剤によるムチン2又はCgAの発現低下を抑制しない場合に被検物質は消化管粘膜保護作用を有しないと判定する。ムチン2又はCgAの発現低下を抑制した程度(レベル)に基づき、消化管粘膜保護作用の強さ(程度)を決定することにしてもよい。また、複数の被検物質を用いた場合には、ムチン2又はCgAの発現低下を抑制した程度(レベル)に基づき、各被検物質の消化管粘膜保護作用の強弱を比較評価することにしてもよい。
 上記態様(第3の態様)と同様、より信頼性の高い判定結果を得るため、比較対照(コントロール)を設け、コントロールとの比較によって被検物質の消化管粘膜保護作用を判定することが好ましい。この場合のコントロールとしては、粘膜障害剤の非存在下で被検物質を接触させた腸管上皮細胞様細胞、及び/又は被検物質に接触させない腸管上皮細胞様細胞(粘膜障害剤は存在下)を用いることができる。
 上でも言及したように、当該態様(第4の態様)の評価法は、薬物の副作用としての粘膜障害又はストレス性潰瘍を抑制する作用を持つ新規薬物のスクリーニングに特に有用である。本発明の評価法をスクリーニングに利用する場合には、工程(B)での判定結果に基づき有効な被検物質を選抜する。選択した物質が十分な薬効を有する場合には、当該物質をそのまま腸管粘膜保護薬の有効成分として使用することができる。一方で十分な薬効を有しない場合には化学的修飾などの改変を施してその薬効を高めた上で、腸管粘膜保護薬の有効成分として使用することができる。勿論、十分な薬効を有する場合であっても、更なる薬効の増大を目的として同様の改変を施してもよい。
 本発明の分化誘導方法で調製した腸管上皮細胞様細胞の第2の用途として腸管上皮細胞様細胞を含有する細胞製剤が提供される。本発明の細胞製剤は各種腸疾患の治療に適用可能である。特に、障害された(機能不全を含む)腸管上皮組織の再生・再建用の材料としての利用が想定される。即ち、再生医療への貢献を期待できる。本発明の細胞製剤は、例えば、本発明の方法によって得られた腸管上皮細胞様細胞を生理食塩水や緩衝液(例えばリン酸系緩衝液)等に懸濁すること、或いは当該細胞を用いて三次元組織体(オルガノイドやスフェロイド)を作製することによって調製することができる。治療上有効量の細胞を投与できるように、一回投与分の量として例えば1×105個~1×1010個の細胞を含有させるとよい。細胞の含有量は、使用目的、対象疾患、適用対象(レシピエント)の性別、年齢、体重、患部の状態、細胞の状態などを考慮して適宜調整することができる。
 細胞の保護を目的としてジメチルスルホキシド(DMSO)や血清アルブミン等を、細菌の混入を阻止することを目的として抗生物質等を、細胞の活性化、増殖又は分化誘導などを目的として各種の成分(ビタミン類、サイトカイン、成長因子、ステロイド等)を本発明の細胞製剤に含有させてもよい。さらに、製剤上許容される他の成分(例えば、担体、賦形剤、崩壊剤、緩衝剤、乳化剤、懸濁剤、無痛化剤、安定剤、保存剤、防腐剤、生理食塩水など)を本発明の細胞製剤に含有させてもよい。
A.ヒトiPS細胞由来腸管幹細胞様細胞の新規培養方法の開発
 腸管幹細胞の性質を維持させたままヒトiPS細胞由来腸管幹細胞様細胞を維持・増殖可能な培養方法の確立を目指し、以下の検討を行った。
1.方法
(1)細胞
 ヒトiPS細胞(iPS-51:Windy)は、ヒト胎児肺線維芽細胞MRC-5にoctamer binding protein 3/4(OCT3/4)、sex determining region Y-box 2(SOX2)、kruppel-like factor 4(KLF4)、v-myc myelocytomatosis viral oncogene homolog(avian)(c-MYC)を、パントロピックレトロウイルスベクターを用いて導入後、ヒトES細胞様コロニーをクローン化したものであり、国立成育医療研究センター梅澤明弘博士よりご供与いただいた。フィーダー細胞はマウス胎仔線維芽細胞(MEF)を使用した。
(2)培地
 MEFの培養には10%ウシ胎仔血清(FBS)、2 mmol/L L-グルタミン(L-Glu)、1%非必須アミノ酸(NEAA)、100 units/mLペニシリンG、100μg/mLストレプトマイシンを含むダルベッコ改変イーグル培地(DMEM)を用いた。MEFの剥離液には0.05%トリプシン-エチレンジアミン四酢酸(EDTA)を、MEFの保存液にはセルバンカー1を用いた。ヒトiPS細胞の維持培養には20%ノックアウト血清代替物(KSR)、0.8% NEAA、2 mmol/L L-Glu、0.1 mmol/L 2-メルカプトエタノール(2-MeE)、5 ng/mL線維芽細胞増殖因子(FGF)2を含むDMEM Ham’s F-12(DMEM/F12)を用いた。ヒトiPS細胞の剥離液には1 mg/mLコラゲナーゼIV、0.25%トリプシン、20% KSR、1 mmol/L塩化カルシウムを含むダルベッコリン酸緩衝生理食塩水(PBS)を用いた。ヒトiPS細胞の保存液には霊長類ES/iPS細胞用凍結保存液を用いた。
(3)ヒトiPS細胞の培養
 ヒトiPS細胞はマイトマイシンC処理を施したMEF(5×105 cells/100 mmディッシュ)上に播種し、5% CO2/95% air条件下CO2インキュベーター中37℃にて培養した。ヒトiPS細胞の継代は、3~5日培養後、1:2~1:3のスプリット比で行った。ヒトiPS細胞は解凍48時間後に培地を交換し、それ以降は毎日交換した。
(4)ヒトiPS細胞の腸管幹細胞への分化
 ヒトiPS細胞の腸管幹細胞への分化は、ヒトiPS細胞が培養ディッシュに対し、未分化コロニーの占める割合が約70%になった状態で開始した。0.5% FBS、100 ng/mLアクチビンA、100 units/mLペニシリンG、100μg/mLストレプトマイシンを含むロズウェルパーク記念研究所(RPMI)+グルタマックス培地で2日間、2% FBS、100 ng/mLアクチビンA、100 units/mLペニシリンG、100μg/mLストレプトマイシンを含むRPMI+グルタマックス培地で1日間培養することで内胚葉に分化させた。その後、2% FBS、1%グルタマックス、250 ng/mL FGF2を含むDMEM/F12で4日間培養することで腸管幹細胞へと分化させた。
(5)腸管幹細胞の培養と継代
 これまでの報告も考慮し、幹細胞性を維持するのに必要と考えられる因子を含んだ維持培地(10% KSR、100 units/mLペニシリンG、100μg/mLストレプトマイシン、1%グルタマックス、5μM Y-27632、100 ng/mL EGF、100 ng/mL Noggin、100 ng/mL R-spondin 1、100 ng/mL Wnt 3a、線維芽細胞増殖因子(5 ng/mL FGF2または100 ng/mL FGF4または100 ng/mL FGF10)、10μM CHIR 99021、1 mM バルプロ酸、1 mg/mL ニコチンアミド、1.5μM A-83-01、10μM SB202190、1 mM N-Acetylcysteinを含むAdvanced DMEM/F12)を新たに考案し、本検討で使用した。
 iPS細胞から分化させた腸管幹細胞をアクターゼで剥離し、維持培地に懸濁させ、ゼラチンコーティングした細胞培養用6または10 cmディッシュに播種した。この時をPassage 1とした。培地交換は維持培地からY-27632を除いた培地で2~3日おきに交換した。継代は、細胞が培養ディッシュに対し占める割合が約80%になった状態で開始した。培養ディッシュから培養液を吸引除去し、D-PBS(-)5 mL/10 cmディッシュで2回洗浄した。アクターゼにて剥離し、細胞懸濁液を15 mL遠沈管に回収した。継代には継代前のディッシュ1枚当たり約50%の細胞数を使用し、約25%の細胞数は総リボ核酸(RNA)抽出に使用した。継代する細胞は、1,000 rpm(160×g)で3分間遠心後、上清を可能な限り吸引除去した。維持培地で懸濁し、ゼラチンコーティングした細胞培養用6または10 cmディッシュに播種した。継代後24時間後にY-27632を含まない培地に交換した。
(6)腸管幹細胞の腸管上皮細胞への分化
 腸管上皮細胞への分化は、腸管幹細胞が培養ディッシュに対し、約80%になった状態で開始した。細胞をアクターゼで剥離し、あらかじめヒトiPS細胞用培地で30倍に希釈した、成長因子を除去したマトリゲルにてコートした細胞培養用24ウェルプレートに播種した。その後、2% FBS、2 mmol/L L-Glu、1% NEAA、2% B27 supplement、1% N2 supplement、100 units/mLペニシリンG、100μg/mLストレプトマイシン、20 ng/mL上皮成長因子(EGF)、10μmol/L Y-27632を含むDMEM/F12で1日間、2% FBS、2 mmol/L L-Glu、1% NEAA、2% B27 supplement、1% N2 supplement、100 units/mLペニシリンG、100μg/mLストレプトマイシン、20 ng/mL EGFを含むDMEM/F12で18日間培養することで腸管上皮細胞へ分化させた。また、分化の際に以前我々が見出した低分子化合物であるPD98059(20μmol/L)、5-アザ-2’-デオキシシチジン(5μmol/L)、A-83-01(0.5μmol/L)を添加した。
(7)RNA抽出
 腸管幹細胞の継代培養での回収および腸管上皮細胞への分化後の回収終了後、Agencourt(登録商標) RNAdvanceTMissue Kitの添付マニュアルに従い抽出した。
(8)逆転写反応
 相補的DNA(cDNA)の合成は、ReverTra Ace(登録商標) qPCR RT Master Mixを使用し、添付マニュアルに従い行った。
(9)リアルタイム逆転写ポリメラーゼ連鎖反応(Real-Time RT-PCR)
 Real-Time RT-PCRはKAPA SYBR Fast qPCR Kitを用い、cDNAを鋳型にして、反応は添付マニュアルに従い行った。結果は内在性コントロールとしてグリセルアルデヒド-3-リン酸脱水素酵素(GAPDH)を用いて補正した。
 尚、幹細胞性の評価にはLGR5(ロイシンリッチリピートを含むGタンパク質共役型受容体、腸管幹細胞のマーカー)とSOX9(腸管前駆細胞マーカー)を利用し、腸管上皮様細胞へ分化したことの評価にはVillin(ビリン1、微絨毛の主要な構成成分)、Sucrase-isomaltase(スクラーゼ-イソマルターゼ、腸管上皮に存在する二糖分解酵素、腸管上皮特異的マーカー)、PEPT1(SLC(solute carrier)ファミリーメンバー15A1/ペプチドトランスポーター1、小腸の頂側膜側に発現している)、MDR1(ATP結合カセットトランスポーターB1/多剤耐性タンパク1、P糖タンパク質、排出トランスポーター)を利用した。
2.結果・考察
(1)腸管幹細胞の培養方法の検討
 新たに考案した維持培地の幹細胞性維持への影響とその際に添加する線維芽細胞増殖因子(FGF2、FGF4、FGF10)の影響を継代培養することで検討した。その結果、幹細胞性マーカーであるLGR5や前駆細胞マーカーであるSOX9のmRNA発現レベルはヒト小腸と比較して同程度の発現量が確認された(図1~3)。また、その発現量は若干の変動と減衰は認められたものの、ヒト小腸と比較して同程度の発現量が維持されていた(図1~3)。線維芽細胞増殖因子については大きな違いは認められなかった。これらの結果は、新たに考案した維持培地を用いれば、腸管幹細胞の継代培養が可能になることを示す。尚、維持培地に使用する線維芽細胞増殖因子(FGF2、FGF4、FGF10)の間に大きな違いは認められなかった。
(2)腸管幹細胞の分化の検討
 iPS細胞から腸管幹細胞へ分化させ、継代培養することなくそのまま腸管上皮細胞へ分化させた場合(コントロール)と、iPS細胞から腸管幹細胞へ分化させ、1回継代し、本検討で確立した腸管幹細胞の培養方法で維持培養させた細胞(FGF2添加維持群、FGF4添加維持群、FGF10添加維持群)を腸管上皮細胞へ分化させた場合の間で、腸管上皮マーカーおよび薬物動態関連遺伝子のmRNA発現量を比較した。その結果、コントロールと比較して維持培養した群ではVillinは4.1~15.8倍、Sucrase-isomaltaseは53.6~86.2倍、PEPT1は4.0~6.1倍、MDR1は23.4~28.0倍のmRNA発現量の増加が認められた(図4)。
 以上の通り、新たに考案した維持培地を使用することで、ヒトiPS細胞より分化させた腸管幹細胞を腸管幹細胞の性質を維持したまま培養することが可能となった。また、驚くべきことに、維持培養した腸管幹細胞を腸管上皮細胞に分化させたところ、コントロールと比較して腸管上皮マーカーおよび薬物動態関連遺伝子のmRNA発現量が大きく上昇した。この結果は、確立に成功した、ヒトiPS細胞由来腸管幹細胞の維持培養法が、腸管幹細胞を大量に増殖させることや長期間にわたって維持する手段としてだけでなく、腸管上皮細胞への分化促進および機能向上にも有用であることを示す。
B.ヒトiPS細胞由来腸管上皮細胞の特性の検討
 iPS細胞由来腸管上皮細胞の有用性を更に検討するため、腸管粘膜の保護に関わっている粘膜質であるムチン2と、ストレスの指標として注目されているCgAに着目し、iPS細胞由来腸管上皮細胞におけるこれらの物質の発現状態を調べた。
1.方法
 iPS細胞から腸管幹細胞へ分化させ、1回継代した後、上記検討で確立した腸管幹細胞の培養方法で維持培養した細胞を腸管上皮細胞へ分化させた。
(1)ムチン2の検出
 腸管上皮細胞へと分化させる過程で、培地中にインドメタシン(50μM、200μM)、レバミピド(50μM、100μM、200μM)を6日間添加し、ムチン2の発現に対する影響を検討した。
<RNA抽出>
 腸管上皮細胞への分化後の回収終了後、Agencourt(登録商標) RNAdvanceTMissue Kitの添付マニュアルに従い抽出した。
<逆転写反応>
 相補的DNA(cDNA)の合成は、ReverTra Ace(登録商標) qPCR RT Master Mixを使用し、添付マニュアルに従い行った。
<リアルタイム逆転写ポリメラーゼ連鎖反応(Real-Time RT-PCR)>
 Real-Time RT-PCRはKAPA SYBR Fast qPCR Kitを用い、cDNAを鋳型にして、反応は添付マニュアルに従い行った。結果は内在性コントロールとしてヒポキサンチン-グアニンホスホリボシル トランスフェラーゼ(HPRT)を用いて補正した。
(2)CgAの検出
 腸管上皮細胞へと分化させる過程で、培地中にインドメタシン(50μM、200μM)、レバミピド(50μM、100μM、200μM)を6日間添加し、CgAの発現に対する影響を検討した。
<RNA抽出>
 腸管上皮細胞への分化後の回収終了後、Agencourt(登録商標) RNAdvanceTMissue Kitの添付マニュアルに従い抽出した。
<逆転写反応>
 相補的DNA(cDNA)の合成は、ReverTra Ace(登録商標) qPCR RT Master Mixを使用し、添付マニュアルに従い行った。
<リアルタイム逆転写ポリメラーゼ連鎖反応(Real-Time RT-PCR)>
 Real-Time RT-PCRはKAPA SYBR Fast qPCR Kitを用い、cDNAを鋳型にして、反応は添付マニュアルに従い行った。結果は内在性コントロールとしてヒポキサンチン-グアニンホスホリボシル トランスフェラーゼ(HPRT)を用いて補正した。
2.結果・考察
(1)ムチン2の発現及びその変化
 ムチン2 mRNAの検出結果を図5に示す。本法で調製した腸管上皮細胞(Con)は、ヒト結腸癌由来のCaco-2細胞(Caco-2)では殆ど発現していないムチン2を高発現していた。その発現量は、市販のヒト小腸由来細胞(SI)の発現量の約30%にも達する。この事実は、本法で調製した腸管上皮細胞が小腸のモデル系として極めて利用価値が高いことを示す。
 インドメタシンを濃度200μMで培地に添加すると、本法で調製した腸管上皮細胞のムチン2の発現(mRNAレベル)が低下した(I200)。一方、レバミピドを培地に添加(50μM、100μM、200μM)することでムチン2の発現(mRNAレベル)が上昇した(R50、R100、R200)。尚、レバミピドを濃度200μMで培地に添加した場合(R200)は、濃度が高すぎて細胞毒性が出た可能性が考えられる。インドメタシン(200μM)とレバミピド(100μM、200μM)を培地に添加した場合、ムチン2の発現(mRNAレベル)の低下が抑制される傾向がみられた(I200+R100、I200+R200)。以上の結果は、本法で調製した腸管上皮細胞が、ムチン2の発現を指標にしたアッセイ(具体的には、副作用として粘膜障害(潰瘍)を起こす薬物の予測(副作用リスクの予測)及びこの様な副作用あるいはストレス性の潰瘍を抑制する作用を持つ薬物のスクリーニング系)に有用であることを示す。
(2)CgAの発現及びその変化
 CgA mRNAの検出結果を図6に示す。本法で調製した腸管上皮細胞(Con)は、ヒト結腸癌由来のCaco-2細胞(Caco-2)とは比較にならないレベルでCgAを発現していた。この事実も、本法で調製した腸管上皮細胞が小腸のモデル系として極めて利用価値が高いことを裏づける。
 インドメタシンを培地に添加すると(50μM、200μM)、本法で調製した腸管上皮細胞のCgAの発現(mRNAレベル)が低下した(I50、I200)。一方、レバミピドを培地に添加(50μM、100μM、200μM)してもCgAの発現(mRNAレベル)の上昇は特に認められなかった(R50、R100、R200)。しかし、インドメタシン(200μM)とレバミピド(100μM、200μM)を培地に添加した場合、CgAの発現(mRNAレベル)の低下が抑制される傾向がみられた(I200+R100、I200+R200)。以上の結果は、本法で調製した腸管上皮細胞が、CgAの発現を指標にしたアッセイ(具体的には、副作用として粘膜障害(潰瘍)を起こす薬物の予測(副作用リスクの予測)及びこの様な副作用あるいはストレス性の潰瘍を抑制する作用を持つ薬物のスクリーニング系)に有用であることを示す。
C.ヒトiPS細胞由来腸管幹細胞様細胞の新規培養方法の開発2
 ヒトiPS細胞由来腸管幹細胞様細胞の培養方法の改良を目指し、培地に添加する因子を変更し、その影響/効果を調べた。具体的には、10% KSR、100 units/mLペニシリンG、100μg/mLストレプトマイシン、1%グルタマックス、2μM Y-27632、100 ng/mL EGF、30 ng/mL FGF2、3μM CHIR 99021、0.5μM A-83-01を含むAdvanced DMEM/F12を用い、ヒトiPS細胞を分化させて得られた腸管幹細胞を継代培養し、マーカー(LGR5:小腸幹細胞マーカー、CDX2:後腸マーカー)の発現レベルを指標として幹細胞性が維持されているか評価した。培地条件以外は上記Aの場合と同様とした。また、使用する細胞(ヒトiPS細胞、MEF)、ヒトiPS細胞の培養方法等も上記Aの場合と同様とした。尚、本検討に使用した培地は、上記Aの検討で使用した培地に比べて添加する因子の数が大幅に少なく、特に、ヒストン脱アセチル化阻害剤であるバルプロ酸が添加されていない点に特徴がある。
 実験結果を図7に示す。継代を重ねても(P1~P11)、幹細胞性マーカーであるLGR5、後腸マーカーであるCDX2のmRNA発現レベルはヒト小腸と同等以上であり、上記培地がヒトiPS細胞由来腸管幹細胞様細胞の維持(継代培養)に極めて有効であることが示された。
 継代前(P0)及び継代後(P1~P10)のヒトiPS細胞由来腸管幹細胞様細胞を腸管上皮細胞へと分化させ(方法は上記Aの場合に準じた)、各種マーカー(Villin:腸管マーカー、Sucrase-isomaltase: 腸管マーカー、ISX:腸管マーカー、LGR5:腸管幹細胞マーカー、MDR1:トランスポーター遺伝子、PEPT1:トランスポーター遺伝子、CYP3A4:薬物代謝酵素遺伝子)の発現を調べた。結果を図8及び9に示す。継代後に腸管上皮細胞へ分化させた場合でも、腸管上皮マーカーおよび薬物動態関連遺伝子の高い発現が見られた。Villin1、ISX、MDR1等は、継代を重ねると発現レベルが高くなる傾向を示し、ヒト小腸よりも高い発現が認められた。
 以上の通り、上記の培地を用いた維持培養法が、ヒトiPS細胞由来腸管幹細胞様細胞の維持(培養)、並びに腸管上皮細胞への分化促進および機能向上に極めて有効であることが確認された。
 本発明の培養方法はiPS細胞由来の腸管幹細胞様細胞を大量に調製することや、長期間にわたって維持することを可能にする。また、本発明の培養方法を介してiPS細胞由来の腸管上皮細胞様細胞を調製することにより、より成熟した腸管上皮細胞様細胞を取得し得る。腸管上皮細胞様細胞は小腸のモデル系として有用であり、吸収・代謝・膜透過性、薬物代謝酵素の誘導、薬物トランスポーターの誘導、毒性の評価等に利用できる。また、各種腸疾患治療用の細胞製剤の有効成分として、或いは再生医療の材料としての利用も期待される。更に、本発明には、腸管幹細胞の機能解明、腸管の発生過程の解明、消化管疾患の原因や進展機構の解明などへの貢献も期待される。
 この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。本明細書の中で明示した論文、公開特許公報、及び特許公報などの内容は、その全ての内容を援用によって引用することとする。

Claims (18)

  1.  人工多能性幹細胞由来の腸管幹細胞様細胞をGSK-3β阻害剤、ヒストン脱アセチル化阻害剤、及び血清代替物の存在下、或いはGSK-3β阻害剤及び血清代替物の存在下で培養する工程を含む、人工多能性幹細胞由来の腸管幹細胞様細胞を培養する方法。
  2.  GSK-3β阻害剤がCHIR 99021、SB216763、CHIR 98014、TWS119、Tideglusib、SB415286、BIO、AZD2858、AZD1080、AR-A014418、TDZD-8、LY2090314、IM-12、Indirubin、Bikinin又は1-Azakenpaulloneであり、ヒストン脱アセチル化阻害剤がバルプロ酸、ボリノスタット、トリコスタチンA、ツバスタチンA、ギビノスタット又はプラシノスタットであり、血清代替物がノックアウト血清代替物である、請求項1に記載の方法。
  3.  前記培養が、上皮成長因子、TGFβ受容体阻害剤及び線維芽細胞増殖因子からなる群より選択される一以上の化合物が更に存在する条件下で行われる、請求項1又は2に記載の方法。
  4.  TGFβ受容体阻害剤がA-83-01であり、線維芽細胞増殖因子がFGF2、FGF4又はFGF10である、請求項3に記載の方法。
  5.  前記培養が、BMP阻害剤、Wntシグナル活性化剤及びWntアゴニストからなる群より選択される一以上の化合物が更に存在する条件下で行われる、請求項1~4のいずれか一項に記載の方法。
  6.  BMP阻害剤がNogginであり、Wntシグナル活性化剤がR-spondin 1であり、WntアゴニストがWnt3aである、請求項5に記載の方法。
  7.  前記培養が、ニコチンアミド、N-アセチルシステイン、p38阻害剤及びROCK阻害剤からなる群より選択される一以上の化合物が更に存在する条件下で行われる、請求項1~6のいずれか一項に記載の方法。
  8.  p38阻害剤がSB202190であり、ROCK阻害剤がY-27632である、請求項7に記載の方法。
  9.  人工多能性幹細胞がヒト人工多能性幹細胞である、請求項1~8のいずれか一項に記載の方法。
  10.  請求項1~9のいずれか一項に記載の方法で培養した腸管幹細胞様細胞を腸管上皮細胞様細胞へと分化させる工程を含む、腸管上皮細胞様細胞を調製する方法。
  11.  請求項10に記載の方法で得られた腸管上皮細胞様細胞。
  12.  請求項11に記載の腸管上皮細胞様細胞を用いた、被検物質の体内動態又は毒性を評価する方法。
  13.  前記体内動態が、代謝、吸収、排泄、薬物相互作用、薬物代謝酵素の誘導、又は薬物トランスポーターの誘導である、請求項12に記載の方法。
  14.  以下の工程(i)~(iii)を含む、請求項12又は13に記載の方法:
     (i)請求項11に記載の腸管上皮細胞様細胞で構成された細胞層を用意する工程;
     (ii)前記細胞層に被検物質を接触させる工程;
     (iii)前記細胞層を透過した被検物質を定量し、被検物質の吸収性ないし膜透過性、薬物相互作用、薬物代謝酵素の誘導、薬物トランスポーターの誘導、又は毒性を評価する工程。
  15.  以下の工程(I)及び(II)を含む、請求項12又は13に記載の方法:
     (I)請求項11に記載の腸管上皮細胞様細胞に被検物質を接触させる工程;
     (II)被検物質の代謝若しくは吸収、薬物相互作用、薬物代謝酵素の誘導、薬物トランスポーターの誘導、又は毒性を測定・評価する工程。
  16.  以下の工程(a)及び(b)を含む、被検物質の消化管粘膜障害作用を評価する方法:
     (a)請求項11に記載の腸管上皮細胞様細胞に被検物質を接触させる工程;
     (b)前記腸管上皮細胞様細胞におけるムチン2又はクロモグラニンAの発現を検出し、検出結果に基づき被検物質の消化管粘膜障害作用を判定する工程であって、ムチン2又はクロモグラニンAの発現低下が認められることが、被検物質が消化管粘膜障害作用を有することの指標となる工程。
  17.  以下の工程(A)及び(B)を含む、被検物質の消化管粘膜保護作用を評価する方法:
     (A)消化管粘膜障害作用を示す物質の存在下、請求項11に記載の腸管上皮細胞様細胞に被検物質を接触させる工程;
     (B)前記腸管上皮細胞様細胞におけるムチン2又はクロモグラニンAの発現を検出し、検出結果に基づき被検物質の消化管粘膜保護作用を判定する工程であって、前記物質によるムチン2又はクロモグラニンAの発現低下の抑制が認められることが、被検物質が消化管粘膜保護作用を有することの指標となる工程。
  18.  請求項11に記載の腸管上皮細胞様細胞を含む、細胞製剤。
PCT/JP2018/005849 2017-02-20 2018-02-20 人工多能性幹細胞由来腸管幹細胞の維持培養 WO2018151307A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201880012849.7A CN110382689A (zh) 2017-02-20 2018-02-20 来自人工多能性干细胞的肠道干细胞的维持培养
KR1020197024160A KR20190105237A (ko) 2017-02-20 2018-02-20 인공 다능성 줄기 세포 유래 장관 줄기 세포의 유지 배양
CA3053893A CA3053893A1 (en) 2017-02-20 2018-02-20 Maintenance culture of induced pluripotent stem cell-derived intestinal stem cells
JP2018568660A JP6949336B2 (ja) 2017-02-20 2018-02-20 人工多能性幹細胞由来腸管幹細胞の維持培養
KR1020217006315A KR102323928B1 (ko) 2017-02-20 2018-02-20 인공 다능성 줄기 세포 유래 장관 줄기 세포의 유지 배양
EP18755030.6A EP3584313A4 (en) 2017-02-20 2018-02-20 MAINTENANCE CULTURE OF INTESTINAL STEM CELLS DERIVED FROM INDUCED PLURIPOTENT STEM CELLS
US16/544,993 US11725189B2 (en) 2017-02-20 2019-08-20 Maintenance culture of induced pluripotent stem cell-derived intestinal stem cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017029448 2017-02-20
JP2017-029448 2017-02-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/544,993 Continuation US11725189B2 (en) 2017-02-20 2019-08-20 Maintenance culture of induced pluripotent stem cell-derived intestinal stem cells

Publications (1)

Publication Number Publication Date
WO2018151307A1 true WO2018151307A1 (ja) 2018-08-23

Family

ID=63170029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005849 WO2018151307A1 (ja) 2017-02-20 2018-02-20 人工多能性幹細胞由来腸管幹細胞の維持培養

Country Status (7)

Country Link
US (1) US11725189B2 (ja)
EP (1) EP3584313A4 (ja)
JP (1) JP6949336B2 (ja)
KR (2) KR20190105237A (ja)
CN (1) CN110382689A (ja)
CA (1) CA3053893A1 (ja)
WO (1) WO2018151307A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020095879A1 (ja) * 2018-11-08 2020-05-14 公立大学法人名古屋市立大学 多能性幹細胞の腸管上皮細胞への分化誘導
WO2020262492A1 (ja) * 2019-06-25 2020-12-30 国立大学法人大阪大学 小腸上皮様細胞の製造方法
CN113493763A (zh) * 2020-03-18 2021-10-12 四川大学华西医院 可应用于基因编辑的小鼠卵巢原代细胞培养基及体外培养方法
JPWO2021261540A1 (ja) * 2020-06-25 2021-12-30
JP2022520420A (ja) * 2019-02-13 2022-03-30 タイジェニックス、ソシエダッド、アノニマ、ウニペルソナル 幹細胞の凍結保存
EP3901250A4 (en) * 2018-11-02 2022-08-10 Public University Corporation Nagoya City University METHOD FOR PRODUCING AN INTESTINAL ORGANOID DERIVED FROM PLURIPOTENTE STEM CELLS

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11605487B2 (en) * 2017-04-14 2023-03-14 The Diller Corporation Laminate with induction coils and charging station device comprising same
CN111411077B (zh) * 2020-03-26 2022-02-25 浙江大学 小分子物质在制备体外维持肌腱干细胞表型的试剂中的应用
CN111849860B (zh) * 2020-06-01 2021-12-21 浙江大学 一种利用铁元素调控肠道干细胞分化的方法及应用
WO2023083999A2 (en) 2021-11-10 2023-05-19 Dna Script Novel terminal deoxynucleotidyl transferase (tdt) variants

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012060315A1 (ja) 2010-11-02 2012-05-10 国立大学法人 熊本大学 腸細胞の製造方法
JP2014516562A (ja) 2011-06-10 2014-07-17 コーニンクレッカ ネザーランド アカデミー ヴァン ウェテンシャッペン 幹細胞のための培養培地
WO2014132933A1 (ja) 2013-02-26 2014-09-04 公立大学法人名古屋市立大学 人工多能性幹細胞を腸管上皮細胞へ分化誘導する方法
JP2016512958A (ja) 2013-02-25 2016-05-12 ジェネンテック, インコーポレイテッド 上皮幹細胞の液体培養
JP2017029448A (ja) 2015-07-31 2017-02-09 株式会社三洋物産 遊技機
WO2017154795A1 (ja) * 2016-03-08 2017-09-14 公立大学法人名古屋市立大学 人工多能性幹細胞の腸管上皮細胞への分化誘導

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9752124B2 (en) * 2009-02-03 2017-09-05 Koninklijke Nederlandse Akademie Van Wetenschappen Culture medium for epithelial stem cells and organoids comprising the stem cells
JP2012060315A (ja) 2010-09-07 2012-03-22 Toshiba Corp レベルシフト回路
DK2970890T3 (da) * 2013-03-14 2020-05-04 Brigham & Womens Hospital Inc Sammensætninger og fremgangsmåder til opformering og dyrkning af epitelstamceller
US11193110B2 (en) * 2015-01-30 2021-12-07 The University Of North Carolina At Chapel Hill Methods to generate gastrointestinal epithelial tissue constructs
EP3460042B1 (en) * 2016-05-18 2024-02-21 Keio University Cell culture medium for culturing organoid, culture method, and organoid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012060315A1 (ja) 2010-11-02 2012-05-10 国立大学法人 熊本大学 腸細胞の製造方法
JP2014516562A (ja) 2011-06-10 2014-07-17 コーニンクレッカ ネザーランド アカデミー ヴァン ウェテンシャッペン 幹細胞のための培養培地
JP2016512958A (ja) 2013-02-25 2016-05-12 ジェネンテック, インコーポレイテッド 上皮幹細胞の液体培養
WO2014132933A1 (ja) 2013-02-26 2014-09-04 公立大学法人名古屋市立大学 人工多能性幹細胞を腸管上皮細胞へ分化誘導する方法
JP2017029448A (ja) 2015-07-31 2017-02-09 株式会社三洋物産 遊技機
WO2017154795A1 (ja) * 2016-03-08 2017-09-14 公立大学法人名古屋市立大学 人工多能性幹細胞の腸管上皮細胞への分化誘導

Non-Patent Citations (20)

* Cited by examiner, † Cited by third party
Title
"Magazine of Kochi", vol. 40, 2014, WOMEN'S UNIVERSITY ACADEMY OF NURSING, pages: 24 - 30
"R & D Review", vol. 34, September 1999, TOYOTA CENTRAL R & D LABS., INC., pages: 17 - 22
IWAO T . ET AL.: "Generation of Enterocyte-Like Cells with Pharmacokinetic Functions from Human Induced Pluripotent Stem Cells Using Small-Molecule Compounds", DRUG METAB. DISPOS., vol. 43, no. 4, April 2015 (2015-04-01), pages 603 - 610, XP055415683 *
KIM DKIM CHMOON JI ET AL., CELL STEM CELL, vol. 4, 2009, pages 472 - 476
KIM J B ET AL., CELL, vol. 136, no. 3, 2009, pages 411 - 419
KIM J B ET AL., NATURE, vol. 454, no. 7204, 2008, pages 646 - 650
NAKAGAWA M ET AL., NAT. BIOTECHNOL., vol. 26, no. 11, 2008, pages 1269 - 1275
OZAWA T. ET AL.: "Generation of enterocyte-like cells from human induced pluripotent stem cells for drug absorption and metabolism studies in human small intestine", SCIENTIFIC REPORTS, vol. 5, 12 November 2015 (2015-11-12), XP055311230 *
SATO T. ET AL.: "Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium", GASTROENTEROLOGY, vol. 141, no. 5, November 2011 (2011-11-01), pages 1762 - 72, XP028325676, doi:10.1053/j.gastro.2011.07.050
SILVA J ET AL., PLOS. BIOL., vol. 6, no. 10, 2008, pages e 253
STADTFELD M ET AL., SCIENCE, vol. 322, no. 5903, 2008, pages 949 - 953
TAKAHASHI KYAMANAKA S, CELL, vol. 126, no. 4, 2006, pages 663 - 676
TAKAHASHI, K ET AL., CELL, vol. 131, no. 5, 2007, pages 861 - 72
WANG X. ET AL.: "Cloning and Variation of Ground State Intestinal Stem Cells", NATURE, vol. 522, no. 7555, 2015, pages 173 - 178, XP055560281, doi:10.1038/nature14484
WOLTJEN KMICHAEL IPMOHSENI P ET AL., NATURE, vol. 458, 2009, pages 771 - 775
YIN X. ET AL.: "Niche-independent high-purity cultures of Lgr5(+) intestinal stem cells and their progeny", NATURE METHODS, vol. 11, no. 1, 2014, pages 106 - 112, XP055407463, doi:10.1038/nmeth.2737
YIN X. ET AL.: "Niche-independent high-purity cultures of Lgr5+ intestinal stem cells and their progeny", NATURE METHODS, vol. 11, no. 1, January 2014 (2014-01-01), pages 106 - 112, XP055292181 *
YU J ET AL., SCIENCE, vol. 318, no. 5858, 2007, pages 1917 - 1920
YU JHU KSMUGA-OTTO KTIAN S ET AL., SCIENCE, vol. 324, 2009, pages 797 - 801
YUSA KRAD RTAKEDA J ET AL., NAT METHODS, vol. 6, 2009, pages 363 - 369

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3901250A4 (en) * 2018-11-02 2022-08-10 Public University Corporation Nagoya City University METHOD FOR PRODUCING AN INTESTINAL ORGANOID DERIVED FROM PLURIPOTENTE STEM CELLS
US12134784B2 (en) 2018-11-02 2024-11-05 Public University Corporation Nagoya City University Method for preparing intestinal tract cell layer derived from pluripotent stem cell
WO2020095879A1 (ja) * 2018-11-08 2020-05-14 公立大学法人名古屋市立大学 多能性幹細胞の腸管上皮細胞への分化誘導
JPWO2020095879A1 (ja) * 2018-11-08 2021-09-30 公立大学法人名古屋市立大学 多能性幹細胞の腸管上皮細胞への分化誘導
JP2022520420A (ja) * 2019-02-13 2022-03-30 タイジェニックス、ソシエダッド、アノニマ、ウニペルソナル 幹細胞の凍結保存
JP7548917B2 (ja) 2019-02-13 2024-09-10 武田薬品工業株式会社 幹細胞の凍結保存
WO2020262492A1 (ja) * 2019-06-25 2020-12-30 国立大学法人大阪大学 小腸上皮様細胞の製造方法
JP7637362B2 (ja) 2019-06-25 2025-02-28 国立大学法人大阪大学 小腸上皮様細胞の製造方法
CN113493763A (zh) * 2020-03-18 2021-10-12 四川大学华西医院 可应用于基因编辑的小鼠卵巢原代细胞培养基及体外培养方法
JPWO2021261540A1 (ja) * 2020-06-25 2021-12-30
WO2021261540A1 (ja) 2020-06-25 2021-12-30 富士フイルム株式会社 腸管上皮細胞の製造方法、及びその利用
JP7506746B2 (ja) 2020-06-25 2024-06-26 富士フイルム株式会社 腸管上皮細胞の製造方法、及びその利用

Also Published As

Publication number Publication date
EP3584313A4 (en) 2020-03-11
KR102323928B1 (ko) 2021-11-08
JP6949336B2 (ja) 2021-10-13
EP3584313A1 (en) 2019-12-25
US11725189B2 (en) 2023-08-15
CA3053893A1 (en) 2018-08-23
JPWO2018151307A1 (ja) 2019-11-21
US20200002680A1 (en) 2020-01-02
KR20210027532A (ko) 2021-03-10
CN110382689A (zh) 2019-10-25
KR20190105237A (ko) 2019-09-16

Similar Documents

Publication Publication Date Title
JP6949336B2 (ja) 人工多能性幹細胞由来腸管幹細胞の維持培養
JP7317323B2 (ja) 多能性幹細胞から腸管上皮細胞への分化誘導方法
JP2024069351A (ja) 中間中胚葉細胞から腎前駆細胞への分化誘導方法、および多能性幹細胞から腎前駆細胞への分化誘導方法
KR102029391B1 (ko) 다능성 줄기세포의 제조방법
US11499963B2 (en) Induction of differentiation of induced pluripotent stem cells into intestinal epithelial cells
JP6296399B2 (ja) 人工多能性幹細胞を腸管上皮細胞へ分化誘導する方法
WO2022168908A1 (ja) 多能性幹細胞由来の陰窩-絨毛様構造を有する腸管細胞の製造方法及びその用途
US20240279613A1 (en) Method of producing enteroendocrine cell, enteroendocrine cell derived from pluripotent stem cell, culture medium or culture medium kit, and use thereof
JP2022019411A (ja) 人工多能性幹細胞由来の内胚葉細胞を製造する方法及びその利用
JP7506746B2 (ja) 腸管上皮細胞の製造方法、及びその利用
US20210147808A1 (en) Method for producing intestinal epithelial cell and intestinal epithelial cell
WO2025018366A1 (ja) 腸管上皮細胞を作製する方法
WO2020095879A1 (ja) 多能性幹細胞の腸管上皮細胞への分化誘導

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18755030

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018568660

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3053893

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20197024160

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018755030

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载