+

WO2018151222A1 - Ni-BASED HEAT-RESISTANT ALLOY AND METHOD FOR MANUFACTURING SAME - Google Patents

Ni-BASED HEAT-RESISTANT ALLOY AND METHOD FOR MANUFACTURING SAME Download PDF

Info

Publication number
WO2018151222A1
WO2018151222A1 PCT/JP2018/005298 JP2018005298W WO2018151222A1 WO 2018151222 A1 WO2018151222 A1 WO 2018151222A1 JP 2018005298 W JP2018005298 W JP 2018005298W WO 2018151222 A1 WO2018151222 A1 WO 2018151222A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
alloy
content
resistant alloy
longitudinal direction
Prior art date
Application number
PCT/JP2018/005298
Other languages
French (fr)
Japanese (ja)
Inventor
仙波 潤之
友彰 浜口
伸之佑 栗原
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to CN201880011398.5A priority Critical patent/CN110291216A/en
Priority to JP2018568607A priority patent/JP6819700B2/en
Priority to CA3053741A priority patent/CA3053741A1/en
Priority to EP18753655.2A priority patent/EP3584335A4/en
Priority to US16/483,850 priority patent/US20200010931A1/en
Priority to KR1020197026436A priority patent/KR20190117605A/en
Publication of WO2018151222A1 publication Critical patent/WO2018151222A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Definitions

  • the present invention relates to a Ni-base heat-resistant alloy and a method for producing the same.
  • Fe-based alloys such as austenitic stainless steel have insufficient creep rupture strength. For this reason, it is essential to use a Ni-based alloy utilizing precipitation such as ⁇ ′ phase. Furthermore, since it is unavoidable that the steel pipe for a boiler / chemical industry is welded, it is required to have excellent weldability.
  • Patent Document 1 discloses an austenitic heat-resistant alloy that is excellent in both weld crack resistance and toughness of HAZ and also excellent in creep strength at high temperatures.
  • the present invention solves the above problems, and provides a Ni-base heat-resistant alloy that exhibits 0.2% proof stress and tensile strength at room temperature sufficient as a large structural member, and creep rupture strength at high temperature, and a method for producing the same.
  • the purpose is to provide.
  • the present invention has been made in order to solve the above-mentioned problems, and provides the following Ni-base heat-resistant alloy and its manufacturing method.
  • the chemical composition of the alloy is mass%, C: 0.005 to 0.15%, Si: 2.0% or less, Mn: 3.0% or less, P: 0.030% or less, S: 0.010% or less, N: 0.030% or less, O: 0.030% or less, Ni: 40.0-60.0%, Co: 0.01-25.0%, Cr: 15.0% or more and less than 28.0%, Mo: 12.0% or less, W: less than 4.0%, B: 0.0005 to 0.006%, Al: 0 to 3.0%, Ti: 0 to 3.0%, Nb: 0 to 3.0%, REM: 0 to 0.1%, Mg: 0 to 0.02%, Ca: 0 to 0.02%, Balance: Fe and impurities, Satisfying the following formulas (i) to (iii): In the cross section perpendicular to the longitudinal direction of the alloy, the shortest distance from the center portion to the outer surface portion is 40 mm or more, The austenite grain size number in the outer surface portion is -2.0 to 4.0
  • (Al + Ti + Nb) PB Total content of Al, Ti and Nb present as precipitates obtained by extraction residue analysis in the central portion (Al + Ti + Nb) PS : Al, Ti present as precipitates obtained by extraction residue analysis in the outer surface portion And Nb total content YS B : 0.2% yield strength at the center YS S : 0.2% yield strength at the outer surface TS B : Tensile strength at the center TS S : Tensile strength at the outer surface
  • the chemical composition is mass%, Mg: 0.0001 to 0.02%, and Ca: 0.0001 to 0.02%, Containing one or two selected from The Ni-base heat-resistant alloy as described in (1) above.
  • the 10,000-hour creep rupture strength at 700 ° C. in the longitudinal direction in the central portion is 150 MPa or more.
  • the hot working is performed at least once in a direction substantially perpendicular to the longitudinal direction of the hot working.
  • the Ni-based heat-resistant alloy of the present invention has little variation in mechanical properties depending on the part, and is excellent in creep rupture strength at high temperatures.
  • C 0.005 to 0.15%
  • C stabilizes the austenite structure, forms fine carbides at the grain boundaries, and improves the creep strength at high temperatures. Therefore, the C content needs to be 0.005% or more. However, when the content becomes excessive, the carbide becomes coarse and precipitates in a large amount, thereby lowering the ductility of the grain boundary, leading to a reduction in toughness and creep strength. Therefore, the C content is 0.15% or less.
  • the C content is preferably 0.01% or more. Further, the C content is preferably 0.12% or less, and more preferably 0.10% or less.
  • Si 2.0% or less Si is contained as a deoxidizing element. Si is an element effective for improving the corrosion resistance and oxidation resistance at high temperatures. However, if the Si content exceeds 2.0%, the stability of the austenite phase decreases, leading to a decrease in toughness and creep strength. Therefore, the Si content is 2.0% or less. The Si content is preferably 1.5% or less, and more preferably 1.0% or less. In addition, although it is not necessary to provide a minimum in particular about Si content, extreme reduction will not obtain a sufficient deoxidation effect, will deteriorate the cleanliness of an alloy, and will raise the manufacturing cost. Therefore, the Si content is preferably 0.02% or more, and more preferably 0.10% or more.
  • Mn 3.0% or less Mn is an element that has a deoxidizing action like Si and contributes to stabilization of austenite. However, if the Mn content exceeds 3.0%, embrittlement is caused and the toughness and creep ductility are lowered. Therefore, the Mn content is 3.0% or less.
  • the Mn content is preferably 2.5% or less, more preferably 2.0% or less, and even more preferably 1.5% or less. Although it is not necessary to provide a lower limit for the Mn content, an extreme decrease results in an insufficient deoxidation effect and deteriorates the cleanliness of the alloy, and increases the manufacturing cost. Therefore, the Mn content is preferably 0.02% or more, more preferably 0.10% or more, and further preferably 0.15% or more.
  • P 0.030% or less
  • P is an element contained in the alloy as an impurity, but segregates at the grain boundaries of HAZ during welding to increase liquefaction cracking sensitivity and adversely affect toughness after long-term use. is there. Therefore, although it is preferable to reduce as much as possible, extreme reduction leads to an increase in steelmaking cost. Therefore, the P content is 0.030% or less, and preferably 0.020% or less.
  • S 0.010% or less S is an element contained in the alloy as an impurity, but segregates at the grain boundaries of HAZ during welding to increase liquefaction cracking sensitivity and adversely affect toughness after long-term use. is there. Therefore, although it is preferable to reduce as much as possible, extreme reduction leads to an increase in steelmaking cost. Therefore, the S content is 0.010% or less, and preferably 0.005% or less.
  • N 0.030% or less
  • N is an element effective for stabilizing the austenite phase.
  • the Cr content of the present invention a large amount of fine nitriding is required during use at high temperatures if contained in excess. The substance is precipitated in the grains, resulting in a decrease in creep ductility or toughness. Therefore, the N content is 0.030% or less, preferably 0.020% or less, and more preferably 0.015% or less.
  • the N content is preferably 0.0005% or more, more preferably 0.001% or more, and further preferably 0.005% or more.
  • O 0.030% or less O is contained in the alloy as an impurity, but if it is excessively contained, it causes a decrease in hot workability, toughness and ductility. Therefore, the O content is 0.030% or less, preferably 0.020% or less, more preferably 0.010% or less, and still more preferably 0.005% or less. In addition, although it is not necessary to set a minimum in particular about content of O, an extreme fall invites the raise of manufacturing cost. Therefore, the O content is preferably 0.001% or more.
  • Ni 40.0-60.0%
  • Ni is an effective element for obtaining an austenite structure, and is an essential element for ensuring the structural stability after long-term use. Further, Ni combines with Al, Ti, and Nb to form a fine intermetallic compound phase, and also has an effect of increasing creep strength. In order to sufficiently obtain the above Ni effect within the Cr content range of the present invention, the Ni content needs to be 40.0% or more. However, since Ni is an expensive element, if its content exceeds 60.0%, the cost increases. Therefore, the Ni content is 40.0 to 60.0%.
  • the Ni content is preferably 42.0% or more, more preferably 45.0% or more, further preferably 48.0% or more, and preferably 58.0% or less.
  • Co 0.01-25.0%
  • Co is an austenite-forming element and contributes to the improvement of creep strength by increasing the stability of the austenite phase.
  • the Co content needs to be 0.01% or more.
  • the Co content is preferably 0.1% or more, more preferably 2.0% or more, and even more preferably 8.0% or more. Further, the Co content is preferably 23.0% or less, more preferably 21.0% or less.
  • Cr 15.0% or more and less than 28.0% Cr is an essential element for ensuring oxidation resistance and corrosion resistance at high temperatures.
  • the Cr content needs to be 15.0% or more.
  • the Cr content is preferably 17.0% or more, and more preferably 19.0% or more.
  • it is preferable that Cr content is 26.0% or less, and it is more preferable that it is 24.0% or less.
  • Mo 12.0% or less W: less than 4.0% Both Mo and W are elements that contribute to improvement in creep strength at high temperatures by dissolving in the austenite structure as a matrix. In order to obtain this effect, it is necessary to contain one or both of Mo and W. However, when the content of these elements is excessive, the stability of the austenite phase is decreased, and the creep strength is decreased. Therefore, the Mo content is 12.0% or less. The Mo content is preferably 10.0% or less.
  • W has a larger atomic weight than Mo, it needs to be contained in a larger amount in order to obtain the same effect as Mo, which is disadvantageous from the viewpoint of ensuring cost and phase stability. For this reason, the W content is less than 4.0%. It is not necessary to contain Mo and W in combination. When Mo or W is contained alone, the content is preferably 0.1% or more.
  • B 0.0005 to 0.006%
  • B is an element necessary for improving the creep strength by segregating at the grain boundary in use to strengthen the grain boundary and finely dispersing the grain boundary carbide. In addition, it has the effect of segregating at the grain boundaries to improve the fixing force and contribute to toughness improvement. In order to obtain these effects, the B content needs to be 0.0005% or more. However, when the B content increases and exceeds 0.006% in particular, a large amount of segregation occurs in the high-temperature HAZ near the melting boundary due to the welding heat cycle during welding, and overlaps with P to lower the melting point of the grain boundary. Enhances liquefaction cracking sensitivity of HAZ. Therefore, the B content is 0.0005 to 0.006%.
  • the B content is preferably 0.001% or more, and preferably 0.005% or less.
  • Al, Ti, and Nb are all elements that improve creep strength at high temperatures by binding to Ni and finely precipitating in the grains as intermetallic compounds. However, if the content is too large and exceeds 3.0% for any of the elements, the above effects are saturated and creep ductility and toughness after prolonged heating are reduced. Therefore, the content of each of Al, Ti, and Nb is set to 3.0% or less. The content of these elements is preferably 2.8% or less, and more preferably 2.5% or less.
  • REM 0 to 0.1%
  • Rare earth elements (REM) have a strong affinity with P, have a high melting point, and form a compound with P that is stable up to high temperatures, thereby fixing P and removing the adverse effects of P on liquefaction cracking and toughness of HAZ. .
  • it is an element which precipitates as a carbide
  • the content of REM becomes excessive and exceeds 0.1%, the effect of reducing the adverse effect of P is saturated, and in addition, a large amount of carbide precipitates, leading to a decrease in toughness. Therefore, the REM content is 0.1% or less.
  • the REM content is preferably 0.08% or less, and more preferably 0.06% or less. In order to obtain the above effect, the REM content is preferably 0.001% or more, more preferably 0.005% or more, and further preferably 0.01% or more.
  • REM refers to a total of 17 elements of Sc, Y and lanthanoid, and the content of REM means the total content of these elements.
  • Mg 0 to 0.02% Mg has a strong affinity with S and has an effect of increasing hot workability, and also has an effect of reducing both the occurrence of liquefaction cracking of HAZ and a decrease in toughness due to S. Therefore, you may make it contain as needed.
  • excessive addition of Mg causes a decrease in cleanliness due to bonding with oxygen.
  • the content exceeds 0.02%, the cleanliness decreases significantly, and the hot workability is deteriorated. Therefore, the Mg content is 0.02% or less.
  • the Mg content is preferably 0.01% or less.
  • the Mg content is preferably 0.0001% or more, more preferably 0.0005% or more, and further preferably 0.001% or more.
  • Ca 0 to 0.02%
  • Ca has a strong affinity with S and has an effect of improving hot workability, and also has an effect of reducing both the occurrence of liquefaction cracking of HAZ and a decrease in toughness due to S. Therefore, you may make it contain as needed.
  • excessive addition of Ca leads to a decrease in cleanliness due to bonding with oxygen.
  • the content exceeds 0.02%, the cleanliness decreases remarkably, and hot workability is deteriorated. Therefore, the Ca content is 0.02% or less.
  • the Ca content is preferably 0.01% or less.
  • the Ca content is preferably 0.0001% or more, more preferably 0.0005% or more, and further preferably 0.001% or more.
  • the alloy according to the present invention must satisfy the following formulas (i) to (iii) in addition to the content of each element being in the above range.
  • the element symbols in the following formulas (i) to (iii) represent the content (% by mass) of each element.
  • both Mo and W are elements that contribute to the improvement of creep strength at high temperatures by dissolving in the austenite structure that is a matrix.
  • the content of these elements is excessive, On the other hand, the stability of the austenite phase is lowered and the creep strength is lowered. Therefore, the total content of Mo and W needs to satisfy the above formula (i).
  • the middle value of the formula (i) is preferably 1.0 or more, and preferably 10.0 or less.
  • P and B are elements that segregate at the grain boundaries of the HAZ in the vicinity of the melting boundary during the heat cycle during welding, thereby lowering the melting point and increasing the susceptibility to liquefaction cracking of the HAZ.
  • P segregated at the grain boundaries decreases the fixing force of the grain boundaries, whereas B conversely strengthens the grain boundaries, so P adversely affects toughness and B is reversed.
  • Cr is an element that affects the grain boundary segregation behavior of P and B, and indirectly affects their performance.
  • the value on the left side of the formula (iii) is preferably 0.030 or less.
  • the lower limit of the left side value of the formula (iii) is not particularly limited, but the content of P as an impurity is extremely low, and is close to 0.0015 when Cr is 15.0% and B is 0.0005%. It may be a value.
  • the balance is Fe and impurities.
  • impurities are components mixed in due to various factors of raw materials such as ores and scraps and manufacturing processes when the alloy is industrially manufactured, and are allowed within a range that does not adversely affect the present invention. Means something.
  • Grain size Austenite grain size number in the outer surface -2.0 to 4.0 If the austenite grain size in the outer surface portion is too coarse, the 0.2% proof stress and tensile strength at room temperature will be low, while if too fine, it will not be possible to maintain high creep rupture strength at high temperatures. Therefore, the austenite grain size number in the outer surface portion is set to -2.0 to 4.0.
  • the crystal grain size number is determined by the intersecting line segment (grain size) defined in JIS G 0551 (2013).
  • the crystal grain size number of the outer surface portion after the final heat treatment can be set to the above range by appropriately adjusting the heat treatment temperature and holding time after the hot working and the cooling method. .
  • the Ni-base heat-resistant alloy according to the present invention exhibits 0.2% proof stress and tensile strength at room temperature sufficient for a large structural member, and creep rupture strength at high temperature. That is, the effect of the present invention is remarkably exhibited for a thick member.
  • the shortest distance from the center portion to the outer surface portion is set to 40 mm or more in the cross section perpendicular to the longitudinal direction.
  • the shortest distance from the center portion to the outer surface portion is preferably 80 mm or more, and more preferably 100 mm or more.
  • the shortest distance from the center portion to the outer surface portion is, for example, a radius of the cross section (mm) when the alloy is cylindrical, and a length (mm) that is half the short side of the cross section when the alloy is a quadrangular prism. It becomes.
  • the heat-resistant alloy according to the present invention is obtained, for example, by subjecting a steel ingot or a cast piece obtained by continuous casting to hot working such as hot forging or hot rolling, as will be described later.
  • the longitudinal direction of the heat-resistant alloy is generally the direction connecting the top and bottom portions of the steel ingot when using a steel ingot, and the length direction when using a slab.
  • an insoluble ⁇ ′ phase (Ni 3 (Al, Ti, Nb)) is generated mainly in the grains after the heat treatment after hot working.
  • the cooling rate is slower at the center of the alloy than at the outer surface, the amount of undissolved ⁇ ′ phase tends to increase. Therefore, the precipitation amount of Al, Ti, and Nb precipitated as ⁇ 'at the central portion with respect to the outer surface portion of the alloy increases, and when the value of (Al + Ti + Nb) PB / (Al + Ti + Nb) PS exceeds 10.0, High creep rupture strength cannot be maintained.
  • the lower limit value of (Al + Ti + Nb) PB / (Al + Ti + Nb) PS is not required, but is preferably 1.0 or more because the central portion tends to increase the amount of precipitates more than the outer surface portion.
  • the precipitate obtained by the extraction residue analysis is an insoluble ⁇ ′ phase contained in the alloy.
  • the extraction residue analysis is performed according to the following procedure. First, a test piece for measuring the ⁇ ′ phase is collected from the center portion and the outer surface portion in a cross section perpendicular to the longitudinal direction of the alloy sample. After obtaining the surface area of the above test piece, only the base material of the heat-resistant alloy is completely electrolyzed in an electrolysis condition of 20 mA / cm 2 in a 1% tartaric acid-1% ammonium sulfate aqueous solution. And the solution after electrolysis is filtered with a 0.2 micrometer filter, and deposits are extracted as a residue.
  • the content (mass%) of Al, Ti and Nb contained as an undissolved ⁇ ′ phase is measured by ICP-AES measurement after acid decomposition of the extraction residue, and based on the measured value (Al + Ti + Nb ) PB / (Al + Ti + Nb) Determine the value of PS .
  • the Ni-base heat-resistant alloy according to the present invention satisfies the above formulas (v) and (vi) in mechanical properties at room temperature.
  • both formulas (v) and (vi) are set to 1.0 or more. It is preferable.
  • the 0.2% proof stress and tensile strength were determined by cutting a round bar tensile test piece with a parallel part length of 40 mm from the center part and outer surface part of the alloy in parallel with the longitudinal direction, and conducting a tensile test at room temperature. It asks by carrying out.
  • the tensile test is performed according to JIS Z 2241 (2011).
  • the Ni-base heat-resistant alloy of the present invention is used in a high-temperature environment, a high high-temperature strength, particularly a high creep rupture strength is required. Therefore, the alloy of the present invention needs to have a 10,000 hour creep rupture strength at 700 ° C. in the longitudinal direction of 150 MPa or more at the center.
  • Creep rupture strength is obtained by the following method. First, a round bar creep rupture test piece having a diameter of 6 mm and a gauge distance of 30 mm described in JIS Z 2241 (2011) is cut out by machining from the center of the alloy in parallel with the longitudinal direction. Then, a creep rupture test is performed in the atmosphere at 700 ° C., 750 ° C., and 800 ° C., and the creep rupture strength at 700 ° C. for 10,000 hours is obtained using the Larson-Miller parameter method. The creep rupture test is performed in accordance with JIS Z 2271 (2010).
  • Ni-base heat-resistant alloy of the present invention is manufactured by subjecting a steel ingot or slab having the above-described chemical composition to hot working.
  • the treatment is performed so that the longitudinal direction of the final shape of the alloy coincides with the longitudinal direction of the steel ingot or slab as the raw material.
  • the hot working may be performed only in the longitudinal direction, the hot working is performed once or more in the direction substantially perpendicular to the longitudinal direction in order to provide a higher degree of working and a more homogeneous structure. You may give it. Moreover, you may further give hot processing of different methods, such as hot extrusion, as needed after the said hot processing.
  • the final heat treatment described below is performed in order to suppress the variation in the metal structure and mechanical properties of each part and maintain high creep rupture strength. Apply.
  • the hot-worked alloy is heated to a heat treatment temperature T (° C.) in the range of 1070 to 1220 ° C., and within that range, 1150 D / T to 1500 D / T (min) is maintained.
  • T heat treatment temperature
  • D is, for example, a diameter (mm) of the alloy when the alloy is cylindrical, and a diagonal distance (mm) when the alloy is square. That is, D is the maximum value (mm) of the linear distance between an arbitrary point on the outer edge of the cross section and another arbitrary point on the outer edge in a cross section perpendicular to the longitudinal direction of the alloy.
  • the heat treatment temperature is lower than 1070 ° C.
  • the insoluble ⁇ ′ phase increases and the creep rupture strength decreases.
  • the ductility is lowered due to melting of the grain boundary or markedly coarsening of the crystal grains.
  • the heat treatment temperature is more preferably 1100 ° C. or higher, and more preferably 1200 ° C. or lower.
  • the holding time is less than 1150 D / T (min)
  • the ⁇ ′ phase in the central portion increases, and (Al + Ti + Nb) PB / (Al + Ti + Nb) PS is outside the range defined in the present invention.
  • the crystal grains in the outer surface portion become coarse, and the austenite grain size number falls outside the range specified in the present invention.
  • An alloy having the chemical composition shown in Table 1 was melted in a high-frequency vacuum melting furnace to form a steel ingot having an outer diameter of 550 mm and a weight of 3 t.
  • the obtained steel ingot was processed into a cylindrical shape having an outer diameter of 200 to 480 mm by hot forging and subjected to final heat treatment under the conditions shown in Table 2 to obtain an alloy member sample.
  • a specimen for observing the structure was collected from the outer surface, and the longitudinal section was polished with emery paper and buff, then corroded with mixed acid and observed with an optical microscope.
  • the crystal grain size number on the observation surface was determined according to the determination method based on the intersection line segment (grain size) defined in JIS G 0551 (2013).
  • a test piece for measuring the ⁇ ′ phase was collected from the center portion and the outer surface portion in the cross section perpendicular to the longitudinal direction of each sample. After determining the surface area of the above test piece, only the base material of the heat-resistant alloy was completely electrolyzed in an electrolysis condition of 20 mA / cm 2 in a 1% tartaric acid-1% ammonium sulfate aqueous solution. And the solution after electrolysis was filtered with a 0.2 micrometer filter, and the deposit was extracted as a residue.
  • the content (mass%) of Al, Ti and Nb contained as an undissolved ⁇ ′ phase is measured by ICP-AES measurement after acid decomposition of the extraction residue, and based on the measured value (Al + Ti + Nb ) PB / (Al + Ti + Nb) The value of PS was determined.
  • a tensile test piece having a parallel part length of 40 mm was cut out by machining from the center part and the outer surface part of each sample, and a tensile test was performed at room temperature. I asked for strength.
  • a round bar creep rupture test piece having a diameter of 6 mm and a gauge distance of 30 mm described in JIS Z 2241 (2011) was cut out from the center of each sample in parallel with the longitudinal direction by machining.
  • the creep rupture test was implemented in 700 degreeC, 750 degreeC, and 800 degreeC air
  • Alloys 1 to 8 are examples of the present invention, and the alloy composition, grain size number, (Al + Ti + Nb) PB / (Al + Ti + Nb) PS , YS S / YS B , TS S / TS B , and creep rupture strength are defined by the present invention. The variation in mechanical properties was small, and the creep rupture strength was good.
  • alloys A and B have substantially the same chemical composition as alloy 1 and have the same final shape by hot forging.
  • the holding time at the time of heat treatment is outside the range of manufacturing conditions defined in the present invention.
  • the grain size number of the outer surface portion of alloy A is outside the specified range of the present invention, and the values of YS S / YS B and TS S / TS B are out of the specified range of the present invention.
  • the variation in mechanical properties increased depending on the part.
  • the value of (Al + Ti + Nb) PB / (Al + Ti + Nb) PS was outside the specified range of the present invention, and the creep rupture strength was significantly lower than that of the alloy 1.
  • Alloys C, D, and E have substantially the same chemical composition as alloy 2 and have the same final shape by hot forging. Since the heat treatment temperature of Alloy C is lower than the specified range of the present invention, the value of (Al + Ti + Nb) PB / (Al + Ti + Nb) PS and the crystal grain number of the outer surface part are outside the range specified by the present invention. Compared to 2, the creep rupture strength was extremely low. Since the heat treatment temperature of the alloy D is higher than the specified range of the present invention, the crystal grain size number of the outer surface portion and the values of YS S / YS B and TS S / TS B are outside the specified range of the present invention. Compared to Alloy 2, the creep rupture strength was remarkably low.
  • the cooling method at the time of final heat treatment of alloy E is not water cooling but air cooling, and the cooling rate is extremely slow, so that the value of (Al + Ti + Nb) PB / (Al + Ti + Nb) PS falls outside the specified range of the present invention.
  • the creep rupture strength was significantly lower than that of Alloy 3.
  • Alloys F, G, and H are comparative examples whose chemical compositions deviate from the provisions of the present invention. Specifically, Alloy F is an example in which the W content is high, Alloy G has a high median value in equation (i), and Alloy H has a low median value in equation (ii). Therefore, in these examples, the creep rupture strength was reduced.
  • the Ni-base heat-resistant alloy according to the present invention has little variation in mechanical properties depending on the part, and is excellent in creep rupture strength at high temperatures. Therefore, the Ni heat-resistant alloy of the present invention can be suitably used as large structural members such as boilers and chemical plants used in high temperature environments.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

This Ni-based heat-resistant alloy contains predetermined amounts of C, Si, Mn, P, S, N, O, Ni, Co, Cr, Mo, W, B, Al, Ti, Nb, REM, Mg, and Ca, the remainder being Fe and impurities, the expressions [0.1 ≤ Mo + W ≤ 12.0], [1.0 ≤ 4 × Al + 2 × Ti + Nb ≤ 12.0], and [P + 0.2 × Cr × B < 0.035] being satisfied, the shortest distance from a center part to an outer surface part in a cross-section perpendicular to the longitudinal direction of an alloy member being 40 mm or greater, the austenite crystal grain size in the outer surface part being -2.0 to 4.0, the total content of Al, Ti, and Nb present as precipitates obtained by extraction residue analysis satisfying the expression [(Al + Ti + Nb)PB/(Al + Ti + Nb)PS ≤ 10.0], and the expressions [YSS/YSB ≤ 1.5] and [TSS/TSB ≤ 1.2] being satisfied at normal temperature.

Description

Ni基耐熱合金およびその製造方法Ni-base heat-resistant alloy and method for producing the same
 本発明は、Ni基耐熱合金およびその製造方法に関する。 The present invention relates to a Ni-base heat-resistant alloy and a method for producing the same.
 近年、高効率化のために、蒸気の温度および圧力を高めた超々臨界圧ボイラの新設が世界中で進められている。これらの超々臨界圧ボイラは、従来600℃前後であった蒸気温度を650℃以上、さらには700℃以上にまで高めることも計画されており、国内外で技術開発が進められている。 In recent years, in order to increase efficiency, new super-critical pressure boilers with increased steam temperature and pressure are being developed all over the world. These ultra-supercritical boilers are also planned to raise the steam temperature, which was conventionally around 600 ° C., to 650 ° C. or more, and further to 700 ° C. or more, and technical development is underway in Japan and overseas.
 これは、省エネルギーと資源の有効活用、および環境保全のためのCOガス排出量削減がエネルギー問題の解決課題の一つとなっており、重要な産業政策となっていることに基づいている。そして、化石燃料を燃焼させる発電用ボイラおよび化学工業用の反応炉等の場合には、効率の高い、超々臨界圧ボイラおよび反応炉が有利なためである。 This is based on the fact that energy conservation, effective utilization of resources, and reduction of CO 2 gas emissions for environmental conservation are one of the challenges for solving energy problems and are important industrial policies. In the case of a power generation boiler for burning fossil fuel, a reaction furnace for chemical industry, and the like, a highly efficient ultra super critical pressure boiler and reaction furnace are advantageous.
 蒸気の高温高圧化は、実稼動時における、ボイラの過熱器管および化学工業用の反応炉管、ならびに耐熱耐圧部材としての厚板および鍛造品などの温度を700℃以上に上昇させる。そのため、このような過酷な環境において長期間使用される合金には、高温強度および高温耐食性のみならず、長期にわたる金属組織の安定性、クリープ破断延性および耐クリープ疲労特性が良好なことが要求される。 Steam high-temperature high-pressure increases the temperature of boiler superheater tubes and chemical reactor reaction furnace tubes, and thick plates and forgings as heat and pressure resistant members during actual operation to 700 ° C or higher. Therefore, alloys that are used for a long time in such harsh environments are required to have not only high-temperature strength and high-temperature corrosion resistance, but also good long-term microstructure stability, creep rupture ductility, and creep fatigue resistance. The
 上記の厳しい要求に対しては、オーステナイトステンレス鋼などのFe基合金では、クリープ破断強度が不足する。このため、γ´相などの析出を活用したNi基合金の使用が必須となる。さらにボイラ・化学工業用プラント鋼管としては溶接が不可避であるため優れた溶接性を有することも求められる。 For the above strict requirements, Fe-based alloys such as austenitic stainless steel have insufficient creep rupture strength. For this reason, it is essential to use a Ni-based alloy utilizing precipitation such as γ ′ phase. Furthermore, since it is unavoidable that the steel pipe for a boiler / chemical industry is welded, it is required to have excellent weldability.
 上記の厳しい要求に対して、例えば、特許文献1には、HAZの耐溶接割れ性と靱性との双方に優れ、さらに高温でのクリープ強度にも優れたオーステナイト系耐熱合金が開示されている。 In response to the above strict requirements, for example, Patent Document 1 discloses an austenitic heat-resistant alloy that is excellent in both weld crack resistance and toughness of HAZ and also excellent in creep strength at high temperatures.
特許第4697357号公報Japanese Patent No. 4697357
 ところで、ボイラおよび化学プラント等の装置用材料のような大型の構造部材は、熱間圧延または熱間鍛造後、冷間加工を施さずに最終熱処理を実施して使用されるため、結晶粒径が比較的大きい。そのため、通常、材料の仕様として規定される常温における0.2%耐力および引張強さが、冷間加工後に最終熱処理を施したものより低くなるという問題がある。 By the way, large structural members such as materials for equipment such as boilers and chemical plants are used after being subjected to final heat treatment without hot working after hot rolling or hot forging. Is relatively large. Therefore, there is a problem that the 0.2% proof stress and the tensile strength at normal temperature, which are normally specified as the material specifications, are lower than those subjected to the final heat treatment after cold working.
 加えて、大型の構造部材では、熱処理時の冷却速度が部位により大きく異なるため、高温での使用時に析出物として強化に寄与する固溶元素の量が部位により異なる。そのことに起因して、クリープ破断強度のばらつきが生じるといった問題もある。そのため、特許文献1に記載の合金を、大型の構造部材に適用するのは困難である。 In addition, in large structural members, the cooling rate during heat treatment varies greatly depending on the site, so the amount of solid solution elements that contribute to strengthening as precipitates when used at high temperatures varies depending on the site. As a result, there is also a problem that variation in creep rupture strength occurs. Therefore, it is difficult to apply the alloy described in Patent Document 1 to a large structural member.
 本発明は上記の問題を解決し、大型の構造部材として十分な常温での0.2%耐力および引張強さ、ならびに、高温でのクリープ破断強度を発現するNi基耐熱合金およびその製造方法を提供することを目的とする。 The present invention solves the above problems, and provides a Ni-base heat-resistant alloy that exhibits 0.2% proof stress and tensile strength at room temperature sufficient as a large structural member, and creep rupture strength at high temperature, and a method for producing the same. The purpose is to provide.
 本発明は、上記の課題を解決するためになされたものであり、下記のNi基耐熱合金およびその製造方法を要旨とする。 The present invention has been made in order to solve the above-mentioned problems, and provides the following Ni-base heat-resistant alloy and its manufacturing method.
 (1)合金の化学組成が、質量%で、
 C:0.005~0.15%、
 Si:2.0%以下、
 Mn:3.0%以下、
 P:0.030%以下、
 S:0.010%以下、
 N:0.030%以下、
 O:0.030%以下、
 Ni:40.0~60.0%、
 Co:0.01~25.0%、
 Cr:15.0%以上28.0%未満、
 Mo:12.0%以下、
 W:4.0%未満、
 B:0.0005~0.006%、
 Al:0~3.0%、
 Ti:0~3.0%、
 Nb:0~3.0%、
 REM:0~0.1%、
 Mg:0~0.02%、
 Ca:0~0.02%、
 残部:Feおよび不純物であり、
 下記(i)~(iii)式を満足し、
 前記合金の長手方向と垂直な断面において、中心部から外面部までの最短距離が40mm以上であり、
 前記外面部におけるオーステナイト結晶粒度番号が-2.0~4.0であり、
 抽出残渣分析によって得られる析出物として存在するAl、TiおよびNbの合計含有量が下記(iv)式を満足し、
 常温での機械的特性が下記(v)式および(vi)式を満足する、
 Ni基耐熱合金。
 0.1≦Mo+W≦12.0 ・・・(i)
 1.0≦4×Al+2×Ti+Nb≦12.0 ・・・(ii)
 P+0.2×Cr×B<0.035 ・・・(iii)
 (Al+Ti+Nb)PB/(Al+Ti+Nb)PS≦10.0 ・・・(iv)
 YS/YS≦1.5 ・・・(v)
 TS/TS≦1.2 ・・・(vi)
 但し、上記(i)~(iii)式中の元素記号は各元素の含有量(質量%)を表し、上記(iv)~(vi)式中の各記号の意味は以下のとおりである。
 (Al+Ti+Nb)PB:中心部において抽出残渣分析によって得られる析出物として存在するAl、TiおよびNbの合計含有量
 (Al+Ti+Nb)PS:外面部において抽出残渣分析によって得られる析出物として存在するAl、TiおよびNbの合計含有量
 YS:中心部における0.2%耐力
 YS:外面部における0.2%耐力
 TS:中心部における引張強さ
 TS:外面部における引張強さ
(1) The chemical composition of the alloy is mass%,
C: 0.005 to 0.15%,
Si: 2.0% or less,
Mn: 3.0% or less,
P: 0.030% or less,
S: 0.010% or less,
N: 0.030% or less,
O: 0.030% or less,
Ni: 40.0-60.0%,
Co: 0.01-25.0%,
Cr: 15.0% or more and less than 28.0%,
Mo: 12.0% or less,
W: less than 4.0%,
B: 0.0005 to 0.006%,
Al: 0 to 3.0%,
Ti: 0 to 3.0%,
Nb: 0 to 3.0%,
REM: 0 to 0.1%,
Mg: 0 to 0.02%,
Ca: 0 to 0.02%,
Balance: Fe and impurities,
Satisfying the following formulas (i) to (iii):
In the cross section perpendicular to the longitudinal direction of the alloy, the shortest distance from the center portion to the outer surface portion is 40 mm or more,
The austenite grain size number in the outer surface portion is -2.0 to 4.0,
The total content of Al, Ti and Nb present as precipitates obtained by extraction residue analysis satisfies the following formula (iv):
Mechanical properties at room temperature satisfy the following formulas (v) and (vi):
Ni-base heat-resistant alloy.
0.1 ≦ Mo + W ≦ 12.0 (i)
1.0 ≦ 4 × Al + 2 × Ti + Nb ≦ 12.0 (ii)
P + 0.2 × Cr × B <0.035 (iii)
(Al + Ti + Nb) PB / (Al + Ti + Nb) PS ≦ 10.0 (iv)
YS S / YS B ≦ 1.5 (v)
TS S / TS B ≦ 1.2 (vi)
However, the element symbols in the above formulas (i) to (iii) represent the content (% by mass) of each element, and the meaning of each symbol in the above formulas (iv) to (vi) is as follows.
(Al + Ti + Nb) PB : Total content of Al, Ti and Nb present as precipitates obtained by extraction residue analysis in the central portion (Al + Ti + Nb) PS : Al, Ti present as precipitates obtained by extraction residue analysis in the outer surface portion And Nb total content YS B : 0.2% yield strength at the center YS S : 0.2% yield strength at the outer surface TS B : Tensile strength at the center TS S : Tensile strength at the outer surface
 (2)前記化学組成が、質量%で、
 Mg:0.0001~0.02%、および、
 Ca:0.0001~0.02%、
 から選択される1種または2種を含有する、
 上記(1)に記載のNi基耐熱合金。
(2) The chemical composition is mass%,
Mg: 0.0001 to 0.02%, and
Ca: 0.0001 to 0.02%,
Containing one or two selected from
The Ni-base heat-resistant alloy as described in (1) above.
 (3)前記中心部における前記長手方向の700℃における10,000時間クリープ破断強度が150MPa以上である、
 上記(1)または(2)に記載のNi基耐熱合金。
(3) The 10,000-hour creep rupture strength at 700 ° C. in the longitudinal direction in the central portion is 150 MPa or more.
The Ni-base heat-resistant alloy as described in (1) or (2) above.
 (4)上記(1)または(2)に記載の化学組成を有する鋼塊または鋳片に、熱間加工を施す工程と、
 その後、1070~1220℃の範囲の熱処理温度T(℃)まで加熱し、1150D/T~1500D/T(min)保持した後、水冷する熱処理を施す工程とを備える、
 Ni基耐熱合金の製造方法。
 但し、Dは、合金の長手方向と垂直な断面における、当該断面の外縁上の任意の点と該外縁上の他の任意の点との直線距離の最大値(mm)である。
(4) Hot-working the steel ingot or slab having the chemical composition described in (1) or (2) above;
Thereafter, heating to a heat treatment temperature T (° C.) in the range of 1070 to 1220 ° C., holding 1150 D / T to 1500 D / T (min), and then performing a heat treatment of cooling with water,
Manufacturing method of Ni-base heat-resistant alloy.
However, D is the maximum value (mm) of the linear distance between an arbitrary point on the outer edge of the cross section and another arbitrary point on the outer edge in a cross section perpendicular to the longitudinal direction of the alloy.
 (5)前記熱間加工を施す工程において、熱間加工の長手方向と略垂直な方向に熱間加工を1回以上施す、
 上記(4)に記載のNi基耐熱合金の製造方法。
(5) In the step of performing the hot working, the hot working is performed at least once in a direction substantially perpendicular to the longitudinal direction of the hot working.
The manufacturing method of the Ni-base heat-resistant alloy as described in said (4).
 本発明のNi基耐熱合金は、部位による機械的性質のばらつきが少なく、また、高温でのクリープ破断強度に優れる。 The Ni-based heat-resistant alloy of the present invention has little variation in mechanical properties depending on the part, and is excellent in creep rupture strength at high temperatures.
 以下、本発明の各要件について詳しく説明する。 Hereinafter, each requirement of the present invention will be described in detail.
 1.化学組成
 各元素の限定理由は下記のとおりである。なお、以下の説明において含有量についての「%」は、「質量%」を意味する。
1. Chemical composition The reasons for limiting each element are as follows. In the following description, “%” for the content means “% by mass”.
 C:0.005~0.15%
 Cは、オーステナイト組織を安定にするとともに粒界に微細な炭化物を形成し、高温でのクリープ強度を向上させる。そのため、C含有量は0.005%以上とする必要がある。しかしながら、その含有量が過剰になった場合には、炭化物が粗大となり、かつ多量に析出し、粒界の延性を低下させ、靱性およびクリープ強度の低下を招く。したがって、C含有量は0.15%以下とする。C含有量は0.01%以上であるのが好ましい。また、C含有量は0.12%以下であるのが好ましく、0.10%以下であるのがより好ましい。
C: 0.005 to 0.15%
C stabilizes the austenite structure, forms fine carbides at the grain boundaries, and improves the creep strength at high temperatures. Therefore, the C content needs to be 0.005% or more. However, when the content becomes excessive, the carbide becomes coarse and precipitates in a large amount, thereby lowering the ductility of the grain boundary, leading to a reduction in toughness and creep strength. Therefore, the C content is 0.15% or less. The C content is preferably 0.01% or more. Further, the C content is preferably 0.12% or less, and more preferably 0.10% or less.
 Si:2.0%以下
 Siは、脱酸元素として含有される。また、Siは、高温での耐食性および耐酸化性の向上に有効な元素である。しかしながら、Si含有量が2.0%を超えると、オーステナイト相の安定性が低下して、靱性およびクリープ強度の低下を招く。したがって、Si含有量は2.0%以下とする。Si含有量は1.5%以下であるのが好ましく、1.0%以下であるのがより好ましい。なお、Si含有量について特に下限を設ける必要はないが、極端な低減は、脱酸効果が十分に得られず合金の清浄性を劣化させるとともに、製造コストの上昇を招く。そのため、Si含有量は0.02%以上であるのが好ましく、0.10%以上であるのがより好ましい。
Si: 2.0% or less Si is contained as a deoxidizing element. Si is an element effective for improving the corrosion resistance and oxidation resistance at high temperatures. However, if the Si content exceeds 2.0%, the stability of the austenite phase decreases, leading to a decrease in toughness and creep strength. Therefore, the Si content is 2.0% or less. The Si content is preferably 1.5% or less, and more preferably 1.0% or less. In addition, although it is not necessary to provide a minimum in particular about Si content, extreme reduction will not obtain a sufficient deoxidation effect, will deteriorate the cleanliness of an alloy, and will raise the manufacturing cost. Therefore, the Si content is preferably 0.02% or more, and more preferably 0.10% or more.
 Mn:3.0%以下
 Mnは、Siと同様に脱酸作用を有するとともに、オーステナイトの安定化にも寄与する元素である。しかしながら、Mn含有量が3.0%を超えると、脆化を招き、靱性およびクリープ延性の低下をきたす。したがって、Mn含有量は3.0%以下とする。Mn含有量は2.5%以下であるのが好ましく、2.0%以下であるのがより好ましく、1.5%以下であるのがさらに好ましい。なお、Mn含有量について下限を設ける必要はないが、極端な低下は、脱酸効果が十分に得られず合金の清浄性を劣化させるとともに、製造コストの上昇を招く。そのため、Mn含有量は0.02%以上であるのが好ましく、0.10%以上であるのがより好ましく、0.15%以上であるのがさらに好ましい。
Mn: 3.0% or less Mn is an element that has a deoxidizing action like Si and contributes to stabilization of austenite. However, if the Mn content exceeds 3.0%, embrittlement is caused and the toughness and creep ductility are lowered. Therefore, the Mn content is 3.0% or less. The Mn content is preferably 2.5% or less, more preferably 2.0% or less, and even more preferably 1.5% or less. Although it is not necessary to provide a lower limit for the Mn content, an extreme decrease results in an insufficient deoxidation effect and deteriorates the cleanliness of the alloy, and increases the manufacturing cost. Therefore, the Mn content is preferably 0.02% or more, more preferably 0.10% or more, and further preferably 0.15% or more.
 P:0.030%以下
 Pは、不純物として合金中に含まれるが、溶接中にHAZの結晶粒界に偏析し、液化割れ感受性を高めるとともに長時間使用後の靱性にも悪影響を及ぼす元素である。そのため、可能な限り低減することが好ましいが、極度の低減は製鋼コストの増大を招く。そのため、P含有量は0.030%以下とし、0.020%以下であるのが好ましい。
P: 0.030% or less P is an element contained in the alloy as an impurity, but segregates at the grain boundaries of HAZ during welding to increase liquefaction cracking sensitivity and adversely affect toughness after long-term use. is there. Therefore, although it is preferable to reduce as much as possible, extreme reduction leads to an increase in steelmaking cost. Therefore, the P content is 0.030% or less, and preferably 0.020% or less.
 S:0.010%以下
 Sは、不純物として合金中に含まれるが、溶接中にHAZの結晶粒界に偏析し、液化割れ感受性を高めるとともに長時間使用後の靱性にも悪影響を及ぼす元素である。そのため、可能な限り低減することが好ましいが、極度の低減は製鋼コストの増大を招く。そのため、S含有量は0.010%以下とし、0.005%以下であるのが好ましい。
S: 0.010% or less S is an element contained in the alloy as an impurity, but segregates at the grain boundaries of HAZ during welding to increase liquefaction cracking sensitivity and adversely affect toughness after long-term use. is there. Therefore, although it is preferable to reduce as much as possible, extreme reduction leads to an increase in steelmaking cost. Therefore, the S content is 0.010% or less, and preferably 0.005% or less.
 N:0.030%以下
 Nは、オーステナイト相を安定にするのに有効な元素であるが、本発明のCr含有量の範囲では、過剰に含まれると高温での使用中に多量の微細窒化物を粒内に析出させ、クリープ延性または靱性の低下を招く。そのため、N含有量0.030%以下とし、0.020%以下であるのが好ましく、0.015%以下であるのがより好ましい。なお、N含有量について特に下限を設ける必要はないが、極端な低減は、製造コストの上昇を招く。そのため、N含有量は0.0005%以上であるのが好ましく、0.001%以上であるのがより好ましく、0.005%以上であるのがさらに好ましい。
N: 0.030% or less N is an element effective for stabilizing the austenite phase. However, in the range of the Cr content of the present invention, a large amount of fine nitriding is required during use at high temperatures if contained in excess. The substance is precipitated in the grains, resulting in a decrease in creep ductility or toughness. Therefore, the N content is 0.030% or less, preferably 0.020% or less, and more preferably 0.015% or less. In addition, although there is no need to provide a lower limit in particular for the N content, an extreme reduction causes an increase in manufacturing cost. Therefore, the N content is preferably 0.0005% or more, more preferably 0.001% or more, and further preferably 0.005% or more.
 O:0.030%以下
 Oは、不純物として合金中に含まれるが、過剰に含まれると熱間加工性の低下、靱性および延性の劣化を招く。そのため、O含有量は0.030%以下とし、0.020%以下であるのが好ましく、0.010%以下であるのがより好ましく、0.005%以下であるのがさらに好ましい。なお、Oの含有量について特に下限を設ける必要はないが、極端な低下は、製造コストの上昇を招く。そのため、O含有量は0.001%以上であるのが好ましい。
O: 0.030% or less O is contained in the alloy as an impurity, but if it is excessively contained, it causes a decrease in hot workability, toughness and ductility. Therefore, the O content is 0.030% or less, preferably 0.020% or less, more preferably 0.010% or less, and still more preferably 0.005% or less. In addition, although it is not necessary to set a minimum in particular about content of O, an extreme fall invites the raise of manufacturing cost. Therefore, the O content is preferably 0.001% or more.
 Ni:40.0~60.0%
 Niは、オーステナイト組織を得るために有効な元素であり、長時間使用後の組織安定性を確保するために必須の元素である。さらに、Niは、Al、TiおよびNbと結合して、微細な金属間化合物相を形成し、クリープ強度を高める作用も有する。本発明のCr含有量の範囲で上記のNiの効果を十分に得るためには、Ni含有量を40.0%以上とする必要がある。しかしながら、Niは高価な元素であるため、その含有量が60.0%を超えるとコストの増大を招く。したがって、Ni含有量は40.0~60.0%とする。Ni含有量は42.0%以上であるのが好ましく、45.0%以上であるのがより好ましく、48.0%以上であるのがさらに好ましく、58.0%以下であるのが好ましい。
Ni: 40.0-60.0%
Ni is an effective element for obtaining an austenite structure, and is an essential element for ensuring the structural stability after long-term use. Further, Ni combines with Al, Ti, and Nb to form a fine intermetallic compound phase, and also has an effect of increasing creep strength. In order to sufficiently obtain the above Ni effect within the Cr content range of the present invention, the Ni content needs to be 40.0% or more. However, since Ni is an expensive element, if its content exceeds 60.0%, the cost increases. Therefore, the Ni content is 40.0 to 60.0%. The Ni content is preferably 42.0% or more, more preferably 45.0% or more, further preferably 48.0% or more, and preferably 58.0% or less.
 Co:0.01~25.0%
 Coは、Niと同様オーステナイト生成元素であり、オーステナイト相の安定性を高めてクリープ強度の向上に寄与する。この効果を得るためには、Co含有量は0.01%以上とする必要がある。しかしながら、Coは極めて高価な元素であるため、その含有量が25.0%を超えると大幅なコスト増を招く。そのため、Co含有量は0.01~25.0%とする。Co含有量は0.1%以上であるのが好ましく、2.0%以上であるのがより好ましく、8.0%以上であるのがさらに好ましい。また、Co含有量は23.0%以下であるのが好ましく、21.0%以下であるのがより好ましい。
Co: 0.01-25.0%
Co, like Ni, is an austenite-forming element and contributes to the improvement of creep strength by increasing the stability of the austenite phase. In order to obtain this effect, the Co content needs to be 0.01% or more. However, since Co is an extremely expensive element, if its content exceeds 25.0%, a significant cost increase is caused. Therefore, the Co content is 0.01-25.0%. The Co content is preferably 0.1% or more, more preferably 2.0% or more, and even more preferably 8.0% or more. Further, the Co content is preferably 23.0% or less, more preferably 21.0% or less.
 Cr:15.0%以上28.0%未満
 Crは、高温での耐酸化性および耐食性の確保のために必須の元素である。本発明のNi含有量の範囲で上記のCrの効果を得るためには、Cr含有量を15.0%以上とする必要がある。しかしながら、Cr含有量が28.0%以上になると、高温でのオーステナイト相の安定性が劣化して、クリープ強度の低下を招く。したがって、Cr含有量は15.0%以上28.0%未満とする。Cr含有量は17.0%以上であるのが好ましく、19.0%以上であるのがより好ましい。また、Cr含有量は26.0%以下であるのが好ましく、24.0%以下であるのがより好ましい。
Cr: 15.0% or more and less than 28.0% Cr is an essential element for ensuring oxidation resistance and corrosion resistance at high temperatures. In order to obtain the above Cr effect within the Ni content range of the present invention, the Cr content needs to be 15.0% or more. However, when the Cr content is 28.0% or more, the stability of the austenite phase at a high temperature is deteriorated, and the creep strength is lowered. Therefore, the Cr content is 15.0% or more and less than 28.0%. The Cr content is preferably 17.0% or more, and more preferably 19.0% or more. Moreover, it is preferable that Cr content is 26.0% or less, and it is more preferable that it is 24.0% or less.
 Mo:12.0%以下
 W:4.0%未満
 MoおよびWは、いずれもマトリックスであるオーステナイト組織に固溶して高温でのクリープ強度の向上に寄与する元素である。この効果を得るためには、MoおよびWの一方または両方を含有させる必要がある。しかしながら、これらの元素の含有量が過剰になると、逆にオーステナイト相の安定性が低下してクリープ強度の低下を招く。したがって、Mo含有量は12.0%以下とする。Mo含有量は10.0%以下であるのが好ましい。
Mo: 12.0% or less W: less than 4.0% Both Mo and W are elements that contribute to improvement in creep strength at high temperatures by dissolving in the austenite structure as a matrix. In order to obtain this effect, it is necessary to contain one or both of Mo and W. However, when the content of these elements is excessive, the stability of the austenite phase is decreased, and the creep strength is decreased. Therefore, the Mo content is 12.0% or less. The Mo content is preferably 10.0% or less.
 また、WはMoに比べて原子量が大きいため、Moと同等の効果を得るためにはより多量に含有させる必要があり、コストおよび相安定性確保の観点から不利である。このため、W含有量は4.0%未満とする。MoおよびWは複合して含有させる必要はない。MoまたはWを単独で含有させる場合には、その含有量はそれぞれ0.1%以上であるのが好ましい。 In addition, since W has a larger atomic weight than Mo, it needs to be contained in a larger amount in order to obtain the same effect as Mo, which is disadvantageous from the viewpoint of ensuring cost and phase stability. For this reason, the W content is less than 4.0%. It is not necessary to contain Mo and W in combination. When Mo or W is contained alone, the content is preferably 0.1% or more.
 B:0.0005~0.006%
 Bは、使用中の粒界に偏析して粒界を強化するとともに粒界炭化物を微細分散させることにより、クリープ強度を向上させるのに必要な元素である。加えて、粒界に偏析して固着力を向上させ、靱性改善にも寄与する効果を有する。これらの効果を得るためには、B含有量を0.0005%以上とする必要がある。しかしながら、B含有量が多くなって特に0.006%を超えると、溶接中の溶接熱サイクルにより、溶融境界近傍の高温HAZにおいて多量に偏析し、Pと重畳して粒界の融点を低下させ、HAZの液化割れ感受性を高める。したがって、B含有量は0.0005~0.006%とする。B含有量は0.001%以上であるのが好ましく、0.005%以下であるのが好ましい。
B: 0.0005 to 0.006%
B is an element necessary for improving the creep strength by segregating at the grain boundary in use to strengthen the grain boundary and finely dispersing the grain boundary carbide. In addition, it has the effect of segregating at the grain boundaries to improve the fixing force and contribute to toughness improvement. In order to obtain these effects, the B content needs to be 0.0005% or more. However, when the B content increases and exceeds 0.006% in particular, a large amount of segregation occurs in the high-temperature HAZ near the melting boundary due to the welding heat cycle during welding, and overlaps with P to lower the melting point of the grain boundary. Enhances liquefaction cracking sensitivity of HAZ. Therefore, the B content is 0.0005 to 0.006%. The B content is preferably 0.001% or more, and preferably 0.005% or less.
 Al:0~3.0%
 Ti:0~3.0%
 Nb:0~3.0%
 Al、TiおよびNbは、いずれもNiと結合し金属間化合物として微細に粒内析出することで、高温でのクリープ強度を向上させる元素である。しかしながら、その含有量が多くなりすぎて、いずれの元素についても3.0%を超えると、上記の効果が飽和するとともに、クリープ延性および長時間加熱後の靱性を低下させる。そのため、Al、Ti、Nbのそれぞれの含有量を3.0%以下とする。これらの元素の含有量は、2.8%以下であるのが好ましく、2.5%以下であるのがより好ましい。
Al: 0 to 3.0%
Ti: 0 to 3.0%
Nb: 0 to 3.0%
Al, Ti, and Nb are all elements that improve creep strength at high temperatures by binding to Ni and finely precipitating in the grains as intermetallic compounds. However, if the content is too large and exceeds 3.0% for any of the elements, the above effects are saturated and creep ductility and toughness after prolonged heating are reduced. Therefore, the content of each of Al, Ti, and Nb is set to 3.0% or less. The content of these elements is preferably 2.8% or less, and more preferably 2.5% or less.
 REM:0~0.1%
 希土類元素(REM)は、Pと親和力が強く、融点が高く高温まで安定なPとの化合物を形成することで、Pを固定し、HAZの液化割れおよび靱性に対するPの悪影響を取り除く作用を有する。また、炭化物として析出し、高温強度の向上にも寄与する元素である。そのため必要に応じて含有させてもよい。しかしながら、REMの含有量が過剰になり、0.1%を超えると、Pの悪影響を軽減する効果が飽和することに加え、炭化物として多量に析出し、かえって靱性の低下を招く。そのため、REM含有量は0.1%以下とする。REM含有量は0.08%以下であるのが好ましく、0.06%以下であるのがより好ましい。上記の効果を得るためには、REM含有量は0.001%以上であるのが好ましく、0.005%以上であるのがより好ましく、0.01%以上であるのがさらに好ましい。
REM: 0 to 0.1%
Rare earth elements (REM) have a strong affinity with P, have a high melting point, and form a compound with P that is stable up to high temperatures, thereby fixing P and removing the adverse effects of P on liquefaction cracking and toughness of HAZ. . Moreover, it is an element which precipitates as a carbide | carbonized_material and contributes also to the improvement of high temperature strength. Therefore, you may make it contain as needed. However, if the content of REM becomes excessive and exceeds 0.1%, the effect of reducing the adverse effect of P is saturated, and in addition, a large amount of carbide precipitates, leading to a decrease in toughness. Therefore, the REM content is 0.1% or less. The REM content is preferably 0.08% or less, and more preferably 0.06% or less. In order to obtain the above effect, the REM content is preferably 0.001% or more, more preferably 0.005% or more, and further preferably 0.01% or more.
 なお、REMは、Sc、Yおよびランタノイドの合計17元素を指し、前記REMの含有量はこれらの元素の合計含有量を意味する。 REM refers to a total of 17 elements of Sc, Y and lanthanoid, and the content of REM means the total content of these elements.
 Mg:0~0.02%
 Mgは、Sとの親和力が強く、熱間加工性を高める作用を有し、また、Sに起因した、HAZの液化割れの発生および靱性低下の双方を軽減する作用を有する。そのため必要に応じて含有させてもよい。しかしながら、Mgの過剰な添加は酸素との結合による清浄性の低下を招き、特に、その含有量が0.02%を超えると清浄性の低下が著しくなり、かえって熱間加工性を劣化させる。したがって、Mg含有量は0.02%以下とする。Mg含有量は0.01%以下であるのが好ましい。一方、上記の効果を得るためには、Mg含有量は0.0001%以上であるのが好ましく、0.0005%以上であるのがより好ましく、0.001%以上であるのがさらに好ましい。
Mg: 0 to 0.02%
Mg has a strong affinity with S and has an effect of increasing hot workability, and also has an effect of reducing both the occurrence of liquefaction cracking of HAZ and a decrease in toughness due to S. Therefore, you may make it contain as needed. However, excessive addition of Mg causes a decrease in cleanliness due to bonding with oxygen. In particular, when the content exceeds 0.02%, the cleanliness decreases significantly, and the hot workability is deteriorated. Therefore, the Mg content is 0.02% or less. The Mg content is preferably 0.01% or less. On the other hand, in order to obtain the above effect, the Mg content is preferably 0.0001% or more, more preferably 0.0005% or more, and further preferably 0.001% or more.
 Ca:0~0.02%
 Caは、Sとの親和力が強く、熱間加工性を高める作用を有し、また、Sに起因した、HAZの液化割れの発生および靱性低下の双方を軽減する作用を有する。そのため必要に応じて含有させてもよい。しかしながら、Caの過剰な添加は酸素との結合による清浄性の低下を招き、特に、その含有量が0.02%を超えると清浄性の低下が著しくなり、かえって熱間加工性を劣化させる。したがって、Ca含有量は0.02%以下とする。Ca含有量は0.01%以下であるのが好ましい。一方、上記の効果を得るためには、Ca含有量は0.0001%以上であるのが好ましく、0.0005%以上であるのがより好ましく、0.001%以上であるのがさらに好ましい。
Ca: 0 to 0.02%
Ca has a strong affinity with S and has an effect of improving hot workability, and also has an effect of reducing both the occurrence of liquefaction cracking of HAZ and a decrease in toughness due to S. Therefore, you may make it contain as needed. However, excessive addition of Ca leads to a decrease in cleanliness due to bonding with oxygen. In particular, when the content exceeds 0.02%, the cleanliness decreases remarkably, and hot workability is deteriorated. Therefore, the Ca content is 0.02% or less. The Ca content is preferably 0.01% or less. On the other hand, in order to obtain the above effect, the Ca content is preferably 0.0001% or more, more preferably 0.0005% or more, and further preferably 0.001% or more.
 本発明に係る合金は各元素の含有量が上記の範囲となることに加えて、下記(i)~(iii)式を満足する必要がある。なお、下記(i)~(iii)式中の元素記号は各元素の含有量(質量%)を表す。 The alloy according to the present invention must satisfy the following formulas (i) to (iii) in addition to the content of each element being in the above range. The element symbols in the following formulas (i) to (iii) represent the content (% by mass) of each element.
 0.1≦Mo+W≦12.0 ・・・(i)
 上述のように、MoおよびWは、いずれもマトリックスであるオーステナイト組織に固溶して高温でのクリープ強度の向上に寄与する元素であるが、一方、これらの元素の含有量が過剰になると、逆にオーステナイト相の安定性が低下してクリープ強度の低下を招く。そのため、MoおよびWの合計含有量が上記(i)式を満足する必要がある。上記(i)式の中辺値は1.0以上であるのが好ましく、10.0以下であるのが好ましい。
0.1 ≦ Mo + W ≦ 12.0 (i)
As described above, both Mo and W are elements that contribute to the improvement of creep strength at high temperatures by dissolving in the austenite structure that is a matrix. On the other hand, when the content of these elements is excessive, On the other hand, the stability of the austenite phase is lowered and the creep strength is lowered. Therefore, the total content of Mo and W needs to satisfy the above formula (i). The middle value of the formula (i) is preferably 1.0 or more, and preferably 10.0 or less.
 1.0≦4×Al+2×Ti+Nb≦12.0 ・・・(ii)
 Niと結合した金属間化合物を微細に粒内析出させることによって、良好な、高温でのクリープ強度および長時間加熱後の靱性を確保するためには、Al、TiおよびNbから選択される1種以上を含有させるとともに、その含有量が上記(ii)式を満足する必要がある。上記(ii)式の中辺値は3.0以上であるのが好ましく、11.0以下であるのが好ましい。
1.0 ≦ 4 × Al + 2 × Ti + Nb ≦ 12.0 (ii)
In order to ensure good creep strength at high temperatures and toughness after prolonged heating by finely precipitating intermetallic compounds bonded to Ni, one kind selected from Al, Ti and Nb While containing the above, the content needs to satisfy said (ii) Formula. The middle value of the formula (ii) is preferably 3.0 or more, and preferably 11.0 or less.
 P+0.2×Cr×B<0.035 ・・・(iii)
 PおよびBは、溶接中に熱サイクルにより溶融境界近傍のHAZの粒界に偏析して、融点を低下させHAZの液化割れ感受性を高める元素である。一方、長時間使用中においては、粒界に偏析したPは粒界の固着力を低下させるのに対し、Bは逆に粒界を強化するので、Pは靱性に悪影響を及ぼし、Bは逆に靱性低下を軽減する。さらに、CrはPとBの粒界偏析挙動に影響を及ぼし、これらの性能に間接的に影響する元素である。すなわち、HAZの液化割れに及ぼすBの影響度合いはCr含有量が多いほど顕著になる。また、長時間使用後のHAZの靱性については、Pの悪影響が大きいが、ほぼ等しい量のP、Bを含有する場合、Cr含有量が少ないほど靱性の低下が大きい傾向がある。
P + 0.2 × Cr × B <0.035 (iii)
P and B are elements that segregate at the grain boundaries of the HAZ in the vicinity of the melting boundary during the heat cycle during welding, thereby lowering the melting point and increasing the susceptibility to liquefaction cracking of the HAZ. On the other hand, during a long period of use, P segregated at the grain boundaries decreases the fixing force of the grain boundaries, whereas B conversely strengthens the grain boundaries, so P adversely affects toughness and B is reversed. To reduce toughness. Further, Cr is an element that affects the grain boundary segregation behavior of P and B, and indirectly affects their performance. That is, the degree of influence of B on liquefaction cracking of HAZ becomes more prominent as the Cr content increases. Moreover, about the toughness of HAZ after long-time use, although the bad influence of P is large, when it contains substantially the same amount of P and B, there exists a tendency for the fall of toughness to become large, so that there is little Cr content.
 HAZでのPおよびBの粒界偏析を制御し、優れた耐液化割れ性と長時間加熱後の靱性低下の軽減のためには、上記(iii)式を満足する必要がある。上記(iii)式左辺値は0.030以下であるのが好ましい。なお、上記(iii)式左辺値の下限は特に限定しないが、不純物としてのPの含有量が極めて低く、Cr:15.0%、B:0.0005%である場合の0.0015に近い値でもよい。 In order to control the grain boundary segregation of P and B in HAZ and to reduce the resistance to liquefaction cracking and toughness reduction after long-time heating, it is necessary to satisfy the above formula (iii). The value on the left side of the formula (iii) is preferably 0.030 or less. The lower limit of the left side value of the formula (iii) is not particularly limited, but the content of P as an impurity is extremely low, and is close to 0.0015 when Cr is 15.0% and B is 0.0005%. It may be a value.
 本発明のNi基耐熱合金の化学組成において、残部はFeおよび不純物である。ここで「不純物」とは、合金を工業的に製造する際に、鉱石、スクラップ等の原料、製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。 In the chemical composition of the Ni-base heat-resistant alloy of the present invention, the balance is Fe and impurities. Here, “impurities” are components mixed in due to various factors of raw materials such as ores and scraps and manufacturing processes when the alloy is industrially manufactured, and are allowed within a range that does not adversely affect the present invention. Means something.
 2.結晶粒度
 外面部におけるオーステナイト結晶粒度番号:-2.0~4.0
 外面部におけるオーステナイト結晶粒度が粗すぎると、常温での0.2%耐力および引張強さが低くなり、一方、細かすぎると、高温における高いクリープ破断強度を保持することができなくなる。したがって、外面部におけるオーステナイト結晶粒度番号は-2.0~4.0とする。
2. Grain size Austenite grain size number in the outer surface: -2.0 to 4.0
If the austenite grain size in the outer surface portion is too coarse, the 0.2% proof stress and tensile strength at room temperature will be low, while if too fine, it will not be possible to maintain high creep rupture strength at high temperatures. Therefore, the austenite grain size number in the outer surface portion is set to -2.0 to 4.0.
 本発明においては、結晶粒度番号はJIS G 0551(2013)に規定される交差線分(粒径)により判定する。なお、Ni基合金の製造工程において、熱間加工後の熱処理温度および保持時間ならびに冷却方法を適切に調整することで、最終熱処理後の外面部の結晶粒度番号を上記の範囲とすることができる。 In the present invention, the crystal grain size number is determined by the intersecting line segment (grain size) defined in JIS G 0551 (2013). In addition, in the manufacturing process of the Ni-base alloy, the crystal grain size number of the outer surface portion after the final heat treatment can be set to the above range by appropriately adjusting the heat treatment temperature and holding time after the hot working and the cooling method. .
 3.寸法
 中心部から外面部までの最短距離:40mm以上
 上述のように、大型の構造部材では、常温における0.2%耐力および引張強さが低くなることに加えて、部位によってクリープ破断強度のばらつきが生じるという問題もある。しかしながら、本発明に係るNi基耐熱合金は、大型の構造部材として十分な常温での0.2%耐力および引張強さ、ならびに、高温でのクリープ破断強度を発現する。すなわち、本発明の効果は、厚肉の部材に対して顕著に発揮される。
3. Dimensions Shortest distance from the center to the outer surface: 40 mm or more As described above, in a large structural member, in addition to the 0.2% proof stress and tensile strength at room temperature, the creep rupture strength varies depending on the part. There is also a problem that occurs. However, the Ni-base heat-resistant alloy according to the present invention exhibits 0.2% proof stress and tensile strength at room temperature sufficient for a large structural member, and creep rupture strength at high temperature. That is, the effect of the present invention is remarkably exhibited for a thick member.
 したがって、本発明のNi基耐熱合金においては、長手方向と垂直な断面において、中心部から外面部までの最短距離を40mm以上とする。本発明による効果をより顕著に得るためには、中心部から外面部までの最短距離は80mm以上であるのが好ましく、100mm以上であるのがより好ましい。ここで、中心部から外面部までの最短距離は、例えば、合金が円柱状である場合、断面の半径(mm)となり、四角柱状である場合、断面の短辺の半分の長さ(mm)となる。 Therefore, in the Ni-base heat-resistant alloy of the present invention, the shortest distance from the center portion to the outer surface portion is set to 40 mm or more in the cross section perpendicular to the longitudinal direction. In order to obtain the effects of the present invention more remarkably, the shortest distance from the center portion to the outer surface portion is preferably 80 mm or more, and more preferably 100 mm or more. Here, the shortest distance from the center portion to the outer surface portion is, for example, a radius of the cross section (mm) when the alloy is cylindrical, and a length (mm) that is half the short side of the cross section when the alloy is a quadrangular prism. It becomes.
 なお、本発明に係る耐熱合金は、後述するように、例えば、鋼塊、または連続鋳造等によって得られた鋳片に、熱間鍛造または熱間圧延等の熱間加工を施すことによって得られる。そして、耐熱合金の長手方向は概して、鋼塊を用いる場合は、鋼塊のトップ部とボトム部とを結ぶ方向となり、鋳片を用いる場合は、長さ方向となる。 The heat-resistant alloy according to the present invention is obtained, for example, by subjecting a steel ingot or a cast piece obtained by continuous casting to hot working such as hot forging or hot rolling, as will be described later. . The longitudinal direction of the heat-resistant alloy is generally the direction connecting the top and bottom portions of the steel ingot when using a steel ingot, and the length direction when using a slab.
 4.抽出残渣分析によって得られるγ´相の析出量
 (Al+Ti+Nb)PB/(Al+Ti+Nb)PS≦10.0 ・・・(iv)
 但し、(iv)式中の各記号の意味は以下のとおりである。
 (Al+Ti+Nb)PB:中心部において抽出残渣分析によって得られる析出物として存在するAl、TiおよびNbの合計含有量
 (Al+Ti+Nb)PS:外面部において抽出残渣分析によって得られる析出物として存在するAl、TiおよびNbの合計含有量
4). Precipitation amount of γ ′ phase obtained by extraction residue analysis (Al + Ti + Nb) PB / (Al + Ti + Nb) PS ≦ 10.0 (iv)
However, the meaning of each symbol in the formula (iv) is as follows.
(Al + Ti + Nb) PB : Total content of Al, Ti and Nb present as precipitates obtained by extraction residue analysis in the central portion (Al + Ti + Nb) PS : Al, Ti present as precipitates obtained by extraction residue analysis in the outer surface portion And Nb total content
 合金の製造工程において、熱間加工後の熱処理を施した後の主として粒内には未固溶のγ´相(Ni(Al,Ti,Nb))が生じる。特に、合金の中心部では外面部と比べて冷却速度が遅くなるため、未固溶のγ´相の量が増す傾向にある。そのため、合金の外面部に対して中心部でのγ´として析出するAl、TiおよびNbの析出量が多くなり、(Al+Ti+Nb)PB/(Al+Ti+Nb)PSの値が10.0を超えると高温における高いクリープ破断強度を保持することができなくなる。一方、(Al+Ti+Nb)PB/(Al+Ti+Nb)PSの下限値は定める必要はないが、中心部が外面部よりも析出物の量が増す傾向にあることから1.0以上とすることが好ましい。 In the alloy manufacturing process, an insoluble γ ′ phase (Ni 3 (Al, Ti, Nb)) is generated mainly in the grains after the heat treatment after hot working. In particular, since the cooling rate is slower at the center of the alloy than at the outer surface, the amount of undissolved γ ′ phase tends to increase. Therefore, the precipitation amount of Al, Ti, and Nb precipitated as γ 'at the central portion with respect to the outer surface portion of the alloy increases, and when the value of (Al + Ti + Nb) PB / (Al + Ti + Nb) PS exceeds 10.0, High creep rupture strength cannot be maintained. On the other hand, the lower limit value of (Al + Ti + Nb) PB / (Al + Ti + Nb) PS is not required, but is preferably 1.0 or more because the central portion tends to increase the amount of precipitates more than the outer surface portion.
 なお、抽出残渣分析によって得られる析出物は、合金中に含まれる未固溶のγ´相である。抽出残渣分析は以下の手順により行うものをする。まず合金試料の長手方向と垂直な断面における中心部および外面部から、γ´相を測定するための試験片を採取する。上記の試験片の表面積を求めた上で、それぞれ1%酒石酸-1%硫酸アンモニウム水溶液中において20mA/cmの電解条件で耐熱合金の母材のみを完全に電解する。そして電解後の溶液を0.2μmフィルターでろ過し、析出物を残渣として抽出する。その後、抽出残渣を酸分解してからICP-AES測定することによって未固溶のγ´相として含まれるAl、TiおよびNbの含有量(質量%)を測定し、その測定値に基づき(Al+Ti+Nb)PB/(Al+Ti+Nb)PSの値を求める。 The precipitate obtained by the extraction residue analysis is an insoluble γ ′ phase contained in the alloy. The extraction residue analysis is performed according to the following procedure. First, a test piece for measuring the γ ′ phase is collected from the center portion and the outer surface portion in a cross section perpendicular to the longitudinal direction of the alloy sample. After obtaining the surface area of the above test piece, only the base material of the heat-resistant alloy is completely electrolyzed in an electrolysis condition of 20 mA / cm 2 in a 1% tartaric acid-1% ammonium sulfate aqueous solution. And the solution after electrolysis is filtered with a 0.2 micrometer filter, and deposits are extracted as a residue. Then, the content (mass%) of Al, Ti and Nb contained as an undissolved γ ′ phase is measured by ICP-AES measurement after acid decomposition of the extraction residue, and based on the measured value (Al + Ti + Nb ) PB / (Al + Ti + Nb) Determine the value of PS .
 5.機械的性質
 YS/YS≦1.5 ・・・(v)
 TS/TS≦1.2 ・・・(vi)
 但し、上記式中の各記号の意味は以下のとおりである。
 YS:中心部における0.2%耐力
 YS:外面部における0.2%耐力
 TS:中心部における引張強さ
 TS:外面部における引張強さ
5). Mechanical properties YS S / YS B ≦ 1.5 (v)
TS S / TS B ≦ 1.2 ··· (vi)
However, the meaning of each symbol in the above formula is as follows.
YS B : 0.2% yield strength at the center portion YS S : 0.2% yield strength at the outer surface portion TS B : Tensile strength at the center portion TS S : Tensile strength at the outer surface portion
 大型の構造部材では、熱処理時の冷却速度が部位により異なることに起因して、部位ごとの機械的性質に大きなばらつきが生じる傾向にある。大型構造部材において、その中心部と外面部とで、常温での0.2%耐力および引張強さが大きく異なると、部位によって仕様を満たさないという問題が生じる。したがって、本発明に係るNi基耐熱合金は、常温での機械的特性が上記の(v)式および(vi)式を満足するものとする。なお、それぞれ下限値は定める必要はないが、中心部の機械特性の方が外面部の機械特性よりも劣る傾向にあることから、(v)式および(vi)式ともに1.0以上とすることが好ましい。 Large structural members tend to have large variations in the mechanical properties of each part due to the fact that the cooling rate during heat treatment varies from part to part. In a large-sized structural member, when the 0.2% proof stress and tensile strength at normal temperature are greatly different between the central portion and the outer surface portion, there is a problem that the specification is not satisfied depending on the part. Therefore, the Ni-base heat-resistant alloy according to the present invention satisfies the above formulas (v) and (vi) in mechanical properties at room temperature. In addition, although it is not necessary to set a lower limit value for each, since the mechanical properties of the central portion tend to be inferior to the mechanical properties of the outer surface portion, both formulas (v) and (vi) are set to 1.0 or more. It is preferable.
 0.2%耐力および引張強さは、合金の中心部および外面部から、長手方向に平行に、平行部の長さが40mmの丸棒引張試験片を機械加工により切り出し、室温において引張試験を実施することで求める。また、引張試験はJIS Z 2241(2011)に準拠して行うこととする。 The 0.2% proof stress and tensile strength were determined by cutting a round bar tensile test piece with a parallel part length of 40 mm from the center part and outer surface part of the alloy in parallel with the longitudinal direction, and conducting a tensile test at room temperature. It asks by carrying out. In addition, the tensile test is performed according to JIS Z 2241 (2011).
 6.クリープ破断強度
 本発明のNi基耐熱合金は、高温環境下で使用するため、高い高温強度、特に、高いクリープ破断強度が求められる。そのため、本発明の合金は、その中心部において、長手方向の700℃における10,000時間クリープ破断強度が150MPa以上である必要がある。
6). Creep rupture strength Since the Ni-base heat-resistant alloy of the present invention is used in a high-temperature environment, a high high-temperature strength, particularly a high creep rupture strength is required. Therefore, the alloy of the present invention needs to have a 10,000 hour creep rupture strength at 700 ° C. in the longitudinal direction of 150 MPa or more at the center.
 クリープ破断強度は、以下の方法により求める。まず、合金の中心部から、長手方向に平行に、JIS Z 2241(2011)に記載される直径6mm、標点距離30mmの丸棒クリープ破断試験片を機械加工により切り出す。そして、700℃、750℃、800℃の大気中においてクリープ破断試験を実施し、Larson-Millerパラメータ法を用いて700℃、10,000時間のクリープ破断強度を求める。また、クリープ破断試験は、JIS Z 2271(2010)に準拠して行うこととする。 Creep rupture strength is obtained by the following method. First, a round bar creep rupture test piece having a diameter of 6 mm and a gauge distance of 30 mm described in JIS Z 2241 (2011) is cut out by machining from the center of the alloy in parallel with the longitudinal direction. Then, a creep rupture test is performed in the atmosphere at 700 ° C., 750 ° C., and 800 ° C., and the creep rupture strength at 700 ° C. for 10,000 hours is obtained using the Larson-Miller parameter method. The creep rupture test is performed in accordance with JIS Z 2271 (2010).
 7.製造方法
 本発明のNi基耐熱合金は、上述の化学組成を有する鋼塊または鋳片に、熱間加工を施すことによって製造される。なお、上記の熱間加工工程においては、合金の最終形状における長手方向が、素材となる鋼塊または鋳片の長手方向と一致するように処理が施される。熱間加工は、長手方向のみに行ってもよいが、より高い加工度を与えて、より均質な組織とするため、上記長手方向と略垂直な方向に対して、熱間加工を1回以上施してもよい。また、当該熱間加工の後に、必要に応じて熱間押出等の異なる方法の熱間加工をさらに施してもよい。
7). Manufacturing Method The Ni-base heat-resistant alloy of the present invention is manufactured by subjecting a steel ingot or slab having the above-described chemical composition to hot working. In the hot working step described above, the treatment is performed so that the longitudinal direction of the final shape of the alloy coincides with the longitudinal direction of the steel ingot or slab as the raw material. Although the hot working may be performed only in the longitudinal direction, the hot working is performed once or more in the direction substantially perpendicular to the longitudinal direction in order to provide a higher degree of working and a more homogeneous structure. You may give it. Moreover, you may further give hot processing of different methods, such as hot extrusion, as needed after the said hot processing.
 本発明のNi基耐熱合金を製造するに際しては、上記の工程の後、部位ごとの金属組織および機械的性質のばらつきを抑制し、高いクリープ破断強度を保持するために、以下に説明する最終熱処理を施す。 In producing the Ni-base heat-resistant alloy of the present invention, after the above-described steps, the final heat treatment described below is performed in order to suppress the variation in the metal structure and mechanical properties of each part and maintain high creep rupture strength. Apply.
 まず、熱間加工後の合金を、1070~1220℃の範囲の熱処理温度T(℃)まで加熱し、その範囲内において、1150D/T~1500D/T(min)保持する。ここで、Dは、例えば、合金が円柱状である場合、合金の直径(mm)となり、四角柱状である場合、対角の距離(mm)となる。すなわちDは、合金の長手方向と垂直な断面における、当該断面の外縁上の任意の点と該外縁上の他の任意の点との直線距離の最大値(mm)である。 First, the hot-worked alloy is heated to a heat treatment temperature T (° C.) in the range of 1070 to 1220 ° C., and within that range, 1150 D / T to 1500 D / T (min) is maintained. Here, D is, for example, a diameter (mm) of the alloy when the alloy is cylindrical, and a diagonal distance (mm) when the alloy is square. That is, D is the maximum value (mm) of the linear distance between an arbitrary point on the outer edge of the cross section and another arbitrary point on the outer edge in a cross section perpendicular to the longitudinal direction of the alloy.
 上記の熱処理温度が1070℃未満であると、未固溶のγ´相が増大しクリープ破断強度が低下する。一方、1220℃を超えると、粒界が溶融したり著しく結晶粒が粗大化したりすることによって延性が低下する。熱処理温度は1100℃以上とするのがより望ましく、1200℃以下とするのがより好ましい。また、上記保持時間が1150D/T(min)未満では、中心部のγ´相が増大し、(Al+Ti+Nb)PB/(Al+Ti+Nb)PSが本発明で規定する範囲外となる。一方、1500D/T(min)を超えると外面部の結晶粒が粗大化し、オーステナイト結晶粒度番号が本発明で規定する範囲外となる。 When the heat treatment temperature is lower than 1070 ° C., the insoluble γ ′ phase increases and the creep rupture strength decreases. On the other hand, when it exceeds 1220 ° C., the ductility is lowered due to melting of the grain boundary or markedly coarsening of the crystal grains. The heat treatment temperature is more preferably 1100 ° C. or higher, and more preferably 1200 ° C. or lower. When the holding time is less than 1150 D / T (min), the γ ′ phase in the central portion increases, and (Al + Ti + Nb) PB / (Al + Ti + Nb) PS is outside the range defined in the present invention. On the other hand, if it exceeds 1500 D / T (min), the crystal grains in the outer surface portion become coarse, and the austenite grain size number falls outside the range specified in the present invention.
 加熱保持後は、合金を直ちに水冷する。冷却速度が遅くなると、特に合金の中心部において主として粒内に未固溶γ´相が多量に生じ、上記の(iv)式を満足しなくなるおそれがあるためである。 ・ After heating and holding, immediately cool the alloy with water. This is because when the cooling rate is slow, a large amount of undissolved γ ′ phase is generated mainly in the grains, particularly in the center of the alloy, and the above formula (iv) may not be satisfied.
 以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically by way of examples. However, the present invention is not limited to these examples.
 表1に示す化学組成を有する合金を高周波真空溶解炉で溶製し、外径が550mm、重量が3tの鋼塊とした。 An alloy having the chemical composition shown in Table 1 was melted in a high-frequency vacuum melting furnace to form a steel ingot having an outer diameter of 550 mm and a weight of 3 t.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 得られた鋼塊を、熱間鍛造によって外径200~480mmの円柱状に加工し、表2に示す条件で最終熱処理を施し、合金部材試料を得た。なお、合金1、2、3および5については長手方向の熱間鍛造の後、最終熱処理の前に、長手方向と略垂直な方向に鍛造を行い、その後さらに長手方向に最終の熱間鍛造を行った。 The obtained steel ingot was processed into a cylindrical shape having an outer diameter of 200 to 480 mm by hot forging and subjected to final heat treatment under the conditions shown in Table 2 to obtain an alloy member sample. For alloys 1, 2, 3 and 5, after forging in the longitudinal direction and before final heat treatment, forging is performed in a direction substantially perpendicular to the longitudinal direction, and then the final hot forging is further performed in the longitudinal direction. went.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 各試料について、外面部から組織観察用の試験片を採取し、長手方向の断面をエメリーペーパーとバフで研磨後、混酸で腐食して光学顕微鏡観察を行った。観察面の結晶粒度番号はJIS G 0551(2013)に規定される交差線分(粒径)による判定方法に従って求めた。 For each sample, a specimen for observing the structure was collected from the outer surface, and the longitudinal section was polished with emery paper and buff, then corroded with mixed acid and observed with an optical microscope. The crystal grain size number on the observation surface was determined according to the determination method based on the intersection line segment (grain size) defined in JIS G 0551 (2013).
 次に、各試料の長手方向と垂直な断面における中心部および外面部から、γ´相を測定するための試験片を採取した。上記の試験片の表面積を求めた上で、それぞれ1%酒石酸-1%硫酸アンモニウム水溶液中において20mA/cmの電解条件で耐熱合金の母材のみを完全に電解した。そして電解後の溶液を0.2μmフィルターでろ過し、析出物を残渣として抽出した。その後、抽出残渣を酸分解してからICP-AES測定することによって未固溶のγ´相として含まれるAl、TiおよびNbの含有量(質量%)を測定し、その測定値に基づき(Al+Ti+Nb)PB/(Al+Ti+Nb)PSの値を求めた。 Next, a test piece for measuring the γ ′ phase was collected from the center portion and the outer surface portion in the cross section perpendicular to the longitudinal direction of each sample. After determining the surface area of the above test piece, only the base material of the heat-resistant alloy was completely electrolyzed in an electrolysis condition of 20 mA / cm 2 in a 1% tartaric acid-1% ammonium sulfate aqueous solution. And the solution after electrolysis was filtered with a 0.2 micrometer filter, and the deposit was extracted as a residue. Then, the content (mass%) of Al, Ti and Nb contained as an undissolved γ ′ phase is measured by ICP-AES measurement after acid decomposition of the extraction residue, and based on the measured value (Al + Ti + Nb ) PB / (Al + Ti + Nb) The value of PS was determined.
 また、各試料の中心部および外面部から、長手方向に平行に、平行部の長さが40mmの引張試験片を機械加工により切り出し、室温において引張試験を実施し、0.2%耐力および引張強さを求めた。さらに、各試料の中心部から、長手方向に平行に、JIS Z 2241(2011)に記載される直径6mm、標点距離30mmの丸棒クリープ破断試験片を機械加工により切り出した。そして、700℃、750℃、800℃の大気中においてクリープ破断試験を実施し、Larson-Millerパラメータ法を用いて700℃、10,000時間のクリープ破断強度を求めた。それらの結果を表3にまとめて示す。 In addition, a tensile test piece having a parallel part length of 40 mm was cut out by machining from the center part and the outer surface part of each sample, and a tensile test was performed at room temperature. I asked for strength. Furthermore, a round bar creep rupture test piece having a diameter of 6 mm and a gauge distance of 30 mm described in JIS Z 2241 (2011) was cut out from the center of each sample in parallel with the longitudinal direction by machining. And the creep rupture test was implemented in 700 degreeC, 750 degreeC, and 800 degreeC air | atmosphere, The 700 degreeC creep rupture strength was calculated | required using the Larson-Miller parameter method. The results are summarized in Table 3.
 それらの結果を表3にまとめて示す。 The results are summarized in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 合金1~8は、本発明例であり、合金組成、結晶粒度番号、(Al+Ti+Nb)PB/(Al+Ti+Nb)PS、YS/YS、TS/TS、およびクリープ破断強度が本発明で規定する範囲内となり、機械特性のばらつきも小さく、クリープ破断強度も良好であった。 Alloys 1 to 8 are examples of the present invention, and the alloy composition, grain size number, (Al + Ti + Nb) PB / (Al + Ti + Nb) PS , YS S / YS B , TS S / TS B , and creep rupture strength are defined by the present invention. The variation in mechanical properties was small, and the creep rupture strength was good.
 一方で、合金AおよびBは、合金1と化学組成がほぼ同等であり、熱間鍛造によって同一の最終形状としたものである。しかしながら、熱処理時の保持時間が本発明で規定する製造条件の範囲外である。そのことに起因にして、合金Aについては外面部の結晶粒度番号が本発明の規定範囲外となり、YS/YSおよびTS/TSの値が本発明の規定範囲外となっており、部位により機械特性のばらつきが大きくなる結果となった。また、合金Bについては、(Al+Ti+Nb)PB/(Al+Ti+Nb)PSの値が本発明の規定範囲外となり、クリープ破断強度が合金1と比較して著しく低い結果となった。 On the other hand, alloys A and B have substantially the same chemical composition as alloy 1 and have the same final shape by hot forging. However, the holding time at the time of heat treatment is outside the range of manufacturing conditions defined in the present invention. As a result, the grain size number of the outer surface portion of alloy A is outside the specified range of the present invention, and the values of YS S / YS B and TS S / TS B are out of the specified range of the present invention. As a result, the variation in mechanical properties increased depending on the part. Further, regarding the alloy B, the value of (Al + Ti + Nb) PB / (Al + Ti + Nb) PS was outside the specified range of the present invention, and the creep rupture strength was significantly lower than that of the alloy 1.
 合金C、DおよびEは、合金2と化学組成がほぼ同等であり、熱間鍛造によって同一の最終形状としたものである。合金Cは熱処理温度が本発明の規定範囲より低いために、(Al+Ti+Nb)PB/(Al+Ti+Nb)PSの値と、外面部の結晶粒度番号とが本発明で規定する範囲外となっており、合金2と比較してクリープ破断強度が著しく低い結果となった。合金Dは熱処理温度が本発明の規定範囲より高いために、外面部の結晶粒度番号と、YS/YSおよびTS/TSの値とが本発明の規定範囲外となっており、合金2と比較してクリープ破断強度が著しく低い結果となった。また、合金Eは最終熱処理時の冷却方法が水冷ではなく空冷であり、冷却速度が著しく遅かったことに起因して、(Al+Ti+Nb)PB/(Al+Ti+Nb)PSの値が本発明の規定範囲外となり、その結果、合金3と比較してクリープ破断強度が著しく低くなった。 Alloys C, D, and E have substantially the same chemical composition as alloy 2 and have the same final shape by hot forging. Since the heat treatment temperature of Alloy C is lower than the specified range of the present invention, the value of (Al + Ti + Nb) PB / (Al + Ti + Nb) PS and the crystal grain number of the outer surface part are outside the range specified by the present invention. Compared to 2, the creep rupture strength was extremely low. Since the heat treatment temperature of the alloy D is higher than the specified range of the present invention, the crystal grain size number of the outer surface portion and the values of YS S / YS B and TS S / TS B are outside the specified range of the present invention. Compared to Alloy 2, the creep rupture strength was remarkably low. In addition, the cooling method at the time of final heat treatment of alloy E is not water cooling but air cooling, and the cooling rate is extremely slow, so that the value of (Al + Ti + Nb) PB / (Al + Ti + Nb) PS falls outside the specified range of the present invention. As a result, the creep rupture strength was significantly lower than that of Alloy 3.
 合金F、G、Hは、化学組成が本発明の規定から外れる比較例である。具体的には、合金FはW含有量が高く、合金Gは(i)式中辺値が高く、合金Hは(ii)式中辺値が低い例である。そのため、これらの例では、クリープ破断強度が低くなる結果となった。 Alloys F, G, and H are comparative examples whose chemical compositions deviate from the provisions of the present invention. Specifically, Alloy F is an example in which the W content is high, Alloy G has a high median value in equation (i), and Alloy H has a low median value in equation (ii). Therefore, in these examples, the creep rupture strength was reduced.
 本発明に係るNi基耐熱合金は、部位による機械的性質のばらつきが少なく、また、高温でのクリープ破断強度に優れる。そのため、本発明のNi耐熱合金は、高温環境下で使用されるボイラおよび化学プラント等の大型構造部材として好適に用いることができる。

 
The Ni-base heat-resistant alloy according to the present invention has little variation in mechanical properties depending on the part, and is excellent in creep rupture strength at high temperatures. Therefore, the Ni heat-resistant alloy of the present invention can be suitably used as large structural members such as boilers and chemical plants used in high temperature environments.

Claims (5)

  1.  合金の化学組成が、質量%で、
     C:0.005~0.15%、
     Si:2.0%以下、
     Mn:3.0%以下、
     P:0.030%以下、
     S:0.010%以下、
     N:0.030%以下、
     O:0.030%以下、
     Ni:40.0~60.0%、
     Co:0.01~25.0%、
     Cr:15.0%以上28.0%未満、
     Mo:12.0%以下、
     W:4.0%未満、
     B:0.0005~0.006%、
     Al:0~3.0%、
     Ti:0~3.0%、
     Nb:0~3.0%、
     REM:0~0.1%、
     Mg:0~0.02%、
     Ca:0~0.02%、
     残部:Feおよび不純物であり、
     下記(i)~(iii)式を満足し、
     前記合金の長手方向と垂直な断面において、中心部から外面部までの最短距離が40mm以上であり、
     前記外面部におけるオーステナイト結晶粒度番号が-2.0~4.0であり、
     抽出残渣分析によって得られる析出物として存在するAl、TiおよびNbの合計含有量が下記(iv)式を満足し、
     常温での機械的特性が下記(v)式および(vi)式を満足する、
     Ni基耐熱合金。
     0.1≦Mo+W≦12.0 ・・・(i)
     1.0≦4×Al+2×Ti+Nb≦12.0 ・・・(ii)
     P+0.2×Cr×B<0.035 ・・・(iii)
     (Al+Ti+Nb)PB/(Al+Ti+Nb)PS≦10.0 ・・・(iv)
     YS/YS≦1.5 ・・・(v)
     TS/TS≦1.2 ・・・(vi)
     但し、上記(i)~(iii)式中の元素記号は各元素の含有量(質量%)を表し、上記(iv)~(vi)式中の各記号の意味は以下のとおりである。
     (Al+Ti+Nb)PB:中心部において抽出残渣分析によって得られる析出物として存在するAl、TiおよびNbの合計含有量
     (Al+Ti+Nb)PS:外面部において抽出残渣分析によって得られる析出物として存在するAl、TiおよびNbの合計含有量
     YS:中心部における0.2%耐力
     YS:外面部における0.2%耐力
     TS:中心部における引張強さ
     TS:外面部における引張強さ
    The chemical composition of the alloy is mass%,
    C: 0.005 to 0.15%,
    Si: 2.0% or less,
    Mn: 3.0% or less,
    P: 0.030% or less,
    S: 0.010% or less,
    N: 0.030% or less,
    O: 0.030% or less,
    Ni: 40.0-60.0%,
    Co: 0.01-25.0%,
    Cr: 15.0% or more and less than 28.0%,
    Mo: 12.0% or less,
    W: less than 4.0%,
    B: 0.0005 to 0.006%,
    Al: 0 to 3.0%,
    Ti: 0 to 3.0%,
    Nb: 0 to 3.0%,
    REM: 0 to 0.1%,
    Mg: 0 to 0.02%,
    Ca: 0 to 0.02%,
    Balance: Fe and impurities,
    Satisfying the following formulas (i) to (iii):
    In the cross section perpendicular to the longitudinal direction of the alloy, the shortest distance from the center portion to the outer surface portion is 40 mm or more,
    The austenite grain size number in the outer surface portion is -2.0 to 4.0,
    The total content of Al, Ti and Nb present as precipitates obtained by extraction residue analysis satisfies the following formula (iv):
    Mechanical properties at room temperature satisfy the following formulas (v) and (vi):
    Ni-base heat-resistant alloy.
    0.1 ≦ Mo + W ≦ 12.0 (i)
    1.0 ≦ 4 × Al + 2 × Ti + Nb ≦ 12.0 (ii)
    P + 0.2 × Cr × B <0.035 (iii)
    (Al + Ti + Nb) PB / (Al + Ti + Nb) PS ≦ 10.0 (iv)
    YS S / YS B ≦ 1.5 (v)
    TS S / TS B ≦ 1.2 (vi)
    However, the element symbols in the above formulas (i) to (iii) represent the content (% by mass) of each element, and the meaning of each symbol in the above formulas (iv) to (vi) is as follows.
    (Al + Ti + Nb) PB : Total content of Al, Ti and Nb present as precipitates obtained by extraction residue analysis in the central portion (Al + Ti + Nb) PS : Al, Ti present as precipitates obtained by extraction residue analysis in the outer surface portion And Nb total content YS B : 0.2% yield strength at the center YS S : 0.2% yield strength at the outer surface TS B : Tensile strength at the center TS S : Tensile strength at the outer surface
  2.  前記化学組成が、質量%で、
     Mg:0.0001~0.02%、および、
     Ca:0.0001~0.02%、
     から選択される1種または2種を含有する、
     請求項1に記載のNi基耐熱合金。
    The chemical composition is mass%,
    Mg: 0.0001 to 0.02%, and
    Ca: 0.0001 to 0.02%,
    Containing one or two selected from
    The Ni-base heat resistant alloy according to claim 1.
  3.  前記中心部における前記長手方向の700℃における10,000時間クリープ破断強度が150MPa以上である、
     請求項1または請求項2に記載のNi基耐熱合金。
    10,000 hours creep rupture strength at 700 ° C. in the longitudinal direction in the central portion is 150 MPa or more,
    The Ni-base heat-resistant alloy according to claim 1 or 2.
  4.  請求項1または請求項2に記載の化学組成を有する鋼塊または鋳片に、熱間加工を施す工程と、
     その後、1070~1220℃の範囲の熱処理温度T(℃)まで加熱し、1150D/T~1500D/T(min)保持した後、水冷する熱処理を施す工程とを備える、
     Ni基耐熱合金の製造方法。
     但し、Dは、合金の長手方向と垂直な断面における、当該断面の外縁上の任意の点と該外縁上の他の任意の点との直線距離の最大値(mm)である。
    A step of hot-working the steel ingot or slab having the chemical composition according to claim 1 or 2,
    Thereafter, heating to a heat treatment temperature T (° C.) in the range of 1070 to 1220 ° C., holding 1150 D / T to 1500 D / T (min), and then performing a heat treatment of cooling with water,
    Manufacturing method of Ni-base heat-resistant alloy.
    However, D is the maximum value (mm) of the linear distance between an arbitrary point on the outer edge of the cross section and another arbitrary point on the outer edge in a cross section perpendicular to the longitudinal direction of the alloy.
  5.  前記熱間加工を施す工程において、熱間加工の長手方向と略垂直な方向に熱間加工を1回以上施す、
     請求項4に記載のNi基耐熱合金の製造方法。

     
    In the step of performing the hot working, the hot working is performed at least once in a direction substantially perpendicular to the longitudinal direction of the hot working.
    The manufacturing method of the Ni-base heat-resistant alloy of Claim 4.

PCT/JP2018/005298 2017-02-15 2018-02-15 Ni-BASED HEAT-RESISTANT ALLOY AND METHOD FOR MANUFACTURING SAME WO2018151222A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201880011398.5A CN110291216A (en) 2017-02-15 2018-02-15 Ni-based heat-resistant alloy and its manufacturing method
JP2018568607A JP6819700B2 (en) 2017-02-15 2018-02-15 Ni-based heat-resistant alloy member and its manufacturing method
CA3053741A CA3053741A1 (en) 2017-02-15 2018-02-15 Ni-based heat resistant alloy and method for producing the same
EP18753655.2A EP3584335A4 (en) 2017-02-15 2018-02-15 NI-BASED HEAT RESISTANT ALLOY AND METHOD OF MANUFACTURING THEREOF
US16/483,850 US20200010931A1 (en) 2017-02-15 2018-02-15 Ni-Based Heat Resistant Alloy and Method for Producing the Same
KR1020197026436A KR20190117605A (en) 2017-02-15 2018-02-15 Ni-based heat resistant alloy and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-026457 2017-02-15
JP2017026457 2017-02-15

Publications (1)

Publication Number Publication Date
WO2018151222A1 true WO2018151222A1 (en) 2018-08-23

Family

ID=63170715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005298 WO2018151222A1 (en) 2017-02-15 2018-02-15 Ni-BASED HEAT-RESISTANT ALLOY AND METHOD FOR MANUFACTURING SAME

Country Status (7)

Country Link
US (1) US20200010931A1 (en)
EP (1) EP3584335A4 (en)
JP (1) JP6819700B2 (en)
KR (1) KR20190117605A (en)
CN (1) CN110291216A (en)
CA (1) CA3053741A1 (en)
WO (1) WO2018151222A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110157953A (en) * 2019-06-04 2019-08-23 沈阳中科煜宸科技有限公司 A kind of laser gain material manufacture superalloy powder and preparation method thereof
CN111074183A (en) * 2019-12-21 2020-04-28 钢铁研究总院 Heat treatment method for preventing abnormal growth of heat-resistant alloy thick-wall pipe crystal grains
WO2022145065A1 (en) * 2020-12-28 2022-07-07 日本製鉄株式会社 Steel material
WO2022145067A1 (en) * 2020-12-28 2022-07-07 日本製鉄株式会社 Steel material
US11634792B2 (en) 2017-07-28 2023-04-25 Alloyed Limited Nickel-based alloy
JP7282246B1 (en) 2022-10-21 2023-05-26 日本冶金工業株式会社 Ni--Cr--Fe--Mo alloy with excellent surface properties and method for producing the same
JP7551935B2 (en) 2021-01-13 2024-09-17 ハンチントン、アロイス、コーポレーション High strength, heat stable nickel-based alloy
US12241144B2 (en) 2019-06-07 2025-03-04 Alloyed Limited Nickel-based alloy

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11155904B2 (en) * 2019-07-11 2021-10-26 L.E. Jones Company Cobalt-rich wear resistant alloy and method of making and use thereof
CN110923512B (en) * 2019-12-04 2020-12-04 上海江竑环保科技有限公司 High-temperature corrosion resistant alloy core, production process and electromagnetic heating rotary kiln
CN111471915B (en) * 2020-05-08 2021-06-29 华能国际电力股份有限公司 A kind of complex phase strengthening nickel-cobalt-based high-chromium wear-resistant superalloy and preparation method thereof
CN111607691B (en) * 2020-05-26 2022-02-11 东南大学 321 austenitic stainless steel pipe with gradient structure and preparation method thereof
CN112176224A (en) * 2020-09-08 2021-01-05 中国科学院金属研究所 High-strength nickel-based single crystal superalloy with excellent comprehensive performance
CN112375954A (en) * 2020-11-10 2021-02-19 华能国际电力股份有限公司 Low-cost high-strength oxidation-resistant iron-nickel-based alloy and preparation method thereof
CN114134368B (en) * 2021-11-18 2023-05-26 上海康晟航材科技股份有限公司 High-temperature alloy for laser cutting nozzle and preparation method thereof
CN117385212B (en) * 2023-12-08 2024-03-12 北京北冶功能材料有限公司 Nickel-based high-temperature alloy foil with excellent medium-temperature strength and preparation method thereof
CN118979177B (en) * 2024-10-21 2025-03-25 上海核工程研究设计院股份有限公司 A nickel-based alloy for high-power micro-reactor and a manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4697357B1 (en) 2009-12-10 2011-06-08 住友金属工業株式会社 Austenitic heat-resistant alloy
JP2014156628A (en) * 2013-02-15 2014-08-28 Nippon Steel & Sumitomo Metal Ni-BASED HEAT RESISTANT ALLOY MEMBER, AND Ni-BASED HEAT RESISTANT ALLOY RAW MATERIAL
JP2017036477A (en) * 2015-08-10 2017-02-16 新日鐵住金株式会社 Austenitic heat resistant alloy member and manufacturing method therefor
JP2018059135A (en) * 2016-10-03 2018-04-12 新日鐵住金株式会社 Ni-BASED HEAT-RESISTANT ALLOY MEMBER AND METHOD FOR PRODUCING THE SAME

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4007241B2 (en) * 2002-04-17 2007-11-14 住友金属工業株式会社 Austenitic stainless steel excellent in high-temperature strength and corrosion resistance, heat-resistant pressure-resistant member made of this steel, and manufacturing method thereof
JP4780189B2 (en) * 2008-12-25 2011-09-28 住友金属工業株式会社 Austenitic heat-resistant alloy
FR2949234B1 (en) * 2009-08-20 2011-09-09 Aubert & Duval Sa SUPERALLIAGE NICKEL BASE AND PIECES REALIZED IN THIS SUPALLIATION
JP4631986B1 (en) * 2009-09-16 2011-02-16 住友金属工業株式会社 Ni-based alloy product and manufacturing method thereof
JP5146576B1 (en) * 2011-08-09 2013-02-20 新日鐵住金株式会社 Ni-base heat-resistant alloy
JP5899806B2 (en) * 2011-10-31 2016-04-06 新日鐵住金株式会社 Austenitic heat-resistant alloy with excellent liquefaction resistance in HAZ
JP6754558B2 (en) * 2015-09-18 2020-09-16 株式会社日立システムズ Additional information collection system and collection method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4697357B1 (en) 2009-12-10 2011-06-08 住友金属工業株式会社 Austenitic heat-resistant alloy
JP2014156628A (en) * 2013-02-15 2014-08-28 Nippon Steel & Sumitomo Metal Ni-BASED HEAT RESISTANT ALLOY MEMBER, AND Ni-BASED HEAT RESISTANT ALLOY RAW MATERIAL
JP2017036477A (en) * 2015-08-10 2017-02-16 新日鐵住金株式会社 Austenitic heat resistant alloy member and manufacturing method therefor
JP2018059135A (en) * 2016-10-03 2018-04-12 新日鐵住金株式会社 Ni-BASED HEAT-RESISTANT ALLOY MEMBER AND METHOD FOR PRODUCING THE SAME

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3584335A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11634792B2 (en) 2017-07-28 2023-04-25 Alloyed Limited Nickel-based alloy
US12258655B2 (en) 2017-07-28 2025-03-25 Alloyed Limited Nickel-based alloy
CN110157953A (en) * 2019-06-04 2019-08-23 沈阳中科煜宸科技有限公司 A kind of laser gain material manufacture superalloy powder and preparation method thereof
US12241144B2 (en) 2019-06-07 2025-03-04 Alloyed Limited Nickel-based alloy
CN111074183A (en) * 2019-12-21 2020-04-28 钢铁研究总院 Heat treatment method for preventing abnormal growth of heat-resistant alloy thick-wall pipe crystal grains
WO2022145065A1 (en) * 2020-12-28 2022-07-07 日本製鉄株式会社 Steel material
WO2022145067A1 (en) * 2020-12-28 2022-07-07 日本製鉄株式会社 Steel material
JP7440805B2 (en) 2020-12-28 2024-02-29 日本製鉄株式会社 steel material
JP7551935B2 (en) 2021-01-13 2024-09-17 ハンチントン、アロイス、コーポレーション High strength, heat stable nickel-based alloy
JP7282246B1 (en) 2022-10-21 2023-05-26 日本冶金工業株式会社 Ni--Cr--Fe--Mo alloy with excellent surface properties and method for producing the same
WO2024084877A1 (en) * 2022-10-21 2024-04-25 日本冶金工業株式会社 Ni-cr-fe-mo-based alloy having excellent surface properties, and method for producing same
JP2024061291A (en) * 2022-10-21 2024-05-07 日本冶金工業株式会社 Ni-Cr-Fe-Mo-BASED ALLOY HAVING EXCELLENT SURFACE CHARACTERISTICS, AND METHOD FOR MANUFACTURING THE SAME

Also Published As

Publication number Publication date
JP6819700B2 (en) 2021-01-27
JPWO2018151222A1 (en) 2019-11-21
CN110291216A (en) 2019-09-27
US20200010931A1 (en) 2020-01-09
EP3584335A1 (en) 2019-12-25
EP3584335A4 (en) 2020-08-19
CA3053741A1 (en) 2018-08-23
KR20190117605A (en) 2019-10-16

Similar Documents

Publication Publication Date Title
JP6819700B2 (en) Ni-based heat-resistant alloy member and its manufacturing method
JP5146576B1 (en) Ni-base heat-resistant alloy
JP5413543B1 (en) Ni-based alloy
CN102171373B (en) Ni-based heat-resistant alloy
JP4258679B1 (en) Austenitic stainless steel
CN101784685B (en) Low-thermal-expansion ni-based super-heat-resistant alloy for boiler and having excellent high-temperature strength, and boiler component and boiler component production method using the same
JP6705508B2 (en) NiCrFe alloy
JP6201724B2 (en) Ni-base heat-resistant alloy member and Ni-base heat-resistant alloy material
JP6816779B2 (en) Austenitic heat-resistant alloy member and its manufacturing method
JP6520546B2 (en) Austenitic heat-resistant alloy member and method of manufacturing the same
JP6772735B2 (en) Ni-based heat-resistant alloy member and its manufacturing method
JP6795038B2 (en) Austenitic heat-resistant alloy and welded joints using it
JP2016215228A (en) Production method for austenitic heat-resistant alloy weld joint, and weld joint obtained thereby
JP7256374B2 (en) Austenitic heat-resistant alloy member
JP2021025096A (en) Austenitic heat-resistant alloy weld joint
JP2021025095A (en) Austenitic heat-resistant alloy weld joint

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18753655

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018568607

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3053741

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197026436

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018753655

Country of ref document: EP

Effective date: 20190916

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载